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Abstract 

The following thesis chapters chronicle evolving efforts throughout 2016 – 2021 to support research 

toward improving the pediatric clinical pharmacology of monoclonal antibodies (mAbs). Translating 

the benefits of successful mAbs from adults to children (and even infants) has proved challenging 

since the first attempts in the early 2000s. Children tend to achieve low pharmacokinetic exposures 

and poor efficacy when the adult dose is scaled to children by body weight alone (mg/kg), with 

infliximab as the main example of this case. Physiologically-based pharmacokinetic (PBPK) models 

were selected as the tool of choice to explore this discrepancy based on their established success with 

pediatric extrapolation for small molecule drugs. PBPK models enable mechanistic representations of 

drug disposition in virtual individuals and can be used to identify the drivers of altered 

pharmacokinetics in anatomically or physiologically distinct special populations, such as children.  

The early chapters review the state of the field and the mechanistic underpinnings of mAb 

pharmacokinetics, and an example of an adult PBPK model for trastuzumab is provided. An open-

source model for large molecule drugs was launched in 2018 inside the Open Systems Pharmacology 

software package, and shortly thereafter we trialed the use of this model to predict infliximab 

pharmacokinetics in children 4 – 17 years of age. Scaling pharmacokinetics to children by size alone 

failed to correctly predict the pharmacokinetics in this population, suggesting that other factors were 

at play. Therefore, a comprehensive review was conducted to generate physiological hypotheses to 

explain the observation with particular attention to infants (< 2 years of age), where the 

pharmacokinetic differences are most drastic. The following hypotheses were proposed: 

1. The fraction of extracellular fluid volume in the body decreases with age and provides large 

weight-normalized volumes of distribution in infants.   

2. Extravasation of antibodies into tissues occurs quickly in infants as they have a large 

capillary surface area per unit volume available for plasma protein exchange and a large proportion of 

“leaky” tissues, where capillary permeability is highest.   

3. A fast rate of lymph flow in infants drives a fast rate of absorption after extravascular 

administration. 

4. Infants have higher concentrations of circulating hematopoietic cells, which may contribute 

to extensive cellular uptake and fast elimination. 
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5. Intracellular metabolism and elimination may be increased due to low expression of FcRn – 

the neonatal salvage receptor – and the relatively high concentration of endogenous IgG competing 

for FcRn binding after birth. 

In 2019, the first four hypotheses were integrated into a PBPK model for mAbs in premature 

infants that was successful for characterizing pharmacokinetics in infants even 1 day old at 28 weeks 

gestational age. However, this parameterization was based on the mechanistic understanding of mAb 

disposition at that time, and it was destined for change.  

The results of the latest experiments in mice with site-specific FcRn deletion and macrophage 

knockdown prompted a reinvestigation of the contribution of hematopoietic cells – in particular 

monocytes and macrophages – to mAb pharmacokinetics. In this work, the role of the macrophage is 

redefined to a highly efficient protector of IgG, rather than an eliminating cell. A model-based 

analysis of the data revealed that it is very unlikely that a high concentration of circulating monocytes 

can contribute to explaining the fast weight-based clearance of mAbs in very young children.  

In the end, four of the five hypotheses remain, and the investigations continue. Pediatric 

extrapolation for mAbs is a modestly more achievable task because of the efforts herein, hopefully 

improving outcomes for this vulnerable population in the future. Other contributions of the thesis 

include highlighting the influence of cancer and inflammatory disease states on mAb 

pharmacokinetics, proposing an empirical exponent for scaling volume of distribution to children and 

formalizing a foundation of pediatric literature on which this field can continue to grow.  
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Chapter 1 

Pediatric Dose Selection for Therapeutic Proteins 

1.1 Abstract 

Selecting optimal dosing regimens in support of the clinical use of monoclonal antibodies and other 

therapeutic proteins in pediatric indications needs to appreciate the unique pharmacokinetic properties 

of this class of biologicals as well as the underlying physiologic and pathophysiologic processes and 

their modulation by childhood growth and development. During drug development, first-in-pediatric 

dose selection is a capstone event in the pediatric investigation plan that relies heavily on 

extrapolation of pharmacokinetic and pharmacodynamic data from adult to pediatric populations. It is 

facilitated by combinations of pharmacometric approaches, including allometry, physiologically-

based pharmacokinetic modeling and population pharmacokinetic analyses, although data on 

reliability and qualification of some of these tools in the context of therapeutic proteins are still 

limited but emerging. Presented data suggest nonlinear relationships between body weight and both 

clearance and volume of distribution for therapeutic proteins in pediatric populations, with allometric 

exponents of 0.75 and 0.8, respectively. For newborns and infants (<1 year), even higher nonlinearity 

seems to occur. Translation of the quantitative characterization of the pediatric pharmacokinetics of 

therapeutic proteins into dosing regimens for the drug label requires compromising between precision 

dosing and clinical practicability, with tiered dosing algorithms based on size or age strata being the 

currently most frequently applied methodology. 

1.2 Introduction 

Harnessing the advances in biotechnology and genetic engineering to develop proteins for therapeutic 

applications is one of the greatest feats of modern medicine. The first successes for therapeutic 

proteins (TPs) were in protein replacement therapy, oncology, endocrinology, and immunology, with 

the latter largely spurred on by the popularity of monoclonal antibodies (mAbs). Twenty-five years 

later, TPs are offered as treatments in almost every clinical domain, from cardiology to neurology. In 

contrast to traditional small molecule drugs, TPs often possess favorable safety profiles, high 

specificity, and long circulating half-lives, making them preferred therapeutic interventions in many 

indications.1,2 

Children deserve equal access to these interventions. Both the US Food and Drug Administration 

(FDA) and the European Medicines Agency (EMA) have enacted regulations to advance drug 
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development for pediatric indications. FDA regulations were mandated by the Best Pharmaceuticals 

for Children Act (BPCA) in 2002 and the Pediatric Research Equity Act (PREA) in 2003. The EMA 

followed close behind with pediatric regulations in 2007. For all new drug applications, including 

biologic license applications, clinical studies must now be conducted in children to inform labelling 

unless a waiver, partial waiver or deferral is granted.3,4 

Based on this legislative framework, a pediatric investigation plan (PIP) is formulated during early 

clinical development for most drug development projects that lays out the design for the first trial or 

sequence of trials in pediatric patients, and the rationale for the first-in-pediatric dose. Fewer children 

are required for the trial when efficacy can be extrapolated from adults, as guided by the FDA 

Pediatric Study Decision Tree.4 To extrapolate, the foundational assumptions are that the disease 

progression and the exposure-response relationship are sufficiently similar between the two 

populations.5 In this case, studies seek to evaluate pediatric dosing regimens to produce exposure 

levels that match the adult exposure levels. Among TPs, and even among TPs with similar structure 

and mechanism of action, different exposure metrics have been used to guide dosing in children. Most 

commonly, the trough concentration at steady state (Cmin,ss) or the area-under-the-curve over the 

dosing interval (AUC0-τ,ss) is used as the exposure target.6-8  

Selecting the first-in-pediatric dose is frequently done when little or no pediatric data are available. 

Pharmacokinetic (PK) data from adults is usually leveraged heavily to create mathematical models of 

drug disposition in the body, either empirical or mechanistic in nature. When the mechanisms of drug 

disposition and/or their age-dependency are not well understood, the principle of allometry is often 

used to scale PK from adults to different age groups of children based on the power relationship 

between basal metabolic rate and body weight across multiple species.9-11 On the other hand, a 

physiologically based pharmacokinetic (PBPK) modeling approach can be used when the 

mechanisms of disposition have been deeply explored, and when there is a solid understanding of 

how young age, developmental stage and disease processes may modulate them in pediatric 

patients.12 In this framework, virtual adults are created with quantitative knowledge of anatomy and 

physiology, and drug disposition is modeled with rate-based equations representing the underlying 

mechanisms responsible.13,14 The adults are then replaced with virtual children for simulating PK 

while holding all other parameters constant. PBPK modeling may be particularly advantageous 

relative to allometry for predicting PK in children less than 2 years of age since the impact of 

immature physiology can be more readily considered if their mechanistic basis is well understood and 
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characterized.15 While these approaches have been qualified and applied for many small molecule 

drugs, the same is not yet true for TPs. 

After first experiences with the first-in-pediatric dose studies have been obtained, the applied PK 

models can be further optimized by refining uncertain model parameters with the newly available 

data to better understand drug disposition in children. A population pharmacokinetic (PopPK) 

analysis using non-linear mixed effects modeling can be performed to identify demographic or 

disease covariates that affect and are predictive of exposure in patient subgroups. If a suitable 

biomarker for pharmacodynamic (PD) effects is measurable, a combined PK/PD model can be 

created to test alternative dosing regimens for therapeutic response. Full exposure-response analyses 

are often impractical to conduct in children since multiple dose levels are required to derive the 

relationship, but the data collected on pediatric outcomes can be used to confirm or deny the 

assumption that the exposure-response relationship is similar between adults and children.16 With the 

results of these advanced analyses, the final dose recommended in the drug label can be different 

from the first-in-pediatric dose rationalized in the PIP.4 

From beginning to end, pediatric dose selection for TPs is complicated by several factors. Inter-

individual variability in PK is substantial (but within the same magnitude of many small molecule 

drugs), and often remains unexplained.17,18 So far, body size is the only consistent covariate found to 

explain some of this variability between individuals.  

TPs binding to abundant in vivo targets may display non-linear PK as a result of target-mediated 

drug disposition (TMDD).19 Drugs subject to TMDD are often dosed to saturate the in vivo target, or 

at least achieve a high receptor occupancy.20 When extrapolating the pharmacokinetic behavior of 

TPs to pediatric patients, knowledge about potential differences in abundance, turnover kinetics, and 

binding affinity to these targets in pediatric populations are usually lacking. Consequently, the 

pragmatic assumption is often made that the in vivo target levels are equivalent between adults and 

children if they are not measurable. Clearance, however, can be dramatically increased if the 

concentrations of target or its turnover kinetics are higher in the pediatric disease state. For example, 

IL-6 levels and other inflammatory cytokines are significantly elevated in systemic juvenile 

idiopathic arthritis (sJIA) as compared to the standard form of juvenile idiopathic arthritis and adult 

rheumatoid arthritis.21 As a consequence, the anti-IL6 mAb tocilizumab requires a two-fold higher 

weight-based dose given twice as frequently in children and adolescents with sJIA relative to adult 

indications.22 
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Finally, patients can experience sudden loss of response to TPs after therapy that was initially 

successful. Development of anti-drug antibodies is a common cause.23 There is currently very limited, 

if any evidence of different immunogenic potential between adults and children.24,25 However, there 

may be differences in the incidence of immunogenicity over time if children are significantly under-

dosed relative to adults, as subtherapeutic TP concentrations have been associated with an increased 

propensity of anti-drug antibody formation.26 

The story of the pediatric use of infliximab highlights these concepts. Infliximab was among the 

first TPs approved for adults and later approved for children. It is an intravenously administered IgG1 

mAb directed against tumor necrosis factor alpha and is used to treat autoimmune conditions. The 

approved weight-based induction and maintenance dose algorithm for children is the same as for 

adults (e.g., 5 mg/kg for inflammatory bowel disease). The first and largest evaluation of infliximab 

PK in pediatric patients over 6 years of age was conducted by Fasanmade et al. and noted comparable 

clearance (in mL/kg/day), but higher peripheral volume of distribution (in L/kg) in children.27 

Applying the same principles as for small molecules, the consensus was that no dose adjustment was 

necessary. In the landmark REACH trial, over 60% of pediatric patients with Crohn’s disease 

achieved clinical response or remission after one year of therapy.28 However, half of the patients 

required an increased dose or a shortened dosing interval to maintain a clinical response.29 While the 

dose adjustments in the REACH trial were based on clinical evaluation and response, a target trough 

concentration of 3 – 5 µg/mL was soon identified for therapeutic drug monitoring in practice.30-32 Re-

visiting the original analyses by Fasanmade et al. revealed that 60% of children would achieve 

subtherapeutic trough concentrations with the labelled dose.33 The European Society for Paediatric 

Gastroenterology Hepatology and Nutrition subsequently revised their recommendations and 

advocates for upfront intensification of the induction regimen for children less than 10 years of age.31 

Results of a systematic review further suggest that dose increases are necessary for all pediatric 

inflammatory bowel disease patients with low serum albumin or with no concurrent 

immunomodulator therapy.32 In retrospect, it can be concluded that the adult weight-based dosing was 

not appropriate for the pediatric label.32 

Considering these complexities of the pediatric use of TPs, this manuscript summarizes what is 

known about the disposition of TPs in children and offers a commentary about the utility of different 

methods for pediatric PK extrapolation and dose selection. There are two pivotal events in the process 

of pediatric dose selection that are presented – determining the first-in-pediatric dose for the PIP and 
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preparing the final pediatric dosing regimen for the drug label. To address foundational concepts, the 

discussion is primarily focused on the case where a TP is administered intravenously and exhibits 

linear pharmacokinetics. For a more detailed discussion on the current knowledge regarding age-

associated differences in the mechanisms underlying disposition of TPs, the reader is referred to other 

recent reviews by our groups.25,34 

1.3 Observations on Pediatric Exposure 

Deriving dosing regimens for TPs in children requires a consensus for the typical PK in children as 

compared to adults. Until recently, the statement that children have a larger weight-normalized 

volume of distribution and faster weight-normalized clearance than adults has been based on the 

pediatric experience with mAbs, with some conflicting reports.35,36 More recently, additional PopPK 

models have been published for mAb and non-mAb-based TPs that provided the opportunity to 

further clarify the body weight effect on PK parameters for TPs. 

A literature search was performed to collect PopPK models for TPs and explore trends in exposure 

from very young children to adults. Models were included if they described the PK of an intravenous 

TP from adults down to children less than 1 year of age with dose-independent clearance. By focusing 

on intravenous TPs with linear PK, we limited possible confounding factors on distribution and 

elimination parameters, such as the effect of TMDD or incomplete absorption from an extravascular 

administration site. In the reviewed pediatric PopPK models, trends in exposure are described by 

quantitative relationships between body size measures (weight, lean body weight, fat-free mass, body 

surface area) and PK parameters (clearance, volume of distribution). For small molecules, the 

principle of allometry suggests that there is a nonlinear power relationship between body weight and 

clearance with an exponent of 0.75, and a linear relationship between body weight and volume of 

distribution (an exponent of 1.0). In other words, conventional allometry suggests that the weight-

normalized clearance should be higher in young children (in mL/h/kg), but that weight-normalized 

volume of distribution should be consistent with adults (in L/kg). We investigated whether this 

relationship also holds true for TPs. 
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Table 1. Select population pharmacokinetic models for intravenous therapeutic proteins across adults and young children 

Study Drug INN 

(Trade name) 

Class Age Range 

(years) 

Covariate Relationships for PK Parametersa 

(CL, Q2, Q3 in mL/h; V1, V2, V3 in L) 

Abrantes et 

al., 201737 

Moroctocog Alfa  

(Xyntha/ReFacto) 

 

Clotting factor 

(Factor VIII)  

0 – 73 

*correction 

for age ≤1 

𝐶𝐿 = 276 × (
𝐵𝑊

70
)

0.75
× [1 − 0.0068 × (𝐴𝑔𝑒 − 20)]  

𝑉1 =  2.45 × (
𝐵𝑊

70
)

0.812
  

𝑄2 = 2510 × (
𝐵𝑊

70
)

0.75
  

𝑉2 = 0.923 × (
𝐵𝑊

70
)

0.812
  

Bjorkman et 

al., 201238 

Octocog Alfa 

(Advate) 

 

Clotting factor 

(Factor VIII) 

1.1 – 66 
𝐶𝐿 = 193 × (

𝐵𝑊

56
)

0.80
× [1 − 0.0045 × (𝐴𝑔𝑒 − 22)]  

𝑉1 = 2.22 × (
𝐵𝑊

56
)

0.95
  

𝑄2 = 147  

𝑉2 = 0.73 × (
𝐵𝑊

56
)

0.76
  

Chelle et al., 

201939 

Plasma derived 

Factor VIII and VWF 

complex 

(Fanhdi/Alphanate) 

 

Clotting factor 

(Factor VIII) 

1 – 72 
𝐶𝐿 = 195 × (

𝐹𝐹𝑀

50.5
)

0.701
× [1 − 0.0121 × (𝐴𝑔𝑒 − 25)]𝐴𝑔𝑒>25  

𝑉1 = 2.30 × (
𝐹𝐹𝑀

50.5
)

0.726
  

𝑄2 = 78  

𝑉2 = 0.449 × (
𝐹𝐹𝑀

50.5
)

0.842
  

Clements et 

al., 202040 

Blinatumomab 

(Blincyto) 

 

Bispecific 

antibody 

derivative 

0.6 – 80 
𝐶𝐿 = 2220 × (

𝐵𝑆𝐴

1.876
)

0.620
  

𝑉1 = 5.98  

Garmann et 

al., 201741 

Octocog Alfa 

(Kovaltry) 

 

Clotting factor 

(Factor VIII) 

1 – 61 
𝐶𝐿 = 188 × (

𝐿𝐵𝑊

51.1
)

0.610
  

𝑉1 = 3.00 × (
𝐿𝐵𝑊

51.1
)

0.95
  

𝑄2 = 190  

𝑉2 = 0.637  
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Han et al., 

201642 

Bevacizumab 

(Avastin) 

 

Monoclonal 

antibody 

0.5 – 21 
𝐶𝐿 = 9.9 × (

𝐵𝑊

70
)

0.75
× 1.11  

𝑉1 = 2.85 × (
𝐵𝑊

70
)

0.701
× 1.14  

𝑄2 = 28 × (
𝐵𝑊

70
)

0.75
  

𝑉2 = 2.564 × (
𝐵𝑊

70
)

0.766
  

Jodele et al., 

201643 

Eculizumab (Soliris) 

 

Monoclonal 

antibody 

NR 
𝐶𝐿 = 98.6 × (

𝐵𝑊

70
)

0.75
  

𝑉1 = 5.72 × (
𝐵𝑊

70
)

1.0
  

Preijers et 

al., 201844 

Assorted Factor IX 

Products 

Clotting factor 

(Factor IX) 

0.2 – 90 
𝐶𝐿 = 284 × (

𝐵𝑊

70
)

0.75
× [1 − 0.0089 × (𝐴𝑔𝑒 − 34)]𝐴𝑔𝑒<34  

𝑉1 = 5.45 × (
𝐵𝑊

70
)

1.0
× [1 − 0.0115 × (𝐴𝑔𝑒 − 34)]𝐴𝑔𝑒<34  

𝑄2 = 110 × (
𝐵𝑊

70
)

0.75
  

𝑉2 = 4.8 × (
𝐵𝑊

70
)

1.0
  

𝑄3 = 1610 × (
𝐵𝑊

70
)

0.75
  

𝑉3 = 2.04 × (
𝐵𝑊

70
)

1.0
  

Shemesh et 

al., 201945 

Atezolizumab 

(Tecentriq) 

 

Monoclonal 

antibody 

0.6 – 29 
𝐶𝐿 = 9.04 × (

𝐵𝑊

77
)

0.795
  

𝑉1 = 3.01 × (
𝐵𝑊

77
)

0.766
  

𝑄2 = 7.625  

𝑉2 = 1.36  

Suzuki et 

al., 201646 

Nonacog Alfa 

(BeneFIX) 

 

Clotting factor 

(Factor IX) 

0 – 69 
𝐶𝐿 = 551 × (

𝐵𝑊

70
)

0.799
  

𝑉1 = 9.77 × (
𝐵𝑊

70
)

0.881
  

𝑄2 = 577 × (
𝐵𝑊

70
)

0.741
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𝑉2 = 4.62 × (
𝐵𝑊

70
)

1.02
  

Zhang et al., 

201747 

Lonoctocog Alfa 

(Afstyla) 

 

Clotting factor 

(Factor VIII) 

1 – 60 
𝐶𝐿 = 212 × (

𝐵𝑊

68
)

0.756
× (

𝑉𝑊𝐹

113
)

−0.633
  

𝑉1 = 3.36 × (
𝐵𝑊

68
)

0.903
  

𝑄2 = 134  
𝑉2 = 0.265  

BW = body weight, LBW = lean body weight, FFM = fat-free mass, BSA = body surface area, VWF = von Willebrand factor 
a Covariates not related to body size or age are excluded 
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Eleven PopPK models were available in the literature for a variety of TPs with molecular weights 

ranging from 50 to 267 kDa (Table 1). Most of the PK models used a two-compartment structure 

(n=8), though one-compartment (n=2) and three-compartment (n=1) models were also used. Four of 

the models used at least one fixed allometric exponent (0.75 or 1) to describe the relationship between 

body weight and PK parameters according to conventional allometry.37,42-44 Consistent with the 

allometry hypothesis, the median exponent for the effect of body weight on clearance was 0.80 (range 

0.76 – 0.80) among the models where body weight effects were estimated from the available data.38,45-

47 Two of the models with data-informed body weight effects on clearance also found mild effects of 

age-related covariates, but excluding these studies does not change the median result.38,47 For volume 

of distribution parameters, the median exponent derived for the covariate effect of body weight was 

0.81 (range 0.70 – 1.02), in contrast to the conventional linear relationship (with an exponent of 1.0) 

from small molecule PK.37,38,42,45-47 

This result supports the notion that – in contrast to conventional allometry – both clearance and 

volume of distribution for TPs are expected to be higher in children than in adults on a per kg body 

weight basis. The consequence is that terminal elimination half-life can be the similar between adults 

and children, but overall concentrations are lower for an intravenously administered TP with weight-

normalized dosing. These observations are in agreement with similar results reported specifically for 

mAbs.48 A consistent pattern of exposure was observed for all TPs in this study, regardless of size or 

affinity for the neonatal Fc receptor (FcRn). Consequently, children will require higher weight-based 

doses of TPs to match the exposures in adults.  

To determine the degree of underdosing that may occur when children are given the same weight-

based doses as adults, we performed simulations with a generic two compartment PK model with 

parameters of a typical mAb:49 

𝑉1 =  3 × (
𝐵𝑊

70 𝑘𝑔
)

0.8

𝐿 

𝑉2 =  1.5 × (
𝐵𝑊

70 𝑘𝑔
)

0.8

𝐿 

𝐶𝐿 =  10 × (
𝐵𝑊

70 𝑘𝑔
)

0.75

𝑚𝐿/ℎ 

𝑄2 =  10 × (
𝐵𝑊

70 𝑘𝑔
)

0.75

𝑚𝐿/ℎ 
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where V1 and V2 are the volumes of distribution of the two compartments, CL is the elimination 

clearance, Q2 is the intercompartmental clearance, and BW is the body weight in kg.  

The model was simulated with body weights for one mean individual at each year of age from 1 to 

18 years together with a 25-year-old adult (n = 19). Typical body weights were taken from the ICRP 

database.50 The area-under-the-curve (AUC) and 28-day trough concentration for each individual 

were then compared against the simulated adult values (Figure 1). With the same weight-based dose, 

the generic model predicts that typical children who are 1, 5, 10 and 15 years old would achieve 

plasma AUC measurements that are only 64%, 74%, 83% and 95% of the AUC of a 25-year-old 

adult, respectively. The deficits in trough concentrations are even slightly larger, with typical children 

who are 1, 5, 10 and 15 years old achieving trough concentrations of 59%, 70%, 81% and 94% of the 

trough concentration of a 25-year-old adult, respectively.  

 

Figure 1. Projected AUC and trough concentrations for a typical mAb in typical individuals aged 1 to 

25 years relative to adults if a constant weight-based dose were given across all ages. 

These findings are supported by real-world data from the Web-Accessible Population 

Pharmacokinetic Service - Hemophilia program (www.WAPPS-Hemo.org).51 This program provides 

a PK-based dose tailoring for clotting factor replacement therapy in hemophilia-A patients that 

produce minimal or no endogenous clotting factor VIII (molecular weight: ~240 kDa). WAPPS-

Hemo uses Bayesian techniques to calculate individual PK parameters for clotting factor VIII 

concentrates in hemophilia patients using underlying PopPK models, with only small numbers of 

factor VIII activity measurements. Figure 2 presents the dose-normalized AUC for factor VIII derived 

by WAPPS-Hemo based on dosing and demographic information for 2,453 infusions of factor VIII 
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concentrate in 1,897 patients between 1 and 35 years of age, including a trendline fitted by locally 

estimated scatterplot smoothing (Loess). With the same weight-based dose, typical children who are 

1, 5, 10 and 15 years old achieve plasma AUC measurements that are only 58%, 70%, 82% and 91% 

relative to the AUC in a 25-year-old adult (100%), respectively. An allometric function for clearance 

with an exponent of 0.75 was tested against the data and was able to characterize the trend well.  

 

Figure 2. Dose-normalized AUC for factor VIII concentrates in pediatric and adult patients with 

hemophilia, derived from real-world data of the WAPPS-Hemo program. The circles denote 

individual patient data, the red solid line was created with locally estimated scatterplot smoothing 

(Loess) and the blue dashed line was projected with allometry (𝑪𝑳 ~ (
𝑩𝑾

𝟕𝟎 𝒌𝒈
)

𝟎.𝟕𝟓
). 
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Limited available data suggest that the observed nonlinearity between TP clearance and volume of 

distribution versus body weight may be even more pronounced in neonates and infants. Figure 3 

presents PK data for intravenous TPs in preterm and term neonates relative to adults. In both cases, 

volume distribution and clearance are higher in infants than adults on a per kg basis, and the infant 

plasma concentrations are markedly lower. Pagibaximab is a chimeric monoclonal antibody (MW 150 

kDa) against lipoteichoic acid (LTA) for the prevention of staphylococcal sepsis. The presented 

concentration-time profiles were digitized from publications of studies in healthy adults and very-

low-birth-weight preterm infants less than 7 days old.52,53 Since the assay measured total anti-LTA, 

the baseline measurement was subtracted from each subsequent concentration to approximate the 

exogenous pagibaximab concentration. For epoetin alfa (MW 30.4 kDa), the data originated from 

studies in healthy adults and neonates with hypoxic-ischemic encephalopathy receiving an 

intravenous infusion on the first day of life.54,55 The neonates had induced hypothermia as part of the 

treatment protocol for encephalopathy, and half of the subjects had renal dysfunction – two conditions 

that theoretically slow the clearance of epoetin. Nevertheless, the same trend of lower exposures and 

faster clearance (in mL/h/kg) was also observed for these infants.  

 

Figure 3. Pharmacokinetic profiles for preterm and term neonates for intravenous therapeutic proteins 

as contrasted with adults: Left panel: Pagibaximab52,53; Right panel: Epoetin Alfa54,55 

To summarize, neonates, infants and children receiving weight-based doses of TPs are expected to 

achieve lower AUC and trough concentrations than their adult counterparts. This trend seems 

consistent across multiple types and sizes of TPs including mAbs, growth factors and clotting factors. 

At 2 years of age, children are projected to require weight-based doses that are ~60% higher than 

adults for equivalent exposure. Real-world data from the WAPPS-Hemo program support the 
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projected pediatric exposures and showed that an allometric exponent of 0.75 is appropriate for 

characterizing the unspecific clearance of TPs in children down to 1 year of age. Furthermore, our 

review of PopPK models describing the pediatric PK of intravenous TPs with linear kinetics did not 

find sufficient evidence to support a linear relationship between volume of distribution parameters 

and body weight (i.e. an allometric exponent of 1). Instead, a median exponent of 0.8 was noted to 

describe the effect of body weight on volume of distribution among existing models. 

1.4 First-in-Pediatric Dose Selection 

The first-in-pediatric dose is selected as part of the PIP with usually little or no pediatric data 

available to inform the decision. Thus, drug developers have to rely heavily on mathematical methods 

to scale PK and PD from adults to children. Allometry is preferred for scaling PK when the drug 

exhibits linear kinetics without time-dependent clearance or TMDD. PBPK modeling can be used 

when disposition processes for the TP and their age-associated differences are reasonably well 

understood and a mechanistic framework for characterizing drug disposition would be beneficial. The 

rationale for the first-in-pediatric dose selection is rarely published, but the underlying reasoning was 

explained for abatacept and tocilizumab.25 In the primary literature, one combination of allometry and 

PK/PD strategy is described for domagrozumab, but its success is unknown since the development 

program was terminated in 2018.6 Similarly there is one PBPK strategy published for asunercept.56 

The exposure target for the first-in-pediatric study depends on the exposure-response relationship 

derived in adults and the confidence with which investigators can anticipate PD effects in children. 

Steady state AUC, steady state trough concentrations or post-induction trough concentrations are the 

parameters commonly linked to response. If a full or partial extrapolation exercise indicates that the 

exposure-response relationship can be assumed similar between adults and children, the plasma 

exposure target will be the same as for adults. If the exposure-response relationship is different, a new 

exposure target must be derived. Measurable biomarkers of disease in children (e.g., circulating 

antigen concentrations) can be incorporated into a PK/PD or PBPK/PD framework for extrapolation 

of an exposure target.6,57-59 

Since children require higher weight-based doses of TPs than adults in cases where the exposure-

response relationship is similar as discussed in the preceding section, it is arguably ethically 

questionable to initiate a trial with the adult dose and perform a subsequent dose escalation. Ethical 

recruitment of children for clinical studies mandates that the pharmacotherapy is for a therapeutic 
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purpose. For a dose escalation study, more children would be required for the trial, and some of them 

would be knowingly exposed to doses that are likely subtherapeutic. Thus, this strategy should only 

be entertained if very little is known about the PD and exposure-response of the drug in children and 

the risks of unintended over-exposure are high (e.g., in the case of cytotoxic protein-drug conjugates). 

The commonly used approaches for first-in-pediatric dose selection include conventional allometric 

approaches, modified allometric approaches, hybrid approaches and PBPK modeling. As already 

mentioned, conventional allometric approaches scale PK parameters in proportion to body weight 

with empirical power relationships, with allometric exponents of 1 for volume and 0.75 for clearance 

terms. This approach has, in many instances, acceptable accuracy for predicting the PK of small 

molecules in children down to 2 years of age.15 However, the allometric approach has not been fully 

qualified for use with TPs, with ongoing debate about the proper exponents, and limitations with 

respect to very young age groups. Published examples are largely limited to older children where the 

effects of maturation and ontogeny on PK are expected to be mild. One case study, for example, 

describes how allometry was used to guide the first-in-pediatric dose for domagrozumab in children 

6-10 years of age.6  Similarly, several objective evaluations of conventional allometry for children 

older than 4 years suggest that predictions for TP concentrations fell within a 1.5 to 2-fold error in the 

majority of the model extrapolations.48,60 However, there was considerable variability in accuracy 

when multiple adult PopPK models were scaled for one drug (infliximab), with the poorest model 

making predictions within 2-fold error for only 47% of the observed concentrations.60 This result 

stresses the importance of a strong understanding of TP disposition in adults prior to scaling to 

children and provides some idea of the worst case prediction scenario.  

Deviating from conventional allometry, our review finds that exponents between 0.7 and 1.0 are 

most frequently applied for describing the effect of body weight on volume of distribution for TPs in 

children (median = 0.81). Similarly, but specific to mAbs, a recent review also noted allometric 

exponents between 0.7 and 0.9 in 20 PopPK models for children, although the authors cautioned that 

their results may have been confounded by poor sampling schemes.48 The allometric exponent of 0.8 

for volume of distribution has physiological relevance, as it reflects that young children have higher 

extracellular water fractions than adults.61,62 Convincingly, Figure 4 shows a good fit between the 

allometric function with an exponent of 0.8 and the observed data for extracellular water fraction in 

children (as estimated by iohexol distribution volume).61 This allometric approach only misses to 

capture the very high extracellular water fractions for infants under 1 year of age or 10 kg in body 
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weight (values up to 60% in newborns). Considering the totality of evidence, we anticipate that the 

allometric exponents of 0.75 for clearance and 0.8 for volume of distribution will be best when 

empirically scaling the PK of a TP for children from >1 – 18 years of age.  

 

Figure 4. Observed data for extracellular water fraction (ECWF) in children as approximated by the 

iohexol distribution volume.61 The circles denote individual data for boys, the diamonds denote 

individual data for girls, and the blue solid line was projected with allometry (𝑬𝑪𝑾𝑽𝒄𝒉𝒊𝒍𝒅 =

𝑬𝑪𝑾𝑽𝒂𝒅𝒖𝒍𝒕 × (
𝑩𝑾𝒄𝒉𝒊𝒍𝒅

𝟕𝟎 𝒌𝒈
)

𝟎.𝟖
). The reference value for the ECWF of a 70 kg adult is 19% of body 

weight. The black dashed line marks the threshold of 10 kg body weight, below which the use of the 

allometric function to describe ontogeny in ECWF does not seem warranted. 

In theory, a modified allometric approach could be used when age-dependent effects on PK 

parameters are known. For instance, age-dependent effects on PK can be captured by a maturation 

function with post-menstrual or post-natal age as an input to clearance. However, maturation 

functions with any predictive value would need to be derived from dense PK data in very young 
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children for multiple TPs. As these functions are generally not rooted in well understood age-

associated molecular or physiological processes, their current use is often merely a fudge factor in 

pediatric PopPK modeling that compensates for the error associated with assumptions in the model 

development process (e.g., using fixed allometric exponents for newborns and infants, or assuming 

consistent extravascular bioavailability across age for subcutaneously administered TPs).35,36 

A hybrid approach of allometry and PBPK modeling is offered for TPs in the commercially 

available software SimCyp (Certara, Princeton, NJ).63 In this package, virtual individuals are 

represented by physiological organ volumes and blood flows. Distribution of TPs is modeled by a 

combination of convection, diffusion, and transcytosis within the two-pore framework, with lymph 

recirculation from the interstitial fluid. Non-specific catabolism of TPs is modeled as a plasma 

clearance and optimized using the adult data. Pan et al. made excellent predictions for pediatric PK by 

replacing the virtual adults with virtual children (with modifications for lymph flow) and scaling the 

non-specific catabolism by conventional allometry.63 Evaluated protein products for the hybrid 

approach include recombinant erythropoietin and anakinra, which support the use of the model to 

predict plasma PK for non-mAb based proteins down to neonates. For mAbs and Fc fusion proteins, 

the software package pragmatically attributes the effect of ontogeny on elimination to a lower FcRn 

concentration in children that was optimized to the circulating IgG levels at each age, although there 

are currently no convincing mechanistic data available to suggest reduced abundance or function of 

FcRn in young pediatric patients. The lower circulating IgG subclass concentrations can also be 

explained by other plausible mechanisms, for example the well-described increased generalized 

protein metabolism in young pediatric patients, and/or a potentially reduced IgG synthesis rate,25 and 

further understanding of the ontogeny of the underlying physiological processes will be needed to 

fully support this approach for the typical uses of full PBPK models (e.g. approximating target organ 

exposure, modeling disease effects on PK, etc.) in pediatric patients younger than 2 years of age.  

PBPK modeling is considerably more complex than allometry and can be used to scale PK from 

adults to children when the mechanisms of drug disposition are well-understood. The processes 

governing the absorption, distribution, and elimination of TPs are very different from the processes 

driving the PK of small molecules, and have been reviewed previously.2 Despite this complexity, the 

PK of a wide range of TPs (10 kDa to 300 kDa) can be described within one common paradigm. As 

mentioned, the distribution of a TP is confined to the extracellular water volume. Extravasation from 

the plasma to the interstitial fluid occurs by a combination of convection and diffusion through 
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vascular pores and is limited by the hydrodynamic radius. Lymph flow returns the drug from the 

interstitial fluid to the venous blood. Elimination occurs when TPs are taken up into cells by 

phagocytosis, pinocytosis, or in specific cases, receptor-mediated endocytosis. Certain TPs related to 

immunoglobulins or albumin escape intracellular degradation by interacting with the salvage receptor 

FcRn. Renal metabolism can be prominent for TPs less than 70 kDa.64 

The workflow to build a pediatric PBPK model is well-established.12,13 Virtual adults are first 

created with quantitative knowledge of anatomy and physiology, and drug disposition is modeled 

with rate-based equations representing the actual mechanisms responsible. Uncertain or unknown 

parameters are optimized to the observed data in adults, and the final model is externally verified by 

predicting PK in heterogeneous scenarios. The virtual adults are then replaced with virtual children 

that are parameterized to account for immaturity in physiological processes relevant to drug 

disposition. PBPK modeling may be advantageous over allometry for predicting PK in children less 

than 2 years of age since the impact of immature physiology can be mechanistically considered. 

The physiological drivers of faster absorption, distribution, and clearance of endogenous and 

exogenous (i.e, therapeutic) proteins in children have been reviewed and applied to a PBPK model for 

mAbs in premature infants.34,65 Fast absorption is driven by a lymph flow that is up to three times 

faster in infants than in adults. High extracellular water volumes increase the extent of distribution on 

a per kg body weight basis. Relatively large central organs with leaky vasculature and dense capillary 

networks enable fast extravasation into interstitial fluid. High concentrations of circulating leukocytes 

increase cellular uptake and subsequent degradation. FcRn function has sometimes been postulated to 

be lower in children, but this argument is not supported by clear in vitro or in vivo evidence. The 

strongest argument against the hypothesis is that the pattern of pediatric exposure is identical for 

proteins that bind to FcRn, and those that do not (Table 1).63 Two PBPK models for TPs are available 

[PK-Sim (Open Systems Pharmacology)66; SimCyp63], but have not been mechanistically translated 

to pediatrics for these purposes.  

The inherent strength of a PBPK model is that drug concentrations or receptor occupancy at the 

target site (e.g., the brain, a tumor, or an inflamed bowel) can be feasibly extrapolated from animals 

through adults to pediatric patients with sufficient in vivo evidence.67 The burden of an active disease 

state and its impact on PK can be mechanistically represented, as it has for example been done for the 

impact of inflammation on the PK of TPs in animals and humans.60,68,69 In addition, PBPK modeling 

allows us to concurrently explore more multiple competing mechanisms relevant for TP disposition 
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and their changes in children, such as the interaction of endogenous IgG and exogenous Fc-containing 

TPs with FcRn and the interdependencies of the resulting effects. As this application is in its infancy, 

there have been no PBPK models used to inform a pediatric drug label for a TP to date.70 The 

growing PK data available for TPs and the foundational similarities in disposition throughout the drug 

class will likely enable more broad pediatric PBPK applications for first-in-pediatric dose selection in 

the near future, especially if more mechanistic understanding on the ontogeny of underlying drug 

disposition processes is emerging. 

For a substantial number of TPs, extrapolation of PK to pediatric patients is further complicated by 

TMDD.71 TMDD is the phenomenon where the binding of the TP to its target, either soluble or 

membrane-bound, triggers an additional elimination pathway for the TP. Since this TMDD 

elimination pathway is usually saturable at therapeutic concentrations, clearance decreases with 

increasing doses until the target is overwhelmingly saturated, resulting in dose-dependent, nonlinear 

PK behavior. As nonlinear clearance parameters are rarely correlated with body weight, scaling non-

linear clearance depends on what is known about differences in target abundance, turnover, binding 

kinetics and TP-target complex degradation between the adult and pediatric populations.71 A 

Michaelis-Menten approximation is often used to model nonlinear clearance, particularly when there 

is limited information available on the target kinetics. Among adults and young children with the 

same disease state, constant values for the Michaelis-Menten constant (KM) and the maximum 

elimination rate (VMAX) for all ages have achieved acceptable PopPK model fits for thymoglobulin, 

alemtuzumab and nab-paclitaxel.72-74 While there is usually consensus to use the same KM parameter 

in both populations, weight based scaling has at least been suggested for VMAX when scaled for first-

in-human studies.75 If sufficiently characterized at least in adults, the full TMDD model allows for 

more flexibility in pediatric scaling as physiologic and mechanistic information about age-specific or 

population-specific differences in target concentration or production can be integrated.6,58 This was 

recently exemplified in a PBPK model for epoetin alfa with a quasi-equilibrium approximation of the 

TMDD model where the nonlinear PK in adults and children was characterized with a constant 

parameter set.63 In one combined TMDD and PK/PD model for canakinumab, the turnover of the 

target (IL-1β) was noted to be modestly increased in young children vs. older children.57 

Similar to TMDD, extrapolating the processes related to subcutaneous or intramuscular 

administration from adult to pediatric patients remains challenging. Currently first-in-pediatric dosing 

of mAbs administered via the extravascular route is done through allometric extrapolation from adult 
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extravascular dosing.70 Development programs typically seek approval for an intravenous route of 

administration first and later add the subcutaneous route approval based on exposure matching and 

non-inferiority trials. Examples include secukinumab, pertuzumab, abatacept, tocilizumab, and 

daratumumab. For pediatrics, doses are then extrapolated from adult subcutaneous doses, as for 

example done for abatacept, tocilizumab, and etanercept. Due to the limited understanding of the 

determinants of rate and extent of absorption after subcutaneous administration of TPs, the ability for 

mechanism-based extrapolation to pediatric patients remains limited.76 Based on the increased 

extracellular water content and a higher perfusion rate (both blood and lymph) relative to adults, one 

might expect a faster rate of absorption in young pediatric patients relative to adults.34 For the extent 

of absorption, the situation seems to be less clear, having potentially counteracting increased protein 

turnover and decreased lymphatic residence time and degradation.34 These mechanistic differences 

seem to translate into quantifiable differences in the PK of TPs: For example, the absorption rate was 

three times faster in infants and young children compared to adults on IM administration of 

palivizumab, but the extent of absorption remained unchanged.35 Some of these aspects have been 

incorporated into semi-mechanistic and PBPK models used to predict absorption pharmacokinetics in 

pediatric patients by borrowing animal and human physiological data from the literature, but 

published success of these approaches remains scarce.77-79 

Considering the available tools and anticipated challenges, we have formulated general 

recommendations for first-in-pediatric dose selection for TPs (Figure 5). Presented data suggest 

nonlinear relationships between body weight and both clearance and volume of distribution for TPs in 

pediatric populations, with allometric exponents of 0.75 and 0.8, respectively. The ease of use for 

allometry and relative confidence as compared to PBPK modeling make allometry or hybrid 

allometry the preferred approaches to scaling PK down to children 1 year of age, or ≥10 kg body 

weight. For newborns and infants (i.e. <1 year of age or <10 kg body weight), even higher 

nonlinearity seems to occur. PBPK models are under development to support extrapolation to these 

vulnerable populations. Previous clinical trial experience with older children increases the confidence 

with which an extrapolation can be made. When administering by an extravascular route or when the 

drug is subject to significant TMDD, the same allometric principles can be used to scale foundational 

PK parameters with the modifications outlined in the previous paragraphs, but more uncertainty in the 

dose predictions can be expected. An uncertainty analysis should be conducted to assess the risk of 

potential under- and especially overexposure.  
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Figure 5. Rationalized approach to first-in-pediatric dose selection for therapeutic proteins. PK = 

pharmacokinetics, FDA = US Food and Drug Administration, CL = clearance, Q2 = 

intercompartmental clearance, V1 = volume of distribution in the central compartment, V2 = volume 

of distribution in the peripheral compartment, TMDD = target-mediated drug disposition, VMAX = 

maximal rate of nonlinear elimination, KM = Michaelis-Menten constant, PBPK model = 

physiologically based pharmacokinetic model 

The way forward for improving first-in-pediatric dose selection will be paved by more detailed 

access to pediatric PK data for TPs from which we can learn, more detailed physiological data on 

ontogeny of processes relevant for TP disposition, and in general more pediatric drug development 

experience for TPs. Inevitably, the ontogeny of the extravascular absorption rate and processes, for 

example, will be able to be quantified with enough PK data for a variety of molecules. More detailed 

physiological data can be directed toward refining ontogeny profiles in infant PBPK models for 

parameters such as leukocyte content, capillary density, lymph flow rate and FcRn concentration. 

