
Harnessing the Power of Generative

Models for Mobile Continuous and

Implicit Authentication

by

Ezzeldin Tahoun

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Masters of Mathematics

in Computer Science

Waterloo, Ontario, Canada, 2021

© Ezzeldin Tahoun 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Authenticating a user’s identity lies at the heart of securing any information system.

A trade off exists currently between user experience and the level of security the system

abides by. Using Continuous and Implicit Authentication a user’s identity can be verified

without any active participation, hence increasing the level of security, given the continuous

verification aspect, as well as the user experience, given its implicit nature.

This thesis studies using mobile devices inertial sensors data to identify unique move-

ments and patterns that identify the owner of the device at all times. We implement,

and evaluate approaches proposed in related works as well as novel approaches based on a

variety of machine learning models, specifically a new kind of Auto Encoder (AE) named

Variational Auto Encoder (VAE), relating to the generative models family. We evaluate

numerous machine learning models for the anomaly detection or outlier detection case of

spotting a malicious user, or an unauthorised entity currently using the smartphone sys-

tem. We evaluate the results under conditions similar to other works as well as under

conditions typically observed in real-world applications. We find that the shallow VAE

is the best performer semi-supervised anomaly detector in our evaluations and hence the

most suitable for the design proposed.

The thesis concludes with recommendations for the enhancement of the system and

the research body dedicated to the domain of Continuous and Implicit Authentication for

mobile security.

Keywords: Machine Learning, Generative Models, Continuous Authentication, Implicit

Authentication, Artificial Intelligence

iii

Acknowledgements

I would like to thank my supervisor Prof. Urs Hengartner for his support, guidance,

and leadership during my time in Waterloo. Also many thanks to Iman Akbari for the

friendship, support, proofreading and help during my educational journey in UW. I would

like to thank all the people who made this thesis possible, fellow researchers, innovators,

and creatives. I would like to specifically thank my grandmother, my family and my friends

for being of immense support throughout the journey. I am truly blessed to be surrounded

by their love and I am grateful beyond words.

This research was enabled in part by support provided by SciNet (www.scinethpc.ca)

and Compute Canada (www.computecanada.ca). We gratefully acknowledge the support

of the Waterloo-Huawei Joint Innovation Laboratory for funding this research.

iv

Dedication

This is dedicated to Dr. Adel Tahoun, Dr. Taghrid Ratba, Dr. Taghrid Tahoun, Dr. Ghada

Tahoun and to my sweet little Lolo and Momo. I am truly forever in your debt.

v

Table of Contents

List of Figures x

List of Tables xiv

List of Abbreviations xv

List of Symbols xviii

1 Introduction 1

1.1 Access Management . 2

1.2 Continuous and Implicit Authentication 3

1.3 Contributions . 4

2 Background 7

2.1 Concept . 7

2.2 Threat Models . 12

2.2.1 Use Cases Scenarios . 14

2.3 Contextual Awareness . 18

2.4 Threat Response . 20

vi

2.5 Data Types . 24

2.5.1 Inertial Sensors . 27

2.5.2 Security Issues with Mobile Sensing 32

2.6 Performance Metrics . 34

3 Relevant Work 37

3.1 Datasets . 37

3.2 Mobile Sensing . 39

3.3 Data Preprocessing . 43

3.4 Machine Learning Models . 45

3.4.1 Generative Models . 47

3.5 Experiment Settings . 49

4 Approach 51

4.1 Data . 51

4.2 Classical Machine Learning Models . 52

4.2.1 Linear, Probabilistic, Density, and Ensemble-based Models 54

4.3 Generative Models . 56

4.3.1 Auto-Encoder . 58

4.3.2 Variational Auto-Encoder . 59

4.3.3 VAE based Anomaly Detection . 65

4.4 Summary . 67

5 Experiments 68

5.1 Data Processing . 69

vii

5.1.1 Initial Data-set Explorations . 69

5.1.2 Data-set Preparations . 72

5.2 Experiments Design . 74

5.2.1 Deep Feature Extraction . 77

5.3 Results . 79

5.3.1 Initial Results . 80

5.3.2 Promising Models . 84

5.3.3 Observations and Improvements . 87

5.3.4 Final Results . 92

5.4 Discussion . 99

5.4.1 Empowering the Edge . 100

6 Solution Implementations 102

6.1 Solution Code Base . 103

6.1.1 Experiments code-base . 103

6.1.2 Data Collection, Data Cloud Streaming, and AI at Edge 103

6.2 Solution Computing Resources . 104

7 Conclusion 106

7.1 Recommendations . 106

7.2 Discussion . 110

References 112

viii

A Appendix 137

A.1 Model Details . 137

A.2 Human Activity Recognition . 141

A.3 HMOG Data-set Stats . 143

A.4 Deep Feature Extractor Pare-meters . 149

A.5 Models . 153

ix

List of Figures

2.1 Logical stages of the system in deployment. 8

2.2 System architecture, showing the training taking place on a cloud resource. 9

2.3 System architecture, showing the training taking place on the smartphone. 10

2.4 An example forced login scenario, showing how the proposed system can

hide data, and apps on the phone to prevent losses and damages. 17

2.5 The information and actions flow between the continuous and implicit au-

thentication system, the operating system, third party applications, and the

response system. 21

2.6 Some of the sensors present on many phones. Source: [1] 25

2.7 (a) The Wii™ remote with the MotionPlus™ attachment (b) The Apple

IPhone™ 6. 26

2.8 Axes of sensors on many phones. Source: [1] 27

2.9 Coordinate frames, n-frame at a certain location on earth and the e-frame

rotating with earth and the i-frame. Source: [2] 28

2.10 Schematic of an accelerometer. Source: [3] 29

2.11 Accelerometer structure. Source: [4] . 29

2.12 Gyroscope structure. Source: [4] . 30

2.13 Schematic of a vibrating gyroscope. Source: [5] 31

2.14 Schematic a search-coil magnetometer. Source: [6] 31

x

2.15 FAR, FRR and the EER point. Source: [7] 35

4.1 Anomaly detection approaches arranged in the plane spanned by two major

components (model and feature map) of our unifying view. Based on shared

principles, we distinguish One-Class Classification, probabilistic models, and

reconstruction models as the three main groups of approaches that formulate

shallow and deep models. Purely distance-based methods complement these

three groups. Adopted from [8] . 53

4.2 Anomaly detection approaches arranged in the plane categorised by their

underlying type. The 5 categories in the anomaly detection models litera-

ture are linear based, proximity based, neural networks based, probabilistic

based, and ensembles. Models we used in our evaluations are bold-ed for

emphasis. 54

4.3 Taxonomy of generative models. Source: [9] 57

4.4 Auto-Encoder model architecture. Source: [10] 58

4.5 Auto-Encoder architecture featuring the encoder and decoder multi layered

networks. Source: [11] . 59

4.6 Variational Auto-Encoder representation. Source: [10] 61

4.7 Reconstructed samples from a VAE trained on MNIST. Source: [12] 62

4.8 Reconstructed samples from a VAE trained on faces. Source: [12] 63

5.1 HMOG sessions duration. Source: [13] . 69

5.2 Nine categories of touch or sensor data are recorded in HMOG. Source: [14] 70

5.3 Schema of data splitting for training and testing. A,B,C,D,E,F refer to the

six different tasks-body modes combinations. Every subject is once selected

as owner and tested against all remaining subjects. Source: [15] 74

5.4 Testing EER of 12 models in 2 different experiment settings. 82

5.5 Testing accuracy of 12 models in 2 different experiment settings. 83

xi

5.6 Testing results of 12 models in 2 different experiment settings. Scoring time

reported in seconds. 83

5.7 Previously reported testing accuracy and EER of the state-of-the-art and 5

best models in 2 different experiment settings. 84

5.8 Previously reported testing accuracy and EER of the state-of-the-art and 5

best models in 2 different experiment settings. 85

5.9 Testing accuracy and EER of the state-of-the-art and 5 best models in 2

different experiment settings. 86

5.10 Inference time results of VAE, KNN, and ABOD in seconds. 87

5.11 PCA visualization of the deep features generated by the original SCNN with

2D filters and using the ROBUST scaler. Source: [13] 90

5.12 PCA visualization of the deep features generated by the original SCNN with

2D filters and using the MINMAX scaler. Source: [13] 91

5.13 Testing accuracy of the state-of-the-art and the top 5 models in 6 different

experiment settings. 92

5.14 Testing EER of the state-of-the-art and the top 5 models in 6 different

experiment settings. 93

5.15 Testing accuracy and EER of the state-of-the-art and 5 best models in 2

different experiment settings. 94

5.16 Testing EER and inference time (milliseconds) of PCA and VAE models

under the newly proposed experiment setting. 95

5.17 Testing accuracy and F1 of PCA and VAE models under the newly proposed

experiment setting. 96

5.18 Testing accuracy and EER of the state-of-the-art and 5 best models in

VALID-STD and NAIVE-MINMAX experiment settings. 96

7.1 TD VAE state-space model as a Markov Chain. Source: [10] 107

xii

A.1 HMOG sessions categories and total count per subject. Adapted from [15] 143

A.2 HMOG accelerometer data between subjects and walking and sitting set-

tings. Adapted from [15] . 143

A.3 Initial data preparation procedure along with corresponding python software

modules. Adapted from [15] . 144

A.4 HMOG inertial sensors data distribution on log scale. Adapted from [15] 144

A.5 HMOG inertial data pairwise relationships for three subjects. Adapted from

[15] . 145

A.6 HMOG samples count per subject. Adapted from [15] 146

A.7 All users in HMOG and all their sessions durations in minutes. 147

A.8 Siamese Convolutional Neural Network architecture with 1D filters proposed

by [16]. All filters use padding and the vector of the last CNN layer (marked

in green) is considered the deep feature representation. Adapted from [13] 149

A.9 Siamese Convolutional Neural Network architecture with FCN sub networks

proposed by [15] as modeled after [17]. All filters use padding and the

vector of the last layer (marked in green) is considered the deep feature

representation. Adapted from [13] . 150

A.10 Siamese Convolutional Neural Network architecture proposed by [16]. All

filters use padding and the vector of the last CNN layer (marked in green)

is considered the deep feature representation. Adapted from [13] 151

xiii

List of Tables

2.1 Threat models considered . 13

3.1 Table of important studies in smartphone behavioral user authentication.

Adopted from [18] . 41

3.2 Best One Class solutions that reported results on HMOG 46

5.1 Different initial experiments settings . 76

5.2 Table of commonly used scaling functions 88

A.2 The time domain’s commonly computed features and number of resulting

features per a three-axis sensor. Adapted from [13, 19] 146

A.3 The frequency domain’s commonly computed features per a three-axis sen-

sor. Adapted from [13, 19] . 148

A.4 Miscellaneous commonly computed features and number of resulting fea-

tures per a three-axis sensor. Adapted from [13, 19] 148

A.5 Siamese CNN parameters. Adapted from [20, 13] 152

A.6 Variations of parameters tested for Siamese CNN approach. Adapted from

[13] . 152

xiv

List of Abbreviations
Acronym Meaning

AD Anomaly Detection

AE Autoencoder

AP Average Precision

AAE Adversarial Autoencoder

AUPRC Area Under the Precision-Recall Curve

AUROC Area Under the ROC curve

CAE Contrastive Autoencoder

DAE Denoising Autoencoder

DGM Deep Generative Model

DSVDD Deep Support Vector Data Description

DSAD Deep Semi-supervised Anomaly Detection

EBM Energy Based Model

ELBO Evidence Lower Bound

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

GT Geometric Transformations

iForest Isolation Forest

KDE Kernel Density Estimation

k-NN k-Nearest Neighbors

kPCA Kernel Principal Component Analysis

LOF Local Outlier Factor

LPUE Learning from Positive and Unlabeled Examples

LSTM Long short-term memory

MCMC Markov chain Monte Carlo

MCD Minimum Covariance Determinant

MVE Minimum Volume Ellipsoid

OOD Out-of-distribution

OE Outlier Exposure

xv

Table 1 continued from previous page

Acronym Meaning

OC-NN One-Class Neural Network

OC-SVM One-Class Support Vector Machine

pPCA Probabilistic Principal Component Analysis

PCA Principal Component Analysis

pdf Probability density function

PSD Positive semidefinite

RBF Radial basis function

RKHS Reproducing Kernel Hilbert Space

rPCA Robust Principal Component Analysis

SGD Stochastic Gradient Descent

SGLD Stochastic Gradient Langevin Dynamics

SSAD Semi-Supervised Anomaly Detection

SVDD Support Vector Data Description

VAE Variational Autoencoder

VQ Vector Quantization

XAI Explainable AI

AES Advanced Encryption Standard

ALPN Application-Layer Protocol Negotiation

AVG Average

CNN Convolutional Neural Network

DASH Dynamic Adaptive Streaming over HTTP

DL Deep Learning

DNS Domain Name System

DT Decision Tree

GRU Gated Recurrent Unit

HTTPS Hypertext Transfer Protocol Secure

IAT Inter-arrival Time

IDS Intrusion Detection System

xvi

Table 1 continued from previous page

Acronym Meaning

IP Internet Protocol

ISP Internet Service Provider

LSTM Long Short-term Memory

ML Machine Learning

MLP Multi-layer Perceptron

MTU Maximum Transmission Unit

NAT Network address translation

NB Näıve Bayes

NDA Non-disclosure Agreement

NLP Natural Language Processing

PCAP Packet Capture

QUIC Quick UDP Internet Connections

QoE Quality of Experience

QoS Quality of Service

RF Random Forest

SAE Stacked Auto-encoder

SMTP Simple Mail Transfer Protocol

SNI Server Name Indication

STD Standard Deviation

SVM Support Vector Machine

TC Traffic Classification

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

VPN Virtual Private Network

VoIP Voice over Internet Protocol

xvii

List of Symbols
Symbol Description

x(i) Each data point is a vector of d dimensions, x(i) =

[x
(i)
1 , x

(i)
2 , . . . , x

(i)
d].

x One data sample from the dataset, x ∈ D.
x’ The reconstructed version of x.

The corrupted version of x.

z The compressed code learned in the bottleneck layer.

a
(l)
j The activation function for the j-th neuron in the l-th hidden

layer.

gφ(.) The encoding function parameterized by φ.

fθ(.) The decoding function parameterized by θ.

qφ(z|x) Estimated posterior probability function, also known as proba-

bilistic encoder.

pθ(x|z) Likelihood of generating true data sample given the latent code,

also known as probabilistic decoder.

xviii

Chapter 1

Introduction

It is forecasted that there will be 17.72 billion mobile devices worldwide by 2024, and with

5G and 6G technologies on top of their personal computer (PC)-like computing resources,

they will be more capable than ever [21]. As mobile devices are growing in numbers and

capabilities by the day, they will be the main way humans interact with information tech-

nologies, given their portability and similarity to PCs. Nowadays, in our hyper-connected

world, mobile devices are closer to the user, as well as their critical access and sensitive

data, than any other class of electronics. It is of pivotal importance to properly authenti-

cate (i.e., validate the legitimacy of) every passive or active session of the mobile device in

an effective manner to eliminate the risk of breaching the user’s and the device’s security.

This needs to be done within a high level of convenience to the human using the device to

mitigate workarounds (e.g., : passwords sticky notes).

A variety of risks arise due to that very portability that makes these devices extremely

convenient, and efficient tools for human technology usage, to the extent of outselling PCs

for years [22]. These risks include the possibility of the devices getting stolen, lost, or

misplaced easily, which would allow unauthorized personnel to run various sophisticated

physical and cyber attacks on them, leading to an abundance of mobile security breaches.

The impact of a mobile security breach is in most times more severe than that of a PC

breach, as mobile devices hold just as many credentials, photos, and data as the PC, but

additionally contain calls data, locations information, a popular second factor of authenti-

1

cation, such as One Time Password (OTP) offline generators or text Short Message Service

(SMS) based OTP, used in many services nowadays and more [22].

1.1 Access Management

Authorization systems are mainly constructed around challenges of what the users are,

have, do, or know, and more recently something relating to their context or situation [23].

This allows the user to prove their identity to the system and their eligibility and enti-

tlements to certain actions and data. They have been evolving in implementations, but

generally, these are the five authentication factors used nowadays and examples of their

implementations:

• something the user knows (e.g., password, pattern, PIN, secret question-answer)

• something the user has (e.g., USB token, smart-card, software token, cookie)

• something the user is (e.g., fingerprint, DNA fragment, iris pattern, voice pattern,

hand geometry, heart rhythm)

• something the user does (e.g., signature, gesture, handwriting, walk)

• something about the user (e.g., current timezone, current location or position, current

date and time, spatio-temporal authentication, reputation or web of trust, Turing test

or Captcha to test whether the user is as capable or human as we assume, contextual

or situational awareness)

These are the authentication factors mainly utilized, and generally, authentication sys-

tems are considered more robust if they use more factors (i.e., Multi-Factor Authentication

(MFA)). For instance, most two-factor authentication systems utilize a password, some-

thing the user knows, as well as a one-time passphrase sent to the user’s phone, something

the user has. A benefit of the OTP mechanism is its resiliency to replay attacks, as the

2

code is regenerated for every use case [23]. The most common of these authentication fac-

tors is the user knows authentication factor, which is commonly implemented in a shared

secret ID and password fashion across our technological landscape today.

Continuous authentication refers to a mechanism where the authentication factor is

being monitored continuously to assess the legitimacy of the user access repeatedly instead

of more common one-time authentication systems (e.g., phone only asks for a password

when unlocking the screen). The frequency of these challenges or checks is to be minimized

to shorten the period where an attacker can slip under the radar undetected, sometimes to

a few seconds. Implicit authentication refers to authentication that can occur without the

user of the system actively participating or even gaining knowledge of it, hence happening

passively under the hood. Implicit authentication is commonly deployed continuously, as

well, to check the security posture frequently since it does not have to undermine system

convenience in the pursuit of tighter security. Continuous and Implicit Authentication

(CIA) systems might be a great authentication factor, next to something the user knows

(e.g., PIN, password) for the mobile security use case. We evaluate that further in our

work later on in this thesis.

A few questions that arise in our work are: How can we enhance mobile device secu-

rity using breakthrough technologies like generative models that have appeared recently

in the machine learning research domain? Is it possible to find a good balance between

convenience and security and address both physical and cyber threats? How can a system

continuously and implicitly collect data passively and use unique patterns to identify au-

thorized users? Can we leverage the increasing computational power available to mobile

devices and cloud technologies to enable a powerful security system? We take on all of

these questions and delve deeper into this work to find a solution.

1.2 Continuous and Implicit Authentication

The basis of our solution, the Continuous and Implicit Authentication system, is the utiliza-

tion of data streams continuously available on the phone at all times, including nonactive

usage, and run it by an anomaly detection module for the sake of detecting an imposter,

3

conveniently without alerting the user to the process of validating their identity.

Imagine a phone theft occurs, and the phone can identify within seconds that the new

holder is an imposter, and encrypts all its data safely, and alert authorities. Alternatively,

the original user walks to their smart home or smart car, and everything unlocks automat-

ically because the phone in the user’s pocket can identify and authorize the person. This

is the objective of this solution and its domain, and our contributions are a step in the

right direction, making this objective more feasible, efficient, cheaper, and more probable

for the near future.

1.3 Contributions

Our contributions in this work can be summarized as:

• Present a thorough review of motivations, threat models, and use cases in the con-

tinuous and implicit authentication domain

• Present a thorough review of existing works

• Present a thorough proposal and review of generative models capabilities for the

continuous and implicit authentication use case, especially when using human kine-

matics

• Evaluate light machine learning models and compared them to the generative model

proposed and the state of the art deep learning-based solution

• Find the proposed generative model to be lighter, faster, more accurate, and resilient

than all other solutions, including state of the art

• Present a thorough mobile security collaborative architecture proposal for the solu-

tion around the proposed outlier detection generative model, in which edge and cloud

training, real-time responses, and third party integrations can take place

4

• Utilized high availability and low privacy and power inertial data available on most

smartphones for our work to allow for better convenience and eliminate the need

for active usage of the device to enable authentication (non-cooperative and non-

intrusive)

• Propose a new experiment setting that mimics real-world scenarios often overlooked

by other researchers, which lowered performance metrics for all solutions but kept

the generative model at the top

• Run extensive evaluations on the most popular public dataset in the domain with

multiple experiment settings and machine learning models

• Implement the proposed solution core generative model and a data collection and

real-time streaming application for Android and IOS systems.

• Open-source all processing modules, experiments, implementations, and mobile op-

erating systems to enhance reproducibility and shorten development cycles for other

researchers

The purpose of our work in this thesis is to assess the reliability and feasibility of a

CIA system that could potentially enhance mobile security while maintaining high levels

of privacy and convenience for the users. We aim to deliver maximum convenience hand in

hand with security instead of selecting a point on the trade-off, using emerging technologies

and techniques. To deliver maximum convenience and privacy within the mobile CIA

system context, we limit our data to inertial sensors data (accelerometer, gyroscope, and

magnetometer), as they are also continuously available whether the device is being actively

used or not. We also limit our work to light machine learning models to perform anomaly

or outlier detection evaluations to be trained and deployed on the phone continuously. We

document threat models and use cases that have developed recently and affected all mobile

device users. We evaluate how a CIA system can work with and collaborate with other

third-party security products and processes in place to improve and simplify the overall

security posture of the users, more on that in Chapter 2.

A significant component of our work is tailored towards utilizing generative models,

more on our approach in Chapter 4, and specifically the new Variational Auto Encoder, as

5

a fast, reliable, convenient, and light anomaly detector to fit within our CIA system. We

evaluate it against other common algorithms in numerous hyperparameter settings combi-

nations across various experiment settings that covered optional deep feature extractions,

extra data features, data scalings, and more. We then demonstrate that generative models

also outperform other models in experiments that mimicked real-life scenarios instead of

lab setups.

We base some of our work and evaluations on the HMOG dataset [24] and the promising

results published by Centeno et al. [20] and re-implemented by Buech [13]. We elaborate

on our extensive evaluations in Chapter 5, where we run more than ten different anomaly

and outlier detection algorithms. We propose an experiment setting uncommon in today’s

literature that mimics real-life use cases and finds that it deeply hinders reported state-of-

the-art metrics, commonly reported in the domain, including our generative models-based

results. We also document the implementations and engineering we put into the solution

for ease of reproducibility in Chapter 6.

We contribute to the relevant research domains, carefully reviewed in the Chapter 3,

extensive open-source evaluations, methods to annihilate the need for manual feature en-

gineering other than deep learning, a detailed methodology in architecting the solution,

implementation of data collection, and real-time streaming, mobile application, and im-

plementation of the proposed Variational Auto Encoder for the Android and IOS mobile

operating systems. To allow other researchers to understand our contributions, we make

our results comparable to most existing works by utilizing the most common performance

metrics, dataset, and data processing techniques.

Finally, in Chapter 7, we discuss findings, propose questions, and highlight future op-

portunities to enhance the overall continuous and implicit authentication research domain.

6

Chapter 2

Background

This chapter explains the domain of our work and describes the concept, threat models

incorporated in our design, use cases, contextual awareness, threat response, performance

metrics, and data types.

2.1 Concept

Our work investigates the problem of outlier detection to spot unauthorized users of a

mobile device implicitly based on how they handle the device at any particular time. By

handling the device, the user leaves behind a trace of unique movements to them, based

on the idiosyncrasy of their habits, hand measurements, and natural range of motion while

typing or using the device. The movements are captured by the inertial phone sensors:

accelerometer, gyroscope, and magnetometer. Assuming that a limited number of users

use the smartphone, most commonly, the idea is to trigger when the activity in the session

(any particular minute in our case) seems to be off the standard behavior. Standard

behavior in this context is defined by the owner or authorized user’s behavior saved during

a pre-determined duration, where multiple scenarios are performed and measured.

Although the most commonly used biometrics are physiological (like face, fingerprint,

hand, iris, DNA), we believe those that are behavioral (like keystroke, signature, and voice)

7

1

2

3

Enrollment
Submit identifying traces for the AI to
train on and set the normal behavior
expected for the legitimate users.

Authentication
The Continuous and Implicit Authentication
is in its active service mode. Infractions are

reported and dealt with according to
policies set. Users can use their phones

normally.Updating
Every set period of time (ex: 1 month)
the users can update their identifying

traces and behaviors.

Figure 2.1: Logical stages of the system in deployment.

are more fitting to Continuous and Implicit Authentication and hence are more resilient

to the owner being forced or tricked to hand over their authenticated device.

In a real-world deployment of this solution, the following three fundamental stages

need to be considered: (i) enrollment, (ii) authentication (iii) updating. These stages are

explained in more detail below and can be seen in Figure 2.1.

Enrollment is generally a very simple scenario involving inertial data collection where

the user is presented with certain activities to conduct (e.g., using the phone while sitting,

using the phone while walking, using the phone while standing, using the phone while

running, using the phone while biking, and using the phone while driving). As the user

acts out the activities, the data from the inertial sensors are ingested and streamed to the

AI module to be utilized as training data for this user’s profile. The users can register

as many profiles as they wish, although commonly smartphones have one legitimate user.

8

Cloud

Phone

Validation/Response

Model
Deployed

Model
Training

Data Streaming

Sensors Data
Collected

Inference

IF training is needed

Model Download

Figure 2.2: System architecture, showing the training taking place on a cloud resource.

The model is internally evaluated against a pre-determined set of malicious data and a

threshold is set for acceptance in a functional testing sub-stage. If the model passes, the

model is ready to get out of enrollment and graduate to the next stage. If the model does

not pass, then the enrollment is determined not good enough and the user is asked to redo

the activities.

The next stage of the deployment is authentication. This is when the core activities of

the solution take place, which is detecting deviations from normal behavior and responding

according to a set policy that sets sensitivity thresholds. Responses might include notifying

local authorities or hiding sensitive apps and data from the current session’s user until the

user performs a secret bypass pattern to restore the device to its normal state. This stage

is where the solution is designed to be most of the deployment life cycle. Suppose the user

is falsely classified as malicious, and their sensitive data and apps are being hidden from

view. In this case, the user can either initiate an updating stage transition to enhance the

model’s performance by proving they are legitimate users by entering a special secret bypass

pattern of movements or taps and then updating the profile by acting out new training

9

scenarios, or the user can enter the secret bypass pattern to make an exception and cancel

responses for the current session. The bypass pattern can take the form of any set of

events. For instance, tapping the top right corner of the screen five times and then tapping

the bottom left corner two times or both corners simultaneously three times. The secret

bypass pattern allows the user to have a way to authenticate if the system has reasonable

suspicion against the current session as a fallback. We advise against utilizing the secret

bypass pattern frequently, and hence the system can enforce a series of authentication

challenges and an update stage transition if the secret bypass pattern is utilized with high

frequency and is abused.

Occasionally, the updating stage will be initiated as scheduled or in an active learn-

ing setting via immediate feedback. It is recommended to schedule monthly or quarterly

updating sessions for the system to learn new behaviors that the users have adopted, con-

sciously or subconsciously. The sessions are similar to enrollment from user experience,

but only the deviations are recorded and reflect certain changes on the user profile normal

behavior model. As this stage might present an attack surface, this stage is only enabled

after other authentication factors are passed (e.g., password, PIN, face recognition, finger-

print, keystroke dynamics). Immediate feedback can be set to achieve an active learning

setup where the model can get feedback on its detections in near real-time by the user just

performing a secret bypass pattern when falsely classified as an anomaly.

Phone

Validation/Response

Model
Deployed

Model
Training

IF training is needed

Sensors Data
Collected

Inference

Figure 2.3: System architecture, showing the training taking place on the smartphone.

10

It is important to note that during our design, we consider two cases, as per Figure 2.2

and Figure 2.3, for model training (1) at edge training and (2) at cloud training, but we

always fixed inference at the edge since the threat models indicated the possibility of losing

connection to the internet at critical times, stressing the need for an always-on and always

alert continuous and implicit authentication system. The edge of the phone, in this case,

might or might not run training, depending on preference, compatibility, and capabilities.

The compatibility and capabilities explored by us are further detailed in the Chapter 6.

11

2.2 Threat Models

In this section, we build on the concept put forward in the previous section, and quantify

the threat models endangering mobile users’ security today.

The four threat models we are considering feature the device being used by someone

else other than the owner. The ability to detect an unauthorized user implicitly and

continuously allows us to offer protection against the loss of sensitive and private data. The

owner or authorized users are the devices able to choose which data or device functionalities

are considered sensitive.

The scenario is defined as the threat actor gaining physical access to the device, as

well as bypassing the initial authentication system (e.g., PIN, fingerprint, Face ID) by

any means. This may include previous possession, negligence, software bugs, brute-force

attacks, dictionary attacks, or even acquiring the device and credentials by force.

