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Abstract

The effect of fold initiator design on the performance of axial crush rails fabricated using ultra high
strength steels (UHSS) is examined in a combined experimantaricalanalytical study. Of
particular interest is the effect of fold initiator pattamd spacing in promoting stable folding. A key
factor in introducing UHSS into energy absorbing components is the loss of ductility with increases in
strength. Thus, the effect of material fracture limit on the ability of crush structures to fold is also
considered.

The UHSS steel grade considered for the majority of this research (and all of the experiments) was
hot stamped Ductibor® 1008S, with a thickness of 1.2 or 1.6 mm and tensile strength of 1000 MPa.
In addition, performance metrics, devyedal as part of this research, are applied to a broader range of

steel grades spanning strengths in the range 61390 MPa.

Ductibor® 1000AS double hat sections were hot stamped, spot welded and tested in axial crush
under quasstatic and dynarsiloading conditions. A baseline fold initiator pattern was first evaluated
on axial crush rails that incorporated rudimentary single initiators indented on two opposing faces.
Dynamic crush tests considering this baseline pattern repeatedly showed labgttdiag mode,
parent metal fracture and spot weld failure. The numerical models demonstrated close agreement with

the observed buckling and failure modes and the measureedisptacement response.

Following these baseline results, a numempeehmetric study was undertaken to evaluate the effect
of six different fold initiator patterns on the dynamic axial crush response. These patterns consider
different design variables such as fold initiator location, sequence, orientation, spacing aedgymm
The progressive folding mode was predicted for three of the six patterns considered. The most stable
pattern corresponded to that identified by Wierzbicki and Abramowicz (1983) within their
Superfolding Element analysis. This pattern utilizes foliators placed on the channel section faces
and flanges in an alternating fashion to promote a rolling (serpentine) collapse of the flange. The effect
of fold initiator spacing on stability (for the most stable initiator pattern) was further examireatfor
sheet thickness. The numerical models revealed a strong dependence on initiator spacing and served
to identify a specific initiator spacing for each thickness that resulted in stable folding and largely
suppressed fracture within the tight folds tleain during axial crush; moreover, these initiator spacing
values agreed well with those predicted using the analytical model of Wierzbicki and Abramowicz
(1983).



Experimental assessment of the model predictions was undertaken by performirgfajoasid
dynamic axial crush experiments for a subset of the parametric cases comprising the baseline and stable
folding initiator patterns and a range of initiator spacing. In general, the crush response of the 1.6 mm
specimens agreed extremely well witke thodel predictions and served to validate the predicted effect
of fold initiator pattern and spacing on folding stability and fracture suppression. The 1.2 mm
specimens exhibited a global buckling instability that was not predicted by the numerical. mbdels
cause of this instability was attributed to the fold initiator forming process which resulted in significant
distortion of the crossection and a loss of buckling resistance. Subsequent numerical models that
combined detailed simulation of the ind&iion process and mapped the forming predictions onto the
crush simulations were able to capture the observed buckling response.

As part of the continued analysis of axial crush results, three metrics were developed to predict axial
crush performancand potentially serve as design tools for screening material selection and initiator
design. One metric, termed the ARelative Bendin
plastic work in \fbend fracture characterization tests to the predijolastic work in the Superfolding
Element analysis. This metric was successfully demonstrated to be a predictor of the fracture extent
observed in crush columns made of different mat e
I ndi c at aived foom tharatio df the measured slenderness ratio of the crush specimens to the
theoretical critical slenderness ratio. The metric strongly reflected the various collapse modes observed
in these axial columns. By plotting the two metrics on the sammphg a 2D response map was
constructed that successfully captured the overall trends in the fracturevextformation mode

response.

This research demonstrates that the analytical design approach in configuring fold initiator patterns
has sigificant potential in promoting progressive folding in hot stampedS8HBy adoptinga
carefully designed fold initiator pattern and analytically determined fold initiator spacing, improved
folding stability wasachievedwithoutsignificantsacrifice in absrbed energy. The results support the
application of Ductibor® 100@S in frontal crush structurebut point to the need for considerable
care in design dbld initiatorsfor which the current performance metrics should serve as design tools
The currentfindings are tempered by the fact the axial crush specinpamscularly the thinner 1.2
mm sampleswere subject to shape distortion due to the indentation method in producing the fold
initiators. In future workas well as in industrial hot stampingaptice,these specimens should be
fabricated with fold initiatorsntegrated within the hot stamping dies in order to limit distortion and

further improve the axial crush performancénof stanped Ductibor® 1006AS components.
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1.0 Introduction

In recent years, increasing concerns regarding automotive fuel efficiency and occupant safety have led
to strict government regulations. For example, the Corporate Average Fuel Economy (CAFE)
standards established by the National Highway Traffic Safety ididration (NHTSA) mandate
increases in theninimum fuel efficiency of passenger cars from the 2016 leveldof Bipg to42.4

mpg by 2025HTSA, 2021). With such demands, the automotive industry has begun an unrelenting
guest to reduce vehicle body weight, promoting the development of Ultra High Strength Steel (UHSS).

