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Abstract 
 

The effect of fold initiator design on the performance of axial crush rails fabricated using ultra high 

strength steels (UHSS) is examined in a combined experimental-numerical-analytical study. Of 

particular interest is the effect of fold initiator pattern and spacing in promoting stable folding. A key 

factor in introducing UHSS into energy absorbing components is the loss of ductility with increases in 

strength. Thus, the effect of material fracture limit on the ability of crush structures to fold is also 

considered.  

     The UHSS steel grade considered for the majority of this research (and all of the experiments) was 

hot stamped Ductibor® 1000-AS, with a thickness of 1.2 or 1.6 mm and tensile strength of 1000 MPa. 

In addition, performance metrics, developed as part of this research, are applied to a broader range of 

steel grades spanning strengths in the range of 270-1500 MPa.   

     Ductibor® 1000-AS double hat sections were hot stamped, spot welded and tested in axial crush 

under quasi-static and dynamic loading conditions. A baseline fold initiator pattern was first evaluated 

on axial crush rails that incorporated rudimentary single initiators indented on two opposing faces. 

Dynamic crush tests considering this baseline pattern repeatedly showed a global buckling mode, 

parent metal fracture and spot weld failure. The numerical models demonstrated close agreement with 

the observed buckling and failure modes and the measured force-displacement response.   

     Following these baseline results, a numerical parametric study was undertaken to evaluate the effect 

of six different fold initiator patterns on the dynamic axial crush response. These patterns consider 

different design variables such as fold initiator location, sequence, orientation, spacing and symmetry. 

The progressive folding mode was predicted for three of the six patterns considered. The most stable 

pattern corresponded to that identified by Wierzbicki and Abramowicz (1983) within their 

Superfolding Element analysis. This pattern utilizes fold initiators placed on the channel section faces 

and flanges in an alternating fashion to promote a rolling (serpentine) collapse of the flange. The effect 

of fold initiator spacing on stability (for the most stable initiator pattern) was further examined for each 

sheet thickness. The numerical models revealed a strong dependence on initiator spacing and served 

to identify a specific initiator spacing for each thickness that resulted in stable folding and largely 

suppressed fracture within the tight folds that form during axial crush; moreover, these initiator spacing 

values agreed well with those predicted using the analytical model of Wierzbicki and Abramowicz 

(1983). 
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     Experimental assessment of the model predictions was undertaken by performing quasi-static and 

dynamic axial crush experiments for a subset of the parametric cases comprising the baseline and stable 

folding initiator patterns and a range of initiator spacing. In general, the crush response of the 1.6 mm 

specimens agreed extremely well with the model predictions and served to validate the predicted effect 

of fold initiator pattern and spacing on folding stability and fracture suppression. The 1.2 mm 

specimens exhibited a global buckling instability that was not predicted by the numerical models. The 

cause of this instability was attributed to the fold initiator forming process which resulted in significant 

distortion of the cross-section and a loss of buckling resistance. Subsequent numerical models that 

combined detailed simulation of the indentation process and mapped the forming predictions onto the 

crush simulations were able to capture the observed buckling response. 

     As part of the continued analysis of axial crush results, three metrics were developed to predict axial 

crush performance and potentially serve as design tools for screening material selection and initiator 

design. One metric, termed the ñRelative Bending Limit,ò was derived from the ratio of the measured 

plastic work in V-bend fracture characterization tests to the predicted plastic work in the Superfolding 

Element analysis. This metric was successfully demonstrated to be a predictor of the fracture extent 

observed in crush columns made of different materials. Another metric, termed the ñFolding Transition 

Indicator,ò was derived from the ratio of the measured slenderness ratio of the crush specimens to the 

theoretical critical slenderness ratio. The metric strongly reflected the various collapse modes observed 

in these axial columns. By plotting the two metrics on the same graph, a 2D response map was 

constructed that successfully captured the overall trends in the fracture extent vs. deformation mode 

response.  

     This research demonstrates that the analytical design approach in configuring fold initiator patterns 

has significant potential in promoting progressive folding in hot stamped UHSS. By adopting a 

carefully designed fold initiator pattern and analytically determined fold initiator spacing, improved 

folding stability was achieved without significant sacrifice in absorbed energy. The results support the 

application of Ductibor® 1000-AS in frontal crush structures, but point to the need for considerable 

care in design of fold initiators for which the current performance metrics should serve as design tools. 

The current findings are tempered by the fact the axial crush specimens, particularly the thinner 1.2 

mm samples, were subject to shape distortion due to the indentation method in producing the fold 

initiators. In future work, as well as in industrial hot stamping practice, these specimens should be 

fabricated with fold initiators integrated within the hot stamping dies in order to limit distortion and 

further improve the axial crush performance of hot stamped Ductibor® 1000-AS components.   
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1.0 Introduction  
 

In recent years, increasing concerns regarding automotive fuel efficiency and occupant safety have led 

to strict government regulations. For example, the Corporate Average Fuel Economy (CAFE) 

standards established by the National Highway Traffic Safety Administration (NHTSA) mandate 

increases in the minimum fuel efficiency of passenger cars from the 2016 level of 34.7 mpg to 42.4 

mpg by 2025 (NHTSA, 2021). With such demands, the automotive industry has begun an unrelenting 

quest to reduce vehicle body weight, promoting the development of Ultra High Strength Steel (UHSS).  