The sensitive information and access available to the unauthorized user in this situation

includes but is not limited to:

• Personally identifiable information (PII): e.g., address, date of birth, name, initials,

signature, pictures

• Critical information: e.g., passwords in a password manager, intellectual property, trade

secrets, personal secrets, strategy, business plans

• Critical access: e.g., valuable assets, digital currency, bank accounts, infrastructure,

email accounts, social media accounts, private keys

The threat model can take a few different forms and variants. In Table 2.1, the follow-

ing specific threat models are described: threat model (A), Compromised authentication

factor, is where an unauthorized user is able to use the correct PIN, password, pattern,

or biometrics to log in due to prior knowledge (e.g., by-shoulder surfing the legitimate

user previously logging in). Threat model (B), Handover/Sharing, is when the authorized

user hands over their device, unlocked, to an authority figure, friend, or spouse. Threat

12

Threat Models

Label Name Description Example

A Compromised Compromised authentication factor

leading to successful bypass of other

authentication factors by a threat ac-

tor

Unauthorized user is able to

enter the correct PIN, pass-

word, or pattern to login

to the device and act mali-

ciously inheriting the priv-

ileges of the compromised

credential’s user.

B Handover Authorized user handing over or shar-

ing their device with someone unau-

thorized

Owner giving their unlocked

device to an authority fig-

ure, attacker forcing login,

friend, or spouse. The

unauthorized actor is able

to act maliciously with the

same privileges the autho-

rized user has.

C Unattended Authorized user leaves phone un-

locked and unattended, resulting in

theft or unauthorized access

Owner forgets device on the

table, and leaves the room.

A threat actor picks it up

and is able to act mali-

ciously with the same priv-

ileges the authorized user

has.

D Locked device

loss

Locked device is lost Owner gets pick-pocketed

while walking. A threat ac-

tor has access to the device

in its locked state.

Table 2.1: Threat models considered

13

model (C) is when an authorized user forgets their device, is unlocked, on a table, and

leaves the room. A threat actor then picks it up and is able to act maliciously with the

same privileges the authorized user has. Lastly, a fourth and important threat model is

(D), and it does not depend on the active usage of the phone at all. Instead, it focuses on

the passive phone authentication state, meaning that the device loss can be detected when

the phone is unlocked by capturing moves the phone registers while locked in the hands,

pockets, or bag of someone else.

2.2.1 Use Cases Scenarios

Compromised Authentication System

Threat model (A) (cf., Table 2.1) is when a phone is physically with someone else that has

compromised the authentication procedure. In this case, they do not need you to leave the

phone unlocked behind or give it to them unlocked, as they can unlock it as many times as

they want by knowing how to bypass the primary authentication. That is, by obtaining the

means of submitting the correct answer to the authentication system (e.g., fingerprint,

password, PIN, pattern, biometrics) or being able to exploit a software vulnerability to

bypass the authentication system used to protect the phone.

In the case described above, the only security system left to protect the phone is one

that can detect deviating behavior from the normal (associated with the real owner) and

be discrete, implicit, and continuous in its detecting fashion, as well as being subtle in

its response to that detection. We do not tackle the response procedure in this work

very deeply, but we are very interested in detecting the threat models as accurately as

possible and minimizing the false positives to ensure convenience is not heavily sacrificed

for security. Cases where we can see threat model (A) play are when a colleague shoulder

surfs you entering the PIN and using that later when you are not around to access sensitive

information. Within a minute, the system can pick up the new behavior solely based on

inertial sensors data and the way the co-worker handles the phone and subtly disable access

to important data.

14

Handing over an Authenticated Device

There are many examples around the second threat model (B), specifically by handovers

to government officials, which has spiked in the past few years. In some of these cases,

customs and border officers would ask for the smartphone of the people going through

the border or checkpoints to view their receipts, purchases, contacts, text messages, social

media, or emails. The digital search is conducted without a need for a warrant, much like

the physical luggage search, during a border crossing.

The Canadian Border Services Agency (CBSA) says it is allowed to search cell phones,

smartphones, computers, tablets, removable media, drives, cameras, smartwatches, and

any other digital device. The search is said to be to address concerns for reasons as broad

as the admissibility of goods, identity confirmation, breaking laws or regulations, among

others. The CBSA says that the officer will ask the person to write their password on a

piece of paper and that they are obligated to provide the password when asked. The CBSA

goes on and indicates that failure to grant access to the device will result in detention of

the device under section 101 of the Customs Act or seizure of the digital device under

subsection 140(1) of the Immigration and Refugee Protection Act. The use case is further

documented and reads that the office will put the phone on airplane mode, hence disabling

any internet-based security systems, meaning that a security system to detect this action

needs to be able to process the data locally at all times. [25]

The United States Department of Homeland Security (DHS) Customs and Border Pro-

tection (CBP) also has customs and procedures involving the search of all electronic devices

at any border crossing. CBP has published a directive [26] on electronic devices border

searches in which it is indicated that the authorities are allowed to search devices such as

portable computers, tablets, disks, drives, tapes, mobile phones, and other communication

devices, cameras, music players, and other media players. The directive says the officers

will disable the network connectivity and will conduct a search, with or without suspicion

of their contents. This behavior can be detected if a security system that performs im-

plicit and continuous authentication is running locally without the need for an internet

connection.

In this use case, once the behavior is detected by handling the phone differently for one

15

minute, after which the operating system can hide certain data and applications automat-

ically until a specific secret authorization step is performed, for example, tapping the top

right corner of the screen five times.

Threat model (B) can also take the form of a forced login by a criminal motivated to

access and transfer financial assets such as digital currencies or valuable business or political

information they can sell to news media, competitors, and traders. Figure 2.4 shows how

this system will be able to hide data and apps, which might even save human lives in

certain circumstances. Even if the phone was unlocked and authenticated, anomalous user

behavior before and during the primary authentication is noticed by the device. As we

mention later in this chapter, context can be very useful, as it gives our module information

about location or time. For instance, the system can be set to hide access to your Bitcoin

wallet when the user is passing a small isolated street during a vacation abroad. Moreover,

the system can hide access to the user’s confidential emails, files, and apps when passing

through border control.

Threat model (B) also happens in many social scenarios when you would like a friend,

spouse, or colleague to view your screen momentarily, and they decide to take the liberty

and use your phone in their possession for something else.

Misplacing an Authenticated Device

Threat model (C) has a variety of use cases, most popular of which is when a user leaves the

phone for a nearby opportunistic threat actor. The phone can be left behind intentionally

or unintentionally, but it is exposed to theft or unauthorized access from nearby individuals.

In this use case, for instance, a spouse or friend can take control of the phone when it is

left unlocked on a coffee table and explore the contents, either maliciously or not. Within

a minute, the phone detects the new user and triggers an action plan like hiding data or

applications or simply forcing a reboot or lockout.

In case of theft, the use case would be easily detected and differentiated from the spouse

use case by context, and using heuristics or rules sets of common post-theft patterns (e.g.,

throwing SIM card away, logging out of accounts), which is something our solution can be

expanded to detect. One example of a rule that can be used is that if the user is logged

16

Interaction Started

Primary Authentication Passed

Access Restricted

Access Unrestricted

Primary Authentication Failed

Continuous & Implicit
Authentication System

Forced Login

Figure 2.4: An example forced login scenario, showing how the proposed system can hide data, and apps on the phone to

prevent losses and damages.

17

out of their Google or Apple account and the SIM card is removed, trigger theft procedure,

assuming different inertial behavior is detected as well.

Locked Device Loss

Threat model (D) focuses on the passive use of the phone to alert the owner and their

enterprise of a lost or stolen device. This can work hand-in-hand with the ”find my device“

capability that most modern smartphones today have. Notice that by having the system

running while the phone is not used actively, the system can act as an authenticator itself.

For instance, it can go as far as sending an authentication token for integrated systems

like smart cars, smart gates, or smart homes.

We consider all four threat models defined and aim to design a solution to protect the

user in all of these use cases.

2.3 Contextual Awareness

In this section, we build on the concept and threat models put forward in the previous

sections, and propose the utilization of contextual awareness to better the understanding

and sense of the environment and the situation at any given moment before taking action

against a detected threat.

The Continuous and Implicit Authentication System, also referred to as the solution can

interact with other modules that can provide further contextual and situational awareness

to the model. We have not been able to test that in our evaluations for the lack of an

appropriate dataset. However, there are strong reasons to believe that situational awareness

can play a significant role in most use cases.

For instance, we can simply define context as the location of the device. If the device is

at a border or a police station, the system can be set to go in high alert mode and disable

the profile updating stage functionality or disable high-profile functionalities temporarily.

The system can only allow low-profile data and applications or display customized mock

interfaces and pages to unauthorized users. This is useful for preventing suspicion by the

18

threat actor, who can accuse the legitimate user of non-compliance in the scenario where

they are law enforcement authorities.

Context can also be set not only by geographical location but also by neighboring de-

vices or beacons that give our solution a feeling of trust and security when the device is at a

virtual home, that can be pre-set as a safe zone [27]. The safe zone can be identified based

on certain smart home or Internet of Things enabled electronics such as TVs, displays,

speakers, virtual assistants, power outlets, cameras, doorbells, baby monitors, home secu-

rity systems, thermostats, lighting systems, kitchen appliances, home cleaning electronics,

fitness devices, lawnmowers, sprinkling systems, smart luggage, or smart car. Alterna-

tively, detection of the safe zone can be based on the electronics on the user at most times

like personal electronics such as tablets or laptops or smart gadgets such as smartwatch

watches, fitness tracker, or headphones. Devices such as telehealth and telemedicine smart

wearables, pacemakers, insulin pumps, blood sugar monitors, shoe inserts, necklaces, ECG

and EEG monitors, RFID implants, or smart tattoos are also good indicators of a safe

environment.

Many mobile and WiFi sensing works have been able to show successful results in indoor

localization, people counting [28], activity classification, health monitoring, humidity esti-

mation, sign language recognition, metal detection, smoking detection, traffic monitoring,

sleep detection, gesture recognition, emotion recognition, attention monitoring, keystrokes

recognition, drawing in the air, and more [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 32].

We envision integrations that enable the detection of a forced login by also checking

for rising skin temperature, rising heartbeat rate, or negative emotions. The integrations

open up a wide range of possibilities for the use cases in Table 2.1. These indicators can

be leveraged via the use of other features, gadgets, and models.

An integration with an Enterprise Mobile Management (EMM) system will also prove

pivotal, as notable alerts can be forwarded to the EMM and hence can reach the corporate

Security Operations Center (SOC), correlated and analyzed by security analysts and via

a Security Information and Event Management (SIEM) as well as responded to in the

appropriate manner. EMM systems are able to integrate with a Virtual Private Network

19

(VPN) and mobile threat defense systems, to name a few, and are commonly tasked with

managing and protecting mobile devices in an increasingly mobile enterprise setting [44].

This means that an EMM can block a device from accessing the corporate VPN if not

compliant with certain risk scores, for instance. Our system can send a token over the

network confirming behavioral authorization to other devices (such as a smart, safe box,

for instance), not just other software that exists on the same device.

2.4 Threat Response

In this section, we build on the concept, threat models, and contextual awareness put

forward in the previous sections, and materialize what the response could be, the vehicle

it would use to deliver its impact, and how it would take place in our solution.

NIST has recommended many responses to different threat models, as well as other re-

searchers in the field [44]. We will assume the response can be easily configured by the user,

or Mobile Device Management (MDM), EMM, or an organization SOC, to either restrict

access to certain functions and data or to completely lock the device until further notice

by secure explicit authentication. The latter can take the forms of unlocking from a cloud

account, an email, OTP, a wired enabled hardware authentication factor, a wireless hard-

ware authentication factor using technologies like Bluetooth, NFC, RFID, WiFi, a secret

master key, or even secret sharing like the one proposed by Atwater and Goldberg [45].

20

Continous & Implicit
Authentication
Trigger System

Actions

Response
System

Sensors Data

Operating System

Ruleset

3rd Party
Apps

Unauthorized User Detections

Figure 2.5: The information and actions flow between the continuous and implicit authentication system, the operating

system, third party applications, and the response system.

Varying possible responses to a “not owner” signal from the Continuous and Implicit

Authentication system are presented below.

• Lock and encrypt the device and immediately, require two authenticators (e.g., pass-

word, PIN, pattern, face, fingerprint, token-based, network-based, domain-based, digital

certificate) to unlock and decrypt the device.

21

• Wipe the device after a certain amount of time or failed trials to authenticate, suspecting

the device being lost, stolen, or accessed by unauthorized actors to mitigate the risk of

confidential data recovery

• Revocation of enterprise access

• Removal of certain apps, files, or data (e.g., emails, SMS text messages, private keys)

We believe a policy or a playbook can be leveraged here to configure automated re-

sponses per user requirement to a wide range of threat models. In Security Orchestration,

Automation, and Response (SOAR) products, playbooks are commonly used to respond

to threats in the security monitoring and response industry. For instance, the network

administrators are able to define a playbook that is triggered by a certain anti-virus alert,

to block the IP addresses involved or disable certain machines temporarily. As previously

mentioned, it is highly advised to integrate this system with detection tools for valida-

tion and to maximize benefit across different apps, platforms, and security frameworks. A

multi-layered approach is critical to a successful security program [46]. Occasional testing

is recommended for these policies, and if it is found that there is a breach due to a cer-

tain policy, it is safe to assume it is weak or outdated and hence should be reviewed and

updated.

Sample playbook for response to detected threats could be defined be as follows:

• Our solution could act as a layer in an MFA mechanism to thwart against threat model

(A). In this case, it can trigger an extra authentication step, such as OTP, secret question,

or biometrics

• It would also be able to detect a handover threat model (B), in which case it would

trigger a pre-set configuration such as restrict access to certain applications, settings,

installs, or sensitive data

• In threat model (C), the phone can beep or send an alert to the smartwatch or wearable

gadget assumed to be with the owner. The phone can also be set to reboot or restrict

access to certain information and applications, as well.

22

• In threat model (D), the phone can decide to wipe its backed up sensitive contents

completely upon verification that this is a phone theft situation.

We envision the Continuous and Implicit Authentication (CIA) trigger system, seen in

Figure 2.5 to be able to share its detections with other security systems that can benefit

from the threat scoring of particular activity time stretches. The 3rd party apps would

be able to use the data to correlate it with suspicious activities and compound the threat

scoring to come up with a decision about the transactions or access approved or utilized

during the time period. For instance, a banking app can utilize the scoring from the CIA

module based on the inertial sensors in the smartphone and the internal model of the user

of the phone. The authentication state can change and result in further authentication

factors for the user, such as email OTP. Standards like FIDO2 [47] and PIV [48] can

guide the interactions between the module and web applications and other devices. The

integrations will allow it to expand the possible responses beyond the phone itself.

23

2.5 Data Types

In this section, we build on the concept, threat models, contextual awareness, and threat

response put forward in the previous sections, and discuss what data types we aim to utilize

in our solution and why.

Off-the-shelf smartphones in the market today come packed with sensors that acquire a

variety of data points around the device at any given point. Below is a list of a few sensors

that are typically available:

• accelerometer

• gyroscope

• magnetometer / compass

• barometer

• ambient light sensor / photometer

• proximity sensor

• battery temperature sensor / thermometer

• touchscreen sensors

• biometric (facial, iris/retina and fingerprint recognition)

• heart rate sensor

• air humidity sensor

• camera

• microphone

• GPS

24

Figure 2.6: Some of the sensors present on many phones. Source: [1]

An accelerometer measures the device’s acceleration. A gyroscope measures the device’s

angular velocity. A magnetometer measures the effect of the magnetic field to cope with

the device’s orientation. A barometer measures changes in the atmospheric pressure to

identify elevation. The ambient light sensor detects the surrounding light, allowing for re-

configuring the screen brightness automatically. Proximity sensors measure the distance of

surrounding objects. The battery temperature sensor generates data that can be harvested

to identify the temperature of the phone as well as the surroundings.

Touchscreen sensors measure touches and taps to identify gestures, swipes, multi-touch,

and clicking. The biometric recognition sensors allow for identity authorization using

something the users are, as opposed to know or have, as we discussed in the previous

section [4].

Sensors like heart rate and air humidity help better fitness applications. The camera

allows for visible light collection in the photo or video formats, the microphone allows for

registering and collecting all sounds in the surroundings, and GPS allows the device to

utilize a network of satellites to triangulate the location on earth, where it currently exists.

Each of these sensors can help us identify an environment, user, pattern, or activity

if we analyze the data and utilize data science technologies like data mining or outlier

detection.

Not all sensors were created equal, however, and they incur different power costs, oper-

ating system permissions, as well as data relevancy, noise to signal ratio, and quality. For

25

(a) (b)

Figure 2.7: (a) The Wii™ remote with the MotionPlus™ attachment (b) The Apple IPhone™ 6.

instance, the most expensive three sensors from a power and permissions point of view are

camera, microphone, and GPS [4].

Camera, microphone, bio-metrics, ambient light sensor, barometer, temperature, and

proximity, are all examples of multimedia sensors. Accelerometer, magnetometer, and gy-

roscope are considered motion or inertial sensors as they give us the best data on rotational

and accelerations forces across all axes. They have been used in devices ranging from the

WII controller Figure 2.7 to capture movements of players, to the Apple iPhone 6 Fig-

ure 2.7 to capture orientation, movement, and more. Any device that is equipped with

these inertial sensors probably is fitted with an electronic component commonly referred

to as an Inertial Measurement Unit or IMU, more on which at the end of this chapter.

These analog inertial sensors do not depend on active usage of the smartphone, have

a low power fingerprint, and are not protected behind permission walls like other sensors

such as camera or microphone, and they might have a huge potential in fingerprinting how

a user moves the device while using it, if we harvest and analyze their data properly [4].

26

Figure 2.8: Axes of sensors on many phones. Source: [1]

2.5.1 Inertial Sensors

Let’s start by understanding how these sensors work before we take a deep dive into

analyzing their data to potentially improve authentication systems for mobile devices.

Many accelerometers and gyroscopes are based on microelectromechanical system (MEMS)

technology; their components are inexpensive, low-power, light-weight, minuscule, and of

good accuracy and startup times [13, 2].

Frames

To understand the measurements by these sensors we need to define a few coordinate

frames, namingly:

• body frame (b-frame)

• inertial frame (i-frame)

• navigation frame (n-frame)

• earth frame (e-frame)

27

Figure 2.9: Coordinate frames, n-frame at a certain location on earth and the e-frame rotating with earth and the i-frame.

Source: [2]

The b-frame is a coordinate frame that is originated at the center of the accelerometer

triad, with axes aligned to the casing, and all the inertial measurements are resolved in

this frame. The I-frame is, simply, a stationary frame originated at the center of the earth

with axes aligned with respect to the stars. The n-frame is a local geographic frame, and

we usually observe the orientation and position of the b-frame with respect to this frame.

The e-frame coincides with the I-frame but with axes fixed with respect to earth, meaning

it rotates with earth.

28

Accelerometer

Figure 2.10: Schematic of an accelerometer. Source: [3]

The accelerometer measures the external specific force f , consisting of both of the sensor’s

acceleration and the earth’s gravity, acting on the sensor in the body frame b [2]. Acceler-

ation can be described as dv(t)/dt, where dv(t) is the specific change in velocity over time

t and dt is the time of that velocity change. If we factor in that velocity is nothing but the

derivation of distance over time, we end up with d2x(t)/dt2.

Figure 2.11: Accelerometer structure. Source: [4]

A three-axis accelerometer allows us to cover three-dimensional acceleration, as a single

accelerometer usually detects acceleration on one axis. Measuring the deflection and time

29

Figure 2.12: Gyroscope structure. Source: [4]

of a spring-mounted mass, as seen in Figure 2.10 as well as Figure 2.11 during the exposure

to an accelerating force allows the accelerometer to compute these values [3, 4].

Gyroscope

The gyroscope measures the angular measure angular displacement per time of the body

frame with respect to the inertial frame, expressed in the body frame. Three-axis gyro-

scopes allow us to cover three-dimensional angular velocity, as a single gyroscope usually

measures angular velocity on one axis.

As Coriolis vibratory gyroscopes (CVGs) are based on vibrating masses that get de-

flected by the Coriolis force when it is exposed to a torque, as seen in Figure 2.13 and

Figure 2.12. The measured deflection is used to calculate the movement angular velocity.

Gyroscopes are among the sensors with the highest power consumption due to the con-

stant high-frequency vibrations [5], and hence we will evaluate our solution without the

data from the gyroscope to see what is the observed effect on performance.

30

Figure 2.13: Schematic of a vibrating gyroscope. Source: [5]

Magnetometer

The magnetometer measures the strength of the magnetic field. This allows the device to

obtain its absolute direction related to the greater earth’s geomagnetic field [4]. Some of

them are built to utilize measurements of detected voltage across a metallic element.

One of the most-known implementations for the magnetometer sensor is referred to

as the search-coil magnetometer [6]. It is based on Faraday’s induction law and hosts a

coil wound around a magnetic iron core. The concept is based on the observation of a

measurable voltage change proportional to the rate of change that is observed at the leads

induced when the magnetic flux through the coiled conductor gets altered in any manner.

Its schematic is to be seen in Figure 2.14.

Figure 2.14: Schematic a search-coil magnetometer. Source: [6]

Most commonly, the types seen in smart devices today are Anisotropic Magnetoresis-

tance (AMR) or Giant Magnetoresistance (GMR), as they are small, cheap, and low-power.

As is the case with the accelerometer and gyroscope, the three axes are needed in all use

31

cases, and hence a magnetometer is always built with the ability to read magnetic fields

on all three axes to cover all possible orientations.

Considerations

Magnetometers are not usually standalone modules in today’s devices. The Inertial Mea-

surement Unit (IMU) is a package that commonly holds a three axes magnetometer, ac-

celerometer, and gyroscope. They are commonly fitted with self-calibration features and

are commonly available in devices today, as they are cheap and extremely helpful in many

applications like gesture recognition and image stabilization [13].

Inaccuracies find their way into such data streams due to calibration errors, drift, or

noise. Some of the manufacturers of such electronic components fit solutions to handle

the problem of noise, using noise reduction technologies. These solutions can go as far

as making new high-level fusion sensors data such as orientation sensors that can utilize

all three accelerometers, magnetometer, and gyroscope processed and noise-reduced data

streams to enable applications to use more robust data points. Such fusion sensors (e.g.,

relative orientation sensor, absolute orientation sensor, geomagnetic orientation sensor,

gravity sensor, linear acceleration sensor) can also be calculated by third-party applica-

tions, using the underlying physical sensors discussed: magnetometer, accelerometer, and

gyroscope, to account for their use cases (e.g., gaming, augmented reality) [49].

2.5.2 Security Issues with Mobile Sensing

Despite their effectiveness in user behavior profiling, the leakage of mobile sensor data can

put the user’s privacy and security in jeopardy. For instance, malware can target a specific

group of people with a common trait or behavior, which can be identified using their motion

sensor data. A more alarming example is cyber-criminals purchasing the user’s sensor data

from a data broker [50] or a third-party mobile application developer, in order to locate an

individual within their house [30], detect their current activity [51], identify the number of

people living with the individual [52], and detect their sleeping patterns [53, 54] [55].

32

Thus, we have to be cautious with the data generated by our devices. Harvesting these

valuable data sources can reveal too much information about the user. Hence, we limit

the amount of data needed to one sensor data, but we also understand that the data from

this sensor alone may be sufficient to obtain information about a user’s location, body

features, gender, age, activities, health condition, personality traits, and emotional state.

The data can even be used to uniquely identify a user based on their biometric movement

patterns and to reconstruct sequences of text entered into a device, including passwords,

for instance [56].

In Chapter 7, we propose the exploration of our work’s intersection with differential

privacy in order to protect accelerometer data in transit. Additionally, we develop our

solution architecture (cf., Chapter 2) to allow for mobile sensor data to never leave the

phone. The training for our method can occur at the device, thanks to our light machine

learning shallow generative neural network proposed in Chapter 4, adding a layer of security

and privacy to the solution.

33

2.6 Performance Metrics

In this section, we build on the concept, threat models, contextual awareness, threat re-

sponse, and data types put forward in the previous sections and discuss how we would

interpret and score our results to highlight certain properties of the solution’s models.

Many metrics exist in this domain, but few are adopted by the research community in

continuous authentication literature.

There are many authentication systems that use machine learning. However, there is

yet to be a consistent approach and metric for reporting performance. Evaluation is of

pivotal importance to machine learning problems. Choosing the metrics to use is very

important since a solution will be as good as its performance metric.

Recent works have shown that maximum accuracy (ACC), equal error rate (EER) as

well, as Area Under the Receiver operator characteristic curve (ROC) curve (AUROC)

hide the details of the inherent trade-offs a system must make when implemented, and

hence are all, although very abundant in the body of research, inherently flawed [57].

Predictions from binary classifiers are in the form of true or positive. In the case of

outlier detection, true means outlier, and false means benign, or part of the expected

distribution. These predictions can be categorized into true-positive (TP), false-positive

(FP), true-negative (TN), and false-negative (FN). These four values often are grouped

into a confusion matrix (CM) or used to calculate other performance metrics. CM is a

table of contingency counts.

It is important to note that performance is not consistently reported in one metric in

authentication systems. For instance, False Acceptance Rate (FAR), some times referred

to as False Positive Rate (FPR) and False Rejection Rate (FRR), sometimes referred to

as False Negative Rate (FNR), are used in many authentication works, where they are not

meaningful in many cases since they present a point on a trade-off. FNR presents how often

a legitimate user is denied, FPR presents how often an illegitimate user is authorized, True

Negative Rate (TNR) presents how often an illegitimate user is denied, and True Positive

Rate (TPR) how often a legitimate user is authorized. True rejection rate (TRR) is the

probability of the system to correctly reject impostors, and True acceptance rate (TAR)

34

Figure 2.15: FAR, FRR and the EER point. Source: [7]

is the probability of the system correctly identify legitimate users. We can not tell based

on these metrics whether the model is able to discriminate successfully or did the authors

adjust the system parameters to inflate the metric. TPR and FPR, as well as FPR and

FRR, are based on a compromise between two kinds of misclassifications, and hence all

are inherently flawed.

One of them most reported metrics in the research domain is ACC.

ACC =
TP + TN

TP + TN + FP + FN
(2.1)

It is the relative frequency of correct classification. Often the value of accuracy that

is reported is the maximum across thresholds. That presents a challenge to researchers

because only a single threshold is represented in this performance metric. Researchers

cannot know how the accuracy will change if the threshold is set in a way that satisfies an

FPR requirement at an inconvenience to the TPR, for instance. ACC does not identify

the type of user, be it authorized or unauthorized, when misclassification is made.

The most popular metric is Equal Error Rate (EER); it is the point that TPR equals

1-FPR on the Receiver Operating Characteristic (ROC) curve, as seen in Figure 2.15.

The ROC curve is the curve of TPR and FPR by varying thresholds. Ideally, the curve

should grow toward the top-left, meaning that the model makes correct predictions. The

area under ROC (AUROC) is the probability that the scores of random legitimate users

35

are higher than an illegitimate user. But all single-number summaries hide the details of

which errors occurred and how.

Precision, or Confidence, identifies what ratio of positive findings from the model are

correct.

precision =
TP

TP + FP
(2.2)

Recall, or sensitivity, measures what ratio of positive findings from the model are cor-

rect.

recall =
TP

TP + FN
(2.3)

“Harmonic mean” of precision and recall (F1) is defined as a combination of the two

metrics:

F1 = 2× precision× recall
precision+ recall

(2.4)

There has been work defining some metrics to use in authentication systems, but they

all suffer from a lack of use and hence are very hard to use for comparing results and

approaches to existing work [58, 57]. It is still best to report metrics like EER and ACC to

allow other researchers to compare results and understand the impact new additions and

ideas can bring to the system. It is advisable to report more metrics to allow researchers

to grasp the fundamentals of the system behavior. It is also of pivotal importance to open

source the code base, dataset, and model architecture to allow for easy reproducibility.

Another two quality metrics we aim to maximize our usability which is minimizing

FNR and the time the system is blocking or hindering regular device usage and energy

consumption which is minimizing the use of energy involved in the authentication process.

Mobile devices, as well as the Internet of Things and others, are generally built as resource-

constrained devices, so we aim to be considerate and help maximize the lifetime of the

device benefiting from our solution.

In our work, we will use all the popular metrics and will allow for easy reproducibility

by limiting ourselves to open-source datasets and open-source our work and models.

36

Chapter 3

Relevant Work

In this chapter, we look at various existing contributions, studies, and analyses found in our

research domain, tackling different aspects of our solution. From well-known datasets to

new machine learning algorithms that have profoundly impacted the literature, we explore

the steps needed for our overall solution, the CIA system, and compare different meth-

ods. We underline the most relevant studies to our work, which also propose innovative

Continuous and Implicit Authentication mechanisms based on smartphone sensor data. A

summary of these works can be found in Table 3.2. Our literature survey spans various sen-

sor modalities, threat vectors, data sets, and evaluation metrics. This makes it difficult for

researchers to compare and cross-examine these methods. However, insightful comparisons,

with fixed variables and controlled experiments, are presented in our extensive evaluations

later in Chapter 5, to allow for hypothesis validations and further investigations.

3.1 Datasets

In the interest of practical studies, we start by choosing the categories of datasets that

are general enough to produce reliable analyses. For instance, we exclude human activity

recognition (HAR) related datasets [59, 60, 61] as they are usually collected in strictly

controlled environments and hence are not useful for our real-world scenario Continuous

and Implicit Authentication use case.