UHSS can becategorized intoseveralgroups. The cold formable™3generation steelssuch as
enhanced Dual Phase (DP) or Quench and Partition (Q&P) steels (Edehahd®006), aim to retain

both high strength and ductility at room temperature. Hot stamped steel, a focus of the current thesis,
utilizes forming and quenching in a esep process. The maximum tensile strength of hot stamped
steels, such as Usibor® 208(, exceeds 1800 MPa and allows a reduction in the sheet thickness and
weight of structural sheet components while maintaining similar load carrying capacity (ArcelprMitta
2016d).

However, hot stamped UHSS exhibits relatively low ductility, which stems fiesa ductile
microstructures required to achieve uligh strength. The consequencan belimited folding
stability and fracture resistance in axial crushding due to the formation of brittle martensitic
microstructures after quenching blanks from their austenitization temperature during forming-n water
cooled dies (Moret al, 2017; Omer, 2017a).

While the high tensile strength of hot stamped UHSS makes ittesahcandidates for antitrusion
structural components, which require high rigidity, their lower ductti#gmake them inappropriate
for application in energy absorption components for vehicle frontal or rear body applicatiéigsirén
1, the evident case of parent metal fracture present in Usibor®AS08 compared to that of stable

folding present in the lower strength grade hot stamped steel, namely Ductibe&500



(a) hot stamped Usibor® 15005 (b) ha stamped Ductibor® 508S
(Omeret al, 2017b) (Peister, 2019)

Figure 1. Comparison of axial crash specimens, fabricated from the hot stamped steel grades: (a)
Usibor® 1500GAS and (b) Ductibor® 500AS.

A number of manufacturing methods exist to improve the folding stability of hot stamped UHSS
structures, such as tailoreddie heating (IDH) (Omeet al, 2017b). Such a methga@omotegphase
transformatiorto softer microstructuredience increagng ductility by decreasing the cooling rate in
regions of interest. Another method is to utilize tailded blanks (TWB), which comprise UHSS
onone side of the sheet and a more ductile matenilie other side. To this end, newer grades of hot
stamping dbys, such as Ductibor® 1008S, offer intermediate combinations of strength (1000 MPa)

and ductility. Recent experience (Tummers, 2020) has suggested that such alloys can be used in frontal
and rear energy absorbing structures; howevhgdtbecomevident that design tools are required to

optimize the folding stability and avoid fracture of such alloys.

Motivated by these requirements, the current thesis aims to develop methods to design structures that
promote stable folding and enhance the potentialde hot stamped UHSS in energy absorption
structures through improved analysis and design methods. To meet this aim, the overall scope of the
thesis consists of multi-step approachAxial crush experiments and supporting numerical models
were developethat considered a hot stampgHSS material, Ductibor® 1008S. Parametric studies

were performed that considered a wide range of fold initiator patterns to ascertain their effect on
progressive folding stability and fracture suppression. Next, analytiodels of axial crush were
applied to develop performance metrics to predict axial crush response in terms of folding stability,
global buckling onset and fracture during tight bending within folds. These metrics were applied to a
wide range of steel ajs with strengths ranging from 2-2600 MPa and represent a first step to the

development of @sign guidelinetor UHSS axial crush structures.
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1.1. Automotive Sheet Steel

The decadetong pursuit of weight reduction has led to the emergence of lightweidletiaia in

vehicle bodies such as aluminum and magnesium alloys, as well as carbon fiber composites.
Nevertheless, modern automobile bodies still consist primarily of steel which makes up over 50% of
total mass (Hovoruet al, 2017). This predominance che attributed to the exceptional strength and
relative low cost of steel, which places steel as a top contender for stamped structural components. The
strength levels of steels found in the vehicle bodwhite (BIW), however, vary significantly

dependig on the location, as demonstratedrigure2.

Steel Tensile Strength
Legend

Figure 2: Different steel grades in the BIW for 2016 Honda Civic, from Honda (2019). Tensile
strength of the steels ranges from 270 MPa to 1500 MPa basedtbe location.

Different components within an automotive structure serve different functions. Hence, the mechanical
properties of materials inevitably vary across the vehicle body. In general, material selection for the
vehicle structure considers threadtions: dent resistance, airttrusion and energy absorption (Billur,
2019).