UHSS can be categorized into several groups. The cold formable 3rd generation steels, such as 

enhanced Dual Phase (DP) or Quench and Partition (Q&P) steels (Edmonds et al., 2006), aim to retain 

both high strength and ductility at room temperature. Hot stamped steel, a focus of the current thesis, 

utilizes forming and quenching in a one-step process. The maximum tensile strength of hot stamped 

steels, such as Usibor® 2000-AS, exceeds 1800 MPa and allows a reduction in the sheet thickness and 

weight of structural sheet components while maintaining similar load carrying capacity (ArcelorMittal, 

2016d).  

However, hot stamped UHSS exhibits relatively low ductility, which stems from less ductile 

microstructures required to achieve ultra-high strength. The consequence can be limited folding 

stability and fracture resistance in axial crush loading due to the formation of brittle martensitic 

microstructures after quenching blanks from their austenitization temperature during forming in water-

cooled dies (Mori et al., 2017; Omer, 2017a).  

While the high tensile strength of hot stamped UHSS makes them ideal candidates for anti-intrusion 

structural components, which require high rigidity, their lower ductility can make them inappropriate 

for application in energy absorption components for vehicle frontal or rear body applications. In Figure 

1, the evident case of parent metal fracture present in Usibor® 1500-AS is compared to that of stable 

folding present in the lower strength grade hot stamped steel, namely Ductibor® 500-AS.  
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(a) hot stamped Usibor® 1500-AS 

(Omer et al., 2017b) 

(b) hot stamped Ductibor® 500-AS 

(Peister, 2019) 

Figure 1: Comparison of axial crash specimens, fabricated from the hot stamped steel grades: (a) 

Usibor® 1500-AS and (b) Ductibor® 500-AS. 

 

A number of manufacturing methods exist to improve the folding stability of hot stamped UHSS 

structures, such as tailored in-die heating (IDH) (Omer et al., 2017b). Such a method promotes phase 

transformation to softer microstructures; hence, increasing ductility by decreasing the cooling rate in 

regions of interest. Another method is to utilize tailor-welded blanks (TWB), which comprise UHSS 

on one side of the sheet and a more ductile material on the other side. To this end, newer grades of hot 

stamping alloys, such as Ductibor® 1000-AS, offer intermediate combinations of strength (1000 MPa) 

and ductility. Recent experience (Tummers, 2020) has suggested that such alloys can be used in frontal 

and rear energy absorbing structures; however, it has become evident that design tools are required to 

optimize the folding stability and avoid fracture of such alloys. 

Motivated by these requirements, the current thesis aims to develop methods to design structures that 

promote stable folding and enhance the potential to use hot stamped UHSS in energy absorption 

structures through improved analysis and design methods. To meet this aim, the overall scope of the 

thesis consists of a multi-step approach. Axial crush experiments and supporting numerical models 

were developed that considered a hot stamped UHSS material, Ductibor® 1000-AS. Parametric studies 

were performed that considered a wide range of fold initiator patterns to ascertain their effect on 

progressive folding stability and fracture suppression. Next, analytical models of axial crush were 

applied to develop performance metrics to predict axial crush response in terms of folding stability, 

global buckling onset and fracture during tight bending within folds. These metrics were applied to a 

wide range of steel alloys with strengths ranging from 270-1500 MPa and represent a first step to the 

development of design guidelines for UHSS axial crush structures.  
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1.1. Automotive Sheet Steel 
 

The decades-long pursuit of weight reduction has led to the emergence of lightweight materials in 

vehicle bodies such as aluminum and magnesium alloys, as well as carbon fiber composites. 

Nevertheless, modern automobile bodies still consist primarily of steel which makes up over 50% of 

total mass (Hovorun et al., 2017). This predominance can be attributed to the exceptional strength and 

relative low cost of steel, which places steel as a top contender for stamped structural components. The 

strength levels of steels found in the vehicle body-in-white (BIW), however, vary significantly 

depending on the location, as demonstrated in Figure 2. 

 

 

Figure 2: Different steel grades in the BIW for 2016 Honda Civic, from Honda (2019). Tensile 

strength of the steels ranges from 270 MPa to 1500 MPa based on the location. 

 

Different components within an automotive structure serve different functions. Hence, the mechanical 

properties of materials inevitably vary across the vehicle body. In general, material selection for the 

vehicle structure considers three functions: dent resistance, anti-intrusion and energy absorption (Billur, 

2019). 