37

The LiveLab Traces [62] dataset consists of smartphone sensors, apps, and calls data

from 35 users. However, the captured duration per user varied greatly as some users are

tracked for a few days while others are tracked for a year. Surveys, such as those released

by Abuhamad et al. [63] and Gonzalez et al. [64], have featured a plethora of continuous

authentication works and datasets that have been geared towards features such as touch,

leap motion controllers, orientation, pressure, camera, cyclic rotation metric, force sensing,

compass, microphone, speaker, light sensor, gravity sensor, elevation, healthcare wearables,

piezoelectric and electromagnetic energy harvester. These features and their respective

datasets are used by multi-modal authentication systems that use keystroke dynamics,

voice, gait, or motion-based sensors. However, the primary shortcoming of most of these

datasets is their size and diversity, as they are typically gathered from fewer than 100

users. Thus, their results might be unreliable for real-world deployments and render most

of the research work in this domain hard to use in a real environment. It is notable for

highlighting that commercial-grade Continuous and Implicit Authentication systems do not

currently exist due to performance and reliability limitations. To overcome the practical

limitations, more research and development efforts are required in which the compilation

of more diverse public datasets and better technologies need to be employed to push this

domain further.

Multiple studies [65, 66, 19, 67] have chosen to collect their own custom datasets,

sometimes from up to 1500 users [66] or 30 sensor modalities [67], but unfortunately have

not made them public. Privacy concerns are among the primary reasons for authors refusing

to release the users’ data. However, this hinders the reproducibility and comparability of

the resulting works. Along with the high cost of gathering such datasets, this compels us

to avoid such an approach in our work.

The scarcity of high-quality labeled mobile sensor datasets has been one of the main

obstacles to research in this area. In 2015, Crowdsignals.io [68] was born as a “crowdfund-

ing campaign to fund the largest ethically collected set of high-quality, labeled mobile and

sensor data for use by the research community”. Although the project exceeded its funding

target and generated incredible interest and support, its dataset is yet to be published.

The most fitting dataset to our use cases is a public dataset that has been the de facto

standard in the field of continuous authentication since its release in 2015. HMOG [24]

38

is a public dataset released in 2015, which has been used extensively in the Continuous

Authentication literature [16, 20, 19, 24, 69, 70]. HMOG includes data collected from

smartphone accelerometers, gyroscopes, magnetometers, tap coordinates, finger-covered

areas, or pressure from 100 subjects during 24 sessions. In the study group, predefined

realistic scenarios have been played out by the users, which makes it more reliable than

similar datasets [71]. All sessions in HMOG include active usage and are generally less

than 15 minutes long. A slightly larger dataset was released publicly in 2019 by Belman

et al. [72]. However, it has not been used as extensively in the domain, and this makes

comparability of its results more difficult. Thus, we find HMOG to be one of the best

candidates for our evaluations. The high diversity of scenarios, data balance, validation

from existing literature, and appropriate features in the dataset make it a better alternative

to the other public datasets in this domain.

With that, we conclude this section with the selection of the de facto HMOG as a

suitable dataset for its inclusion of inertial data, its publicity, and the comparability it

brings to our work. Moreover, we delve into the domain further and look at how inertial

data type has been utilized in the smartphone Continuous Authentication use case.

3.2 Mobile Sensing

As discussed in Chapter 2, inertial data captures the motion, orientation, and location

of the device in its surrounding space. The approaches that utilize this kind of data for

non-intrusive user authentication leverage patterns from the user’s behavior such as their

gait, touchscreen interactions, hand waving, keystroke patterns, voice, or signature moves

and thus create a behavioural profile.

One of the first authors that collected their own extensive continuous authentication

dataset and used a one class distance-based classifier, Zheng et al. [73] used the iner-

tial data coming from the device’s accelerometer and gyroscope and augmented it with

touchscreen data, acceleration, pressure, size of the touch area, and time intervals between

interactions. They are able to analyze and profile how each user touches their phone while

they put in their PIN codes and classify the current session as either the true owner or an

39

imposter with up to 3.6% EER. Another early work that used deep learning is Trojahn et

al. [74]. They utilized both keystroke and handwriting analytics to authenticate users of

a smartphone, using data of when the users are entering their password repeatedly. They

utilized models such as the Multi-layer Perceptron (MLP) [75], Bayesian Net classifiers [76],

and Naive Bayes [77] for their classification.

A few years later, Neverova et al. [78] used the large-scale data collected in Google’s

Abacus project and time-based deep feature extraction, using RNNs and CNNs for user

authentication. They classified the data using a Dense Clockwork RNN model. As men-

tioned in Section 3.1, the Google Abacus dataset is reported to include data from 1500 users

captured in real-life situations, but unfortunately, it has not been released to the public.

Soon after, Shen et al. [19] showed great success on HMOG and have collected a dataset

of more than 27,000 data instances from 10 subjects, extracting wavelet, frequency, and

time-domain features and evaluating several algorithms such as Support Vector Machines,

Hidden Markov Model, and K-Nearest-Neighbor.

40

W
o
rk

A
p
p
ro

a
ch

M
o
d
e
l

D
a
ta

Y
an

g
et

al
.

[7
9]

,
20

13
H

an
d

w
av

in
g

u
si

n
g

li
n

ea
r

ac
ce

le
ro

m
et

er

S
V

M
[8

0]
S

am
p

li
n

g
in

te
rv

al
,

ac
ce

le
ra

-

ti
on

S
h

re
st

h
a

et
al

.
[8

1]
,

20
15

H
an

d
w

av
in

g
u

si
n

g

am
b

ie
n
t

li
gh

t
se

n
so

r

S
V

M
[8

0]
T

im
e,

li
gh

t,

ge
st

u
re

d
u

ra
ti

on

D
ra

ffi
n

et
al

.
[8

2]
,

20
14

K
ey

st
ro

ke
b

io
m

et
ri

cs
N

eu
ra

l
N

et
w

or
k

C
la

ss
ifi

er
[8

3]

L
o
ca

ti
on

p
re

ss
ed

on
ke

y,
le

n
gt

h
of

th
e

p
re

ss
,

to
u

ch
ed

ar
ea

si
ze

,
an

d
d

ri
ft

D
er

aw
i

et
al

.
[8

4]

20
10

G
ai

t
b

io
m

et
ri

cs

u
si

n
g

sm
ar

tp
h

on
e

se
n

so
rs

D
T

W
[8

5]
T

im
e

in
te

rp
ol

at
io

n
,

A
ve

ra
ge

cy
cl

e
le

n
gt

h

M
an

ty
ja

rv
i

et
al

.
[8

6]
,

20
05

G
ai

t
b

io
m

et
ri

cs
u

si
n

g
ac

-

ce
le

ro
m

et
er

C
ro

ss
C

or
re

la
ti

on
[8

6]
A

cc
el

er
at

io
n

,
10

b
in

fa
st

F
ou

ri
er

tr
an

sf
or

m

(F
F

T
)

h
is

to
gr

am
s

K
am

b
ou

ra
k
is

et
al

.

[8
7]

,
20

14

B
eh

av
io

ra
l

p
ro

fi
li

n
g

M
L

P
,

R
an

d
om

F
or

es
t,

an
d

K
-N

N
[7

5,
88

,
89

]

T
im

e,
sp

ee
d

,
d

is
ta

n
ce

F
en

g
et

al
.

[9
0]

,
20

13
K

ey
st

ro
ke

b
io

m
et

ri
cs

D
ec

is
io

n
T

re
e

[7
7]

,

B
ay

es
N

et
[7

6]
R

an
d

om
F

or
es

t
[8

8]

v
ir

tu
al

ke
y

co
m

b
in

at
io

n
s,

h
ol

d
in

g
ti

m
e,

p
re

ss
u
re

F
ra

n
k

et
al

.
[9

1]
,
20

13
T

ou
ch

sc
re

en
in

te
ra

ct
io

n
s

S
V

M
an

d
K

-N
N

[8
0,

89
]

T
ou

ch
sc

re
en

D
at

a

S
ae

-B
ae

[9
2]

,
20

14
L

in
e

si
gn

at
u

re
d

ra
w

n

w
it

h
fi

n
ge

rt
ip

D
T

W
[8

5]
T

ou
ch

sc
re

en
in

te
ra

ct
io

n
s

K
u

n
z

et
al

.
[9

3]
,

20
11

S
p

ea
ke

r
ve

ri
fi

ca
ti

on
d

u
ri

n
g

on
go

in
g

p
h

on
e

ca
ll

H
M

M
s

[9
4]

V
oi

ce

S
h

ah
za

d
et

al
.

[9
5]

,

20
12

S
u

p
p

or
t

V
ec

to
r

D
is

tr
ib

u
-

ti
on

E
st

im
at

io
n

co
or

d
in

at
es

of
ea

ch

to
u

ch
p

oi
n
t,

ac
ce

le
ro

m
et

er
va

lu
es

an
d

ti
m

e
st

am
p

s

T
ou

ch
sc

re
en

in
te

ra
ct

io
n

s

C
la

rk
e

an
d

M
ek

al
a

et
al

.

[9
6]

,
20

07

D
y
n

am
ic

si
gn

at
u

re
s

b
y

ty
p

-

in
g

w
or

d
s

P
D

A
L

ok
va

ri
ou

s
b

io
m

et
ri

cs

D
as

et
al

.
[9

7]
,

20
08

S
p

ea
ke

r’
s

id
en

ti
fi

ca
ti

on

b
as

ed
on

sp
ee

ch
d

y
n

am
ic

s

D
T

W
[8

5]
A

u
d

io

T
a
b

le
3
.1

:
T

a
b

le
o
f

im
p

o
rt

a
n
t

st
u

d
ie

s
in

sm
a
rt

p
h

o
n

e
b

eh
a
v
io

ra
l

u
se

r
a
u

th
en

ti
ca

ti
o
n

.
A

d
o
p

te
d

fr
o
m

[1
8
]

41

There exist multiple important behavioural biometric studies in the scientific literature,

which are summarized in Table 3.1 adopted from Ul-Haq et al. [18]. The approaches these

studies took span gestures, keystroke, touchscreen, handwriting, voice, and gait. The

primary limitations in gestures-based studies include the fact that they require the user to

interact actively in the authentication process, and once a device is unlocked, an imposter

can not be detected. On the other hand, solutions based on keystroke dynamics are limited

in that they require a lot of data compared to other modes, disruptions during typing will

give false signals, they get affected by the variations in user behaviour (e.g., different

moods) and switching keyboards might change the learned patterns. Touchscreen-based

studies also have shortcomings in those interactions in every orientation are different, and

the current user activity affects the interaction significantly. Methods based on handwriting

are mainly not developed for the sake of Continuous Authentication capability, and the

phone may not be steady all the time to confidently detect a change in the pattern. Voice-

based works are hampered by the surrounding environment’s noise. Gait-based works are

vulnerable to changes created by different outfits that may alter the walking pattern, as

well as the requirement to fix the sensors on the body at all times to a good position [18].

Multiple works [79, 91, 70] have been aimed at authenticating a user while doing a

specific activity like typing a password, making a call, or picking the phone from the table.

It mainly consists of human activity recognition and then authentication. Though that

might be an easier machine learning problem and might yield good better results, it suffers

from a lack of continuity. For instance, once a user is authenticated, the phone would not

know how to classify the activities in their various types that are happening until that

same activity happens again later. This subdomain in user authentication benefits from

activity recognition advancements, covered in Appendix A.2, in the last few years that made

detecting a user’s current activity accurately a reality. User activities that motion sensors

can capture can be categorised into simple and complex. Simple activities include walking,

sitting, sleeping, going upstairs or downstairs, or laying down. Conversely, activities like

driving a car, changing clothes, riding a bike, and exercising are typical examples of complex

activities. For instance, using GPS and accelerometer data, Martin et al. [98] propose a

method that detects periods of walking, biking, car, bus, and rail transportation methods in

real-time. GPS data is successfully used by Martin et al. [98] to achieve 96% accuracy with

42

a random forest classifier on data transformed with Principal component analysis (PCA)

and recursive feature elimination (RFE). However, GPS stays an infeasible solution for

practical usage in CIA use cases due to its high battery power consumption and necessity

to have user’s permissions to operate and utilize its data. Also, using accelerometer and

gyroscope data, Anguita et al. [99] used a Support Vector Machine (SVM) model to

detect walking at a 95% accuracy, climbing upstairs at a 72% accuracy, standing at 92%

accuracy, sitting at 94% accuracy, laying down at 100% accuracy, and going downstairs

at 79% accuracy. Using similar features, Ronao et al. [100] explored human activity

recognition with deep learning and artificial neural networks, with an accuracy of ˜95%.

3.3 Data Preprocessing

Data preprocessing refers to a stage where certain techniques are used to transform data

into a more desired form to enhance learning for an artificially intelligent agent. As the

studies in the Continuous and Implicit Authentication domain use very different mech-

anisms to perform data preprocessing, we cover the most important approaches in the

upcoming paragraphs.

One of the main drawbacks of mobile device data sensors and inertial data sensors

specifically is the signal-to-noise ratio. As discussed in Chapter 2, the data will almost

always get contaminated in the collection phase, and researchers aim to improve the quality

of the data being fed to their models using noise reduction modules. For instance, Deb et

al. [67] utilized the Fast Fourier Transform to map inertial data measurements from the

time to frequency domain.

In an interesting study, Shen et al. [19] used kinematic information extraction to

filter measurements of inertial sensors and touch events. The authors employ a Kalman

filter and then decompose signals using wavelet functions and threshold analysis. They

then reconstruct the original signal by using inverse wavelet functions. This approach

handles noise that appears in the whole spectrum as opposed to Reyes-Ortiz et al. [101]

where the authors separated movement and gravitational elements of the data from the

accelerometer data and used a butter-worth low-pass filter with a cutoff, 0.3 Hz, to capture

43

the low frequencies of gravity. Similarly, Haq et al. [102] used a smoothing filter of three

samples length at a certain frequency, 50Hz.

Several works in this domain construct new features by applying operations to raw

features, not to add any new information to the data but to transform the data into

a more suitable representation and form for the models to learn. Such operations can

include sliding time windows and statistical and temporal metrics of the data. The relevant

constructed features in the Continuous Authentication domain include magnitude, min,

max, entropy, and an average of the gyroscope sensor data, as well as the entropy and

magnitude of the accelerometer sensor data. Cycle-based approaches allow for features

to be aggregated without fixed windows but rather based on cyclic events. For instance,

human steps in walking can be used in gait models. Cycle detection is usually the most

difficult to perform accurately in real-world scenarios since the phone might be held or

attached loosely rather than fixed or strapped properly to the body [13].

Sarova et al. [24] developed a set of metrics to capture grasp resistance, grasp stability,

tap, keystroke, and touch events in HMOG. Further sampling, scaling, cropping, and

jittering are all techniques that have also been used on top of HMOG [24] by Li et al. [69].

In our experiments, we also propose our own preprocessing method, which is covered in

Chapter 5.

Dimensional reduction is another technique for data preprocessing. By transforming

the data into a lower-dimensional space, the computational effort needed to analyze an

event can be reduced while retaining the most important components to generate insights.

In the effort to represent the data in the new space, the pre-processor is compelled to

discard the noise and low-importance features while keeping the important semantics and

patterns. Our approach is designed to find the most meaningful subset inherently given

any data instance, as explained in Chapter 4.

Among other works, Neverova et al. [66], utilized PCA to perform dimensionality

reduction. Other work like Shen et al. [19] utilized mutual information and fisher custom

score thresholds to reduce their features by more than 80%, which leads to 38 final features,

including kurtosis and skewness.

Some of the works in the literature use deep features instead of manually computing

44

metrics to better represent their raw data. Neural Networks can learn filtering, feature

construction, and dimensionality reduction effectively. Neverova [66] evaluated CNN, plain

Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Clockwork

Recurrent Neural Network (CNN) to analyze their ability in generating deep features for

the purpose of Continuous Authentication, as well as proposed Dense Clockwork Recurrent

Neural Network (DCWRNN).

Centeno et al. [20] used a Siamese CNN to construct features that differentiate im-

posters from authenticated users from raw sensor data. These deep features would then be

fed to an OCSVM for classification. Their work is by far the most regarded in the domain,

and its re-implementation is covered thoroughly in Chapter 5 and Chapter 6 of this thesis.

As part of the data preprocessing, a model can try to understand the environment in

which the data was collected. This can be done through third-party application collabora-

tion like that described in Chapter 2 or alternatively through evaluating the user activity

or status at the temporal neighborhood. Some works [102, 103] have explored environ-

ment sensing by detecting the context first then doing authentication later. However, their

results indicate little benefits in their implementations and experiments. We propose a

variant of this technique in Chapter 7.

We will be experimenting with different methods of data processing in Chapter 5 that

include deep feature extraction using a variety of models.

3.4 Machine Learning Models

Numerous works have tackled the problem of Continuous Authentication and proposed a

variety of machine learning models and data pipelines to push towards higher performance

scores and lower latencies. This section provides an overview of machine learning models

which are considered to be most relevant to our work.

We could approach the problem with either the one-class approach, binary class ap-

proach, or multi-class approach. A one-class model only trains on the device owner’s data

and aims to classify this user given sensory data at any given point. The multi-class model

45

would have access to a few users, of which one is the device owner; this would make sense

if we were able to enumerate and collect data for all the possible imposters. Such a case

where multi or binary class would make sense is in a closed environment such as a strict

campus or facility.

However, due to the uncertainty of who would be the imposter in our use cases and

threat models, detailed in Chapter 2, we, along with most of the works in this domain,

choose to focus on the one class approach. Where we can not assume we have data on the

imposter’s behavioral profile, but rather only the device owner.

Most Relevant Studies that used HMOG

Work Features AI Model Performance Time

Centeno et al.

2018 [20]

Deep Siamese CNN and

OCSVM

97.8% Accuracy 1s

Zhu et al.

2013 [70]

Constructed n-gram FAR 13.15%, FRR 15.29% 4.96s

Li et al.

2018 [69]

Constructed OCSVM 4.66% EER 5s

Shen et al.

2018 [19]

Constructed HMM FAR 5.13%, FRR 6.74% 8s

Centeno et al.

2017 [16]

Raw Autoencoder 4.5% EER 20s

Volaka et al.

2019 [104]

Deep Deep Neural Net-

work

15% EER, 88% Accuracy -

Sitova et al.

2015 [24]

Constructed SMD 7.16% EER walking, 10.05

EER sitting

80s

Li et al.

2018 [105]

Constructed KRR 3.0% EER -

Amini et al.

2018 [106]

Constructed LSTM 72.29 ACC -

Table 3.2: Best One Class solutions that reported results on HMOG

46

Centeno et al. work [20] shows great promise, as they achieve very high accuracy

and low latency with the help of a Siamese CNN network for deep feature extraction

along with an OCSVM for impostor classification. Buech [13] re-implemented the work

reported by Centeno et al. [20] and proposed improvements to the evaluation criteria.

Their improved evaluation criteria make the experiment closer to real-life scenarios. For

instance, normalization is performed only on the benign subset of the training dataset. We

also adopt this approach and build upon the state-of-the-art, as detailed in Chapter 5.

Artificial neural networks have been used in deep feature generation and authentication

in this domain. Shen et al. [19] used a three-layer MLP against a Hiden Markov Model and

an OCSVM. An autoencoder has been used for outlier detection by Centeno et al. [16],

with very promising results. The authors trained the autoencoder with samples from the

owner in a single-class approach. The model learns to reconstruct the benign data better

than the data it never saw, which is assumed to be anomalous. The distance between

the input vector and its reconstruction is expected to be lower for samples from the real

device owner compared to a sample from an impostor. Binary classification is achieved by

applying a threshold to the model’s confidence in the input’s anomaly [13].

Volaka et al. [104] used a Deep Neural Network trained on touch and motion features.

The model used by the authors consisted of 3 dense layers and 128 nodes and was trained

for 200 epochs. In their evaluations, they achieved 15% EER and 88% accuracy. As seen

in Chapter 5 we outperform their results, using much less computational power, thanks to

our use of generative neural models.

3.4.1 Generative Models

VAEs [107, 108, 109] and GANs [110] are among the most popular and established gen-

erative neural network models. The regularities in the training data are expressed by a

probability distribution in a lower-dimensional latent space, which is created by the gener-

ators. The use of generative models for anomaly detection has been explored extensively

in machine learning literature, making it a very fruitful area of research in the past few

years.

47

The details of VAE models and their usage is covered in Chapter 4. We take this

opportunity to highlight GANs, which we encourage as an avenue for future works (cf.,

Chapter 7). Exploring the utilization of GANs along with VAEs, like in Adversarial Au-

toencoders [111, 112, 113, 114] can create many opportunities in future research, such as

the work put forward by Ibrahim et al. [115] or Ueda et al. work [116], for the CIA use

case.

GANs pose the problem of learning the target distribution as a zero-sum game. The

generator network is trained in competition with an adversary, the discriminator, that

challenges it to generate samples whose distribution is similar to the training distribution.

AnoGAN [117] was one of the first works to propose GANs for anomaly detection, which

started the emerging research field. It aimed to use GANs trained on benign data only.

The generator will then learn how to make new benign samples, while the discriminatory

will know how to tell benign from not. When an outlier instance is encoded, its reconstruc-

tion will be benign, and the difference between the input and the reconstructed instance

will highlight the anomaly. One of the limitations of the proposed method was that it suf-

fered in terms of test-time performance. Moreover, the anomaly score, set to be a convex

combination of the reconstruction loss and the discrimination loss, is hard to interpret as

compared to more familiar metrics such as probabilities. The objective of the GAN was

also not modified to take into account inverse mapping learning.

Further evolution of these methods included EGBAD [118] which outperforms AnoGAN,

and GANomaly [119] which outperforms both in accuracy and speed. Mattia et al. [120]

published a survey evaluating all GAN-based anomaly detectors and discussing their inher-

ent differences and strengths. The use of adversarial generative models is beyond the scope

of our work as there are genuine concerns regarding their robustness and computational

complexity, as systematically shown by works such as Skvara et al. [121].

VAEs are a popular class of probabilistic AutoEncoders [122]. Xu et al. [123] use

VAE to detect anomaly data for seasonal KPIs in web applications since VAE prevents

over-fitting by allowing noise and randomness of latent variables. Chen et al. [124] uses

the VAE-LSTM architecture for anomaly detection and robust prediction of time series.

Luo et al. [125] use the VAE-SVDD with a BiGRU hidden layer and a latent variable that

is big enough to use temporal correlations. VAE-based anomaly detectors are redefining

48

the state-of-the-art performance and speed in many applications e.g., web, image, and

intrusion detection [126, 127, 128]. Park et al. show VAE anomaly detectors, with LSTM,

on multi-modal sequential data [129]. Another work in this area, Cerrie et al. [130], is

geared towards new physics mining at the Large Hadron Collider.

We aim to utilize VAEs in this use case and experiment with a few implementations

of VAEs in Chapter 5. We do not aim to test GANs due to robustness and complexity

issues [121].

3.5 Experiment Settings

A wide range of experiment and evaluation settings, as well as datasets, are being used in

the literature for showcasing the effectiveness of CIA frameworks, which makes it impossible

to have fair comparisons between results. This is concerning for the research in this area,

as it is commonplace for authors to compare results against other works without further

information into the evaluation configurations.

The performance metrics also vary between different works, although EER and accuracy

are by far the most popular, and that adds to the comparability of these works. We delved

into performance metrics in the previous chapter Chapter 2 and furthermore discussed

what metrics are more fitting in this domain. Some works report metrics for subsets of

their data, like certain scenarios individually, as seen in Sitova et al. [24] while some use

general metrics for their entire datasets e.g., Centeno et al. [16, 20].

Another problem is that the setup settings vary greatly between these works. While

some of them might have 10-fold cross-validation random, one vs. one scenario, [20], others

randomly draw from a pool of attacks and sample benign instances along in a one vs. all

fashion [69]. Some even reported values that were improved by calculating the mean of the

individual sample’s score across a sliding window [19, 65].

All of these issues pertain to the works using the same public dataset, as seen in

Figure 5.18. As discussed in Section 3.1, many publications e.g., Neverova et al. [66], and

Deb et al. [131], work with data that is not available for others to reproduce. This adds

49

another layer of complexity that makes comparability in the domain very difficult without

all of these settings somehow fixed and standardized.

Shen et al. [19] took the effort to compare many one-class models and offer us some

comparable results from which we can draw insights and conclusions, but unfortunately,

through correspondence, we were unable to get the codebase or the datasets they used.

We aim to also run many models in a comparable fashion to allow others to draw insights

and conclusions from our work. Conversely, we are committed to releasing code and data

used in our work in the interest of transparency and reproducibility.

We are going to explore a few experiment settings in Chapter 5, with an aim to be

comparable to other works as well as find a setting that is highly realistic, given our aim

to bridge the gap between academic works like those presented and real-world use cases

and commercialization that is yet to exist in this domain.

50

Chapter 4

Approach

In this chapter, we discuss our approach to solving the problem discussed in Chapter 2.

This chapter details the thought process, decisions, architecture, considerations, and design

of the system proposed due to the study presented in this thesis. Our proposed solution

aims to act as a trigger module based on a change in the typical behavior of phone usage and

movements. Previous research efforts have tried to detect the act of handing over itself,

i.e., threat model (B), or the act of leaving behind itself, threat model (C), as trigger

events that can be fingerprinted and detected in their recurring variants [132]. We find the

detection of the user behavior deviating from being the most pivotal to the resiliency and

robustness to the coverage of the use cases and threat models domain. Nonetheless, our

solution can work in tandem with other modules and systems, like the ones detecting the

very events of handing over or leaving behind, to enhance the overall detection coverage,

capabilities, performance, and abilities. This chapter discusses the data, the models, and

the techniques we considered to evaluate the solution.

4.1 Data

We choose to work with inertial data only, hence effectively limiting our algorithms to data

streams coming only from the accelerometer, gyroscope, and magnetometer in the forms

51

commonly installed and fitted on off-the-shelf smartphones, as covered in Chapter 2. This

ensures continuous availability and low privacy concerns, low resource footprint, low power

footprint, and no limitations imposed by the operating system. This will allow us to track

deviations in minor movements in the user demeanor and make it possible for the module

to identify a person’s unique behavior, given that the model is powerful enough.

4.2 Classical Machine Learning Models

Our selection of machine learning models limits the options to anomaly detection or outlier

detection, or novelty detection algorithms. Anomaly detection refers to the task of detect-

ing anomalous instances given the distribution of data. An observation belonging to the

distribution is commonly referred to as an inlier, while any outlying instance is commonly

referred to as an outlier or an anomaly. The three approaches to this task are:

• Supervised

• Unsupervised

• Semi-Supervised

Supervised models are trained on observations with a ground truth label for both inliers

and outliers. The supervised approach is taken when ground truth labels are given, and it

is assumed that the anomalies will follow the same distribution as in the training data set.

Unsupervised models are trained on observations without any ground truth label for

both inliers and outliers alike. The models can differentiate outliers during the training

period and fit to detect the difference learned. Unsupervised techniques are preferred when

the anomalies are defined as points that do not belong to high-density regions.

Semi-supervised models are trained and fit on labeled observations describing normal

behavior only. The approach is taken when outliers are defined as data points that differ

from the distribution of the benign training data, given as ground truth. Any observations

differing from the benign training dataset are considered anomalies, even if they form a

52

Figure 4.1: Anomaly detection approaches arranged in the plane spanned by two major components (model and feature

map) of our unifying view. Based on shared principles, we distinguish One-Class Classification, probabilistic models, and

reconstruction models as the three main groups of approaches that formulate shallow and deep models. Purely distance-based

methods complement these three groups. Adopted from [8]

high-density region or cluster. The semi-supervised approach is the best fit for this problem

since we would have the opportunity to gather ground truth labels from the benign user

of the phone at some point.

Although state-of-the-art and many works in past literature base their findings on Deep

Learning techniques, we do not aim to make the system lightweight, fast, and efficient in the

interest of practicality. Due to their recent success in many anomaly detection problems,

we also aim to leverage generative models such as Variational Auto-Encoders (VAE). VAE

have a wide range of varieties. We decide to utilize the most commonly used models

in the domain and choose one based on timing, performance, and stability across a few

experiments. The models we chose to evaluate our VAE, β-VAE, KNN, OCSVM, ABOD,

CBLOF, FeatureBag, HBOS, IForest, LOF, PCA. This selection allows us to sample the

most esteemed algorithms across linear, proximity-based, probabilistic, ensembles, and

neural networks, as seen in Figure 4.2. Other familiar categorization of anomaly detection

algorithms showed in Figure 4.1, supports that this selection is diversified and will allow

us to capture and evaluate broad categories of algorithms in our use case. In the following

53

PCA
MCD

OCSVM
LMDD

HBOS
kNN
LOF

CBLOF
COF
LOCI

AvgKNN
MedKNN

SOD
ROD

ABOD
COPOD

MAD
SOS

IForest
Feature Bagging

LSCP
XGBOD
LODA

Beta-VAE
VAE
AE

MO_GAAL
SO_GAAL

Linear Proximity-Based Neural NetworkProbabilistic Ensemble

Figure 4.2: Anomaly detection approaches arranged in the plane categorised by their underlying type. The 5 categories in

the anomaly detection models literature are linear based, proximity based, neural networks based, probabilistic based, and

ensembles. Models we used in our evaluations are bold-ed for emphasis.

sections, we provide a brief introduction to some of these models.