Figure 3: lllustration of vehicle structures (highlighted in blue) with different functions: (a) dent
resistant components such as hoods (l@nti-intrusion components such as pillars and (c)
energy absorption components such as front railsThe imagesare adapted from Hilfrich and

Seidner (2008)



For dent resistant components in which shape retention is of concern, high yield strengtbssede d
material property. For antintrusion components, high ultimate tensile strength (UTS) is required to
protect passengers in the event of a crash. Lastly, energy absorption components require both high
UTS andhigh post uniform elongation because the area under the-strass curve determines the
specific energy absorption (Billur, 2019).

Over the decades, steels have evolved to meet improved formability and mechanical properties.
From mild steel to advancéigh strength steel (AHSS), different UTS and uniform elongation levels
are achieved by controlling alloying elements and heat treatments. Nowadays, the list of commonly
found steels in the vehicle BIW may include, but is not limited to, mild steel stighgth low alloy
(HSLA) steel, dual phase (DP) steel, transformation induced plasticity (TRIP) steel, hot stamping
boron steel and®generation (Gen 3) steel. These steels show a general trend of increasing strength

as ductility (.e. uniform elongatio) decreases, as showrFigure4.
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Figure 4. Comparison of various steel grades in tensile strength and elongation, adapted from
Billur et al., (2015). The properties of ArcelorMittal hot stamping steel grades (after die
guenching) are shown including the main focus of the thesis, Ductibor® 10605.

Mild steels display a primarily ferritic microstructure, imparting a very high ductility, but sacrificing
strength. HSLA steels are carboranganese steels with additional alloying elements such as
vanadium and titanium. At a microstructural level, thrergjth of HSLA is attributed to precipitation
hardening and grain refinement which improves strength but results in a total elongation as low as 16%
(POSCO, 2014). The mechanical behaviour of dual phase (DP) steels is explained by the presence of
martensié islands in a ferrite matrix (ArcelorMittal, 2019), resulting in strong work hardening and

good ductility. TRIP steels, on the other hand, consist partially of retained austenite that undergoes
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gradual martensitic phase transformation when subject ticada$ormation (Liet al, 2003). Because

of the TRIP effect, the material generally exhibits higherk hardening andlongationcompared to

DP steels (Samek and Krizan, 2012); however, these steels have seen only limited commercial
application due to high cost and poor weldability. Gen 3 steels were introduced to improve formability
relative to previous generation AHSS. For example, Q&Psstealergo an interrupted quench stage

to produce a microstructure with stabilized retained austenite and adeptaied martensite (Speer

et al., 2003). Finally, hot stamping steels, such as 22MnB5, have high formability during high
temperature stampingnd are capable of reaching a UTS above 1500 MPa through a fully martensitic
transformation during the hot stamping process (Samek and Krizan, 2012). The advantages of hot
stamping steels includeducedspringback by holding the formed part in its finahfiguration (in-

die) past the martensite finish temperature (Nakagetnad., 2018) and controlled ductility based on

the quench rate (Samadianal, 2020). Ductibor® 100@\S, a material of focus in the current thesis,

also belongs to the family of hatasnping steels and offers a somewhat reduced strength but higher
ductility after hot stampinthan Usibor® 150€AS. The following section discusses the manufacturing

process and mechanical properties associated with hot stamping steel grades.

1.1.1. Hot Stamping Process

Hot stamping was first patented by a Swedish company for manufacturing lawnmower blades in 1977
(Karbasian and Tekkaya, 2010). The automotive industry eventually recognized the strong benefit in
light-weighting, and the first vehicle to consi$hot stamped parts emerged in 1984 (Berglund, 2008).
Since then, the usage of hot stamped components in vehicles has rapidly increased. VOLVO vehicles,
for example, have increased the mass percentage of total BIW in XC90 models from 7% in 2003 to
40% in 2014, according to Moret al. (2017). Today, the list of common hot stamped components

includesbumpers, roof rails, Aillars and Bpillars.

Modern hot stamping technology is broken down into two different methods: (i) direct hot stamping
and (ii) indirect hot stamping, as illustratedkigure5. In the direct hot stamping method, the blank
is heated in a furnace above theA@mperature of approximately 8%D(Merkleinet al, 2009). Once
the blank is fully austenitized, it is quickly transferred to a die in which forming and quenching take
place simultaneously. In order to ensurerdggiredminimum cooling rate, watezooled dies are used
in the forming process (George, 2011). In the indirect method, the blank is cold stamped prior to the

furnace stage, and the subsequent process follows the same steps.



