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Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are a class of stable, atomically-
thin monolayer materials with unique mechanical and electronic properties, leading to several
proposed applications in electronics and optoelectronics. This thesis presents two studies in
which ab-initio numerical simulations based on the Non-Equilibrium Green’s Function method
were used to model the performance of these materials in photodetector and tunnel field-effect
transistor (TFET) devices.

The first study presents the design and operation of a MoS2 photodetector, in which the superior
electrostatic control provided by the atomically thin device channel allows for the design of a
unique, ‘grounded-gate’ device where the source and gate controls are permanently connected.
This is done in order to introduce a rectification effect which suppresses the dark current to
increase the device’s sensitivity. Numerical simulations using an effective-mass approach to model
the electronic states of the channel, along with an analytical model for photoconductivity, were
used to explain the device operation and reproduce trends in the experimental data. The resulting
experimentally-fabricated device shows a high sensitivity of 1.01 A/W and detectivity above 6
× 1010 Jones. Using the simulations, it is then suggested that engineering the gate metal work
function can lead to an additional increase in sensitivity by three orders of magnitude.

The second study presents the numerical design and performance analysis of a strained PtSe2
TFET which can deliver high ON-currents. Though they can provide the high level of electrostatic
control required to achieve steep-switching, monolayer TMD TFETs typically do not have high
ON-currents due to high bandgaps, high effective masses, and/or lack a direct path to facilitate
band-to-band tunneling. However, these materials are highly flexible, and mechanical strain is
able to modulate the electronic bandstructure of PtSe2 to an extent where it can show ideal
properties for use in TFETs. Under biaxial tensile strain, its bandgap and effective mass can
be reduced significantly, and a direct path for tunneling emerges. Simulated results show that a
double-gated PtSe2 TFET device strained to +5% can drive an ON-current above 100 µA/µm
while maintaining an OFF-current below 1×10−7 µA/µm and a sub-thermionic subthreshold
swing. This improvement comes at a reasonable cost of OFF-current degradation and minimal
effect on the switching characteristics down to 10 nm channel lengths. These results present the
flexibility of monolayer TMDs as a powerful tuning parameter towards their use in tunneling
devices.
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1

Introduction

As we approach the physical and material limitations of bulk silicon for (opto)electronic devices,
we require new electronic materials that can show high-performance, low-power consumption,
and/or strong light-matter interactions. The class of two-dimensional (2D) materials present
promising contenders to satisfy these requirements. In these materials, covalent bonds occur
within an atomically thin layer, and interlayer interactions are limited to weaker Van der Waals
forces. As a result of this, they can be easily exfoliated into stable, individual monolayers. Al-
though the most famous example is graphene [1], since its discovery in 2004 multiple other metallic
and semiconducting 2D materials made with different atomic species have been grown experi-
mentally. Theoretical studies have identified over one thousand stable monolayer materials which
could potentially be grown or exfoliated from their bulk counterparts [2]. Fig.1.1 illustrates some
of the configurations which these monolayers come in, including planar, buckled, and sandwich
structures.

Applications of these materials range from transistors to optoelectronics to biosensing (Fig. 1.2),
where their unique electronic and material properties can be harnessed to design devices. For
transistors, they offer the possibility of scaling the channel down to an atomic thickness. Fig.1.3
presents a schematic of the traditional bulk planar MOSFET, as well as several modern device
architectures which display better electrostatic control. The Ultra-Thin Body Silicon on Insulator
(UTB-SOI) FET and the FinFET present much thinner channels, and the resulting superior
gate-control leads to lower leakage currents in the OFF-state and sharper subthreshold swings.
However, these methods of architectural optimization run into problems when scaled down to the
atomic level as they encounter fundamental limitations of the channel material itself; quantum
confinement, edge roughness, and short-channel effects begin to play a large part in the quality
of device operation.