4.2.1 Linear, Probabilistic, Density, and Ensemble-based Models

Linear

PCA (Principal Component Analysis) [133] is a linear transformation often used for di-

mensional reduction to allow for easy data exploration and analysis. The technique used

highlights the variance co-variance structure of a few variables through a set of new vari-

ables, which are the original variables’ functions. The principal components are linear

combinations of these random variables that are not correlated, sorted by variance starting

from the first, and conserve the total variation in the original variables.

OCSVM (One-class Support Vector Machine) [134] is a linear algorithm that aims at

learning a decision boundary to group the data points. Once the model is trained, each data

point is classified based on the normalized distance of the data point from the determined

decision boundary.

MCD (Minimum Covariance Determinant) [135] is an estimator of multivariate location

and scatter. It is to be applied to Gaussian data but can also be helpful on data drawn

from a uni-modal, symmetric distribution.

54

Proximity-based

HBOS (Histogram-based Outlier Score) [136] is a proximity-based technique that models

uni-variate feature densities using histograms with a fixed or a dynamic bin width. Once

the computations are in, all histograms compute an outlier score for each instance presented

in the data. It can achieve linear time complexity, O(n), if used with a fixed bin width.

KNN (K-Nearest neighbors) [137] is a proximity-based model. For each data point,

the whole data set is examined to extract the k data points with the most similar feature

values. These are then defined as the k nearest neighbors. Once the nearest neighbors

are found, the data instance is classified as anomalous if and only if the majority of those

nearest neighbors were previously classified as anomalous; otherwise, the data point is

benign.

LOF (Local Outlier Factor) [138] is a proximity-based method that captures precisely

the relative degree of isolation of an object from its surrounding neighborhood. The outlier

factor is local because only a restricted neighborhood of each object is taken into account.

The approach is loosely related to density-based clustering.

CBLOF (Cluster-Based Local Outlier Factor) [139] is a proximity-based method. The

outlier score is computed by the distance of each instance of the data to its respective

cluster center multiplied by the instances belonging to its cluster.

Probabilistic

ABOD (Angle-based Outlier Detection) [140] is a Proximity-based technique built for high-

dimensional data anomaly detection tasks. It is a parameter-free approach based on the

variance of angles between pairs of data instances. Using the variance in the angles between

a data point to the other points as an anomaly score, ABOD is one of the most popular

techniques for anomaly detection on high-dimensional data sets.

55

Ensemble

Forrest (Isolation Forest) [141] is an ensembling technique that is based on the usage of

numerous isolation trees, a tree structure constructed effectively to isolate every single

instance. The idea is based on the susceptibility of anomalies to isolation; hence anomalies

are found closer to the root of the tree; whereas ordinary points are isolated at the deeper

end of the tree. Isolation Forest builds an ensemble of isolation trees and defines anomalies

as those instances with the shortest average path lengths on the trees formed.

FeatureBag [142] is an ensemble technique applying Feature Bagging for outlier de-

tection. The technique is based on combining results from multiple outlier detection al-

gorithms that are put into action with different sets of features. Every outlier detection

algorithm uses a small subset of randomly selected features from the original feature set.

The anomaly scores computed by the individual algorithms are then combined to find

better quality anomalies in the data set.

Limitations

Linear models like PCA are limited to data encodings that can only exploit linear feature

correlations [8]. Deep models need significant amounts of training data to achieve accept-

able performance; hence we will refrain from making our VAE and β-VAE deep: exceeding

three layers in the architecture. KNN needs to have the number of neighbors K manually

chosen; it also suffers from the “curse of dimensionality” and needs data scaling as it does

not perform well on imbalanced data [143]. Classification models like SVMs are not ap-

propriate for non-linear problems, have overlapped classes, or have many features. Many

of these models also are very slow, as we will see in the experiment chapter.

4.3 Generative Models

A recent addition to the domain of outlier and anomaly detection is the use of genera-

tive models. The generative model is an umbrella term that covers a vast spectrum of

56

Figure 4.3: Taxonomy of generative models. Source: [9]

ML models. VAEs [109] are among the most popular ones and have shown great perfor-

mance in recent ML literature for a large variety of tasks ranging from fairness in ML to

better image generation. It is recognized that generative models can yield better perfor-

mance for abnormal event detection due to their inherent Gaussian distribution modeling

properties [144]. Other examples of popular generative models are Generative Adversarial

Networks (GAN) [145], PixelRNN [146] and PixelCNNs [147] which leverage Recurrent

Neural Network (RNN) [148] and Convolutional Neural Network (CNN) [149] respectively,

as seen in Figure 4.3. VAE optimizes variational lower bound on likelihood and hence

produces good latent representations and allows inference queries. PixelRNN and Pixel-

CNN are explicit density models that optimize exact likelihood and make good samples

but inefficient sequential generation. GANs are a game-theoretic approach and generate

the best samples but can be tricky and unstable to train, with no inference queries. [9]

VAEs are stochastic inference algorithms deeply rooted in Bayesian statistical models.

However, they are based on the older Auto-Encoder model, which has two neural networks:

an encoder and a decoder. In the Auto-Encoder Figure 4.6, the encoder network aims to

learn a smaller representation of the data it trains on, and then the decoder reconstructs

57

Figure 4.4: Auto-Encoder model architecture. Source: [10]

the original data from the smaller representation the encoder created, outputting the recon-

struction of the input data to the encoder. The encoder learns a compressed representation

called code, bottleneck, vector, latent features, latent variables, latent space vector of the

input. The decoder learns how to reconstruct the input based on the latest features. The

network as a whole tries to minimize reconstruction error: by minimizing the input and

output differences. VAEs have been proved across many works and data sets to be the

best novelty detection generative model due to their unique properties [121].

4.3.1 Auto-Encoder

The Auto-Encoder, seen in Figure 4.5, can serve as a good anomaly detector since it

has excellent feature extraction capabilities. Imagine training an Auto-Encoder on benign

samples and minimizing reconstruction errors on it. After training, the Auto-Encoder sees

malicious input and cannot reconstruct with low error rates anymore since it only knows

how to recognize the patterns of the benign data. An anomaly score could be set to mimic

the reconstruction error. It serves as a deviation-based anomaly detector in what is referred

to as a semi-supervised learning fashion.

58

Figure 4.5: Auto-Encoder architecture featuring the encoder and decoder multi layered networks.

Source: [11]

4.3.2 Variational Auto-Encoder

VAE is the graphical Bayesian inference probabilistic variant of the Auto-Encoder. As op-

posed to the Auto-Encoder where the encoder and decoder implement two complementary

deterministic transformations, in VAE, it is a distribution that is being learned, and the

output is a draw from that underlying distribution. The VAE’s small representation is

referred to as the latent variable and usually fits a prior distribution. The standard choice

for that distribution is the Gaussian distribution [150], although other distributions such

as the Mises-Fisher distribution are used in some variations of the VAE. The encoder is

its posterior distribution, and the decoder is its likelihood distribution. Prior is a belief in

some quantity, typically on a set of parameters, without observations at the data. When

data is involved, the belief is updated and is called a posterior.

As part of a class of likelihood-based directed graphical generative models, a VAE

maximizes the likelihood of the training data according to a generative model [151] [152].

We know an Auto-Encoder minimizes reconstruction loss, but a Variational Auto-Encoder

59

also ensures that latent vectors are sampled from a Gaussian mixture and take a fixed

range of values, referred to as latent loss. Unlike AEs, VAEs can also generate data much

like GANs without the overhead of introducing a min-max game or the Nash equilibrium

challenge. VAEs are very useful with complex distributions as they try to find a smaller

set of latent features that have much easier probability density distributions to model and

fit them to a Gaussian distribution, for instance [12] [153].

By providing a probabilistic measure, the VAE can provide an anomaly score. This

means that they eliminate the need to infer a cut-off threshold for the anomaly score but

instead have a continuous anomaly score that follows a Gaussian distribution. A high

anomaly score indicates that this sample deviates significantly from the training data and

hence must be more anomalous in nature [151]. Hence the intuition behind using the

VAE for anomaly detection is that the anomalous data will deviate from the mean of the

distribution i.e., the benign data, which has been represented in a low dimensional space.

Judging based on reconstruction probabilities, the model can spot the anomalous data

easily.

Usually, a forward pass in a VAE encodes an instance into the mean and standard devi-

ation of the latent variable. It then samples from the latent space normal distribution and

decodes the sample into a mean and standard deviation of the output variable. The model

finally draws a sample from the output variable’s distribution to produce the reconstruc-

tion. We can then perform backpropagation after every mini-batch to update our encoder

and decoder parameters (θ and φ), based on our loss function to maximize the likelihood

of our training data. Given x is the input, the reconstructed x′ from a VAE trained on

MNIST [154] looks like what we can see in Figure 4.7, when z, the compressed code learned

in the bottleneck layer, is varied, showcasing the 2-dimensional latent space capturing in-

terpretable and independent factors, more on that is seen in Figure 4.8 where we can see

that one dimension captured smile and the other captured head pose. This suggests that z

dimensions are great feature representations as it captures those interpretable semantics.

The encoder is great for feature representation, and since we can define a threshold for

the reconstruction probability based on the latent space, it can be helpful for classification

or anomaly detection, as it allows inference of q(z|x), the estimated posterior probability

function, also known as the probabilistic encoder. All mathematical symbols are carefully

60

Figure 4.6: Variational Auto-Encoder representation. Source: [10]

61

Figure 4.7: Reconstructed samples from a VAE trained on MNIST. Source: [12]

defined in ??.

As mentioned before, a VAE does not map the input to a fixed vector like an Auto-

Encoder does, but rather to a distribution pθ where θ stands for the parameter of that

distribution with an optimal, hence real, value θ∗. Given z representing a latent encoding

vector, or compressed code learned in the bottleneck layer, and x ∈ D representing our

original input from the dataset, we are able to define the prior, often approximated with a

learnt q(z) or simply N (0, I) as:

pθ(z) (4.1)

the posterior as:

pθ(z|x) (4.2)

the likelihood of generating true data sample given the latent code, also known as proba-

bilistic decoder as :

pθ(x|z) (4.3)

To generate a sample that looks similar to the real input x(i), we sample z(i) from the

62

Figure 4.8: Reconstructed samples from a VAE trained on faces. Source: [12]

prior distribution pθ∗(z) and generate x(i) from the conditional distribution pθ∗(x|z = z(i)).

This allows us to define what is the real or optimal parameter of the distribution θ∗ as

such:

θ∗ = arg max
θ

n∏
i=1

pθ(x
(i)) (4.4)

Since it will be the parameter that maximizes the probability of generating x(i), we

can also use log probabilities to change the right hand side into a summation. Trying to

63

increase the likelihood of our training data, we define

pθ(x
(i)) =

∫
pθ(x

(i)|z)pθ(z)dz (4.5)

This involves the simple Gaussian prior and the decoder neural network. The equation

above is not tractable, as we cannot compute every P (x|z) for every z. Calculating pθ(x
(i))

is a challenge as it requires to check for all the possible values of z. We can reduce

the value space to facilitate faster search by utilizing an approximation function to the

posterior, qφ(z|x), with a parameter φ, to output a likely z given x. Estimated posterior

qφ(z|x) should very similar to the real posterior pθ(z|x). Hence we work out the log of the

data likelihood to the following equation, equipped with our neural networks

log pθ(x) = Ez∼qφ(z|x) log pθ(x|z)−DKL(qφ(z|x)‖pθ(z)) +DKL(qφ(z|x)‖pθ(z|x)) (4.6)

If we look closely at the above equation, we can see the first element Ez∼qφ(z|x) log pθ(x|z),

simply tries to reconstruct the input data, and can be provided by the decoder network

and computed through differentiable sampling by the using the reparametrization trick.

The second element DKL(qφ(z|x)‖pθ(z)) makes approximate posterior distribution close to

the prior, and is between two Gaussians and hence has a nice closed-form solution. The

third element DKL(qφ(z|x)‖pθ(z|x)) is intractable due to p(z|x) being intractable posterior,

but we know this term will be greater than or equal to zero by definition. The first two

elements then form a tractable lower bound that we can take the gradient of and optimize.

We define the loss function as

LVAE(θ, φ) = − log pθ(x) +DKL(qφ(z|x)‖pθ(z|x))

= −Ez∼qφ(z|x) log pθ(x|z) +DKL(qφ(z|x)‖pθ(z))

θ∗, φ∗ = arg min
θ,φ

LVAE

(4.7)

The goal of a VAE in training is to minimize the KL divergence of qφ(z|x) and pθ(x|z)

and pθ(z|x) and as well as the reconstruction probability of x. It generalizes more easily

64

than an Auto-Encoder because it works with probability distributions [12]. Numerous

works have proved Variational Auto-Encoders’ high effectiveness in anomaly detectors and

showcased their use [155, 156, 157, 158].

β-VAE [159] is a variation of the VAE with the goal to discover disentangled latent

factors. When each variable in z is sensitive to only one specific generative factor and rela-

tively invariant to other factors, the representation is defined as factorized or disentangled.

Disentangled representations are good for interpretability and generalize to a variety of use

cases. We will also be evaluating β-VAE for our use case.

LBETA(φ, β) = −Ez∼qφ(z|x) log pθ(x|z) + βDKL(qφ(z|x)‖pθ(z)) (4.8)

The above equation represents the β-VAE loss function, and as we can see, the β pa-

rameter can be considered a hyperparameter that, when it exceeds the value of one, applies

a stronger constraint on the latent bottleneck and limits the representation capacity of the

latent space z. In conditionally independent generative factors, keeping them disentangled

is the most efficient representation. Hence the higher β is, the more efficient the latent

encoding becomes and the better the disentanglement. However, a high β may create a

trade-off between reconstruction quality and the extent of disentanglement.

4.3.3 VAE based Anomaly Detection

Due to isotropic Gaussian priors on the latent variables, VAEs give representations with

disentangled factors [160]. Modeling factors as Gaussians allows each dimension in the

representation to be as far as possible from others. Higgins et al. [160] added a regular-

ization coefficient that controls the influence of the prior and defined priors as sequential

models. Unlike an Auto-Encoder, prior gives significant control over how a VAE models

a latent distribution, as expected from a Bayesian model. Precise modeling can capture

better representations, as shown in work presented by Chung et al. [161].

As seen in Algorithm 1 during training, one needs to use both the encoder, fφ, and

decoder,gθ, models to minimize the reconstruction loss as well as latent loss. During testing,

only the encoder is used to get the extracted bottleneck, and then the latent features

65

Algorithm 1 VAE anomaly detection. Adapted from [153, 12]

Input: Benign Training Data X, Real-World Data x(i) i = 1, . . . , N, Threshold α

Output: reconstruction probability pθ(x|x’)
1 φ, θ ←train a VAE using the benign Dataset X

2 for i ←1 to N do

3 µz(i, l), σz(i, l) = fθ(z|x(i))

4 Draw L samples from z ∼N(µz(i), σz(i))

5 for l ←1 to L do

6 µx′(i, l), σx′(i, l) = gφ(x|z(i,l))

7 reconstruction probability(i) =
1

L

L∑
l=1

pθ(x
i|µx′(i, l), σx′(i, l))

8 if reconstruction probability(i) ≤ α then

9 x(i) is an anomaly

10 else

11 x(i) is benign

are sampled following a Gaussian distribution, and its standard deviation and mean are

fed to the decoder to get the reconstruction probability for this data point, which then

can be checked if above a certain threshold, and the data point is judged anomalous or

benign [153, 12].

VAE anomaly detection has been utilized in the cybersecurity context by Bernieri et al.

[162], as well as others as seen in Chapter 3. However, their application in cybersecurity

literature has been limited, and there is still a lot of room for their expansion to different

use cases. The low footprint of VAE in cybersecurity comes as an opportunity to evaluate

the technology in some of the interesting problems in cybersecurity that rely on anomaly

detection. According to Yao et al. [163], VAE-AD performs better than other anomaly

detection approaches such as AE and Kernel Principal Component Analysis (KPCA). We

recognize the importance of feature extraction in anomaly detection, and Auto-Encoder

has been a great feature extractor, arguably the best in the past years. We understand,

however, that AE has limitations in its ability to generalize well and is not able to easily

extrapolate beyond the dataset used in training. These issues are addressed in VAE’s

66

capability to capture the underlying distributions of the input data. Thus, they can work

more effectively with smaller training data sets and can yield better anomaly scores than

other feature extractors such as AE and PCA.

4.4 Summary

Anomaly detectors use a very large variety of models, including density-based, Bayesian

networks, fuzzy-logic, deviations from association rules, HMMs, cluster analysis, NN, AE,

LSTMs, SVM, sub-space, or tensor-based outlier detection. The superiority of the VAE

model, however, lies in the generative property, making them cheap, efficient, not data-

hungry, and generalizable. Exploiting the advances in variational Bayes and in probabilistic

inference in general, VAEs and their variants conditional VAEs carry the potential to

outperform most ML-based anomaly detectors [164]. Hence we include VAE, with KNN,

LOF, HBOS, CBLOF, ABOD, FeatureBag, IFeature, PCA, MCD and, OCSVM in our

evaluations.

67

Chapter 5

Experiments

This chapter describes the implementation of approaches presented by Centeno et al. [20]

which is revisited by Buech [13] as well. In this method, a Siamese Convolutional Neural

Network is used along with an OCSVM on the HMOG dataset, in a manner that allows

for a near real-world test case. We present the implemented evaluations for linear models

like PCA, OCSVM, MCD, HBOS, KNN, LOF, and CBLOF, Probabilistic like ABOD, and

ensemble like iForest, and FeatureBag on a few novel and classic experiment configura-

tions reported, span a variety of parameters, scenario steps, and performance metrics, to

satisfy our use cases and comparability requirements. It is important to note that in the

realistic experiments, noted as VALID experiments, the accelerometer was the only data

type used to avoid any fingerprinting of surroundings in the magnetometer or gyroscope

data. We selected our models based on our methodology that was refined and detailed in

Chapter 4. This chapter benefits from the related works and uses the concepts visited in

previous chapters upon which we base our experiments, implementations, and conclusions.

Implementations details are captured carefully along with curated designs and codebase in

Chapter 6.

68

5.1 Data Processing

5.1.1 Initial Data-set Explorations

To evaluate our work, we use the HMOG [24] dataset, which provides the smartphone data

collected from many users while they were performing various activities (cf., Section 3.1).

We train and evaluate our models on these sessions. The current state-of-the-art [20]

uses a Siamese Convolutional Neural Network to extract deep features from the inertial

sensors data (magnetometer, accelerometer, and gyroscope) per every one-minute session

and passes it to a One-Class Support Vector Machine to detect if the current user is the

real owner.

The dataset, as outlined in Chapter 3, is used as a de-facto in our research domain,

due to its thorough data collection procedure detailed by its authors [14, 24] and publicly

available for researchers to use [165]. The authors developed a data collection tool for

Android phones to record real-time touch, sensor, and keypress data invoked by user’s in-

teractions with the phone. Data from three usage scenarios on smartphones were recorded:

(1) document reading, (2) text production, (3) navigation on a map to locate a destination.

0 5 10 15 20 25 30 35
Session Duration in Minutes

0

50

100

150

200
mean
(8.6 min)

Figure 5.1: HMOG sessions duration. Source: [13]

69

Figure 5.2: Nine categories of touch or sensor data are recorded in HMOG. Source: [14]

They had 100 volunteers log into the data collection tool, where each subject was

randomly assigned a reading, writing, or map navigation session. For each session, the

subject would either sit or walk to finish the tasks. Each session lasted about 5 to 15

minutes, with a mean of 8.6 minutes as depicted in Figure 5.1. Each subject was asked

to perform 24 different sessions: four sessions reading while sitting, four sessions reading

while walking, four sessions writing while sitting, four sessions writing while walking, four

sessions navigating a map while sitting and four sessions navigating a map while walking.

70

In total, each subject contributed about 2 to 6 hours of behavior traits [165]. The data

recorded included streams of accelerometer, gyroscope, magnetometer, raw touch event, a

tap gesture, scale gesture, scroll gesture, fling gesture, and keypress on the virtual keyboard,

as in Figure 5.2. We decided to limit ourselves to initial data features only (accelerometer,

gyroscope, and magnetometer) as discussed in Chapter 4, for reasons pertaining to power,

privacy, and security.

We mainly utilize the software put forward by Buech [15] in their re-implementation

of Centeno et al. [20], data processing step, to achieve the necessary preprocessing and

address several issues with the data set, to enhance its effectiveness in our experiments.

Buech [15] identified sessions 9, 10, 11, 12, 13 and 14 of subject 733162 were missing

accelerometer data and subjects 526319 and 796581 had only 23 sessions instead of 24,

as seen in Figure A.1 and Figure A.6. We hence eliminate subjects 526319, 796581, and

733162 from our working dataset moving forward. Li et al. [69] also reported two subjects

in HMOG to have unusual data, but did not explain further. We assume these are subjects

526319 and 796581. Centeno et al. [20] excluded 10 subjects from the HMOG dataset

for their work. Others [24, 66, 19] did not mention any such data cleaning steps, like

excluding any of the subjects’ data, in their use of HMOG. In an effort to be comparable

with Centeno et al. ’s work [20] seven additional subjects that shown irregularities in data

sizes are removed. Following Buech’s [15] reasoning, we remove subjects 256487, 389015,

and 856401 for having too much data compared to the mean, as seen in Figure A.6 and

219303, 539502, 737973 and 986737 for having too little.

Another issue that is worth noting and will be visited later in our experiments, is the

fact that magnetometer data had some significant outliers, especially on the z-axis, as

shown by Buech [13]. These anomalies were highly related to subjects, and hence can be

used as a shortcut for any model to learn how to spot a certain user. We suspect that’s

due to the environment in which the data was captured. We discuss that in more detail

later on in our evaluations. As for other sensors, accelerometer data was skewed due to

gravity on the y and z axes, and gyroscope data was evenly distributed around zero. We

scrutinize the usefulness of magnetometer in our evaluations moving forward, and will aim

to evaluate our models without that, for a more realistic test case and results. Based

on additional data explorations, we also made the empirical observation that the inertial

71

data only is distinctive enough between subjects to allow for an authentication system to

perform reasonably well. As displayed in Figure A.4 and Figure A.5, this is fairly visible

in the visualizations even when eye-balling the data. It is important to note that the

accelerometer alone, also seems to be distinctive enough, as seen in Figure A.2, which will

be validated in our evaluations as well. Further HMOG statistics and observations are to

be found in Appendix A.3.

5.1.2 Data-set Preparations

The CSV files from the dataset had to be converted into tables in a single file of the Hier-

archical Data Format (HDF) to enhance the performance and speed of our experiments on

the supercomputer. It is worthwhile to note that HDF files do not support lazy operations.

Hence, it is not possible to load a data instance only when needed, and the whole dataset

needs to completely fit in memory. If the computer resource does not have enough memory

to support all of HMOG to be loaded into RAM, then a library like Dask [166] might be

the right choice.

Buech [15] proposed an initial data set transformation process that has been adopted

in our work, as well. They collect the inertial sensors (accelerometer, gyroscope, and

magnetometer) data streams at 100Hz frequency, and joined them from all HMOG spread-

sheets. Unnecessary attributes and features were removed, and the results are saved in the

Hierarchical Data Format, for faster data reading operations, as seen in Figure A.3.

As the accelerometer, gyroscope, and magnetometer sensors data is not uniformly sam-

pled, it would generate time shifts between the entries if the data would be joined on row

indices. So the data is transformed into a uniformly sampled time-series and joined under

one table, after re-sampling each sensor data to ten milliseconds and linearly interpolating

the gaps. Sequences with incomplete entries at the beginning and end of their span were

shortened.

Information and metadata about the sessions performed are injected into the data for

every measurement reading the session ID. It identifies whether a session was capturing

the subject reading while sitting, reading while walking, writing while sitting, writing

72

while walking, navigating a map while sitting, or navigating a map while walking. We

identified these six task-body modes combinations from the Activity.csv file of the HMOG

dataset, although some gaps in activity descriptions were found. We handled activity

description gaps by simply assuming that every session during data collection had a single

task-body mode combination. Hence, if we have that activity labeled for any time interval

in the session, we can assume the label identifies the entire session’s duration and all of its

measurements.

With regards to sampling, Centeno et al. [20] used both 100Hz and 25Hz for their

Siamese CNN approach, but reported better results for 25Hz. It was unclear how Centeno

et al. achieved that, so Buech [15], during re-implementation, calculated the mean of every

four samples, using a sliding window, as seen in Figure A.3. In general, Centeno et al. [20]

provided very limited information about their data normalization procedure. For instance,

the authors claim to perform channel-wise MINMAX normalization into the zero to one

range, but they do not describe how that was applied. It could be applied to the whole

dataset at once, for every subject individually, for each session, or even for every window

of samples, [13]. Other works, even earlier works by Centeno et al. [16], did not clarify

what normalization techniques were used, if any, making this component’s implementations

ambiguous. Hence, we are left to experiment and yet to find a proper method.

Through Buech’s [13] correspondences with Centeno et al. [16, 13], they concluded that

no differentiation was made between normalization of training and testing sets in Centeno’s

work [16, 20], so as most of the works that use HMOG [24, 14]. Centeno’s et al. [16, 20]

normalization was performed subject-wise for OCSVM, and Siamese CNN. Normalizing

should not happen before splitting the dataset into training and testing subsets. Fitting a

scaler on the training set then normalizing both training and testing sets using the same

scaling parameters would avoid leakage of information between the sets. The same scaling

and normalization need to be used for benign and malicious instances and all subjects alike

since in real-world deployments we can not tell the difference.

Hence following Buech [13], we let normalization become a degree of freedom in our

experiments and aim to find a realistic experiment setting, unlike what we can see in the

research corpus utilizing HMOG as well as other datasets for continuous authentication.

73

5.2 Experiments Design

Simply, we mimic scenarios were the model on the owner’s phone is trained to detect the

owner, and then suddenly another user starts using the phone. We try to mimic that

scenario accurately by removing any data that can fingerprint the surrounding, and only

focus on data that signifies the user behaviour, not the transition between users. We also

test every owner against all possible imposters, and with different durations and sessions

time. The data was initially collected on the same phone and was labelled with the user

and the activity, and hence allows us to surgically patch them together smoothly to recreate

experiments that mimic the various threat models and use cases introduce in Chapter 2.

We randomly split, five times using different randomness seeds, the 90 subjects into

a group of sixty subjects representing our validation data set for hyper-parameter tuning

purposes and another group of thirty subjects for testing and performance evaluation

purposes. Our splitting technique is similar to that of Buech [13] to remain comparable.

Figure 5.3: Schema of data splitting for training and testing. A,B,C,D,E,F refer to the six different tasks-body modes

combinations. Every subject is once selected as owner and tested against all remaining subjects. Source: [15]

Both of these sets are further split into training as well as validation or training subsets.

74

Similar to what is seen in Figure 5.3, in every experiment a subject is selected, as the device

owner and models are trained on its training sessions. Pairs of owner and impostor samples

from the validation as well as testing sessions are generated and selected for the experiment.

Note that since there are sixty subjects in the validation dataset, we train sixty different

models during hyper-parameter optimization. Once a hyper-parameter value set has been

concluded, then the validation dataset is put aside, and the testing with the testing dataset

begins.

Centeno et al. [16] thoroughly explain how their cross-validation was performed for

training and testing. The cross-validation employed in our evaluations is identical to that

used and re-implemented by Buech [13]. We also added a validation split to allow for a

dedicated hyper-parameter tuning and optimization component in the experiments. It is

important to note that hyper-parameter tuning happens for all subjects i.e., the model

is generalized for as many users as possible. For future work we recommend the usage

of individual specialized models, hyperparameter tuned and optimized for each subject

or owner (cf., Chapter 7). Hyper-parameter tuning for each subject would undoubtedly

enhance the results and is the way to go for a real-world scenario as described in Chapter 4

but makes our work hard to compare to others. Our work prioritized comparability to

the existing body of work, to evaluate a variety of models and specifically what generative

models, like the VAE, can offer to a continuous and implicit authentication system.

There are many questions and variables regarding the experiment design. For instance

what feature set to use of the data available? Are we going to utilize deep feature extrac-

tions or use raw features? Is the collected data presenting a fair evaluation grounds for

the designed solution? We decided to classify all these degrees of freedom regarding the

design, in a table, and logically choose what to experiment with. We tweak them to make

sure we do not have any biases or questionable results in our evaluations. The results are

shown in Table 5.1. The NAIVE setting refers to a configuration where the data is initially

normalized feature-wise per subject using the MINMAX algorithm, before splitting into

training and testing sets. This setting obviously introduces bias into our testing subset

and is not realistic, since the owner and an impostor cannot be distinguished upfront. As

discussed before, normalization needs to take place using the same parameters, and hence

the VALID setting is where the dataset is split into training and testing subsets upfront.