 

  

 

Figure 3: Illustration of vehicle structures (highlighted in blue) with different functions: (a) dent 

resistant components such as hoods (b) anti-intrusion components such as b-pillars and (c) 

energy absorption components such as front rails. The images are adapted from Hilfrich and 

Seidner (2008) 
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For dent resistant components in which shape retention is of concern, high yield strength is the desired 

material property. For anti-intrusion components, high ultimate tensile strength (UTS) is required to 

protect passengers in the event of a crash. Lastly, energy absorption components require both high 

UTS and high post uniform elongation because the area under the stress-strain curve determines the 

specific energy absorption (Billur, 2019).  

     Over the decades, steels have evolved to meet improved formability and mechanical properties. 

From mild steel to advanced high strength steel (AHSS), different UTS and uniform elongation levels 

are achieved by controlling alloying elements and heat treatments. Nowadays, the list of commonly 

found steels in the vehicle BIW may include, but is not limited to, mild steel, high strength low alloy 

(HSLA) steel, dual phase (DP) steel, transformation induced plasticity (TRIP) steel, hot stamping 

boron steel and 3rd generation (Gen 3) steel. These steels show a general trend of increasing strength 

as ductility (i.e. uniform elongation) decreases, as shown in Figure 4. 

 

 

Figure 4: Comparison of various steel grades in tensile strength and elongation, adapted from 

Billur et al., (2015). The properties of ArcelorMittal hot stamping steel grades (after die-

quenching) are shown including the main focus of the thesis, Ductibor® 1000-AS. 

 

Mild steels display a primarily ferritic microstructure, imparting a very high ductility, but sacrificing 

strength. HSLA steels are carbon-manganese steels with additional alloying elements such as 

vanadium and titanium. At a microstructural level, the strength of HSLA is attributed to precipitation 

hardening and grain refinement which improves strength but results in a total elongation as low as 16% 

(POSCO, 2014). The mechanical behaviour of dual phase (DP) steels is explained by the presence of 

martensite islands in a ferrite matrix (ArcelorMittal, 2019), resulting in strong work hardening and 

good ductility. TRIP steels, on the other hand, consist partially of retained austenite that undergoes 
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gradual martensitic phase transformation when subject to plastic deformation (Li et al., 2003). Because 

of the TRIP effect, the material generally exhibits higher work hardening and elongation compared to 

DP steels (Samek and Krizan, 2012); however, these steels have seen only limited commercial 

application due to high cost and poor weldability. Gen 3 steels were introduced to improve formability 

relative to previous generation AHSS. For example, Q&P steels undergo an interrupted quench stage 

to produce a microstructure with stabilized retained austenite and carbon-depleted martensite (Speer 

et al., 2003). Finally, hot stamping steels, such as 22MnB5, have high formability during high 

temperature stamping and are capable of reaching a UTS above 1500 MPa through a fully martensitic 

transformation during the hot stamping process (Samek and Krizan, 2012). The advantages of hot 

stamping steels include reduced springback by holding the formed part in its final configuration (in-

die) past the martensite finish temperature (Nakagawa et al., 2018) and controlled ductility based on 

the quench rate (Samadian et al., 2020). Ductibor® 1000-AS, a material of focus in the current thesis, 

also belongs to the family of hot stamping steels and offers a somewhat reduced strength but higher 

ductility after hot stamping than Usibor® 1500-AS. The following section discusses the manufacturing 

process and mechanical properties associated with hot stamping steel grades. 

 

1.1.1. Hot Stamping Process 
 

Hot stamping was first patented by a Swedish company for manufacturing lawnmower blades in 1977 

(Karbasian and Tekkaya, 2010). The automotive industry eventually recognized the strong benefit in 

light-weighting, and the first vehicle to consist of hot stamped parts emerged in 1984 (Berglund, 2008). 

Since then, the usage of hot stamped components in vehicles has rapidly increased. VOLVO vehicles, 

for example, have increased the mass percentage of total BIW in XC90 models from 7% in 2003 to 

40% in 2014, according to Mori et al. (2017). Today, the list of common hot stamped components 

includes bumpers, roof rails, A-pillars and B-pillars. 

      Modern hot stamping technology is broken down into two different methods: (i) direct hot stamping 

and (ii) indirect hot stamping, as illustrated in Figure 5. In the direct hot stamping method, the blank 

is heated in a furnace above the Ac3-temperature of approximately 850°C (Merklein et al., 2009). Once 

the blank is fully austenitized, it is quickly transferred to a die in which forming and quenching take 

place simultaneously. In order to ensure the required minimum cooling rate, water-cooled dies are used 

in the forming process (George, 2011). In the indirect method, the blank is cold stamped prior to the 

furnace stage, and the subsequent process follows the same steps.  
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Figure 5: Illustration of (a) direct hot stamping and (b) indirect hot stamping processes, adapted 

from Karbasian and Tekkaya (2010) 

 

     The high strength of hot stamped components is mainly attributed to the martensite phase 

transformation during forming and in-die quenching that increases the flow stress of material 

(Karbasian and Tekkaya, 2010).  For this reason, the cooling rate of the blank during the forming stage 

plays a crucial role. In order to predict the resulting microstructures for a given cooling rate, a 

continuous cooling temperature (CCT) diagram can be referenced, as shown in Figure 6. For 22MnB5 

steel, which is the most commonly studied hot stamping alloy, the critical cooling rate to avoid the 

bainite and ferrite transformation is 27 K/s, according to Tekkaya et al. (2007). 