Finally, there is a need to standardize an approach to variability and virtual pediatric populations. 

While adult parameters from a PopPK model can be scaled to children by allometry, it is not known 

whether the interindividual variability in these parameters will be consistent between adults and 

children. 
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1.5 Pediatric Dose Selection for Labelling 

When pediatric data has been collected in the first-in-pediatric trial and subsequent studies, the 

disposition of a TP drug in pediatric patients can often be characterized with high granularity using 

the aforementioned PopPK or PBPK tools.16 However, translating the mathematical relationships 

established in these models back into clinically useful dosing recommendations is far from trivial. 

After all, healthcare providers cannot be expected to use complex mathematical relationships to 

derive a dose, especially if they involve patient-specific covariates that may be difficult to measure 

(e.g., body surface area).  

The first-in-pediatric dose selection as outlined in the previous section and the underlying 

understanding of the influence of body size, age and disease on PK, PD and the exposure-response 

relationship for the TP of interest can either be confirmed or further refined during the pediatric 

clinical development program. Independent of the exact course of this pathway, however, in the end 

usually carefully characterized PK and/or PKPD relationships and their modulation by physiologic, 

pathophysiologic and ontogenic processes need to be converted into pediatric dosing 

recommendations that are part of the drug product labeling. As such, pediatric dose selection for 

labeling can be viewed as a compromise between precision medicine and practicability: The relatively 

precisely defined mathematical relationship between demographic, physiologic and pathophysiologic 

covariates and dose requirements in individual patients has to be balanced with the clinical 

requirements of limited complexity to avoid overburdening healthcare providers and prevent 

medication dosing errors. The acceptable degree of simplification is dependent on the individual TP 

in a specific indication, particularly the steepness of the exposure-response relationship, the 

narrowness of the therapeutic index of the TP, and the degree of between-patient variability in PK and 

PD.  

While TPs, and most specifically mAbs, have been reported to exhibit 20-59% between-subject 

variabilities in PK parameters (similar to those of small molecule drugs), many TPs have high 

tolerability and very limited off target toxicity, leading to relatively wide therapeutic indices for many 

indications.16,18,49 In these instances, wider ranges of exposure may be equally safe and efficacious as 

compared to more narrowly defined exposure metrics. Consequently, pediatric dosing 

recommendations for TPs are frequently defined by relatively broad patient strata that can easily be 

implemented in healthcare settings but provide sufficient granularity for age-appropriate dosing.4,80 
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Tiered dosing is the most frequently used approach to implement this concept in pediatric 

pharmacotherapy, and has been explored in detail for use with TPs.3 With this dosing approach, one 

of several body weight- or age-defined patient strata receive either a flat or a body size-adjusted dose. 

For example, adalimumab pediatric dosing in juvenile idiopathic arthritis is based on body weight 

where patients above 2 years of age receive a subcutaneous dose of either 10, 20 or 40 mg every other 

week, dependent on whether their body weight falls within the strata of 10 to <15 kg, 15 to <30 kg, or 

≥30 kg.81 Similarly, patients above 2 years of age also receive different doses of tocilizumab if their 

body weight is lower or higher than 30 kg. But in contrast to adalimumab, tocilizumab dosing is 

further weight normalized (12 mg/kg and 8 mg/kg IV every 4 weeks for <30 kg and ≥30 kg, 

respectively) to allow for more granular dose adjustments.82 If available, dose selection may be 

further guided by clinically accessible biomarkers if these have a major impact on the PK and PD of 

the TP. Omalizumab is a prime example for this application, where the pediatric dosing 

recommendations are based on age and weight strata that are further modified by pretreatment serum 

IgE levels, the molecular target of omalizumab in the treatment of allergic asthma.83 

The translation of a pediatric PK model into clinical dosing recommendations for regulatory 

approval is exemplified by the approval of adalimumab for adolescents 12 years and older with 

hidradenitis suppurativa.84 While the underlying population pharmacokinetic modeling framework 

described the clearance of adalimumab with a nonlinear weight-based relationship, the resulting 

approved dosing recommendation is a tiered dosing with flat dosing in two body weight strata, 30 to 

<60 kg and ≥60 kg. The translation was facilitated through extensive model-based exposure 

simulations in the target population supported by extrapolation exercises for efficacy and safety of 

adalimumab from adults to adolescents, particularly the assumptions of similar disease progression 

and response to adalimumab in hidradenitis suppurativa, and a similar exposure-efficacy relationship 

in adults and adolescents.84 

While dose individualization based on therapeutic drug monitoring is performed for clotting factors 

with their relatively short half-lives as shown earlier in this manuscript, we do feel that such dosing 

approaches are neither practical nor warranted for most TPs with long elimination half-lives, except 

in situations where between-patient exposure is highly variable, difficult to predict and may lead to 

treatment failure, such as infliximab dosing in pediatric patients with inflammatory bowel disease.85 
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1.6 Conclusion 

In summary, pediatric dose selection for TPs is an evolutionary process from allometric and model-

based approaches over first-in-pediatric dosing to clinical dosing recommendation that is grounded in 

a strong scientific framework of understanding the PK and PD of these compounds and their 

dependency on ontogeny and differences in body size, composition, and functioning between children 

and adults. Thus, TPs require approaches distinctively different compared to small molecule drugs 

based on their disposition properties and the molecular and physiological processes determining them. 

While some understanding of these processes is emerging, substantial gaps and uncertainties are 

remaining that hamper a more widespread and reliable application of especially model-based 

approaches to support pediatric dose selection. We are hopeful that filling these gaps with an 

improved understanding of the ontogeny of clinically relevant drug disposition processes for TPs, 

pediatric dose selection for this class of medications will become a more reliable and precise process 

in the near future. 

1.7 Study Highlights 

This manuscript describes the current state of knowledge on the pediatric pharmacokinetics of 

monoclonal antibodies and therapeutic proteins. The scope of the problem when extrapolating doses 

from adults to children is presented. Relevant methods for extrapolation are reviewed, and best-

practice recommendations are synthesized for use by drug developers and regulators.  

  



 

24 

Chapter 2 

Pharmacokinetic Considerations for Antibody-Drug Conjugates 

against Cancer 

2.1 Abstract 

Antibody-drug conjugates (ADCs) are ushering in the next era of targeted therapy against cancer. An 

ADC for cancer therapy consists of a potent cytotoxic payload that is attached to a tumour-targeted 

antibody by a chemical linker, usually with an average drug-to-antibody ratio (DAR) of 3.5 – 4. The 

theory is to deliver potent cytotoxic payloads directly to tumour cells while sparing healthy cells.  

However, practical application has proven to be more difficult. At present (September 18, 2017) there 

are only two ADCs approved for clinical use. Nevertheless, in the last decade there has been an 

explosion of options for ADC engineering to optimize target selection, Fc receptor interactions, 

linker, payload and more. Evaluation of these strategies requires an understanding of the mechanistic 

underpinnings of ADC pharmacokinetics. Development of ADCs for use in cancer further requires an 

understanding of tumour properties and kinetics within the tumour environment, and how the 

presence of cancer as a disease will impact distribution and elimination. Key pharmacokinetic 

considerations for the successful design and clinical application of ADCs in oncology are explored in 

this review, with a focus on the mechanistic determinants of distribution and elimination.   

2.2 Introduction 

Antibody-drug conjugates (ADCs) are ushering in the next era of targeted therapy against cancer. An 

ADC for cancer therapy consists of a potent cytotoxic payload that is attached to a tumour-targeted 

antibody by a chemical linker, usually with an average drug-to-antibody ratio (DAR) of 3.5 – 4. The 

theory is to deliver potent cytotoxic payloads directly to tumour cells while sparing healthy cells. 

ADCs can be used to improve the therapeutic window of systemic chemotherapeutics and to open the 

door for chemotherapeutics that may have previously failed because of poor permeability or a lack of 

selectivity for tumour cell killing. When the ADC binds its target protein on the surface of tumour 

cells, it can be internalized by receptor-mediated endocytosis. It is subsequently degraded in the cell 

and the payload is released into the intracellular space. Current payloads under investigation primarily 

interfere with microtubule formation or crosslink DNA. Ideally, only cells that express the target 
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protein for the antibody will be exposed to the cytotoxic effects and systemic toxicity will be avoided. 

However, non-specific uptake occurs to a small degree in all tissues.   

While the initial theory is simple, practical application has proven to be more difficult and only two 

ADCs are currently available for therapeutic use: trastuzumab emtansine86 and brentuximab vedotin87 

(September 18, 2017). Nevertheless, as of 2016, approximately 50 ADCs are in the clinical pipeline.88 

Other forms of ADCs, such as radioimmunoconjugates and enzyme-immunoconjugates have been 

studied in preclinical contexts for many years and radioimmunotherapy is effective for hematologic 

malignancies.89 These are once more emerging with promise for solid malignancies, though these are 

beyond the scope of this review. 

For drug developers, academic researchers and clinicians alike, ADCs present unique 

pharmacokinetic opportunities and challenges. They are large molecules (~150kDa) with a 

distribution of the intact ADC that is mostly confined to the plasma, interstitial fluid and lymph.90 

They often possess long plasma residence times because of their dynamic interactions with the 

neonatal Fc receptor (FcRn) and are administered intravenously every 1-4 weeks.91-93 In most but not 

all cases, they exhibit nonlinear pharmacokinetics and dose-dependent clearance due to saturable 

target binding and elimination.94,95 No consistent pattern has yet been identified between the ADCs 

that exhibit dose-dependent clearance and those that do not.94 In theory, the degree of nonlinearity 

will be proportional to the whole body target load. Figure 6 displays the mechanistic processes that 

are thought to affect the distribution and elimination of ADCs in humans. Physiologically-based 

pharmacokinetic (PBPK) models are emerging to describe the biodistribution of ADCs as a function 

of these key processes.96 

A typical pharmacokinetic assessment of an ADC involves an analysis of multiple drug species in 

circulation, including the conjugated antibody, the total antibody (both conjugated and unconjugated) 

and the free payload, as well as any anti-drug antibodies (ADAs) that may have been generated.97 

While it is a standard of practice in industry,97,98 the scientific value of this type of pharmacokinetic 

assessment is limited on its own. As with all drugs, plasma concentrations are only loosely correlated 

with efficacy at the tumour site.99 The high inter-individual variability in plasma protein 

pharmacokinetics confounds predictions for dose-response relationships.92,93 Plasma stability and the 

extent of deconjugation in circulation can be estimated with direct measurements of the conjugated 

fraction.97 The free payload concentrations can be used to evaluate payload-dependent toxicity, 

though this toxicity is not easily distinguishable from the toxicity that occurs when the conjugated 
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antibody is taken up into normal tissues.100 With respect to ADA analysis, it is important that ADCs 

possess low immunogenic potential – though with the increasing use of humanized or fully human 

IgG backbones and the low antigenicity of typical payloads, clinically-significant immunogenicity of 

ADCs is becoming a problem of the past.101 

In the last decade there has been an explosion of options for ADC engineering to optimize target 

selection, Fc receptor interactions, linker, payload and more.102 Evaluation of these strategies requires 

an understanding of the mechanistic underpinnings of ADC pharmacokinetics. Development of ADCs 

for use in cancer further requires an understanding of tumour properties and kinetics at the tumour 

site, and how the presence of cancer as a disease will impact distribution and elimination. Key 

pharmacokinetic considerations for the successful design and clinical application of ADCs in 

oncology will now be explored, with a focus on the mechanistic determinants of distribution and 

elimination (Table 2). 
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Figure 6. The main physiologic processes governing the disposition of ADCs. ADCs administered 

intravenously cross the blood vessel wall and enter tissues by convection through pores or (to a lesser 

extent) by transcytosis through the vascular endothelium. Movement through the interstitial matrix is 

slow and erratic. ADCs in the interstitial fluid bind their target receptor expressed on the cell surface 

and are internalized by receptor-mediated endocytosis. Internalized ADCs undergo lysosomal 

processing in cells and then release their cytotoxic payload. In endothelial, epithelial and 

hematopoietic cells, ADCs can be protected from lysosomal degradation through binding to the 

neonatal Fc receptor (FcRn). ADCs that fail to bind their target are mostly recycled through the 

lymph and back to the venous circulation. Macrophages, monocytes and other immunoregulatory 

cells that express the Fc-gamma family of receptors (FcγR) may phagocytose ADCs locally and in the 

circulation. In all tissues, ADCs may be degraded by non-specific proteases (not pictured). 
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Table 2. Pharmacokinetic considerations for antibody-drug conjugates against cancer 

1. Target-Mediated Drug Disposition 

• High target expression in tumours and 

relatively low expression in normal tissues 

is required 

• Saturable target-mediated elimination 

contributes to nonlinear pharmacokinetics 

• The nature of binding to target at the tumour 

rim may hinder penetration into tumours 

(binding site barrier effect) 

 

2. Circulation and Tissue Distribution 

• Tissue distribution is dependent on 

perfusion, vascular permeability and target 

expression 

• Recycling through the lymphatic system 

allows ADCs to avoid persisting in non-

target-bearing tissues 

3. Fc Receptor Interactions 

• FcRn may facilitate transcytosis of intact 

ADC across endothelial and epithelial layers 

• Affinity for FcRn influences plasma half-

life 

• FcγR-mediated phagocytosis may contribute 

to elimination and toxicity 

 

4. Payload Kinetics 

• The intracellularly-released payload must 

maintain nanomolar cytotoxic potency 

• Hydrophobic payloads diffuse to nearby 

cells, causing a bystander effect 

• Nonpolar payloads may be vulnerable to 

efflux by P-gp  

 

5. Linker Kinetics 

• Site-specific conjugation maximizes 

homogeneity and avoids aggregation due to 

close packing of hydrophobic payloads 

• ADCs with high DARs are cleared quickly 

and accumulate in the liver 

 

6. Tumour Properties 

• High interstitial fluid pressure hinders ADC 

penetration at the tumour rim 

• Normalizing tumour vasculature is a 

double-edged sword 

• Retention in tumours is mediated by poor 

lymphatic drainage and the dense 

extracellular matrix 

• Shifted extracellular pH may alter stability 

and binding kinetics 
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2.3 Target-Mediated Drug Disposition 

ADCs are designed to bind to the extracellular domain of a membrane-bound target protein that can 

facilitate internalization into tumour cells by receptor-mediated endocytosis.103 Because of the high 

affinity of the initial binding interaction, ADCs are said to undergo target-mediated drug disposition 

(TMDD), meaning that the properties of the target influence the pharmacokinetics of the drug.19,95 

TMDD can be observed on a small scale, affecting drug penetration into tumour tissue104 and on a 

large scale, governing drug exposure across the whole body.105 Target expression, internalization, 

turnover, accessibility and binding affinity all impact the pharmacokinetics of ADCs and must be 

considered for optimal target selection. 

2.3.1 Target-Mediated Distribution 

After administration, ADCs distribute to occupy target sites that are present in both normal and 

diseased tissue. Therapeutic doses often achieve maximum target occupancy around the body. If the 

dose is not enough to saturate all target sites, ADCs will distribute to target sites in tissues that are 

highly perfused and permeable106,107 or have high target expression.108  

For optimal specificity, the tumour target load (presence) should be as high as possible compared to 

the whole body target load. In reality, the tumour target load makes up less than 1% of the whole 

body load,109 even with significant target overexpression and upregulation in tumours. New exploits 

target proteins that are uniquely mutated in tumour tissues so that uptake into normal tissues can be 

minimized.110,111 In mice, high target expression in normal tissues can impede the distribution of an 

ADC into tumour tissue by forming a target sink.108   

It has been suggested that this challenge can be obviated by pre-dosing patients with naked 

antibody before administration of the ADC to partially saturate the target sink so that ADC specificity 

for the tumour can be improved and also so that payload toxicity to normal tissues can be 

minimized.112 When using this strategy, a proportion of target sites in the tumour tissue must be left 

unsaturated after the dose of the naked antibody or payload toxicity to tumours will also be 

compromised. However, feasibility would depend precisely on relative tissue perfusion and the nature 

of drug distribution after dosing. There is significant inter-individual variability in target expression 

and each patient would require a different dose of the naked antibody to achieve selective target 

saturation in normal tissues, making this strategy rather impractical. Furthermore, it is likely that the 

naked antibody itself will have activity, either by secondary effects through the immune system or by 
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target modulation (activation or internalization). We therefore do not anticipate this strategy will 

easily translate into clinical application. 

The efficacy of ADCs is dependent on the degree of receptor occupancy or target saturation.113 The 

notion of target accessibility is important, and this idea surfaced after the predicted doses required to 

saturate targets were much higher than observed clinically.114 The density of cell-cell packing and the 

prevalence of tight junctions may limit the accessibility of targets on cell membranes. Target 

accessibility can also be impeded if targets form dimers or oligomers that block or hinder the 

antibody binding domain.68   

2.3.2 Target-Mediated Elimination 

Target-mediated elimination refers to the binding of an ADC to its target, internalization by receptor-

mediated endocytosis and degradation within the cell. Saturable target-mediated elimination 

contributes to the nonlinear pharmacokinetic profile of ADCs. When target sites are saturated, 

elimination follows a zero order rate and when they are unsaturated, elimination follows a first order 

rate.   

Along with target expression, the internalization rate of the drug-target complex also influences 

target-mediated elimination of ADCs. In contrast to small molecules, high target-mediated 

elimination – or in other words, a high rate of internalization into cells – could be desirable for ADCs 

because efficacy depends on internalization into tumour cells.115,116 Antibodies of different sizes or 

antibodies directed against different epitopes of the same target may have drastically different 

internalization rates.117 In some cases, binding of an antibody induces internalization of the target,118 

while in other cases it does not.119 ADCs that induce internalization of the target, rather than passively 

internalize are predicted to have strong efficacy at first, but may struggle with sustained efficacy and 

tumour specificity if the target is quickly depleted on tumour cells. In that case, few target receptors 

would remain for ADC binding.   

The extra-cellular domain (ECD) of membrane-bound targets can often be found in circulation in 

patients whose tumours overexpress the target.120 A mathematical model suggests that the rate of 

shedding is influenced by target expression and the internalization rate.121 Antibodies form immune 

complexes with circulating ECD proteins and are eliminated by immunoregulatory processes with a 

half-life of two days.122,123 Pool et al. determine that antibodies bound to the ECD of EGFR 
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accumulate in the liver.124 Therefore, ADCs against targets that have high shed ECD levels in plasma 

may incur more toxicity to the liver.   

A population pharmacokinetic study of trastuzumab in breast cancer patients concludes that the 

serum ECD concentration is a significant covariate increasing clearance and volume of distribution.125  

However, both a mechanistic model68 and a study in mice126 demonstrate that the effects on plasma 

concentrations are marginal when antibodies are administered at therapeutic doses. It is likely that the 

significance of ECD concentrations as a covariate is related to its role as an indicator of more 

advanced disease in humans, rather than its role as a target sink.   

2.3.3 Binding Site Barrier Effect 

The effects of TMDD are prominent on a smaller scale in solid tumours.104 The binding site barrier 

effect encompasses the cumulative effects of target expression, turnover and binding affinity that may 

hinder ADC penetration throughout solid tumours. If target expression in tumour tissue is 

exceptionally elevated and binding affinity is high, then large ADC concentrations are required in the 

tumour environment to saturate the available receptors at the tumour rim so that free ADC molecules 

can proceed to penetrate into the deeper layers.127,128 ADCs face a similar kinetic challenge when 

target turnover is high and there is a quick replenishment of internalized targets.127 The only 

modifiable component of the binding site barrier effect is target binding affinity. In the tumour 

environment, antibodies with high affinity are more likely to be sequestered by the first available 

targets, rather than to distribute to more distal targets.129 However, a sufficient binding affinity is 

required for internalization and efficacy. It is a balance – there exists an optimal antibody affinity for 

each tumour size and target expression level to maximize distribution of ADCs within tumours while 

maintaining sufficient internalization and efficacy. This problem has been analytically addressed with 

modeling in the context of ADCs.128 

The effects on conjugation on binding affinity must be investigated on a drug-by-drug basis. While 

in many cases the affinity is unaffected,130 some results suggest otherwise. For example, Bondza et al. 

found that conjugation decreased binding affinity for cetuximab but did not affect binding affinity for 

an anti-CD44v6 antibody.131 More research is required to determine the effects of conjugation site 

and payload properties on target binding affinity. 
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2.3.4 Circulating Lymphocyte Antigens 

Of the two ADCs currently on the market, one is directed against HER2, a solid carcinoma target,86 

while the other is directed against CD30, a lymphocyte antigen in Hodgkin’s lymphoma.87 ADCs 

against lymphocyte antigens may require a unique pharmacokinetic approach because the target cells 

may be spread throughout different tissues, the lymphatic system or the peripheral circulation. 

Approximately 30% of ADCs in development are directed against hematologic and lymphoid 

cancers.88 To date, there have been no clear pharmacokinetic differences in phase 1 trials between 

ADCs against solid carcinoma targets and those against hematologic or lymphoid cancers.94 However 

this assessment is limited by the low sample sizes in phase 1 trials, the diversity of patients, the 

diversity of disease and the wide inter-individual variability in ADC pharmacokinetics. From a 

mechanistic standpoint, circulating lymphocytes may be highly accessible for ADCs because their 

distribution is similar to ADC distribution (see below).132 In addition to payload-induced toxicity, 

binding of ADCs to circulating lymphocytes can cause elimination by immunoregulatory processes 

and activation of complement.133 Mechanistic pharmacokinetic modeling of the two ADC subclasses 

may illuminate more subtle differences that can be observed through the lens of the pharmacokinetic 

profile in plasma.132 

2.4 Circulation and Tissue Distribution 

ADCs are large molecules with a molecular weight of approximately 150kDa. Because they are 

structurally similar to endogenous IgG, they have a distribution similar to IgG and they are affected 

by many of the same physiologic processes in vivo. Distribution is generally confined to the plasma, 

interstitial fluid and lymph.90 Convective fluid flow facilitates the transport of ADCs through and 

between these physiologic mediums.134   

After IV administration, the first method by which ADCs can pass through the capillary wall and 

into the interstitial fluid of tissues is by filtration, or the convective flow of plasma through vascular 

pores (junctions, fenestrae, sinusoids, etc.).134 While there is fluid flow in both directions across the 

capillary wall, net flow of plasma proteins and ADCs in normal tissues is out of the blood vessels and 

into the interstitial fluid. The Starling equation describes the net movement of fluid across capillary 

walls as a function of opposing hydrostatic and osmotic pressures.134 Once in the interstitial fluid, 

ADCs are free to interact with membrane-bound targets. ADCs that do not contact a target in the 

interstitial space are recycled to the venous circulation through the lymphatic system. Throughout 
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circulation, ADCs may be vulnerable to non-specific proteases, though this clearance mechanism is 

considered negligible for most IgG products.135 

An analysis of the upper limit of pore size for capillaries and the blood perfusion in each tissue can 

be used to understand the tissue-specific distribution pattern of ADCs (Table 3).136,137 The level of 

target expression also contributes to distribution by sequestering ADCs in tissues with prominent and 

accessible target loads.108 Biodistribution studies in mice show that the liver, spleen, kidneys, lungs 

and heart are the dominant organs for tissue distribution shortly after administration; highly perfused 

tissues reach their Cmax quickly, while poorly perfused tissues reach their Cmax as long as 24 hours 

after IV administration.106-108,112,138,139 

Table 3. Tissue-specific distribution profile of antibody-drug conjugates 

Tissues Capillary Characteristics Perfusion Distribution 

Brain Non-fenestrated capillaries 

with tight junctions 

Minimal Minimal 

Muscle, skin, large 

intestine, adipose 

Non-fenestrated capillaries 

with loose junctions 

Low Low 

Thymus, small 

intestine, pancreas, 

bladder 

Fenestrated capillaries  Moderate Low 

Bone marrow Sinusoidal capillaries Moderate Moderate 

 

Heart, lung Non-fenestrated capillaries 

with loose junctions 

High Moderate 

Kidney Fenestrated capillaries  

 

High High 

Liver, spleen Sinusoidal capillaries 

 

Maximal Maximal 

 

 

Resistance to flow through pores is due to the size, charge and hydrophilicity of an ADC. Because 

conjugation impacts these parameters, the degree of conjugation has been shown to alter 

biodistribution. At low drug-antibody ratios (DARs), there is no significant difference in tissue 

distribution between conjugated and unconjugated antibodies.106,107,139 However, at DARs greater than 

four, conjugation induces a fast plasma clearance with a trend toward accumulation in the liver.107,138 

An explanatory hypothesis is that the hydrophobicity associated with increasing DARs may make 

ADCs more vulnerable to non-specific uptake into hepatocytes and Kupffer cells by pinocytosis 

and/or phagocytosis.   
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The filtration rate of antibodies and ADCs through vascular pores can be measured with visible 

tagging and in vivo imaging. Using such measurements, Parving and colleagues have demonstrated 

that the flow of plasma proteins through capillaries can change proportionally to blood pressure140 and 

can be affected by such perturbations as liver cirrhosis,141 diabetes,142,143 congestive heart failure,144 

and inflammatory conditions.145 Furthermore, the presence of cancer may impact the TER and the 

tissue uptake of ADCs. There are conflicting measurements of the TER in patients with cancer, 

though it can be up to two-fold higher in cachectic patients with cancer than in healthy subjects 

(Table 4).146-148 Population pharmacokinetic analyses with both antibodies and ADCs in cancer have 

identified disease staging and tumour burden as significant covariates causing increased plasma 

clearance.49,149 As mentioned earlier, the whole body target load is only marginally increased by a 

larger tumour burden109 and would be unlikely to be responsible for such remarkable changes in the 

pharmacokinetic profile. The increased plasma clearance is likely indicative of high tissue uptake and 

facilitated by the systemic vascular hyperpermeability150 that is attributable to the inflammatory 

burden of advanced cancer. ADCs may then have the highest tissue uptake and potential off-target 

toxicity in patients with advanced cancer and comorbid conditions that increase vascular permeability 

to plasma proteins (see Table 4).  

Table 4. The transcapillary escape rate (TER) in patients with comorbid conditions 

Condition TER IgG 

(%/h, SD) 

TER Albumin 

(%/h, SD) 

Healthy140 3.0 (0.7) 5.2 (1.0) 

Hypertensiona 140 4.7 (1.0) 7.8 (0.9) 

Liver Cirrhosis141 8.4 (0.8) 7.4 (1.9) 

Short-Term Type 1 Diabetesb 142  5.5 (1.0) 

Long-Term Type 1 Diabetesc 143 4.4 (1.0) 7.4 (1.1) 

Chronic Right Heart Failure144  8.3 (1.6) 

Inflammatory Skin Disease145  8.6 (1.1) 

Cancer146-148  5.5 – 12.1d 
a mean arterial blood pressure: 193/119 mmHg 
b mean duration: 2.6 years 
c mean duration: 20 years with microangiopathy 
d range of reported medians in three studies 

 

Focused ultrasound (FUS) therapy can be used to induce enhanced permeability of tumour tissue to 

therapeutic antibodies by hyperthermia. When the temperature of tumour tissue in mice is increased 

to 42°C by FUS therapy for 3 – 5 minutes, the uptake of trastuzumab and other plasma proteins into 
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tumour tissue is increased up to two-fold.151 Multiple short rounds of hyperthermia have additive 

effects on antibody uptake.151   

The brain is the most inaccessible tissue for ADCs due to the complete restriction of convective 

flow through the blood-brain barrier. Researchers have explored osmotic, biochemical, radiological 

and focused ultrasound therapy methods for disrupting the blood-brain barrier and enabling 

convective flow of therapeutic antibodies into brain tissue, which are reviewed in detail by Chacko et 

al.152 The most promising hypothesis for the route of entry of mAbs into the brain is via the 

circulation of the cerebrospinal fluid (CSF).153   

The movement of ADCs and other macromolecules within the interstitial space is not consistent or 

predictable. The interstitium is a fibrous matrix of collagens, proteoglycans, laminins and other 

structural proteins woven around the blood and lymphatic capillaries.134 The surrounding interstitial 

fluid is derived from plasma and contains ions, small solutes, plasma proteins and leukocytes.134 

Transport of ADCs through the interstitium is slow and erratic.134 The movement of proteins and 

solutes is driven by hydrostatic pressure, osmotic pressure, chemical or electrical gradients and 

interactions with matrix components. Large pore microdialysis is being used to measure interstitial 

concentrations of antibodies154 and may prove useful for evaluating the interstitial distribution of 

ADCs.   

From the interstitium, ADCs can be taken up into lymphatic capillaries through cleft-like 

junctions.134 They will be transported through the lymphatic system at a rate that is estimated to be 

0.2% of the plasma flow rate.135 After collection into the thoracic duct or the right lymphatic duct, 

ADCs will re-enter venous circulation at an interface with the left or right subclavian vein, 

respectively.134 Recycling through the lymphatic system allows ADCs to avoid localizing in non-

target-bearing tissues.   

The mononuclear phagocyte system (MPS) is present throughout circulation and plays a role in the 

regulation of antibodies and the immune system.155 It largely consists of monocytes in circulation and 

macrophages that are distributed in tissues.155 Many of these mononuclear phagocytic cells express 

Fc-gamma receptors (FcγR), which can bind the Fc region of IgG molecules and clear them from 

circulation by phagocytosis.156 The primary tissues involved in the MPS are the liver, spleen, lymph 

nodes, thymus and bone marrow.155  
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Subcutaneous administration has not yet been utilized for an ADC, but is common for 

unconjugated antibodies.157 After subcutaneous administration, ADCs must reach the systemic 

circulation either through the lymphatic system, or by diffusion against the net fluid flux from 

interstitial space and into plasma at the local capillary beds.158 The subcutaneous bioavailability of 

unconjugated antibodies ranges from 53-82%,157 likely due to specific phagocytosis into cells of the 

MPS in lymphoid organs before reaching the venous circulation. This cellular uptake of ADCs could 

cause undue toxicity in lymphoid organs, limiting the subcutaneous administration route. 

Subcutaneous bioavailability of antibodies is correlated with FcRn affinity159 (because cells of the 

MPS express FcRn) and can be as low as 28% in FcRn-deficient animals.160  

2.5 Fc Receptor Interactions 

Fc receptors are so named because they bind to the Fc region of antibodies and help to regulate their 

distribution and elimination in the body. The Fc receptors that interact with IgG-based drugs are the 

neonatal Fc receptor (FcRn) and the family of Fc-gamma receptors (FcγR). Each receptor subtype 

affects ADC pharmacokinetics in different ways. 

FcRn is present in vascular endothelium, intestinal epithelium, the blood-brain barrier, placental 

syncytiotrophoblasts, kidney podocytes and macrophages.161 Its primary purpose is to salvage IgG 

from intracellular degradation. It may also facilitate the endocytic transport of antibodies and ADCs 

across epithelial and endothelial boundaries, such as the intestinal wall in the neonate or the capillary 

wall. Figure 7 describes the main features of this transit. ADCs may be taken up by fluid-phase 

pinocytosis or receptor-mediated endocytosis from both apical and basolateral surfaces.91,162 The 

method of uptake depends on the surrounding pH because FcRn binds ADCs in a pH-dependent 

manner, with high affinity below pH 6.5 and low affinity at pH 7.4.161 During transit, FcRn binds to 

ADCs in a 2:1 conformation and acts as a shuttle protein to protect them from lysosomal 

degradation.161 The pH-dependence of binding affinity causes ADCs to bind FcRn with highest 

affinity when the threat of degradation in lysosomes is highest. ADCs will compete with endogenous 

IgG for binding to FcRn, and the available concentrations are saturable.109,135,163 Any ADCs that fail 

to bind FcRn in the endosome are degraded.91,163 There is theoretical and experimental evidence to 

suggest that approximately two thirds of FcRn-bound ADCs in endothelial cells are shuttled to the 

apical surface and returned to the plasma, while one third is expelled into the interstitial fluid at the 

basolateral surface.91,162 This recycling contributes to the prolonged plasma half-life of ADCs.   
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Figure 7. Summary of proposed mechanisms for transcytosis and FcRn binding. ADCs may pass 

through vascular endothelium by FcRn-mediated transcytosis. ADCs are taken up by fluid-phase 

endocytosis into vascular endothelial cells (and others). During endocytic trafficking and sorting, they 

may bind to the neonatal Fc receptor (FcRn) with pH-dependent affinity and in a 2:1 conformation, 

which protects them from lysosomal degradation. Mechanistic models suggest that approximately 

two-thirds of antibodies bound to FcRn are recycled to the plasma space, while one-third is shuttled to 

the interstitial fluid. 

Antibody plasma half-life is correlated with its affinity for FcRn binding.91,109,135 For ADCs in 

particular, increased FcRn affinity results in higher efficacy, a longer half-life and improved 

tolerability, as demonstrated by Hamblett et al. with four different ADCs in a mouse experimental 

model.164 The Fc region is the site of conjugation for a number of ADCs102 as well as the contact point 

for FcRn binding;164 therefore the effect on conjugation on FcRn affinity must be assessed. A 

thermodynamic analysis concludes that FcRn affinity of ADCs may be decreased for ADCs with a 

high degree of conjugation to small hydrophilic payloads with PEG-based hydrophilic linkers.165 A 

more recent in vitro assay explores the affinity of brentuximab for FcRn at varying ratios of 

conjugation with vedotin, a large hydrophobic payload.166 Conjugation with 2-4 molecules of vedotin 

decreased FcRn affinity relative to the unconjugated antibody, while conjugation with 8 molecules of 
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vedotin actually increased FcRn affinity relative to the unconjugated antibody.166 Further 

investigations are required to understand how the location and degree of conjugation and the nature of 

both the linker and payload affect FcRn affinity and plasma half-life.   

FcγR receptors are present on monocytes, granulocytes (neutrophils, eosinophils, basophils and 

mast cells), lymphocytes (T cells, B cells and NK cells), antigen-presenting cells (macrophages, 

dendritic cells, Kupffer cells) and platelets.167 The three major subtypes (I, II and III) are 

differentiated by their binding affinity for the Fc region, structure, function and tissue distribution.167 

Together they facilitate the antibody-dependent functions of the immune system, such as antibody-

dependent cell-mediated cytotoxicity (ADCC) and the elimination of soluble immune complexes.167 

Binding of IgG to FcγRI occurs with nanomolar affinity and induces internalization of the IgG-

receptor complex,156 while binding of IgG to FcγRII and FcγRIII is 10-1000 times less efficient and 

internalization only occurs when receptors are crosslinked by interactions with multivalent circulating 

IgG complexes.167 The majority of these interactions occur within the MPS (liver, spleen, lymph 

nodes, thymus and bone marrow).167   

Pharmacokinetic studies with antibodies against both soluble and membrane-bound targets in FcγR 

knockout mice have determined that FcγR interactions have a negligible impact on plasma 

pharmacokinetics.168,169 However, cytotoxicity to FcγR-bearing cells appears to be the main driver of 

dose-limiting toxicities for many ADCs,100,170 supporting the hypothesis that this uptake may be 

clinically significant. For trastuzumab emtansine, the dose-limiting toxicity of thrombocytopenia is 

hypothesized to occur due to FcγRIIa-mediated uptake into megakaryocytes.100,171,172 It has been 

suggested that FcγR interactions are most important when the antibody or ADC binds to a circulating 

target – either soluble or present on circulating lymphocytes – which can be opsonized with many 

IgG molecules and phagocytosed by FcγR-bearing cells more efficiently.160 FcγR interactions may 

also be relevant for efficacy in the tumour microenvironment. Tumour-associated macrophages that 

express FcγR may phagocytose ADCs and release the payload to nearby tumour cells through the 

bystander effect (see Payload Kinetics).173   

Fc affinity engineering is an effective method for achieving a desired pharmacokinetic profile for 

antibodies and ADCs. For example, Ko et al. engineered an antibody with increased FcRn affinity so 

that it achieved an extended plasma half-life and improved localization in intestinal epithelium in 

primates.174 In this work, FcRn affinity was engineered without concurrent changes to FcγR affinity 
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so that the ADCC function was not compromised.174 However, Grevys et al. note that concurrent 

changes to FcγR affinity should be expected.175 

2.6 Payload Kinetics 

The first payloads for ADCs were selected from among existing chemotherapeutic small molecules. 

Doxorubicin was one of these candidates.176,177 However, the success of doxorubicin as a payload was 

limited by its poor potency at the tumour site and lack of overall efficacy compared to doxorubicin 

monotherapy.176,177 Chemotherapeutic small molecules for direct use are evaluated with parameters in 

mind that do not cross over well to make them good candidates as payloads for ADCs.178 Selection of 

optimal payloads requires an understanding of the intracellular processing of ADCs (Figure 8). 

Ideal payloads must have tumour cell killing potencies (half maximal inhibitory concentration, 

IC50) in the sub-nanomolar range because only a small number of molecules are internalized into each 

cell. Cytotoxic small molecules that show excessive toxicity when administered as monotherapy 

become possible candidates as payloads.179-181 Directed delivery by antibodies will spare systemic 

toxicity and increase the therapeutic window.   

Molecules that initially failed due to poor membrane permeability also become eligible as payloads 

for cancer because antibodies can facilitate internalization into tumour cells. For example, Ogitani et 

al. demonstrate tumour cell killing with a topoisomerase I inhibitor that has poor membrane 

permeability by linking it to a variety of antibodies against different targets to facilitate 

internalization.182 Poor membrane permeability may be beneficial. If the linker holding the payload 

degrades or the payload spontaneously dissociates in systemic circulation, toxicity to normal tissues 

can occur if the free payload can easily pass into cells. 

The two payloads currently approved for use are DM1, a maytansinoid derivative and MMAE, an 

auristatin derivative. Both compounds bind to tubulin and inhibit microtubule formation, inducing 

mitotic arrest.183-185 A mechanism of action targeting intracellular components is desirable because 

that is where the payload is usually released.186 Anti-microtubule activity makes these payloads 

somewhat selective to proliferating cells. A number of payloads are in development that target DNA, 

granting them activity against both proliferating and non-proliferating cells.187 
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Figure 8. Summary of ADC cellular uptake and the bystander effect. Uptake of ADCs into cells 

occurs by receptor-mediated endocytosis after target binding or by pinocytosis. If FcRn is not present, 

ADCs are degraded in lysosomes and the cytotoxic payload is released into the intracellular space. A 

portion of the released payload may diffuse out of the cell or be transported out by efflux pumps to 

induce cytotoxicity in neighbouring cells (the bystander effect). The exit of permeable payloads cells 

may contribute to concentrations in systemic circulation or in the bile. 

The catabolite or linker-payload fragment that is formed after linker degradation inside cells must 

retain its cytotoxic activity. DM1 is released from trastuzumab emtansine as lysine-SMCC-

DM1.188,189 This catabolite is charged and has poor membrane permeability, but retains its activity 

against tubulin.190 MMAE is released cleanly from brentuximab vedotin with full activity.186 In 

contrast to lysine-SMCC-DM1, MMAE is moderately permeable across membranes and causes 

toxicity in nearby cells186 – a phenomenon that has been named the bystander effect.191 

The bystander effect may be useful against tumours where target expression is heterogeneous or 

where high receptor occupancy in the tumour is difficult to achieve.192 Kovtun et al. show that linkers 

can be manipulated to select for catabolites with varying permeability and bystander killing 
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potential.193 With respect to heterogeneity, Golfier et al. report an 82% reduction in the size of tumour 

xenografts in which only 20% of cells express the target – a result that has been attributed to the 

lipophilicity and bystander effects of the reduced disulfide-DM4 catabolite.192,194 Li et al. show a 

similar result against heterogeneous tumours using the permeable payload, MMAE.195 They solidify 

the bystander effect by recording poor cell killing when using a less permeable payload as a control 

(MMAF).195 A recent pharmacokinetic/pharmacodynamic model quantifies the effect based on in 

vitro tumour cell culture measurements.196 The bystander effect in a heterogeneous tumour becomes 

less prominent over time as cells that express the target are killed.196 

While leveraging the bystander effect may offer enhanced efficacy against heterogeneous tumours, 

there are concerns about safety. It may increase toxicity to healthy cells.170 After experiments in 

mouse models, Ogitani et al. suggest that bystander killing is only observed in close neighbouring 

cells and that the risk for systemic toxicity is low.197 However, more research is required to confirm 

this safety in humans. Generally, the amount of drug released for bystander effects is thought to be 

below the threshold for systemic effects. A comparison of the toxicity profiles of ADCs stratified by 

the potency of their bystander effects could shed light on this issue.   

Cellular efflux transporters, such as P-glycoprotein (P-gp) affect the cellular disposition of many 

payloads.198 Both of the payloads currently on the market are substrates for P-gp.199,200 Nonpolar 

payloads are particularly vulnerable to efflux transporters. Kovtun et al. are able to minimize P-gp-

mediated resistance for maytansinoid derivatives by using hydrophilic linkers which increase the 

polarity of the linker-payload catabolite that is released in the cell.198 Toppmeyer et al. show that it is 

also possible to reduce P-gp-mediated drug resistance by administration of a competing co-substrate, 

such as verapamil.200 

2.7 Linker Kinetics 

Cytotoxic payloads are attached to the Fc region of antibodies by chemical linkers. A myriad of 

options for linker design and chemistry have emerged in recent years. Established linkers include 

hydrazones that are sensitive to pH, peptide linkers that are cleavable by cathepsin-B, disulfide 

bridges that are reducible by glutathione and other non-cleavable covalent attachments, such as 

thioether and maleimidocaproic acid linkers.102 The field of available linkers has widened to include a 

multitude of other chemical technologies and each one must be evaluated from a pharmacokinetic 

standpoint. 
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The linker must be stable in the plasma, interstitial fluid and lymph to minimize off-target toxicity 

and to ensure maximal delivery to the intracellular space of tumours. These fluids have varying 

physicochemical properties and enzyme content throughout the body and within tumour tissue, 

making global stability difficult to achieve. Linker cleavage in circulation is responsible for the faster 

clearance that is observed for the conjugated antibody vs. the total antibody.201,202 

The linker must efficiently release the payload in the intracellular space. Payload release should be 

predictable and consistent. Linkers can be grouped into cleavable and non-cleavable linkers. A 

cleavable linker depends on the intracellular pH, chemical conditions and the presence of proteases or 

other peptides to break the linker by hydrolysis or proteolysis. In contrast, a non-cleavable linker can 

only release the payload when the ADC has undergone intracellular processing within lysosomes.  