(a)direct
hot stamping
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Figure 5: lllustration of (a) direct hot stamping and (b) indirect hot stamping processes, adapted
from Karbasian and Tekkaya (2010)

The high strength of hot stamped components is mainly attributed to the martensite phase
transformation during forming and -oie quenching that areases the flow stress of material
(Karbasian and Tekkaya, 2010). For this reason, the cooling rate of the blank during the forming stage
plays a crucial role. In order to predict the resulting microstructures for a given cooling rate, a
continuous cootig temperature (CCT) diagram can be referenced, as shduguime6. For 22MnB5
steel, which is the most commonly studied hot stamping alloy, theatmiioling rate to avoid the

bainite and ferrite transformation is 27 K/s, according to Tekkagh (2007).
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Figure 6: CCT diagram for 22MnB5, adapted from Tekkayaet al.(2007)
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1.1.2. Hot Stamping Process Parameters

Understanding the key parameteositrolling the rate oheat transfer between the workpiece and
die, normally quantified by the heat transterefficient (HTC) is essential in controlling the cooling
rate. For heat transfer between the tooling and bthming hot stamping, die tonnage or contact
pressure govern the HTC (Shapiro, 2008). At the microscopic level, the surfaces of the blank and tool
are not entirely in contact due to surface irregularities. Contact spots experience direct metal
conduction, vhile the resbf the surfaceexperiences radiate or conductve heat transfethrough an
air gap (sed-igure 7). Since the thermal conductivity via dat metal conductance is significantly
larger than that via an air gap or fltfilled intersticesas noted by Fenech (1959), the majority of the
heat transfer will occur at the contact points, and thus, HT@Quiing hotstamping is primarily
governed bythe area of spot contacts. general by increasing the die tonnage or contact pressure,

surface asperities become more flattened, and the total area of contact sngreimggea rise in HTC.

TR

E///////////$ /L/// |

Surface irregularities

Spot Contact Radiation &
Gas conduction

Figure 7: lllustration of contact surface between blank and die at the microscopic level, adapted
from George (2011)

The significance of contact pressure in determining HTC was pointed out and studied by numerous
authors (Merklein and Lechler, 2008; Salomonssbal., 2009; Oldenburg and Lindkvist, 2011,
Georgeet al, 2012; Caroret al, 2013 Omeret al.,2020. Merklein and Lechle(2008)adoptedan
analytical approach in determinitigeHTC of Usibor® 1500AS at different contact pressures. In that
study,the temperature history of the blanks was measured during quenching and fit to theoretical heat
transfer equations. Theesults have shown that the averaged HTC approximately increased in a linear
relationship from 700 W/AK to 3000 W/mK with varying catact pressure from 0 MPa to 40 MPa.
Similarly, the experimentatharacterizatiorby Omeret al. (2020) of HTC of Usibor® 1500AS

showed a linear relationship with the contact pressure from 0 to 30 MPa. On the other hand,



Salomonssoet al.(2009) conduct# an inverse analysis in determining HTC. The experimental setup
was modelled in numerical simulation using-D$na and optimization analyses were conducted so

that themeasuredemperature history of the blankasreproduced in the model.

1.1.1. Hot Stamping Steel Alloys

Hot stamping steels are commonly referred to as boron steels. As the name suggests, such steels utilize
boron as an alloying element for improved hardenability. The underlying mechanism has been
characterized as the segregation of boron eratfstenite grain boundary which results in suppression

of ferrite nucleation (Taylor and Hansen, 1990; Taylor, 1992). As a result, more austenite remains at

lower temperatures during quenching and is available for martensite formation.

The hot stampig steel considered in this research is Ductibor® 4880 manufactured by
ArcelorMittal. The carbon content of Ductibor® 108@ falls between the two other steel grades from
the manufacturer, namely Usibor® 1588 and Ductibor® 50A\S, as shown inTable 1. The
maximumboron contenin Ductibor® 1000AS isthe same as Usibor® 15@&%5 and Usibor® 2000
AS, which createsa predominantlymartensitic microstructure after hot stamping,regorted by
Samadian and Abedini (2020).

Table 1: Chemical composition (maximum weight %) of ArcelorMittal hot stamping steels, from
ArcelorMittal ( 2027)

Material C B Mn P S Si Cr Al Ti Nb N Fe
Dgg(t;t;g@ 0.08 0.001 1.70 0.030 0.01 035 0.2 0.06 0.09 0.1 0.01 remaning
Ductibor® .
1000AS 0.10 0.005 1.80 0.030 0.01 060 0.2 0.06 0.05 0.1 0.01 remaning
Usibor® .
1500AS 0.25 0.005 140 0.030 0.01 040 05 0.06 0.05 - 0.01 remaining
Usibor® .
2000AS 0.36 0.005 0.80 0.030 0.01 080 0.5 0.06 0.06 0.07 0.01 remaning

The mechanical properties of Ductibor® 16088 also fall between the twof three)other steel grades,

as shown imable2.