In 2D FETs, the channel thickness can be reduced to the order of 0.5 nm (compared to UTB-SOI
FETs and FinFETS where this is still in the tens of nanometers) while avoiding many of these
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Figure 1.1: Schematic illustrations of different configurations of 2D monolayer materials, including
monoatomic planar sheets such as graphene, chalcogen-transition metal-chalcogen sandwiches
such as molybdenum disulfide (MoS2), diatomic planar sheets like hexagonal boron nitride (h-
BN), and buckled structures such as black phosphorus. Adapted from Ref [3]

Figure 1.2: Potential applications for 2D layered semiconductors, in Back End-of-Line (BEOL)
and Front End-of-line (FEOL) electronics. Market opportunity and complexity are indicated by
the size and location of each application. Adapted from Ref [4].

issues. The lack of atomic bonds in the out-of-plane direction leads to a reduced extent of interface
scattering, allowing several 2D materials to show far higher carrier mobilities when compared to
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Figure 1.3: Schematics of several transistor architectures, include the conventional bulk Metal-
Oxide-Semiconductor (MOS) FET, Ultra-Thin Body Silion-on-Insulator (UTB-SOI) FET, verti-
cal Fin FET, and a 2D FET in which the channel is a monolayer 2D material. Adapted from Ref
[5].

bulk-counterparts scaled down to a similar thickness [5]. The thinness of the channel leads to
a sharper variation of electrostatic potential at the source-channel and channel-drain interfaces,
helping to mitigate certain short-channel effects [4, 5]. 2D electronics also offer the possibility of
new architectures which are not achievable with conventional bulk semiconductors. Several new
sharp-switching devices, such as the Tunnel Field-Effect Transistor (TFET), require an incredibly
high level of electrostatic control in order to achieve their theoretical potential in operation, and
narrow-gap 2D materials have therefore been extensively investigated for such devices [6, 7, 8, 9].
The lack of interlayer bonds also allows for 2D monolayers to be vertically stacked without
concern for lattice-matching [5], which leads to the possibility of new, vertically-integrated ‘3D’
chip designs [10].

Another application in which 2D TMD materials have displayed potential is in the development
of photodetectors. Photodetectors, or devices which convert an optical input into a current
signal, are present in a variety of optical sensing, imaging, and communication systems. They
typically consist of a semiconducting material in which photogenerated excitons are separated by
an electric field. The performance of a photodetector is then dependent on the intrinsic ability of
a material to absorb light to form excitons. To this end, photodetectors made with direct-gap 2D
transition-metal-dichalcogenides (TMDs) can show incredibly high optical absorption; a single
monolayer of MoS2 can absorb the equivalent of 50 nm of bulk silicon [11]. Within the visible
range, 2H-MoS2 has the highest absorption of near 27% (Fig.1.4a), and it is consequently the
most popular TMD used for optoelectronic applications.

Photodetectors are typically characterized by their responsivity (variation of output signal com-
mensurate with the amount of incident light), detectivity (sensitivity to low input signals) and
response time (speed of output variation in response to variation in the input signal). Fig.1.4b
and c display these figures of merit as previously reported in literature for several 2D TMD ma-
terials such as black phosphorus (BP), MoS2, WS2, and WSe2. For comparison, those of bulk
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Figure 1.4: a. Absorption of several 2D monolayers (in %) at energies 1 eV < ~ω < 5 eV, from
the near infrared (NIR) to deep UV, adapted from Ref [12]. Responsivity (b.) and Detectivity
(c.) values from literature for several 2D materials and bulk materials commonly used in pho-
todetectors, as well as graphene/colloidal quantum dots (Gr-CQDs), and quantum dots (QDs).
Adapted from Ref [13].

materials such as silicon, indium gallium arsenide, and germanium are also pictured. Compared
to the bulk material devices, those made with TMDs typically show higher responsivity at the
cost of a reduction in response time. MoS2 in particular shows both outstanding responsivity and
detectivity values, which has been seen in many previous reports [14, 15, 16].

The atomically thin nature and lack of interlayer covalent bonds also allows these materials
to show high levels of flexibility and mechanical robustness [3, 17], which introduces numerous
straintronic applications that conventional rigid semiconductors are too brittle for. In particular,
monolayer MoS2 can withstand high tensile strains of up to 11% before rupture [18]. Successfully
depositing these materials onto flexible substrates could result in the development of highly robust
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wearable electronics. In addition, mechanical strain can be used as a tuning knob for electronic
properties; the material bandgap, effective mass, and carrier mobility all vary as the orbital
structure changes with applied strain [19].