75

Degrees of freedom and Initial Settings

Experiment

Name

Data Normalization Scaling Features

Extraction

VALID-

ROBUST-

FCN

accelerometer

5s windows (walk-

ing)

Valid Robust Deep via

FCN

NAIVE-

MINMAX-2D

accelerometer,

gyroscope, magne-

tometer 1s windows

Naive Minmax Deep via

2D CNN

VALID-

ROBUST

accelerometer

5s windows (walk-

ing)

Valid Robust Raw

NAIVE-

MINMAX

accelerometer,

gyroscope, magne-

tometer 1s windows

Naive Minmax Raw

Table 5.1: Different initial experiments settings

Then, the normalization scaler is fit using the owner’s training data. Finally, the same

fitted scaler is applied to the testing samples for both owner and impostor.

We exhausted all combinations looking for what effects are observed. Buech [13] indi-

cated that NAIVE-MINMAX-2D, using the accelerometer, gyroscope, and magnetometer

data types, is what is used by other researchers and is how we can benchmark other works,

most importantly that of Centeno et al. [20]. The author also proposed that VALID-

ROBUST-FCN, using only the accelerometer data type, is a more realistic experiment to

see how good are solutions performing in close to realistic scenarios. The arguments were

that NAIVE is not realistic as it had normalized on malicious actor data which really would

not be available during training.

Buech [13] also argued that magnetometer data in HMOG was very different between

different sessions, to the extent that it can fingerprint certain locations the dataset was

collected in and ends up being a shortcut for the model to achieve better performance,

76

utilizing this bias. He found that the gyroscope does not allow the model to achieve better

performance and decided to remove it, too. As all related works Chapter 3 had shown

that models perform better in walking body modes since the user profile is easier to detect,

Buech [13] decided to omit the seated body mode from a few experiments, and claimed

that improved the performance.

We were able to validate these claims and tried all the combinations, especially those

missing from his evaluations which were using accelerometer and gyroscope, and accelerom-

eter and magnetometer with all the other combinations. Our results indicate that there is

no gain from including any other data types to the VALID-ROBUST-FCN experiment.

In our work, we found that the two that stood out are one that was composed of

NAIVE-MINMAX and another that was composed of VALID-STD. We evaluated with

deep feature extraction and without, and VAE, as well as KNN, have consistently been

the best two models. We found that KNN is very interpretable and VAE was very fast in

prediction time. Interpretability is not important in the solution design but fast prediction

times were of pivotal importance, as well as being consistently resulting in low EERs and

high accuracy scores across the test in all kinds of experiment settings, with and without

deep feature extractions.

5.2.1 Deep Feature Extraction

Computing features and engineering feature sets involved, traditionally, a lot of manual

labor. As seen in Table A.2,Table A.3, and Table A.4 there are plenty of features a data

scientist can choose for any particular project. Deep feature extraction allows for deep

learning techniques and architectures to learn representations that can replace the feature

engineering process.

In the state-of-the-art ensemble solution presented by Centeno et al. [16] a Siamese

CNN is trained to generate deep features that are passed on to train an OCSVM as an

authentication model. The SCNN network consists of two separate subnetworks, that share

the weights, but each has its input vector and a single output. The output value is derived

from the distance between the output of the subnetworks and relates to the similarity of

the two input vectors.

77

In the SCNN pairs of input vectors x(i) and x(j) are paired to a label y(i) that is either

positive, if x(i) and x(j) are related to the same device user, or negative, if x(i) and x(j)

are related to different device users or profiles.

Both CNN’s reduce the dimensionality of x(i) and x(j). These vectors of lower di-

mensionality that result from the siamese network have a distance d between them. Now

contrastive loss function L is given d and y(i) and outputs a high a loss value, only if d

is low and y(i) is less than zero, or d is high, and y(i) is greater than zero. On the other

hand, if either d is low and y(i) is greater than zero, or d is high and y(i) is less than zero

outputted loss becomes low. As indicative of the behavior modeled, the network is forced

to learn aspects of the data that are useful to distinguish between samples from the same

user and samples from different users, effectively doing feature reduction and selection in

an automated fashion.

Once the SCNN is fully trained with both the same user and different user pairs from

a labeled training subset, any one of the identical CNNs is used to output the lower-

dimensional features only. The OCSVM makes use of these for its training and testing.

This completely removes the feature construction tedious process and was shown to improve

the OCSVM performance when compared to training on raw features.

Buech [15] implemented the deep feature extractor in a manner that is slightly different

from what Centeno et al. [16] described to not introduce bias into the model. The key

difference is 50 instead of 60 subjects remained for training the Siamese CNN, as 10 subjects

are used as a validation set for the OCSVM, and still 30 for subjects remain completely

unknown to the whole ensemble until the testing phase. This made sure the experiment

setup is more realistic and the results will be more representative of what can be found in

a real-world deployment.

The SCNN deep feature extractor architecture, shown in Figure A.10, was re-implemented [15]

to match the parameters described by the original authors and Buech in Table A.5. All

layers had Rectified Linear Units (ReLUs) as their activation function, first to implement

ReLUs as activation functions were Krizhevsky et al. [167] in AlexNet, their architecture

was one of the largest convolutional neural networks on the subsets of ImageNet. We en-

courage future work to optimize this architecture and explore deeper models as making a

78

network larger usually improves the performance [168]. When ReLUs caused dying units,

the author has reported exchanging them for exponential linear units.

The way the input to the SCNN was made was through halving all the subjects’ data,

shuffling them, and aligned as pairs for the network. It is important that the SCNN was

implemented in three variations by Buech [15], namely CNN with 2D filters, detailed in

Figure A.10, CNN with 1D filters, detailed in Figure A.8, and FCN with 1D filters, detailed

in Figure A.9. The reasoning is the architecture makes more sense with 1D filters, so the

2D mentioned by Centeno is interpreted as a possible typo, and the last layer is dense is

common instead of flattening the final pooling layer. These variations gave the experiments

more degrees of freedom, as seen in Table A.6.

Further details of the SCNN implementation are made available in the original authors’

publication [20] and the recent re-implementation [15].

The outlier detection models we choose to test in the experiments are all of the ones dis-

cussed in Chapter 4. A brief description of those is in Appendix A.5. Their implementation

details are in Chapter 6.

5.3 Results

As we conducted more than ten experiment settings (VALID FCN ROBUST, VALID FCN

STD, VALID FCN MINMAX, NAIVE ROBUST 2D, NAIVE STD 2D, NAIVE MINMAX

2D, VALID ROBUST, VALID STD, VALID MINMAX, NAIVE ROBUST, NAIVE STD,

NAIVE MINMAX) across our more than ten models with numerous hyper-parameters and

feature set combinations (accelerometer, gyroscope, magnetometer), we generated lots of

results. Commented and clean code base and data from these available on our GitHub

repository [169]. In this section, we discuss and present the main highlights and relevant

insights.

To evaluate the authentication performance, cross-validation was performed using the

testing subset, which involved thirty subjects who have not previously included invali-

dation and have never seen by the models or the data pipeline. The experiment results

79

are interpreted using calculated EERs, and performance accuracies for all the intricate

owner–impostor scenarios that play out in these cross-validations. In each cross-validation,

one of the 30 subjects is treated as the device owner and only 18 of their sessions are used

to train the model. Six different owner sessions, each with a unique task body mode com-

bination of the owner, are then tested against six sessions of some other user, playing the

impostor, with an equal number of testing data instances and samples. This process is

repeated for all 29 imposters, against any single owner. A total of 870 such crafted testing

scenarios were simulated. To improve the robustness of our results, this evaluation was

repeated five different times using different random seeds. The presented results are the

average of the five independent trials, or 4530 testing scenarios, each consisting of six tests

from an owner and six tests from an imposter. This means that every owner got to have

29 imposters attack their phone for six sessions five times each.

As detailed in Section 5.2, the NAIVE approach to normalization was initially per-

formed, both on the entire data and individually for every subject. However, in the VALID

approach, the normalization scaler was fitted on the training data of the owner only and

then applied to transform the testing data for both the owner and the imposter.

5.3.1 Initial Results

Our initial results are based on the NAIVE MINMAX 2D experiment, where normalization

occurs naively and simplistically. In this set-up, testing dataset values are MINMAX

scaled, and the SCNN uses the 2D CNN implementation discussed in Section 5.2.1. The

codebase for most of the experiment instruments was open-sourced by Buech [13] in their

implementation and validation of the state-of-the-art ensemble model proposed by Centeno

et al. [16]. Their self-reported results, under the NAIVE MINMAX 2D setting, are

14.70% EER and 90.00% accuracy, which are produced by running an ensemble of the

author OCSVM model after deep feature extraction using a Siamese Convolutional Neural

Network. We aim to enhance these scores, thanks to the properties generative models

inherently possess, as discussed thoroughly in Chapter 4.

Our results were based on running the following models through the NAIVE MINMAX

2D experiment: VAE, β-VAE, KNN, OCSVM, author OCSVM (proposed by Centeno et

80

al. [20] and reimplemented by Buech [15])1, ABOD, CBLOF, FeatureBag, HBOS, IForest,

LOF, PCA. Note that we experimented with different VAE variations and configurations in

this step, to find the best architecture and hyper-parameters to proceed with. We also con-

ducted hyper-parameter tuning for all models, for both the VALID-FCN-ROBUST and the

NAIVE-MINMAX-2D experiments. This was done via the Random Search algorithm [170]

which is faster and more efficient than the Grid Search algorithm [171]. As discussed in

Chapter 2, EER is the preferred metric for this study, but model accuracy is also included

to improve comparability. Our experiment results are summarized in Figure 5.5 and Fig-

ure 5.4, in both metrics. The timing results for the experiments are shown in Figure 5.6.

The results shown under each model, represent the best possible performance reachable by

the model when it is optimized for the experiment settings.

1OCSVM refers to an OCSVM model that we hyper-parameter tuned for optimal performance in our

experiments, while author OCSVM refers to the model hyper-parameter tuned by Centeno et al. [20] and

re-implemented by Buech [15] for the the various experiment settings

81

author ocsvm

vae 16,1

abod

CBLOF

FeatureBag

HBOS

IForest

KNN

LOF

MCD

PCA

OCSVM

0.0 0.1 0.2 0.3 0.4 0.5

NAIVE_MINMAX_2D VALID_FCN_ROBUST

Testing EER

Figure 5.4: Testing EER of 12 models in 2 different experiment settings.

82

author ocsvm

vae 16,1

abod

CBLOF

FeatureBag

HBOS

IForest

KNN

LOF

MCD

PCA

OCSVM

0.00 0.25 0.50 0.75 1.00

NAIVE_MINMAX_2D VALID_FCN_ROBUST

Testing Accuracy

Figure 5.5: Testing accuracy of 12 models in 2 different experiment settings.

Milli-Seconds

author ocsvm
vae 16,1

abod
CBLOF

FeatureBag
HBOS

IForest
KNN
LOF

MCD
PCA

OCSVM

0.00 0.02 0.04 0.06 0.08

NAIVE_MINMAX_2D VALID_FCN_ROBUST

Testing Time

Figure 5.6: Testing results of 12 models in 2 different experiment settings. Scoring time

reported in seconds.

83

5.3.2 Promising Models

Based on the initial results, we disqualify most of the models for being slow, measured

by inference time, or having sub-optimal performance, measured by EER and accuracy.

This leaves us with VAE, ABOD, KNN, LOF, and PCA only, as the most promising five

models, as in Figure 5.7. The initial results show us that although all models are performing

relatively well, the models mentioned above achieve the best mean accuracy and EER with

the lowest mean scoring time.

0

25

50

75

100

vae 16,1 knn abod author ocsvm lof pca

VALID_ROBUST (acc) NAIVE_MINMAX (acc) VALID_ROBUST (eer) NAIVE_MINMAX (eer)

ACCURACY & EER FOR DIFFERENT MODELS/EXPERIMENTS

Figure 5.7: Previously reported testing accuracy and EER of the state-of-the-art and 5 best models in 2 different experiment

settings.

84

20

40

60

vae 16,1 knn abod author ocsvm lof pca

VALID_ROBUST (acc) VALID_FCN_ROBUST (acc) VALID_ROBUST (eer) VALID_FCN_ROBUST (eer)

ACCURACY & EER FOR DIFFERENT MODELS/EXPERIMENTS

Figure 5.8: Previously reported testing accuracy and EER of the state-of-the-art and 5 best models in 2 different experiment

settings.

In Figure 5.9 and in Figure 5.8, the impact of the deep feature extraction step using the

Siamese Convolutional Neural Network on the performance of these promising models are

analyzed. It is apparent that the usage of such a resource-intensive step causes significant

performance gains from some models, like the OCSVM, but negligible performance gains

for others, like the VAE.

85

0

25

50

75

100

vae 16,1 knn abod author ocsvm lof pca

NAIVE_MINMAX (acc) NAIVE_MINMAX_2D (acc) NAIVE_MINMAX (eer) NAIVE_MINMAX_2D (eer)

ACCURACY & EER FOR DIFFERENT MODELS/EXPERIMENTS

Figure 5.9: Testing accuracy and EER of the state-of-the-art and 5 best models in 2 different experiment settings.

It is worth noting that the loss due to the removal of the deep feature extractor is only

1% in accuracy for the 2 layered VAE, with 16 neurons in the first layer and 1 neuron in

the second, experiment while it ranges between 4% to 20% in other models, and that can

be attributed to the VAE’s inherent dimensionality reduction capabilities, thanks to its

autoencoder and generative models roots.

Under the same experiment settings (NAIVE MINMAX 2D), while SCNN and OCSVM

ensemble reached 14.7% EER and 90% accuracy, our proposed model achieved 11.71% EER

and 92.52% accuracy when using a VAE with only 2 layers of size 1 and 16, respectively,

amassing a 3% gain in EER, our most prominent performance metric. In these experiments,

we also found a KNN configuration that produced 11.87% EER and 92.44% accuracy.

ABOD also achieved 13.77% EER and 91% accuracy.

However, the VAE had a mean scoring time of 0.005 seconds and negligible variance.

Furthermore, it is worth noting, as seen in Figure 5.10, that the VAE is 8-10 times faster

in scoring than the KNN or the ABOD, who also have good results. That is comparable

to the OCSVM scoring time without the Deep feature extractor SCNN. We recognize that

inference speed is very important in this solution. The user experience and utility of the

86

solution are highly affected by the scoring time, and resource limitations are common on

smartphones.

The experiments demonstrate how removing the deep feature extractor, being the Fully

Connected Network (FCN) or the 2D network in these experiments, helps us better un-

derstand the strengths and flaws of the anomaly detection models. The best and most

consistent model across all experiments so far, from accuracy, EER, time mean, and vari-

ance standpoints combined is the VAE.

IN
E

FR
E

N
C

E
 T

IM
E

0.00

0.01

0.02

0.03

vae 16,1 knn abod

Figure 5.10: Inference time results of VAE, KNN, and ABOD in seconds.

5.3.3 Observations and Improvements

An indication that the models trained on MINMAX scaled data are learning general dif-

ferences of the distributions as opposed to the intended learned difference of patterns of

the actual user movements, is seen in the results of walking only body modes scenarios

being the lowest instead of the highest accuracies, which is observed in experiments that

use another scaler (e.g., ROBUST or STANDARD), an effect reported by Buech [13]. We

turn towards the experiment setting yet again and start questioning whether the VALID-

FCN-ROBUST performance can be enhanced, by perhaps changing the scaler. In better-

controlled datasets, magnetometer, gyroscope, and other data sources like WiFi or back-

ground noise can be used in continuous and implicit authentication systems, however in

HMOG fingerprinting physical locations subjects were in, and hence, their recorded activ-

87

ity sessions is a concern. We remove any data that can be used by the model to fingerprint

sessions and ROBUST scale any data we feed the model.

VALID normalization is more realistic than NAIVE since we do not have the attacker

data to normalize on in a real-life deployment. An accelerometer is also better than a

gyroscope and magnetometer, and any combination of them is worse than an accelerometer

alone as we have found within our extensive set of experiments, even when ROBUST scaling

is used. However, since ROBUST scaling was used to remove the outliers fingerprinting a

small number of sessions (based on unique magnetometer values) that were causing the bias

in the models, we aim to validate the need for ROBUST scaling when only accelerometer

data, which is assumed to not fingerprint physical locations of data collection, is being

utilized.

We now move on to validate why this scaling method was used in particular. To begin

with, we look at scaling methods commonly used, summarized in Table 5.2.

Function Range Mean Distribution When to Use Definition Notes

MinMaxScaler
0 to 1 default,

can override
varies Bounded

Use first unless have

theoretical reason to

need stronger medicine.

Add or substract a constant.

Then multiply or divide by

another constant.

MinMaxScaler subtracts the

mimimum value in the column

and then divides by the

difference between the original

maximum and original minimum.

Preserves the shape of the original distribution.

Does not reduce the importance of outliers.

Least disruptive to the information in the

original data. Default range for MinMaxScaler

is 0 to 1.

RobustScaler varies varies Unbounded

Use if have outliers and

do not want them to have

much influence.

RobustScaler standardizes a feature

by removing the median and dividing

each feature by the interquartile range.

Outliers have less influence than with

MinMaxScaler. Range is larger than

MinMaxScaler or StandardScaler.

StandardScaler varies 0
Unbounded,

Unit variance

When need to transform

a feature so it is close

to normally distributed.

StandardScaler standardizes a feature

by removing the mean and dividing

each value by the standard deviation.

Results in a distribution with a standard

deviation equal to 1 (and variance equal to 1).

If you have outliers in your feature (column),

normalizing your data will scale most of the

data to a small interval.

Normalizer varies 0 Unit norm Rarely.

An observation (row) is normalized

by applying l2 (Euclidian)

normalization. If each element were

squared and summed, the total

would equal 1. Could also specify l1

(Manhatten) normalization.

Normalizes each sample observation (row),

not the feature (column)!

Table 5.2: Table of commonly used scaling functions

When using the MINMAX scaler, the maximum and minimum of the distribution

have a considerable effect on the normalization, which linearly transforms all values into

88

a provided range (e.g., zero to one). This makes the normalization sensitive to the many

outliers in the dataset. These outliers and their distributions are easily picked up on by the

models as a user data session fingerprint but do not signify the user behaviors or movement.

We set to explore how the STANDARD scaler can impact our experiment results. In the

upcoming section, we explore how the top five models and the baseline OCSVM perform

when the data is normalized using the STD scaler rather than the MINMAX or robust.

We also encourage future researchers to explore Power Transformer [172], Quantile

Transformer [173] with Gaussian or uniform outputs, and Normalizer [174] scalers. The

Power Transformer scaler makes the data distribution fit better to the Gaussian distribution

to stabilize variance and minimize skewness as much as it can. The Quantile Transformer,

on the other hand, applies a non-linear transformation such that the probability density

function (PDF) of the data will be mapped to a uniform or Gaussian distribution. The

Normalizer scaler is very different than both in its being a method for rescaling the vector

so that every sample would have a unit norm, independently of the distribution of the

samples [175].

89

0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
PCA0

0.075

0.050

0.025

0.000

0.025

0.050

0.075
PC

A1
Subject
207696
240168
352716
431312
578526
622852
776328
785899
856302
980953

Figure 5.11: PCA visualization of the deep features generated by the original SCNN with 2D

filters and using the ROBUST scaler. Source: [13]

90

0.2 0.1 0.0 0.1 0.2
PCA0

0.10

0.05

0.00

0.05

0.10

PC
A1

Subject
207696
240168
352716
431312
578526
622852
776328
785899
856302
980953

Figure 5.12: PCA visualization of the deep features generated by the original SCNN with 2D

filters and using the MINMAX scaler. Source: [13]

The two-dimensional PCA visualization of the deep features, extracted by the SCNN

2D network when using the MINMAX scaler, is shown in Figure 5.12. When compared to

the features extracted when using the ROBUST scaler, displayed in Figure 5.11, it is clear

that MINMAX scaling allows the models to short-cut the behavioural indicators learning

process and have unrealistic performances on HMOG. These inflated performances are

simply not indicators of true learning of user-specific behavioural indicators within the

data.

Another thing to notice here is that the original OSCVM improved from 65.3% accuracy

and 36.8% EER when using data that is ROBUST scaled to 67.4% and 33.36% ERR using

data MINMAX scaled when using the VALID experiment setting and the FCN deep feature

extractor. This improvement is due to the fact that MINMAX highlights outliers and gives

an unfair advantage to the models, as they can fingerprint sessions, rather than capturing

behavioural identifiers in the data.

91

5.3.4 Final Results

We start by introducing the new experiment setting that uses VALID normalization logic,

along with STANDARD (std) scaling in place of robust, both with and without the deep

feature extraction step. The results presented in Figure 5.13 suggest that this method is

beneficial to the performance of most promising models. STANDARD scaling, as we saw

in Table 5.2, removes the mean and scales the data to unit variance. accelerometer data

does not suffer from too many random outliers like other sensors data, and hence using

ROBUST scaling might be doing more harm than good.

vae 16,1

knn

abod

ocsvm

lof

pca

0 25 50 75 100

VALID_FCN_ROBUST VALID_FCN_STD VALID_ROBUST VALID_STD NAIVE_MINMAX NAIVE_MINMAX_2D

ACCURACY FOR DIFFERENT MODELS/EXPERIMENTS

Figure 5.13: Testing accuracy of the state-of-the-art and the top 5 models in 6 different experiment settings.

92

vae 16,1

knn

abod

ocsvm

lof

pca

0 10 20 30 40 50

VALID_FCN_ROBUST VALID_FCN_STD VALID_ROBUST VALID_STD NAIVE_MINMAX NAIVE_MINMAX_2D

EER FOR DIFFERENT MODELS/EXPERIMENTS

Figure 5.14: Testing EER of the state-of-the-art and the top 5 models in 6 different experiment settings.

We observe the state-of-the-art and the 5 highest-performing models according to the

experiments in Section 5.3.1:

• VAE (Reconstruction-Probabilistic Model)

• KNN (Proximity/Distance Based Model)

• ABOD (Probabilistic Model)

• PCA (Linear Model)

• LOF (Proximity/Distance Based Model)

• State of the art: Author OCSVM (Linear Model)

93

0

20

40

60

80

vae 16,1 knn abod author ocsvm lof pca

VALID_STD (acc) VALID_FCN_STD (acc) VALID_STD (eer) VALID_FCN_STD (eer)

ACCURACY & EER FOR DIFFERENT MODELS/EXPERIMENTS

Figure 5.15: Testing accuracy and EER of the state-of-the-art and 5 best models in 2 different experiment settings.

The results of four VALID STD experiments can be seen in Figure 5.15. We find that

the ensemble of PCA and SCNN with the FCN architecture has a great performance.

However, due to the deep feature extraction’s high computational cost, we decide to look

into the experiment variant where the heavy, complicated, and slow deep feature extractor

is no more present. As displayed in Figure 5.16 and Figure 5.17, we study the PCA

performance without deep features, relying only on the STANDARD scaler.

The PCA results over more than 4000 tests for EER, F1 score, accuracy, and inference

time are: EER mean is 35.86% (standard deviation 17.05%), and with 95% confidence,

it falls between 35.35% and 36.36%. F1 mean is 50.21% (standard deviation 33.67%),

and with 95% confidence it falls between 49.21% and 51.22%. Accuracy mean is 65.96%

(standard deviation is 19.06%) and with 95% confidence, it falls between 65.40% and

66.53%. Inference time mean is 18.4 milliseconds (standard deviation 1.9 milliseconds)

and with 95% confidence, it falls between 18.3 and 18.4 milliseconds.

The VAE results over more than 4000 tests for EER, F1 score, accuracy, and inference

time are: EER mean is 34.53% (standard deviation 15.92%) and with 95% confidence, it

falls between 34.06% and 35.01%. F1 mean is 62.94% (standard deviation 27.45%) and

94

vae 16,1

pca

0 10 20 30 40

EER MILLI SECONDS

VALID_STD (EER & Execution Time)

Figure 5.16: Testing EER and inference time (milliseconds) of PCA and VAE models under the newly proposed experiment

setting.

with 95% confidence it falls between 62.13% and 63.76%. The accuracy mean is 67.63%

(standard deviation 19.26%) and with 95% confidence, it falls between 67.06% and 68.20%.

Inference time mean is 16.2 milliseconds (standard deviation 2.9 milliseconds) and with 95%

confidence, it falls between 16.1 and 16.3 milliseconds.

We compute F1, accuracy, EER, and time delay to compare the PCA and the VAE

models under the VALID normalization approach and STANDARD scaling method. It

is apparent that VAE is outperforming PCA, and the F1 score of PCA is an order of

magnitude lower. This confirms that VAE is the superior method for this use case.

In Figure 5.18, we present the best performing models according to our extensive eval-

uations under the two important experiment settings for continuous and implicit authenti-

cation. NAIVE MINMAX represents a setting comparable to what is being used by other

academic works, and VALID STD represents a setting comparable to real-life deployments

of a CIA system.

95

vae 16,1

pca

0 20 40 60 80

ACCURACY F1

VALID_STD (F1 & ACCURACY)

Figure 5.17: Testing accuracy and F1 of PCA and VAE models under the newly proposed experiment

setting.

0

25

50

75

100

vae 16,1 knn abod author ocsvm lof pca

VALID_STD (acc) NAIVE_MINMAX (acc) VALID_STD (eer) NAIVE_MINMAX (eer)

ACCURACY & EER FOR DIFFERENT MODELS/EXPERIMENTS

Figure 5.18: Testing accuracy and EER of the state-of-the-art and 5 best models in VALID-STD and NAIVE-MINMAX

experiment settings.

96

Parameters

We found the best setting for VAE in NAIVE MINMAX 2D was that of the following

configurations:

• Number of layers in encoder: 2

• Number of neurons in first layer: 1

• Number of neurons in second layer: 16

• Activation function to use for hidden layers: hyperbolic tangent function

• Activation function to use for output layer: Soft-max

• Optimizer = stochastic gradient descent

• Loss function: mean squared error

• L2 regulaizer = 0.5

• Dropout rate: .25

• Epochs = 100

• Batch size: 32

• Coefficient of beta VAE regime: 1.5

• Maximum capacity of a loss bottle neck: 1

The architecture is detailed in the codebase and in Appendix A.1.

The best setting for ABOD is

• Number of neighbors to use by default for k neighbors queries: 10

• Method: Only consider a number of neighbors of training points

97

The best setting for KNN is

• Number of neighbors used for k neighbors queries: 5

• use the distance to the kth neighbor as the outlier score

• Range of parameter space to use by default for radius neighbors queries: 1

• Leaf size passed to BallTree: 30

• Metric used for the distance computation: Minkowski with euclidean distance l2

The best setting for PCA is

• The eigenvalues are used in score computation

• Perform standardization first to convert data to zero mean and unit variance

The best setting for LOF is

• Number of neighbors used for k neighbors queries: 20

• Leaf size passed to BallTree or KDTree:30

• Metric used for the distance computation: Minkowski with euclidean distance l2

The best setting for the state of the art Author OCSVM, as reported in [13] is

• kernel type: rbf

• An upper bound on the fraction of training errors and a lower bound of the fraction

of support vectors (nu): 0.110

• Kernel coefficient (gamma): 59.636

98

5.4 Discussion

We expected our results to be more conservative than some of those reported by other works

due to our smaller training dataset caused by our additional validation split to support

our extensive hyper-parameter tuning, our more extensive cross-validation, and the prepro-

cessing and normalization steps taken to avoid data contamination, in our efforts to make

our evaluations comparable to real-life deployments of such a system. However, our results

outperform many of the reported numbers in the domain, as covered Chapter 3. The work

presented by Centeno et al. [20] reported 97.8% accuracy on their SCNN and OCSVM

ensemble and 86.9% accuracy on their OCSVM. However, despite extensive efforts, includ-

ing correspondences with Centeno, by Buech [13] for reproducing the closed-source model,

they could not reach above 90% accuracy in their re-implementation of the ensemble and

86.3% in the OCSVM case. It is unclear why the SCNN implemented by Buech is unable

to perform similarly to Centeno’s, although it has an identical architecture and parameter

set. In the interest of transparency, we public-ally release all relevant software, including

our VAE architecture to prevent such issues in reproducing our evaluations.

As previously discussed in Chapter 2, an EER of 15% means that in 85% of the times,

the authorized user would be authenticated in a non-intrusive manner, without the need

for active co-operation. This also entails that in 85% of the events where CIA authenticates

the user, it is the correct person who gets authenticated. This, of course, is assuming the

result is transferable to real-world scenarios and the experiment settings are representative

of the real-world circumstances.

Our hypothesis that the VALID setting, representing a real-world deployment scenario,

in which the normalization scaler was trained only on training data and is then used as-

is to scale imposter and owner data instances during testing, causes a significant drop

in performance compared to results from experiments using the NAIVE setting, where

the scaler is given access to all data including the testing subset. The NAIVE setting

additionally introduces bias by applying user-wise MINMAX normalization on all data

and outliers.

Magnetometer data introduces bias because it captures data from the surrounding

99

environment and in theory, does not represent the device movement patterns as much as

the other sensors.