Increasing numbers of ADCs in development are being constructed with non-cleavable linkers.102 

Whether cleavable or not, the metabolites that are formed must retain the cytotoxic activity of the 

original payload.203 Non-cleavable linkers tend to release payload metabolites that include a residual 

amino acid, which may compromise activity and alter membrane permeability. Drug developers and 

clinicians may prefer that the active metabolites maintain poor permeability across cell membranes so 

that they remain in the cell to exert their cytotoxic effect.190 

The drug-antibody ratio (DAR) is used to measure the degree of conjugation. Most ADCs in 

development have DARs between two and four. DARs up to 20 have been reported using branched 

polymer linkers with multiple payload molecules attached to each backbone by ester bonds.204 The 

heterogeneity of an ADC is a measure of the distribution of DARs in the product and the variety in 

conjugation sites. Homogeneity achieved by site-specific conjugation enhances both safety in rats and 

efficacy in murine tumour xenograft models.205 

Higher DARs are associated with stronger in vitro and in vivo potency against tumour cells.206,207 

However, the improvement in potency is offset by an increase in plasma clearance, with a trend 

toward accumulation in the liver.107,206 The hydrophobicity of ADCs can be affected by close packing 

of four or more hydrophobic payloads.206,208 Hydrophobic interactions and subsequent aggregation are 

thought to be largely responsible for the increase in plasma clearance that is observed.166,206,208,209  

Strop et al. avoid the limitations of hydrophobicity by strategically selecting conjugation sites that 

avoid close packing of payloads.207 They are able to increase the therapeutic index of ADCs by 

improving the DAR and the potency.207 Both the conjugation site and stoichiometry must be 

optimized to make homogenous ADCs with optimal therapeutic indices.   
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Site-specific conjugation has not yet been employed in an ADC product that is on the market 

(2017). Site-specific conjugation involves engineering the exact location on the Fc region where the 

linker and payload are attached, so as to create more homogenous drug molecules. Recent reviews 

describe the progress with these methods.210-213 By using site-specific conjugation, Pillow et al. are 

able to improve the therapeutic activity and the plasma stability of trastuzumab emtansine in mice.214 

In similar fashion, Thompson et al. demonstrate that ADCs that employ site-specific conjugation have 

superior stability and efficacy compared to conventionally conjugated ADCs with the same DAR.215 

Based on various works, enhanced linker stability in plasma is likely responsible for the benefits of 

site-specific conjugation.207,216-220 Payload release likely remains the same whether site-specific 

conjugation is used or not.221 

Proper linker method selection must take into account many factors, including the biochemical 

predisposition of the payload and the antibody. The activity of the payload and the binding affinities 

of the antibody must be preserved. As mentioned before, there is conflicting evidence about whether 

the degree of conjugation impacts target or FcRn affinity.130,131,165,166,222 Maruani et al. suggest that the 

internalization rate of ADC-target complexes is not impaired by conjugation of the ADC.223 

2.8 Tumour Properties 

The nature and structural properties of tumours present challenges and opportunities for antibody-

drug conjugates targeted against cancer. This section elaborates on the unique tissue properties and 

fluid effects within the microenvironment of solid tumours that may impact exposure to ADCs. 

Thurber and Wittrup propose a theoretical model for antibody uptake into solid tumours that 

encompasses many of these considerations and enhances practical understanding.224 

Conventional assumptions about plasma protein distribution and extravasation into tissues do not 

apply to solid tumours. Capillaries are the gatekeepers governing the entry of ADCs into tissues. The 

efficacy of antibody-based therapies depends on vascular access; biologic therapies are generally not 

effective against early stage tumours because significant capillary access to solid tumours is not 

achieved until stage 3. In contrast to normal vasculature, tumour capillaries have erratic and irregular 

architecture.225,226 Blood supply is chaotic and inconsistent, with blood pools in some areas and 

hypoxic or acidic patches in others.225,226 As a result, the distribution of antibodies in a tumour is 

highly heterogeneous.227,228   
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A variety of forces are at play along the walls of tumour capillaries. They often lack a basement 

membrane and are notoriously “leaky” due to large irregular fenestrae, wide intercellular junctions 

and poor support from pericytes.226 In addition, vascular function may be compromised by tumour 

cells taking over the role of endothelial cells in certain locations of the vessel wall.229 However, this 

leakiness does not necessarily lead to improved penetration of antibodies into tumours.230 Jain 

explains that increased leakiness gives rise to high interstitial fluid pressure (IFP), which causes net 

convective flow to be directed out of tumours.228,231,232 ADCs are large proteins which must rely on 

convective transport for penetration into solid tumours. Other barriers to convective transport include 

poor drainage of lymph from the tumour, interstitial fibrosis and irregularities in the extracellular 

matrix.225,233 Reductions in IFP measurements have been shown to be correlated with therapeutic 

response to chemotherapy and radiation.234-236 Further research is required to confirm the hypothesis 

that ADC exposure is a function of measured IFP in humans. 

Attempts have been made to lower tumour IFP so that antibody penetration can be improved. High 

IFP can be alleviated by normalizing tumour vasculature.237-239 Bevacizumab, an anti-VEGF antibody, 

blocks angiogenesis, restricts tumour vasculature and reduces IFP.240-242 However, vascular 

normalization is a double-edged sword; even though bevacizumab can lower IFP, antibody 

penetration into tumours is not necessarily improved because vascular access is simultaneously 

compromised.243-245 Other research using imatinib to reduce microvessel density and improve 

antibody penetration may be more promising in certain strains of tumours.246,247 IFP can also be 

lowered by increasing plasma colloid osmotic pressure with systemic infusions of 20% human serum 

albumin as demonstrated by Hofmann et al. in mouse models.248 A recent review by Baronzio, Parmar 

and Baronzio elaborates on other available methods to regulate IFP, such as inducing hyperthermia or 

using ultrasound therapy.249 

Matsumura and Maeda describe an “enhanced permeability and retention (EPR) effect” in solid 

tumours for macromolecules larger than 48 kDa.250,251 The hypotheses are that tumours have 

enhanced permeability to plasma proteins due to leaky tumour blood vessels and that plasma proteins 

are retained at the tumour site due to poor lymphatic drainage.250,251 However, much of their 

information about enhanced permeability and its mechanism comes from infection models rather than 

solid tumours, which do not have high IFP as a barrier to convective flow.252 Recent research into the 

EPR effect supports the IFP hypothesis regarding reduced convective flow in the tumour bulk and 

enhanced delivery and permeability only to the rim region of the tumour. Maeda and colleagues show 
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that the EPR effect is consistent for small tumours but not for larger tumours where the IFP barrier to 

delivery is significantly higher.252 In these cases, they are able to boost the EPR effect by increasing 

blood pressure to overcome tumour IFP.253 

Retention in tumours is also mediated in part by the properties of the extracellular matrix. The 

dense extracellular matrix present in desmoplastic tumours directly impairs the movement of 

antibodies through the interstitium.254 Netti et al. show that this resistance can be mitigated by 

treatment with collagenase.254   

Tumour cells have high demands for nutrients and amino acids. To meet these demands, 

macropinocytosis is upregulated in certain tumour cells to bring in large amounts of protein from the 

extracellular fluid that can be degraded into amino acids.255 This mass internalization and quick 

protein degradation is ideal for the intracellular release of ADC payloads. Ha et al. propose that new 

ADCs can be targeted against macropinocytosis markers to achieve a degree of tumour-selective 

exposure.256  

Broadly speaking, the location and size of solid tumours are important for predicting exposure to 

ADCs. Considering basic physiology, a melanoma on the skin would receive less exposure than a 

carcinoma in the liver after IV administration. An ideal solid tumour target for ADC therapy would be 

located in highly perfused tissue (e.g. liver, spleen, kidney, intestine, etc.). An inverse relationship 

between tumour size and antibody uptake per gram of tumour has been well established.257-263 The 

highest antibody uptake per gram of tumour is seen in mouse xenografts weighing less than 200mg 

(range of tumour sizes studied: 30 – 1600mg), though this measurement cannot be easily extrapolated 

to humans.257,261,262 The binding site barrier discussed above further hinders ADC penetration 

throughout solid tumour tissues.104,128   

The physicochemical nature of the interstitial space in the tumour microenvironment poses an 

additional pharmacokinetic barrier for ADCs. Large tumours often have hypoxic regions and acidic 

interstitial fluid due to the lack of functional blood vessels and altered metabolism, and linkers may 

be unstable in these conditions. Moreover, the altered pH may affect or even compromise binding of 

ADC to the target.   

Aside from physicochemical differences, the interstitial space in a solid tumour is often infiltrated 

with tumour-associated macrophages, dendritic cells, B cells, T cells and other members of the 

immune system. While it was originally thought that phagocytosis of ADCs into these non-target 
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cells would be a hindrance, adequate tumour cell-killing may still be achieved through the bystander 

effect. Furthermore, exposure of these immune cells to cytotoxic payloads has been shown to drive a 

beneficial anti-tumour immune response.264 

2.9 Conclusion 

The field of ADC development is expanding rapidly with contributions from many different research 

streams. The pharmacokinetic design and evaluation of the numerous ADCs in the clinical pipeline 

must be carefully thought out to ensure that ADCs reaching regulatory approval are both safe and 

effective. Due to the complexity of ADC pharmacokinetics and pharmacodynamics, the clinical value 

of a traditional pharmacokinetic assessment is low without a mechanistic understanding of disposition 

and elimination. This review serves as a consolidation of investigations from a multitude of 

disciplines into one foundation of pharmacokinetic understanding so that maximum value can be 

obtained from clinical trial data. 

2.10 Study Highlights 

In the context of this thesis, this chapter presents broad considerations on the mechanistic 

determinants of antibody pharmacokinetics in adults. In 2017, much of the concepts for antibodies 

had already been reviewed. This manuscript was written to expand that knowledge to cover antibody-

drug conjugates, which were an emerging technology at the time.    
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Chapter 3 

Population PBPK Modeling for Inter-Individual Variability in 

Trastuzumab Pharmacokinetics 

3.1 Abstract 

In this work we proposed a population physiologically-based pharmacokinetic (popPBPK) framework 

for quantifying and predicting inter-individual pharmacokinetic variability using the anti-HER2 

monoclonal antibody (mAb) trastuzumab as an example. First, a PBPK model was developed to 

account for the possible mechanistic sources of variability. Within the model, five key factors that 

contribute to variability were identified and the nature of their contribution was quantified with local 

and global sensitivity analyses. The five key factors were the concentration of membrane-bound 

HER2 (𝐴𝑔), the convective flow rate of mAb through vascular pores (𝐹2), the endocytic transport 

rate of mAb through vascular endothelium (𝐶𝐿𝑢𝑝), the degradation rate of mAb-HER2 complexes 

(𝐾𝑑𝑒𝑔
𝐴𝑔

) and the concentration of shed HER2 extracellular domain in circulation (𝐸𝐶𝐷). 𝐹2 was the 

most important parameter governing trastuzumab distribution into tissues and primarily affected 

variability in the first 500 hours post-administration. 𝐴𝑔 was the most significant contributor to 

variability in clearance. These findings were used together with population generation methods to 

accurately predict the observed variability in four experimental trials with trastuzumab. To explore 

anthropometric sources of variability, virtual populations were created to represent participants in the 

four experimental trials. Using populations with only their expected anthropometric diversity resulted 

in under-prediction of the observed inter-individual variability. Adapting the populations to include 

literature-based variability around the five key parameters enabled accurate predictions of the 

variability in the four trials. Cancer increased variability in distribution and may increase the rate of 

extravasation or clearance of trastuzumab. The successful application of this framework demonstrates 

the utility of popPBPK methods to understand the mechanistic underpinnings of pharmacokinetic 

variability. 

3.2 Introduction 

With respect to pharmacokinetics, it is an impossible challenge to create one drug molecule that will 

be safe and effective for all people. A more realistic approach is to predict which subgroups of 

patients may be at risk of poor safety or efficacy. For this approach, the characteristics that may 
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predispose an individual to high or low exposure must be determined. In other words, we must 

determine the key factors that contribute to inter-individual pharmacokinetic variability.   

Using conventional “top-down” pharmacokinetic (PopPK) modeling we can identify general 

pharmacokinetic differences between individuals based on covariates such as age, sex, size, ethnicity, 

organ function and disease progression. The main limitation of the PopPK method is that we cannot 

determine the impact of a covariate until it has been measured in a study population and the resulting 

clinical pharmacokinetic data has been analyzed.   

In contrast, “bottom-up” population physiologically-based pharmacokinetic (popPBPK) modeling 

enables us to simulate the impact of covariates with virtual populations. General covariates identified 

through PopPK methods (e.g., ethnicity) may be surrogates for variability in underlying physiologic 

processes (e.g., genetic variant of a transporter). If a PBPK model accounts for all significant 

physiologic processes that affect the pharmacokinetics of the drug, then it follows that the total 

variability observed in pharmacokinetic data should be the output of inter-individual variability 

around each key process or parameter. This approach to quantifying variability is knowledge-driven 

rather than data-driven.   

In this work we propose a framework for quantifying and predicting inter-individual 

pharmacokinetic variability. We demonstrate the utility of popPBPK modeling to complement 

conventional PopPK methods with a study of the anti-HER2 monoclonal antibody, trastuzumab. Key 

factors that contribute to variability will be identified and interpreted in tandem with a previous 

PopPK analysis by Bruno et al.125 Conclusions will enhance our understanding of the mechanistic 

underpinnings of variability and prompt new questions about patient subgroups that may be at risk of 

poor safety or efficacy. 

3.3 Methods 

The primary aim of the research was to determine the factors that contribute to inter-individual 

variability in trastuzumab pharmacokinetics for both healthy volunteers and breast cancer patients 

using a population PBPK model.  

3.3.1 Part One: Mean Analysis 

1. Model Development: construction of an in silico whole-body PBPK model to describe the 

pharmacokinetics of trastuzumab in a mean individual. 
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2. Model Parameterization: estimation of model parameters based on existing literature. 

3. Model Fitting: optimization of uncertain parameters by fitting the model to the mean 

concentration-time profiles in experimental data. 

4. Model Evaluation: evaluation of the optimized model for a mean individual by predicting the 

mean concentration-time profiles from additional experimental data. 

3.3.2 Part Two: Variability Analysis 

5. Uncertainty and Sensitivity Analysis: identification of key parameters that contribute to inter-

individual variability, characterization of their contribution and assessment of parameter 

correlation. 

6. Population Simulation: development of a virtual population of unique individuals with 

literature-based variability around key parameters and simulation of plasma concentration-

time data for the virtual population using the optimized model.   

7. Analysis: comparison of the simulated inter-individual variability with the inter-individual 

variability observed in experimental data. 

3.3.3 Software: 

A MATLAB extension called SBToolbox2 was used to automate the simulation of the system of 

ordinary differential equations and model analysis.265 The population generation tool was based in 

MATLAB and followed generally the method of Willmann et al.266 Clinical data from literature was 

digitized using Plot Digitizer v2.6.8 by Joseph Huwaldt (plotdigitizer.sourceforge.net). 

3.4 Results 

3.4.1 Model Development 

An in silico whole body model to describe the pharmacokinetics of trastuzumab in a mean individual 

was developed based on the platform model for a monoclonal antibody (mAb) by Shah and Betts.135  

A schematic for the structure of the model is shown in Figure 9. Figure 10 illustrates the mechanistic 

processes affecting mAb pharmacokinetics within each tissue compartment. Previous PBPK models 

by Cao and Jusko, Li et al., and Glassman and Balthasar have successfully characterized the nonlinear 

pharmacokinetic profile of trastuzumab.109,267,268 
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Figure 9. A schematic for the whole body PBPK model showing the connection of anatomical 

compartments by blood flow (solid line) and lymph flow (dashed line) 
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Figure 10. An illustration of the physiological processes affecting the movement of trastuzumab through each organ and sub-compartment 
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Shedding of the HER2 extracellular domain (𝐸𝐶𝐷) was modeled as proposed by Li et al. with the 

following modifications:268   

1. 𝐸𝐶𝐷 concentrations were assumed constant (rate of synthesis equal to rate of degradation) 

2. The concentration in the interstitial space was assumed equal to the measured concentration 

in plasma  

3. mAb-𝐸𝐶𝐷 complex distribution was assumed to be similar to mAb distribution, and pinocytic 

uptake was lumped into a general degradation term for a circulating immune complex (𝐾𝑑𝑒𝑔
𝐸𝐶𝐷) 

Antigen kinetics were determined from existing mechanistic models for HER2 trafficking that 

incorporated in vitro measurements.269-274 Derivation of the antigen degradation term (𝐾𝑑𝑒𝑔
𝐴𝑔

) can be 

found in Appendix A. The concentration of membrane-bound HER2 antigen was kept constant (rate 

of synthesis equal to rate of degradation) because trastuzumab binding does not induce internalization 

or degradation of the receptor.109,119,268-270,275,276 The model can apply to both healthy volunteers and 

breast cancer patients by toggling a tumour compartment on and off. The tumour compartment was 

connected by blood and lymph flow to the whole-body circulation for cancer simulations. Model 

equations can be found in Appendix A. 

3.4.2 Model Parameterization 

Reference values for anatomical parameters were obtained from BioDMET documents and can be 

found in Appendix A.50,266 The volumes of the organ sub-compartments (plasma space, endosomal 

space and interstitial space) were calculated for each organ based on the fractions used in the platform 

model.135 Lymph flow in each organ, aside from the lung, was set to 0.2% of plasma flow.135 Lymph 

flow in the lung was set to 3% of total body lymph flow in agreement with Gill et al.77   

Experimental plasma concentration-time data was collected from seven pharmacokinetic studies 

with trastuzumab and its biosimilars. Biosimilars are pharmacokinetic equivalents of trastuzumab and 

were included because of the sparse data available for trastuzumab. Table 5 lists the trials and 

corresponding demographic information.  
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Table 5. Experimental pharmacokinetic datasets collected for use with the PBPK model. 

Trial Dose  

(mg/kg) 

Na Sex 

 

Cohort  

 

ECD  

(ng/mL) 

Age  

(years) 

Trastuzumab 

Morita et al.277 6 35 M Healthy Volunteers 8d 22.7 (6.8) 

Wisman et al.278 6 46 M Healthy Volunteers 8d 25 (6.8) 

Wynne et al.279 6 6 M Healthy Volunteers 8d 23 (19-26) 

Yin et al.280 6 32 M Healthy Volunteers 8d 35.3 (9.2) 

Tokuda et al.281 1, 2, 4, 8 16 F Breast Cancer 19.9 51 (32-64) 

Baselga et al.282 8 then 6 q3wb 98 F Breast Cancer 30 53.8 (23-84) 

Cobleigh et al.283 4 then 2 q1wc 213 F Breast Cancer 9.33 50 (28-81) 

Leyland-Jones et al.284 8 then 6 q3wb 32 F Breast Cancer 20 53 (31-70) 

FTMB 

Wisman et al.278 0.5, 1.5, 3, 6 64 M Healthy Volunteers 8d 25 (6.8) 

DMB-3111 

Morita et al.277 6 35 M Healthy Volunteers 8d 22.9 (3.2) 

PF-05280014 

Yin et al.280 6 34 M Healthy Volunteers 8d 34.5 (10.7) 

a Number of patients 
b Every 3 weeks thereafter 
c Every 1 week thereafter 
d Value not reported; assumed from literature285,286 

When using the model to simulate the mean concentration-time profile with one representative 

virtual individual, anatomical parameters were scaled from the reference values so that the virtual 

individual’s characteristics matched the mean height, weight, body mass index (BMI), body surface 

area (BSA), gender, cancer status and ECD level of individuals in the experimental trial. A tumour 

with a volume of 20mL was added to the representative individual for simulations of trials with breast 

cancer patients. Tumour parameters were extracted from a previous model for trastuzumab and are 

available in Appendix A.109 A description of mechanistic model parameters can be found in Table 6. 
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Table 6. Mechanistic parameters used in the model including literature-based estimates and the 

reported variance for the parameter, expressed as a coefficient of variation (CV%) 

Parameter Description Units Estimate CV% 

𝜎𝑉  Vascular reflection coefficient - 0.85-0.99a 135 See 𝐹2 

𝜎𝐼𝑆 Lymph reflection coefficient - 0.2135 - 

𝐶𝐿𝑢𝑝 Rate of endocytic transport per L 

endosomal space 

L/h/L 0.0366135 25162,287 

𝐹2 (h) Convective flow scaling factor (healthy) - 1135 25140 

𝐹2 (c) Convective flow scaling factor (cancer) - 1 

(assumption) 

50 

(assumption) 

𝐹𝑐𝑅𝑛 Accessible FcRn in endosomal space nM 49800135 1577,109,135 

𝐹𝑅 Fraction that recycles to vascular space - 0.715135 5162 

𝐾𝑑𝑒𝑔
𝐹𝑐𝑅𝑛 Degradation rate of FcRn-unbound mAb 1/h 42.9135 15135 

𝐾𝑜𝑛
𝐹𝑐𝑅𝑛 Association rate for FcRn binding 1/nM/h 0.8288 10289 

𝐾𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 Dissociation rate for FcRn binding 1/h 618.4288 10289 

𝐾𝑜𝑛
𝐴𝑔

 Association rate for HER2 binding 1/nM/h 0.74290,291 5290 

𝐾𝑜𝑓𝑓
𝐴𝑔

 Dissociation rate for HER2 binding 1/h 4.07290,291 5290 

𝐾𝑑𝑒𝑔
𝐴𝑔

 Degradation rate of HER2 and mAb-

HER2 complexes 

1/h 0.0789270,273 33.3270 

𝐴𝑔 Accessible membrane-bound HER2 nM 1.6292 100293,294 

𝐴𝑔𝑇𝑢𝑚𝑜𝑢𝑟 Accessible HER2 on tumour cell 

membrane 

nM 25 × 𝐴𝑔293 100293 

𝐾𝑜𝑛
𝐸𝐶𝐷 Association rate for ECD binding 1/nM/h 1291 5  

𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 Dissociation rate for ECD binding 1/h 0.1291 5  

𝐸𝐶𝐷 ECD in plasma and interstitial space nM Trial-specific 100282 

𝐾𝑑𝑒𝑔
𝐸𝐶𝐷 Degradation rate of mAb-ECD 

complexes 

1/h 0.0144122,123 25122 

𝐵𝑀 Body mass kg Trial-specific 12266 

a Tissue-specific values are listed in Appendix A 
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The concentration of HER2 in normal tissues was measured to be 10,000 receptors/cell.292 The 

following calculation was applied, assuming 3.27∙1013 cells/body and a cellular volume of 53.6 

L/body, giving a concentration of 10.1 nM in cells.295 

𝐴𝑔𝑏𝑜𝑑𝑦
𝐶 =

(1 × 104 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟𝑠
𝑐𝑒𝑙𝑙

) (3.27 × 1013 𝑐𝑒𝑙𝑙𝑠
𝑏𝑜𝑑𝑦

)

(6.02 × 1023 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟𝑠
𝑚𝑜𝑙

) (53.6
𝐿 𝑐𝑒𝑙𝑙𝑠
𝑏𝑜𝑑𝑦

)
 

However, HER2 is a membrane-bound protein and the concentration of HER2 (𝐴𝑔) for the model 

input must be in terms of interstitial volume (𝑉𝐼𝑆) to enable stoichiometric binding of mAbs in the 

interstitial space. There are also limitations to HER2 accessibility. First, one third of HER2 receptors 

are internalized in the cell and inaccessible for binding while two thirds are present on the 

membrane.269,270 Furthermore, accessibility is impaired by dimerization. Up to 95% of membrane-

bound HER2 is homo- and heterodimerized with members of the HER family.269,270 The HER2 

extracellular domain is approximately 100kDa and trastuzumab is 145.5kDa in size.296 Dimer 

linkages occur between the respective subdomain II regions of monomers. Trastuzumab binds to 

subdomain IV, which is closest to the membrane and is overshadowed by subdomain II.296 An 

analysis of crystal structures suggests that subdomain IV is blocked when HER2 is dimerized by a 

linkage across subdomain II.296 Therefore in our model, the concentration of membrane-bound HER2 

available for high affinity binding in each organ was assumed to be the concentration of monomers 

only (~5% of membrane-bound HER2) and was calculated by: 

𝐴𝑔𝑜𝑟𝑔𝑎𝑛 = 10.1 𝑛𝑀 ×  
𝑉𝑜𝑟𝑔𝑎𝑛

𝐶

𝑉𝑜𝑟𝑔𝑎𝑛
𝐼𝑆  ×

2

3
 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒-𝑏𝑜𝑢𝑛𝑑 × 0.05 𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠 

3.4.3 Model Fitting 

SBtoolbox2 was used to globally fit the model for a mean individual to the mean plasma 

concentration-time profiles for trastuzumab in the datasets from Wisman et al. and Yin et al. with a 

simulated annealing method (see Table 5).278,280 Glassman and Balthasar identified that the rate of 

convective flow through pores and the rate of endocytic transport (𝐶𝐿𝑢𝑝) are drug-specific and 

require fitting.109 A scaling factor (𝐹2) was used for the fit to describe the convective flow through 

pores according to: 

𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑙𝑜𝑤 =  𝐹2 × (1 − σ𝑉) × 𝐿 
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The fitted values for 𝐹2 and 𝐶𝐿𝑢𝑝 were 3.35 and 0.0188 L/h/L respectively. Figure 11 shows two 

model-fitted profiles using data from Wisman et al. and Yin et al.278,280 The optimized model for a 

mean individual accurately characterizes the non-linear shape of the mean pharmacokinetic profiles. 

A 

 

B 

 
 

 

Figure 11. A comparison of the model-fitted profile for a mean individual (solid line) with the 

experimental data (diamond) in healthy males from Wisman et al. (A) and Yin et al. (B)278,280 

3.4.4 Model Evaluation 

The remaining datasets for trastuzumab and its biosimilars in Table 5 were used to validate the 

optimized model for mean individuals. Figure 12 shows a comparison of the observed mean plasma 

concentrations to the model-predicted mean plasma concentrations for all evaluation datasets, which 

include a variety of dose levels and administration protocols. Predictions for mean individuals were 

strong with an R2 of 0.967 when simulating mean pharmacokinetic profiles for both healthy males 

and females with breast cancer. The model trended toward an overestimation of trastuzumab plasma 

concentrations at levels below 200 nM and an underestimation of trastuzumab plasma concentrations 

at levels above 1200 nM in patients with cancer.  
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Figure 12. Model-predicted vs. observed concentrations for healthy males (circle) and females with 

breast cancer (diamond). The observed concentrations come from the experimental trials listed in 

Table 5 that were not used for model building. 

With a validated model in place that adequately predicts mean concentration-time profiles, we 

turned our attention to analyze variability. Analyses were done with parameter values as determined 

for the validated model, which include the fitted values for 𝐹2 and 𝐶𝐿𝑢𝑝. No changes were made to 

the mean parameter values. 

3.4.5 Uncertainty and Sensitivity Analysis 

A local sensitivity analysis that accounts for the variability around each parameter that is seen in a 

general population allows for an assessment of the importance of each parameter in defining total 

inter-individual variability (see Table 6). The sigma-normalized sensitivity coefficient (𝑆𝑝
𝜎) is a 
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measure of the anticipated percent change in AUC with a perturbation of one standard deviation (𝜎𝑝) 

in the mean parameter value (𝑝).  The sigma-normalized sensitivity coefficient was calculated by: 

𝑆𝑝
𝜎 =  |

𝐴𝑈𝐶(𝑝 ± 𝜎𝑝) − 𝐴𝑈𝐶(𝑝)

𝐴𝑈𝐶(𝑝)
| × 100% 

Key parameters that contribute to inter-individual variability were identified by 𝑆𝑝
𝜎  ≥ 1. If a 

parameter has a sigma-normalized sensitivity coefficient of 1, then an individual possessing a 

parameter value that is one standard deviation higher or lower than the mean value will have an AUC 

that is 1% different than the mean AUC of the population. We deem that this difference is the cut-off 

for declaring a parameter important for accounting for interindividual variability. The literature-

defined variability in terms of a coefficient of variation (CV) for each parameter is listed in Table 6.  

Of note, the CV for FcRn is based on the variability in PBPK model estimates to date and the CV for 

𝐹2 was dependent on cancer status. Figure 13 shows that the five key parameters are the rate of 

endocytic transport (𝐶𝐿𝑢𝑝), the rate of convective flow through pores (𝐹2), the concentration of 

membrane-bound HER2 accessible for binding (𝐴𝑔), the degradation rate of HER2 and mAb-HER2 

complexes (𝐾𝑑𝑒𝑔
𝐴𝑔

) and the concentration of ECD (𝐸𝐶𝐷). The magnitudes of the effects of the key 

parameters on the model remain similar whether the parameters are increased or decreased by one 

standard deviation. Body mass (𝐵𝑀) was included in this analysis for comparative purposes. The 

result suggests that physically varying body mass (changing organ size and flow rates) has a minor 

effect on plasma concentrations when dosing is normalized to body mass (mg/kg). 

 

Figure 13. Sigma-normalized local sensitivity coefficients (𝑺𝒑
𝝈) determined for each mechanistic 

parameter in the model, and body mass (see Table 6). Key parameters were identified by 𝑺𝒑
𝝈 ≥ 𝟏 
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The sigma-normalized local sensitivity of the model to each key parameter over the entire time 

series was analyzed in Figure 14. The convective flow through pores (𝐹2) was the most important 

parameter governing trastuzumab distribution into tissues and primarily affected variability in the first 

500 hours post-administration. The concentration of HER2 (𝐴𝑔) was the most significant contributor 

to variability in clearance. 𝐾𝑑𝑒𝑔
𝐴𝑔

 plays a significant role in elimination as expected. The effects of 

𝐸𝐶𝐷 are small overall. 

 

Figure 14. The effect of each key parameter on plasma concentration over time when perturbed by ± 

one standard deviation, expressed as the absolute difference in plasma concentration between the 

perturbed simulation and the nominal simulation at every time point. 

Next, we carried out a global variance-based sensitivity analysis to quantify the contribution of 

select key parameters (𝐶𝐿𝑢𝑝, 𝐹2, 𝐾𝑑𝑒𝑔
𝐴𝑔

, 𝐴𝑔, 𝐸𝐶𝐷 and 𝐹𝑐𝑅𝑛) to total variability in terms of the effect 

on plasma AUC. 𝐹𝑐𝑅𝑛 was included as an insensitive parameter for a comparative control. The 
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global sensitivity analysis quantifies the variability attributed to each key parameter individually (first 

order effects) as well as the total variability caused by the parameter when additionally considering its 

interactions with every other input parameter (total effects). We used Sobol’s method as proposed by 

Saltelli et al, which is described in Appendix A.297,298 

Figure 15A shows that together, the first order effects of parameters 𝐶𝐿𝑢𝑝, 𝐹2 and 𝐴𝑔 account for 

most of the total variability observed when the six parameters in Table 7 are allowed to vary both 

individually and in possible combination with each other. Figure 15B contrasts the first order effects 

for each parameter with the total global effects, which occur when each parameter varies individually 

and in combination with the others. The first order effect of each parameter accounts for the vast 

proportion of its total effect. The difference between the total effect and first order effect sensitivity 

measure determines the degree of interaction between each parameter and the others. The difference 

between the total effects and first order effects are small, signifying a small degree of interaction 

between each of the analyzed parameters and the others. 

A 

 

B 

 
 

 

Figure 15. Panel (A) shows that the first order effects of 𝑨𝒈, 𝑭𝟐 and 𝑪𝑳𝒖𝒑 make up most of the total 

variability. Panel (B) shows that the differences between the first order effects (solid fill) and total 

effects (stripe fill) for 𝑨𝒈, 𝑭𝟐 and 𝑪𝑳𝒖𝒑 are small. 
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Table 7. A summary of the inputs and the results for Sobol’s global sensitivity analysis 

Parameter Mean Value 
Coefficient of 

variation (%) 

First Order 

Sensitivity (𝑆𝑗) 

Total Sensitivity 

(𝑆𝑇𝑗
) 

𝐶𝐿𝑢𝑝 0.0188 L/h/L 25 0.11 0.14 

𝐹2 (cancer) 3.35 50 0.20 0.26 

𝐾𝑑𝑒𝑔
𝐴𝑔

 0.0789 h-1 33.3 0.02 0.06 

𝐴𝑔 1.6 nM 100 0.57 0.60 

𝐸𝐶𝐷 0.3 nM 100 ~0 0.02 

𝐹𝑐𝑅𝑛 49800 nM 15 ~0 0.01 

 

Lastly, it is important to assess the identifiability of the key parameters which gives a measure of 

the confidence we can have that the values in the model are the true values. A parameter is 

identifiable within a model if it is theoretically possible to learn the true value after observing the 

model for an infinitely long time. SBtoolbox2 was used to create a parameter correlation matrix based 

on the method by Jacquez and Greif (Figure 16).299 Elements in the matrix that are close to 1 (white) 

indicate that it is not feasible to identify the true value of the corresponding parameters 

independently. Elements that are close to 0 (black) indicate that there is no correlation between the 

corresponding parameters and thus these parameters should be independently identifiable. As Figure 

16 indicates, 𝐾𝑑𝑒𝑔
𝐴𝑔

 and 𝐴𝑔 are correlated, meaning that we may be able to achieve a similar output 

profile with different combinations of values for these parameters. 𝐶𝐿𝑢𝑝 is also moderately correlated 

to these parameters. The information from Figure 14 strengthens the understanding of these 

correlations. Figure 14 shows that the three parameters affect the model in similar ways over similar 

time periods. However, the peak effect of 𝐶𝐿𝑢𝑝 on the pharmacokinetic profile occurs earlier than the 

peak effects for 𝐾𝑑𝑒𝑔
𝐴𝑔

 and 𝐴𝑔. Therefore, 𝐾𝑑𝑒𝑔
𝐴𝑔

 and 𝐴𝑔 are highly correlated to each other. The 

correlations of 𝐶𝐿𝑢𝑝 to 𝐾𝑑𝑒𝑔
𝐴𝑔

 and 𝐴𝑔 are weaker, but significant. This result stresses the importance of 

dense sampling schemes across the time profile if estimating a pair of these parameters. 
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Figure 16. Matrix presenting the correlation between key parameters. A white colour suggests a 

strong correlation, while a black colour suggests no correlation between two parameters. 

3.4.6 Population Simulations 

Virtual populations with variability in anthropometric parameters (body mass, height, blood flow and 

hematocrit) similar to the anthropometric variability in each experimental sample were created using 

a population generation tool previously developed in the Edginton lab. Briefly, individuals for a 

population are randomly generated according to height and the associated standard deviation reported 

for the patient sample in the experimental trial. Organ masses are randomly generated from truncated 

distributions to prevent extreme outliers, and the resulting body mass and the BMI are calculated. If 

the calculated BMI is outside of the range provided for the patient sample in the experimental trial, 

this virtual individual is discarded. The resulting virtual population should have approximately the 

same mean and standard deviation for BMI, height and body mass as the patient sample.   

Virtual individuals were used as inputs for the model and the simulated variability for the virtual 

population was compared to the actual observed variability in the datasets from Wisman et al., Morita 

et al., Baselga et al. and Cobleigh et al.277,278,282,283 Figure 17 shows the minimal impact of 
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anthropometric variability alone on inter-individual variability in the presence of body-mass 

normalized dosing (mg/kg). As mentioned before, the model trended toward an over-prediction of 

trastuzumab plasma concentrations at levels below 200 nM in patients with cancer (Figure 12). These 

overestimations are compounded after multiple weekly low doses in the trial by Cobleigh et al., 

resulting in a significant over-prediction of the mean trough level until plasma concentrations reach 

steady state (Figure 17D).283 

Next, individuals in the virtual populations were modified to have a normal or lognormal 

distribution around key model parameter values (𝐹2, 𝐶𝐿𝑢𝑝, 𝐴𝑔, 𝐾𝑑𝑒𝑔
𝐴𝑔

 and 𝐸𝐶𝐷) according to the 

coefficients of variation in Table 6. The distributions for 𝐴𝑔 and 𝐸𝐶𝐷 were lognormal to encompass 

the wide spread of values seen in the literature.282,293,294 Since these five key parameters are the most 

important for describing variability, they should – in theory – capture most of the experimental 

variability together. The simulated variability was compared to the experimental variability in the 

datasets from Wisman et al., Morita et al., Baselga et al. and Cobleigh et al. in Figure 18.277,278,282,283  

Overall, the framework enabled adequate predictions of the inter-individual variability in clinical 

trials by decomposing total variability into literature-based variability around each of the key 

parameters a priori (Figure 18). However, the population model under-predicted variability in the first 

72 hours for healthy males (Figure 18A, Figure 18B) and in the first cycles before steady state for 

females with breast cancer (Figure 18C, Figure 18D). While the mean plasma concentration is over-

predicted in the simulation for the trial by Cobleigh et al., an adequate prediction for the magnitude of 

the variability remains.283 
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A 

 

B 

 
C 

 

D 

 
 

 

Figure 17. Plasma concentration vs. time profiles for a virtual population created with variability in 

anthropometric parameters alone. The resulting variability (shaded fill) was compared to the observed 

inter-individual variability (solid error bar) in Wisman et al. (A), Morita et al. (B), Baselga et al. (C) 

and Cobleigh et al. (D).277,278,282,283 In all cases, variability is reported as an arithmetic standard 

deviation. 
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C 

 

D 

 
 

 

Figure 18. Plasma concentration vs. time profiles for a virtual population created with variability in 

anthropometric parameters plus literature-defined variability around the five key parameters (𝑭𝟐, 

𝑪𝑳𝒖𝒑, 𝑨𝒈, 𝑲𝒅𝒆𝒈
𝑨𝒈

 and 𝑬𝑪𝑫). The resulting variability (shaded fill) was compared to the observed 

inter-individual variability (solid error bar) in Wisman et al. (A), Morita et al. (B), Baselga et al. (C) 

and Cobleigh et al. (D).277,278,282,283 In all cases, variability is reported as an arithmetic standard 

deviation. 
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3.5 Discussion 

Using the population PBPK modeling framework, five key parameters that contribute to inter-

individual variability in trastuzumab pharmacokinetics were identified. In other words, patients who 

are outliers with respect to these five key parameters:  

1. The concentration of membrane-bound HER2 accessible for binding (𝐴𝑔) 

2. The rate of convective flow of mAb through vascular pores from plasma to interstitial space 

(𝐹2) 

3. The rate of endocytic transport of mAb into vascular endothelial cells (𝐶𝐿𝑢𝑝) 

4. The degradation rate of HER2 and mAb-HER2 complexes (𝐾𝑑𝑒𝑔
𝐴𝑔

) 

5. The concentration of shed HER2 ECD in the plasma and interstitial space (𝐸𝐶𝐷) 

may be at risk for poor safety or efficacy with trastuzumab. 

The next task is to assess the clinical relevance of each parameter. Can these parameters be 

measured in patients and if not, how are these parameters related to more measurable characteristics?  

In a review of inter-individual variability for all mAbs, Gill et al. highlighted ways that physiologic 

processes affecting mAb pharmacokinetics could be correlated to general covariates such as age, 

body mass, ethnicity and disease state.300 We expand on those insights here for trastuzumab. 

Total concentrations of HER2 vary widely in healthy and cancer populations and can be measured 

with the HERmark assay.292 This assay can also measure the concentration of HER2 homodimers, 

which enables a prediction for the concentration of HER2 that is accessible for mAb binding (𝐴𝑔).294 

In the era of personalized medicine, measured levels of HER2 in normal tissues may be appropriate 

grounds for dose adjustments. 

The rate of convective flow of mAb through pores (𝐹2) is difficult to measure directly. However, 

Parving and colleagues have demonstrated that the flow of plasma proteins through capillaries can 

change proportionally to blood pressure and can be altered by liver cirrhosis, diabetes, congestive 

heart failure and inflammatory skin conditions.140-144,146-148,301 The measured transcapillary escape rate 

(TER) of IgG and albumin in various disease states is summarized in Table 8. 
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Table 8. Values reported for the transcapillary escape rate (TER) of albumin and IgG in patients with 

various conditions 

Condition TER IgG 

(%/h, SD) 

TER Albumin 

(%/h, SD) 

Healthy140 3.0 (0.7) 5.2 (1.0) 

Hypertensiona 140 4.7 (1.0) 7.8 (0.9) 

Short-Term Type 1 Diabetesb 142  5.5 (1.0) 

Long-Term Type 1 Diabetesc 143 4.4 (1.0) 7.4 (1.1) 

Liver Cirrhosis141 8.4 (0.8) 7.4 (1.9) 

Chronic Right Heart Failure144  8.3 (1.6) 

Inflammatory Skin Disease301  8.6 (1.1) 

Cancer146-148  5.5 – 12.1d 
a mean arterial blood pressure: 193/119 mmHg 
b mean duration: 2.6 years 
c mean duration: 20 years with microangiopathy 
d range of reported medians in 3 studies 

 

The presence of cancer impacts the TER and therefore likely increases the 𝐹2 parameter.146-148 

Cancer is an inflammatory disease that alters many homeostatic functions in the body. The TER of 

albumin is up to 2-fold faster in patients with cancer than healthy patients. Furthermore, the liver is a 

common site of metastasis and damage may increase the TER and 𝐹2 similar to cirrhosis.282   

When 𝐹2 increases there is a shift in distribution from plasma to tissue, while the final plasma 

trough concentrations remain similar (Figure 14). Therefore, we anticipate that patients with the 

conditions listed in Table 8 may experience greater tissue exposure along with possibly increased 

efficacy and toxicity. For example, a cancer patient with diabetes who is receiving trastuzumab may 

have greater penetration of the drug into heart tissue and may be at an increased risk for cardiotoxicity 

compared to a cancer patient without diabetes, even while trough concentrations are within normal 

therapeutic ranges for both patients. The results of a recent meta-analysis by Leung and Chan may 

support this hypothesis.302 They identify hypertension and diabetes (among other factors) as 

significant risk factors for cardiotoxicity in elderly females being treated with trastuzumab.302 

The rate of endocytic transport (𝐶𝐿𝑢𝑝) of mAb into vascular endothelial cells is not well 

understood in modeling as estimates vary 10-fold between groups.109,135 It is the gateway by which the 

mAb participates in FcRn binding and recycling. Genetic factors likely play the largest roles for 

determining 𝐶𝐿𝑢𝑝 for an individual.287,300 Genotypic testing of FcRn, caveolin or other proteins 

involved in endocytosis may prove clinically relevant for dose adjustments. 
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Although not directly measurable, the degradation rate of HER2 and mAb-HER2 complexes (𝐾𝑑𝑒𝑔
𝐴𝑔

) 

is correlated with the internalization rate.269,271 Hendriks showed that the internalization rate of HER2 

depends on the presence of the epidermal growth factor (EGF) ligand and the relative concentrations 

of HER1-4 on the cell membrane.269 The degradation rate may also be subject to genetic 

polymorphisms of the HER2 protein. Genotypic testing of HER2 may be useful for dosing to improve 

safety and efficacy.   