This thesis outlines two projects in which ab-initio quantum transport frameworks have been used
to design and evaluate 2D material nanoelectronic devices. These designs exploit their unique
material properties (eg, atomic thinness, strong light-matter interactions, and flexibility) which
allow them to show superior performance to conventional bulk semiconductors in the ultimately-
scaled device regime. The organization is as follows: Chapter 2 provides an overview of the
numerical methods used to simulate the performance of TMD-based devices in this thesis. These
methods are then used in two seperate studies, which are detailed in Chapters 3 and 4. Finally,
we conclude with a discussion of potential future work to extend these studies.
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2

Simulation Methods

In the absence of mature fabrication methods for new materials, numerical simulations have
been an invaluable tool to evaluate their potential prior to designing devices. For the field of
2D-material electronics in particular, much of the work has been computational, from materials
discovery [2] to device performance assessment [20]. The methods used to simulate these devices
have ranged from analytical models, to semi-classical drift diffusion, to the most accurate full-
band quantum-transport simulations. Figure 2.1 shows some of these methods in an order of
accuracy (and consequently, computational demand) for calculating the electronic properties of
the 2D materials used in device channels (top row), and simulating carrier transport through
devices made with them (bottom row).

The dimensions of the devices simulated in this thesis are well within the regime where quantum
effects such as tunneling begin to occur, so simple analytical models are inaccurate. However,
these short channel lengths are on the same order of magnitude as the diffusion lengths of indi-
vidual carriers, and transport is mostly ballistic. To achieve a compromise between an accurate
reproduction of quantum mechanical effects and manageable computational burden, in this the-
sis the Non-Equilibrium Green’s Function (NEGF) based transport model is employed under a
ballistic transport approximation.

The electronic states of the channel are describes with two different approaches; the phototran-
sistor channel in Chapter 3 is modelled with a simple analytical effective-mass model which is
sufficient to describe the dark current, and the TFET in Chapter 4 is simulated using a Hamilto-
nian made with Maximally Localized Wannier Functions (MLWF) which can accurately capture
the variation in band position when strain is applied. In the latter approach, electronic bandstruc-
tures are first calculated using Density Functional Theory (DFT), then a basis set of Maximally
Localized Wannier Function (MLWF) orbitals is selected which best fits this DFT calculation,
and finally this set of MWLFs is converted into a Hamiltonian matrix of interaction parameters
which can be used to represent the material in device simulations.
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Figure 2.1: Modelling approaches used for the calculation of material electronic properties (top
row), and device transport (bottom row), pictured from most complex (left) to the simplest
analytical model (right). Adapted from Ref [21].

This chapter briefly introduces some of the methods used in the following studies. Although the
entire formalism of DFT is outside the scope of this thesis, I summarize it briefly in section 2.1 and
then focus on the methods used to extract and post-process the relevant parameters calculated
with the Quantum Espresso DFT code. Section 2.2 then reviews how these quantities are used
in the NEGF transport framework.

7



2.1 Electronic Structure Calculations for 2D TMDs

2.1.1 Density Functional Theory

The Density Functional Theory framework for electronic structure calculations is based on the
idea that all physical properties of a system can be calculated using knowledge of the electron
density n(r)1. The core process requires iteratively solving for the wavefunctions, which are found
as the eigenstates of the Hamiltonian:

H[n(r)]ψj(r) = εjψj(r) (2.1)

and the electron density, which is the sum of the squared wavefunction over all space:

n(r) =
∑
j

fj |ψ(r)|2 (2.2)

where H[n] is the Hamiltonian (a non-trivial function of the electron density n(r)), ψj(r) are
atomic orbitals, εj are the corresponding eigenvalues, and fj is the occupation factor of state j.
I use the notation of ‘f(x)’ to define a function of x (takes a scalar x and outputs a scalar) and
‘F[x]’ to define a functional of x (takes a function x and outputs a scalar). In this case, there is a
unique energy for every unique electron density (defined for values of r), so the Hamiltonian is a
functional of the density in Eqn.2.1. The density is further constrained by the condition that it
must be equal to the total number of electrons N in the system when integrated over all space.

Equations 2.1 and 2.22 are solved self-consistently. We first input a unit cell, specifying the
identities and locations of all the atoms within it. Then, the corresponding initial atomic orbital
information is used to create a ‘trial’ electron density n0(r). This n0(r) is used to form the
hamiltonian H[n(r)] in Eqn.2.1, which is then diagonalized to find a set of atomic orbitals ψj(r).
This set of atomic orbitals is used to recalculate the electron density n(r) in Eqn.2.2. The
process above is repeated until the differences in the atomic orbital set and electron density
across iterations are both below a prespecified tolerance.