VAE and KNN are outperforming all other models consistently, with VAE having a

clear edge in performance, consistency, as well as being up to ten times faster in inference

time. The common experiment used in the domain is NAIVE MINMAX with the deep

feature extraction 2D variant as well as no deep feature extractor variant. The VAE can

reach 11.71% EER and 92.52% accuracy as well as 12.97% EER and 91.39% accuracy

without any deep feature extraction. Hence, we conclude that the VAE is a good fit for

the problem statement and offers a performance gain as well as is a fast, reliable, and

consistent model that can do its feature extraction. Most importantly, it shines in the

VALID experiments under both ROBUST and STANDARD scalings which clean the data

from any fingerprints that the models can use to circumvent the learning process.

5.4.1 Empowering the Edge

The edge defined in this use case as the smartphone is growing more powerful by the day.

Smartphones today have incredible resources, similar to those of computers a few years ago,

and are perfectly able to run their analysis. This is very important for privacy concerns

over data being sent to the cloud, resource efficiency with lower bandwidth utilization,

cheaper business models, and more efficient analysis. Its also important that in the hand

over to authority figures threat model (B), we saw how border services are instructed to

disable internet access for a variety of reasons, and if the solution was running on the cloud

it would not have been able to detect and respond to the threat.

We chose fast models that are simple and easy-to-access data types that are available

on all smartphones to allow for the solution to be as generalizable as possible and work

efficiently. We were able to run our model on TensorFlow Lite, an open-source deep

learning framework for edge AI, and packaged the data collection, data streaming, model

training, and exporting mechanism in our open source repository. We also included all

the experiments, models, utility code, implementations on both IOS and Android (cf.,

Chapter 6), and notes in our repository to lower the barrier of entry to this research

domain. We hope our contributions can improve reproducibility and encourage openness,

100

collaboration, and the thriving of the research in the intersection of cybersecurity and data

science.

101

Chapter 6

Solution Implementations

Our experiments are all available as open-source on GitHub, the HMOG dataset processing

modules we used have also been made available. We provide a Python environment that was

used in Jupyter Ipython to run our experiments as documented in the notebooks provided.

The easily followed notebooks allow the reader to understand how to reproduce the results

very easily and how they fit into the logical flow of the work. These notebooks are also used

to produce visualizations for the various results found in the experiments. Data acquisition

and machine learning applications have been developed for IOS and Android and open-

sourced. Software required to operate the experiments on a supercomputer has also been

made available to shorten the development cycle and lower the barriers to entry for other

researchers to adopt our code base and contribute further to the continuous and implicit

authentication domain that will make our smart devices infused hyper-connected future

more secure, convenient and efficient.

102

6.1 Solution Code Base

6.1.1 Experiments code-base

The opensource project is found under a publicly accessible GitHub organization named

UW − CIA, in reference to the University of Waterloo and Continuous and Implicitly

Authentication [169]. Under the experiments repository, there are three sections, similar

to and adopted from Buech’s [15]. The data section under the data folder hosts the HDF5

format of HMOG dataset, as well as other raw, interim, processed, or external data formats.

Appropriate data transformations, processing, and loading modules are found under

the source folder src. Necessary data visualizations, explorations, and modeling as well as

all kinds of experiments and evaluations are accessible under the Jupyter notebooks folder

notebooks. Jupyter notebooks were the best vehicle to showcase our work since they offer

clarity and explainability, unlike any other format, by combining source code, documenta-

tion, and output. Necessary third-party code and libraries needed are documented in the

environment.yml file. It has metadata denoting the versions of Python and other modules

and can easily be used to reproduce the whole programming environment, and accelerate

the reproducibility of our work, Anaconda Python distribution or Python pip processes

this file. The enclosed documentation README.md contains a detailed description of all

necessary steps needed to utilize the repository, and I am going to be supportive of using

the Issues feature on GitHub that allows anyone to ask me questions, publicly, relating

to the usage of the codebase or even improve upon the codebase.

To improve reproducibility and re-usability, all the models utilized existing common

software libraries like TensorFlow, and ScikitLearn [176, 177]. The codebase was cleaned

and comments, as well as read-me files, were added where relevant.

6.1.2 Data Collection, Data Cloud Streaming, and AI at Edge

As part of our effort and commitment to make our domain and project closer to real-

world deployments, we built and open-sourced a data collection and streaming application

103

that works on IOS and Android devices; it utilizes a software framework put together by

Patton et al. [178], in MIT. The data acquisition is very simple. The application reads

the data from the sensors in real-time as they become available and sends the relevant

measurements in real-time to the cloud in an encrypted channel and a secured fashion. In

our implementation of the receiving cloud, we kept it simple and had the results received

by a spreadsheet hosted on a file sharing service known as Google Drive, but a simple

database or even a data lake or warehouse can be utilized as well. Once the data is in the

cloud the code base for the experiments can be utilized to run the whole set of experiments,

explorations, and tests on the collected data. The data collection module was tested and

is functional.

If a model is chosen, we also built and open-sourced the means for deploying any of the

models we presented, especially the VAE, to run on IOS and Android devices, as well as on

embedded devices commonly used in the Internet of Things applications. Our implementa-

tions are built on top of a software framework built by David et al. [179], in Google. There

were challenges faced during the implementation of the VAE model, specifically, due to it

being relatively new. For instance, to get one of the VAE implementations to run on tensor

flow lite, the experimental interface OpsSet needs to be called, and targetspec as well as

targetops flags need to be set to allow for certain operation and built-ins in the model

transformation during the run time of the exported model. New or unpopular models are

usually relatively harder to implement compared to more common classical models, due to

the scarcity of reference implementations, architectures, and learning resources. We ended

up with two implementations to support two different VAE implementations at the edge,

one based on the PYOD software library while the other is based on the more common

Tensorflow software library. Both implementations were tested at the edge and both are

functional.

6.2 Solution Computing Resources

During the experiments, we were fortunate to access the Niagara supercomputer, part of

an initiative called Compute Canada to support academic intensive computing needs. As

104

part of this work, we had to develop a set of software to allow for better management

of the data, experiments, and working jobs for the supercomputer system, managed by a

software platform known as slum. All the relevant code is made available under our repo

in the home folder.

105

Chapter 7

Conclusion

7.1 Recommendations

Besides our detailed suggestions across the chapters that would allow future works to con-

tribute to the domain strategically in different categories of the work from general approach

and modeling Chapter 4, to evaluations Chapter 5 and implementations Chapter 6, we also

would like to give high-level directions worthy of further explorations.

For those who tackle this domain in the future, the most impactful investigations in

our opinion are the following:

• Extensively hyperparameter tune all the anomaly detector models that were not

covered, e.g., HMM, Bayesian Nets, or fuzzy logic, to find the optimal configuration

for each using the whole HMOG dataset mean score as your optimization factor for

every possible experiment configuration

• Repeat the previous point but this time to find the optimal configuration for each

using one specific user at a time from HMOG dataset mean score as your optimization

factor, so the models are fit for each user

• Train and test a VQ-VAE (Vector Quantised-Variational AutoEncoder) [180]. Vector

Quantisation-VAE learns a discrete latent variable by the encoder. VQ maps k

106

Figure 7.1: TD VAE state-space model as a Markov Chain. Source: [10]

dimensional vectors into a finite set of vectors in a process similar to that of KNN:

the optimal centroid code vector that a sample should be mapped to is the one with

minimum Euclidean distance. [10]

• Train and test a VQ-VAE-2 [181]. VQ-VAE-2 [181] is a two-level hierarchical VQ-

VAE combined with a self-attention auto-regressive model.

• Train and test a TD-VAE [182]. Temporal difference VAE, as in Section 7.1 was built

for sequential data and relies on state-space models, belief states which encode all

past states, and jumpy prediction or predicting states several steps further into the

future.

• Anomaly detection models based on meta learning [183, 184, 185, 186, 187], self

supervised [188, 189] and reinforcement learning [190, 191, 192] are emerging and

might be worth exploring. However they are very resource intensive.

• Evaluate multi-modal to improve reliability [193]. Though the base data should be

inertial, areas like touch, gesture, wearables [194], etc. can be used as the privacy

posture, and the user permissions appetite allow in certain cases the system to access

more revealing data sources.

107

• Differential privacy might be used if the user allows for cloud-based training

• Explore federated and split learning for model improvement and collaborative learn-

ing

• Explore third-party integrations that can allow for contextual awareness that helps

set a threshold for suspicion in different use cases, locations, and day times

• Collect a better data set that is bigger and represents real-world scenarios and attacks

• As discussed in Chapter 5 a study of Normalizer, Power and Quantile transformers

scalers can add to the design of the standard experiment settings used in the body

of research

• As discussed in Chapter 3 detecting the user activity first (walking, or sitting) then

using a specifically optimized inference model, and collaborating with relevant third

party systems can improve reliability in real-world scenarios

• Use an absolute coordinate system by removing the gravity vector from the accelerom-

eter to calculate a spatial orientation and coordinate system for the device which can

be a good feature to add

One of the biggest issues in the continuous and implicit authentication domain is the

reproducibility of the work. Information on the bigger picture is usually well presented

but finer details, usually found in code, and necessary for reproducing the results and

approach are almost impossible to find publicly available and highly unlikely to be acquired

through correspondence. Such details like standardization, normalization, data cleaning,

preprocessing, resampling, and splitting as well as model hyperparameters and experiment

cross-validation details are usually guessed by later works and left for future researchers

speculation. It is the case because a research paper format does not allow for too many,

commonly forgettable, details to be shared and prioritization of main methodologies and

bigger picture approaches is commonplace. We argue that open-sourcing the codebase

should become the standard in such works. It is, unfortunately, the case that none of

the related works, but Buech [15] have made their source code public, and the ones we

108

tried reaching and even corresponded with like Shen et al. [19] refused to share data or

code. As covered in Chapter 2 this makes the studies harder to compare and learn from

as the reader is left unsure which of the many degrees of freedom, e.g., dataset, metrics,

experiment settings, cross-validation, or data preprocessing contributed to the performance

and results reported. Our work hopes to be a step closer to a standard evaluation and

deployment environment and the code and our contributions are all open-sourced [169] and

thoroughly described in Chapter 4.

The domain does not only need openness and standards for sharing work, but also

a better publicly available dataset than HMOG. HMOG is by far the best dataset right

now for this domain for comparability, as extensively described in Chapter 3, but it does

come with a few critical flaws. HMOG limits our work’s transfer-ability to real-world

deployments due to it being recorded in a controlled setting with no attack scenarios.

This makes the sessions deviate considerably from real-world scenarios and does not aid

in making the great wealth of work in this area transferable to real-world applications. It

would be an amazing feat if a dataset is collected with attack scenarios based on the real

threat models and use cases described in Chapter 4. Such a contribution could transform

this domain and enable more commercialization of the plethora of great innovations in it,

as highlighted in Chapter 3.

It is worth exploring to integrate the microenvironment sensing [195] to analyze what

activity the user is doing or where the phone is (e.g., right thigh pocket, left chest pocket,

purse, strapped to the arm, in hand). This would allow the anomaly detector to assess what

activity is being performed. In its current state, the anomaly detector will have labeled

ground truth data to support every activity there is and will utilize contextual awareness

through third-party applications to refine its assessments but adding this kind of situational

awareness via environment and activity sensing can add to the overall solution.

Because the most straightforward way of improving the performance of deep neural

networks is by increasing their size [168], we encourage other researchers to experiment

with deeper architectures.

109

7.2 Discussion

We have introduced the domain and briefly listed our contributions in Chapter 1. We have

assessed the feasibility of only using inertial sensor data, which were covered in Chapter 2,

from mobile devices to classify the current user as either the owner or an unauthorized

imposter, continuously and implicitly. A framework and methodology were proposed, in

Chapter 4 that not only modeled threats and scenarios but also integrated current third

party applications, technologies, and investments in information technology concaveness

in an enterprise, campus, military, or home setting towards a more comprehensive and

collaborative continuous authentication system. Our work also delivered a cross-study,

in Chapter 4 and in Chapter 5, comparing various classic and new machine learning ap-

proaches under various, and reproducible controlled experiments based on an opensource

framework [15] with a public dataset [24], and highlighted the use case for generative models

and their inherent strengths in such systems and threat models, use cases and attack sce-

narios. In our extensive literature review, in Chapter 3 , we identified that this domain did

not have a similar machine learning models comparative study other than one in 2017 [19]

and another in 2014 [196], which was published by our lab under the direction of Prof. Urs

Hengartner. The domain had one major flaw: severely complicated reproducibility, which

we addressed by choosing to work with public data and releasing our experiments, models,

and implementations, as well as propose a template and a standard for other works to fol-

low in reporting their metrics, and experiments. Our pivotal work on evaluating generative

models, allowed us to note that GANs and fm-GANS, might not be great for unsupervised

and semi-supervised learning since too many labels are needed for the excessive hyper-

parameter tuning needed, while on the other hand, other generative models, like VAEs

in particular, show promising potential in semi-supervised outlier detection with the data

and should be studied in a greater depth as shown in Chapter 5 and suggested by other

researchers [121]. The VAE outperforms all other models in our various experiments, some

of which are proposed by us to mimic realistic scenarios more closely, in this continuous and

implicit authentication system and paves the way for generative models into this domain,

for the first time. Our work replaces the need for heavy deep feature extraction, as well

as manual feature engineering, by relying on shallow variational autoencoder models, that

110

have inherent probabilistic and dimensionality reduction capabilities. Our work also open

sources multiple Android and IOS implementations, in Chapter 6, needed to utilize the

novel contributions in the real-world, as well as stream sensor data to the cloud to allow

for cloud-based training as well as on-device training, and advocates for openness in this

domain to further its transfer-ability into the real-world. The reasoning for every decision

from threat modeling to model selection to cross-validation and data normalization and

cleaning was given with thorough explanations and references to the existing body of work.

“By securing, I mean: building systems to remain dependable in the face of

malice, error, or mischance” - Prof. Ross Anderson (Security Engineering Pio-

neer)

111

References

[1] D. Crouse, H. Han, D. Chandra, B. Barbello, and A. K. Jain, “Continuous authen-

tication of mobile user: Fusion of face image and inertial measurement unit data,”

in 2015 International Conference on Biometrics (ICB). IEEE, 2015, pp. 135–142.

[2] M. Kok, J. D. Hol, and T. B. Schön, “Using inertial sensors for position and

orientation estimation,” Foundations and Trends® in Signal Processing, vol. 11, no.

1-2, p. 1–153, 2017. [Online]. Available: http://dx.doi.org/10.1561/2000000094

[3] E. Hering, G. Schönfelder et al., Sensoren in Wissenschaft und Technik. Springer,

2012.

[4] M. Masoud, Y. Jaradat, A. Manasrah, and I. Jannoud, “Sensors of smart devices in

the internet of everything (ioe) era: Big opportunities and massive doubts,” Journal

of Sensors, vol. 2019.

[5] K. Kalantar-Zadeh, Sensors: an introductory course. Springer Science & Business

Media, 2013.

[6] S. Liehr, “Optical Measurement of Currents in Power Converters,” Apr. 2006.

[7] M. Azzurri, “Face recognition system and calculating FRR, FAR and EER

for Biometric system evaluation + code,” Jun. 2020. [Online]. Available:

https://medium.com/@mustafaazzurri/face-recognition-system-and-calculating-frr-

far-and-eer-for-biometric-system-evaluation-code-2ac2bd4fd2e5

112

http://dx.doi.org/10.1561/2000000094
https://medium.com/@mustafaazzurri/face-recognition-system-and-calculating-frr-far-and-eer-for-biometric-system-evaluation-code-2ac2bd4fd2e5
https://medium.com/@mustafaazzurri/face-recognition-system-and-calculating-frr-far-and-eer-for-biometric-system-evaluation-code-2ac2bd4fd2e5

[8] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft,

T. G. Dietterich, and K.-R. Müller, “A unifying review of deep and shallow anomaly

detection,” Proceedings of the IEEE, 2021.

[9] F.-F. Li, J. Johnson, and S. Yeung, “Lecture 11: Generative Models,” p. 136, 2019.

[10] “From Autoencoder to Beta-VAE,” Aug. 2018. [Online]. Available: https:

//lilianweng.github.io/2018/08/12/from-autoencoder-to-beta-vae.html

[11] A. Dertat, “Applied Deep Learning - Part 3: Autoencoders,” Oct. 2017.

[Online]. Available: https://towardsdatascience.com/applied-deep-learning-part-3-

autoencoders-1c083af4d798

[12] J. An and S. Cho, “Variational autoencoder based anomaly detection using recon-

struction probability,” Special Lecture on IE, vol. 2, no. 1, pp. 1–18, 2015.

[13] H. Büch, “Continuous Authentication using Inertial-Sensors of Smartphones and

Deep Learning,” mastersthesis, Hochschule der Medien, Stuttgart, 6 2019. [Online].

Available: https://hdms.bsz-bw.de/frontdoor/index/index/docId/6506

[14] Q. Yang, G. Peng, D. T. Nguyen, X. Qi, G. Zhou, Z. Sitová, P. Gasti, and

K. S. Balagani, “A multimodal data set for evaluating continuous authentication

performance in smartphones,” in Proceedings of the 12th ACM Conference on

Embedded Network Sensor Systems. Memphis Tennessee: ACM, Nov. 2014, pp.

358–359. [Online]. Available: https://dl.acm.org/doi/10.1145/2668332.2668366

[15] H. Büch. (2019, 6) ContinAuth. [Online]. Available: https://github.com/dynobo/

ContinAuth

[16] M. P. Centeno, A. van Moorsel, and S. Castruccio, “Smartphone continuous au-

thentication using deep learning autoencoders,” in 2017 15th Annual Conference on

Privacy, Security and Trust (PST). IEEE, 2017, pp. 147–1478.

[17] Z. Wang, W. Yan, and T. Oates, “Time Series Classification from Scratch with

Deep Neural Networks: A Strong Baseline,” arXiv:1611.06455 [cs, stat], Dec. 2016,

arXiv: 1611.06455. [Online]. Available: http://arxiv.org/abs/1611.06455

113

https://lilianweng.github.io/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/2018/08/12/from-autoencoder-to-beta-vae.html
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://hdms.bsz-bw.de/frontdoor/index/index/docId/6506
https://dl.acm.org/doi/10.1145/2668332.2668366
https://github.com/dynobo/ContinAuth
https://github.com/dynobo/ContinAuth
http://arxiv.org/abs/1611.06455

[18] M. Ehatisham-ul Haq, M. A. Azam, J. Loo, K. Shuang, S. Islam, U. Naeem, and

Y. Amin, “Authentication of smartphone users based on activity recognition and

mobile sensing,” Sensors, vol. 17, no. 9, p. 2043, 2017.

[19] C. Shen, Y. Li, Y. Chen, X. Guan, and R. A. Maxion, “Performance analysis of multi-

motion sensor behavior for active smartphone authentication,” IEEE Transactions

on Information Forensics and Security, vol. 13, no. 1, pp. 48–62, 2017.

[20] M. P. Centeno, Y. Guan, and A. van Moorsel, “Mobile based continuous authen-

tication using deep features,” in Proceedings of the 2nd International Workshop on

Embedded and Mobile Deep Learning, 2018, pp. 19–24.

[21] “Number of mobile devices worldwide 2020-2024.” [Online]. Available: https://

www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/

[22] P. Ruggiero and J. Foote, “Cyber Threats to Mobile Phones,” p. 6.

[23] S. Z. S. Idrus, E. Cherrier, C. Rosenberger, and J.-J. Schwartzmann, “A review on

authentication methods,” Australian Journal of Basic and Applied Sciences, vol. 7,

no. 5, pp. 95–107, 2013.

[24] Z. Sitová, J. Šeděnka, Q. Yang, G. Peng, G. Zhou, P. Gasti, and K. S. Balagani,

“Hmog: New behavioral biometric features for continuous authentication of smart-

phone users,” IEEE Transactions on Information Forensics and Security, vol. 11,

no. 5, pp. 877–892, 2015.

[25] C. B. S. A. Government of Canada, “Examining digital devices at the canadian

border,” Jan 2021. [Online]. Available: https://www.cbsa-asfc.gc.ca/travel-voyage/

edd-ean-eng.html#01

[26] 2018, vol. U.S. CUSTOMS AND BORDER PROTECTION.

[27] F. Stajano, “Pico: No more passwords!” in Security Protocols XIX, B. Christianson,

B. Crispo, J. Malcolm, and F. Stajano, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 49–81.

114

https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/
https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide/
https://www.cbsa-asfc.gc.ca/travel-voyage/edd-ean-eng.html#01
https://www.cbsa-asfc.gc.ca/travel-voyage/edd-ean-eng.html#01

[28] S. Depatla, A. Muralidharan, and Y. Mostofi, “Occupancy estimation using only wifi

power measurements,” IEEE Journal on Selected Areas in Communications, vol. 33,

no. 7, pp. 1381–1393, 2015.

[29] A. Khalili, A.-H. Soliman, M. Asaduzzaman, and A. Griffiths, “Wi-fi sensing: Ap-

plications and challenges,” The Journal of Engineering, vol. 2020, no. 3, pp. 87–97,

2020.

[30] Q. Xu, R. Zheng, and E. Tahoun, “Detecting location fraud in indoor mobile crowd-

sensing,” in Proceedings of the First ACM Workshop on Mobile Crowdsensing Sys-

tems and Applications, 2017, pp. 44–49.

[31] Y. Gu, Y. Zhang, J. Li, Y. Ji, X. An, and F. Ren, “Sleepy: Wireless Channel Data

Driven Sleep Monitoring via Commodity WiFi Devices,” IEEE Transactions on Big

Data, 2020.

[32] H. Yiğitler, O. Kaltiokallio, R. Hostettler, A. S. Abrar, R. Jäntti, N. Patwari, and

S. Särkkä, “RSS Models for Respiration Rate Monitoring,” IEEE Transactions on

Mobile Computing, 2020.

[33] S. Vakalis, L. Gong, and J. Nanzer, “Imaging With WiFi,” IEEE Access, 2019.

[34] X. Wu, Z. Chu, P. Yang, C. Xiang, X. Zheng, and W. Huang, “TW-See: Human

Activity Recognition Through the Wall With Commodity Wi-Fi Devices,” IEEE

Transactions on Vehicular Technology, 2019.

[35] H. Lee, C. Ahn, N. Choi, T. Kim, and H. Lee, “The Effects of Housing Environments

on the Performance of Activity-Recognition Systems Using Wi-Fi Channel State

Information: An Exploratory Study,” Sensors, 2019.

[36] M. A. A. Haseeb and R. Parasuraman, “Wisture: Touch-Less Hand Gesture Clas-

sification in Unmodified Smartphones Using Wi-Fi Signals,” IEEE Sensors Journal,

2019.

[37] Z. Fu, J. Xu, Z. Zhu, A. X. Liu, and X. Sun, “Writing in the Air with WiFi Signals

for Virtual Reality Devices,” IEEE Transactions on Mobile Computing, 2019.

115

[38] A. Khalili, A. Soliman, and Asaduzzaman, “A Deep Learning Approach for Wi-Fi

Based People Localization,” 2018.

[39] I. Sobrón, J. Ser, I. Eizmendi, and M. Vélez, “A Deep Learning Approach to Device-

Free People Counting from WiFi Signals,” in IDC, 2018.

[40] F. M. Adib, Z. Kabelac, and D. Katabi, “Multi-Person Localization via RF Body

Reflections,” in NSDI, 2015.

[41] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture recognition using

wireless signals,” MobiCom, 2013.

[42] S. Gupta, D. Morris, S. Patel, and D. S. Tan, “SoundWave: using the doppler effect

to sense gestures,” CHI, 2012.

[43] L. Liu, M. Popescu, M. Skubic, M. Rantz, T. Yardibi, and P. Cuddihy, “Automatic

fall detection based on Doppler radar motion signature,” 2011 5th International

Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth)

and Workshops, 2011.

[44] M. Souppaya and K. Scarfone, “Guidelines for managing the security of mobile de-

vices in the enterprise,” NIST special publication, vol. 800, p. 124, 2020.

[45] E. Atwater and I. Goldberg, “Shatter secrets: Using secret sharing to cross bor-

ders with encrypted devices (transcript of discussion),” in Security Protocols XXVI,

V. Matyáš, P. Švenda, F. Stajano, B. Christianson, and J. Anderson, Eds. Cham:

Springer International Publishing, 2018, pp. 295–303.

[46] E. Tahoun and R. Khedri, “Exploring strategies for digital security,” 2017.

[47] “Fido2: Moving the world beyond passwords using webauthn ctap,” Jun 2020.

[Online]. Available: https://fidoalliance.org/fido2/

[48] “Piv usage guides.” [Online]. Available: https://piv.idmanagement.gov/#:∼:text=

findtheStandards?-,WhatisPIV?,attheappropriatesecuritylevel.

116

https://fidoalliance.org/fido2/
https://piv.idmanagement.gov/#:~:text=find the Standards?-,What is PIV?,at the appropriate security level.
https://piv.idmanagement.gov/#:~:text=find the Standards?-,What is PIV?,at the appropriate security level.

[49] “Motion Sensors Explainer.” [Online]. Available: https://www.w3.org/TR/motion-

sensors/#absolute-orientation-sensor

[50] S. Kamburugamuve, L. Christiansen, and G. Fox, “A Framework for Real

Time Processing of Sensor Data in the Cloud,” Journal of Sensors, vol.

2015, p. e468047, Apr. 2015, publisher: Hindawi. [Online]. Available: https:

//www.hindawi.com/journals/js/2015/468047/

[51] Y. Xu, M. Lin, H. Lu, G. Cardone, N. Lane, Z. Chen, A. Campbell, and

T. Choudhury, “Preference, context and communities: a multi-faceted approach to

predicting smartphone app usage patterns,” in Proceedings of the 2013 International

Symposium on Wearable Computers, ser. ISWC ’13. New York, NY, USA:

Association for Computing Machinery, Sep. 2013, pp. 69–76. [Online]. Available:

https://doi.org/10.1145/2493988.2494333

[52] C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y.-F. Chen, J. Li, and B. Firner,

“Crowd++: unsupervised speaker count with smartphones,” in Proceedings of the

2013 ACM international joint conference on Pervasive and ubiquitous computing,

ser. UbiComp ’13. New York, NY, USA: Association for Computing Machinery,

Sep. 2013, pp. 43–52. [Online]. Available: https://doi.org/10.1145/2493432.2493435

[53] J.-K. Min, A. Doryab, J. Wiese, S. Amini, J. Zimmerman, and J. I. Hong, “Toss

’n’ turn: smartphone as sleep and sleep quality detector,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, ser. CHI ’14. New

York, NY, USA: Association for Computing Machinery, Apr. 2014, pp. 477–486.

[Online]. Available: https://doi.org/10.1145/2556288.2557220

[54] U. A. Abdulla, K. Taylor, M. Barlow, and K. Z. Naqshbandi, “Measuring Walk-

ing and Running Cadence Using Magnetometers,” in 2013 12th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications, Jul.

2013, pp. 1458–1462, iSSN: 2324-9013.

[55] M. Masoud, Y. Jaradat, A. Manasrah, and I. Jannoud, “Sensors of Smart Devices

in the Internet of Everything (IoE) Era: Big Opportunities and Massive Doubts,”

117

https://www.w3.org/TR/motion-sensors/#absolute-orientation-sensor
https://www.w3.org/TR/motion-sensors/#absolute-orientation-sensor
https://www.hindawi.com/journals/js/2015/468047/
https://www.hindawi.com/journals/js/2015/468047/
https://doi.org/10.1145/2493988.2494333
https://doi.org/10.1145/2493432.2493435
https://doi.org/10.1145/2556288.2557220

Journal of Sensors, vol. 2019, p. e6514520, May 2019, publisher: Hindawi. [Online].

Available: https://www.hindawi.com/journals/js/2019/6514520/

[56] J. L. Kröger, P. Raschke, and T. R. Bhuiyan, “Privacy implications of accelerometer

data: A review of possible inferences,” in Proceedings of the 3rd International

Conference on Cryptography, Security and Privacy, ser. ICCSP ’19. New York, NY,

USA: Association for Computing Machinery, 2019, p. 81–87. [Online]. Available:

https://doi.org/10.1145/3309074.3309076

[57] S. Sugrim, C. Liu, M. McLean, and J. Lindqvist, “Robust performance metrics for

authentication systems,” in Network and Distributed Systems Security (NDSS) Sym-

posium 2019, 2019.

[58] J. Jang and H. Kim, “Performance Measures,” in Encyclopedia of Biometrics, S. Z.

Li and A. Jain, Eds. Boston, MA: Springer US, 2009, pp. 1062–1068. [Online].

Available: https://doi.org/10.1007/978-0-387-73003-5 111

[59] M. Lichman, “UCI machine learning repository,” 2013. [Online]. Available:

http://archive.ics.uci.edu/ml

[60] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone

accelerometers,” ACM SigKDD Explorations Newsletter, vol. 12, no. 2, pp. 74–82,

2011.

[61] M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. Havinga, “Complex hu-

man activity recognition using smartphone and wrist-worn motion sensors,” Sensors,

vol. 16, no. 4, p. 426, 2016.

[62] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, “Livelab: measuring

wireless networks and smartphone users in the field,” ACM SIGMETRICS Perfor-

mance Evaluation Review, vol. 38, no. 3, pp. 15–20, 2011.