 

 

Figure 6: CCT diagram for 22MnB5, adapted from Tekkaya et al. (2007) 
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1.1.2. Hot Stamping Process Parameters 
 

     Understanding the key parameters controlling the rate of heat transfer between the workpiece and 

die, normally quantified by the heat transfer coefficient (HTC), is essential in controlling the cooling 

rate. For heat transfer between the tooling and blank during hot stamping, die tonnage or contact 

pressure govern the HTC (Shapiro, 2008). At the microscopic level, the surfaces of the blank and tool 

are not entirely in contact due to surface irregularities. Contact spots experience direct metal 

conduction, while the rest of the surface experiences radiative or conductive heat transfer through an 

air gap (see Figure 7). Since the thermal conductivity via direct metal conductance is significantly 

larger than that via an air gap or fluid-filled interstices, as noted by Fenech (1959), the majority of the 

heat transfer will occur at the contact points, and thus, HTC in during hot stamping is primarily 

governed by the area of spot contacts. In general, by increasing the die tonnage or contact pressure, 

surface asperities become more flattened, and the total area of contact increases, giving a rise in HTC.  

 

 

Figure 7: Illustration of contact surface between blank and die at the microscopic level, adapted 

from George (2011) 

 

The significance of contact pressure in determining HTC was pointed out and studied by numerous 

authors (Merklein and Lechler, 2008; Salomonsson et al., 2009; Oldenburg and Lindkvist, 2011; 

George et al., 2012; Caron et al., 2013; Omer et al., 2020). Merklein and Lechler (2008) adopted an 

analytical approach in determining the HTC of Usibor® 1500-AS at different contact pressures. In that 

study, the temperature history of the blanks was measured during quenching and fit to theoretical heat 

transfer equations. Their results have shown that the averaged HTC approximately increased in a linear 

relationship from 700 W/m2K to 3000 W/m2K with varying contact pressure from 0 MPa to 40 MPa. 

Similarly, the experimental characterization by Omer et al. (2020) of HTC of Usibor® 1500-AS 

showed a linear relationship with the contact pressure from 0 to 30 MPa. On the other hand, 
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Salomonsson et al. (2009) conducted an inverse analysis in determining HTC. The experimental setup 

was modelled in numerical simulation using LS-Dyna, and optimization analyses were conducted so 

that the measured temperature history of the blanks was reproduced in the model. 

 

1.1.1. Hot Stamping Steel Alloys 
 

Hot stamping steels are commonly referred to as boron steels. As the name suggests, such steels utilize 

boron as an alloying element for improved hardenability. The underlying mechanism has been 

characterized as the segregation of boron on the austenite grain boundary which results in suppression 

of ferrite nucleation (Taylor and Hansen, 1990; Taylor, 1992). As a result, more austenite remains at 

lower temperatures during quenching and is available for martensite formation. 

     The hot stamping steel considered in this research is Ductibor® 1000-AS, manufactured by 

ArcelorMittal. The carbon content of Ductibor® 1000-AS falls between the two other steel grades from 

the manufacturer, namely Usibor® 1500-AS and Ductibor® 500-AS, as shown in Table 1. The 

maximum boron content in Ductibor® 1000-AS is the same as Usibor® 1500-AS and Usibor® 2000-

AS, which creates a predominantly martensitic microstructure after hot stamping, as reported by 

Samadian and Abedini (2020). 

 

Table 1: Chemical composition (maximum weight %) of ArcelorMittal hot stamping steels, from 

ArcelorMittal ( 2021) 

 

Material  C  B Mn P S Si Cr Al  Ti  Nb N Fe 

Ductibor® 

500-AS 
0.08 0.001 1.70 0.030 0.01 0.35 0.2 0.06 0.09 0.1 0.01 remaining 

Ductibor® 

1000-AS 
0.10 0.005 1.80 0.030 0.01 0.60 0.2 0.06 0.05 0.1 0.01 remaining 

Usibor® 

1500-AS 
0.25 0.005 1.40 0.030 0.01 0.40 0.5 0.06 0.05 - 0.01 remaining 

Usibor® 

2000-AS 
0.36 0.005 0.80 0.030 0.01 0.80 0.5 0.06 0.06 0.07 0.01 remaining 

 