The role of 𝐸𝐶𝐷 as a predictor for response to trastuzumab therapy or tumour progression is still 

unknown. Carney et al. indicate that an increasing ECD level is a marker for poor prognosis, while a 

number of smaller studies show that an early increase in ECD level before trastuzumab treatment can 

predict a good response.303-310 Because of the uncertainty and the overall small effect on variability, 

the clinical utility of ECD for predicting safety and efficacy is low. 

Next, we compare our results from the popPBPK framework to existing results from a PopPK 

study by Bruno et al. in patients with metastatic breast cancer.125 The group modeled the 

pharmacokinetics with a non-linear mixed effects model using two compartments.125 Variability in 

patient body mass, the number of metastatic sites and the concentration of serum extracellular domain 

were determined to be the most important factors for predicting the observed variability, but together 

failed to predict the large variability in the data.125 In the following analysis, we do not endeavour to 

contrast the work of Bruno et al. Rather we strive to gain a mechanistic understanding of their 

findings and of the overall variability in trastuzumab pharmacokinetics through PBPK modeling 

approaches. 

First, they showed that the volume of distribution for trastuzumab changes as a function of body 

mass, ranging from 2.5L at 49 kg to 3.7L at 96 kg.125 These volumes correspond to the predicted 

plasma volume changes as a function of body mass (65 mL blood/kg for females, hematocrit 0.36-

0.48). Body mass-normalized dosing eliminates significant inter-individual variability, as shown in 

Figure 17.  

Bruno et al. also demonstrated that patients with four or more metastatic sites had an 18% lower 

steady state exposure than those with up to three metastatic sites.125 In our model, patients with a total 

tumour volume of 80 mL had a 1.75% lower AUC than patients with a total tumour volume of 20 

mL. The covariate effect cannot be reproduced through mechanistic PBPK modeling. This result 
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suggests that the impact of more metastatic sites on clearance is not due to the physical effects of the 

tumour burden alone, but rather due to the increased disease burden on the whole body.   

Because of its effects on clearance and volume of distribution, Bruno et al. predicted a 12% lower 

steady state exposure in a patient with a serum ECD level greater than 200 ng/mL compared to a 

patient with a serum ECD level of 8 ng/mL.125 Our mechanistic model predicts an 8.3% lower AUC 

in a patient with a serum ECD level of 200 ng/mL compared to a patient with a serum ECD level of 8 

ng/mL and a 12.0% lower AUC for a patient with a serum ECD level of 300 ng/mL. Therefore, it is 

likely that the overall effect of ECD on trastuzumab clearance is directly mechanistic in nature. In 

other words, the effect of ECD on clearance and volume and distribution as quantified by Bruno et al. 

can be fully attributed to the physical mechanism where trastuzumab binds to ECD in the plasma or 

the interstitial space and is then cleared as an immune complex. 

A current challenge with virtual populations is a lack of information on inter-variability in the 

vascular and interstitial fractions of internal organs. Such information would be able to characterize 

the variability in peak concentrations, which is under-estimated in this work. 

Some modeling limitations were encountered. First, the model was built using data from healthy 

males and the same mean parameter values were extrapolated to females with breast cancer.281 While 

the model predictions were acceptable, improvements could be made by adjusting mean 𝐹2 values 

based on disease state. Figure 19 shows how increasing the mean 𝐹2 value by 50% for females with 

breast cancer relative to healthy males improves the accuracy of the model predictions for the mean 

data. Disease-specific mAb modeling using adjustments in the 𝐹2 parameter will be warranted in the 

future. However, at the moment there is no reliable way to proactively assign a mean 𝐹2 value for a 

population according to cancer severity. 
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Figure 19. Panel (A) shows the model-predicted profiles and the experimental data in breast cancer 

patients from Tokuda et al.281 Panel (B) shows the improved predictions when the mean 𝑭𝟐 value is 

increased by 50% to model the physiologic burden of cancer. 

Further, there are limitations surrounding our assumptions for ECD kinetics that could be improved 

with additional physiologic data in the future. The concentration of ECD in the interstitial space is 

largely uncertain. Moreover, we assume that the convective flow of the mAb-ECD complex is the 

same as naked mAb. The mAb-ECD complex is much larger than the naked mAb and it is likely 

restricted by pore size to a greater degree. Data are not available to inform these two parameters at the 

present time. 

Aside from the platform model by Shah and Betts, other recent models incorporate the competition 

of endogenous IgG for FcRn.59,109,289 The overall effect is that the accessible concentration of FcRn 

decreases. Because the platform model was parameterized without endogenous IgG independently 

characterized, adding this feature would compromise the internal validity of the other model 

parameter estimates. Shah and Betts state that it is an advantage that they have removed the 

characterization of endogenous IgG from their model.135 Figure 13 shows that the sensitivity of our 

model to accessible FcRn concentrations is relatively low in comparison to the key parameters and 

thus adding an FcRn modifier (i.e. endogenous IgG) would have little impact on model outcomes. 

The model could be improved by adding tissue-specific values for FcRn, though full measurements 

have only been established for mice.311 

A 

 

B 
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Finally, mass balance of fluid flow through the endosomal compartment requires the assumption 

that exactly half of the fluid taken up via endocytosis leaves endothelial cells via exocytosis, while the 

other half is sorted intracellularly for lysosomal processing before passively exiting the compartment.  

In the model equations, the fluid flow entering the endosomal compartment is 2 × 𝐶𝐿𝑢𝑝 L∙h-1, while 

the fluid flow explicitly leaving the endosomal compartment is 𝐹𝑅 × 𝐶𝐿𝑢𝑝 + (1 − 𝐹𝑅) × 𝐶𝐿𝑢𝑝 =

𝐶𝐿𝑢𝑝 L∙h-1. 

3.6 Conclusion 

A popPBPK framework for quantifying inter-individual pharmacokinetic variability was proposed, 

tested and evaluated. Five key factors that contribute to inter-individual variability in trastuzumab 

pharmacokinetics were identified and the nature of their contribution was quantified with local and 

global sensitivity analyses. The clinical relevance of each of the five key parameters was explored. 

Simulations of plasma concentrations for virtual populations incorporating variability around each of 

the key parameters successfully predicted the inter-individual pharmacokinetic variability seen in 

experimental trials. The utility of popPBPK modeling to complement conventional PopPK methods 

was demonstrated. Overall, our understanding of inter-individual variability in trastuzumab 

pharmacokinetics has been enhanced with knowledge about the underlying key mechanistic 

processes. We look to the clinical research community to apply this information as they formulate 

dosing strategies for patient subgroups that may be at risk for poor safety or efficacy with mAb drugs. 

3.7 Study Highlights 

This study represents one of the early applications of whole body PBPK modeling to describe the 

pharmacokinetics of monoclonal antibodies in humans. The methods shown herein – both for mean 

model parameterization and population simulation – are performed in adults as workflow examples 

before the concepts are scaled to children. We also begin to discover the importance of modeling the 

effect of inflammatory disease states (such as cancer) on the pharmacokinetics of antibodies.  
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Chapter 4 

PBPK Modeling vs. Allometric Scaling to Predict the 

Pharmacokinetics of Infliximab in Pediatric Patients 

4.1 Abstract 

The comparative performances of physiologically-based pharmacokinetic (PBPK) modeling and 

allometric scaling for predicting the pharmacokinetics of large molecules in pediatrics are unknown. 

Therefore, both methods were evaluated for accuracy in translating knowledge of infliximab 

pharmacokinetics from adults to children. PBPK modeling was performed using the base model for 

large molecules in PK-Sim v7.4 with modifications in Mobi. Eight population pharmacokinetic 

models from literature were reconstructed and scaled by allometry to pediatrics. Evaluation data 

included seven pediatric studies (~4 – 18 years). Both methods performed comparably with 66.7% 

and 68.6% of model-predicted concentrations falling within two-fold of the observed concentrations 

for PBPK modeling and allometry, respectively. Considerable variability was noted among the 

allometric models. Therefore, pediatric clinical trial planning would benefit from using approaches 

that require predictions depending on the specific question i.e., PBPK modeling and allometry. 

4.2 Introduction 

Physiologically-based pharmacokinetic (PBPK) modeling and allometric scaling are the two most 

common methods for translating knowledge of adult pharmacokinetics (PK) to the pediatric space for 

the planning of pediatric clinical trials.312 While drug developers and regulatory agencies alike 

maintain high confidence in both methods for small molecule drugs, little is known about the 

performance and utility of either method for large molecule drugs.70 Here we evaluate the two 

approaches for the prediction of large molecule PK in pediatric patients with infliximab as a working 

example, since plenty of adult and pediatric data are available in published literature for the exercise. 

The practice of allometry applies an empiric and inherently simple method to perform body-

weight-based scaling of adult PK parameters that have been derived from population pharmacokinetic 

(PopPK) studies (i.e. clearance and volume of distribution).313 The accuracies of allometric models 

have been demonstrated with numerous small molecule drugs for children older than two years of 

age, when distribution and clearance processes have achieved adult performance.15,314 Below this 

threshold empirical adjustments for maturation and ontogeny are required and the resulting functions 
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are not translatable between molecules.315,316 In keeping with this observation, our evaluation of 

allometric scaling in the large molecule space first includes studies with children older than 4 years of 

age, when the mechanisms governing PK are thought to have reached full maturity.34 

Physiologically-based pharmacokinetic (PBPK) models have long been recognized for offering 

translational utility by maintaining mechanistic approaches to distribution and clearance.12 They 

enable PK predictions in unique populations or unknown exposure scenarios based on known 

physiological and anatomical characteristics, but are considerably more complex to develop. PBPK 

models must first be calibrated, informed and evaluated with PK data in adults before their 

predictions can become reliable in the pediatric space. The practice of PBPK modeling to support 

pediatric clinical trial planning in the context of small molecule drugs has achieved critical mass with 

regulatory support from both the US Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA).12 In contrast to allometric models, PBPK models can employ physiologic 

knowledge of growth and maturation to account for the ontogeny of key distribution and clearance 

processes in young children, even neonates and pre-term infants.317  

The same confidence must yet be earned for large molecule drugs. The mechanisms governing the 

PK of large molecules are not at all similar to those of small molecules.318 Platform PBPK models for 

large molecules in adults have emerged in the last 7 years and to date only one minimal PBPK 

modeling effort has been made to characterize PK in children.66,135,319 We continue the exploration 

with a whole-body approach to the PK of infliximab in children since a large amount of pediatric PK 

data is available for this purpose in published literature. The assessment of pediatric PBPK modeling 

in older children and adolescents must be completed prior to considering children less than 4 years of 

age for proper evaluation of size-dependent scaling alone without additionally considering age-

dependent factors, namely the maturation and ontogeny of key distribution and clearance 

mechanisms.34  

Infliximab is a chimeric monoclonal antibody directed against tumour necrosis factor alpha (TNF) 

that is used to treat inflammation associated with many autoimmune conditions, such as inflammatory 

bowel disease, rheumatoid arthritis, psoriasis, ankylosing spondylitis and Kawasaki disease. It is most 

often dosed at 5 mg/kg by a 2-hour intravenous infusion at 0, 2 and 6 weeks for induction of 

remission and then every 8 weeks thereafter for maintenance of remission, though standard regimens 

may vary slightly among disease states and clinical treatment centres. 
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The drug exhibits complex but generally linear pharmacokinetics due to its large size, antibody-

based design and low target burden. Two-compartment models are often used to describe its time-

course in the adult body. The drug possesses an extensive plasma residence time due to poor 

permeability across blood vessel walls, with a mean plasma half-life of 9.5 days. High affinity 

interactions with the neonatal Fc receptor (FcRn) in endothelial, epithelial and hematopoietic cells 

further protect the drug from intracellular degradation. Infliximab neutralizes soluble TNF in most 

extracellular fluid domains, but most importantly in the interstitial spaces of inflamed organs. From 

the interstitial space, the lymphatic system recirculates infliximab via the thoracic duct to the venous 

blood, where the distribution cycle can begin again. Over time, and in part due to its make-up with 

portions of murine protein, the body may mount an immune response against infliximab. At sufficient 

titres, anti-drug antibodies (ADAs) can render infliximab undetectable in plasma. 

Monoclonal antibodies are a rapidly expanding drug class and pediatric investigations are well 

underway. The FDA has recently highlighted the gaps in modeling and simulation efforts to support 

pediatric drug approvals.70 By completing this work we aim to assess the confidence with which 

PBPK modeling and/or allometric scaling can be applied in the context of pediatric drug development 

and clinical trial planning. 

4.3 Methods 

4.3.1 Software 

PBPK models were built and evaluated using the base model for large molecule drugs in PK-Sim and 

Mobi v7.4 (www.open-systems-pharmacology.org) with minor modifications.66 PK data in scientific 

literature was digitized using Plot Digitizer v2.6.8 by Joseph Huwaldt (plotdigitizer.sourceforge.net). 

MATLAB R2018b and the Intiquian toolbox (IQMTools v1.2.2.2) by Henning Schmidt were used for 

reconstruction of PopPK models, allometric scaling and graphical presentation of results. 

4.3.2 Pharmacokinetic Data 

After a comprehensive literature search, seven pediatric PK trials were located and the data was 

digitized for evaluation of the pediatric PK predictions between PBPK modeling and allometric 

scaling (Table 9).28,29,320-326 The datasets encompass children with inflammatory bowel disease or 

juvenile idiopathic arthritis almost exclusively between 4 and 18 years of age with infliximab doses 

ranging from 1 – 10 mg/kg IV. 



 

75 

4.3.3 Adult PBPK Model Development 

PBPK modeling enables a mechanistic representation of drug disposition in virtual individuals with 

known anatomical and physiological properties. Virtual adults and children for the analysis were 

generated using PK-Sim v7.4. Algorithms for the generation of virtual individuals in PK-Sim are 

reported elsewhere.266 In the PBPK modeling process, one virtual individual (whether adult or child) 

was created to represent the mean individual in each PK study. Each virtual individual had the same 

age, height, weight, sex and disease state as the mean individual in the corresponding real-world 

study along with all associated anatomical and physiological characteristics. Maturation was assumed 

not to have an impact on these characteristics in children older than 4 years of age. 

 In agreement with pediatric PBPK model development workflows for small molecules, an adult 

PBPK model was constructed for infliximab first to gain confidence in the global parameterization 

before scaling the model to pediatric individuals. 

The base model for large molecule drugs in the software package has been described previously.66 

Fifteen organs were included in the model structure to represent a virtual human, and each organ 

compartment was further divided into plasma, endosomal, interstitial and cellular sub-compartments. 

The base model featured two-pore extravasation, endothelial uptake, salvage by FcRn and lymphatic 

recycling. The model structure was adapted in Mobi v7.4 to include target-mediated interactions with 

TNF and ADAs. Model parameters as inputted into PK-Sim and Mobi are presented in Table 10. 
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Table 9. Pharmacokinetic data evaluation of pediatric predictions 

Study Dose 

(mg/kg IV) 

N Age 

(years) 

Weight 

(kg) 

Inflammatory Bowel Disease 

Candon et al.320 Induction with 5 20 10.5 [0.5 – 

15] 

NA 

Hyams et al.28,29,321 Induction with 5 then 5 q8w 

and q12w with dose 

escalation to 10 

112 13.3 ± 2.5 43.8 ± 14.6 

Hamalainen et al.322 Induction with 5 then 5 q8w 37 14 [5.6 – 18] 43.5 [19.6 – 

67.1] 

Baldassano et al.323 1, 5 and 10 single dose 21 15.1 [8 – 17] 49.1 

Singh et al.324 Induction with 5 then 5 q8w 58 11.4 [6.6 – 

18.4] 

NA 

Adedokun et al.325 Induction with 5 then 5 q8w 

and q12w with dose 

escalation 

60 14.5 [6 – 17] 50.8 (36.3 –

59.4) 

Juvenile Idiopathic Arthritis 

Ruperto et al.326 Induction with 3 or 6 then 3 

or 6 q8w 

122 11.2 [4 – 18] NA 

Data presented as mean or median and [range], (interquartile range) or ± standard deviation 

‘Induction’ refers to intensive dosing at weeks 0, 2 and 6 before regular maintenance dosing 
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Table 10. Model parameters 

Parameter Final Value 

Infliximab 

Molecular weight 149100 kDa 

Hydrodynamic radius 5.34 nm66 

Rate of uptake into endosomal space (𝑘𝑢𝑝) 0.35 min-1 

Dissociation constant for FcRn binding (𝐾𝐷
𝐹𝑐𝑅𝑛) 727 nM288 

Dissociation constant for TNF binding (𝐾𝐷
𝑇𝑁𝐹) 30 pM327 

Dissociation constant for ADA binding (𝐾𝐷
𝐴𝐷𝐴) 500 pM328 

TNF 

TNF maximum plasma concentrationa (𝑇𝑁𝐹𝑜𝑟𝑔𝑎𝑛) 0.5 pM329-331 

TNF factor for autoimmune disease 2329,330,332,333 

TNF degradation rate (𝑘𝑑𝑒𝑔
𝑇𝑁𝐹) 0.0231 min-1 334,335 

mAb-TNF complex degradation rate (𝑘𝑑𝑒𝑔
𝑚𝐴𝑏−𝑇𝑁𝐹) 0.0231 min-1 

ADA 

Duration of IgM production (𝑇𝑝𝑟𝑜𝑑
𝐼𝑔𝑀

) 30.7 days336 

Lag time prior to IgG production (𝑇𝑙𝑎𝑔
𝐼𝑔𝐺

) 38.8 days336 

IgM maximum plasma concentrationa (𝐸𝑚𝑎𝑥
𝐼𝑔𝑀

) 𝑘𝑑𝑒𝑔
𝐼𝑔𝐺

× 𝐸𝑚𝑎𝑥
𝐼𝑔𝐺

𝑘𝑑𝑒𝑔
𝐼𝑔𝑀  

IgG maximum plasma concentrationa (𝐸𝑚𝑎𝑥
𝐼𝑔𝐺

) 136 nM  

ADA (IgM) degradation rate (𝑘𝑑𝑒𝑔
𝐼𝑔𝑀

) 0.1 day-1 336 

ADA (IgG) degradation rate in healthy (𝑘𝑑𝑒𝑔
𝐼𝑔𝐺

) 0.014 day-1 336 

ADA (IgG) degradation rate in autoimmune (𝑘𝑑𝑒𝑔
𝐼𝑔𝐺

) 0.008 day-1 336 

mAb-ADA complex degradation rate (𝑘𝑑𝑒𝑔
𝑚𝐴𝑏−𝐴𝐷𝐴) 0.48 day-1 337 

Inflamed Organ 

Inflammation factor for inflamed pores (𝐼𝐹𝜎) 1.569,338,339 

TNF factor for inflamed organ 3340,341 
a Zero order synthesis rates were calculated by multiplying the degradation rate by the maximum 

concentration of the molecule 

Bolded values were mathematically optimized to their final value in the model building process 
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Infliximab binds to TNF in circulation with high affinity and the complex is later eliminated by the 

immune system.342 In the PBPK model, TNF was present in all plasma and interstitial spaces with a 

relative expression of 1 across all organs. The natural synthesis (𝑘𝑠𝑦𝑛
𝑇𝑁𝐹) and turnover (𝑘𝑑𝑒𝑔

𝑇𝑁𝐹) of TNF 

were represented with zero order and first order rate constants, respectively. TNF molecules were 

non-circulating and stationary within each sub-compartment. Binding of infliximab to TNF caused 

the formation of a complex, which was eliminated from the system by a first order degradation rate 

(𝑘𝑑𝑒𝑔
𝑚𝐴𝑏−𝑇𝑁𝐹). 

In PopPK studies, infliximab is often noted to exhibit faster clearance in individuals with severe 

inflammation, possibly mediated through higher TNF concentrations, vascular hyperpermeability or 

cachexia. In the PBPK model, the presence of autoimmune disease was represented with a global 2-

fold increase in TNF concentrations.329,330,332,333 In inflamed organs, local TNF concentrations were 

further increased by a factor of 3.340,341  

Large molecule drugs abide by permeability-rate-limited distribution and are subject to vascular 

hyperpermeability in inflamed organs. To represent this effect, the pore sizes in inflamed organs were 

increased proportional to an inflammation factor in agreement with previous minimal PBPK models 

of inflammatory conditions by Jusko and colleagues, who observed the requirement for lower 

vascular reflection coefficients in inflamed organs.69,338,339 The large intestine was inflamed in patients 

with inflammatory bowel disease, the bone was inflamed in patients with rheumatoid arthritis and 

ankylosing spondylitis, the skin was inflamed in patients with psoriasis and the lung was inflamed in 

patients with non-small cell lung cancer (NSCLC). 

Immunogenicity is a key determinant of infliximab elimination. Results are conflicting due to 

inconsistency in ADA assays, though up to 60% of patients may express an immunogenic response 

against infliximab over the course of one year of therapy.343 ADA molecules (IgM, IgG) bind to 

infliximab to form a complex, neutralizing its therapeutic potential and eventually resulting in 

degradation. In the PBPK model, ADA molecules (IgM, IgG) were synthesized, released and 

contained within the plasma of venous and arterial blood, similar to the assumptions made by Chen et 

al.344 Mean ADA synthesis and degradation rates in the adult population were parameterized 

according to Ren et al., who quantified the typical immune response after first-dose exposure to four 

therapeutic proteins with a PopPK modeling approach.336 In the absence of additional data, the zero 

order molar synthesis rates of IgM and IgG were assumed equal (𝑘𝑠𝑦𝑛
𝐼𝑔𝑀

= 𝑘𝑠𝑦𝑛
𝐼𝑔𝐺

). The typical ADA 

profile featured an initial period of IgM synthesis, a lag phase and finally a sustained IgG response. 
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The group noted differences in IgG degradation rates between healthy and autoimmune individuals, 

which were implemented in the model.336 Mechanistically, binding of infliximab to IgM or IgG 

caused the formation of a complex, which was eliminated from the system by a first order degradation 

rate (𝑘𝑑𝑒𝑔
𝑚𝐴𝑏−𝐴𝐷𝐴).  

Two parameters in the adult PBPK model were uncertain and required optimization: the rate of 

uptake into endosomal space (𝑘𝑢𝑝) and the zero order molar synthesis rate of ADA molecules against 

infliximab (𝑘𝑠𝑦𝑛
𝐼𝑔𝐺

), which was mediated via the maximum concentration of IgG parameter (𝐸𝑚𝑎𝑥
𝐼𝑔𝐺

). 

Optimization was carried out in Mobi using a Monte-Carlo approach to exploring the parameter 

space. The parameters were optimized separately in two steps. First, 𝑘𝑢𝑝 was optimized to ADA-

negative PK data available in 4 studies (Table 11). Following this step, 𝐸𝑚𝑎𝑥
𝐼𝑔𝐺

 was optimized to PK 

data available from 20 studies in healthy and diseased individuals (Table 11). Therefore, 𝐸𝑚𝑎𝑥
𝐼𝑔𝐺

 

represents the mean immunogenic response across the general adult population, including both ADA-

positive and ADA-negative individuals. 

Model accuracy following optimization was assessed statistically by the squared Pearson 

correlation coefficient (Pearson R2), the absolute average fold error (AAFE) across all data points, the 

root mean squared error (RMSE) and the percent of model-predicted concentrations falling within 

two-fold of the corresponding observed concentrations. An external evaluation of the final adult 

model was not performed because the purpose of the model was to extrapolate knowledge of adult PK 

to pediatrics, and this workflow maximizes learning from adult datasets. 
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Table 11. Datasets used for adult PBPK model building 

Study Cohort Dose 

(mg/kg IV) 

N Age 

(years) 

Weight 

(kg) 

Datasets with an ADA-Negative Subset (Model Building Step 1) 

Yoo et al.345 Rheumatoid Arthritis Induction with 3 then 3 q8w 304 50 [21 – 74] 68 [36 – 136] 

Brandse et al.346 Ulcerative Colitis Induction with 5 19 36 (27 – 44) 70 (61 – 75) 

Shin et al.347 Healthy 5 single dose 53 39.4 ± 9.9 79.1 ± 8.3 

Takeuchi et al.348 Rheumatoid Arthritis Induction with 3 then 3 q8w 47 53.8 ± 13.4 53.4 ± 10.1 

Additional Datasets (Model Building Step 2) 

Lambert et al.349 Healthy 5 single dose 41 28.5 [18 – 45] 74.7 [62.3 – 88.6] 

Udata et al.350 Healthy 10 single dose 48 [18 – 55] NA 

Park et al.351 Healthy 5 single dose 71 41 [18 – 55] 78.1 [55.4–99.9] 

Maini et al.352 

St. Clair et al.353 

Rheumatoid Arthritis Induction with 3 and 10 then 3 and 10 q4w 

or q8w 

197 53 [19 – 80] NA 

Park et al.354,355 Ankylosing Spondylitis Induction with 5 then 5q8w 110 38 [18 – 66] 76.0 (45.5–122.7) 

Gottlieb et al. 356,357 Psoriasis Induction with 5 and 10 17 43 [21 – 69] 91.5 [61 – 165] 

Gottlieb et al. 357,358 Psoriasis Induction with 5 then 5 q8w 215 44.4 ± 13.3 93.5 ± 21.1 

Adedokun et al.359 Ulcerative Colitis Induction with 5 and 10 then 5 and 10 q8w 484 40 (30 – 52) 77 (66 – 89) 

Rutgeerts et al.360 Crohn’s Disease 5, 10 and 20 single dose then 10 q8w 37 34 [20 – 64] 66 [40 – 102] 

Cornillie et al.361 Crohn’s Disease Induction with 5 then 5 and 10 q8w 284 36.8 [18 – 76] NA 

Rahman et al.362 Rheumatoid Arthritis Induction with 3 then 3q8w  220 54 (44 – 62) 69.3 (60.1 – 81.0) 

Hibi et al.363 Behcet Disease Induction with 5 then 5 q8w 11 37.6 ± 7.4 67.8 ± 17.9 

Jatoi et al.364 NSCLC 5 on weeks 0, 2, 4, 8, 12 4 72.25 NA 

Choe et al.365 Rheumatoid Arthritis Induction with 3 then 3 q8w 160 52.6 ± 11.7 71.9 ± 16.5 

Bortlik et al.366 Crohn’s Disease Induction with 5 then 5 q8w 84 31 [17 – 62] NA 

Krzysiek et al.367 Ankylosing Spondylitis Induction with 5 then 5 q6w 93 39.5 ± 12.0 NA 

Torii et al.357,368,369 Psoriasis  Induction with 5 then 5 q8w 35 46.9 ± 13.0 68.5 ± 13.4 

Sorrentino et al.370 Crohn’s Disease 3 and 5 q8w 11 37.8 NA 

Kavanaugh et al.371 Rheumatoid Arthritis 5, 10 and 20 single dose 21 45.5 ± 12.3 NA 

Data presented as mean or median and [range], (interquartile range) or ± standard deviation 

‘Induction’ refers to intensive dosing at weeks 0, 2 and 6 before regular maintenance dosing 
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4.3.4 Pediatric Extrapolation 

After establishing confidence in the performance of the adult PBPK model, it was then translated to 

the pediatric space. In simple terms, the virtual adult individual was replaced with a pediatric 

individual with all associated anatomical and physiological parameters to explore the a priori PK 

predictions of the model in children. Physiological parameters related to disease pathology and 

immunogenicity were kept constant between adults and children, with some literature to inform this 

decision.320,331,372 Observed PK data from seven pediatric clinical trials were available for evaluation 

of the predictions (Table 19). As above, prediction accuracy was assessed by four metrics: Pearson 

R2, AAFE, RMSE and the percent of model-predicted concentrations falling within two-fold of the 

corresponding observed concentrations in children.  

Allometric scaling offers a simple and empirical approach to translating the statistical knowledge 

gained from an adult PopPK study to a pediatric population by acknowledging differences in body 

weight. Many adult PopPK models for infliximab exist in published literature. In a typical drug 

development case only one model would exist, built after collation of PK data from two or three small 

studies. For this exercise, a total of eight adult PopPK models were reconstructed from literature for 

application of allometric scaling (Table 12).  

Each PopPK model was constructed, scaled and evaluated independently. First, values for 

clearance (𝐶𝐿𝑎𝑑𝑢𝑙𝑡), inter-compartmental clearance (𝑄2𝑎𝑑𝑢𝑙𝑡), volume of distribution in the central 

compartment (𝑉1𝑎𝑑𝑢𝑙𝑡) and volume of distribution in the peripheral compartment (𝑉2𝑎𝑑𝑢𝑙𝑡) were 

extracted for the typical adult individual in each study (Table 12). The typical adult had mean or 

median covariate status for age, height, weight, sex, disease status, immunomodulator use and 

inflammatory biomarker concentration where applicable. The four PK parameters were then scaled by 

allometry from the typical adult to the typical child in each of the pediatric PK studies designated for 

evaluation (pediatric body weights presented in Table 19). Allometric scaling was implemented as 

described by Tod, Jullien and Pons.313 Mathematically, 

𝐶𝐿𝑐ℎ𝑖𝑙𝑑 = 𝐶𝐿𝑎𝑑𝑢𝑙𝑡 × (
𝐵𝑊𝑐ℎ𝑖𝑙𝑑

𝐵𝑊𝑎𝑑𝑢𝑙𝑡
)

0.75

 

𝑄2𝑐ℎ𝑖𝑙𝑑 = 𝑄2𝑎𝑑𝑢𝑙𝑡 × (
𝐵𝑊𝑐ℎ𝑖𝑙𝑑

𝐵𝑊𝑎𝑑𝑢𝑙𝑡
)

0.75

 

𝑉1𝑐ℎ𝑖𝑙𝑑 = 𝑉1𝑎𝑑𝑢𝑙𝑡 × (
𝐵𝑊𝑐ℎ𝑖𝑙𝑑

𝐵𝑊𝑎𝑑𝑢𝑙𝑡
)

1.0
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𝑉2𝑐ℎ𝑖𝑙𝑑 = 𝑉2𝑎𝑑𝑢𝑙𝑡 × (
𝐵𝑊𝑐ℎ𝑖𝑙𝑑

𝐵𝑊𝑎𝑑𝑢𝑙𝑡
)

1.0

 

Pediatric PK predictions were only made in the context of the same or similar disease states. Seven 

PopPK models developed in adults with inflammatory bowel disease were used to make pediatric PK 

predictions for children with inflammatory bowel disease and one PopPK model developed in adults 

with rheumatoid arthritis was used to make pediatric PK predictions for children with juvenile 

rheumatoid arthritis. Pediatric PK profiles were simulated with the updated parameters and compared 

to the mean pediatric observed concentrations from literature (Table 19). Once again, the accuracy of 

PK profile prediction through allometric scaling was assessed by the same four statistical metrics for 

direct comparison to the PBPK model-driven predictions (Pearson R2, AAFE, RMSE and percent of 

model-predicted concentrations falling within 2-fold of the corresponding observed concentrations). 

Table 12. Adult infliximab PopPK studies used for allometric scaling 

Study N Age 

(years) 

Weight 

(kg) 

CL 

(mL/h) 

Q2 

(mL/h) 

V1 

(L) 

V2 

(L) 

Inflammatory Bowel Disease 
Fasanmade et al.27 580 37.5 ± 11.9 71.1 ± 18.3 15.27 6.09 3.58 1.29 

Fasanmade et al.373 482 41.2 ± 13.9 78.8 ± 18.4 16.96 297.5 3.29 4.13 

Ternant et al.374 33 33 [19 – 53] 67 [44 – 

110] 

12 5.4 2.9 1.9 

Dotan et al.375 54 35.6 [20 – 70] NA 15.8 5.08 2.37 1.37 

Aubourg et al.376 133 NA 60 [41 – 

120]  

14 83 2.6 4.5 

Buurman et al.377 42 44 [19 – 80] 75 [51 – 

145] 

8.29 2.58 4.94 3.13 

Brandse et al.378 332 38.6 ± 13.9 72.3 ± 16.3 14.96 2.9 4.72 2.4 

Rheumatoid Arthritis 
Ternant et al.379 84 58 [27 – 84] 65 19 180 2.3 3.6 

Data presented as mean or median and [range], (interquartile range) or ± standard deviation 

CL = clearance, Q2 = intercompartmental clearance, V1 = volume of distribution in the central 

compartment, V2 = volume of distribution in the peripheral compartment. 

 

4.4 Results 

A comprehensive PBPK model was developed using the base model for large molecule drugs in PK-

Sim and Mobi v7.4 with modifications to feature the effects of inflammation and target-mediated 

interactions with TNF and ADA molecules. The adult model was then scaled to represent children by 

updating all anatomical and physiological parameters accordingly. Additionally, eight two-

compartment PopPK models from literature were reconstructed and scaled by allometry to the 
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pediatric space according to the methods proposed by Tod, Jullien and Pons.313 Equipped with these 

tools, the performances of PBPK modeling and allometric scaling for the prediction of infliximab PK 

in children and adolescents were systematically evaluated. 

4.4.1 Adult PBPK Model Development 

In the first optimization step (the ADA negative scenarios), the final value for 𝑘𝑢𝑝 was 0.35 min-1 

(Figure 20). In the second optimization step, the final value for  𝐸𝑚𝑎𝑥
𝐼𝑔𝐺

 was 136 nM. The adult PBPK 

model well-characterized the observed PK profiles from all datasets used in both optimization steps 

achieving a Pearson R2 of 0.90, an AAFE of 1.16 and an RMSE of 30.9. Notably, 88.4% of the 

model-predicted infliximab concentrations were within 2-fold of the corresponding observed 

concentrations. Figure 21 shows sample PK profiles in healthy subjects, ankylosing spondylitis and 

rheumatoid arthritis, and a comparison of the model-predicted vs. observed concentrations across all 

studies. The possible effect of inflammation on clearance was modestly under-estimated for 

inflammatory bowel disease and psoriasis patients, though a significant portion of this observed data 

was obtained from non-responder subsets. Non-responders have lower trough concentrations than 

responders, possibly due to higher TNF concentrations, ADA positivity or severely inflamed, 

damaged or leaky organs.  
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Figure 20. Comparison of model-fitted profiles to observed data after the first optimization step. References to observed data are provided in 

Table 11. 
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Figure 21. Sample fitted infliximab PK profiles in healthy subjects, ankylosing spondylitis and rheumatoid arthritis, and a comparison of model-

predicted vs. observed infliximab concentrations (NSCLC = non-small cell lung cancer) after the second optimization step. References to observed 

data are provided in Table 11. 



86 

4.4.2 Evaluation of Pediatric Predictions 

Both methods performed similarly for predicting the mean PK in children obtained from studies that 

included individuals almost exclusively between the ages of 4 and 18. Figure 22 displays a plot-by-

plot comparison of allometrically-derived PK profiles, PBPK profiles and the mean pediatric 

observed concentrations from literature. Considerable differences were noted among the profiles 

derived from allometric scaling that stemmed from variable PK parameter values from the eight adult 

PopPK models. Visually, the pediatric PBPK model was more proficient for predicting peak 

concentrations after infusion and volume of distribution in the central compartment, while the 

allometrically-derived models performed better for predicting trough concentrations.  

Across all allometric models, model-predicted concentrations were within 2-fold of the observed 

concentrations 68.6% of the time, while the best allometric model enabled predictions within 2-fold 

of the observed concentrations 84.3% of the time (Table 13).378 The PBPK model performed similarly 

overall, achieving predictions within 2-fold of the observed concentrations 66.7% of the time (Table 

13). No discernable correlations were detected between the sample size of a PopPK study (N) and the 

accuracy of its pediatric predictions. The Pearson R2 and RMSE values identified trends in model 

performance but no conclusions could definitively be made about overall model performance from 

these metrics. 

Finally, Figure 23 compares the model-predicted and observed infliximab concentrations across all 

pediatric studies. Low concentrations were over-predicted by both methods, though there is 

uncertainty in these data values with regard to the lower limits of quantification for the assays in the 

studies. Overall, the PBPK model predictions fell near the median of the allometric predictions for 

children. 
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Figure 22. Comparison of pediatric PBK modeling and allometric scaling for the prediction of infliximab PK in children with inflammatory bowel 

disease or juvenile idiopathic arthritis; data digitized from seven pediatric studies (Table 19).  
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Figure 23. Model-predicted vs. observed infliximab concentrations in pediatrics. 

 

Table 13. Statistical evaluation of pediatric PK model performance 

Model N AAFE R2 RMSE 2-Fold Error 

Inflammatory Bowel Disease 

Fasanmade et al.27 580 0.77 0.977 8.1 60.8% 

Fasanmade et al.373 482 1.09 0.964 9.7 76.5% 

Ternant et al.374 33 1.35 0.980 10.1 80.4% 

Dotan et al.375 54 0.60 0.957 21.4 51.0% 

Aubourg et al.376 133 1.36 0.973 8.5 82.4% 

Buurman et al.377 42 2.82 0.913 17.0 47.0% 

Brandse et al.378 332 1.18 0.970 14.0 84.3% 

Rheumatoid Arthritis 

Ternant et al.379 84 0.83 0.987 20.7 66.7% 

All Allometric Models 

  1.25  13.7 68.6% 

PBPK Modeling 

This Study  1.79 0.96 7.0 66.7% 
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4.5 Discussion 

The evaluations of PBPK modeling and allometric scaling for prediction of small molecule PK in 

children have been extensive.15,314 Both methods are often reported to achieve predictions within 2-

fold of the observed values up to 90% of the time for children older than 2 years of age. However, 

this evaluation has not yet been performed in the context of large molecule drugs. With infliximab as 

a case example, we demonstrate that PBPK modeling and allometric scaling in their current states 

provide similar pediatric PK predictions for children older than 4 years of age in known exposure 

scenarios. There is significant room for improvement in the large molecule space, as neither method 

in this example achieved the accuracies reported in small molecule evaluations (66.7% and 68.6% of 

model-predicted concentrations falling within 2-fold of the observed concentrations for PBPK 

modeling and allometric scaling, respectively). Refinement of allometric exponents for large 

molecule drugs and investigations into the relevance of pediatric physiology for predicting PK in 

young children are required to advance the predictive accuracy of these methods.34 

A closer inspection of model performances may offer guidance about the utility of each method for 

specific purposes (Figure 22). The pediatric PBPK model performed stronger than the allometrically-

derived models for the prediction of peak drug concentrations after infusion (Figure 23), suggesting 

that volume of distribution in the central compartment for children is most reliably estimated by 

physiological methods. Clearance in children older than 4 years of age was modestly underestimated 

by PBPK modeling, suggesting that there may be mild effects of maturation on anatomical and 

physiological parameters that govern elimination. Allometric scaling may more reliably estimate 

trough concentrations and clearance in known exposure scenarios. Lastly, allometric scaling was 

performed for eight different PopPK models in a small fraction of the time that was required to 

develop the pediatric PBPK model (~100 hours) and would be preferred when time is a constraint.  

The findings from this study can be generalized to the pediatric PBPK modeling and allometric 

scaling of monoclonal antibodies with similar FcRn affinity and a low target burden to guide drug 

development and selection of first-in-pediatric doses. Antibodies with a high target burden often 

exhibit nonlinear kinetics and there is yet no reliable method for scaling the TMDD component of a 

non-linear PopPK model by allometry, especially when disease pathology may vary between adults 

and children. PBPK modeling would be highly desired in this case. 

Wide variability was noted in the predictions among the eight allometric models and the accuracy 

among the models was independent of adult study sample size (Figure 22)(Table 12, Table 13). This 
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observation draws attention to the need for optimal sampling in the design of adult PopPK studies to 

increase confidence when applying allometric scaling. Without dense sampling and variable exposure 

scenarios, fundamental model structures cannot be determined. In the case of infliximab, estimates for 

PK parameters are highly variable among the eight models and are often poorly defined due to 

inadequate mid-profile sampling. Limited sampling analyses for large molecule drugs are beginning 

to be used to guide the sampling times for appropriate derivation of pivotal PK parameters, some of 

which govern curve shape.380  

PBPK modeling for large molecules is gaining traction in academia, industry and regulatory 

agencies. Here we present the first evaluation of a whole-body PBPK model for a large molecule drug 

in pediatrics and the first PBPK model to incorporate immunogenicity. Infliximab is one of the oldest 

monoclonal antibodies and there is an abundance of PK data available for model parameterization, yet 

the drug has often been avoided due to uncertainty around modeling immunogenicity, which is a key 

driver of its elimination. The immunogenic response is a modelling challenge because ADA assays 

often do not quantify concentrations, only titres of ADA molecules.24 As a first step toward 

quantifying the response, the ADA-negative PK data for infliximab available in literature combined 

with the parameterization of the time-course of ADA formation in humans by Ren et al. have enabled 

the first mechanistic representation of the immunogenic response to a therapeutic drug product.336 

Figure 24 displays the simulated profile of mean ADA formation following first dose administration 

in a typical population of adults with inflammatory bowel disease. The first phase is IgM formation, 

and the second phase is IgG formation. Not yet addressed mechanistically is the impact of concurrent 

drug therapy with immuno-modulators on ADA formation and clearance. 

The adult PBPK model showed a modest under-prediction of clearance in inflammatory bowel 

disease, though a significant portion of this observed data was extracted from subsets including only 

non-responders to treatment. As previously mentioned, this result is expected since non-responders 

often have higher ADA concentrations, higher TNF levels and more severely inflamed tissues. Loss 

of infliximab into the feces is an alternate explanation for the error.381 

For therapeutic proteins, the observation that children receive lower exposures than adults with the 

same weight-based doses has been reported before.34 Drug developers are beginning to anticipate this 

phenomenon and derive pediatric-specific doses according to age or weight using PBPK modeling or 

allometric scaling.56,70 The results of this study highlight the degree of error that can be expected 
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when only adult information is used to predict pediatric PK in maturation-independent age groups for 

the purposes of deriving age or weight-tiered doses with therapeutic proteins.56  

 

Figure 24. Simulated profile of mean ADA formation following first dose administration in a typical 

population of adults with inflammatory bowel disease 

To summarize, the methods of PBPK modeling and allometric scaling were comprehensively 

evaluated in this work for their accuracy in translating infliximab pharmacokinetic knowledge from 

adults to children. Both methods performed comparably, yet neither method achieved the prediction 

accuracy that is recorded in studies with small molecule drugs. Considerable variability was noted 

among the predictions made by the eight allometric models and accuracy was not driven by the 

sample sizes from the parent PopPK studies. Therefore, a comprehensive pediatric clinical trial 

planning approach would benefit from both PBPK modeling and allometric scaling, being cognizant 

that PBPK modeling may be more appropriate for predicting peak concentrations and allometric 

scaling may be more appropriate for predicting trough concentrations in children. 
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4.6 Study Highlights 

At present, pediatric drug development for large molecules is poorly supported by modeling and 

simulation. The comparative performances of physiologically-based pharmacokinetic (PBPK) 

modeling and allometric scaling for the prediction of large molecule pharmacokinetics in children are 

unknown. 

This study addressed which method(s) for pediatric PK prediction could be used reliably in 

pediatric drug development and clinical trial planning for large molecules. 

With infliximab as an example for the evaluation, PBPK modeling and allometric scaling had 

comparable accuracy in known exposure scenarios. Two-thirds of the model-predicted concentrations 

fell within two-fold of the observed concentrations. PBPK modeling was more accurate for predicting 

peak drug concentrations, while allometry was more accurate for predicting trough drug 

concentrations. 