[63] M. Abuhamad, A. Abusnaina, D. Nyang, and D. Mohaisen, “Sensor-based continuous

authentication of smartphones’ users using behavioral biometrics: A contemporary

survey,” IEEE Internet of Things Journal, vol. 8, no. 1, pp. 65–84, 2020.

118

https://www.hindawi.com/journals/js/2019/6514520/
https://doi.org/10.1145/3309074.3309076
https://doi.org/10.1007/978-0-387-73003-5_111
http://archive.ics.uci.edu/ml

[64] L. Gonzalez-Manzano, J. M. D. Fuentes, and A. Ribagorda, “Leveraging user-related

internet of things for continuous authentication: A survey,” ACM Computing Surveys

(CSUR), vol. 52, no. 3, pp. 1–38, 2019.

[65] A. Roy, T. Halevi, and N. Memon, “An hmm-based multi-sensor approach for con-

tinuous mobile authentication,” in MILCOM 2015-2015 IEEE Military Communica-

tions Conference. IEEE, 2015, pp. 1311–1316.

[66] N. Neverova, “Deep learning for human motion analysis,” Ph.D. dissertation, Uni-

versité de Lyon, 2016.

[67] D. Deb, A. Ross, A. K. Jain, K. Prakah-Asante, and K. V. Prasad, “Actions speak

louder than (pass) words: Passive authentication of smartphone* users via deep

temporal features,” in 2019 International Conference on Biometrics (ICB). IEEE,

2019, pp. 1–8.

[68] “CrowdSignals.io: A Massive New Mobile Data Collection Campaign.” [Online].

Available: http://crowdsignals.io/

[69] Y. Li, H. Hu, G. Zhou, and S. Deng, “Sensor-based continuous authentication using

cost-effective kernel ridge regression,” IEEE Access, vol. 6, pp. 32 554–32 565, 2018.

[70] J. Zhu, P. Wu, X. Wang, and J. Zhang, “Sensec: Mobile security through passive

sensing,” in 2013 International Conference on Computing, Networking and Commu-

nications (ICNC). IEEE, 2013, pp. 1128–1133.

[71] U. Mahbub, S. Sarkar, V. M. Patel, and R. Chellappa, “Active user authentication

for smartphones: A challenge data set and benchmark results,” in 2016 IEEE 8th

International Conference on Biometrics Theory, Applications and Systems (BTAS),

Sept 2016, pp. 1–8.

[72] A. K. Belman, L. Wang, S. Iyengar, P. Sniatala, R. Wright, R. Dora, J. Bald-

win, Z. Jin, and V. V. Phoha, “Insights from bb-mas–a large dataset for typing,

gait and swipes of the same person on desktop, tablet and phone,” arXiv preprint

arXiv:1912.02736, 2019.

119

http://crowdsignals.io/

[73] N. Zheng, K. Bai, H. Huang, and H. Wang, “You are how you touch: User verification

on smartphones via tapping behaviors,” in 2014 IEEE 22nd International Conference

on Network Protocols. IEEE, 2014, pp. 221–232.

[74] M. Trojahn and F. Ortmeier, “Toward mobile authentication with keystroke dy-

namics on mobile phones and tablets,” in 2013 27th International Conference on

Advanced Information Networking and Applications Workshops. IEEE, 2013, pp.

697–702.

[75] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, classifiaction,” 1992.

[76] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine

learning, vol. 29, no. 2, pp. 131–163, 1997.

[77] R. Kohavi, “Scaling up the accuracy of naive-bayes classifiers: A decision-tree hy-

brid.”

[78] N. Neverova, C. Wolf, G. Lacey, L. Fridman, D. Chandra, B. Barbello, and G. Taylor,

“Learning human identity from motion patterns,” IEEE Access, vol. 4, pp. 1810–

1820, 2016.

[79] L. Yang, Y. Guo, X. Ding, J. Han, Y. Liu, C. Wang, and C. Hu, “Unlocking smart

phone through handwaving biometrics,” IEEE Transactions on Mobile Computing,

vol. 14, no. 5, pp. 1044–1055, 2014.

[80] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,

no. 3, pp. 273–297, 1995.

[81] B. Shrestha, N. Saxena, and J. Harrison, “Wave-to-access: Protecting sensitive mo-

bile device services via a hand waving gesture,” in International Conference on Cryp-

tology and Network Security. Springer, 2013, pp. 199–217.

[82] B. Draffin, J. Zhu, and J. Zhang, “Keysens: Passive user authentication through

micro-behavior modeling of soft keyboard interaction,” in International Conference

on Mobile Computing, Applications, and Services. Springer, 2013, pp. 184–201.

120

[83] Y.-S. Hwang and S.-Y. Bang, “An efficient method to construct a radial basis function

neural network classifier,” Neural networks, vol. 10, no. 8, pp. 1495–1503, 1997.

[84] M. O. Derawi, C. Nickel, P. Bours, and C. Busch, “Unobtrusive user-authentication

on mobile phones using biometric gait recognition,” in 2010 Sixth International Con-

ference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE,

2010, pp. 306–311.

[85] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warping,”

Knowledge and information systems, vol. 7, no. 3, pp. 358–386, 2005.

[86] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S.-M. Makela, and H. Ailisto, “Iden-

tifying users of portable devices from gait pattern with accelerometers,” in Proceed-

ings.(ICASSP’05). IEEE International Conference on Acoustics, Speech, and Signal

Processing, 2005., vol. 2. IEEE, 2005, pp. ii–973.

[87] G. Kambourakis, D. Damopoulos, D. Papamartzivanos, and E. Pavlidakis, “Introduc-

ing touchstroke: keystroke-based authentication system for smartphones,” Security

and Communication Networks, vol. 9, no. 6, pp. 542–554, 2016.

[88] M. Pal, “Random forest classifier for remote sensing classification,” International

journal of remote sensing, vol. 26, no. 1, pp. 217–222, 2005.

[89] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “Knn model-based approach in

classification,” in OTM Confederated International Conferences” On the Move to

Meaningful Internet Systems”. Springer, 2003, pp. 986–996.

[90] T. Feng, X. Zhao, B. Carbunar, and W. Shi, “Continuous mobile authentication

using virtual key typing biometrics,” in 2013 12th IEEE International Conference

on Trust, Security and Privacy in Computing and Communications. IEEE, 2013,

pp. 1547–1552.

[91] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics: On the

applicability of touchscreen input as a behavioral biometric for continuous authenti-

cation,” IEEE transactions on information forensics and security, vol. 8, no. 1, pp.

136–148, 2012.

121

[92] N. Sae-Bae and N. Memon, “Online signature verification on mobile devices,” IEEE

transactions on information forensics and security, vol. 9, no. 6, pp. 933–947, 2014.

[93] M. Kunz, K. Kasper, H. Reininger, M. Möbius, and J. Ohms, “Continuous speaker

verification in realtime,” BIOSIG 2011–Proceedings of the Biometrics Special Interest

Group, 2011.

[94] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in

speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[95] M. Shahzad, A. X. Liu, and A. Samuel, “Secure unlocking of mobile touch screen

devices by simple gestures: you can see it but you can not do it,” in 19th annual

international conference on Mobile computing & networking, 2013.

[96] N. L. Clarke and A. Mekala, “The application of signature recognition to transparent

handwriting verification for mobile devices,” Information management & computer

security, 2007.

[97] A. Das, O. K. Manyam, M. Tapaswi, and V. Taranalli, “Multilingual spoken-

password based user authentication in emerging economies using cellular phone net-

works,” in 2008 IEEE Spoken Language Technology Workshop. IEEE, 2008, pp.

5–8.

[98] B. D. Martin, V. Addona, J. Wolfson, G. Adomavicius, and Y. Fan, “Methods

for Real-Time Prediction of the Mode of Travel Using Smartphone-Based GPS

and Accelerometer Data,” Sensors, vol. 17, no. 9, p. 2058, Sep. 2017, number:

9 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available:

https://www.mdpi.com/1424-8220/17/9/2058

[99] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human Activity

Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector

Machine,” in Ambient Assisted Living and Home Care, ser. Lecture Notes in Com-

puter Science, J. Bravo, R. Hervás, and M. Rodŕıguez, Eds. Berlin, Heidelberg:

Springer, 2012, pp. 216–223.

122

https://www.mdpi.com/1424-8220/17/9/2058

[100] C. A. Ronao and S.-B. Cho, “Human activity recognition with smartphone sensors

using deep learning neural networks,” Expert Systems with Applications, vol. 59, pp.

235–244, Oct. 2016. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0957417416302056

[101] “UCI Machine Learning Repository: Smartphone-Based Recognition of

Human Activities and Postural Transitions Data Set.” [Online]. Avail-

able: http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+

of+Human+Activities+and+Postural+Transitions

[102] M. Ehatisham-ul Haq, M. A. Azam, U. Naeem, S. u. Rhman, and A. Khalid,

“Identifying Smartphone Users based on their Activity Patterns via Mobile

Sensing,” Procedia Computer Science, vol. 113, pp. 202–209, Jan. 2017. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S1877050917317593

[103] W.-H. Lee and R. B. Lee, “Implicit Smartphone User Authentication with Sensors

and Contextual Machine Learning,” arXiv:1708.09754 [cs], Aug. 2017, arXiv:

1708.09754. [Online]. Available: http://arxiv.org/abs/1708.09754

[104] H. C. Volaka, G. Alptekin, O. E. Basar, M. Isbilen, and O. D. Incel, “Towards

Continuous Authentication on Mobile Phones using Deep Learning Models,”

Procedia Computer Science, vol. 155, pp. 177–184, 2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S187705091930941X

[105] Y. Li, H. Hu, and G. Zhou, “Using data augmentation in continuous authentication

on smartphones,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 628–640, 2018.

[106] S. Amini, V. Noroozi, S. Bahaadini, S. Y. Philip, and C. Kanich, “Deepfp: A deep

learning framework for user fingerprinting via mobile motion sensors,” in 2018 IEEE

International Conference on Big Data (Big Data). IEEE, 2018, pp. 84–91.

[107] D. P. Kingma and M. Welling, “An Introduction to Variational Autoencoders,”

Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019,

arXiv: 1906.02691. [Online]. Available: http://arxiv.org/abs/1906.02691

123

https://www.sciencedirect.com/science/article/pii/S0957417416302056
https://www.sciencedirect.com/science/article/pii/S0957417416302056
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
https://www.sciencedirect.com/science/article/pii/S1877050917317593
http://arxiv.org/abs/1708.09754
https://www.sciencedirect.com/science/article/pii/S187705091930941X
http://arxiv.org/abs/1906.02691

[108] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic Backpropagation and

Approximate Inference in Deep Generative Models,” in International Conference on

Machine Learning. PMLR, Jun. 2014, pp. 1278–1286, iSSN: 1938-7228. [Online].

Available: http://proceedings.mlr.press/v32/rezende14.html

[109] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv:1312.6114

[cs, stat], May 2014, arXiv: 1312.6114. [Online]. Available: http://arxiv.org/abs/

1312.6114

[110] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Networks,”

arXiv:1406.2661 [cs, stat], Jun. 2014, arXiv: 1406.2661. [Online]. Available:

http://arxiv.org/abs/1406.2661

[111] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial

Autoencoders,” Nov. 2015. [Online]. Available: https://arxiv.org/abs/1511.05644v2

[112] ——, “Adversarial Autoencoders,” arXiv:1511.05644 [cs], May 2016, arXiv:

1511.05644. [Online]. Available: http://arxiv.org/abs/1511.05644

[113] E. Principi, F. Vesperini, S. Squartini, and F. Piazza, “Acoustic novelty detection

with adversarial autoencoders,” in 2017 International Joint Conference on Neural

Networks (IJCNN), May 2017, pp. 3324–3330, iSSN: 2161-4407.

[114] X. Chen and E. Konukoglu, “Unsupervised Detection of Lesions in Brain MRI using

constrained adversarial auto-encoders,” arXiv:1806.04972 [cs], Jun. 2018, arXiv:

1806.04972. [Online]. Available: http://arxiv.org/abs/1806.04972

[115] “VAE-GAN Based Zero-shot Outlier Detection | Proceedings of the 2020 4th

International Symposium on Computer Science and Intelligent Control.” [Online].

Available: https://dl.acm.org/doi/10.1145/3440084.3441180

[116] T. Ueda, Y. Tohsato, and I. Nishikawa, “Temporal Anomaly Detection by Deep Gen-

erative Models with Applications to Biological Data,” in Artificial Neural Networks

and Machine Learning – ICANN 2020, ser. Lecture Notes in Computer Science,

124

http://proceedings.mlr.press/v32/rezende14.html
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1511.05644v2
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1806.04972
https://dl.acm.org/doi/10.1145/3440084.3441180

I. Farkaš, P. Masulli, and S. Wermter, Eds. Cham: Springer International Publish-

ing, 2020, pp. 553–565.

[117] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs,

“Unsupervised Anomaly Detection with Generative Adversarial Networks to

Guide Marker Discovery,” Mar. 2017. [Online]. Available: https://arxiv.org/abs/

1703.05921v1

[118] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar, “Efficient

GAN-Based Anomaly Detection,” arXiv:1802.06222 [cs, stat], May 2019, arXiv:

1802.06222. [Online]. Available: http://arxiv.org/abs/1802.06222

[119] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “GANomaly: Semi-Supervised

Anomaly Detection via Adversarial Training,” arXiv:1805.06725 [cs], Nov. 2018,

arXiv: 1805.06725. [Online]. Available: http://arxiv.org/abs/1805.06725

[120] F. Di Mattia, P. Galeone, M. De Simoni, and E. Ghelfi, “A Survey on GANs for

Anomaly Detection,” arXiv:1906.11632 [cs, stat], Jun. 2019, arXiv: 1906.11632.

[Online]. Available: http://arxiv.org/abs/1906.11632

[121] V. Škvára, T. Pevný, and V. Šmı́dl, “Are generative deep models for novelty detection

truly better?” p. 7.

[122] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft,

T. G. Dietterich, and K.-R. Müller, “A Unifying Review of Deep and Shallow

Anomaly Detection,” Proceedings of the IEEE, vol. 109, no. 5, pp. 756–795, May

2021, conference Name: Proceedings of the IEEE.

[123] “Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs

in Web Applications | Proceedings of the 2018 World Wide Web Conference.”

[Online]. Available: https://dl.acm.org/doi/abs/10.1145/3178876.3185996

[124] R.-Q. Chen, G.-H. Shi, W.-L. Zhao, and C.-H. Liang, “A Joint Model

for IT Operation Series Prediction and Anomaly Detection,” Neurocomputing,

vol. 448, pp. 130–139, Aug. 2021, arXiv: 1910.03818. [Online]. Available:

http://arxiv.org/abs/1910.03818

125

https://arxiv.org/abs/1703.05921v1
https://arxiv.org/abs/1703.05921v1
http://arxiv.org/abs/1802.06222
http://arxiv.org/abs/1805.06725
http://arxiv.org/abs/1906.11632
https://dl.acm.org/doi/abs/10.1145/3178876.3185996
http://arxiv.org/abs/1910.03818

[125] P. Luo, B. Wang, T. Li, and J. Tian, “ADS-B anomaly data detection model based

on VAE-SVDD,” Computers & Security, vol. 104, p. 102213, May 2021. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0167404821000377

[126] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng,

J. Chen, Z. Wang, and H. Qiao, “Unsupervised Anomaly Detection via Variational

Auto-Encoder for Seasonal KPIs in Web Applications,” in Proceedings of the 2018

World Wide Web Conference, ser. WWW ’18. Republic and Canton of Geneva,

CHE: International World Wide Web Conferences Steering Committee, Apr. 2018,

pp. 187–196. [Online]. Available: https://doi.org/10.1145/3178876.3185996

[127] X. Chen, S. You, K. C. Tezcan, and E. Konukoglu, “Unsupervised lesion detection

via image restoration with a normative prior,” Medical Image Analysis, vol. 64, p.

101713, Aug. 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/

pii/S1361841520300773

[128] J. An and S. Cho, “Variational autoencoder based anomaly detection using recon-

struction probability,” 2015.

[129] D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector for Robot-

Assisted Feeding Using an LSTM-Based Variational Autoencoder,” IEEE Robotics

and Automation Letters, vol. 3, no. 3, pp. 1544–1551, Jul. 2018, conference Name:

IEEE Robotics and Automation Letters.

[130] O. Cerri, T. Q. Nguyen, M. Pierini, M. Spiropulu, and J.-R. Vlimant, “Variational

autoencoders for new physics mining at the Large Hadron Collider,” Journal of

High Energy Physics, vol. 2019, no. 5, p. 36, May 2019. [Online]. Available:

http://link.springer.com/10.1007/JHEP05(2019)036

[131] D. Deb, A. Ross, A. K. Jain, K. Prakah-Asante, and K. V. Prasad, “Actions Speak

Louder Than (Pass)words: Passive Authentication of Smartphone Users via Deep

Temporal Features,” arXiv:1901.05107 [cs, eess], Jan. 2019, arXiv: 1901.05107.

[Online]. Available: http://arxiv.org/abs/1901.05107

126

https://www.sciencedirect.com/science/article/pii/S0167404821000377
https://doi.org/10.1145/3178876.3185996
https://linkinghub.elsevier.com/retrieve/pii/S1361841520300773
https://linkinghub.elsevier.com/retrieve/pii/S1361841520300773
http://link.springer.com/10.1007/JHEP05(2019)036
http://arxiv.org/abs/1901.05107

[132] J. Chen, U. Hengartner, H. Khan, and M. Mannan, “Chaperone: Real-time

locking and loss prevention for smartphones,” in 29th USENIX Security Symposium

(USENIX Security 20). USENIX Association, Aug. 2020, pp. 325–342. [Online].

Available: https://www.usenix.org/conference/usenixsecurity20/presentation/chen-

jiayi

[133] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, “A Novel Anomaly De-

tection Scheme Based on Principal Component Classifier,” p. 8.

[134] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.

Williamson, “Estimating the Support of a High-Dimensional Distribution,” Neural

Computation, vol. 13, no. 7, pp. 1443–1471, Jul. 2001. [Online]. Available:

https://direct.mit.edu/neco/article/13/7/1443-1471/6529

[135] M. Hubert and M. Debruyne, “Minimum covariance determinant,” Wiley interdisci-

plinary reviews: Computational statistics, vol. 2, no. 1, pp. 36–43, 2010.

[136] M. Goldstein and A. Dengel, Histogram-based Outlier Score (HBOS): A fast Unsu-

pervised Anomaly Detection Algorithm.

[137] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient Algorithms for Mining Outliers

from Large Data Sets,” p. 12.

[138] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying Density-

Based Local Outliers,” p. 12.

[139] Z. He, X. Xu, and S. Deng, “Discovering Cluster Based Local Outliers,” Pattern

Recognition Letters, vol. 2003, pp. 9–10, 2003.

[140] H.-P. Kriegel, M. S hubert, and A. Zimek, “Angle-based outlier detection in high-

dimensional data,” in Proceeding of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining - KDD 08. Las Vegas, Nevada, USA:

ACM Press, 2008, p. 444. [Online]. Available: http://dl.acm.org/citation.cfm?doid=

1401890.1401946

127

https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jiayi
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jiayi
https://direct.mit.edu/neco/article/13/7/1443-1471/6529
http://dl.acm.org/citation.cfm?doid=1401890.1401946
http://dl.acm.org/citation.cfm?doid=1401890.1401946

[141] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in Proceedings of

the 2008 Eighth IEEE International Conference on Data Mining, ser. ICDM

’08. USA: IEEE Computer Society, Dec. 2008, pp. 413–422. [Online]. Available:

https://doi.org/10.1109/ICDM.2008.17

[142] A. Lazarevic and V. Kumar, “Feature bagging for outlier detection,” in Proceeding

of the eleventh ACM SIGKDD international conference on Knowledge discovery in

data mining - KDD ’05. Chicago, Illinois, USA: ACM Press, 2005, p. 157. [Online].

Available: http://portal.acm.org/citation.cfm?doid=1081870.1081891

[143] “Lecture 2: k-nearest neighbors / Curse of Dimensionality.” [On-

line]. Available: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/

lecturenote02 kNN.html

[144] T. Wang, M. Qiao, Z. Lin, C. Li, H. Snoussi, Z. Liu, and C. Choi, “Generative

Neural Networks for Anomaly Detection in Crowded Scenes,” IEEE Transactions

on Information Forensics and Security, vol. 14, no. 5, pp. 1390–1399, May 2019,

conference Name: IEEE Transactions on Information Forensics and Security.

[145] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial networks,” arXiv preprint

arXiv:1406.2661, 2014.

[146] A. van den Oord and N. Kalchbrenner, “Pixel rnn,” 2016.

[147] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++: Improving

the pixelcnn with discretized logistic mixture likelihood and other modifications,”

arXiv preprint arXiv:1701.05517, 2017.

[148] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and Applications,

vol. 5, 2001.

[149] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” arXiv

preprint arXiv:1511.08458, 2015.

128

https://doi.org/10.1109/ICDM.2008.17
http://portal.acm.org/citation.cfm?doid=1081870.1081891
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

[150] N. R. Goodman, “Statistical analysis based on a certain multivariate complex gaus-

sian distribution (an introduction),” The Annals of Mathematical Statistics, vol. 34,

no. 1, pp. 152–177, 1963.

[151] D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector

for Robot-Assisted Feeding Using an LSTM-based Variational Autoencoder,”

arXiv:1711.00614 [cs], Nov. 2017, arXiv: 1711.00614. [Online]. Available:

http://arxiv.org/abs/1711.00614

[152] G. J. Krishna and V. Ravi, “Keystroke based User Authentication using Modified

Differential Evolution,” in TENCON 2019 - 2019 IEEE Region 10 Conference (TEN-

CON), Oct. 2019, pp. 739–744, iSSN: 2159-3450.

[153] Y. Guo, W. Liao, Q. Wang, L. Yu, T. Ji, and P. Li, “Multidimensional Time Se-

ries Anomaly Detection: A GRU-based Gaussian Mixture Variational Autoencoder

Approach,” p. 16.

[154] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online].

Available: http://yann.lecun.com/exdb/mnist/

[155] H. Xu, Y. Feng, J. Chen, Z. Wang, H. Qiao, W. Chen, N. Zhao, Z. Li, J. Bu,

Z. Li, and et al., “Unsupervised anomaly detection via variational auto-encoder

for seasonal kpis in web applications,” Proceedings of the 2018 World Wide

Web Conference on World Wide Web - WWW ’18, 2018. [Online]. Available:

http://dx.doi.org/10.1145/3178876.3185996

[156] M. Soelch, J. Bayer, M. Ludersdorfer, and P. van der Smagt, “Variational inference

for on-line anomaly detection in high-dimensional time series,” 2016.

[157] S. Clachar, “Novelty detection and cluster analysis in time series data using varia-

tional autoencoder feature maps,” 2016.

[158] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly detection for

multivariate time series through stochastic recurrent neural network,” in Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2019, pp. 2828–2837.

129

http://arxiv.org/abs/1711.00614
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1145/3178876.3185996

[159] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and

A. Lerchner, “Understanding disentangling in β-VAE,” arXiv:1804.03599 [cs,

stat], Apr. 2018, arXiv: 1804.03599. [Online]. Available: http://arxiv.org/abs/

1804.03599

[160] I. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria, C. Blundell, S. Mohamed, and

A. Lerchner, “Early visual concept learning with unsupervised deep learning,” 2016.

[161] J. Chung, K. Kastner, L. Dinh, K. Goel, A. Courville, and Y. Bengio, “A recurrent

latent variable model for sequential data,” 2016.

[162] G. Bernieri, M. Conti, and F. Turrin, “KingFisher: an Industrial Security Framework

based on Variational Autoencoders,” New York, p. 6, 2019.

[163] R. Yao, C. Liu, L. Zhang, and P. Peng, “Unsupervised Anomaly Detection Using

Variational Auto-Encoder based Feature Extraction,” in 2019 IEEE International

Conference on Prognostics and Health Management (ICPHM), Jun. 2019, pp. 1–7.

[164] A. A. Pol, V. Berger, C. Germain, G. Cerminara, and M. Pierini, “Anomaly

Detection with Conditional Variational Autoencoders,” in 2019 18th IEEE

International Conference On Machine Learning And Applications (ICMLA).

Boca Raton, FL, USA: IEEE, Dec. 2019, pp. 1651–1657. [Online]. Available:

https://ieeexplore.ieee.org/document/8999265/

[165] “H-MOG Data Set.” [Online]. Available: http://www.cs.wm.edu/∼qyang/

hmog.html

[166] “Dask — Dask documentation.” [Online]. Available: https://docs.dask.org/en/

latest/

[167] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing

Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., vol. 25.

Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/

paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

130

http://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1804.03599
https://ieeexplore.ieee.org/document/8999265/
http://www.cs.wm.edu/~qyang/hmog.html
http://www.cs.wm.edu/~qyang/hmog.html
https://docs.dask.org/en/latest/
https://docs.dask.org/en/latest/
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[168] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and

R. Fergus, “Intriguing properties of neural networks,” arXiv:1312.6199 [cs], Feb.

2014, arXiv: 1312.6199. [Online]. Available: http://arxiv.org/abs/1312.6199

[169] “Continuous and Implicit Authentication @ UWATERLOO.” [Online]. Available:

https://github.com/UW-CIA

[170] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.” Jour-

nal of machine learning research, vol. 13, no. 2, 2012.

[171] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search, genetic algo-

rithm: A big comparison for nas,” 2019.

[172] “sklearn.preprocessing.PowerTransformer — scikit-learn 0.24.2 documenta-

tion.” [Online]. Available: https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.PowerTransformer.html

[173] “sklearn.preprocessing.QuantileTransformer — scikit-learn 0.24.2 documenta-

tion.” [Online]. Available: https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.QuantileTransformer.html

[174] “sklearn.preprocessing.Normalizer — scikit-learn 0.24.2 documentation.”

[Online]. Available: https ://scikit - learn.org/stable/modules/generated/

sklearn.preprocessing.Normalizer.html

[175] “Compare the effect of different scalers on data with outliers — scikit-learn 0.24.2

documentation.” [Online]. Available: https://scikit-learn.org/stable/auto examples/

preprocessing/plot all scaling.html

[176] Y. Zhao, Z. Nasrullah, and Z. Li, “PyOD: A Python Toolbox for Scalable Outlier

Detection,” p. 7.

[177] “scikit-learn: machine learning in Python — scikit-learn 0.24.2 documentation.”

[Online]. Available: https://scikit-learn.org/stable/

131

http://arxiv.org/abs/1312.6199
https://github.com/UW-CIA
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
https://scikit-learn.org/stable/

[178] E. W. Patton, M. Tissenbaum, and F. Harunani, “MIT App Inventor: Objectives,

Design, and Development,” in Computational Thinking Education, S.-C. Kong

and H. Abelson, Eds. Singapore: Springer, 2019, pp. 31–49. [Online]. Available:

https://doi.org/10.1007/978-981-13-6528-7 3

[179] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier,

M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden, “TensorFlow Lite Micro:

Embedded Machine Learning on TinyML Systems,” arXiv:2010.08678 [cs], Mar.

2021, arXiv: 2010.08678. [Online]. Available: http://arxiv.org/abs/2010.08678

[180] “Neural Discrete Representation Learning,” p. 10.

[181] A. Razavi, A. v. d. Oord, and O. Vinyals, “Generating Diverse High-Fidelity

Images with VQ-VAE-2,” arXiv:1906.00446 [cs, stat], Jun. 2019, arXiv: 1906.00446.

[Online]. Available: http://arxiv.org/abs/1906.00446

[182] K. Gregor, G. Papamakarios, F. Besse, L. Buesing, and T. Weber, “Temporal differ-

ence variational auto-encoder,” 2019.

[183] K. Ding, Q. Zhou, H. Tong, and H. Liu, “Few-shot Network Anomaly Detection via

Cross-network Meta-learning,” arXiv:2102.11165 [cs], Feb. 2021, arXiv: 2102.11165.

[Online]. Available: http://arxiv.org/abs/2102.11165

[184] Y. Zhao, “yzhao062/MetaOD,” May 2021, original-date: 2020-09-22T15:59:50Z.

[Online]. Available: https://github.com/yzhao062/MetaOD

[185] A. Nagabandi, C. Finn, and S. Levine, “Deep Online Learning Via Meta-Learning:

Continual Adaptation for Model-Based RL,” Sep. 2018. [Online]. Available:

https://openreview.net/forum?id=HyxAfnA5tm

[186] S. Zhang, F. Ye, B. Wang, and T. G. Habetler, “Few-Shot Bearing Anomaly

Detection Based on Model-Agnostic Meta-Learning,” arXiv e-prints, vol. 2007, p.

arXiv:2007.12851, Jul. 2020. [Online]. Available: http://adsabs.harvard.edu/abs/

2020arXiv200712851Z

132

https://doi.org/10.1007/978-981-13-6528-7_3
http://arxiv.org/abs/2010.08678
http://arxiv.org/abs/1906.00446
http://arxiv.org/abs/2102.11165
https://github.com/yzhao062/MetaOD
https://openreview.net/forum?id=HyxAfnA5tm
http://adsabs.harvard.edu/abs/2020arXiv200712851Z
http://adsabs.harvard.edu/abs/2020arXiv200712851Z

[187] Y. Zhao, R. A. Rossi, and L. Akoglu, “Automating Outlier Detection via

Meta-Learning,” arXiv:2009.10606 [cs, stat], Mar. 2021, arXiv: 2009.10606.