Table 2: Mechanical properties of ArcelorMittal hot stamping steels after hot stamping and paint
baking, from ArcelorMittal (no date; 2016a; 2016b; 2016c2016d)

Yield Ultimate Tensile Fracture Bending
Material Strength Strength Elongation Angle
(MPa) (MPa) g ©)
Ductibor® ]
500AS 408 657 0.189 090
Ductibor® ;
1000AS 849 1067 0.056 075
Usibor® ;
1500AS 1141 1553 0.046 050
Usibor® ;
2000AS 1462 1848 0.054 045

Usibor® 1500AS belongs to a family of 22MnB5 alloys, with UTS above 1500 MPa. Several authors
have extensively studied the flow and fracture behaviour efjgemnched 22MnB5 (Bardelci¢ al,

2012; ten Kortenaar, 2016; Ostlustial, 2016, Samadiast d., 2020). Among these researchers,
Samadianet al (2020) specifically investigated the effect of quench rate on the resultant
microstructures. Fully austenitized samples werefoitcedair-, and aircooled separately and yielded
100% martensite, a ntixre of bainite and martensite and 100% bainite microstructures, respectively.
The fracturdoci and flow curves of the muiphase (forceair-cooled) microstructures were modelled
through a mean field homogenization approach in which the macroscopiemuatiproperties are
calculated by statistical averaging of the phases present in the microstructure. On the other hand,
Bardelciket al (2012) predicted the flow response of the rapittase microstructure based on the
measured Vickers hardness. Givea éxtensive past research on this alloy, 22MnB5 currently serves

as the benchmark in the list of boron steels.

Ductibor® 500, on the other hand, exhibits a UTS up to 810 MPa, depending upon the quench rate,
and substantially higher fracture elongationntiasibor® 1500AS (Samadiaret al, 2018). The
fracture behaviour of the alloy also has been studied by Sanmetd#r(2019). Ductibor® 100AS
carries a very little published literature on the characterization of constitutive and fracture behaviour

to-date and is the topic of ongoing work by researchers at the University of Waterloo.

One approach to tailoring the local propertigthin a hot stamped component is achieved using a
blank comprising different steel grades and gauges joined by aMalsiing process. Such a blank is
commonly referred to as a Tailor Welded Blank (TWB). The main advantage of TWBs is the weight

reduction by strategically placing the heglstrength or thicker gauge portion at BIW areas where
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structural stiffness is desired (Merklahal.,2014). In studying the potential applications of TWBs in
vehicle structures, Munerd al (2008) demonstrated a 20weightsaving in a door ring comising
tailor welded Usibor® 150@S and Ductibor® 50S. Similarly, the numerical studies by Tummers
(2020) demonstrated a 27.6% weighwing in the front subssembly of a commercial SU¥sing
tailor welded Ductibor® 100@S and Usibor® 150@A\S. Theaxial crushexperimers by Peisteret

al. (2018)consideredlouble hat channetsomprisingtailor-welded Ductibor® 50AS and Usibor®
1500AS. They reporteda 12% increase in energy absorption compared tetaitmmed channels
composed entirely of Ductibor@DB-AS.

1.2. Material Modelling for Sheet Steel

In the vehicle design cycle, the development of a new material is followed by material modelling for
finite element implementation within forming and crashworthiness simulations. In this section,
different approaches in modelling the plasticity and fracture response of sheet steel are discussed. The
discussion is tailored towards consideration of material characterization and modelling appropriate for
a UHSS sheet.

1.2.1. Plasticity Response

Linear elaficity and infinitesimal strain assumptions have their merits in structural analysis for
simplicity; yet, many challenging problethsuch as metal forming or crash simulati@risvolve
plasticity to a greater extent. For that reason, the automotive inthasteyneed for accurate plasticity

modelling in finite element implementations.

In general, there are two approaches in modelling plasticity: pHyagsd approachesgersus
phenomenologicabased approaches. The phydiesed approach studies the miment of atoms and
deformation of grains at the microscopic level, while the phenomenological approach mathematically
models the measured material behaviour at the macroscopic or continuum level (Khan and Huang,
1995). Adopting a mesh size as small assihe of grains in polycrystalline is computationally costly
in many industrial applications in which problems are usually simulated at the macroscopic scale.

Hence, the phenomenological approach is usually adopted.

Phenomenological plasticity, at its coi®built upon three cornerstones: (i) the yield surface, which

sets the boundary between the plastic and elastic deformation states (ii) the hardening law, which
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determines how the yield surface evolves following onset of yielding, and (iii) the floywviieh
relates the stress and plastic strain ridtatjbenhoft, 2002).