No pediatric PBPK modeling has been completed to support regulatory submissions to the FDA for 

a monoclonal antibody.70 We highlight the opportunity for PBPK modeling to be used in tandem with 

allometry to contribute to this growing field of drug development. 

Since a PBPK model with size-dependent anatomy alone failed to predict the elimination of 

infliximab in children, and since the disease physiology and exposure-response relationships are 

known to be similar between adults and children, we put forward the hypothesis that there are age-

dependent physiological factors that must be considered when extrapolating PK even to adolescents 

with PBPK modeling.  
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Chapter 5 

Pediatric Physiology in Relation to the Pharmacokinetics of 

Monoclonal Antibodies 

5.1 Abstract 

Dose designs for pediatric trials with monoclonal antibodies (mAbs) are often extrapolated from the 

adult dose according to weight, age or body-surface area. While these methods account for the size 

differences between adults and children, they do not account for the maturation of processes that may 

play a key role in the pharmacokinetics and/or pharmacodynamics of mAbs. With the same weight-

based dose, infants and young children typically receive lower plasma exposures when compared to 

adults. In this review, the mechanistic features of mAb distribution, elimination and absorption are 

explored in detail and literature-based hypotheses are generated to describe their age-dependence. 

This knowledge can be incorporated into a physiologically-based pharmacokinetic (PBPK) modeling 

approach to pediatric dose determination.   

5.2 Introduction 

Increasing numbers of pediatric clinical trials are being performed under the pediatric regulations 

provided by the U.S. Food and Drug Administration and by the European Medicines Agency, which 

mandate and grant incentives to drug manufacturers for pursuing pediatric research. Dose designs for 

pediatric trials are often extrapolated from the adult dose according to weight, age or body-surface 

area (BSA). While these methods account for the size differences between adults and children, they 

do not account for the maturation of processes that may play a key role in pharmacokinetics and/or 

pharmacodynamics.382 The therapeutic consequences are most pronounced for infants, who are small, 

immature and vulnerable to toxicity from dosing errors.383 An alternative tool for dose determination 

in pediatric trials that explicitly accounts for age-related changes in anatomy and physiology is the 

physiologically based pharmacokinetic (PBPK) model. These mechanistic mathematical models 

attempt to recapitulate the anatomy and physiology of the human, at all stages of life, by 

compartmentalizing tissues and organs with knowledge of their size, composition and blood flow and 

connecting them to each other to simulate in vivo drug disposition. These models have utility in many 

areas of drug development, with pediatrics being a frequent use.12,384 
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Pharmacokinetic differences between adults and children have been linked to developmental 

differences in tissue composition, blood flow rates, enzyme and plasma protein concentrations and 

glomerular filtration rates.14 These developmental differences can be incorporated into PBPK models 

to make predictions of pharmacokinetics in children and numerous examples of pediatric PBPK 

models for small molecules are published.14,384-387 One use of the pediatric PBPK model is in the 

planning of pediatric clinical trials where it can be used to guide dosing regimen design, ensure 

efficient blood sampling times and potentially reduce the number of children required for the 

studies.388  

In the last two decades there has been an explosion of large molecule drugs registered for use in 

children, a significant portion of which are monoclonal antibodies (mAbs).80 They offer new avenues 

for targeted therapies against proteins that are involved in disease pathology. Most mAbs are 

structurally similar to endogenous IgG and share similar pharmacokinetic properties. For example, 

unlike small molecule drugs, many mAbs possess long plasma half-lives in part due to recycling by 

the neonatal Fc receptor (FcRn).2 Consequently, we must endeavour to explore these new drivers of 

large molecule pharmacokinetics as they relate to children and cannot rely on our previous 

understanding of the factors related to small molecule pharmacokinetics.   

A number of mAb therapies have been investigated in children for immunology, oncology, 

infectious disease and hematology. The general pharmacokinetic differences between adults and 

children (< 18 years) are reviewed by Edlund et al. and Zhang et al. and are most prominent in infants 

and young children, suggesting that maturation plays a key role.4,80 Every mAb with published 

investigations that include infants (< 2 years) is listed in Table 14 (current as of January, 2018). 

Overall, infants and young children achieve lower plasma exposure than adults when the same 

weight-based doses are given.3,4,80,389-391 Weight-normalized plasma clearance is faster and peak 

concentrations following an intravenous dose are lower.3,4,80,389-391 BSA-based dosing regimens are 

less common and may cause higher exposures in infants.3,4,42,80,389-391 The same general patterns are 

observed for other large molecule therapies that do not share the same IgG structure such as 

darbepoetin alfa, factor VII, recombinant factor VIII, and recombinant factor IX when administered 

to children, suggesting that the mechanisms responsible are not entirely specific to mAbs.392-396 
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Table 14. Pharmacokinetic studies with monoclonal antibodies involving infants (< 2 years) 

Generic 

Name 

Target Indication Dose Age 

(years) 

Year Ref. 

Basiliximab IL-2R𝝰 Prophylaxis of transplant rejection 10 – 20 mg IV 1 – 15 2002 397 

Prophylaxis of transplant rejection 10 – 20 mg IV 1 – 16 2002 398 

Prophylaxis of transplant rejection 10 mg IV 1 – 12 2010 399 

Prophylaxis of transplant rejection 10 – 20 mg IV 1 – 16 2002 400 

Bevacizumab VEGF Solid tumour 5 – 15 mg/kg IV 0.5 – 21 2016 42 

CNS tumour 10 mg/kg IV < 3 2017 401 

Solid tumour 5 – 15 mg/kg IV 1 – 21 2008 402 

Retinopathy of prematurity 0.25 – 0.625 mg IVT < 1 2015 403 

Retinopathy of prematurity 0.25 – 0.5 mg IVT < 1 2012 404 

Cetuximab EGFR Solid tumour 75 – 250 mg/m2 IV 1 – 12 2009 405 

Daclizumab IL-2R𝝰 Prophylaxis of transplant rejection 1 mg/kg IV 0.9 – 5 2008 406 

Dinutuximab GD2 Neuroblastoma 25 mg/m2 IV 1.2 – 7.3 2014 407 

Neuroblastoma 20 – 40 mg/m2 IV 1 – 14 2009 408 

Eculizumab C5 Atypical hemolytic-uremic syndrome 300 – 900 mg IV 0.4 – 17 2016 409 

Gemtuzumab 

Ozogamicin 

CD33 Acute myeloid leukemia 0.2 – 0.3 mg/kg IV 0 – 2 2004 410 

Infliximab TNF𝝰 Kawasaki disease, Crohn’s disease, 

ulcerative colitis, juvenile 

rheumatoid arthritis 

5 mg/kg IV 0.2 – 17 2012 411 

Kawasaki disease 5 mg/kg IV 0.2 – 6 2008 412 

Crohn’s disease 5 – 10 mg/kg IV 0.5 – 1 2006 320 

MEDI8897 RSV-F Respiratory syncytial virus infection 10 – 50 mg IM 0 – 2 2017 413 

Motavizumab RSV-F Respiratory syncytial virus infection 15 mg/kg IM < 2 2010 414 

Respiratory syncytial virus infection 3 – 15 mg/kg IM < 2 2009 415 

Respiratory syncytial virus infection 15 mg/kg IM < 2  2010 416 

Respiratory syncytial virus infection 3 – 30 mg/kg IV < 2 2009 417 

Respiratory syncytial virus infection 15 mg/kg IM < 2  2011 418 

Respiratory syncytial virus infection 15 mg/kg IM < 0.5 2015 419 

Pagibaximab LTA Coagulase-negative staphylococci 

infection 

10 – 90 mg/kg IV Neonate 2009 52 

Coagulase-negative staphylococci 

infection 
60 – 90 mg/kg IV Neonate 2011 420 

Coagulase-negative staphylococci 

infection 
10 – 90 mg/kg IV Neonate 2010 421 

Palivizumab RSV-F Respiratory syncytial virus infection 15 mg/kg IM < 2 2012 35 

Respiratory syncytial virus infection 3 – 15 mg/kg IV < 2 1998 422 

Respiratory syncytial virus infection 5 – 15 mg/kg IV < 2 2004 423 

Respiratory syncytial virus infection 5 – 15 mg/kg IM < 2 1998 424 

Respiratory syncytial virus infection 15 mg/kg IM < 0.5  2014 425 

Respiratory syncytial virus infection 15 mg/kg IM < 2   2010 416 

Rituximab CD20 Opsoclonus-myoclonus syndrome 375 mg/m2 IV 1.3 – 17 2010 426 

SB 209763 RSV-F Respiratory syncytial virus infection 0.25 – 10 mg/kg IM < 0.5  1999 427 

Urtoxazumab Stx2 Hemolytic-uremic syndrome due to 

infection by Shiga-like toxin-

producing E. Coli 

1 – 3 mg/kg IV 1 – 15 2010 428 
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5.3 A Physiological Approach to Pharmacokinetics 

A number of reviews describe the mechanistic processes governing the disposition of antibody-

based drugs in the body (Figure 25).2,429,430 The distribution of a protein-based drug is limited to the 

extracellular fluid. Uptake into cells generally leads to degradation. After intravenous administration 

into the plasma, mAbs can cross the vascular wall and enter the interstitial space of certain organs by 

extravasation through pores or (to a lesser extent) by transcytosis through the vascular endothelium. 

The rate of extravasation is tissue-specific and dependent on pore-size, vascular surface area and 

capillary permeability.136 For mAbs, cellular uptake does not always lead to degradation. Inside 

endothelial, epithelial and hematopoietic cells, mAbs can bind reversibly with the neonatal Fc 

receptor (FcRn) during endosomal sorting, which protects them against lysosomal degradation.431 

From the interstitial space, mAbs can be drained through the lymphatic system and re-enter venous 

circulation. Transit within the interstitial space and through lymphatic circulation is slow, erratic and 

driven by convective flow. Drainage of interstitial fluid into the lymph helps to ensure that the 

interstitial spaces in tissues are not permanent traps for circulating mAbs. Catabolism by non-specific 

proteases in circulation may make a minor contribution to total elimination. Renal excretion is 

assumed negligible because the molecular weight exceeds 70 kDa.64 Because mAbs are protein 

molecules, an immunogenic response and subsequent development of anti-drug antibodies may 

occur.23 A full immunogenic response can render the drug near-undetectable in plasma.320   

In cases of high target abundance and accessibility, mAbs may exhibit target-mediated drug 

disposition, meaning that the kinetics of the target directly impact the kinetics of the drug.19 If the 

target is free and soluble, mAbs may contact it anywhere in the extracellular fluid. After binding, the 

neutralized mAb-target complex would circulate until it is cleared by the activation of complement 

and subsequent removal by phagocytosis. This phagocytosis could be mediated in part through 

binding to Fc-gamma receptors (FcγR) on the surface of macrophages. If the target is bound to the 

cell membrane, mAbs must often reach the interstitial space to contact it. After binding, the mAb-

target complex may be internalized into the cell and degraded, initiating a major route of elimination 

for the drug. When a mAb is subject to significant target-mediated elimination, the in vivo 

pharmacokinetics can be noticeably non-linear (clearance can decrease with increasing doses).19,20      

A physiological approach to mAb pharmacokinetics must be taken to ensure safe and effective dose 

design in the pediatric clinical trials to come. This review seeks to formulate hypotheses about the 

age-related differences in physiology that may be responsible for the observed pharmacokinetic 
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differences between adults and children. The major focus is on neonates (< 1 month) infants (< 2 

years) and young children (2 – 6 years), where the pharmacokinetic differences are most prominent. 

 

Figure 25. The main physiologic processes governing the disposition of mAbs. After IV 

administration, mAbs cross the vascular wall by extravasation or by transcytosis through the vascular 

endothelium. During this transcytosis, mAbs may bind reversibly with the neonatal Fc receptor 

(FcRn), which protects them from lysosomal degradation. If the target is membrane-bound, mAbs 

must reach the interstitial space in order to facilitate target binding. The mAb-target complex on the 

cell surface can be internalized and degraded. If the target is free and soluble, mAbs may contact the 

target anywhere in the extracellular fluid. The mAb-target complex will circulate until it is cleared by 

the activation of complement and subsequent phagocytosis. Phagocytosis of these complexes could be 

mediated in part through binding to Fc-gamma receptors (FcγR) on the surface of certain 

macrophages. 
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5.4 Distribution 

As mentioned, the distribution of mAbs is limited to the extracellular fluid in the body due to their 

poor permeability across cellular membranes and vulnerability to intracellular catabolism. Therefore, 

it is possible to estimate the volume of distribution in different species or individuals based on known 

reference values for extracellular fluid volume and body composition. Table 15 summarizes the 

developmental biology of circulatory and hydrostatic parameters from infancy until adulthood. While 

the extracellular fluid volume fraction falls rapidly after birth, plasma volume rises incrementally. 

The net effect is that the proportion of total body volume available for distribution is higher in infants 

than in older children and adults.   

Table 15 also highlights the fast rate of blood perfusion throughout the infant body in the first 6 

months of life (cardiac output). On a per kilogram basis, young infants receive higher volumes of 

blood to tissues over time.14,432 Consequently, distribution to tissues may occur faster in infants up to 

6 months of age when compared to adults. However, the distribution of large molecules to tissue 

spaces is largely rate limited by permeability across capillary walls, rather than perfusion.   

Table 15. Mean hydrostatic parameters for infants progressing until adulthood 

Age 

 

Blood 

Pressure433 

mmHg 

Heart 

Rate434 

bpm 

Cardiac 

Output14,432 

L/min 

Blood 

Volume435 

mL/kg 

Hematocrit435,436 

% 

Plasma 

Volumea  

mL/kg  

ECW 

Fraction437 

% 

Birth 70/55 140 0.6 [0.174/kg] 85  53 40 45 

1 month 85/52 120 0.7 [0.152/kg] 80 44 45 40 

2 months 90/50 120 0.8 [0.139/kg] 80 44 45 32 

3 months 90/50 120 0.9 [0.137/kg] 75 34 50 30 

6 months 90/52 120 1.1 [0.134/kg] 75 34 50 29 

12 months 90/55 120 1.3 [0.131/kg] 80  36 50 26 

18 months 90/55 110 1.5 85 37 55 23 

24 months 90/55 110 1.7 85 37 55 20 

6 years 95/57 100 3.5 80 38 50 19 

12 years 110/65 85 4.7 75 39 46 18 

18 years 124/72 (M) 

113/67 (F) 

70 (M) 

75 (F) 

6.1 (M)  

5.5 (F) 

75 (M) 

65 (F) 

43 (M) 

39 (F) 

43 (M) 

40 (F) 

18 

a calculated from blood volume and hematocrit 

ECW = extracellular water 
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A number of mAbs have been recently approved or are in development for infectious disease 

prevention in neonates.35,52,413,414,428 Therefore it is important to consider circulatory physiology 

during the fetal-to-neonatal circulatory transition period. In hours to days after birth, the neonatal 

circulatory system undergoes drastic structural changes.438 Briefly, the placenta is replaced by the 

lungs as the location of gas exchange and the corresponding shift from a parallel circuit to a series 

circuit in the heart is accompanied by the closing of the ductus arteriosus, the foramen ovale and the 

ductus venosus. The pulmonary arteries dilate and the left ventricle strengthens as they each begin to 

accommodate the flow and volume of the entire cardiac output. These changes occur progressively 

and perfusion to the lungs and peripheral organs may not be strong in the first week of life. Generally 

speaking, there may be irregular distribution when mAbs are administered during the fetal-to-neonatal 

circulatory transition period. 

While the rates of extravasation of therapeutic mAbs in children and adults have not been 

measured, there is data available for other plasma proteins, such as albumin.439-450 Albumin and IgG 

are both plasma proteins that follow similar patterns of distribution and bind with high affinity to 

FcRn. The TER is measured by calculating the rate of disappearance of labelled albumin from plasma 

over time. The TER of IgG is typically 40% lower than the TER of albumin across a variety of 

disease states, as summarized by Malik et al.68 Therefore, the transcapillary escape rate (TER) of 

albumin in infants and children can be used as a surrogate to explore how the rate of extravasation of 

IgG molecules into tissues may change with age.449 Overall, the rate of extravasation of plasma 

proteins is approximately 3 times higher in healthy neonates than adults (Table 16). To make 

hypotheses about how these differences progress after birth and when adult extravasation rates are 

reached, the mechanism behind the increased rate of extravasation must be elucidated. 

Extravasation of plasma proteins through pores occurs dynamically by filtration, convection and 

sieving.150 The rate of extravasation is a function of capillary permeability – which itself is affected 

by the capillary pore size – and the vascular surface area available for plasma protein exchange. 

According to the Starling equation, capillary permeability and net flux of fluid is governed by 

competing hydrostatic (blood pressure, blood flow rate, fluid volumes, etc.) and colloidal osmotic 

(protein concentration gradients) fluid pressures on either side of the capillary wall:150 

𝑃𝑒 = 𝑃𝑐 − (𝑃𝑡 + 𝑃𝑜) 

where 𝑃𝑒 = effective filtration pressure, 𝑃𝑐 = capillary hydrostatic pressure, 𝑃𝑡 = opposing hydrostatic 

pressure, 𝑃𝑜 = net colloid osmotic pressure 
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Table 16. Transcapillary escape rate of albumin in infants (< 2 years) 

Study Age 

 

Condition TER 

(%/h) 

Label 

Mollison et al.439 < 1 d Healthy and hemolytic disease 20 EB 

Steele440 < 1 d Healthy 15.5 IHSA 

Jegier et al.441 < 1 d Healthy 19 IHSA 

Cassady et al.442 < 1 d Healthy 12.8 EB 

Parving et al.443  < 1 d Born to diabetic mothers 18.4 IHSA 

Ingomar et al.444 < 1 d Healthy 22.6 EB 

Ingomar et al.445 < 1 d Born to diabetic mothers 17.5 EB 

Ingomar et al.445 < 1 d IRDS 20.4 EB 

Ingomar et al.445 < 1 d Birth asphyxia 25.6 EB 

Linderkamp et al.446 < 2 d Premature 23 IHSA 

Linderkamp et al.446 < 2 yr Critically ill 11.3 IHSA 

Tassani et al.447 < 14 d Transposition of the Great Arteries 25.3 EB 

Parving et al.448  Adult Healthy 5.6 IHSA 

Rossing et al.449 Adult Healthy 5.4 IHSA 

Wasserman and 

Mayerson450 

Adult Healthy 4.9 IHSA 

TER – Transcapillary escape rate 

EB – Evan’s blue dye 

IHSA – Iodinated human serum albumin 

 

Hydrostatic pressure drives the movement of fluid out of capillaries and colloidal osmotic pressure 

draws fluid back into capillaries according to protein concentration gradients. The Landis model of 

fluid exchange suggests that net flux of fluid is out of capillaries at the arterial end of the capillary 

bed when hydrostatic pressure is highest and into capillaries at the venous end of the capillary bed 

when interstitial colloid osmotic pressure is able to overcome the diminishing hydrostatic pressure.451 

The movement of mAbs is expected to follow this flux, though there is significant resistance due to 

the large size and charge of the molecules. This model with filtration at the arterial end of the 

capillary bed and reabsorption at the venous end of the capillary bed is a simple approximation and 

both processes may not always be occurring.451 For example, in renal tubular capillaries, the colloid 

osmotic pressure from the interstitial fluid is weak and cannot drive reabsorption because the renal 

tubular absorbate is being continuously flushed.451 In addition, there are many dynamic factors to 

consider, such as the impact of transient vasoconstriction and vasodilation that may dictate the 

degrees of filtration and reabsorption.451 

The developmental biology of transcapillary fluid balance has been explored in maturing animals, 

but there is limited data in human infants.452-455 Where data is sparse, extrapolations of capillary 
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permeability in all tissues can be made by examining capillary permeability in the glomeruli. In 

animals, the net filtration rate of fluid across capillaries increases with age and approximately in 

proportion to the changes in arterial and venous pressures (Table 15).452-455 This change is driven by 

discordant increases in the opposing forces of extravasation; although colloid osmotic pressure 

increases with age, hydrostatic pressure increases to a greater degree (Figure 26).454 Even though 

plasma protein concentrations are much higher in adults than immature animals, colloid osmotic 

pressure only increases modestly with age due to the balance of protein concentrations that is 

maintained between the plasma and extracellular fluid. 

 

Figure 26. The ontogeny of filtration pressures in newborn guinea pigs until 7 weeks of age.454 𝑃𝑒 = 

effective filtration pressure (solid line), 𝑃𝑐 = capillary hydrostatic pressure, 𝑃𝑡 = opposing hydrostatic 

pressure, 𝑃𝑜 = net colloid osmotic pressure; 𝑃𝑒 = 𝑃𝑐 − (𝑃𝑡 + 𝑃𝑜) 

  Similar patterns of age-dependent capillary permeability and net filtration rate are observed in 

human infants. As evidence, the glomerular filtration rate of human infants per unit of kidney weight 

increases with age until reaching adult values after 6 months.456,457 The mechanism of this change 

appears consistent between humans and animals. Though capillary hydrostatic pressure cannot be 

measured directly in humans, there is sufficient data regarding the modest age-dependent increase in 

colloid osmotic pressure that occurs during the first year of life to support this hypothesis.458-463 Based 

on the ontogeny of glomerular filtration in humans and the maturation rates of factors in 
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transcapillary fluid balance observed in animals, we expect that capillary permeability to plasma 

proteins modestly increases with age until reaching adult values by six months.   

The second component of extravasation is the capillary surface area available for plasma protein 

exchange. Neonatal tissues have high demands for oxygen and other nutrients after birth and during 

the subsequent period of rapid growth. To meet these demands, infants have a vast and dense 

capillary surface area available for fluid, oxygen, solute and protein exchange, most notably in the 

peritoneum, muscle and skin.464-466 Further, infants have the largest skin surface area per unit volume, 

where capillary networks are dense.466 Though capillary density is increased, the endothelial surface 

area is not compromised.464 Capillary density decreases with age until puberty and then rises steadily 

throughout adulthood, though never reaching the extremes seen in infancy (Figure 27).464,467 There is 

significant variability in capillary density at birth, and it can be even further elevated in preterm 

neonates or in those born to hypertensive mothers.468,469 

 

Figure 27. Median peritoneal capillary density in humans with interquartile ranges464 

Finally, it is important to note that capillary endothelial structure is unique to each tissue. For 

example, the brain is largely impermeable to plasma proteins because of the tight intercellular 

junctions present between endothelial cells at the blood-brain barrier, while the liver, spleen and 

kidneys are highly permeable to plasma proteins due to the presence of sinusoidal or fenestrated 

capillaries.136 These central organs are proportionally larger in infants, which may explain the faster 

rate of mAb distribution to tissues in infants when compared to adults.443 For example, the liver 
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makes up 4% of the total body mass of infants, while in adults it makes up 2.5% of total body mass.50 

The ratio of “leaky” (liver, spleen, heart, lung, kidney, bone marrow, small intestine) to “tight” (brain, 

muscle, skin, adipose, large intestine, stomach, thymus, pancreas, bladder) tissue mass decreases by 

30% from birth to adulthood and may partially explain the age-dependent pattern of weight-

normalized clearance that is observed (Table 17). All things considered, the conclusion is that despite 

modestly lower capillary permeability, the overall rate of extravasation into tissues is higher in infants 

than in adults because infants have proportionally larger capillary surface area per unit volume 

available for plasma protein exchange and proportionally larger central organs, where sinusoidal or 

fenestrated capillaries are present.  

Table 17. Ratio of leaky to tight tissue mass in humans from birth until adulthood50,136 

Age 

(years) 

Leakya:Tightb Tissue Mass Ratio 

Birth 0.129 

1 0.115 

5 0.118 

10 0.116 

15 0.102 

Adult 0.098 
a Leaky tissues: liver, spleen, heart (no blood), lung (no blood), kidney, bone marrow (active only) 

and small intestine. 
b Tight tissues: brain, muscle, skin, adipose (separable), large intestine, stomach, thymus, pancreas 

and bladder 

5.5 Elimination 

Elimination of mAbs occurs predominantly through intracellular proteolysis and to a lesser extent, 

extracellular proteolysis (serum proteases, other non-specific interactions).  

Uptake into cells that leads to intracellular degradation is accomplished by endocytosis, 

phagocytosis and in some cases, receptor-mediated endocytosis.103,186,470-472 The major cell types 

implicated are endothelial and hematopoietic cells, including macrophages.473 At present there is no 

evidence that these cellular uptake functions are different between adults and children. However, 

there is convincing evidence that the relative abundances of these major cell types are higher in 

children. As mentioned, children have high capillary density, particularly in muscle, skin and 

peritoneal tissues. This vascular network provides a greater number of vascular endothelial cells per 

unit volume for non-specific endocytosis and degradation of protein products. Moreover, reference 

values for complete blood counts show that there are also high numbers of circulating hematopoietic 
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cells in children, even up to an average of 3-fold higher than adult numbers shortly after birth (Table 

18).474-478 These high levels of circulating leukocytes and macrophages will contribute to the observed 

cellular uptake and clearance of protein products in children. Tissue-specific macrophages are also 

thought to be sites of mAb degradation and Fc-mediated recycling.479 Tissue-specific macrophages 

can be detected very early during development in the fetal liver, spleen red pulp and bone marrow, 

and are known to be some of the first fully functioning cell types in the fetus.480,481 Little is yet known 

about the relative abundance of tissue-specific macrophages in children. 

Table 18. Summary of reference ranges for circulating leukocyte concentrations in children 

Age Leukocyte Concentrationa 474-478 

(109 cells/L plasma) 

Preterm 13.0 (5.0 – 21.0)b 

Term 18.0 (11.0 – 28.0) 

1 – 3 months 10.6 (7.2 – 18.0) 

3 – 6 months 9.2 (6.7 – 14.0) 

6 – 12 months 9.1 (6.4 – 13.0) 

1 – 2 years 8.8 (6.4 – 12.0) 

2 – 6 years 7.1 (5.2 – 11.0) 

6 – 12 years 6.5 (4.4 – 9.5) 

12 – 18 years 6.0 (4.4 – 9.1) 

Adult 6.0 (4.0 – 9.0) 
a Data reported as median (10th – 90th percentile) 
b Premature infants who are small for gestational age may have leukocyte concentrations that are up 

to 50% lower than those who are appropriate for gestational age482,483 

 

With regard to extracellular proteolysis, the comparative proteolytic activities of adult and infant 

sera against immunoglobulin are unknown.484 Major protein modification pathways which may affect 

IgG stability and activity in serum include asparagine deamidation, methionine oxidation, Fc glycan 

interactions with mannosidases and reduction of disulfide bonds.484 Certainly there is an opportunity 

for further investigation into the stability of IgG in infant serum. 

Specific phagocytosis of IgG is mediated in part through contact with the FcγR family, named 

because they bind to the Fc region of IgG. These receptors are expressed in cells of the mononuclear 

phagocyte system and facilitate the antibody-dependent functions of the immune system, such as 

antibody-dependent cell-mediated cytotoxicity and the elimination of antibody-target complexes.485 

However, studies in mice and monkeys show no significant impact of FcγR binding on the 

pharmacokinetic profile of mAbs.168,169,486 While there may be small differences in FcγR receptor 
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expression and activity between neonatal leukocytes and adult leukocytes,487 the overall contribution 

to the age-dependence of elimination is expected to be low. 

The effects of FcRn on the pharmacokinetics of mAbs in adults or infants are mediated by five 

factors:488-491  

1. FcRn expression per cell 

2. Relative abundance of FcRn-expressing cells 

3. Affinity of FcRn for IgG 

4. Concentration of endogenous IgG  

5. Inflammation, which may alter the expression or function of FcRn 

Organ-specific RT-PCR data from a study in rats reveals that FcRn expression varies from birth to 

puberty with sudden peaks and fluctuations.492 A grouped representation of the FcRn expression in all 

organs is presented in Figure 28. This preliminary data suggests that FcRn expression may increase 

with age until the end of puberty (40 days of age for a rat). No consistent pattern of ontogeny can be 

determined after this point because there is considerable inter-individual and inter-organ variability. 

 

Figure 28. Grouped representation of the relative expression of FcRn mRNA in rat tissues. Tissue 

mRNA data was collected from the lung, intestine, heart, spleen, liver, kidney, skin and muscle 
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tissues of maturing rats (1-63 days old).492 The red square denotes the median and the error bars mark 

the first and third quartiles. 

Further investigations in immature rats with immunohistochemical staining show that FcRn is 

largely localized in epithelial cells and macrophages rather than endothelial cells, where expression is 

heterogeneous or sparse.492 Cianga et al. discover a similar profile in human neonatal tissues.493 

However, these results may be limited by the poor sensitivity of immunohistochemical methods. If 

FcRn concentrations in vascular endothelium are indeed crucial to IgG homeostasis in humans, then a 

low concentration in infants may contribute to the increased weight-normalized clearance of mAbs 

that is observed.473,489,490   

In addition to possible low FcRn concentrations, there are relatively high concentrations of 

endogenous IgG in infants available to compete for FcRn binding in the first month after birth. 

Placental transfer of maternal IgG occurs late in gestation and maternal IgG lingers for up to two 

months, based on a maximal plasma half-life of 28 days.494 Maternal IgG transferred through breast 

milk also contributes to these levels. Endogenous IgG competes with exogenous mAb for binding to 

FcRn and this displacement would increase intracellular degradation of the mAb. Serum endogenous 

IgG levels in infants are relatively high at birth but fall in the first 3 months of life and then gradually 

rise to adult values before puberty (Figure 29).495-497   

With the available data, it can be hypothesized that the increased weight-normalized clearance that 

is observed in infants and young children is related to a high relative abundance of circulating 

macrophages and vascular endothelial cells for cellular uptake, and a possible low level of FcRn 

expression in vascular endothelial cells (Figure 28). This effect may be more pronounced in the first 

month of life, when maternal IgG is present in relatively high amounts and may compete with 

therapeutic mAbs for the available FcRn salvage sites. 
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Figure 29. Plasma concentrations of IgG subclasses from birth to adulthood in human children.497 

5.6 Absorption 

Of the mAbs administered to infants, only a few are given by an extravascular route (Table 14). The 

mAbs for respiratory syncytial virus prophylaxis are given intramuscularly and the mAbs for 

retinopathy of prematurity are given intravitreally. While subcutaneous (SC) administration is 

preferred in adults for systemic biotherapeutics, intramuscular (IM) administration may be preferred 

in infants due to the ease of injection to the vastus lateralis muscle. In patients of all ages, absorption 

is slow with a time to maximal plasma concentration (Tmax) ranging from 1.7 – 13.5 days.498 Both 

experimental evidence and mechanistic models in adults predict that while the rate and extent of 

absorption are largely comparable between the IM and SC routes for mAbs, the IM route may be 

associated with a higher Cmax and shorter Tmax.498,499 For mAbs, bioavailability after extravascular 

administration ranges from 52 – 80%.498,500   

There is moderate inter-individual variability in both the rate and extent of mAb absorption 

following extravascular administration due to factors related to body weight, gender, age, activity 

level, disease state, respiratory rate, and blood pressure.2 There may also be variability in protein 

absorption depending on which injection site is used (e.g., abdomen, thigh, arm),501 though the current 

evidence with mAbs in humans conflicts with the prevailing notions in the field of SC 

biotherapeutics.499,502-505   
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Mechanistically, absorption to the systemic circulation after either IM or SC administration occurs 

via two major pathways: immediate absorption into blood via fluid recirculation in the capillary beds 

of the local injection site, or slow lymphatic drainage and recirculation, which is the dominant 

pathway.76,78,498 Sensitivity analyses with mechanistic models of SC mAb absorption suggest that the 

absorption rate is largely dependent on the lymph flow rate, which has been approximated to be 0.2% 

of the plasma flow rate in adults.78,135,498 The extent of absorption and overall bioavailability are 

governed by the degree of pre-systemic elimination in the lymphatic system, the lymphatic transit 

time and the FcRn binding affinity.498,506 Pre-systemic elimination is attributed to proteolytic 

degradation, endocytosis into endothelial and epithelial cells or phagocytosis into cells of the MPS 

that are present throughout the lymphatic system.479,498   

Some data exist to inform predictions of the rate and extent of mAb absorption in infants and 

young children. One population pharmacokinetic (PopPK) study to date with palivizumab suggests 

that the rate of absorption after IM administration is two to three times faster in infants than adults 

and that the extent of absorption or bioavailability is similar between the two groups.35 However, the 

results are limited due to the sparse nature of the pediatric data that was used, which included few 

data points in the early phases following administration. A fast rate of absorption in comparison to 

adults was also reported in a small study of SC adalimumab with five patients whose ages were 6, 9, 

10, 13 and 13 years.507 Studies with other large proteins, such as darbepoetin alfa, similarly suggest 

that absorption is more rapid in children 3 – 16 years of age with extravascular dosing.392   

To potentially explain this observation of higher absorption rate in children as compared to adults, 

we examine the factors of lymph flow rate and extracellular fluid volume.  Infants have a high 

fraction of extracellular fluid volume (Table 15) and enhanced tissue hydration when compared to 

adults.508,509 This translates to a large fluid reservoir available for dispersion and absorption of protein 

therapeutics shortly after extravascular administration. Infants have greater cutaneous, subcutaneous 

and muscle perfusion due to the high density of capillaries present and immature vasomotor control, 

which improves access to the systemic circulation.508,509  

When normalized for body weight, both local and whole body lymph flows are high in infants, 

which drives a fast rate of drug absorption.510 In animal studies, newborn lambs had thoracic duct 

flow rates that were three times higher than the rates in adult sheep (7.4 vs. 2.3 mL∙h-1∙kg-1).511 

Locally, lymph flows from subcutaneous tissue and from the lungs have been measured to be higher 

in newborn anesthetized animals than in their adult counterparts.512,513     
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With respect to the extent of absorption, or bioavailability, it appears as if this property is similar to 

adults given the same route of administration.35,392 Considering that the rate of absorption appears to 

be faster in young children, for bioavailability to remain similar, pre-systemic elimination must be 

higher. This elimination may be attributable to greater proteolytic degradation or phagocytosis by 

hematopoietic cells during lymphatic transport.479   

The exact pathways of systemic absorption after intravitreal (IVT) administration are unknown.  

Two VEGF-inhibitors, bevacizumab (mAb) and ranibizumab (Fab) are known to reach systemic 

circulation after IVT administration in premature infants.403,404,514 In adults, the systemic absorption of 

bevacizumab is significantly greater than the systemic absorption of ranibizumab.515 FcRn is present 

in endothelial cells in the eye and may be responsible for the improved absorption of bevacizumab 

over ranibizumab, which does not bind FcRn.516 FcRn binding may therefore be an important process 

governing systemic absorption after IVT administration. More research is required to elucidate the 

pathways of systemic absorption in the eye and how they may differ between premature infants and 

adults.   

In summary, it is likely that the processes governing absorption are the most consistent between 

adults and children. There may be a faster rate of absorption and greater extent of pre-systemic 

elimination in children, but the same overall bioavailability. 

5.7 Conclusion 

A number of physiologic mechanisms may be responsible together for the unique pharmacokinetic 

profiles that are seen with mAbs in infants and young children. In particular, the faster rate of weight-

normalized plasma clearance observed in children may be due to a higher burden of circulating 

hematopoietic cells, lower concentrations of FcRn in vascular endothelial cells, and/or high levels of 

maternal IgG that may compete for FcRn binding shortly after birth. The faster rate of extravasation is 

driven by a higher ratio of “leaky” to “tight” tissue mass and a greater capillary surface area per unit 

volume available for plasma protein exchange in young children. While overall bioavailability may 

appear similar, it is important to recognize that the rate of absorption can be much faster in children, 

especially infants. Further research is required to solidify these hypotheses and to explore their 

pharmacodynamic consequences. 
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5.8 Study Highlights 

This review explores the age-dependence of the physiologic processes governing the disposition of 

monoclonal antibodies in infants. 

1. The fraction of extracellular fluid volume in the body decreases with age and provides large 

weight-normalized volumes of distribution in infants.   

2. Extravasation of antibodies into tissues occurs quickly in infants as they have a large 

capillary surface area per unit volume available for plasma protein exchange and a large 

proportion of “leaky” tissues, where capillary permeability is highest.   

3. A fast rate of lymph flow in infants drives a fast rate of absorption after extravascular 

administration. 

4. Infants have higher circulating concentrations of hematopoietic cells, which may contribute 

to extensive cellular uptake and fast elimination. 

5. Intracellular metabolism and elimination may be increased due to low expression of FcRn – 

the neonatal salvage receptor – and the relatively high concentration of endogenous IgG 

competing for FcRn binding after birth. 
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Chapter 6 

Integration of Ontogeny into a PBPK Model for Monoclonal 

Antibodies in Premature Infants 

6.1 Abstract 

An understanding of pediatric pharmacokinetics (PK) is essential for first-in-pediatric dose selection 

and clinical trial design. At present there is no reliable way to scale the PK of monoclonal antibodies 

and IgG drug products from adults to young children or to premature infants – a vulnerable 

population with a rapidly growing drug development pipeline.  

In this work, pediatric PBPK models are constructed in PK-Sim and Mobi to explore the PK of 

pagibaximab, palivizumab, MEDI8897 and intravenous immunoglobulin (IVIG) in preterm infants. In 

addition to considering ontogeny in pediatric organ volumes, organ composition, blood flow rates and 

hematocrit, advanced ontogeny is applied for three key parameters: capillary surface area, 

hematopoietic cell concentration and lymph flow rate. The role and importance of each parameter for 

determining pediatric clearance and volume of distribution at steady state are quantitatively assessed 

with a local sensitivity analysis. In addition, the uncertainty around parameters with limited 

information in pediatrics is addressed (e.g. free FcRn concentration). 

The full ontogeny parameterization yields pediatric PK predictions that are within 1.5-fold 

prediction error over 90% of the time for preterm infants, with an absolute average fold error of 1.05. 

This result suggests that many of the key factors related to ontogeny are appropriately addressed.  

Overall, this study makes a first step toward developing a platform pediatric PBPK model for 

monoclonal antibodies and IgG drug products by solidifying existing parameterizations, integrating 

new concepts and drawing attention to unmet needs for physiologic knowledge in children. 

6.2 Introduction 

Monoclonal antibodies (mAbs) have solidified their position as the world’s most popular class of 

drugs both on the market and in the drug development pipeline. The list of therapeutic applications is 

extensive and continues to grow, now featuring opportunities in a host of pediatric-specific disease 

states such as Kawasaki disease,517 infectious syndromes of prematurity,420,518 atypical hemolytic 

uremic syndrome,409 and pediatric cancers.407  
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In pediatric drug development, safety is of utmost importance for first-in-pediatric (FIP) dose 

selection. However, if the FIP dose is too conservative, consequences may include exposing sick 

children to ineffective doses, wasting research expenditures or requiring additional children to be 

unnecessarily enrolled in the study. Conventionally, FIP doses are determined by establishing 

confidence in pharmacokinetics (PK), safety and efficacy in adults and then translating this 

knowledge to children by allometric scaling or physiologically-based pharmacokinetic (PBPK) 

modeling.312  

Our recent work addresses the comparative performances of both methods for predicting infliximab 

PK in children between 4 and 18 years of age.60 In the case of small molecule drugs, allometric 

scaling and PBPK modeling often achieve predictions within 2-fold error over 90% of the time for 

children over 2 years of age, when maturation and ontogeny do not critically influence drug 

disposition.15,314 Below the age of two years there is more uncertainty. Allometric scaling with age-

dependent exponents can match PBPK modeling in pediatric PK prediction for very young children, 

but the age-dependent exponents have to be learned with similar compounds in advance.315,316,519  

At present there is no reliable way to scale the PK of mAbs from adults to younger children or to 

premature infants – neither PBPK modeling nor allometric scaling have been evaluated. At this stage 

of life, children are physiologically very different from adults and consequently achieve lower plasma 

exposures than adults when the same weight-based doses are given.34 Our recent review highlights the 

key physiological drivers of this phenomenon in pediatrics.34 The US Food and Drug Administration 

has stressed the importance of incorporating these physiological parameters into a PBPK modeling 

framework to support pediatric drug development for mAbs and Fc-fusion proteins.70 To date, only 

one effort has been made to explore the PK of mAbs in pediatrics with a minimal PBPK modeling 

approach.319 

In the same way as for small molecule drugs,14 reviewing the literature34 and integrating a 

quantitative understanding of pediatric physiology into a PBPK model are first steps toward the 

development of a platform pediatric PBPK model that can be used for FIP dose selection and drug 

development in the future. Here we synthesize literature-based ontogeny profiles for key 

physiological parameters relevant to mAb disposition, integrate them into pediatric PBPK models for 

four drug products in premature infants and quantify their impact on PK with a sensitivity analysis. 

Premature infants are first considered because they are the most different from the adult population 

and the majority of PK data available in literature for young children features this population. 
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6.3 Methods 

6.3.1 Software 

All PBPK models were constructed in PK-Sim and Mobi v8.0 using the base model for large 

molecules and therapeutic proteins (www.open-systems-pharmacology.org).66 PK data from literature 

in the form of concentration-time profiles were digitized with PlotDigitizer v2.6.8 by Joseph 

Huwaldt. MATLAB R2018b was used for data analysis and graphical presentation of results. 

6.3.2 Pharmacokinetic Data 

Adult and pediatric concentration-time profiles featuring intravenous (IV) and intramuscular (IM) 

administrations were extracted from literature for pagibaximab, palivizumab, MEDI8897 and IVIG 

(Table 19). No adult PK data were available for palivizumab. 

6.3.3 Virtual Individuals 

As inputs to the PBPK models, virtual adults and premature infants were created in PK-Sim and Mobi 

v8.0 according to previously published algorithms.14,266,317,520 For each real-world PK study (Table 

19), a virtual individual was created for simulation with postnatal age, gestational age (if premature), 

height, weight and sex parameters according to the mean individual in that study. Additional 

physiological parameter adjustments were made for virtual premature infants to account for the 

ontogeny of key processes governing mAb disposition, as will be discussed. 

6.3.4 Adult PBPK Model Development 

The base model for large molecules and therapeutic proteins in PK-Sim features two-pore 

extravasation, endocytosis into vascular endothelium, binding to FcRn and lymph recirculation.66 

Intramuscular administration was implemented by applying the bioavailable dose (𝐷𝑜𝑠𝑒 ∙ 𝐹) as a 

bolus to the interstitial space of the muscle compartment. Modifications were made to address the 

contribution of hematopoietic cells to cellular uptake, as will be discussed. Target-mediated drug 

disposition and immunogenicity were considered negligible. The same model structure was used for 

both adults and children. 