The mechanical properties of Ductibor® 1000-AS also fall between the two (of three) other steel grades, 

as shown in Table 2.  
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Table 2: Mechanical properties of ArcelorMittal hot stamping steels after hot stamping and paint 

baking, from ArcelorMittal (no date; 2016a; 2016b; 2016c; 2016d) 

 

Material  

Yield 

Strength  

(MPa) 

 Ultimate Tensile 

Strength  

(MPa) 

Fracture 

Elongation 

Bending 

Angle 

(°) 

Ductibor® 

500-AS 
408 

 
657 0.189 Ó90 

Ductibor® 

1000-AS 
849 

 
1067 0.056 Ó75 

Usibor® 

1500-AS 
1141 

 
1553 0.046 Ó50 

Usibor® 

2000-AS 
1462 

 
1848 0.054 Ó45 

 

Usibor® 1500-AS belongs to a family of 22MnB5 alloys, with UTS above 1500 MPa. Several authors 

have extensively studied the flow and fracture behaviour of die-quenched 22MnB5 (Bardelcik et al., 

2012; ten Kortenaar, 2016; Östlund et al., 2016, Samadian et al., 2020). Among these researchers, 

Samadian et al. (2020) specifically investigated the effect of quench rate on the resultant 

microstructures. Fully austenitized samples were oil-, forced-air-, and air-cooled separately and yielded 

100% martensite, a mixture of bainite and martensite and 100% bainite microstructures, respectively. 

The fracture loci and flow curves of the multi-phase (forced-air-cooled) microstructures were modelled 

through a mean field homogenization approach in which the macroscopic mechanical properties are 

calculated by statistical averaging of the phases present in the microstructure. On the other hand, 

Bardelcik et al. (2012) predicted the flow response of the multi-phase microstructure based on the 

measured Vickers hardness. Given the extensive past research on this alloy, 22MnB5 currently serves 

as the benchmark in the list of boron steels.  

Ductibor® 500, on the other hand, exhibits a UTS up to 810 MPa, depending upon the quench rate, 

and substantially higher fracture elongation than Usibor® 1500-AS (Samadian et al., 2018). The 

fracture behaviour of the alloy also has been studied by Samadian et al. (2019). Ductibor® 1000-AS 

carries a very little published literature on the characterization of constitutive and fracture behaviour 

to-date and is the topic of ongoing work by researchers at the University of Waterloo.  

     One approach to tailoring the local properties within a hot stamped component is achieved using a 

blank comprising different steel grades and gauges joined by a laser welding process. Such a blank is 

commonly referred to as a Tailor Welded Blank (TWB). The main advantage of TWBs is the weight 

reduction by strategically placing the higher strength or thicker gauge portion at BIW areas where 
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structural stiffness is desired (Merklein et al., 2014). In studying the potential applications of TWBs in 

vehicle structures, Múnera et al. (2008) demonstrated a 20 % weight-saving in a door ring comprising 

tailor welded Usibor® 1500-AS and Ductibor® 500-AS. Similarly, the numerical studies by Tummers 

(2020) demonstrated a 27.6% weight-saving in the front sub-assembly of a commercial SUV using 

tailor welded Ductibor® 1000-AS and Usibor® 1500-AS. The axial crush experiments by Peister et 

al. (2018) considered double hat channels comprising tailor-welded Ductibor® 500-AS and Usibor® 

1500-AS. They reported a 12% increase in energy absorption compared to non-tailored channels 

composed entirely of Ductibor® 500-AS. 

 

1.2. Material Modelling for  Sheet Steel 
 

In the vehicle design cycle, the development of a new material is followed by material modelling for 

finite element implementation within forming and crashworthiness simulations. In this section, 

different approaches in modelling the plasticity and fracture response of sheet steel are discussed. The 

discussion is tailored towards consideration of material characterization and modelling appropriate for 

a UHSS sheet. 

 

1.2.1. Plasticity Response 

 

Linear elasticity and infinitesimal strain assumptions have their merits in structural analysis for 

simplicity; yet, many challenging problemsðsuch as metal forming or crash simulationsðinvolve 

plasticity to a greater extent. For that reason, the automotive industry has a need for accurate plasticity 

modelling in finite element implementations. 

     In general, there are two approaches in modelling plasticity: physics-based approaches versus 

phenomenological-based approaches. The physics-based approach studies the movement of atoms and 

deformation of grains at the microscopic level, while the phenomenological approach mathematically 

models the measured material behaviour at the macroscopic or continuum level (Khan and Huang, 

1995). Adopting a mesh size as small as the size of grains in polycrystalline is computationally costly 

in many industrial applications in which problems are usually simulated at the macroscopic scale. 

Hence, the phenomenological approach is usually adopted. 

Phenomenological plasticity, at its core, is built upon three cornerstones: (i) the yield surface, which 

sets the boundary between the plastic and elastic deformation states (ii) the hardening law, which 
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determines how the yield surface evolves following onset of yielding, and (iii) the flow rule, which 

relates the stress and plastic strain rate (Krabbenhoft, 2002).  