1.2.1.1.Hardening Behaviour

In the physical description, hardening behaviour stems from the mechanism of dislocations. As more
dislocations are generated during deformation, a higineount of stress is required to sustain
dislocation motion along slip planes (Bergstrém, 2015). Taylor (1934) was perhaps the first to
physically describe the hardening behaviour of metals in terms of dislocation density:

sflow: £b\/ (f) (1)

Where,, is the flow stress, is a hardening parameté@is the shear modulugis the magnitude

of the Burgers vector, is the true strain antlis the dislocation density.

As noted by van den Boogaard (2002), the key aspect in modelling work hardening lies in predicting
the evolution of dislocation density, and authors includBeggstréom (1983) have developed models

for predicting the dislocation evolution based on several mechanisms such as immobilization,
remobilization and annihilation. While the remaining section focuses on phenomenological

descriptions of work hardeningdatailed summary is presented by Bergstrom (2015).

Phenomenologically, the hardening réde  ¥Q -decreases continuously from a high value to

zero for polycrystalline metals (van den Boogaard, 2002). Over the decades, many authors (Holloman,
1945; Voce, 1948; Zerilli and Armstrong, 1987) developed models to capture such saturation
behaviour in various forms. One example is the model, developed by Hockett and Sherby (1975), that
describes flow stress saturation at large strain under roomramgeconditions using the following

relationship

S tow = S -exp( (N 9m)( & ) 2

Where, s the saturation stress, is the equivalent plastic straip, is the yield strength and and

a are calibration coefficients, respectively.
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In addition to the plastic strain, the flow stress of a metal is governed by other variables such as
temperature and strain rate. To account for the effects of these variables, Johnson and Cook (1983)

assumed a multiplicative form of three functions as follows:

. e e ® TT "
= @A +B €l - 0
Show=8A B & g néego %1 :r_rgt‘e'?o 3

The first function describes power law hardening with yield sthemsd hardening parametérsand

€. The second function accounts for the strain rate sensitivity through coefticagnt the reference
strain rate- . Lastly, the temperature sensitivity is described by the third function with thermal
softening coefficientt and reference temperaturé and melting temperatur€,. (Note that the
parametem has differing meanings in Equatio(® and (3).) Due to themultiplicative coupling
assumptioninherent in the Johnse@ook modelit fails to capture complex material behaviour such
as that of AI7039, as reported by Gray al (1994). Nonetheless, the model is widely used for its
simplicity and has been extended in different forms (Beevikl, 2001).

Phenomenological charadtaation of the hardening behaviour of hot stamped steels takes two steps:
(1) conducting uniaxial tension testing until diffuse necking and (2) extrapolating thestteasslata
to account for large strain. Although the tensile data can be fittedrdering models beyond the
experimental range, such a metlwashcause a significant deviation in post necking behaviour based
on the choice of model. A recent analytical method by Rahratah (2017) presents a solution in
which one conducts a complemarnt coupon test that does not develop a necking instability such as
simple shear and then extrapolates the tensile data using the stress ratio between shear stress (from the
simple shear test) and equivalent stress (from the uniaxial tensile test).id e ahtained by plastic
work equivalence analysis, and detaitigbcription of this approadhk provided by Rahmaweet al,
2017. The extrapolated curve is fitted to hardening models with additional constraints such as the
Considere criterion that equatthe hardening rate to the true stress. Finally, the fitted model with the

least error is selected.

The hardening behaviour of hot stamped steels varies significantly under different quench
conditions. To perform tensile and simple shear testsbroad range of aguenched specimens
time-consuming and repetitive. For such problems, the Tailor Crash Models | and 1l (Baedelkik
2012; Bardelciket al, 2014) offer a convenient solution in which the flow stress is predicted by the

measured \dkers hardness following quenching. The use of Vickers hardness was justified by the
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observed linear dependency with the area fraction of martensite, banitie and ferrite phases in the

guenched specimens.

Figure8 shows the hardening behaviour of Usibor® 2@ and Ductibor® 50AS under a water
cooled, diequenched condition. The Usibor® 158@ data was fitted to a Voce model and multiplied
by an exponetal-type strain rate sensitive function due taridk et al. (2001) by Bardelcilet al.
(2012). The quasstatic hardening curve of Ductibor® 5@&® was modelled by Samadiahal.(2018)
and modified to include strain rate sensitivity using the Joh@mmwk function by Abedini (2019).
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Figure 8: Flow curve of water-cooled, diequenched Usibor® 1500AS by Bardelcik et al (2012)
and Ductibor® 500-AS by Samadianet al.(2018) and Abedini (2019)