  

http://www.open-systems-pharmacology.org/


 

114 

Table 19. Pharmacokinetic data for PBPK modeling 

Study Dose Cohort N Age Gestational Age Weight 

Pagibaximab 

Weisman et 

al. 53 

3 mg/kg IV 

10 mg/kg IV 

Healthy 

adults 

8 34.7 [24-50] 

years 

- 77.9 [61-113] kg 

Weisman et 

al. 420 

60 mg/kg IV 

90 mg/kg IV 

Premature 

infants 

 

42 [2-5] days 27.5 ± 1.7 weeks 0.99 ± 0.17 kg 

Palivizumab 

Sáez-Llorens 

et al.424 

15 mg/kg IV 

 

Premature 

infants and 

infant with 

BPD 

22 8.1 ± 1.69 

months 

Predominantly < 

32 weeks 

4.9 ± 0.74 kg 

Sáez-Llorens 

et al.424 

15 mg/kg IM Premature 

infants and 

infant with 

BPD 

48 6 months Predominantly < 

32 weeks 

NR 

MEDI8897 

Griffin et al.521 3000 mg IV 

1000 mg IV 

300 mg IV 

300 mg IM 

100 mg IM 

Healthy 

adults 

102 31 ± 7.8 

years 

- 78 ± 14.9 kg 

Domachowske 

et al.522  

50 mg IM 

25 mg IM 

10 mg IM 

Premature 

infants 

71 6.5 months 32 – 35 weeks 6.8 ± 1.9 kg 

Intravenous Immunoglobulin (IVIG) 

Andresen et 

al. 523 

600 mg/kg IV Healthy 

adults 

30 26 [18-43] 

years 

- 66 [52-86] kg 

Chirico et al. 
524 

500 mg/kg IV  Premature 

infants 

23 [0-1] days 29.7 [24-34] 

weeks 

1.1 [0.64-1.47] 

kg 

Noya et al.  
525 

500 mg/kg IV 

750 mg/kg IV 

1000 mg/kg IV 

Premature 

infants 

 

21 [1-5] days 29.1 [26-33] 

weeks 

1.1 [0.75-1.5] kg 

Noya et al.  
526 

500 mg/kg IV 

750 mg/kg IV 

Premature 

infants 

20 [1-5] days 28.9 [26-35] 

weeks 

1.1 [0.75-1.5] kg 

BPD = Bronchopulmonary dysplasia, data presented as mean or median ± standard deviation [range] 

 

 

  



 

115 

Adult models were constructed with drug-specific parameterizations for each molecule (Table 20). 

While the data for IVIG actually includes several brands of the product, the physicochemical 

parameters were assumed the same across all brands because no data was available to inform any 

product-specific differences. The affinities of pagibaximab and MEDI8897 for the neonatal Fc 

receptor (𝐾𝐷
𝐹𝑐𝑅𝑛) and the bioavailable fractions in the muscle interstitium (𝐹) for MEDI8897 were not 

available in literature and required optimization. The optimization was carried out in PK-Sim using a 

Monte-Carlo approach for exploring the parameter space. The bioavailable fraction of palivizumab in 

muscle interstitium was assumed the same as for MEDI8897 since no adult concentration-time data 

was available to perform an optimization and the molecules have similar parent derivations.  

Table 20. Drug-specific parameters inputted into the PBPK model 

Parameter Pagibaximab Palivizumab MEDI8897 IVIG 

Molecular Weight 146.1 kDa   150 kDa 

Hydrodynamic 

Radius 

5.34 nm 5.34 nm 5.34 nm 5.34 nm 

FcRn Affinity 946 nM 750 nM 94 nM 630 nM 

Bioavailable 

Fraction in 

Muscle 

Interstitium 

- 0.85 

(assumed same as 

MEDI8897) 

0.85 - 

Shaded parameters were optimized against the PK data from healthy adults 

Success of the PBPK models for mechanistically representing the PK of the mAbs in adults was 

confirmed by comparing model predictions to observed concentration-time data from literature with a 

visual predictive check (Table 19). 

6.3.5 Integration of Ontogeny 

Adult parameters in the final models were adapted to pediatrics with careful consideration of 

physiological literature to date.34 To begin, organ volume, organ composition, blood flow rate and 

hematocrit parameters were updated with values for preterm infants.14,266,317,520  

Infant organs – particularly adipose and muscle tissues – are more “watery” than adult organs and 

provide large volumes of distribution (mL/kg) for protein-based drugs. The extracellular fluid fraction 

in the infant body decreases from 0.45 at birth to 0.18 in adulthood.34,437 In addition, central “leaky” 

and macrophage-bearing organs such as the liver and spleen make up a large portion of the neonatal 

body when compared to adults (12.9% in infants vs. 9.8% in adults).34 Virtual children are created by 

default in PK-Sim with these properties already accounted for.14 



 

116 

Moving forward, advanced ontogeny was considered in two additional domains: extravasation and 

lymph flow, and cellular uptake. Table 21 summarizes how advanced ontogeny was integrated into 

the PBPK model for premature infants. 

Table 21. Summary of advanced ontogeny parameters in the PBPK model 

Age Capillary Density  
464,467,468,527,528 

(Fraction of Adult) 

Lymph Flow Rate 
34,511,513,529,530 

(Fraction of Adult) 

Leukocyte Concentrationa  
474-478,482 

(109 cells/L plasma) 

Preterm 1.6 2.0 13.0 (5.0 – 21.0)b 

Term 1.3 2.0 18.0 (11.0 – 28.0) 

1 – 3 months 1.1 2.0 10.6 (7.2 – 18.0) 

3 – 6 months 1.0 2.0 9.2 (6.7 – 14.0) 

6 – 12 months 0.9 2.0 9.1 (6.4 – 13.0) 

1 – 2 years 0.8 - 8.8 (6.4 – 12.0) 

2 – 6 years 0.8 - 7.1 (5.2 – 11.0) 

6 – 12 years 0.9 - 6.5 (4.4 – 9.5) 

12 – 18 years 1.0 1.0 6.0 (4.4 – 9.1) 

Adult 1.0 1.0 6.0 (4.0 – 9.0) 
a Data reported as median (10th – 90th percentile) 
b Premature infants who are small for gestational age may have leukocyte concentrations that are up 

to 50% lower than those who are appropriate for gestational age483,531 

 

The neonatal extravasation rate of IgG is three times faster than the adult extravasation rate as 

approximated by the transcapillary escape rates (TER) of plasma proteins34 and the filtration capacity 

in skeletal muscle.532 This phenomenon is governed by three factors: 

1. “Leaky” organs (e.g., liver and spleen) are proportionally larger in children.34 

2. Infant organs – particularly skin, muscle and adipose tissues – have dense capillary networks, 

providing greater surface areas for extravasation to occur.34,464,467,468 

3. Neonatal lymph flow is two times faster than adult lymph flow as approximated from animal 

studies.34,511,513,529,530 

Table 21 demonstrates the ontogeny profile for capillary density that was constructed from five 

definitive studies in humans representing the body of literature on the topic.464,467,468,527,528 Similar data 

is available in animals.533-535 For reference, the data and derivation are provided in Appendix B. In 

humans, the profile follows a U-shaped function with increasing age such that capillary density is 

high in the first 6 months after birth but falls as the body develops and then steadily increases until 

adulthood.  
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The convective flow terms in the two-pore equation66 were updated with a surface area scaling 

factor (𝐹2) to reflect that both convection and diffusion across capillary walls should increase in 

proportion to capillary surface area. 

𝐽𝑣𝑖,𝑜𝑟𝑔 =  𝐹2 ∙ 𝐽𝐿,𝑜𝑟𝑔 ∙ (1 − 𝜎𝐿,𝑜𝑟𝑔) ∙ 𝐶𝑣,𝑜𝑟𝑔 + 𝑃𝐿,𝑜𝑟𝑔 ∙ 𝑆𝐴𝑜𝑟𝑔 ∙ (𝐶𝑣,𝑜𝑟𝑔 −
𝐶𝑖,𝑜𝑟𝑔

𝐾𝑖𝑣
) ∙

𝑃𝑒𝐿,𝑜𝑟𝑔

𝑒𝑃𝑒𝐿,𝑜𝑟𝑔 − 1

+ 𝐹2 ∙ 𝐽𝑆,𝑜𝑟𝑔 ∙ (1 − 𝜎𝑆,𝑜𝑟𝑔) ∙ 𝐶𝑣,𝑜𝑟𝑔 + 𝑃𝑆,𝑜𝑟𝑔 ∙ 𝑆𝐴𝑜𝑟𝑔 ∙ (𝐶𝑣,𝑜𝑟𝑔 −
𝐶𝑖,𝑜𝑟𝑔

𝐾𝑖𝑣
) ∙

𝑃𝑒𝑆,𝑜𝑟𝑔

𝑒𝑃𝑒𝑆,𝑜𝑟𝑔 − 1
 

where 𝐹2 =
𝑆𝐴𝑜𝑟𝑔,𝑐ℎ𝑖𝑙𝑑

𝑆𝐴𝑜𝑟𝑔,𝑎𝑑𝑢𝑙𝑡
    

Lymph flow (𝐿) was doubled for preterm infants according to studies in newborn 

lambs.34,511,513,529,530 Lymph flow is the key driver of the rate of absorption after IM administration. 

The major route of mAb elimination is by cellular uptake and lysosomal degradation. Intracellular 

binding to the neonatal Fc receptor (FcRn) can protect the drug and prolong the plasma half-life. 

Animal studies have identified that vascular endothelial cells and hematopoietic cells (more 

specifically, leukocytes and macrophages) are the two major cell types contributing to cellular uptake 

and FcRn-mediated salvage.473,490,536 Therefore, it is important to consider the concentrations of these 

cell populations in infants as compared to in adults. 

The ontogeny of vascular endothelial cell concentration follows the ontogeny of capillary surface 

area, as previously discussed (Table 21). In a similar pattern, leukocyte cell concentrations – 

parameterized for the virtual child as a fraction of the adult concentration (𝐹1) – are high at birth but 

decline with age (Table 21).474,477  

In the base model for large molecules in PK-Sim, the vascular endothelial cell and leukocyte cell 

spaces are lumped together into one endosomal compartment. For this analysis, the endosomal 

compartment was split and attributed equally to vascular endothelial and leukocyte cell spaces 

according to observations from animal knock-out studies which suggest that each cell population 

contributes equally to mAb uptake and recycling.473,490,536 

The availability of FcRn for intracellular salvage is a key determinant of plasma half-life. Some 

preliminary data may suggest lower FcRn concentrations in children, though no definitive argument 

can yet be made.34,319,492,493,537 Three studies have examined FcRn expression in neonatal subjects 

relative to adults.492,493,537 In rats, RT-PCR revealed a general trend across all organs of low FcRn 

mRNA expression at birth relative to adults,492 though the intestine may be an exception.537 
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Physiologically this is plausible because FcRn expression in the intestine is important for the neonatal 

absorption of maternal IgG when breastfeeding. In humans, Cianga et al. discovered low and 

heterogeneous expression of FcRn in neonatal carcasses, especially in vascular endothelium.493 

Volumes of organs of the mononuclear phagocyte system, such as the liver and spleen are of 

special consideration in relation to whole-body cell uptake rates because they house numerous 

leukocyte cell populations. The liver and spleen are proportionally larger in infants and this difference 

may contribute to more extensive cellular uptake of circulating mAbs. Again, these organ volumes for 

preterm infants are implemented appropriately in PK-Sim by default. 

6.3.6 Dynamic Simulation of Growth 

IgG-based molecules exhibit long plasma half-lives and the consequence is that even single dose PK 

trials for these drug products must be extended for weeks at a time. When modeling the PK of these 

long half-life products in preterm infants, the anatomy and physiology parameters in the model must 

be considered dynamic, rather than static, as the infants’ bodies grow rapidly across the simulation 

time.  

By selecting the “allow aging” option in PK-Sim, organ volume, organ composition, blood flow 

rate and hematocrit parameters for virtual preterm infants update at discrete intervals according to the 

data highlighted by Claassen et al.317 Aging was manually implemented for capillary surface area, 

lymph flow rate and hematopoietic cell concentrations according to the intervals in Table 21.  

In the absence of other data, preterm infants were assumed to possess the same capillary density 

and hematopoietic cell concentrations as term infants after 1 month of postnatal age. 

6.3.7 Sensitivity Analysis 

A local sensitivity analysis was performed for parameters relevant to ontogeny to quantify their 

impact on clearance and volume of distribution. Simulations were run for a mean premature infant (3 

days old, 29 weeks gestational age) receiving a single dose of pagibaximab 60 mg/kg IV. Parameters 

related to ontogeny were varied by ±10% and the resulting percent changes in clearance (𝐶𝐿 =

𝐷𝑜𝑠𝑒 ÷ 𝐴𝑈𝐶) and volume of distribution at steady state (𝑉𝑆𝑆 =
𝐷𝑜𝑠𝑒×𝐴𝑈𝑀𝐶

𝐴𝑈𝐶2 ) were presented as 

sensitivity coefficients. The sensitivity analysis also directs attention to the parameters that are 

important to refine when developing a platform pediatric PBPK model and the degree of error that 

could be expected when those parameters are misinformed. 
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6.3.8 Pediatric Pharmacokinetics Assessment 

The pediatric PK data from literature – both the concentration-time profiles and the calculated PK 

parameters – were compared to the predictions simulated by the full pediatric PBPK models. Model 

performance was assessed with a visual predictive check and by calculation of the absolute average 

fold error around each data point (AAFE), the root mean squared error (RMSE) and the percent of 

model-predicted plasma concentrations falling within 2-fold, 1.5-fold and 1.33-fold prediction error. 

Fold error at each datapoint was calculated as the predicted concentration divided by the observed 

concentration. 2-fold prediction error was defined as the range between 0.5- and 2.0 fold error. 1.5-

fold prediction error was defined as the range between 0.667- and 1.5-fold error. Finally, 1.33-fold 

prediction error was defined as the range between 0.75- and 1.33-fold error. 

6.4 Results 

6.4.1 Adult PBPK Model Development 

High confidence was established in the adult scenario for each drug except for palivizumab before 

approaching the pediatric scenario. Visual predictive checks for the optimized adult PBPK models 

revealed close fits with observed concentration-time data from literature (Figure 30).  
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Figure 30. Performance of the final adult PBPK models for representing the observed pharmacokinetic data from literature for three antibody 

products.53,521,523 



121 

6.4.2 Sensitivity Analysis 

The sensitivity analysis confirmed the importance of the advanced ontogeny parameters for predicting 

pediatric PK and gave insight into the roles that they play in defining clearance and VSS (Figure 31). 

In the current structure and under the given assumptions, the sensitivity analysis reveals that high 

hematopoietic cell concentrations (𝐹1) in children may be responsible for the increased clearance in 

children but have a minimal effect on VSS. The capillary surface area (𝐹2) is important for defining 

both clearance and VSS in children since the parameter speeds extravasation and increases the volume 

of vascular endothelium available for cellular uptake. A fast lymph flow rate (𝐿) in children mildly 

decreases VSS due to faster recirculation from the interstitium to the venous blood. This parameter is 

most important when modeling mAb absorption after intramuscular or subcutaneous administration. 

 

Figure 31. Results of the local sensitivity analysis reported as the percent changes in clearance and 

volume of distribution that were dictated by ±10% changes in input parameters relevant to ontogeny. 

𝑭𝟏 = hematopoietic cell concentration ontogeny factor, 𝑭𝟐 = capillary surface area ontogeny factor, 𝑳 

= lymph flow rate, 𝑭𝒄𝑹𝒏 = free FcRn concentration in endosomal space, 𝑽𝑳𝒊𝒗𝒆𝒓 = liver volume, 

𝑽𝑻𝒐𝒕𝒂𝒍
𝑬  = whole-body endosomal volume, 𝒌𝒖𝒑= rate of cellular uptake, 𝒓𝒑𝒐𝒓𝒆 = capillary pore radius, 

𝑷 = capillary permeability. 
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Clearance in the pediatric model is most sensitive to the rate of cellular uptake (𝑘𝑢𝑝) and there is no 

information available yet to assess potential differences in this parameter between adults and children. 

Vascular endothelial cells and leukocytes will be of interest for in vitro investigations. A fast rate of 

cellular uptake in children would increase clearance and vice versa. Interestingly, cellular uptake 

parameters have some relevance for predicting VSS due to the mechanism where mAbs can be 

sequestered in endosomal spaces. 

The sensitivity analysis also shows that if FcRn concentrations in children were lower than in 

adults as hypothesized elsewhere34 – the difference would dictate a moderate increase in clearance.  

Capillary pore radius (𝑟𝑝𝑜𝑟𝑒) and capillary permeability (𝑃) are important contributors to describe 

extravasation and VSS. Measurements of osmotic and hydrostatic pressures across capillary walls 

suggest that net capillary permeability in children is only slightly lower than in adults, but increases 

with age.34 Conflicting observations are made showing increased permeability of new vessels formed 

by angiogenesis during wound healing, though the applicability to the developing blood vessels in 

children may be low.538 A comprehensive quantitative expression of the ontogeny of capillary 

permeability is unlikely to be of significant importance for pediatric PK prediction since the effects 

on extravasation are strongly antagonized by the ontogeny of capillary surface area (𝐹2). 

Finally, proper parameterizations for the volumes and compositions of centrally vascularized, 

permeable and hematopoietic cell-bearing organs (such as 𝑉𝐿𝑖𝑣𝑒𝑟) are shown to have some importance 

for predicting both pediatric clearance and VSS. 

6.4.3 Pediatric Pharmacokinetics Assessment 

After integration of ontogeny into the final pediatric PBPK models, PK predictions were strong for 

the four mAbs in premature infants from 1 day to 24 months of age (Figure 32). Across the observed 

drug concentrations, 93% of the corresponding model-predicted concentrations fell within 2-fold 

prediction error, 90% fell within 1.5-fold prediction error and 80% fell within 1.33-fold prediction 

error. This result suggests that many of the key factors related to ontogeny are appropriately 

addressed. Much of the error was driven by a failure to predict concentrations in the terminal phase of 

the IVIG profiles. Extravasation was also under-predicted after the first dose for pagibaximab. The 

rate of IM absorption was well-approximated for MEDI8897 but may be under-estimated for 

palivizumab. 
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Figure 32. Performance of the final pediatric PBPK models for representing observed pharmacokinetic data from literature for pagibaximab, 

palivizumab, MEDI8897 and intravenous immunoglobulin (IVIG) in premature infants.420,424,522,524-526
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Observed data in the terminal phase of the IVIG profiles should be interpreted with caution, as the 

reported values in the data for exogenous IgG are likely lower than the real values. In the literature, 

exogenous IgG concentrations are calculated as: 

[𝐼𝑔𝐺𝑒𝑥𝑜] = [𝐼𝑔𝐺𝑇𝑜𝑡𝑎𝑙] − [𝐼𝑔𝐺𝑒𝑛𝑑𝑜] 

However, endogenous IgG (𝑰𝒈𝑮𝒆𝒏𝒅𝒐) is only measured at baseline in the first few days after birth. 

Endogenous IgG is shown to decrease from that point over the first two months of life for preterm 

infants.539 The consequence of using the baseline measurement for endogenous IgG in the equation is 

that the terminal phase data points for exogenous IgG have low confidence and may be significantly 

under-reported. This phenomenon drives the decreasing predictive performance of the pediatric 

PBPK model over time for IVIG. 

6.5 Discussion 

Preterm infants are gaining increased therapeutic attention in drug development for mAbs and IgG 

products against infectious syndromes of prematurity (e.g. HIV, respiratory syncytial virus, 

cytomegalovirus, staphylococcal sepsis). The US FDA recently highlighted the need for pediatric 

PBPK modeling efforts to support drug development and clinical trial design for this vulnerable 

population, as is commonly done in the context of small molecules.70 In response, we begin the first 

whole-body PBPK modeling assessment of mAbs in preterm infants, with pagibaximab, palivizumab, 

MEDI8897 and IVIG as working examples.  

In this work, literature-based ontogeny for organ volumes, organ composition, blood flow rates, 

hematocrit, hematopoietic cell concentration, capillary surface area and lymph flow rates were 

integrated into a PBPK model for mAbs in premature infants. The importance of each parameter for 

determining clearance and VSS was assessed quantitatively with a local sensitivity analysis. 

Furthermore, attention was drawn to other key parameters that are important to refine in the process 

of developing a platform PBPK model for mAbs and IgG products in premature infants. With over 

90% of model-predicted concentrations falling within 1.5-fold prediction error, we can be confident 

that many of the important factors related to ontogeny have been appropriately addressed. 

For the most part, analyses of the accuracy of PBPK modelling for predicting the PK of small 

molecule drugs in preterm infants report area-under-the-curve (AUC) and clearance as primary 

outcomes of interest.540 However, it is the trough concentrations and the half-life that drive FIP dose 

selection for mAbs, especially those targeted against infectious antigens.420,424,522 For these products, 

clinicians seek a dosing regimen that sustains a trough concentration above a target value. In doing 
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so, the patient achieves stronger immunity against the infectious antigen (RSV, HIV, bacterial 

antigens, etc.). Nevertheless, reporting the prediction error around AUC and clearance was not 

possible in this work because the observed values were rarely reported in the clinical studies and a 

manual non-compartmental analysis would be highly inaccurate with only three data points available 

for calculation. 

This work also serves as an update on the state-of-the-art understanding of pediatric physiology in 

relation to mAb PK.34 We refine this content with a quantitative presentation of the ontogeny of 

capillary surface area derived from five definitive studies.464,467,468,527,528 Furthermore, knock-out 

animal studies473,490,536 and recent PBPK models for FcRn inhibitors541 highlight the important role 

that cells of hematopoietic origin may play in the cellular uptake, FcRn-mediated salvage and 

elimination of mAbs. The effects of a high concentration of hematopoietic cells at birth have been 

incorporated into the pediatric PBPK model for mAbs and characterized with a sensitivity analysis, 

showing that this parameter drives clearance but not VSS. 

The ontogenies of FcRn expression and endogenous IgG concentrations have yet to be addressed. 

They both moderate the availability of the free FcRn parameter. Previous minimal PBPK modeling 

work by Hardiansyah and Ng fully attributed the unique elimination profile of mAbs in children to 

altered FcRn expression.319 However, similar patterns of pediatric exposure are observed for other 

protein-based drugs that do not bind to FcRn, such as erythropoietin stimulating agents and 

coagulation factor concentrates.392-396 This observation suggests that the mechanisms responsible for 

fast elimination of mAbs in children are not attributable to FcRn ontogeny alone, or perhaps even at 

all. Here we uncover the impacts of ontogeny in foundational physiological parameters before 

considering the ontogeny of FcRn expression, which bears a high degree of uncertainty. 

The conventional approach for using PBPK modeling to make a PK prediction in pediatric patients 

involves first evaluating the foundational model structure and parameters in adults before scaling 

select parameters to represent pediatrics according to known physiology.387 For large molecules 

administered to patients in whom there is no ligand present, the drug-specific parameters are actually 

quite simplistic and a prediction of pediatric PK could be made without evaluating the parameters in 

the adult population first. For IVIG and palivizumab, no optimization or learning was performed at 

the adult modelling step. Unexpectedly, the a priori pediatric predictions are strong for palivizumab. 

There are opportunities for further refinement of the parameterization. The capillary surface area 

ontogeny factor (𝐹2) in the model is applied in the same way to every organ in the absence of organ-
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specific data. The measurements from literature come from the abdominal peritoneum, buccal 

mucosa, skin, muscle and nail folds,464,467,468,527,528 but are generalized to the central organs as well. 

Organ-specific estimates for the ontogeny of capillary surface area could be obtained from future 

animal studies. 

Furthermore, the base model for large molecules and therapeutic proteins in PK-Sim does not 

explicitly include a hematopoietic cell compartment in addition to a vascular endothelial cell 

compartment, such as in the models put forward by Li and Balthasar541 or Aborig et al.542 Instead, the 

impacts of cellular uptake by vascular endothelial cells and hematopoietic cells are lumped together 

into one endosomal compartment. To correctly account for the ontogeny of this cell population we 

have split the relative contributions to cellular uptake equally between vascular endothelium and 

hematopoietic cells in the absence of specific data, though this fraction may vary among specific 

organs (e.g. spleen542).  

While it is yet to be explored, PBPK modeling may even offer adequate pediatric PK predictions 

for molecules that are subject to target-mediated drug disposition and nonlinear elimination. As 

already mentioned, children and especially premature infants typically achieve much lower plasma 

exposures to biologic drugs than adults with the same mg/kg doses.80 Since a PBPK model accounts 

for target-binding and nonlinear elimination mechanistically, such an approach would theoretically be 

able to classify when the drug would enter the linear clearance range in children.  

At present, the PBPK modeling approach to pediatric PK assessment is limited by its inability to 

characterize or predict the variability in the PK data. In adults, population PBPK modeling has been 

proposed, which attributes overall PK variability to inter-subject variability in key physiological input 

parameters.68  This approach enables a reproduction of the observed PK variability in clinical trials 

when simulations are conducted iteratively with parameter sets representing many virtual individuals 

as inputs.68 The inter-subject variabilities in key parameters related to ontogeny and the correlations 

between them in children are not yet known for large molecules, but may be the subject of future 

research.  

All models were constructed in the open-source software, PK-Sim and Mobi v8.0, enabling drug 

developers and academics to easily access and apply this parameterization. The parameterizations for 

full term infants and young children (1-4 years) were not evaluated explicitly in this work since 

limited or no data was available in literature for objective evaluation. Therefore, caution should be 

shown if used for pediatric PK prediction in these populations. 
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6.6 Conclusion 

Overall, this work describes a literature-based integration of ontogeny into a PBPK model for mAbs 

in premature neonates coupled with a comprehensive assessment of the role that each parameter may 

play in the prediction of clearance and volume of distribution at steady state. It sets the stage for the 

development of a platform pediatric PBPK model by solidifying parameterizations for organ volumes, 

organ composition, blood flow rates and hematocrit, deriving parameterizations for hematopoietic cell 

concentration, capillary surface area and lymph flow, and drawing attention to unmet needs for 

physiologic knowledge in children. 

6.7 Study Highlights 

This manuscript integrates the ontogeny factors discovered in the literature review (Chapter 5) within 

a PBPK modeling framework to extrapolate monoclonal antibody pharmacokinetics from adults all 

the way down to preterm infants. This extrapolation was performed with the best knowledge that was 

available at that time (2019) to parameterize the PBPK model structure and the ontogeny profiles of 

relevant physiological factors in very young children. Assumptions about the role of hematopoietic 

cells in the pharmacokinetics of antibodies are investigated in the following chapter (Chapter 7). 
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Chapter 7 

Model-Based Assessment of the Contribution of Hematopoietic 

Cells to the Pharmacokinetics of Monoclonal Antibodies 

7.1 Abstract 

The role of hematopoietic cells and in particular, monocytes and macrophages in the 

pharmacokinetics of monoclonal antibodies (mAbs) is currently not well understood. Uptake of mAbs 

into hematopoietic cells is of potential importance for anticipating the changes in pharmacokinetics 

that may occur when hematopoietic cells are present in relatively high concentrations in special 

populations, such as in children. A complicating factor is that children may also have lower 

availability of the neonatal Fc receptor (FcRn) for mAb protection. In this work, a minimal 

physiologically-based pharmacokinetic (PBPK) model is used to characterize mAb uptake into 

hematopoietic cells and associated FcRn-mediated recycling in the context of site-specific FcRn 

deletion and variable endogenous and exogenous IgG levels using data from mice. The model unifies 

experimental data from three studies in unique mouse models with site-specific FcRn deletion in 

macrophages or endothelial cells together with clodronate liposomes to achieve macrophage 

knockdown. The final model was verified by testing its predictive performance against experimental 

data describing the interaction between therapeutic mAb, endogenous IgG, high-dose exogenous IgG 

and FcRn in mice. A sensitivity analysis revealed the plasma AUC was highly sensitive to endothelial 

cell parameters, but had near-nil sensitivity to macrophage parameters, even in the scenario with 90% 

FcRn depletion. Overall, the model confirms the assertion that macrophages are indispensable for IgG 

homeostasis. In this regard, macrophages serve as highly efficient protectors of IgG in plasma, 

interstitial fluid and lymph. They are not, as previously thought, sinks for mAb degradation. In mice 

with normal FcRn expression, model simulations suggest that less than 2% of an intravenously 

administered dose is eliminated in macrophages, while endothelial cells are predicted to dominate 

mAb elimination. We conclude that it is very unlikely that a high concentration of circulating 

monocytes can contribute to explaining the fast weight-based clearance of mAbs in very young 

children, even if FcRn were depleted up to 90%. 
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7.2 Introduction 

It is well known that Immunoglobulin G (IgG) and its therapeutic derivatives, termed monoclonal 

antibodies (mAbs) have long plasma residence times in the body spanning weeks to months.2 The 

major route of elimination is by cellular uptake and subsequent endosomal catabolism.2 Two major 

cell populations have been identified to be responsible for this uptake based on proximity to plasma 

and innate pinocytic or phagocytic activity – (1) vascular endothelial cells and (2) hematopoietic 

cells.473 Fighting to protect IgG from catabolism in these cells is the neonatal Fc receptor (FcRn), a 

salvage protein that binds to IgG in the acidic conditions of endosomes and recycles back to the 

extracellular surface.2 In the body, vascular endothelial cells make up the capillary walls and 

therefore have extensive access to mAb in plasma. Hematopoietic cells are present in plasma (e.g., 

monocytes), and are also located throughout the extravascular space and the lymph nodes.479  

In 2018, data was presented from Richter et al. highlighting the contribution of hematopoietic cell 

uptake and FcRn-mediated recycling to mAb disposition in mice with site-specific FcRn 

knockouts.479,536 The original conclusions from the work were that: 

1. Hematopoietic cells and endothelial cells contribute about equally to the FcRn-mediated 

protection of mAbs 

2. Hematopoietic cells and endothelial cells contribute about equally to the clearance of mAbs 

3. Clearance of mAbs by endothelial cells occurs predominantly from plasma, while clearance 

of mAbs by hematopoietic cells occurs predominantly in the extravascular space 

4. After extravascular administration, pre-systemic elimination or ‘first pass catabolism’ of 

mAbs occurs in hematopoietic cells 

Based on these observations, our group hypothesized in 2019 that a higher concentration of 

circulating hematopoietic cells in very young children may explain in part why children have faster 

weight-based clearance of mAbs than adults.65 It was revealed later in 2019 by Challa et al. that it was 

a specific hematopoietic cell subtype – the macrophages – that were predominantly responsible for 

the Fc-mediated recycling of mAbs.490 Therefore our hypothesis evolved to consider that a higher 

concentration of monocytes (the circulating phagocytes) in children may contribute to this faster 

weight-based clearance. Indeed, monocytes are present at three to five times higher concentrations in 

infant blood when compared to adult blood, while tissue-resident macrophages are known to remain 
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largely constant in their abundance and activity throughout infancy to adulthood, even from the fetal 

stage.478,480,543  

Complicating factors are the degree of FcRn expression and the circulating concentrations of 

endogenous IgG that may compete with therapeutic mAb for FcRn-mediated protection. With very 

limited evidence, it has been hypothesized that children may have lower FcRn concentrations in 

vascular endothelial and/or hematopoietic cells, which implies poor protection of mAbs in vivo and 

fast clearance.34,63,492,493 The available FcRn is potentially further compromised by high 

concentrations of circulating IgG in the three months after birth from maternal sources.34 Therefore it 

becomes of importance to understand the quaternary quantitative relationship between monocyte and 

macrophage concentrations, FcRn expression, endogenous IgG concentrations and mAb clearance. 

In the presented work, a mechanistic model is developed using data from mice that characterizes 

mAb uptake into hematopoietic cells and associated FcRn-mediated recycling in the context of site-

specific FcRn deletion and variable endogenous and exogenous IgG levels. The overall aim is to 

provide evidence towards accepting or rejecting the hypothesis that high concentrations of blood 

monocytes may contribute to the observed faster weight-normalized clearance of mAbs in young 

children. 

7.3 Methods 

7.3.1 Software 

PBPK modeling was performed in MATLAB R2020a (Mathworks, Natick, MA) using the extension 

IQM Tools v1.2.2.2 by Henning Schmidt (Intiquan, www.intiquan.com). All datasets were digitized 

from literature using PlotDigitizer v2.6.8 by Joseph Huwaldt (plotdigitizer.sourceforge.net). 

Anatomical parameter values for a mouse were extracted from PKSim v9.1 (www.open-systems-

pharmacology.org). 

7.3.2 Pharmacokinetic Data 

The first dataset for model building was from Garg et al.91 In these experiments, C57BL/6J wild-type 

and global FcRn-knockout mice (GKO) were administered 8 mg/kg of mAb 7E3 by intravenous 

injection. Elimination of 7E3 was dramatically faster in GKO mice compared to controls. In an 

additional experiment, 7E3 was co-administered with 1 g/kg intravenous immunoglobulin (IVIG) to 

partially saturate FcRn, and elimination was moderately increased. This data was reserved for model 
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verification as it reflects the complex interplay between therapeutic mAb, endogenous IgG, 

exogenous IgG and FcRn.  

The second dataset for model building was from Challa et al.490 There were three populations of 

mice to consider: C57BL/6J wild-type mice, GKO mice, and macrophage-specific FcRn knockout 

mice (MKO). Mice were administered 10-15 µg of 125I-labelled mAb D1.3 and whole-body 

radioactivity was measured at specific time points using an Atom Lab 100 dose calibrator. GKO mice 

exhibited the shortest whole-body mAb half-life (35.5 hours), followed by MKO (41.9 hours) mice 

and then wild-type mice (247.6 hours). In another set of experiments, macrophages in wild-type and 

GKO mice were knocked down by two 1.5 mg doses of clodronate liposomes injected 18 hours 

before and 30 hours after mAb administration. In wild-type mice, macrophage knockdown with 

clodronate did not significantly impact the whole-body mAb half-life. In GKO mice, however, 

macrophage knockdown increased the whole body mAb half-life (54 vs. 39 hours). Mice with 

endothelial-specific FcRn knockout were not successfully validated and so that data was excluded 

from this analysis. However, fast elimination was also observed in that mouse model. 

The final dataset for model building was synthesized from experiments by Akilesh et al. and was 

digitized from the manuscript by Richter et al.479,536 In these experiments, C57BL/6J wild-type mice 

and GKO mice were administered 4 mg/kg of mAb 1B7 by intraperitoneal injection. In addition, 

MKO mice were generated by subjecting C57BL/6 wild-type mice to high doses of radiation and then 

replacing hematopoietic cells with a bone marrow transplant from GKO mice. In similar fashion, 

endothelial-specific FcRn knockout mice (EKO) were generated by subjecting GKO mice to high 

doses of radiation and then replacing hematopoietic cells with a bone marrow transplant from 

C57BL/6 wild-type mice. Total exposures were highest in wild-type control mice, followed by EKO 

mice, MKO mice and then GKO mice.  

7.3.3 Minimal PBPK Model Development 

A minimal PBPK model is defined as one in which the whole body and its physiological mechanisms 

of drug disposition are simplified into one lumped organ compartment to test elementary 

pharmacokinetic hypotheses. For this model, whole body volume parameters for plasma, interstitial 

space and endothelial endosomes were extracted from PK-Sim v9.1 for a virtual mouse with 21 g 

body weight (𝑉𝑃 , 𝑉𝐼𝑆, 𝑉𝐸). In the proposed physiological structure (Figure 33), mAb is deposited in 

the plasma space after intravenous administration. Lymph flow (𝐿) drives convective transport across 

the vascular wall into the interstitial space, with resistance to flow through pores modeled by a 
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vascular reflection coefficient (𝜎𝑉). From the interstitial space, mAb may be returned by lymph flow 

back to the plasma space. Uptake into endothelial cells occurs from plasma (𝐶𝐿𝑢𝑝). Uptake into 

circulating macrophages and Kupffer cells occurs from plasma, and uptake into tissue-resident 

macrophages occurs from interstitial space (𝑃𝑢𝑝). Within endosomes, unbound mAb is subject to 

degradation (𝐶𝐿𝑠𝑝𝑒𝑐 , 𝑃𝑠𝑝𝑒𝑐). However, mAb that binds to the neonatal salvage receptor (𝐹𝑐𝑅𝑛) may 

be recycled back to the extracellular space (𝐶𝐿𝑢𝑝, 𝑃𝑢𝑝). Intracellular binding to FcRn was represented 

with first order binding rates determined from in vitro studies (𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓) and evaluated by Niederalt 

et al.66 One FcRn concentration (nmol/L endosome) was applied consistently for endosomal spaces, 

regardless of cellular origin.91,544 Full notation of the states, variables and parameters are presented in 

Table 22 with model equations following. 

The volumes of three major macrophage populations were derived from literature: circulating 

hematopoietic macrophages (monocytes) (𝑉𝑐𝑖𝑟𝑐
𝑀 ), Kupffer cells lining sinusoids in the liver (𝑉𝑘𝑢𝑝𝑓𝑓𝑒𝑟

𝑀 ) 

and other tissue-resident macrophages (𝑉𝑡𝑖𝑠𝑠𝑢𝑒
𝑀 ), such as splenic red pulp macrophages, alveolar 

macrophages in the lung and Langerhans cells in the pancreas.545 Monocytes are the dominant 

macrophage cell population in blood and make up approximately 2% of the murine white blood cell 

count.545-549 As such, the circulating macrophage volume was calculated based on a murine white 

blood cell count of 9000 cells/µL and employing a 20 µm spherical radius for monocytes.548 Kupffer 

cells make up 10-16% of cells in the murine liver and are largely derived from circulating 

monocytes.543,549-551 With challenges due to their irregular shape, Kupffer cell volume was assumed to 

be the same as that calculated for the monocyte parent. The total Kupffer cell volume in mouse was 

then calculated based on the cellularity of 135 million cells per gram liver tissue.552 Tissue-resident 

macrophage volume was fixed at 2% of non-blood volume according to a previous derivation by 

Aborig & Malik et al.542,553 The endosomal fraction (𝑓𝑒𝑛𝑑𝑜) of 0.2 was assigned the same for 

macrophages as for endothelial cells.66  

Intraperitoneal administration was described by adding a local injection site compartment and 

allowing mAb to enter the plasma compartment by a first order absorption rate constant (𝑘𝑎). This 

process represents the flow of lymph from the local site to the interface of the thoracic duct with the 

subclavian vein. In transit, mAb is subject to pre-systemic elimination. In FcRn transgenic mice, 

Richter et al. observe that EKO mice have similar bioavailability to wild-type mice, but that MKO 

and GKO mice have marked lower bioavailability.479 The exact intraperitoneal bioavailability of 1B7 
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in the wild-type (𝐹𝑊𝑇
𝐼𝑃 ) and macrophage knockout (𝐹𝑀𝐾𝑂

𝐼𝑃 ) scenarios could not be calculated as there 

was no intravenous data for comparison.  