 

1.2.1.1. Hardening Behaviour 
 

In the physical description, hardening behaviour stems from the mechanism of dislocations. As more 

dislocations are generated during deformation, a higher amount of stress is required to sustain 

dislocation motion along slip planes (Bergström, 2015). Taylor (1934) was perhaps the first to 

physically describe the hardening behaviour of metals in terms of dislocation density: 

 

 ( )flow Gbs a r e=  (1) 

 

Where „  is the flow stress,  is a hardening parameter, Ὃ is the shear modulus, ὦ is the magnitude 

of the Burgers vector, ‐ is the true strain and ” is the dislocation density. 

As noted by van den Boogaard (2002), the key aspect in modelling work hardening lies in predicting 

the evolution of dislocation density, and authors including Bergström (1983) have developed models 

for predicting the dislocation evolution based on several mechanisms such as immobilization, 

remobilization and annihilation. While the remaining section focuses on phenomenological 

descriptions of work hardening, a detailed summary is presented by Bergström (2015). 

     Phenomenologically, the hardening rate Ὠ„ ȾὨ‐ decreases continuously from a high value to 

zero for polycrystalline metals (van den Boogaard, 2002). Over the decades, many authors (Holloman, 

1945; Voce, 1948; Zerilli and Armstrong, 1987) developed models to capture such saturation 

behaviour in various forms. One example is the model, developed by Hockett and Sherby (1975), that 

describes flow stress saturation at large strain under room temperature conditions using the following 

relationship 

 

 ( )( )( )exp
m

flow sat p sat yNs s e s s= - - -  (2) 

 

Where „  is the saturation stress, ‐ is the equivalent plastic strain, „ is the yield strength and ὔ and 

ά are calibration coefficients, respectively.  
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In addition to the plastic strain, the flow stress of a metal is governed by other variables such as 

temperature and strain rate. To account for the effects of these variables, Johnson and Cook (1983) 

assumed a multiplicative form of three functions as follows: 
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 (3) 

 

The first function describes power law hardening with yield stress ὃ and hardening parameters ὄ and 

ὲ. The second function accounts for the strain rate sensitivity through coefficient ὅ and the reference 

strain rate ‐. Lastly, the temperature sensitivity is described by the third function with thermal 

softening coefficient ά and reference temperature Ὕ and melting temperature Tm. (Note that the 

parameter m has differing meanings in Equations (2) and (3).) Due to the multiplicative coupling 

assumption inherent in the Johnson-Cook model, it fails to capture complex material behaviour such 

as that of Al-7039, as reported by Gray et al. (1994). Nonetheless, the model is widely used for its 

simplicity and has been extended in different forms (Børvik et al., 2001). 

     Phenomenological characterization of the hardening behaviour of hot stamped steels takes two steps: 

(1) conducting uniaxial tension testing until diffuse necking and (2) extrapolating the stress-strain data 

to account for large strain. Although the tensile data can be fitted in hardening models beyond the 

experimental range, such a method can cause a significant deviation in post necking behaviour based 

on the choice of model. A recent analytical method by Rahmaan et al. (2017) presents a solution in 

which one conducts a complementary coupon test that does not develop a necking instability such as 

simple shear and then extrapolates the tensile data using the stress ratio between shear stress (from the 

simple shear test) and equivalent stress (from the uniaxial tensile test). The ratio is obtained by plastic 

work equivalence analysis, and detailed description of this approach is provided by Rahmaan et al., 

2017. The extrapolated curve is fitted to hardening models with additional constraints such as the 

Considère criterion that equates the hardening rate to the true stress. Finally, the fitted model with the 

least error is selected.  

     The hardening behaviour of hot stamped steels varies significantly under different quench 

conditions. To perform tensile and simple shear tests on a broad range of as-quenched specimens is 

time-consuming and repetitive. For such problems, the Tailor Crash Models I and II (Bardelcik et al., 

2012; Bardelcik et al., 2014) offer a convenient solution in which the flow stress is predicted by the 

measured Vickers hardness following quenching. The use of Vickers hardness was justified by the 
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observed linear dependency with the area fraction of martensite, banitie and ferrite phases in the 

quenched specimens. 

Figure 8 shows the hardening behaviour of Usibor® 1500-AS and Ductibor® 500-AS under a water-

cooled, die-quenched condition. The Usibor® 1500-AS data was fitted to a Voce model and multiplied 

by an exponential-type strain rate sensitive function due to Børvik et al. (2001) by Bardelcik et al. 

(2012). The quasi-static hardening curve of Ductibor® 500-AS was modelled by Samadian et al. (2018) 

and modified to include strain rate sensitivity using the Johnson-Cook function by Abedini (2019). 