1.2.1.2.Yield Criterion

Due to the intrinsic properties of rolled sheets, some level of anisotropy is inevitable in sheet steels.
Austenitizing at high temperatures, such as ¥5dargely removes planar anisotropy for 22MnB5, as
reported by Huet al. (2017). For this reason, o researchiowardsmodelling hot stamped steel
(Ostlund, 2015; ten Kortenaar, 2016; Samadigal, 2020) assumes isotropic yield functions to this
day. One of the earliest and most famous example of such isotropic yield criteria is due to von Mises

(1913), with the following expression:

1
1 2 2 21>
Seq =133, =\/—§{( s -8 (+s Js( 2+53)}% (4)
Where is the second deviatoric stress invariant and ,, are the principal stresses.
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Yield criteria often describe what 1is consider
convenient approach to visualizing the material stressretaiéting in plastic flowA pointin principle

stress spacean either be inside (elastic loading) or outside (plastic loading) the surface. However, the

latter case is not physicsinceplastic loading is accompanied by distortion (hardening) of thkel yi

surface such that the stress state remains on the expanding yield surface. In mathematical form, this
condition can be expressed as

S.,- §D (5)

eq

in which,, is the equivalent stress, calculated by a yield criterion,, aadhe flow stress, obtained

from a hardening response of materials.

1.2.1.3.Flow Rule

The | ast constituent of the phenomenol ogical p |
relates strain increment to stress in the theory of elasticity, thedlewelates plastic strain increment

to stress in the theory of plasticity. In the flow rule, however, the direction of plastic strain increment

is governed by a separate function known as the plastic potentialrthermore, its magnitude is

calibratel by theplastic multiplierQ _through the following relationship

_ 4 W
dep =d/ E (6)

The partial derivative term- enforces the requirement that the yield surface will grow in the normal

direction to the function. In the associated flow rule (AFR), the plastic potential function is assumed
to coincide with theyield function. Inthe case othe von Mises(1913)yield criterion, Equatior{6)

reduces to
dep =d/N )

in which N, the normal to the yield surface, becomes

N=E ®)
pl
Equatiors (4) to (8) are examples of soal | ed ficonstitutive relations

behaviour of materialandarecommonly solved computationally in finite element problems.
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1.2.2. Fracture Response

In predicting the fracture response of ductile metals, three categories of models exist: @) micro
mechanical damage models, (ii) Continuum Damage Models (CDM) and (iii) phenomenological
models. In micromechanical damage models, theedfevoid growth or coalescence at the microscale

is incorporated into a constitutive relation. Such an example is the Gurson (1977) model, with the idea

of narrowing the yield surface as the volume fraction of voids increases. In contrast, the two latter
models aim to express the fracture response of
macroscopic scale. In CDM, the interplay of such microscale defeefgrésenteds a scalar variable,

damage. As explained by Lemaitre (1985), the presenoécadcracks in the continuum element with

normal vector gives damaged ar€¥ from the total crossectional aredy as shown irrigure9.

Figure 9: lllustration of a continuum element with damage caused by microcracks (Lemaitre,
1985)

A decrease in crossectional area corresponds to a reduced-éaauying capacity; hence, the effect

of damage should increase. From this notion, the definition of damage is expressed below.

A value of camageequal tounity corresponds to the onset of failure. For damage betoty, the
effective stress of the element undectiond| is defined in terms of damage and Cauchy stress tensor
(@3 1)) by the following relation:
a
1-D
In phenomenological models, fracture in a continuum element is perceived as a sudden event that

= (10)

occurs when the equivalent plastic straipj,reaches the fracture straif, that is governed by the
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strain path or stress state (Abedini, 2018). The two key parameters in describing the stress state are

stress triaxiality€) and Lode angle-§ whose expressions follow

S 1/3l
p="td —__/31 (11
Seq 3
1 ,83/33
:§C0518£7f?2 (12)
Where,, is the hydrostatic stress, is the von Mises equivalent stre¥3,is the first stress

invariant and0, 0 are the second and third deviatoric stress invariarts. [ bde angle—is also

related to the normalized Lode angler the Lode parameterwhose expressions follow

g=1 % E —zbarccos,‘ (13
3]

X=c0s(39 ‘_'STIJTZ (14)
2

Early studies by several authors (McClintock, 1968; Rice and Tracey, 1969; Gurson, 1977,
Tvergaard and Needleman, 1984; Johnson and Cook, 1985) all have shown the strong effect of stress
triaxiality on ductile fracture. In particular, Rice and Tracey (3%40died the growth of a spherical
void in an infinite matrix subject to uniaxial tension and concluded the relationship with material

constant :

d—: =a exp%% (15

¢ ea

Equation(15) was later visited by Hancock and Mackenzie (1976) to postulate that the failure strain

shall be inversely proportional to the hole growdke and thus, the following relationship holds:

8 = a&xp( 23;'“ ) (16)
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Since then, the exponential dependency of stress triaxiality became a foundation for subsequent
fracture models developed by Johnson and Cook (1985), Wierzbicki anB08) and Bai and
Wierzbicki (2008).