Endogenous IgG is present in parallel within the system and competes with therapeutic mAb for 

binding to FcRn. Each model run requires a baseline phase (0-500 hours) that allows endogenous IgG 

levels in the body to acclimate to steady state, and then a dosing phase, where therapeutic mAb is 

administered. Endogenous IgG levels in plasma of C57BL/6J mice and various knockout mice were 

used for each experiment as measured by Challa et al.490 

In this “middle-out” approach, nine parameters were optimized using a simulated annealing 

temperature-based global optimization method (𝐶𝐿𝑢𝑝, 𝐶𝐿𝑠𝑝𝑒𝑐 , 𝑃𝑢𝑝, 𝑃𝑠𝑝𝑒𝑐 , 𝐿, 𝜎𝑉 , 𝑘𝑎 , 𝐹𝑊𝑇
𝐼𝑃 , 𝐹𝑀𝐾𝑂

𝐼𝑃 ). Ten 

optimizations were run from randomized start values within physiologically relevant parameter 

bounds to assess identifiability of a unique solution. To absolve potential correlations between uptake 

and degradation, the endosomal degradation rates were optimized using a scaling factor multiplied by 

the uptake rate (𝐶𝐿𝑠𝑝𝑒𝑐 = 𝐶𝐿𝑠𝑝𝑒𝑐
𝑓𝑎𝑐𝑡𝑜𝑟

× 𝐶𝐿𝑢𝑝, 𝑃𝑠𝑝𝑒𝑐 = 𝑃𝑠𝑝𝑒𝑐
𝑓𝑎𝑐𝑡𝑜𝑟

× 𝑃𝑢𝑝). In the beginning of the 

optimization process, it was found that three constants trended to solutions that were lower than those 

physiological plausible (𝜎𝑉, 𝐹𝑊𝑇
𝐼𝑃 , 𝐹𝑀𝐾𝑂

𝐼𝑃 ). Therefore, they were fixed to the lower limit of 

physiological plausibility and the remaining six parameters were optimized freely.  
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Figure 33. Minimal PBPK model structure 
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Table 22. State and parameter notation for the minimal PBPK model 

Term Units Definition 

States 

𝐶𝑃 pmol/mL Concentration of mAb in plasma space 

𝐶𝐸 pmol/mL Concentration of unbound mAb in endothelial endosomes 

𝐶𝐸:𝐵𝑜𝑢𝑛𝑑 pmol/mL Concentration of FcRn-bound mAb in endothelial endosomes 

𝐶𝐼𝑆 pmol/mL Concentration of mAb in interstitial space 

𝐶𝑖
𝑀 pmol/mL Concentration of unbound mAb in macrophage endosomes (𝑖 

= circulating. Kupffer or tissue) 

𝐶𝑖
𝑀:𝐵𝑜𝑢𝑛𝑑 pmol/mL Concentration of FcRn-bound mAb in macrophage 

endosomes (𝑖 = circulating, Kupffer or tissue) 

𝐹𝑐𝑅𝑛𝐸 pmol/mL State for the negative value of mAb-FcRn complex 

concentration in endothelial endosomes 

𝐹𝑐𝑅𝑛𝑖
𝑀 pmol/mL State for the negative value of mAb-FcRn complex 

concentration in macrophage endosomes (𝑖 = circulating, 

Kupffer or tissue) 

Parameters 

𝐿 mL/h Organ lymph flow 

𝜎𝑉 - Vascular reflection coefficient 

𝑉𝑃 mL Volume of plasma space  

𝑉𝐸 mL Volume of endothelial endosomes 

𝑉𝐼𝑆 mL Volume of interstitial space  

𝑉𝑖
𝑀 mL Volume of macrophage endosomes (𝑖 = circulating, Kupffer 

or tissue) 

𝐶𝐿𝑢𝑝 mL/h/mL Rate of pinocytosis and exocytosis per mL of endothelial 

endosomes 

𝐶𝐿𝑠𝑝𝑒𝑐 mL/h/mL Rate of degradation in endothelial endosomes 

𝑃𝑢𝑝 mL/h/mL Rate of phagocytosis and exocytosis per mL of macrophage 

endosomes 

𝑃𝑠𝑝𝑒𝑐 mL/h/mL Rate of degradation in macrophage endosomes 

𝐹𝑐𝑅𝑛 pmol/mL Maximum concentration of the neonatal Fc receptor in 

endosomes (constant) 

𝑘𝑜𝑛
𝐹𝑐𝑅𝑛 mL/pmol/h Association rate constant for mAb binding to FcRn 

𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 h-1 Dissociation rate constant for mAb binding to FcRn 

𝐾𝐷
𝐹𝑐𝑅𝑛 pmol/mL Equilibrium dissociation constant for mAb binding to FcRn 

𝐹𝑊𝑇
𝐼𝑃  - Bioavailabilty of D1.3 from intraperitoneal space in WT and 

EKO mice 

𝐹𝑀𝐾𝑂
𝐼𝑃  - Bioavailability of D1.3 from intraperitoneal space in MKO 

and GKO mice 

𝑘𝑎 h-1 Absorption rate constant from intraperitoneal space 
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Plasma  

Equation Set 7.1: Amount of mAb in Plasma 

𝑉𝑃 ×  
𝑑𝐶𝑃  

𝑑𝑡
= −(1 − 𝜎𝑉) × 𝐿 × 𝐶𝑃 + 𝐿 × 𝐶𝐼𝑆 − 𝑃𝑢𝑝 × 𝑉𝑐𝑖𝑟𝑐

𝑀 × 𝐶𝑃 + 𝑃𝑢𝑝 × 𝑉𝑐𝑖𝑟𝑐
𝑀 × 𝐶𝑐𝑖𝑟𝑐

𝑀:𝐵𝑜𝑢𝑛𝑑

− 𝑃𝑢𝑝 × 𝑉𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀 × 𝐶𝑃 + 𝑃𝑢𝑝 × 𝑉𝑘𝑢𝑝𝑓𝑓𝑒𝑟

𝑀 × 𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀:𝐵𝑜𝑢𝑛𝑑 + 𝐴𝐼𝑃 × 𝑘𝑎 

𝐶𝑃(0) =
𝐷𝑜𝑠𝑒𝐼𝑉

𝑉𝑃
 

 

Circulating Macrophage Endosomes 

Equation Set 7.2: Concentration of mAb and FcRn in Circulating Macrophage Endosomes  

 
𝑑𝐶𝑐𝑖𝑟𝑐

𝑀

𝑑𝑡
= 𝑃𝑢𝑝 × 𝐶𝑃 − 𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑐𝑖𝑟𝑐
𝑀 × (𝐹𝑐𝑅𝑛𝑐𝑖𝑟𝑐

𝑀 + 𝐹𝑐𝑅𝑛) + 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝑐𝑖𝑟𝑐

𝑀:𝐵𝑜𝑢𝑛𝑑 − 𝑃𝑠𝑝𝑒𝑐 × 𝐶𝑐𝑖𝑟𝑐
𝑀  

𝑑𝐶𝑐𝑖𝑟𝑐
𝑀:𝐵𝑜𝑢𝑛𝑑

𝑑𝑡
= 𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑐𝑖𝑟𝑐
𝑀 × (𝐹𝑐𝑅𝑛𝑐𝑖𝑟𝑐

𝑀 + 𝐹𝑐𝑅𝑛) − 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝑐𝑖𝑟𝑐

𝑀:𝐵𝑜𝑢𝑛𝑑 − 𝑃𝑢𝑝 × 𝐶𝑐𝑖𝑟𝑐
𝑀:𝐵𝑜𝑢𝑛𝑑 

𝑑𝐹𝑐𝑅𝑛𝑐𝑖𝑟𝑐
𝑀

𝑑𝑡
= −𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑐𝑖𝑟𝑐
𝑀 × (𝐹𝑐𝑅𝑛𝑐𝑖𝑟𝑐

𝑀 + 𝐹𝑐𝑅𝑛) + 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝑐𝑖𝑟𝑐

𝑀:𝐵𝑜𝑢𝑛𝑑 + 𝑃𝑢𝑝 × 𝐶𝑐𝑖𝑟𝑐
𝑀:𝐵𝑜𝑢𝑛𝑑 

 

Endothelial Endosomes 

Equation Set 7.3: Concentration of mAb and FcRn in Endothelial Endosomes  

 
𝑑𝐶𝐸

𝑑𝑡
= 𝐶𝐿𝑢𝑝 × 𝐶𝑃 − 𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝐸 × (𝐹𝑐𝑅𝑛𝐸 + 𝐹𝑐𝑅𝑛) + 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝐸:𝐵𝑜𝑢𝑛𝑑 − 𝐶𝐿𝑠𝑝𝑒𝑐 × 𝐶𝐸 

𝑑𝐶𝐸:𝐵𝑜𝑢𝑛𝑑

𝑑𝑡
= 𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝐸 × (𝐹𝑐𝑅𝑛𝐸 + 𝐹𝑐𝑅𝑛) − 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝐸:𝐵𝑜𝑢𝑛𝑑 − 𝐶𝐿𝑢𝑝 × 𝐶𝐸:𝐵𝑜𝑢𝑛𝑑 

𝑑𝐹𝑐𝑅𝑛𝐸

𝑑𝑡
= −𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝐸 × (𝐹𝑐𝑅𝑛𝐸 + 𝐹𝑐𝑅𝑛) + 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝐸:𝐵𝑜𝑢𝑛𝑑 + 𝐶𝐿𝑢𝑝 × 𝐶𝐸:𝐵𝑜𝑢𝑛𝑑 
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Interstitial Space 

Equation Set 7.4: Amount of mAb in Interstitial Space  

𝑉𝐼𝑆 ×
𝑑𝐶𝐼𝑆

𝑑𝑡
= (1 − 𝜎𝑉) × 𝐿 × 𝐶𝑃 −  𝐿 × 𝐶𝐼𝑆 − 𝑃𝑢𝑝 × 𝑉𝑡𝑖𝑠𝑠𝑢𝑒

𝑀 × 𝐶𝐼𝑆 + 𝑃𝑢𝑝 × 𝑉𝑡𝑖𝑠𝑠𝑢𝑒
𝑀 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒

𝑀:𝐵𝑜𝑢𝑛𝑑 

 

Tissue-Resident Macrophage Endosomes 

 

Equation Set 7.5: Concentration of mAb and FcRn in Tissue-Resident Macrophage Endosomes 

 
𝑑𝐶𝑡𝑖𝑠𝑠𝑢𝑒

𝑀

𝑑𝑡
= 𝑃𝑢𝑝 × 𝐶𝐼𝑆 − 𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒
𝑀 × (𝐹𝑐𝑅𝑛𝑡𝑖𝑠𝑠𝑢𝑒

𝑀 + 𝐹𝑐𝑅𝑛) + 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒

𝑀:𝐵𝑜𝑢𝑛𝑑

− 𝑃𝑠𝑝𝑒𝑐 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒
𝑀  

𝑑𝐶𝑡𝑖𝑠𝑠𝑢𝑒
𝑀:𝐵𝑜𝑢𝑛𝑑

𝑑𝑡
= 𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒
𝑀 × (𝐹𝑐𝑅𝑛𝑡𝑖𝑠𝑠𝑢𝑒

𝑀 + 𝐹𝑐𝑅𝑛) − 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒

𝑀:𝐵𝑜𝑢𝑛𝑑 − 𝑃𝑢𝑝 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒
𝑀:𝐵𝑜𝑢𝑛𝑑 

𝑑𝐹𝑐𝑅𝑛𝑡𝑖𝑠𝑠𝑢𝑒
𝑀

𝑑𝑡
= −𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒
𝑀 × (𝐹𝑐𝑅𝑛𝑡𝑖𝑠𝑠𝑢𝑒

𝑀 + 𝐹𝑐𝑅𝑛) + 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒

𝑀:𝐵𝑜𝑢𝑛𝑑 + 𝑃𝑢𝑝 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒
𝑀:𝐵𝑜𝑢𝑛𝑑 

 

Kupffer Cell Endosomes 

Equation Set 7.6: Concentration of mAb and FcRn in Kupffer Cell Endosomes  

 
𝑑𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟

𝑀

𝑑𝑡
= 𝑃𝑢𝑝 × 𝐶𝑃 − 𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀 × (𝐹𝑐𝑅𝑛𝑘𝑢𝑝𝑓𝑓𝑒𝑟

𝑀 + 𝐹𝑐𝑅𝑛) + 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟

𝑀:𝐵𝑜𝑢𝑛𝑑

− 𝑃𝑠𝑝𝑒𝑐 × 𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀  

𝑑𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀:𝐵𝑜𝑢𝑛𝑑

𝑑𝑡
= 𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀 × (𝐹𝑐𝑅𝑛𝑘𝑢𝑝𝑓𝑓𝑒𝑟

𝑀 + 𝐹𝑐𝑅𝑛) − 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟

𝑀:𝐵𝑜𝑢𝑛𝑑 − 𝑃𝑢𝑝 × 𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀:𝐵𝑜𝑢𝑛𝑑 

𝑑𝐹𝑐𝑅𝑛𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀

𝑑𝑡
= −𝑘𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀 × (𝐹𝑐𝑅𝑛𝑘𝑢𝑝𝑓𝑓𝑒𝑟

𝑀 + 𝐹𝑐𝑅𝑛) + 𝑘𝑜𝑓𝑓
𝐹𝑐𝑅𝑛 × 𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟

𝑀:𝐵𝑜𝑢𝑛𝑑

+ 𝑃𝑢𝑝 × 𝐶𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀:𝐵𝑜𝑢𝑛𝑑 
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Intraperitoneal Injection Site  

Equation Set 7.7: Amount of mAb in the Intraperitoneal Injection Site (i = wild-type or MKO) 

𝑑𝐴𝐼𝑃  

𝑑𝑡
= −𝐴𝐼𝑃 × 𝑘𝑎 

𝐴𝐼𝑃(0) = 𝐷𝑜𝑠𝑒𝐼𝑃 × 𝐹𝐼𝑃
𝑖  

 

 

7.3.4 Minimal PBPK Model Verification 

The final model was verified by evaluating its predictive performance against the dataset from Garg 

et al. that was not used during the model building process.91 In this scenario, mAb 7E3 was 

administered intravenously at 8 mg/kg to C57BL/6J mice along with high dose IVIG (1 g/kg). Strong 

performance in this scenario reflects appropriate characterization of the complex interplay between 

therapeutic mAb, endogenous IgG, exogenous IgG and FcRn in vivo.  

7.3.5 Model Projections 

Simulations were conducted to refine the overall understanding on the contribution of hematopoietic 

cell uptake and FcRn-mediated recycling to mAb pharmacokinetics. The original conclusions 

postulated by Richter et al. were tested by simulating the amount cleared by each of the cell 

populations over time in wild-type and GKO mice.479 

7.3.6 Sensitivity Analysis 

A one-at-a-time (OAT) sensitivity analysis was conducted with the final model to quantify the 

contribution of the three macrophage cell populations (circulating monocytes, Kupffer cells and 

tissue-resident macrophages) to the clearance of mAbs in mice. Separate sensitivity analyses were 

conducted for the wild-type model and for adaptations featuring 50% FcRn depletion and 90% FcRn 

depletion to anticipate the effects if FcRn were partially or near-fully depleted in children. Parameters 

hypothesized to have relevance to the ontogeny of mAb pharmacokinetics were varied individually by 

+50% and –50% of the nominal value and the resulting percent changes in the area-under-the-curve 

of the plasma concentration-time profile (AUC0-500h) were reported as sensitivity coefficients (𝑆𝑝
50).  

𝑆𝑝
50 =

𝐴𝑈𝐶(𝑝 ± 0.5 × 𝑝) − 𝐴𝑈𝐶(𝑝)

𝐴𝑈𝐶(𝑝)
× 100 
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To explore if monocyte blood concentration may be a plausible explanation to the observed faster 

weight-normalized clearance of mAbs in young children, the monocyte volume in blood (𝑉𝑐𝑖𝑟𝑐
𝑀 ) was 

increased 5-fold and compared against the nominal profile. 

7.4 Results 

7.4.1 Minimal PBPK Model Development 

A minimal PBPK model was developed that describes mAb extravasation, flow via lymph, uptake 

into endothelial cells, uptake into macrophages, salvage through binding to FcRn and competition 

with endogenous IgG for FcRn in a series of wild-type of site-specific FcRn knockout mouse models. 

The final model fit is presented in Figure 34 and the final parameterization is presented in Table 23. 

The coefficients of variation on estimated parameters among solutions from multiple optimizations 

with randomized start values were less than 0.2%, confirming that the solution is uniquely identifiable 

(Figure 35). The fit analysis is presented in Figure 36. Fold error at every data point was calculated as 

the predicted value divided by the observed value. The absolute average fold error across all 

datapoints was 1.00 and 90.3% of points fell within the 1.5-fold error boundaries (0.667 – 1.5-fold 

error). 

The model fit was poor only when characterizing the plasma profile of GKO mice from Garg et 

al.91 However the fit to this dataset must be balanced against the mild under-fitting of the GKO 

profiles in the other two datasets.479,490,536 Indeed this analysis assumes that all three of the studied 

mAbs (7E3, D1.3 and 1B7) have the same cellular uptake rates, but there is notable heterogeneity in 

cellular uptake among other mAbs that may explain the interstudy variation in observed data for GKO 

mice.554 The subgroup analysis by experiment type confirms that the error in the GKO datasets is 

balanced across the median fold-error of 1, with the Garg et al. dataset being over-estimated and the 

rest being modestly under-estimated (Figure 36). 
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Figure 34. Fitted model performance against observed data in various FcRn knockout mice (WT, 

EKO, MKO, GKO) and macrophage knockdown scenarios (WT+Clod, GKO+Clod). WT = wild-type 

control mice, EKO = endothelial-specific FcRn knoc006Bout mice, MKO = macrophage-specific 

FcRn knockout mice, GKO = global FcRn knockout mice, Clod = co-administration of clodronate 

liposomes to knock down macrophages. Observed data presented from Akilesh et al.,479,536 Garg et 

al.,91 and Challa et al.490 
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Table 23. Final parameter values for the minimal PBPK model 

Term Units Value (estimation CV%) Reference 

Fixed Parameters 

𝑉𝑃 mL 0.99 Niederalt et al.66 

𝑉𝐸 mL 0.0051 Niederalt et al.66 

𝑉𝐼𝑆 mL 3.165 Niederalt et al.66 

𝑉𝑐𝑖𝑟𝑐
𝑀  mL 0.00028 Derived 

𝑉𝑘𝑢𝑝𝑓𝑓𝑒𝑟
𝑀  mL 0.0176 Derived 

𝑉𝑡𝑖𝑠𝑠𝑢𝑒
𝑀  mL 0.08 Derived  

𝑘𝑜𝑛
𝐹𝑐𝑅𝑛 mL/pmol/h 0.0522 Niederalt et al.66 

𝐾𝐷
𝐹𝑐𝑅𝑛 pmol/mL 750 Niederalt et al.66 

𝜎𝑉 - 0.65 Fixed during 

estimation 

𝐹𝑊𝑇
𝐼𝑃  - 0.70 Fixed during 

estimation 

𝐹𝑀𝐾𝑂
𝐼𝑃  - 0.45 Fixed during 

estimation 

𝐹𝑐𝑅𝑛 pmol/mL 33000 Garg et al.,91 Li et 

al.544 

Serum IgG in WT mice pmol/mL 8600 Challa et al.490 

Serum IgG in EKO mice pmol/mL 3600 Challa et al.490 

Serum IgG in MKO mice pmol/mL 3200 Challa et al.490 

Serum IgG in GKO mice pmol/mL 850 Challa et al.490 

Optimized Parameters 

𝐶𝐿𝑢𝑝 mL/h/mL 5.05 (0.02%) - 

𝐶𝐿𝑠𝑝𝑒𝑐 mL/h/mL 79.7 (0.07%) - 

𝑃𝑢𝑝 mL/h/mL 0.480 (0.015%) - 

𝑃𝑠𝑝𝑒𝑐 mL/h/mL 0.150 (0.18%) - 

𝐿 mL/h 0.152 (0.04%) - 

𝑘𝑎 h-1 0.0788 (0.12%) - 
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Figure 35. Box-and-whisker diagram for the estimation data visualizing the spread in the parameter 

estimation results. Parameters presented on y-axis with mean and arithmetic standard deviation. Red 

lines note the median, boxes note the first and third quartiles, error bars note the minimum and 

maximum, and outliers are plotted as single dots (defined as a value further than 1.5 times the 

interquartile range from the median). To normalize the data for the box-and-whisker diagram, the 

parameters are scaled such that the median of each single parameter is 1. 
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Figure 36. Model fit analysis. Fitted values are plotted against observed values for each experiment 

type (colored diamonds). WT = wild-type, EKO = endothelial-specific FcRn knockout, MKO = 

macrophage-specific FcRn knockout, GKO = global FcRn knockout. The solid black line marks the 

line of equality, and the dashed black lines mark the boundaries of 1.5 fold error. 
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7.4.2 Minimal PBPK Model Verification 

The final model was verified with respect to its Fc-receptor mediated interactions by making a 

successful prediction for the plasma concentration-time profile of 7E3 when co-administered with 1 

g/kg IVIG in the study by Garg et al.91 The prediction is presented in Figure 37. 

 

Figure 37. Prediction of 7E3 pharmacokinetics when co-administered with 1 g/kg intravenous 

immunoglobulin (IVIG) to verify the Fc-dependent interactions in the final model. Observed data 

presented from Garg et al.91 over the period of exogenous IVIG persistence (500 hours). 
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7.4.3 Model Projections 

Simulations with the final model were used to revisit existing hypotheses about the contribution of 

hematopoietic cell uptake and FcRn-mediated recycling to the pharmacokinetics of mAbs in mice. 

The model suggests that in individuals with normal FcRn expression, macrophages largely act as 

protectors of mAb in the body, rather than degraders. Instead, degradation occurs predominantly in 

non-hematopoietic cells. In the wild-type scenario, the model predicts that at 500 hours, 84% of the 

administered mAb dose is eliminated in endothelial cells while 2% is eliminated in macrophages 

(Figure 38). However in the GKO scenario, the model predicts that at 500 hours, 57% of the 

administered mAb dose is eliminated in endothelial cells while 43% is eliminated in macrophages 

(Figure 38). This observation also changes the understanding of the pre-systemic elimination of mAbs 

after extravascular administration. Instead of degraders, hematopoietic cells can be thought of as 

protectors enabling safe transit of mAb through the lymphatic system. When FcRn is knocked out in 

these cells, bioavailability decreases because the protection is only afforded through binding to FcRn.  
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Figure 38. Simulation for percent of injected dose cleared by endothelial cells (dashed line) and 

macrophages (solid line) in wild-type mice (blue) and global FcRn-knockout mice (purple).  
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7.4.4 Sensitivity Analysis 

The OAT sensitivities of the simulated plasma AUC to select model parameters across the wild-type, 

50% FcRn depleted and 90% FcRn depleted scenarios are presented in Figure 39. Across all 

scenarios, the plasma AUC is most sensitive to endothelial clearance parameters, namely the volume 

of endothelial cells (𝑉𝐸), the rate of uptake into endothelial cells (𝐶𝐿𝑢𝑝) and the rate of degradation in 

endothelial cells (𝐶𝐿𝑠𝑝𝑒𝑐). The vascular reflection coefficient between plasma and interstitial space 

had a mild impact on the AUC as it governs the distributional equilibrium between plasma and 

interstitial fluid, and therefore the availability of mAb for uptake into endothelial cells. Parameters 

related to macrophage volume or uptake had virtually no impact on the plasma profile even in the 

scenario with 90% FcRn depletion – circulating monocyte volume least of all (𝑉𝑐𝑖𝑟𝑐
𝑀 ). This result 

suggests that the FcRn-mediated recycling of mAbs in hematopoietic cells is highly efficient. To 

confirm this observation, a simulation was run where the monocyte volume was increased 5-fold from 

its nominal value, and the plasma AUC did not change. Therefore it is very unlikely that a high 

concentration of circulating monocytes may contribute to the fast weight-based clearance in young 

children, even if children were to have up to 90% depletion of FcRn.  
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Figure 39. One-at-a-time sensitivity of the simulated plasma AUC to select model parameters in scenarios with normal FcRn expression (blue), 

50% depletion of FcRn (orange) and 90% depletion of FcRn (purple). Parameters were varied by -50% (solid bar) and +50% (empty bar) of the 

nominal value and the resulting percent changes in AUC are reported as sensitivity coefficients. See Table 22 for parameter definitions.  
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7.5 Discussion 

The role of hematopoietic cells and in particular, monocytes and macrophages in the 

pharmacokinetics of mAbs is currently not well understood. Recent mouse PK data with site-specific 

FcRn deletion and macrophage knockdown with clodronate liposomes have been enlightening toward 

this end.479,490,536 In the current work, a minimal PBPK model has been developed to unify the datasets 

and a model-based analysis has been conducted to bring clarity to the issue. A model-based analysis 

is valuable for this exercise because of the degree of experimental complexity. Experiments in mice 

with site-specific FcRn deletion are further complicated by simultaneous macrophage knockdown 

with clodronate liposomes, intraperitoneal administration and experiment-specific endogenous IgG 

concentrations competing for FcRn binding. Overall, the model confirms the assertion by Challa et al. 

that macrophages are indispensable for IgG homeostasis. In this regard, macrophages serve as highly 

efficient protectors of IgG in plasma, interstitial fluid and lymph. They are not, as previously thought, 

sinks for mAb degradation. In fact, model simulations suggest that with normal FcRn expression less 

than 2% of an intravenously administered dose is eliminated in macrophages, while endothelial cells 

are predicted to dominate mAb elimination. The near-nil sensitivity of the models with up to 90% 

FcRn depletion to monocyte and macrophage parameters suggests that it is very unlikely that a high 

concentration of circulating monocytes can contribute to explaining the fast weight-based clearance 

of mAbs in very young children.  

This work inspires new questions about the importance of hematopoietic cell uptake toward the 

biodistribution and organ-specific accumulation of mAbs, especially in the context of an expansion of 

this work to a full body PBPK model. The relative abundance of macrophages in various organs is 

well known in mice.553,555 One full body PBPK model for mAbs has incorporated hematopoietic cell 

uptake as relevant for IgG homeostasis in the context of therapeutic FcRn inhibition, but this 

parameterization was not built with biodistribution data or the knockout data used here.544 The present 

minimal model does not allow significant accumulation of mAb inside endothelial cells or 

macrophages outside of FcRn binding due to the assumption of equal cellular influx and efflux rates. 

Nevertheless, the conceptual strides that have been made toward understanding the role of each cell 

type in the uptake and elimination of mAbs will assist future efforts for modeling organ accumulation 

as potentially dependent on uptake into macrophages. Such expansion is debatably necessary for 

mAbs alone, but certainly necessary for characterizing the PK of other large molecule species that are 

vulnerable to macrophage uptake, such as nanoparticles, liposomes and lysosomal protein 

replacement therapies. 
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The collected datasets have particular strengths in that they all feature the same foundational mouse 

model that is not immunodeficient and does not have human transgenic FcRn, the C57BL/6 athymic 

nude mouse. The mice were otherwise healthy and did not have tumour xenografts, which increases 

mAb clearance.556,557 The administered mAbs showed linear kinetics and demonstrated negligible 

target binding in mice to avoid the potentially confounding effects of target-mediated drug 

disposition. However, some challenges were met when unifying the datasets under one model 

parameterization. While each study used a unique mAb, none of the studies reported the FcRn affinity 

of their drug product. Different mAbs are also known to show different propensities for extravasation 

and cellular uptake dependent on their charge, glycosylation, and other physicochemical 

properties.554,558,559 In this work, none of these drug-specific parameters were able to be accounted for.  

Finally, it is important to acknowledge that this PBPK model is limited by its structural 

assumptions. All compartments are assumed to be well-stirred and representative of the sum of the 

respective organ sub-compartments across the whole body. Cellular uptake is limited to FcRn-

expressing cells only (endothelial cells and macrophages), and FcRn binding is mathematically 

described with 1:1 stoichiometry, though 2:1 stoichiometry is observed in vitro. Cellular uptake and 

recycling are assumed to occur at equal rates to improve identifiability, though in vitro experiments 

may prove useful for establishing a relationship between these parameters. 

7.6 Conclusion 

The model-based analysis of experimental data in mice suggests that the role of macrophages in IgG 

homeostasis includes highly efficient FcRn-mediated protection but not degradation as previously 

thought. The relevance of this finding for hypotheses related to high concentrations of circulating 

monocytes in pediatrics has been discussed.  

7.7 Study Highlights 

This manuscript revisits the assumptions that were used to perform the pediatric extrapolation in 

Chapter 6 and reveals that a high concentration of circulating hematopoietic cells is likely not 

responsible for the observed fast weight-based clearance of monoclonal antibodies in children. 
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Chapter 8 

Conclusions and Future Directions 

With the body of pediatric data growing, it is becoming increasingly possible to scale the 

pharmacokinetics of a mAb from adults to children older than 2 years of age empirically, especially 

one that is administered intravenously and displays linear kinetics in vivo. On the other hand, a 

physiologically-based extrapolation to children will be preferred when accounting for non-linear 

behaviour, when disease pathophysiology impacts pharmacokinetics in children, when scaling to 

infants (where only sparse data exist) or when asking mechanistic research questions. The efforts in 

this thesis have been directed to making a physiologically-based extrapolation a feasible reality for 

drug developers, regulators and academics alike.  

Four hypotheses remain that may account for the observed fast clearance and high volumes of 

distribution in children on a per kg basis. First, high extracellular water fractions in young children 

contribute to a large volume of distribution for mAbs.61,437 Extravasation of mAbs occurs quickly in 

children due to dense capillary networks and proportionally larger central and leaky organs.50,464,560 A 

fast rate of lymph flow drives fast absorption – and even potentially higher bioavailability after 

extravascular administration.36,511 Finally, it cannot be ruled out that the free concentration of the 

neonatal Fc receptor (FcRn) is present in lower concentrations in the endothelial cells and 

macrophages of infants and children, leading to faster clearance.492  

Future research will be directed to the continued testing of these hypotheses and the generation of 

new ones to eventually complete the full picture of mAb absorption, distribution and elimination in 

children. As shown by the results of the last chapter, the mechanistic determinants of mAb disposition 

in humans (even adults) are still not fully understood. Yet to be addressed is the potential for mAbs to 

deposit or adhere to the endothelial glycocalyx, the potential for fast clearance in liver sinusoidal 

endothelial cells, or the drivers of hematopoietic cell uptake and accumulation in the spleen.556,561 To 

make physiologically based tools that can support pediatric clinical trial planning, the final 

parameterizations must be expanded to a population approach, similar to the example shown for 

trastuzumab. Pharmacokinetic variability in peak concentrations remains unaccounted for by the 

current understanding of variability in virtual individuals, and among experts it has been suggested 

that the vascular volume fraction or varying potentials for endothelial adherence in the post-injection 

period may be the key determinants to investigate. Encouragingly, the advances made for mAbs in 
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pediatrics will also contribute to the wider field of all therapeutic protein use in children. Even 

nanoparticles and liposomes share similar disposition patterns in children.562 

Of course, none of this work was done in a vacuum. Multiple research groups contributed literature 

over the same years that together brought about the evolution of this field. Hardiansyah and Ng 

published the first physiologically-based pediatric extrapolation for mAbs in 2018.319 They concluded 

that FcRn concentrations would be higher in children than adults. In 2020, the commercial team at 

SimCyp released a pediatric PBPK model for therapeutic proteins by Pan et al., which has been 

discussed in Chapter 1.63 They attribute the ontogeny in mAb clearance to a lower concentration of 

free FcRn in children. A significant portion of our work would not be possible without the use of the 

generic model for large molecules by Niederalt et al. that was released in 2018.66 Basu et al. 

subsequently trialed the generic model for extrapolation of bevacizumab and palivizumab 

pharmacokinetics to children considering only size-dependent anatomy and physiology.563 Similar to 

our work, they came to the conclusion that immature physiology likely contributes to faster clearance 

even for older children. Temrikar and Meibohm published a notable review of the clinical 

pharmacology of monoclonal antibodies including a summary of the ontogenic hypotheses in 2020, 

who then became our collaborators for the review on pediatric dose selection for therapeutic proteins 

in 2021.25 Now in 2021, the platform PBPK model by Shah and Betts is being translated to pediatrics 

with infliximab as an example.564,565 It has been a privilege to be a part of these pioneering efforts. 
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Appendix 

Appendix A: Supplementary Material for Chapter 3 

Derivation of the Degradation Rate of mAb-HER2 Complexes (𝐾𝑑𝑒𝑔
𝐴𝑔

) 

We denote the amount of mAb bound to HER2 on the cell membrane by 𝐴𝐶𝑀 and the amount bound 

to HER2 in the intracellular space by 𝐴𝐼𝐶. The time-varying rate of mAb binding to HER2 is given by 

𝑣(𝑡). The rate at which the mAb-HER2 complex on the cell membrane is internalized is denoted by 

𝐾𝑖𝑛𝑡
𝐴𝑔

. A fraction (𝐹𝑅𝐴𝑔) of intracellular mAb-HER2 complex is recycled back to the cell membrane 

at a certain rate (𝐾𝑒𝑥𝑖𝑡
𝐴𝑔

). The remaining fraction (1 − 𝐹𝑅𝐴𝑔) is degraded. This process is described by 

the following differential equations: 

 𝑑𝐴𝐶𝑀

𝑑𝑡
= 𝑣(𝑡) − 𝐾𝑖𝑛𝑡

𝐴𝑔
× 𝐴𝐶𝑀 + 𝐾𝑒𝑥𝑖𝑡

𝐴𝑔
× 𝐹𝑅𝐴𝑔 × 𝐴𝐼𝐶  

𝑑𝐴𝐼𝐶

𝑑𝑡
= 𝐾𝑖𝑛𝑡

𝐴𝑔
× 𝐴𝐶𝑀 − 𝐾𝑒𝑥𝑖𝑡

𝐴𝑔
× 𝐹𝑅𝐴𝑔 × 𝐴𝐼𝐶 − 𝐾𝑒𝑥𝑖𝑡

𝐴𝑔
× (1 − 𝐹𝑅𝐴𝑔) × 𝐴𝐼𝐶 

(A1) 

Let: 

 𝐴𝑇 ≔ 𝐴𝐶𝑀 + 𝐴𝐼𝐶  (A2) 

 

So that (A1) becomes: 

 𝑑𝐴𝐶𝑀

𝑑𝑡
= 𝑣(𝑡) − 𝐾𝑖𝑛𝑡

𝐴𝑔
× 𝐴𝐶𝑀 + 𝐾𝑒𝑥𝑖𝑡

𝐴𝑔
× 𝐹𝑅𝐴𝑔 × (𝐴𝑇 − 𝐴𝐶𝑀) 

𝑑𝐴𝑇

𝑑𝑡
= 𝑣(𝑡) − 𝐾𝑒𝑥𝑖𝑡

𝐴𝑔
× (1 − 𝐹𝑅𝐴𝑔) × (𝐴𝑇 − 𝐴𝐶𝑀) 

(A3) 

Under the assumptions that 𝐾𝑖𝑛𝑡
𝐴𝑔

 and 𝐾𝑒𝑥𝑖𝑡
𝐴𝑔

 are of the same order and that 𝐹𝑅𝐴𝑔 ≈ 1, it follows that 

𝐾𝑒𝑥𝑖𝑡
𝐴𝑔

× (1 − 𝐹𝑅𝐴𝑔) ≪ 𝐾𝑖𝑛𝑡
𝐴𝑔

, 𝐾𝑒𝑥𝑖𝑡
𝐴𝑔

. To represent this difference in magnitude, we let 𝑘1 ≔  𝜖 × 𝐾𝑖𝑛𝑡
𝐴𝑔

, 

𝑘2 ≔  𝜖 × 𝐾𝑒𝑥𝑖𝑡
𝐴𝑔

× 𝐹𝑅𝐴𝑔 and 𝑘 = 𝐾𝑒𝑥𝑖𝑡
𝐴𝑔

× (1 − 𝐹𝑅𝐴𝑔), where 𝜖 is a small parameter that makes 

𝑘1 and 𝑘2 are of the same order as 𝑘. Then, (A2) becomes 

 
𝜖 ×

𝑑𝐴𝐶𝑀

𝑑𝑡
= 𝜖 × 𝑣(𝑡) − 𝑘1 × 𝐴𝐶𝑀 + 𝑘2 × (𝐴𝑇 − 𝐴𝐶𝑀) (A4) 
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𝑑𝐴𝑇

𝑑𝑡
= 𝑣(𝑡) − 𝑘 × (𝐴𝑇 − 𝐴𝐶𝑀) 

The separation of timescales introduced by the small parameter 𝜖 allows us to make an 

approximation.  Since 𝜖 ≈ 0 we can say (informally) that: 

 −𝑘1 × 𝐴𝐶𝑀 + 𝑘2 × (𝐴𝑇 − 𝐴𝐶𝑀) ≈ 0 (A5) 

 

This step can be shown formally using a standard application of Tikhonov’s theorem. Therefore, we 

obtain 𝐴𝐶𝑀 ≈  𝑘2 × 𝐴𝑇 (𝑘1 + 𝑘2)⁄ and, from (A4), the following approximation holds over time: 

𝑑𝐴𝑇

𝑑𝑡
= 𝑣(𝑡) − 𝐾𝑑𝑒𝑔

𝐴𝑔
× 𝐴𝑇 

where: 

𝐾𝑑𝑒𝑔
𝐴𝑔

≔ 𝑘 ×
𝑘1

𝑘1 + 𝑘2
= 𝐾𝑒𝑥𝑖𝑡

𝐴𝑔
× (1 − 𝐹𝑅𝐴𝑔) ×

𝐾𝑖𝑛𝑡
𝐴𝑔

𝐾𝑖𝑛𝑡
𝐴𝑔

+ 𝐾𝑒𝑥𝑖𝑡
𝐴𝑔

× 𝐹𝑅𝐴𝑔
 

is the rate of degradation of mAb-HER2 complexes. 

A final numerical value of 0.0789 was calculated using the kinetic parameter values determined by 

Hendriks et al.269,270 
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Model Equations 

In the following equations, the subscript 𝑖 represents a specific organ tissue compartment being 

considered.  For all organ tissue compartment equations except the lung and liver, subscript 𝑗 refers to 

the lung.  For the lung equations, subscript 𝑗 refers to the plasma compartment concentration.  The 

liver plasma space is described separately in equations 7 and 8. Table A1 below defines any equation 

terms that are undefined in the main body of the work. 

Table A1 A listing and description of the previously undefined parameters used in the model 

equations. For all other parameter definitions, see Table 6 in the main body of the work. 

Term Units Definition 

𝑃𝐿𝑄𝐿𝑢𝑛𝑔 L/h Total body plasma flow 

𝐿𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 L/h Total body lymph flow 

𝑃𝐿𝑄𝑖 L/h Plasma flow into and out of each organ 

𝐿𝑖 L/h Lymph flow into and out of each organ 

𝐶𝑃𝑙𝑎𝑠𝑚𝑎 nM Concentration of mAb in plasma space 

𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 nM Concentration of mAb in lymphatic system 

𝐶𝑖
𝑃 nM Concentration of mAb in organ plasma space 

𝐶𝑖
𝐸𝐵𝑜𝑢𝑛𝑑 nM Concentration of mAb in endosomal space bound to FcRn 

𝐶𝑖
𝐸𝑈𝑛𝑏𝑜𝑢𝑛𝑑 nM Concentration of unbound mAb in endosomal space  

𝐶𝑖
𝐼𝑆 nM Concentration of mAb in interstitial space 

𝐶𝑖
𝐶𝑀𝐵𝑜𝑢𝑛𝑑 nmol / L 

interstitial 

Concentration of mAb bound to HER2 on the cell membrane  

𝑉𝑃𝑙𝑎𝑠𝑚𝑎 L Volume of plasma space 

𝑉𝐿𝑦𝑝𝑚ℎ𝑁𝑜𝑑𝑒 L Volume of lymphatic system components 

𝑉𝑖
𝑃 L Volume of organ plasma space  

𝑉𝑖
𝐸 L Volume of endosomal space  

𝑉𝑖
𝐼𝑆 L Volume of interstitial space  

𝐶𝑃𝑙𝑎𝑠𝑚𝑎
𝐸𝐶𝐷  nM Concentration of mAb-ECD complexes in plasma space 

𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒
𝐸𝐶𝐷  nM Concentration of mAb-ECD complexes in lymphatic system 

𝐶𝑖
𝑃,𝐸𝐶𝐷 nM Concentration of mAb-ECD complexes in organ plasma 

space 

𝐶𝑖
𝐼𝑆,𝐸𝐶𝐷

 nM Concentration of mAb-ECD complexes in interstitial space 
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Blood Compartment: Plasma  

Equation A6: 

𝑉𝑃𝑙𝑎𝑠𝑚𝑎 ×  
𝑑𝐶𝑃𝑙𝑎𝑠𝑚𝑎

𝑑𝑡

= (𝑃𝐿𝑄𝐻𝑒𝑎𝑟𝑡 − 𝐿𝐻𝑒𝑎𝑟𝑡) × 𝐶𝐻𝑒𝑎𝑟𝑡
𝑃 + (𝑃𝐿𝑄𝐾𝑖𝑑𝑛𝑒𝑦 − 𝐿𝐾𝑖𝑑𝑛𝑒𝑦) × 𝐶𝐾𝑖𝑑𝑛𝑒𝑦

𝑃

+ (𝑃𝐿𝑄𝑀𝑢𝑠𝑐𝑙𝑒 − 𝐿𝑀𝑢𝑠𝑐𝑙𝑒) × 𝐶𝑀𝑢𝑠𝑐𝑙𝑒
𝑃 + (𝑃𝐿𝑄𝑆𝑘𝑖𝑛 − 𝐿𝑆𝑘𝑖𝑛) × 𝐶𝑆𝑘𝑖𝑛

𝑃

+ (𝑃𝐿𝑄𝐵𝑟𝑎𝑖𝑛 − 𝐿𝐵𝑟𝑎𝑖𝑛) × 𝐶𝐵𝑟𝑎𝑖𝑛
𝑃 + (𝑃𝐿𝑄𝐴𝑑𝑖𝑝𝑜𝑠𝑒 − 𝐿𝐴𝑑𝑖𝑝𝑜𝑠𝑒) × 𝐶𝐴𝑑𝑖𝑝𝑜𝑠𝑒

𝑃

+ (𝑃𝐿𝑄𝑇ℎ𝑦𝑚𝑢𝑠 − 𝐿𝑇ℎ𝑦𝑚𝑢𝑠) × 𝐶𝑇ℎ𝑦𝑚𝑢𝑠
𝑃

+ (𝑃𝐿𝑄𝐿𝑖𝑣𝑒𝑟 − 𝐿𝐿𝑖𝑣𝑒𝑟 + 𝑃𝐿𝑄𝑆𝑡𝑜𝑚𝑎𝑐ℎ − 𝐿𝑆𝑡𝑜𝑚𝑎𝑐ℎ + 𝑃𝐿𝑄𝑆𝑝𝑙𝑒𝑒𝑛 − 𝐿𝑆𝑝𝑙𝑒𝑒𝑛

+ 𝑃𝐿𝑄𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 − 𝐿𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 + 𝑃𝐿𝑄𝑆𝐼𝑛𝑡 − 𝐿𝑆𝐼𝑛𝑡 + 𝑃𝐿𝑄𝐿𝐼𝑛𝑡 − 𝐿𝐿𝐼𝑛𝑡) × 𝐶𝐿𝑖𝑣𝑒𝑟
𝑃

+ (𝑃𝐿𝑄𝐵𝑜𝑛𝑒 − 𝐿𝐵𝑜𝑛𝑒) × 𝐶𝐵𝑜𝑛𝑒
𝑃 + (𝑃𝐿𝑄𝑂𝑡ℎ𝑒𝑟 − 𝐿𝑂𝑡ℎ𝑒𝑟) × 𝐶𝑂𝑡ℎ𝑒𝑟

𝑃

+ 𝐿𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 × 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 −  𝑃𝐿𝑄𝐿𝑢𝑛𝑔 × 𝐶𝑃𝑙𝑎𝑠𝑚𝑎

− 𝐾𝑜𝑛
𝐸𝐶𝐷 × (𝐸𝐶𝐷 − 𝐶𝑃𝑙𝑎𝑠𝑚𝑎

𝐸𝐶𝐷 ) × 𝐶𝑃𝑙𝑎𝑠𝑚𝑎 × 𝑉𝑃𝑙𝑎𝑠𝑚𝑎

+ 𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 × 𝐶𝑃𝑙𝑎𝑠𝑚𝑎

𝐸𝐶𝐷 × 𝑉𝑃𝑙𝑎𝑠𝑚𝑎 
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Equation A7: 

𝑉𝑃𝑙𝑎𝑠𝑚𝑎 ×  
𝑑𝐶𝑃𝑙𝑎𝑠𝑚𝑎

𝐸𝐶𝐷

𝑑𝑡

= (𝑃𝐿𝑄𝐻𝑒𝑎𝑟𝑡 − 𝐿𝐻𝑒𝑎𝑟𝑡) × 𝐶𝐻𝑒𝑎𝑟𝑡
𝑃,𝐸𝐶𝐷 + (𝑃𝐿𝑄𝐾𝑖𝑑𝑛𝑒𝑦 − 𝐿𝐾𝑖𝑑𝑛𝑒𝑦) × 𝐶𝐾𝑖𝑑𝑛𝑒𝑦

𝑃,𝐸𝐶𝐷

+ (𝑃𝐿𝑄𝑀𝑢𝑠𝑐𝑙𝑒 − 𝐿𝑀𝑢𝑠𝑐𝑙𝑒) × 𝐶𝑀𝑢𝑠𝑐𝑙𝑒
𝑃,𝐸𝐶𝐷 + (𝑃𝐿𝑄𝑆𝑘𝑖𝑛 − 𝐿𝑆𝑘𝑖𝑛) × 𝐶𝑆𝑘𝑖𝑛

𝑃,𝐸𝐶𝐷

+ (𝑃𝐿𝑄𝐵𝑟𝑎𝑖𝑛 − 𝐿𝐵𝑟𝑎𝑖𝑛) × 𝐶𝐵𝑟𝑎𝑖𝑛
𝑃,𝐸𝐶𝐷 + (𝑃𝐿𝑄𝐴𝑑𝑖𝑝𝑜𝑠𝑒 − 𝐿𝐴𝑑𝑖𝑝𝑜𝑠𝑒) × 𝐶𝐴𝑑𝑖𝑝𝑜𝑠𝑒

𝑃,𝐸𝐶𝐷

+ (𝑃𝐿𝑄𝑇ℎ𝑦𝑚𝑢𝑠 − 𝐿𝑇ℎ𝑦𝑚𝑢𝑠) × 𝐶𝑇ℎ𝑦𝑚𝑢𝑠
𝑃,𝐸𝐶𝐷

+ (𝑃𝐿𝑄𝐿𝑖𝑣𝑒𝑟 − 𝐿𝐿𝑖𝑣𝑒𝑟 + 𝑃𝐿𝑄𝑆𝑡𝑜𝑚𝑎𝑐ℎ − 𝐿𝑆𝑡𝑜𝑚𝑎𝑐ℎ + 𝑃𝐿𝑄𝑆𝑝𝑙𝑒𝑒𝑛 − 𝐿𝑆𝑝𝑙𝑒𝑒𝑛

+ 𝑃𝐿𝑄𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 − 𝐿𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 + 𝑃𝐿𝑄𝑆𝐼𝑛𝑡 − 𝐿𝑆𝐼𝑛𝑡 + 𝑃𝐿𝑄𝐿𝐼𝑛𝑡 − 𝐿𝐿𝐼𝑛𝑡) × 𝐶𝐿𝑖𝑣𝑒𝑟
𝑃,𝐸𝐶𝐷