 

 

Figure 8: Flow curve of water-cooled, die-quenched Usibor® 1500-AS by Bardelcik et al. (2012) 

and Ductibor® 500-AS by Samadian et al. (2018) and Abedini (2019) 

 

1.2.1.2. Yield Criterion  
 

Due to the intrinsic properties of rolled sheets, some level of anisotropy is inevitable in sheet steels. 

Austenitizing at high temperatures, such as 950 °C, largely removes planar anisotropy for 22MnB5, as 

reported by Hu et al. (2017). For this reason, much research towards modelling hot stamped steel 

(Östlund, 2015; ten Kortenaar, 2016; Samadian et al., 2020) assumes isotropic yield functions to this 

day. One of the earliest and most famous example of such isotropic yield criteria is due to von Mises 

(1913), with the following expression:  

 

 ( ) ( ) ( ){ }
1

2

2 1 2 1 3 2 3

1
3

2
eq Js s s s s s s= = - + - + -

2 22

 (4) 

 

Where ὐ is the second deviatoric stress invariant and „, „, „ are the principal stresses.  
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Yield criteria often describe what is considered as a ñyield surfaceò in principle stress space as a 

convenient approach to visualizing the material stress state resulting in plastic flow. A point in principle 

stress space can either be inside (elastic loading) or outside (plastic loading) the surface. However, the 

latter case is not physical since plastic loading is accompanied by distortion (hardening) of the yield 

surface such that the stress state remains on the expanding yield surface. In mathematical form, this 

condition can be expressed as 

 

 0eqs s- = (5) 

 

in which „  is the equivalent stress, calculated by a yield criterion, and „ is the flow stress, obtained 

from a hardening response of materials. 

 

1.2.1.3. Flow Rule 
 

The last constituent of the phenomenological plasticity model is the flow rule. Like Hookeôs law that 

relates strain increment to stress in the theory of elasticity, the flow rule relates plastic strain increment 

to stress in the theory of plasticity. In the flow rule, however, the direction of plastic strain increment 

is governed by a separate function known as the plastic potential . Furthermore, its magnitude is 

calibrated by the plastic multiplier Ὠ‗ through the following relationship 

 

 d d=
y

l
µ

µ
pe

s
 (6) 

 

The partial derivative term  
Ɑ
 enforces the requirement that the yield surface will grow in the normal 

direction to the  function. In the associated flow rule (AFR), the plastic potential function is assumed 

to coincide with the yield function. In the case of the von Mises (1913) yield criterion, Equation (6) 

reduces to  

 

 d d= lp Ne  (7) 

 

in which N, the normal to the yield surface, becomes 

 

 eqµ
=
µů

s
N  (8) 

Equations (4) to (8) are examples of so-called ñconstitutive relationsò in describing the plasticity 

behaviour of materials and are commonly solved computationally in finite element problems.  
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1.2.2. Fracture Response 
 

In predicting the fracture response of ductile metals, three categories of models exist: (i) micro-

mechanical damage models, (ii) Continuum Damage Models (CDM) and (iii) phenomenological 

models. In micromechanical damage models, the effect of void growth or coalescence at the microscale 

is incorporated into a constitutive relation. Such an example is the Gurson (1977) model, with the idea 

of narrowing the yield surface as the volume fraction of voids increases. In contrast, the two latter 

models aim to express the fracture response of a bulk material or ñcontinuumò element at the 

macroscopic scale. In CDM, the interplay of such microscale defects is represented as a scalar variable, 

damage. As explained by Lemaitre (1985), the presence of microcracks in the continuum element with 

normal vector ▪ gives damaged area Ὓ from the total cross-sectional area Ὓ, as shown in Figure 9. 

 

Figure 9: Illustration of a continuum element with damage caused by microcracks (Lemaitre, 

1985) 

 

A decrease in cross-sectional area corresponds to a reduced load-carrying capacity; hence, the effect 

of damage should increase. From this notion, the definition of damage is expressed below.  

 

 DS
D

S
=  (9) 

 

A value of damage equal to unity corresponds to the onset of failure. For damage below unity, the 

effective stress of the element under traction ╣ is defined in terms of damage and Cauchy stress tensor 

(ⱭϽ▪ ╣) by the following relation:  

 

 
1 D

ů
ů=

-
 (10) 

     In phenomenological models, fracture in a continuum element is perceived as a sudden event that 

occurs when the equivalent plastic strain, ‐Ӷ, reaches the fracture strain, ‐Ӷ, that is governed by the 
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strain path or stress state (Abedini, 2018). The two key parameters in describing the stress state are 

stress triaxiality (–) and Lode angle (—) whose expressions follow 
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Where „  is the hydrostatic stress, „  is the von Mises equivalent stress, Ὅ is the first stress 

invariant and  ὐ, ὐ  are the second and third deviatoric stress invariants. The Lode angle — is also 

related to the normalized Lode angle —Ӷ or the Lode parameter ‚ whose expressions follow 
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     Early studies by several authors (McClintock, 1968; Rice and Tracey, 1969; Gurson, 1977; 

Tvergaard and Needleman, 1984; Johnson and Cook, 1985) all have shown the strong effect of stress 

triaxiality on ductile fracture. In particular, Rice and Tracey (1969) studied the growth of a spherical 

void in an infinite matrix subject to uniaxial tension and concluded the relationship with material 

constant : 
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Equation (15) was later visited by Hancock and Mackenzie (1976) to postulate that the failure strain 

shall be inversely proportional to the hole growth-rate and thus, the following relationship holds:  
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Since then, the exponential dependency of stress triaxiality became a foundation for subsequent 

fracture models developed by Johnson and Cook (1985), Wierzbicki and Xue (2005) and Bai and 

Wierzbicki (2008). 