Recent studies, however, further pointed out Lode asgpeendence on ductile fracture (Wierzbicki

and Xue, 2005; Bai and Wierzbicki, 2010). One example that considers both parameters is the model
developed by Bai anwierzbicki (2008) in which fracture strain is assumed to have an exponential
dependence on triaxiality and parabolic dependence on Lode angle:

=3 =§%(Dle-'°z” +D,6%) D™’ ﬁz, —;{ De® " Q&) g pé& (17)

in whichO to'O are calibration constants. The above relationship gives rise to visualizing a fracture

locus in 3D space, as shownFigure10.

Fracture strain
w

-0

0.4 ' : ~ 05
0.6 i
08 1.0 - <7 Lode angle
Stress triaxiality 1.2 parameter

Figure 10: Example of a fracture surface (Basararet al, 2010)

For plane stress conditions, Wierzbicki and Xue (2005) showed tlaaidstional relation holds

between stress triaxiality and Lode parameter given by

27 1
=_é2- 18
X 5 9/73 (18

Combining Equatios(13) and(18) with Equation(17) results in direct dependence of fracture strain
on triaxiality (for plane stress conditions) and generaggarge stress fractutecusthat lines within

the generalized fracture surface, as showRigure 10. Consequently, for sheet metal, for which a
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predominantly plane stress condition exists, treedbci are often simplified into 2D curvexpressed
solelyas a function of stress triaxiality. Typical examples of 2D fradtgeare shown irFigure11

for different quenched conditions of Usibor® 1588 (Samadianet al, 2020). To construct
phenomenological fractureci, fracture strains at various triaxial stress states are obtained by
performing calibration tests. Such tests consisbat are not limitegdto shear, uniaxial tensile, plane
strain dome orbend, and biaxial dome tests with different punch diameters.

Mixed-shear-tension zone Drawing-stretching zone

< (=]
=} o

=]
=

Equivalent fracture strain

Air-quenched Usibor®1500-A8 (100%B)

=
[

—0il-quenched Usibor®1500-A S (100%M)

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Stress triaxiality

Figure 11: Fracture loci of Usibor® 1500AS in two different quench conditions, adapted from
Samadianet al.(2020). Experimental points were obtained from butterfly, hole expansion, plane
strain tensiondome, v-bend and biaxial tensiondome testsThe dashed and solid lines represent
fracture curves based on the plane strain tension dome andbend tests, respectively.

Unlike calibration tests, most problems in metal forming and crashworthiness involve severely
nonlinear strain paths. In d&r to predict fracture in such problems, one solution is to utilize an
incremental CDM approach such as the Generalized Incremental Stresdeptident damage
MOdel (GISSMO) developed by Neukanehal. (2009. In the GISSMO approach, the incremental
damage is described as:

de 19
S (19
whereQ Qs the incremental damag®, [ is the incremental plastic strainjs the damage exponent

to allow nonlinear accumulation ar{is the equivalent fracture strain, which can be obtained from

the phenomenological fractukecus When the damage reaches a value of unity, the corrdsmp

element in finite element simulation is deemed to no longer possessalogiohg capacity. This
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damage treatment is available in commercial finite element software, such a®yma$Livermore
Software Technology Corporation, 2016) which was usettie current research, to trigger element
deletion due to material fracture (*MAT_ADD_EROSION keyword).

Mesh (element) sizes also need to be taken into account in predicting fracture. Mesh convergence
in thefinite element method states that asdlement size decreases, the solution converges (Fish and
Belytschko, 2007); however, mesh convergence is often not achieved for fracture prediction. Consider
the simulation of a plane strain domeHigure12 in which Elleret al (2014) showed that equivalent
plastic strain increases with decreasing element size. Since the phenomenological fracture strain
remains constant for a given stress tadiky, damage would accumulate faster with increasing
equivalent plastic strain according to Equat{@d). Thus, a smaller element would reach fracture

soone, which is not physical.

Figure 12: Effect of mesh refinement on equivalent plastic strain during plane strain simulation
in LS-Dyna (Eller et al, 2014)

One approach to account for or limit the effect of element size on fracture prediction is by performing
mesh regularization. In the mesh regularization process, fracture calibration tests are numerically
simulated with different element sizes within theuatcoupon geometry. Then, the phenomenological
fracture curve is scaled accordingly for each mesh size such that numerical response, such as the
predicted limiting dome height or forcisplacement at failure, matches that of the test resudpsre

13shows an example of mesbgularized fracture curves for fully martensitic 22MnB5.
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