[Online]. Available: http://arxiv.org/abs/2009.10606

[188] C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, “CutPaste: Self-Supervised Learning

for Anomaly Detection and Localization,” arXiv:2104.04015 [cs], Apr. 2021, arXiv:

2104.04015. [Online]. Available: http://arxiv.org/abs/2104.04015

[189] V. Sehwag, M. Chiang, and P. Mittal, “SSD: A Unified Framework for

Self-Supervised Outlier Detection,” Sep. 2020. [Online]. Available: https:

//openreview.net/forum?id=v5gjXpmR8J

[190] J. Liu, L. Xiao, G. Liu, and Y. Zhao, “Active authentication with

reinforcement learning based on ambient radio signals,” Multimedia Tools and

Applications, vol. 76, no. 3, pp. 3979–3998, Feb. 2017. [Online]. Available:

https://doi.org/10.1007/s11042-015-2958-x

[191] T. Wu and J. Ortiz, “RLAD: Time Series Anomaly Detection through

Reinforcement Learning and Active Learning,” arXiv:2104.00543 [cs], Mar. 2021,

arXiv: 2104.00543. [Online]. Available: http://arxiv.org/abs/2104.00543

[192] G. Pang, A. v. d. Hengel, C. Shen, and L. Cao, “Deep Reinforcement Learning

for Unknown Anomaly Detection,” arXiv:2009.06847 [cs, stat], Sep. 2020, arXiv:

2009.06847. [Online]. Available: http://arxiv.org/abs/2009.06847

[193] V. M. Patel, R. Chellappa, D. Chandra, and B. Barbello, “Continuous User Authen-

tication on Mobile Devices: Recent progress and remaining challenges,” IEEE Signal

Processing Magazine, vol. 33, no. 4, pp. 49–61, Jul. 2016, conference Name: IEEE

Signal Processing Magazine.

[194] N. Al-Naffakh, N. Clarke, and F. Li, “Continuous User Authentication Using

Smartwatch Motion Sensor Data,” in 12th IFIP International Conference on Trust

Management (TM), ser. Trust Management XII, N. Gal-Oz and P. R. Lewis, Eds.,

vol. AICT-528. Toronto, ON, Canada: Springer International Publishing, Jul.

2018, pp. 15–28. [Online]. Available: https://hal.inria.fr/hal-01855982

133

http://arxiv.org/abs/2009.10606
http://arxiv.org/abs/2104.04015
https://openreview.net/forum?id=v5gjXpmR8J
https://openreview.net/forum?id=v5gjXpmR8J
https://doi.org/10.1007/s11042-015-2958-x
http://arxiv.org/abs/2104.00543
http://arxiv.org/abs/2009.06847
https://hal.inria.fr/hal-01855982

[195] J. Zuo, H. Xia, S. Liu, and Y. Qiao, “Mapping urban environmental

noise using smartphones,” Sensors, vol. 16, no. 10, 2016. [Online]. Available:

https://www.mdpi.com/1424-8220/16/10/1692

[196] H. Khan, A. Atwater, and U. Hengartner, “A Comparative Evaluation of Implicit Au-

thentication Schemes,” in Research in Attacks, Intrusions and Defenses, ser. Lecture

Notes in Computer Science, A. Stavrou, H. Bos, and G. Portokalidis, Eds. Cham:

Springer International Publishing, 2014, pp. 255–275.

[197] D. A. Johnson and M. M. Trivedi, “Driving style recognition using a smartphone

as a sensor platform,” in 2011 14th International IEEE Conference on Intelligent

Transportation Systems (ITSC), Oct. 2011, pp. 1609–1615, iSSN: 2153-0017.

[198] J. Dai, J. Teng, X. Bai, Z. Shen, and D. Xuan, “Mobile phone based drunk

driving detection,” Jun. 2010. [Online]. Available: https://eudl.eu/doi/10.4108/

icst.pervasivehealth2010.8901

[199] K. Kunze, G. Bahle, P. Lukowicz, and K. Partridge, “Can magnetic field sensors

replace gyroscopes in wearable sensing applications?” in International Symposium

on Wearable Computers (ISWC) 2010, Oct. 2010, pp. 1–4, iSSN: 2376-8541.

[200] G. M. Weiss, J. W. Lockhart, T. T. Pulickal, P. T. McHugh, I. H. Ronan, and

J. L. Timko, “Actitracker: A Smartphone-Based Activity Recognition System for

Improving Health and Well-Being,” in 2016 IEEE International Conference on Data

Science and Advanced Analytics (DSAA), Oct. 2016, pp. 682–688.

[201] R. Gouveia, E. Karapanos, and M. Hassenzahl, “How do we engage with

activity trackers? a longitudinal study of Habito,” in Proceedings of the 2015

ACM International Joint Conference on Pervasive and Ubiquitous Computing, ser.

UbiComp ’15. New York, NY, USA: Association for Computing Machinery, Sep.

2015, pp. 1305–1316. [Online]. Available: https://doi.org/10.1145/2750858.2804290

[202] Z. Zhao, Y. Chen, S. Wang, and Z. Chen, “FallAlarm: Smart Phone Based

Fall Detecting and Positioning System,” Procedia Computer Science, vol. 10, pp.

134

https://www.mdpi.com/1424-8220/16/10/1692
https://eudl.eu/doi/10.4108/icst.pervasivehealth2010.8901
https://eudl.eu/doi/10.4108/icst.pervasivehealth2010.8901
https://doi.org/10.1145/2750858.2804290

617–624, Jan. 2012. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S187705091200436X

[203] P. N. A. Fahmi, V. Viet, and C. Deok-Jai, “Semi-supervised fall detection algorithm

using fall indicators in smartphone,” in Proceedings of the 6th International

Conference on Ubiquitous Information Management and Communication, ser.

ICUIMC ’12. New York, NY, USA: Association for Computing Machinery, Feb.

2012, pp. 1–9. [Online]. Available: https://doi.org/10.1145/2184751.2184890

[204] “Kansiz: Selection of time-domain features for fall... - Google

Scholar.” [Online]. Available: https://scholar.google.com/scholar lookup?title=

Selection%20of%20time-domain%20features%20for%20fall%20detection%20based%

20on%20supervised%20learning&author=A.%20O.%20Kansiz&author=M.%20A.%

20Guvensan&author=&author=H.%20I.%20Turkmen#d=gs cit&u=%2Fscholar%

3Fq%3Dinfo%3Ah2BYEAFe2-8J%3Ascholar.google.com%2F%26output%3Dcite%

26scirp%3D0%26hl%3Den

[205] “The MobiFall Dataset: Fall Detection and Classification with a Smartphone:

Security & Forensics Journal Article | IGI Global.” [Online]. Available:

https://www.igi-global.com/article/the-mobifall-dataset/116732

[206] Y. Lee, S. S. Iyengar, C. Min, Y. Ju, S. Kang, T. Park, J. Lee, Y. Rhee,

and J. Song, “MobiCon: a mobile context-monitoring platform,” Communications

of the ACM, vol. 55, no. 3, pp. 54–65, Mar. 2012. [Online]. Available:

https://doi.org/10.1145/2093548.2093567

[207] K. Lorincz, B.-r. Chen, G. W. Challen, A. R. Chowdhury, S. Patel,

P. Bonato, and M. Welsh, “Mercury: a wearable sensor network platform for

high-fidelity motion analysis,” in Proceedings of the 7th ACM Conference on

Embedded Networked Sensor Systems, ser. SenSys ’09. New York, NY, USA:

Association for Computing Machinery, Nov. 2009, pp. 183–196. [Online]. Available:

https://doi.org/10.1145/1644038.1644057

[208] G. M. Weiss, J. L. Timko, C. M. Gallagher, K. Yoneda, and A. J. Schreiber,

“Smartwatch-based activity recognition: A machine learning approach,” in 2016

135

https://www.sciencedirect.com/science/article/pii/S187705091200436X
https://www.sciencedirect.com/science/article/pii/S187705091200436X
https://doi.org/10.1145/2184751.2184890
https://scholar.google.com/scholar_lookup?title=Selection%20of%20time-domain%20features%20for%20fall%20detection%20based%20on%20supervised%20learning&author=A.%20O.%20Kansiz&author=M.%20A.%20Guvensan&author=&author=H.%20I.%20Turkmen#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ah2BYEAFe2-8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://scholar.google.com/scholar_lookup?title=Selection%20of%20time-domain%20features%20for%20fall%20detection%20based%20on%20supervised%20learning&author=A.%20O.%20Kansiz&author=M.%20A.%20Guvensan&author=&author=H.%20I.%20Turkmen#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ah2BYEAFe2-8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://scholar.google.com/scholar_lookup?title=Selection%20of%20time-domain%20features%20for%20fall%20detection%20based%20on%20supervised%20learning&author=A.%20O.%20Kansiz&author=M.%20A.%20Guvensan&author=&author=H.%20I.%20Turkmen#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ah2BYEAFe2-8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://scholar.google.com/scholar_lookup?title=Selection%20of%20time-domain%20features%20for%20fall%20detection%20based%20on%20supervised%20learning&author=A.%20O.%20Kansiz&author=M.%20A.%20Guvensan&author=&author=H.%20I.%20Turkmen#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ah2BYEAFe2-8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://scholar.google.com/scholar_lookup?title=Selection%20of%20time-domain%20features%20for%20fall%20detection%20based%20on%20supervised%20learning&author=A.%20O.%20Kansiz&author=M.%20A.%20Guvensan&author=&author=H.%20I.%20Turkmen#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ah2BYEAFe2-8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://scholar.google.com/scholar_lookup?title=Selection%20of%20time-domain%20features%20for%20fall%20detection%20based%20on%20supervised%20learning&author=A.%20O.%20Kansiz&author=M.%20A.%20Guvensan&author=&author=H.%20I.%20Turkmen#d=gs_cit&u=%2Fscholar%3Fq%3Dinfo%3Ah2BYEAFe2-8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://www.igi-global.com/article/the-mobifall-dataset/116732
https://doi.org/10.1145/2093548.2093567
https://doi.org/10.1145/1644038.1644057

IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI),

Feb. 2016, pp. 426–429, iSSN: 2168-2208.

[209] F. B. A. Ramos, A. Lorayne, A. A. M. Costa, R. R. d. Sousa, H. Almeida,

and A. Perkusich, “Combining Smartphone and Smartwatch Sensor Data in

Activity Recognition Approaches: an Experimental Evaluation,” Jul. 2016, pp.

267–272. [Online]. Available: http://ksiresearchorg.ipage.com/seke/seke16paper/

seke16paper 40.pdf

136

http://ksiresearchorg.ipage.com/seke/seke16paper/seke16paper_40.pdf
http://ksiresearchorg.ipage.com/seke/seke16paper/seke16paper_40.pdf

Appendix A

Appendix

A.1 Model Details

137

L
ay

er
(t

y
p

e)
O

u
tp

u
t

S
h
ap

e
P

ar
am

#
C

on
n
ec

te
d

to

in
p
u
t

5
(I

n
p
u
tL

ay
er

)
[(

N
on

e,
2)

]
0

m
o
d
el

6
(F

u
n
ct

io
n
al

)
[(

N
on

e,
2)

,
(N

on
e,

2
79

in
p
u
t

5[
0]

[0
]

m
o
d
el

7
(F

u
n
ct

io
n
al

)
(N

on
e,

2)
75

m
o
d
el

6[
0]

[2
]

d
en

se
18

(D
en

se
)

(N
on

e,
2)

6
in

p
u
t

5[
0]

[0
]

d
en

se
19

(D
en

se
)

(N
on

e,
16

)
48

d
en

se
18

[0
][
0]

d
ro

p
ou

t
8

(D
ro

p
ou

t)
(N

on
e,

16
)

0
d
en

se
19

[0
][
0]

d
en

se
20

(D
en

se
)

(N
on

e,
1)

17
d
ro

p
ou

t
8[

0]
[0

]

d
ro

p
ou

t
9

(D
ro

p
ou

t)
(N

on
e,

1)
0

d
en

se
20

[0
][
0]

d
en

se
22

(D
en

se
)

(N
on

e,
2)

4
d
ro

p
ou

t
9[

0]
[0

]

d
en

se
21

(D
en

se
)

(N
on

e,
2)

4
d
ro

p
ou

t
9[

0]
[0

]

tf
.

op
er

at
or

s
.a

d
d

4
(T

F
O

p
L

am
(N

on
e,

2)
0

d
en

se
22

[0
][
0]

tf
.m

at
h
.s

q
u
ar

e
2

(T
F

O
p
L

am
b

d
a)

(N
on

e,
2)

0
d
en

se
21

[0
][
0]

138

T
a
b
le

A
.1

co
n
ti
n
u
e
d

fr
o
m

p
re
v
io
u
s
p
a
g
e

L
ay

er
(t

y
p

e)
O

u
tp

u
t

S
h
ap

e
P

ar
am

#
C

on
n
ec

te
d

to

tf
.m

at
h
.s

u
b
tr

ac
t

6
(T

F
O

p
L

am
b

d
a)

(N
on

e,
2)

0
tf

.
op

er
at

or
s

.a
d
d

4[
0]

[0
]

tf
.m

at
h
.s

q
u
ar

e
2[

0]
[0

]

tf
.m

at
h
.e

x
p

2
(T

F
O

p
L

am
b

d
a)

(N
on

e,
2)

0
d
en

se
22

[0
][
0]

tf
.m

at
h
.s

u
b
tr

ac
t

7
(T

F
O

p
L

am
b

d
a)

(N
on

e,
2)

0
tf

.m
at

h
.s

u
b
tr

ac
t

6[
0]

[0
]

tf
.m

at
h
.e

x
p

2[
0]

[0
]

tf
.m

at
h
.r

ed
u
ce

su
m

2
(T

F
O

p
L

am
b

d
(N

on
e,

)
0

tf
.m

at
h
.s

u
b
tr

ac
t

7[
0]

[0
]

tf
.c

on
ve

rt
to

te
n
so

r
2

(T
F

O
p
L

am
(N

on
e,

2)
0

m
o
d
el

7[
0]

[0
]

tf
.c

as
t

2
(T

F
O

p
L

am
b

d
a)

(N
on

e,
2)

0
in

p
u
t

5[
0]

[0
]

tf
.m

at
h
.m

u
lt

ip
ly

7
(T

F
O

p
L

am
b

d
a)

(N
on

e,
)

0
tf

.m
at

h
.r

ed
u
ce

su
m

2[
0]

[0
]

tf
.m

at
h
.s

q
u
ar

ed
d
iff

er
en

ce
2

(T
(N

on
e,

2)
0

tf
.c

on
ve

rt
to

te
n
so

r
2[

0]
[0

]

tf
.c

as
t

2[
0]

[0
]

tf
.m

at
h
.s

u
b
tr

ac
t

8
(T

F
O

p
L

am
b

d
a)

(N
on

e,
)

0
tf

.m
at

h
.m

u
lt

ip
ly

7[
0]

[0
]

tf
.m

at
h
.r

ed
u
ce

m
ea

n
4

(T
F

O
p
L

am
b

(N
on

e,
)

0
tf

.m
at

h
.s

q
u
ar

ed
d
iff

er
en

ce
2[

0]
[0

tf
.m

at
h
.a

b
s

2
(T

F
O

p
L

am
b

d
a)

(N
on

e,
)

0
tf

.m
at

h
.s

u
b
tr

ac
t

8[
0]

[0
]

139

T
a
b
le

A
.1

co
n
ti
n
u
e
d

fr
o
m

p
re
v
io
u
s
p
a
g
e

L
ay

er
(t

y
p

e)
O

u
tp

u
t

S
h
ap

e
P

ar
am

#
C

on
n
ec

te
d

to

tf
.m

at
h
.m

u
lt

ip
ly

6
(T

F
O

p
L

am
b

d
a)

(N
on

e,
)

0
tf

.m
at

h
.r

ed
u
ce

m
ea

n
4[

0]
[0

]

tf
.m

at
h
.m

u
lt

ip
ly

8
(T

F
O

p
L

am
b

d
a)

(N
on

e,
)

0
tf

.m
at

h
.a

b
s

2[
0]

[0
]

tf
.

op
er

at
or

s
.a

d
d

5
(T

F
O

p
L

am
(N

on
e,

)
0

tf
.m

at
h
.m

u
lt

ip
ly

6[
0]

[0
]

tf
.m

at
h
.m

u
lt

ip
ly

8[
0]

[0
]

tf
.m

at
h
.r

ed
u
ce

m
ea

n
5

(T
F

O
p
L

am
b

()
0

tf
.

op
er

at
or

s
.a

d
d

5[
0]

[0
]

ad
d

lo
ss

2
(A

d
d
L

os
s)

0
0

tf
.m

at
h
.r

ed
u
ce

m
ea

n
5[

0]
[0

]

140

A.2 Human Activity Recognition

Based on accelerometer and gyroscope data to detect complex activities, Johnson et al.

[197] classify bad driving, and Dai et al. [198] have succeeded to classify drunk driving.

Kunze et al. [199] and Abdulla et al. [54] have leveraged magnetometer data along with

accelerometer data to detect the location of the device on the human body. Weiss et al.

[200] proposed a health monitoring app called “Actitracker” that utilizes motion sensors

and feeds them into a Random Forest classifier. Their solution uses a threshold set by the

user for their detection and measures daily user activities. Gouveia et al. [201] assessed

another app called “Habito”, and concluded that historical logs of the user activity sensor

data are not useful to the user and should be deleted on a daily basis for security and

privacy reasons. Falling detection is a big use case for the health monitoring and human

activity recognition domain. “FallAlarm” is an app presented by Zhao et al. [202] that was

developed to detect human users falling and alarm their contacts. It is built on top of many

contributions in the domain, like those of Fahmi et al. [203] and Kansiz et al. [204], which

use time, frequency, and wavelet features for fall detection in their semi-supervised and

supervised works, respectively. Similarly, he authors of “MobiFall” [205] have evaluated

multiple models to detect the forward falls using hands, forward falls using knees, side-ward

falls, and backward falls with up to 99% accuracy. Lee et al. [206], Lorincz et al. [207],

and others had also contributed diseases classification models (Parkinson’s, strokes, and

epilepsy) and frameworks using machine learning which leverage motion data for detecting

patients’ movement patterns. Motion sensors from smartwatches and other gadgets have

also been utilized in this domain. Weiss et al. [208] and Ramos et al. [209] used motion

data from smartwatch to detect different activities and whether an individual is intoxicated,

or drunk, with high accuracies. The utilization of these gadgets are outside the scope of

our work, as we are focused on making the solution applicable to as many users as possible.

Nevertheless, if gadgets do exist, they can be integrated into our framework for additional

contextual awareness as covered in Chapter 2. Academic works have used motion sensors

to locate users indoor with great accuracies, classify diseases, detect imperfections unique

to every device, sense human characteristics and emotions, detect activities and the status

of human users surrounding the device, and authenticate users via a variety of parameters

141

and techniques. More on those in health monitoring, use status indoor localization, device

fingerprinting, personal traits, and keystroke authentication using motion data is available

in a recent survey published by Masoud et al. [55].

142

A.3 HMOG Data-set Stats

10
06

69
15

19
85

17
15

38
18

06
79

18
66

76
20

18
48

20
76

96
21

87
19

21
93

03
22

09
62

24
01

68
24

82
52

25
64

87
25

72
79

26
13

13
26

43
25

27
79

05
27

81
35

32
62

23
33

61
72

34
23

29
35

27
16

36
62

86
36

82
58

38
90

15
39

51
29

39
66

97
39

82
48

40
50

35
43

13
12

47
27

61
48

91
46

50
19

73
52

55
84

52
63

19
52

77
96

53
83

63
53

95
02

54
06

41
55

33
21

55
43

03
55

63
57

56
19

93
57

85
26

57
92

84
58

80
87

59
48

87
62

12
76

62
28

52
65

74
86

66
31

53
67

53
97

69
35

72
69

82
66

71
07

07
71

78
68

72
01

93
73

31
62

73
35

68
73

79
73

74
52

24
75

11
31

76
38

13
77

17
82

77
63

28
77

70
78

78
58

73
78

58
99

79
65

81
79

92
96

80
32

62
80

80
22

81
53

16
82

72
12

84
18

66
85

63
02

85
64

01
86

26
49

86
39

85
86

55
01

86
58

81
87

28
95

87
60

11
87

91
55

89
26

87
89

31
98

89
32

55
89

76
52

91
32

28
91

81
36

92
38

62
93

79
04

96
21

59
96

66
55

97
38

91
98

09
53

98
47

99
98

67
37

99
06

22
99

87
57

Subjects

0

4

8

12

16

20

24

Se
ss

io
ns

read + sit read + walk write + sit write + walk map + sit map + walk

Figure A.1: HMOG sessions categories and total count per subject. Adapted from [15]

Figure A.2: HMOG accelerometer data between subjects and walking and sitting settings. Adapted from [15]

143

Figure A.3: Initial data preparation procedure along with corresponding python software modules. Adapted from [15]

Figure A.4: HMOG inertial sensors data distribution on log scale. Adapted from [15]

144

1.0

0.5

0.0

0.5

1.0

1.5

ac
c_

x_
m

ea
n

3

4

5

6

7

8

ac
c_

y_
m

ea
n

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

ac
c_

z_
m

ea
n

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

gy
r_

x_
m

ea
n

0.06

0.04

0.02

0.00

0.02

0.04

0.06

gy
r_

y_
m

ea
n

0.04

0.02

0.00

0.02

0.04

0.06

gy
r_

z_
m

ea
n

25

20

15

10

5

0

5

10

15

m
ag

_x
_m

ea
n

20

15

10

5

0

5

10

15

m
ag

_y
_m

ea
n

2 1 0 1 2
acc_x_mean

40

30

20

10

0

10

m
ag

_z
_m

ea
n

2 4 6 8
acc_y_mean

5 6 7 8 9 10 11
acc_z_mean

0.04 0.02 0.00 0.02 0.04
gyr_x_mean

0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
gyr_y_mean

0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
gyr_z_mean

30 20 10 0 10 20 30
mag_x_mean

40 30 20 10 0 10 20 30
mag_y_mean

40 20 0 20
mag_z_mean

subject
588087 .
698266 .
893255 .

Figure A.5: HMOG inertial data pairwise relationships for three subjects. Adapted from [15]

145

Feature Set Number of resulting features Description

Mean 3 Average value

Median 3 Most often occurring values

Minimum 3 Lowest value

Maximum 3 Highest value

Range 3 Difference between highest and lowest values

Variance 3 Spread of values around their mean

STD 3 Standard deviation of the values

Kurtosis 3 Tailedness of value distribution

Skewness 3 Measure of symmetry of distribution

SMA 3 Signal Magnitude Area (SMA) or signal energy

Summed SMA 1 SMA of the three axis signals combined

Quantiles 3·x Separating partitions in the values distribution

IQR 3 Interquartile Range (IQR)

Cross-mean Rate 3 Fluctuation of the signal

Table A.2: The time domain’s commonly computed features and number of resulting features per a three-axis sensor. Adapted

from [13, 19]

Figure A.6: HMOG samples count per subject. Adapted from [15]

146

Figure A.7: All users in HMOG and all their sessions durations

in minutes.

147

Feature Set Description

Entropy Dispersion of signal

Peek occurrences Number of peeks occurred

Time between peeks Average time between peeks

Slope between peeks the steepness and direction of the peeks

Peek to peek signal value
difference between the maximum amplitude

in the negative direction and in the positive direction

Max Latency longest interval between two consecutive iterations

Min Latency shortest interval between two consecutive iterations

ALAR Absolute Latency to Amplitude Ratio

Table A.3: The frequency domain’s commonly computed features per a three-axis sensor. Adapted from [13, 19]

Feature Set Number of resulting features Description

Correlation coefficient 3 Relationship between two axes

Cosine similarity 3 Pairwise cosine similarity measurements between axes

Co-variance 3 Pairwise co-variances between axes

DTW 3 Dynamic Time Warping

Band Power 3 Dynamic Time Warping

SNR 3 Signal to Noise Ratio

Table A.4: Miscellaneous commonly computed features and number of resulting features per a three-axis sensor. Adapted

from [13, 19]

148

A.4 Deep Feature Extractor Pare-meters

Figure A.8: Siamese Convolutional Neural Network architecture with 1D filters proposed by [16]. All filters use padding and

the vector of the last CNN layer (marked in green) is considered the deep feature representation. Adapted from [13]

149

Figure A.9: Siamese Convolutional Neural Network architecture with FCN sub networks proposed by [15] as modeled after

[17]. All filters use padding and the vector of the last layer (marked in green) is considered the deep feature representation.

Adapted from [13]

150

Figure A.10: Siamese Convolutional Neural Network architecture proposed by [16]. All filters use padding and the vector of

the last CNN layer (marked in green) is considered the deep feature representation. Adapted from [13]

151

Parameter Value Comment

Train subjects 60 Separated from subjects used for

OCSVM.

Train observations 6750 Per subject, resulting in 270 samples

per subject.

Train samples 270 Per subject

Train pairs 8100 Implicitly given (60 · 270 ÷ 2). 50%

positive, 50% negative pairs.

CNN Layers 4 Conv., Max Pool. Convolutional layers and Max Pooling

layers are alternated.

Max Pooling 2x2

Conv. Layers 32(7x7), 64 (5x5),128

(3x3),22(3x3)

Filter number of last layer is deduced:

it is stated to be adjusted to result in a

∼64 dimensional output vector.

Distance Function Eucl. Dist. Euclidean distance.

Loss Contr.Loss Contrastive loss function

Table A.5: Siamese CNN parameters. Adapted from [20, 13]

Parameter Variations

CNN architecture CNN (2D filters), CNN (1D filters), FCN (1D filters)

Window size 0.5, 1, 2, 5 sec.

Sampling rate 100 Hz, 25 Hz

Body Modes {sit, walk}, {walk}, {sit}

Table A.6: Variations of parameters tested for Siamese CNN approach. Adapted from [13]

152

A.5 Models

VAE [109] is the graphical Bayesian inference probabilistic variant of the Auto-Encoder.

As opposed to the Auto-Encoder where the encoder and decoder implement two comple-

mentary deterministic transformations, in VAE it is a distribution that is being learned

and the output is a draw from that underlying distribution. β-VAE [159] is a variation of

the VAE with the goal to discover disentangled latent factors. PCA (Principal Component

Analysis) [133] is a linear transformation often used for dimensional reduction to allow for

easy data exploration and analysis. OCSVM (One-class Support Vector Machine) [134]

is a linear algorithm that aims at learning a decision boundary to group the data points.

MCD (Minimum Covariance Determinant) [135] is an estimator of multivariate location

and scatter. HBOS (Histogram-based Outlier Score) [136] is a proximity based technique

that models uni-variate feature densities using histograms with a fixed or a dynamic bin

width. KNN (K-Nearest neighbors) [137] is a proximity based model where for each

data point, the whole data set is examined to extract the k data points with the most

similar feature values. LOF (Local Outlier Factor) [138] is a proximity based method

that captures exactly the relative degree of isolation of an object from its surrounding

neighborhood. CBLOF (Cluster-Based Local Outlier Factor) [139] is a proximity based

method where the outlier score is computed by the distance of each instance of the data

to its respective cluster center multiplied by the instances belonging to its cluster. ABOD

(Angle-based Outlier Detection) [140] is a probabilistic Proximity based technique built

for high-dimensional data anomaly detection tasks. IForest (Isolation Forest) [141] is

an ensembling technique that is based on the usage of numerous isolation trees, a tree

structure constructed effectively to isolate every single instance. FeatureBag [142] is an

ensemble technique applying Feature Bagging for Outlier Detection.

153

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Access Management
	Continuous and Implicit Authentication
	Contributions

	Background
	Concept
	Threat Models
	Use Cases Scenarios

	Contextual Awareness
	Threat Response
	Data Types
	Inertial Sensors
	Security Issues with Mobile Sensing

	Performance Metrics

	Relevant Work
	Datasets
	Mobile Sensing
	Data Preprocessing
	Machine Learning Models
	Generative Models

	Experiment Settings

	Approach
	Data
	Classical Machine Learning Models
	Linear, Probabilistic, Density, and Ensemble-based Models

	Generative Models
	Auto-Encoder
	Variational Auto-Encoder
	VAE based Anomaly Detection

	Summary

	Experiments
	Data Processing
	Initial Data-set Explorations
	Data-set Preparations

	Experiments Design
	Deep Feature Extraction

	Results
	Initial Results
	Promising Models
	Observations and Improvements
	Final Results

	Discussion
	Empowering the Edge

	Solution Implementations
	Solution Code Base
	Experiments code-base
	Data Collection, Data Cloud Streaming, and AI at Edge

	Solution Computing Resources

	Conclusion
	Recommendations
	Discussion

	References
	Appendix
	Model Details
	Human Activity Recognition
	HMOG Data-set Stats
	Deep Feature Extractor Pare-meters
	Models