Recent studies, however, further pointed out Lode angle-dependence on ductile fracture (Wierzbicki 

and Xue, 2005; Bai and Wierzbicki, 2010). One example that considers both parameters is the model 

developed by Bai and Wierzbicki (2008) in which fracture strain is assumed to have an exponential 

dependence on triaxiality and parabolic dependence on Lode angle: 
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in which Ὀ to Ὀ  are calibration constants. The above relationship gives rise to visualizing a fracture 

locus in 3D space, as shown in Figure 10.  

 

 

Figure 10: Example of a fracture surface (Basaran et al., 2010) 

 

For plane stress conditions, Wierzbicki and Xue (2005) showed that an additional relation holds 

between stress triaxiality and Lode parameter given by 
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Combining Equations (13) and (18) with Equation (17) results in direct dependence of fracture strain 

on triaxiality (for plane stress conditions) and generates a plane stress fracture locus that lines within 

the generalized fracture surface, as shown in Figure 10. Consequently, for sheet metal, for which a 
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predominantly plane stress condition exists, fracture loci are often simplified into 2D curves expressed 

solely as a function of stress triaxiality. Typical examples of 2D fracture loci are shown in Figure 11 

for different quenched conditions of Usibor® 1500-AS (Samadian et al., 2020). To construct 

phenomenological fracture loci, fracture strains at various triaxial stress states are obtained by 

performing calibration tests. Such tests consist of, but are not limited, to shear, uniaxial tensile, plane 

strain dome or v-bend, and biaxial dome tests with different punch diameters.  

 

    

Figure 11: Fracture loci of Usibor® 1500-AS in two different quench conditions, adapted from 

Samadian et al. (2020). Experimental points were obtained from butterfly, hole expansion, plane 

strain tension dome, v-bend and biaxial tension dome tests. The dashed and solid lines represent 

fracture curves based on the plane strain tension dome and v-bend tests, respectively.   

 

     Unlike calibration tests, most problems in metal forming and crashworthiness involve severely 

nonlinear strain paths. In order to predict fracture in such problems, one solution is to utilize an 

incremental CDM approach such as the Generalized Incremental Stress State-dependent damage 

MOdel (GISSMO) developed by Neukamm et al. (2009). In the GISSMO approach, the incremental 

damage is described as: 
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where ὨὈ is the incremental damage, Ὠ‐Ӷ is the incremental plastic strain, ὲ is the damage exponent 

to allow nonlinear accumulation and ‐Ӷ is the equivalent fracture strain, which can be obtained from 

the phenomenological fracture locus. When the damage reaches a value of unity, the corresponding 

element in finite element simulation is deemed to no longer possess load-carrying capacity. This 
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damage treatment is available in commercial finite element software, such as in LS-Dyna (Livermore 

Software Technology Corporation, 2016) which was used in the current research, to trigger element 

deletion due to material fracture (*MAT_ADD_EROSION keyword). 

     Mesh (element) sizes also need to be taken into account in predicting fracture. Mesh convergence 

in the finite element method states that as the element size decreases, the solution converges (Fish and 

Belytschko, 2007); however, mesh convergence is often not achieved for fracture prediction. Consider 

the simulation of a plane strain dome in Figure 12 in which Eller et al. (2014) showed that equivalent 

plastic strain increases with decreasing element size. Since the phenomenological fracture strain 

remains constant for a given stress triaxiality, damage would accumulate faster with increasing 

equivalent plastic strain according to Equation (19). Thus, a smaller element would reach fracture 

sooner, which is not physical.  

 

 

Figure 12: Effect of mesh refinement on equivalent plastic strain during plane strain simulation 

in LS-Dyna (Eller et al., 2014) 

 

One approach to account for or limit the effect of element size on fracture prediction is by performing 

mesh regularization. In the mesh regularization process, fracture calibration tests are numerically 

simulated with different element sizes within the actual coupon geometry. Then, the phenomenological 

fracture curve is scaled accordingly for each mesh size such that numerical response, such as the 

predicted limiting dome height or force-displacement at failure, matches that of the test results. Figure 

13 shows an example of mesh-regularized fracture curves for fully martensitic 22MnB5. 

 
























































































































































































































































































































































































