+ (𝑃𝐿𝑄𝐵𝑜𝑛𝑒 − 𝐿𝐵𝑜𝑛𝑒) × 𝐶𝐵𝑜𝑛𝑒
𝑃,𝐸𝐶𝐷 + (𝑃𝐿𝑄𝑂𝑡ℎ𝑒𝑟 − 𝐿𝑂𝑡ℎ𝑒𝑟) × 𝐶𝑂𝑡ℎ𝑒𝑟

𝑃,𝐸𝐶𝐷

+ 𝐿𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 × 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒
𝐸𝐶𝐷 −  𝑃𝐿𝑄𝐿𝑢𝑛𝑔 × 𝐶𝑃𝑙𝑎𝑠𝑚𝑎

𝐸𝐶𝐷

+ 𝐾𝑜𝑛
𝐸𝐶𝐷 × (𝐸𝐶𝐷 − 𝐶𝑃𝑙𝑎𝑠𝑚𝑎

𝐸𝐶𝐷 ) × 𝐶𝑃𝑙𝑎𝑠𝑚𝑎 × 𝑉𝑃𝑙𝑎𝑠𝑚𝑎

− 𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 × 𝐶𝑃𝑙𝑎𝑠𝑚𝑎

𝐸𝐶𝐷 × 𝑉𝑃𝑙𝑎𝑠𝑚𝑎 − 𝐾𝑑𝑒𝑔
𝐸𝐶𝐷 × 𝐶𝑃𝑙𝑎𝑠𝑚𝑎

𝐸𝐶𝐷 × 𝑉𝑃𝑙𝑎𝑠𝑚𝑎 
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Lymph Node Compartment 

Equation A8: 

𝑉𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 ×
𝑑𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

𝑑𝑡

= (1 − 𝜎𝐻𝑒𝑎𝑟𝑡
𝐼𝑆 ) × 𝐿𝐻𝑒𝑎𝑟𝑡 × 𝐶𝐻𝑒𝑎𝑟𝑡

𝐼𝑆 + (1 −  𝜎𝐾𝑖𝑑𝑛𝑒𝑦
𝐼𝑆 ) × 𝐿𝐾𝑖𝑑𝑛𝑒𝑦 × 𝐶𝐾𝑖𝑑𝑛𝑒𝑦

𝐼𝑆

+ (1 −  𝜎𝑀𝑢𝑠𝑐𝑙𝑒
𝐼𝑆 ) × 𝐿𝑀𝑢𝑠𝑐𝑙𝑒 × 𝐶𝑀𝑢𝑠𝑐𝑙𝑒

𝐼𝑆 + (1 −  𝜎𝑆𝑘𝑖𝑛
𝐼𝑆 ) × 𝐿𝑆𝑘𝑖𝑛 × 𝐶𝑆𝑘𝑖𝑛

𝐼𝑆

+ (1 −  𝜎𝐵𝑟𝑎𝑖𝑛
𝐼𝑆 ) × 𝐿𝐵𝑟𝑎𝑖𝑛 × 𝐶𝐵𝑟𝑎𝑖𝑛

𝐼𝑆 + (1 −  𝜎𝐴𝑑𝑖𝑝𝑜𝑠𝑒
𝐼𝑆 ) × 𝐿𝐴𝑑𝑖𝑝𝑜𝑠𝑒 × 𝐶𝐴𝑑𝑖𝑝𝑜𝑠𝑒

𝐼𝑆

+ (1 −  𝜎𝑇ℎ𝑦𝑚𝑢𝑠
𝐼𝑆 ) × 𝐿𝑇ℎ𝑦𝑚𝑢𝑠 × 𝐶𝑇ℎ𝑦𝑚𝑢𝑠

𝐼𝑆 + (1 −  𝜎𝐿𝑖𝑣𝑒𝑟
𝐼𝑆 ) × 𝐿𝐿𝑖𝑣𝑒𝑟 × 𝐶𝐿𝑖𝑣𝑒𝑟

𝐼𝑆

+ (1 −  𝜎𝑆𝑡𝑜𝑚𝑎𝑐ℎ
𝐼𝑆 ) × 𝐿𝑆𝑡𝑜𝑚𝑎𝑐ℎ × 𝐶𝑆𝑡𝑜𝑚𝑎𝑐ℎ

𝐼𝑆

+ (1 −  𝜎𝑆𝑝𝑙𝑒𝑒𝑛
𝐼𝑆 ) × 𝐿𝑆𝑝𝑙𝑒𝑒𝑛 × 𝐶𝑆𝑝𝑙𝑒𝑒𝑛

𝐼𝑆

+ (1 −  𝜎𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠
𝐼𝑆 ) × 𝐿𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 × 𝐶𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠

𝐼𝑆 + (1 − 𝜎𝑆𝐼𝑛𝑡
𝐼𝑆 ) × 𝐿𝑆𝐼𝑛𝑡 × 𝐶𝑆𝐼𝑛𝑡

𝐼𝑆

+ (1 −  𝜎𝐿𝐼𝑛𝑡
𝐼𝑆 ) × 𝐿𝐿𝐼𝑛𝑡 × 𝐶𝐿𝐼𝑛𝑡

𝐼𝑆 + (1 −  𝜎𝐵𝑜𝑛𝑒
𝐼𝑆 ) × 𝐿𝐵𝑜𝑛𝑒 × 𝐶𝐵𝑜𝑛𝑒

𝐼𝑆

+ (1 −  𝜎𝑂𝑡ℎ𝑒𝑟
𝐼𝑆 ) × 𝐿𝑂𝑡ℎ𝑒𝑟 × 𝐶𝑂𝑡ℎ𝑒𝑟

𝐼𝑆 + (1 −  𝜎𝐿𝑢𝑛𝑔
𝐼𝑆 ) × 𝐿𝐿𝑢𝑛𝑔 × 𝐶𝐿𝑢𝑛𝑔

𝐼𝑆

− 𝐿𝐿𝑦𝑝𝑚ℎ𝑁𝑜𝑑𝑒 × 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

− 𝐾𝑜𝑛
𝐸𝐶𝐷 × (𝐸𝐶𝐷 − 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

𝐸𝐶𝐷 ) × 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 × 𝑉𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

+ 𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 × 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

𝐸𝐶𝐷 × 𝑉𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 
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Equation A9: 

𝑉𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 ×
𝑑𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

𝐸𝐶𝐷

𝑑𝑡

= (1 − 𝜎𝐻𝑒𝑎𝑟𝑡
𝐼𝑆 ) × 𝐿𝐻𝑒𝑎𝑟𝑡 × 𝐶𝐻𝑒𝑎𝑟𝑡

𝐼𝑆,𝐸𝐶𝐷 + (1 − 𝜎𝐾𝑖𝑑𝑛𝑒𝑦
𝐼𝑆 ) × 𝐿𝐾𝑖𝑑𝑛𝑒𝑦 × 𝐶𝐾𝑖𝑑𝑛𝑒𝑦

𝐼𝑆,𝐸𝐶𝐷

+ (1 −  𝜎𝑀𝑢𝑠𝑐𝑙𝑒
𝐼𝑆 ) × 𝐿𝑀𝑢𝑠𝑐𝑙𝑒 × 𝐶𝑀𝑢𝑠𝑐𝑙𝑒

𝐼𝑆,𝐸𝐶𝐷 + (1 −  𝜎𝑆𝑘𝑖𝑛
𝐼𝑆 ) × 𝐿𝑆𝑘𝑖𝑛 × 𝐶𝑆𝑘𝑖𝑛

𝐼𝑆,𝐸𝐶𝐷

+ (1 −  𝜎𝐵𝑟𝑎𝑖𝑛
𝐼𝑆 ) × 𝐿𝐵𝑟𝑎𝑖𝑛 × 𝐶𝐵𝑟𝑎𝑖𝑛

𝐼𝑆,𝐸𝐶𝐷 + (1 − 𝜎𝐴𝑑𝑖𝑝𝑜𝑠𝑒
𝐼𝑆 ) × 𝐿𝐴𝑑𝑖𝑝𝑜𝑠𝑒 × 𝐶𝐴𝑑𝑖𝑝𝑜𝑠𝑒

𝐼𝑆,𝐸𝐶𝐷

+ (1 −  𝜎𝑇ℎ𝑦𝑚𝑢𝑠
𝐼𝑆 ) × 𝐿𝑇ℎ𝑦𝑚𝑢𝑠 × 𝐶𝑇ℎ𝑦𝑚𝑢𝑠

𝐼𝑆,𝐸𝐶𝐷 + (1 −  𝜎𝐿𝑖𝑣𝑒𝑟
𝐼𝑆 ) × 𝐿𝐿𝑖𝑣𝑒𝑟 × 𝐶𝐿𝑖𝑣𝑒𝑟

𝐼𝑆,𝐸𝐶𝐷

+ (1 −  𝜎𝑆𝑡𝑜𝑚𝑎𝑐ℎ
𝐼𝑆 ) × 𝐿𝑆𝑡𝑜𝑚𝑎𝑐ℎ × 𝐶𝑆𝑡𝑜𝑚𝑎𝑐ℎ

𝐼𝑆,𝐸𝐶𝐷

+ (1 −  𝜎𝑆𝑝𝑙𝑒𝑒𝑛
𝐼𝑆 ) × 𝐿𝑆𝑝𝑙𝑒𝑒𝑛 × 𝐶𝑆𝑝𝑙𝑒𝑒𝑛

𝐼𝑆,𝐸𝐶𝐷

+ (1 −  𝜎𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠
𝐼𝑆 ) × 𝐿𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 × 𝐶𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠

𝐼𝑆,𝐸𝐶𝐷 + (1 − 𝜎𝑆𝐼𝑛𝑡
𝐼𝑆 ) × 𝐿𝑆𝐼𝑛𝑡 × 𝐶𝑆𝐼𝑛𝑡

𝐼𝑆,𝐸𝐶𝐷

+ (1 −  𝜎𝐿𝐼𝑛𝑡
𝐼𝑆 ) × 𝐿𝐿𝐼𝑛𝑡 × 𝐶𝐿𝐼𝑛𝑡

𝐼𝑆,𝐸𝐶𝐷 + (1 −  𝜎𝐵𝑜𝑛𝑒
𝐼𝑆 ) × 𝐿𝐵𝑜𝑛𝑒 × 𝐶𝐵𝑜𝑛𝑒

𝐼𝑆,𝐸𝐶𝐷

+ (1 −  𝜎𝑂𝑡ℎ𝑒𝑟
𝐼𝑆 ) × 𝐿𝑂𝑡ℎ𝑒𝑟 × 𝐶𝑂𝑡ℎ𝑒𝑟

𝐼𝑆,𝐸𝐶𝐷 + (1 −  𝜎𝐿𝑢𝑛𝑔
𝐼𝑆 ) × 𝐿𝐿𝑢𝑛𝑔 × 𝐶𝐿𝑢𝑛𝑔

𝐼𝑆,𝐸𝐶𝐷

− 𝐿𝐿𝑦𝑝𝑚ℎ𝑁𝑜𝑑𝑒 × 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒
𝐸𝐶𝐷

+ 𝐾𝑜𝑛
𝐸𝐶𝐷 × (𝐸𝐶𝐷 − 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

𝐸𝐶𝐷 ) × 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 × 𝑉𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

− 𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 × 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

𝐸𝐶𝐷 × 𝑉𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 −  𝐾𝑑𝑒𝑔
𝐸𝐶𝐷 × 𝐶𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒

𝐸𝐶𝐷 × 𝑉𝐿𝑦𝑚𝑝ℎ𝑁𝑜𝑑𝑒 
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Tissue Compartment: Plasma Space 

Equation A10: 

𝑉𝑖
𝑃 ×

𝑑𝐶𝑖
𝑃

𝑑𝑡
= 𝑃𝐿𝑄𝑖 × 𝐶𝑗

𝑃 − (𝑃𝐿𝑄𝑖 − 𝐿𝑖) × 𝐶𝑖
𝑃 − 𝐹2 × (1 − 𝜎𝑖

𝑉) × 𝐿𝑖 × 𝐶𝑖
𝑃 − 𝐶𝐿𝑢𝑝𝑖 × 𝐶𝑖

𝑃

+ 𝐶𝐿𝑢𝑝𝑖 × 𝐹𝑅 × 𝐶𝑖
𝐸𝐵𝑜𝑢𝑛𝑑 − 𝐾𝑜𝑛

𝐸𝐶𝐷 × (𝐸𝐶𝐷 − 𝐶𝑖
𝑃,𝐸𝐶𝐷) × 𝐶𝑖

𝑃 × 𝑉𝑖
𝑃

+ 𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 × 𝐶𝑖

𝑃,𝐸𝐶𝐷 × 𝑉𝑖
𝑃  

Equation A11: 

𝑉𝑖
𝑃 ×

𝑑𝐶𝑖
𝑃,𝐸𝐶𝐷

𝑑𝑡
= 𝑃𝐿𝑄𝑖 × 𝐶𝑗

𝑃,𝐸𝐶𝐷 − (𝑃𝐿𝑄𝑖 − 𝐿𝑖) × 𝐶𝑖
𝑃,𝐸𝐶𝐷 − 𝐹2 × (1 − 𝜎𝑖

𝑉) × 𝐿𝑖 × 𝐶𝑖
𝑃,𝐸𝐶𝐷

+ 𝐾𝑜𝑛
𝐸𝐶𝐷 × (𝐸𝐶𝐷 − 𝐶𝑖

𝑃,𝐸𝐶𝐷) × 𝐶𝑖
𝑃 × 𝑉𝑖

𝑃 − 𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 × 𝐶𝑖

𝑃,𝐸𝐶𝐷 × 𝑉𝑖
𝑃  

Equation A12: 

𝑉𝐿𝑖𝑣𝑒𝑟
𝑃 ×

𝑑𝐶𝐿𝑖𝑣𝑒𝑟
𝑃

𝑑𝑡

= 𝑃𝐿𝑄𝐿𝑖𝑣𝑒𝑟 × 𝐶𝐿𝑢𝑛𝑔
𝑃 + (𝑃𝐿𝑄𝑆𝑡𝑜𝑚𝑎𝑐ℎ − 𝐿𝑆𝑡𝑜𝑚𝑎𝑐ℎ) × 𝐶𝑆𝑡𝑜𝑚𝑎𝑐ℎ

𝑃

+ (𝑃𝐿𝑄𝑆𝑝𝑙𝑒𝑒𝑛 − 𝐿𝑆𝑝𝑙𝑒𝑒𝑛) × 𝐶𝑆𝑝𝑙𝑒𝑒𝑛
𝑃 + (𝑃𝐿𝑄𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 − 𝐿𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠) × 𝐶𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠

𝑃

+ (𝑃𝐿𝑄𝑆𝐼𝑛𝑡 − 𝐿𝑆𝐼𝑛𝑡) × 𝐶𝑆𝐼𝑛𝑡
𝑃 + (𝑃𝐿𝑄𝐿𝐼𝑛𝑡 − 𝐿𝐿𝑖𝑛𝑡) × 𝐶𝐿𝐼𝑛𝑡

𝑃

−  (𝑃𝐿𝑄𝐿𝑖𝑣𝑒𝑟 − 𝐿𝐿𝑖𝑣𝑒𝑟 + 𝑃𝐿𝑄𝑆𝑡𝑜𝑚𝑎𝑐ℎ − 𝐿𝑆𝑡𝑜𝑚𝑎𝑐ℎ + 𝑃𝐿𝑄𝑆𝑝𝑙𝑒𝑒𝑛 − 𝐿𝑆𝑝𝑙𝑒𝑒𝑛

+ 𝑃𝐿𝑄𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 − 𝐿𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 + 𝑃𝐿𝑄𝑆𝐼𝑛𝑡 − 𝐿𝑆𝐼𝑛𝑡 + 𝑃𝐿𝑄𝐿𝐼𝑛𝑡 − 𝐿𝐿𝐼𝑛𝑡) × 𝐶𝐿𝑖𝑣𝑒𝑟
𝑃

− 𝐹2 × (1 − 𝜎𝐿𝑖𝑣𝑒𝑟
𝑉 ) × 𝐿𝐿𝑖𝑣𝑒𝑟 × 𝐶𝐿𝑖𝑣𝑒𝑟

𝑃 − 𝐶𝐿𝑢𝑝𝐿𝑖𝑣𝑒𝑟 × 𝐶𝐿𝑖𝑣𝑒𝑟
𝑃

+ 𝐶𝐿𝑢𝑝𝐿𝑖𝑣𝑒𝑟 × 𝐹𝑅 × 𝐶𝐿𝑖𝑣𝑒𝑟
𝐸𝐵𝑜𝑢𝑛𝑑 − 𝐾𝑜𝑛

𝐸𝐶𝐷 × (𝐸𝐶𝐷 − 𝐶𝐿𝑖𝑣𝑒𝑟
𝑃,𝐸𝐶𝐷) × 𝐶𝐿𝑖𝑣𝑒𝑟

𝑃 × 𝑉𝐿𝑖𝑣𝑒𝑟
𝑃

+ 𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 × 𝐶𝐿𝑖𝑣𝑒𝑟

𝑃,𝐸𝐶𝐷 × 𝑉𝐿𝑖𝑣𝑒𝑟
𝑃  
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Equation A13: 

𝑉𝐿𝑖𝑣𝑒𝑟
𝑃 ×

𝑑𝐶𝐿𝑖𝑣𝑒𝑟
𝑃,𝐸𝐶𝐷

𝑑𝑡

= 𝑃𝐿𝑄𝐿𝑖𝑣𝑒𝑟 × 𝐶𝐿𝑢𝑛𝑔
𝑃,𝐸𝐶𝐷 + (𝑃𝐿𝑄𝑆𝑡𝑜𝑚𝑎𝑐ℎ − 𝐿𝑆𝑡𝑜𝑚𝑎𝑐ℎ) × 𝐶𝑆𝑡𝑜𝑚𝑎𝑐ℎ

𝑃,𝐸𝐶𝐷

+ (𝑃𝐿𝑄𝑆𝑝𝑙𝑒𝑒𝑛 − 𝐿𝑆𝑝𝑙𝑒𝑒𝑛) × 𝐶𝑆𝑝𝑙𝑒𝑒𝑛
𝑃,𝐸𝐶𝐷 + (𝑃𝐿𝑄𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 − 𝐿𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠) × 𝐶𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠

𝑃,𝐸𝐶𝐷

+ (𝑃𝐿𝑄𝑆𝐼𝑛𝑡 − 𝐿𝑆𝐼𝑛𝑡) × 𝐶𝑆𝐼𝑛𝑡
𝑃,𝐸𝐶𝐷 + (𝑃𝐿𝑄𝐿𝐼𝑛𝑡 − 𝐿𝐿𝑖𝑛𝑡) × 𝐶𝐿𝐼𝑛𝑡

𝑃,𝐸𝐶𝐷

−  (𝑃𝐿𝑄𝐿𝑖𝑣𝑒𝑟 − 𝐿𝐿𝑖𝑣𝑒𝑟 + 𝑃𝐿𝑄𝑆𝑡𝑜𝑚𝑎𝑐ℎ − 𝐿𝑆𝑡𝑜𝑚𝑎𝑐ℎ + 𝑃𝐿𝑄𝑆𝑝𝑙𝑒𝑒𝑛 − 𝐿𝑆𝑝𝑙𝑒𝑒𝑛

+ 𝑃𝐿𝑄𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 − 𝐿𝑃𝑎𝑛𝑐𝑟𝑒𝑎𝑠 + 𝑃𝐿𝑄𝑆𝐼𝑛𝑡 − 𝐿𝑆𝐼𝑛𝑡 + 𝑃𝐿𝑄𝐿𝐼𝑛𝑡 − 𝐿𝐿𝐼𝑛𝑡) × 𝐶𝐿𝑖𝑣𝑒𝑟
𝑃,𝐸𝐶𝐷

− 𝐹2 × (1 − 𝜎𝐿𝑖𝑣𝑒𝑟
𝑉 ) × 𝐿𝐿𝑖𝑣𝑒𝑟 × 𝐶𝐿𝑖𝑣𝑒𝑟

𝑃,𝐸𝐶𝐷

+ 𝐾𝑜𝑛
𝐸𝐶𝐷 × (𝐸𝐶𝐷 − 𝐶𝐿𝑖𝑣𝑒𝑟

𝑃,𝐸𝐶𝐷) × 𝐶𝐿𝑖𝑣𝑒𝑟
𝑃 × 𝑉𝐿𝑖𝑣𝑒𝑟

𝑃 − 𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 × 𝐶𝐿𝑖𝑣𝑒𝑟

𝑃,𝐸𝐶𝐷 × 𝑉𝐿𝑖𝑣𝑒𝑟
𝑃

− 𝐾𝑑𝑒𝑔
𝐸𝐶𝐷 × 𝐶𝐿𝑖𝑣𝑒𝑟

𝑃,𝐸𝐶𝐷 × 𝑉𝐿𝑖𝑣𝑒𝑟
𝑃  

Tissue Compartment: Endosomal Space 

Equation A14: 

𝑑𝐶𝑖
𝐸𝑈𝑛𝑏𝑜𝑢𝑛𝑑

𝑑𝑡
=

𝐶𝐿𝑢𝑝𝑖

𝑉𝑖
𝐸 × (𝐶𝑖

𝑃 + 𝐶𝑖
𝐼𝑆) − 𝐾𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑖
𝐸𝑈𝑛𝑏𝑜𝑢𝑛𝑑 × 𝐹𝑐𝑅𝑛𝑖 + 𝐾𝑜𝑓𝑓

𝐹𝑐𝑅𝑛 × 𝐶𝑖
𝐸𝐵𝑜𝑢𝑛𝑑

−  𝐾𝑑𝑒𝑔
𝐹𝑐𝑅𝑛  × 𝐶𝑖

𝐸𝑈𝑛𝑏𝑜𝑢𝑛𝑑   

Equation A15: 

𝑑𝐶𝑖
𝐸𝐵𝑜𝑢𝑛𝑑

𝑑𝑡
= 𝐾𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝑖
𝐸𝑈𝑛𝑏𝑜𝑢𝑛𝑑 × 𝐹𝑐𝑅𝑛𝑖 − 𝐾𝑜𝑓𝑓

𝐹𝑐𝑅𝑛 × 𝐶𝑖
𝐸𝐵𝑜𝑢𝑛𝑑 −

𝐶𝐿𝑢𝑝𝑖

𝑉𝑖
𝐸 × 𝐶𝑖

𝐸𝐵𝑜𝑢𝑛𝑑 

Equation A16 

𝑑𝐹𝑐𝑅𝑛𝑖

𝑑𝑡
= 𝐾𝑜𝑓𝑓

𝐹𝑐𝑅𝑛 × 𝐶𝑖
𝐸𝐵𝑜𝑢𝑛𝑑 − 𝐾𝑜𝑛

𝐹𝑐𝑅𝑛 × 𝐶𝐸𝑈𝑛𝑏𝑜𝑢𝑛𝑑 × 𝐹𝑐𝑅𝑛𝑖 +
𝐶𝐿𝑢𝑝𝑖

𝑉𝑖
𝐸 × 𝐶𝑖

𝐸𝐵𝑜𝑢𝑛𝑑  
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Tissue Compartment: Interstitial Space 

Equation A17: 

𝑉𝑖
𝐼𝑆 ×

𝑑𝐶𝑖
𝐼𝑆

𝑑𝑡
= 𝐹2 × (1 − 𝜎𝑖

𝑉) × 𝐿𝑖 × 𝐶𝑖
𝑃 − (1 −  𝜎𝑖

𝐼𝑆) × 𝐿𝑖 × 𝐶𝑖
𝐼𝑆 − 𝐶𝐿𝑢𝑝𝑖 × 𝐶𝑖

𝐼𝑆

+ 𝐶𝐿𝑢𝑝𝑖 × (1 − 𝐹𝑅) × 𝐶𝑖
𝐸𝐵𝑜𝑢𝑛𝑑 − 𝐾𝑜𝑛

𝐴𝑔
× 𝐶𝑖

𝐼𝑆 × (𝐴𝑔 − 𝐶𝑖
𝐶𝑀𝐵𝑜𝑢𝑛𝑑) × 𝑉𝑖

𝐼𝑆

+ 𝐾𝑜𝑓𝑓
𝐴𝑔

× 𝐶𝑖
𝐶𝑀𝐵𝑜𝑢𝑛𝑑 × 𝑉𝑖

𝐼𝑆 − 𝐾𝑜𝑛
𝐸𝐶𝐷 × (𝐸𝐶𝐷 − 𝐶𝑖

𝐼𝑆,𝐸𝐶𝐷) × 𝐶𝑖
𝐼𝑆 × 𝑉𝑖

𝐼𝑆

+ 𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 × 𝐶𝑖

𝐼𝑆,𝐸𝐶𝐷 × 𝑉𝑖
𝐼𝑆 

Equation A18: 

𝑉𝑖
𝐼𝑆 ×

𝑑𝐶𝑖
𝐼𝑆,𝐸𝐶𝐷

𝑑𝑡

= 𝐹2 × (1 − 𝜎𝑖
𝑉) × 𝐿𝑖 × 𝐶𝑖

𝑃,𝐸𝐶𝐷 − (1 −  𝜎𝑖
𝐼𝑆) × 𝐿𝑖 × 𝐶𝑖

𝐼𝑆,𝐸𝐶𝐷

+ 𝐾𝑜𝑛
𝐸𝐶𝐷 × (𝐸𝐶𝐷 − 𝐶𝑖

𝐼𝑆,𝐸𝐶𝐷) × 𝐶𝑖
𝐼𝑆 × 𝑉𝑖

𝐼𝑆 − 𝐾𝑜𝑓𝑓
𝐸𝐶𝐷 × 𝐶𝑖

𝐼𝑆,𝐸𝐶𝐷 × 𝑉𝑖
𝐼𝑆

− 𝐾𝑑𝑒𝑔
𝐸𝐶𝐷 × 𝐶𝑖

𝐼𝑆,𝐸𝐶𝐷 × 𝑉𝑖
𝐼𝑆 

Tissue Compartment: Cell Membrane 

Equation A19: 

𝑑𝐶𝑖
𝐶𝑀𝐵𝑜𝑢𝑛𝑑

𝑑𝑡
= 𝐾𝑜𝑛

𝐴𝑔
× 𝐶𝑖

𝐼𝑆 × (𝐴𝑔 − 𝐶𝑖
𝐶𝑀𝐵𝑜𝑢𝑛𝑑) − 𝐾𝑜𝑓𝑓

𝐴𝑔
× 𝐶𝑖

𝐶𝑀𝐵𝑜𝑢𝑛𝑑 − 𝐾𝑑𝑒𝑔
𝐴𝑔

× 𝐶𝑖
𝐶𝑀𝐵𝑜𝑢𝑛𝑑 
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Miscellaneous Equations 

Equation A20: 

𝐶𝐿𝑢𝑝𝑖 = 𝐶𝐿𝑢𝑝 × 𝑉𝑖
𝐸 

Equation A21: 

𝑉𝑃𝑙𝑎𝑠𝑚𝑎
𝑇𝑜𝑡𝑎𝑙 = 𝑉𝑃𝑙𝑎𝑠𝑚𝑎 +  ∑ 𝑉𝑖

𝑃 
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Global Sensitivity Analysis Method 

We can describe the PBPK model by an ordinary differential equation parameterized by a vector 𝑝 =

[𝑝1 ⋯ 𝑝𝑛]: 

𝑑𝑥

𝑑𝑡
(𝑡) =  𝑓(𝑥(𝑡), 𝑝, 𝑡) 

𝑦(𝑡, 𝑝1, ⋯ , 𝑝𝑛) = 𝑔(𝑥(𝑡)) 

where 𝑥 is a vector of concentrations of mAb in all compartments, with 𝑦 being the measured output 

– the concentration of mAb in plasma. Starting from zero initial conditions (representing the absence 

of mAb prior to administration), the concentration of mAb in the different compartments over time is 

given by the solution to this ODE. For the global sensitivity analysis, we seek to quantify the variance 

of the area under the curve, 𝐴(𝑝1, ⋯ , 𝑝𝑛) = ∫ 𝑦 𝑑𝑡
𝑇

0
, when the parameters 𝑝1, ⋯ , 𝑝𝑛 are sampled from 

a given distribution. To calculate this variance, we adopt the approaches of Sobol and Saltelli.297 

Without loss of generality, each of the parameters 𝑝1, ⋯ , 𝑝𝑛 is assumed to vary independently and 

have a uniform distribution over the interval [0,1]. Under these assumptions, the expected value 𝐴0 of 

𝐴 is given by  

𝐴0 = 𝐸[𝐴] = ∫ ⋯ ∫ 𝐴( 𝑝1, ⋯ , 𝑝𝑛) ∏ 𝑑𝑝𝑖

𝑛

𝑖=1

1

0

1

0

 

while the variance 𝐷 of 𝐴 is  

𝐷 = 𝐸[𝐴2] − 𝐸2[𝐴] = ∫ ⋯ ∫ 𝐴2( 𝑝1, ⋯ , 𝑝𝑛) ∏ 𝑑𝑝𝑖

𝑛

𝑖=1

− 𝐴0
2

1

0

1

0

 

It is possible to also formulate an expression for the deviation between 𝐴, averaged over all 

parameters except 𝑝𝑗, and the expected value 𝐴0: 

𝐴𝑗(𝑝𝑗) = ∫ ⋯ ∫ 𝐴( 𝑝1, ⋯ , 𝑝𝑛) ∏ 𝑑𝑝𝑖

𝑛

𝑖=1
𝑖≠𝑗

1

0

1

0

− 𝐴0 

for which 𝐸[𝐴𝑗] = 0. For a given value of 𝑝𝑗, this function quantifies the deviation of 𝐴 from the 

expected value 𝐴0. The variance 𝐷𝑗 of 𝐴𝑗(𝑝𝑗) over the distribution of 𝑝𝑗 gives an absolute measure of 

the sensitivity of 𝐴 with respect to variations solely in 𝑝𝑗. This variance is given by  
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𝐷𝑗 = ∫ 𝐴𝑗
2(𝑝𝑗)𝑑𝑝𝑗

1

0

 

To compare sensitivity with respect to the different parameters, one can define the relative sensitivity 

of 𝐴 with respect to 𝑝𝑗, given by: 

𝑆𝑗 =
𝐷𝑗

𝐷
 

Beyond the sensitivity of 𝐴 with respect to variation solely in 𝑝𝑗, it is instructive to quantify the 

relative sensitivity of 𝐴 with respect to 𝑝𝑗 varying together with the other parameters. A derivation 

similar to that above, given in Homma & Saltelli,298 defines this relative total sensitivity with respect 

to 𝑝𝑗, denoted  𝑆𝑇𝑗
, as 

𝑆𝑇𝑗
= 1 −  

𝐷̅𝑗

𝐷
 

where 𝐷̅𝑗 quantifies the variance of 𝐴 due to variations in all parameters save 𝑝𝑗.  

Since there is no analytical expression for 𝐴 due to the nonlinearity of the PBPK model, the integrals 

used to evaluate 𝑆𝑗 and 𝑆𝑇𝑗
 were calculated using quasi-Monte Carlo integrals. To ensure that these 

integrals were evaluated over a suitably large range of points that covers the parameter space, a Sobol 

sequence was constructed to generate test points as described in Saltelli.297   

The parameters were sampled from uniform distributions centered on mean values with domains 

spanning plus and minus one standard deviation. The means of these distributions, along with the 

coefficients of variation used to calculate the domains of the distributions are given in Table 7 in the 

main body of the work along with the result of the global sensitivity analysis. 

Definitions: 

The first order global sensitivity of an output with respect to a parameter assesses the normalized 

variance of the output when marginalized over all parameters except the parameter of interest. 

The total global sensitivity of an output with respect to a parameter assesses the difference between 

the normalized variance of the output and its normalized variance when marginalized over the 

parameter of interest.  
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Reference Parameters 

Table A2. Basic reference parameters for a Caucasian adult male 

Parameter Value 

Height 1.77 m 

Body Mass 73.00 kg 

Body Surface Area  1.90 m2 

Cardiac Output 360.50 L/h 

Total Plasma Flow 198.28 L/h 

Total Blood Volume 5.67 L 

Total Plasma Volume 3.12 L 

Hematocrit 0.45 

 

Table A3. Organ sizes and fluid flow rates for the reference male 

Organ  Mass 

(kg) 

Density 

(kg/L) 

Plasma Flow 

(L/h) 

Lymph Flow 

(L/h)b 

Blooda 2.85 1.06 198.28  

Lymph 0.2621 1 
 

0.4084 

Heart 0.386 1.03 8.58 0.01716 

Kidney 0.422 1.05 40.75 0.0815 

Muscle 29.784 1.04 36.46 0.07292 

Skin 3.468 1.1 10.72 0.02144 

Brain 1.5172 1.03 25.74 0.05148 

Adipose 17.26 0.916 10.71 0.02142 

Thymus 0.0064 1 0.079 0.000158 

Liver 2.36 1.05 13.94 0.02788 

Stomach 0.206 1.05 2.14 0.00428 

Spleen 0.2284 1.05 6.44 0.01288 

Pancreas 0.1736 1.04 2.14 0.00428 

S. Intestine 0.8628 1.04 21.45 0.0429 

L. Intestine 0.4932 1.04 8.58 0.01716 

Bone 7.018 1.3 4.28 0.00856 

Other 5.09029 1 6.23 0.01246 

Lung 0.612 1.05 198.28 0.0119 
a Total blood mass includes the mass in circulation within organs 

b Initial guess for total lymph flow was 0.2% of plasma flow  
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Table A4. Organ sub-compartment volumes for the reference male 

Organ  Total 

Vol. (L) 

Plasma 

Vol. (L) 

Endosomal 

Vol. (L) 

Interstitial Vol. 

(L) 

Cell Vol. 

(L) 

Blooda 2.69E+00 
    

Lymph 2.62E-01 
    

Heart 3.75E-01 1.44E-02 1.88E-03 5.36E-02 2.93E-01 

Kidney 4.02E-01 2.20E-02 2.01E-03 6.03E-02 2.99E-01 

Muscle 2.86E+01 6.30E-01 1.43E-01 3.72E+00 2.36E+01 

Skin 3.15E+00 1.17E-01 1.57E-02 1.04E+00 1.88E+00 

Brain 1.47E+00 3.24E-02 7.37E-03 2.65E-01 1.14E+00 

Adipose 1.88E+01 2.07E-01 9.42E-02 3.20E+00 1.52E+01 

Thymus 6.41E-03 3.53E-04 3.21E-05 1.09E-03 4.65E-03 

Liver 2.25E+00 1.92E-01 1.12E-02 4.50E-01 1.44E+00 

Stomach 1.96E-01 4.90E-03 9.81E-04 1.96E-02 1.67E-01 

Spleen 2.18E-01 2.64E-02 1.09E-03 4.36E-02 1.25E-01 

Pancreas 1.67E-01 9.15E-03 8.31E-04 2.89E-02 1.20E-01 

S. Intestine 8.30E-01 1.33E-02 4.16E-03 1.45E-01 6.57E-01 

L. Intestine 4.74E-01 7.56E-03 2.37E-03 8.25E-02 3.76E-01 

Bone 5.40E+00 1.19E-01 2.70E-02 1.00E+00 4.15E+00 

Other 5.09E+00 2.14E-01 2.55E-02 8.72E-01 3.80E+00 

Lung 5.83E-01 3.21E-02 2.91E-03 1.75E-01 3.47E-01 
a Total blood volume includes the volume in circulation within organs 

 

Table A5. Basic reference parameters for a Caucasian adult female 

Parameter Value 

Height 1.637 m 

Body Mass 60 kg 

Body Surface Area 1.66 m2 

Cardiac Output 328.6 L/h 

Hematocrit 0.40 
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Table A6. Organ sizes and fluid flow rates for the reference female 

Organ  Mass 

(kg) 

Density 

(kg/L) 

Plasma Flow 

(L/h) 

Lymph Flow 

(L/h)b 

Blooda 1.7835 1.06 197.15  

Lymph 0.2154 1  0.406 

Heart 0.291 1.03 10.58 0.0212 

Kidney 0.357 1.05 36.41 0.0728 

Muscle 17.93 1.04 25.5 0.0510 

Skin 2.423 1.1 10.6 0.0212 

Brain 1.35 1.03 25.5 0.0510 

Adipose 21.15 0.916 18.045 0.0361 

Thymus 0.0053 1 0.094 0.0002 

Liver 1.81 1.05 13.814 0.0276 

Stomach 0.181 1.05 2.11 0.0042 

Spleen 0.1874 1.05 6.46 0.0129 

Pancreas 0.1446 1.04 2.056 0.0041 

S. Intestine 0.7558 1.04 23.5 0.0470 

L. Intestine 0.4502 1.04 10.616 0.0212 

Bone 5.223 1.3 4.247 0.0085 

Other 5.241 1 7.35 0.0147 

Lung 0.502 1.05 197.15 0.0118 
a Total blood mass includes the mass in circulation within organs 
b Initial guess for total lymph flow was 0.2% of plasma flow  

 

The volumes of the organ sub-compartments (plasma space, endosomal space, interstitial space and 

cellular space) were calculated for each organ based on the same fractions used for healthy males. 

Tumour volume was 20 mL. Estimates for the vascular, interstitial and cellular volume fractions, the 

reflection coefficients, plasma flow and lymph flow of the tumour were the same as in the model by 

Glassman and Balthasar.109 The endosomal volume fraction was 0.5% of tumour volume, consistent 

with the platform model.135 Concentration of HER2 in the tumour was set to be 25-fold higher than in 

normal reference tissue according to the measurements by Olsen at al.293  
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Table A7. Tumour Parameters 

Parameter Value Parameter Value 

Plasma Volume (L) 1.40E-03 Plasma Flow (L/h) 3.38E-02 

Endosomal Volume (L) 1.66E-04 Lymph Flow (L/h) 6.78E-05 

Interstitial Volume (L) 1.09E-02 Vascular Reflection [𝜎𝑉] 0.842 

Cellular Volume (L) 7.70E-02 Lymph Reflection [𝜎𝐼𝑆] 0.2 

HER2 Conc. 

[𝐴𝑔𝑇𝑢𝑚𝑜𝑢𝑟](nM) 

25 

 

Table A8. Reflection Coefficients 

Organ 𝜎𝑉 Estimate 𝜎𝑉 Effective 𝜎𝐼𝑆 Estimate 

Heart 0.95 0.83 0.2 

Kidney 0.9 0.67 0.2 

Muscle 0.95 0.83 0.2 

Skin 0.95 0.83 0.2 

Brain 0.99 0.97 0.2 

Adipose 0.95 0.83 0.2 

Thymus 0.9 0.67 0.2 

Liver 0.85 0.50 0.2 

Stomach 0.95 0.83 0.2 

Spleen 0.85 0.50 0.2 

Pancreas 0.9 0.67 0.2 

S. Intestine 0.9 0.67 0.2 

L. Intestine 0.95 0.83 0.2 

Bone 0.85 0.50 0.2 

Other 0.95 0.83 0.2 

Lung 0.95 0.83 0.2 

 

The initial values for the reflection coefficient, as well as the effective vascular reflection coefficients 

(σv) are given in Table A8. The fitted value for 𝐹2 was 3.35. Effective vascular reflection coefficients 

for each tissue were calculated as:109   

𝜎𝐸𝑓𝑓
𝑉 = 1 − [𝐹2 × (1 − 𝜎𝑂

𝑉)]  
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Appendix B: Supplementary Material for Chapter 6 

Table B1 Data collected for derivation of the ontogeny profile for capillary density 

Age Medium Median Capillary Density 

(1/mm2) 

Median Capillary Density 

(1/mm) 

Dolezalova et al., 2002528 

2 years Nail Fold  6.75 

3 years Nail Fold 
 

6.80 

4 years Nail Fold 
 

6.85 

5 years Nail Fold 
 

6.90 

6 years Nail Fold 
 

6.96 

7 years Nail Fold 
 

7.01 

8 years Nail Fold 
 

7.06 

9 years Nail Fold 
 

7.11 

10 years Nail Fold 
 

7.16 

11 years Nail Fold 
 

7.21 

12 years Nail Fold 
 

7.27 

13 years Nail Fold 
 

7.32 

14 years Nail Fold 
 

7.37 

18 years Nail Fold 
 

7.58 

25 years Nail Fold 
 

7.94 

30 years Nail Fold 
 

8.20 

Top et al., 2011467 

[0-7] days Buccal 

Mucosa 

 
8.1 

[8-30] days Buccal 

Mucosa 

 
6.9 

[1-6] months Buccal 

Mucosa 

 
7.3 

[0.5-3] years Buccal 

Mucosa 

 
6.7 

D’Souza et al., 2011468 
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Preterm Neonate Skin (toe) 36 
 

Term Neonate Skin (toe) 29 
 

Schaefer et al., 2016464 

[0-1] years Peritoneum 223 
 

[1-2] years Peritoneum 89 
 

[2-7] years Peritoneum 76 
 

[7-12] years Peritoneum 35 
 

[12-18] years Peritoneum 89 
 

[18-40] years Peritoneum 106 
 

 

Method for Ontogeny Profile Generation: 

The U-curve shape was obtained from Schaefer et al., 2016,464 Figure 3 and the review by Ingegnoli 

et al.,527 2013, section “Capillaroscopy in Healthy Children” with acknowledgement of the animal 

studies mentioned in the main body of the manuscript.533-535 

For this analysis, the mean adult is defined as a healthy male with an age of 30 years. 

All ontogeny factors were calculated relatively to the adult or other previously established 

measurements in the workflow. 

Ontogeny factors are rounded to the nearest tenth of a decimal to acknowledge the uncertainty around 

the measurements. 

The latter part of the capillary density profile (2 years – 30 years) can be constructed using the linear 

regression from Dolezalova et al., 2002,528 Figure 3.  

Age Capillary Density  

(Fraction of Adult) 

2 – 6 years 0.8 

6 – 12 years 0.9 

12 – 18 years 1.0 

Adult 1.0 

 

The relative difference in capillary density between an infant at birth and a child at 2 years of age was 

calculated as the mean of the relative differences reported in Top et al., 2011467 and Schaefer et al., 

2016.464 
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Age Capillary Density  

(Fraction of Adult) 

Birth 1.3 

2 – 6 years 0.8 

 

A linear interpolation over time according to age was then applied between birth and age 2. 

Age Capillary Density  

(Fraction of Adult) 

Birth 1.3 

1 – 3 months 1.1 

3 – 6 months 1.0 

6 – 12 months 0.9 

1 – 2 years 0.8 

2 – 6 years 0.8 

 

 Finally, the relative capillary density in a preterm infant was calculated with reference to the 

capillary density at birth using the data reported by D’Souza et al., 2011,468 Figure 1. 

Age Capillary Density  

(Fraction of Adult) 

Preterm 1.6 

Birth 1.3 

 