A significant part of the DFT framework is then dedicated to finding an expression for and solving
H[n(r)]. We know that the form of the one-electron Hamiltonian is:

H =

[
~2∇2

2m
+ U(r)

]
(2.3)

1Kato’s Theorem [22]
2These are the ‘Kohn-Sham’ equations.
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Where m is the electronic mass and U(r) is an external potential. However, this form does not
include electron-electron interactions, and so when used for a system of N electrons it represents
the ‘non-interacting’ case which may have a very different density n(r) from the same system
with interactions considered. Since all quantities are being derived from n(r), this quantity
should ideally be exact in representing the full, interacting system.

To address this, an ‘effective potential’ Vs(r) is used, defined such that if Vs(r) is used in place
of U(r) in Eqn.2.3, the resulting electron density of the non-interacting system will be equal to
the density of the corresponding interacting system. The form used for Vs(r) is:

Vs(r) = U(r) + e2
∫
d3r

n(r’)

|r - r’|
+ Vxc(r, [n(r)]) (2.4)

where the first term is the usual external potential, the second term is a Coulomb repulsion, and
the third term is an exchange correlation potential - a ‘virtual’ potential term which forces the
density to match that of the interacting system. Both the second and third terms depend on the
electron density, which depends on the orbitals, which depend on the Hamiltonian, which depends
on this term Vs. This circular dependancy is addressed during the self-consistent procedure to
solve Eqns.2.1 and 2.2.

The difficulty has now been shifted to determining a form for Vxc(r, [n]), or the ‘exchange corre-
lation energy’ Exc[n(r)] such that Vxc(r, [n]) = δExc[n(r)]/δn(r), which can reproduce the ‘real’
density of the interacting system. Physically, Exc[n(r)] represents the energy of the remainder
of quantum mechanical interactions between electrons which cannot be described with a sim-
ple Coulomb potential. The exact value for Exc[n(r)] is not known, but there are two general
approximations used to compute it.

• Local Density Approximation (LDA) [23]

ELDAxc [n(r)] =

∫
d3rn(r)eHEGxc (n(r)) (2.5)

Where eHEGxc is the exchange-correlation energy of a homogenous electron gas (HEG) with
the same density everywhere. This is a scalar value which can be solved semi-analytically.
This form for Exc[n(r)] therefore only depends on the electron density at every point.

• Generalized Gradient Approximation (GGA) [24]

EGGAxc [n(r)] = ELDAxc [n(r)] +

∫
d3reGGAxc (n(r),∇n(r)) (2.6)

Where eGGAxc (n(r) depends on both the electron density and its derivative, and can be found
through several approximations [24]. This form of Exc[n(r)] depends on both the electron
density and its gradient, and is considered to be more accurate.
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Solving Eqns.2.1 and 2.2 also requires a set of basis functions used to define the atomic orbitals
ψj(r). In theory, this can be any set of orthogonal functions. To reduce the number of self
consistent orbitals which need to be solved by Eqns.2.1 and 2.2, the effective potential of the
atomic centers and core electrons are usually represented by pre-calculated ’pseudopotentials’
assembled into look-up tables for each atomic species. The valence electrons are then expanded
in a plane wave basis:

ψj,k(r) =
1√
NΩ0

eik·ruj,k(r) (2.7)

where Ω0 is the volume of the cell, k is a wavevector, and uj,k(r) is a Bloch function with the
periodicity of the lattice (the form for the Bloch wavefunction will be derived in the next section):

uj,k(r) =
∑
G

eiG·ruj(k + G) (2.8)

The reciprocal lattice vector G can in theory be infinite, but in practice is summed up to a value
corresponding to a maximum kinetic energy cutoff:

~2|k + G|2

2m
6 Ecutoff (2.9)

where it acts as an important convergence parameter for the self-consistent calculation. Recom-
mended values of Ecutoff are typically provided within the corresponding pseudopotential files.

The full DFT framework is able to use the converged values of the electron density n(r) and
energy functional E[n(r)] to compute physically meaningful properties. For example, the binding
energy can be determined by the differences between energy functionals for bonded and isolated
systems. The full bandstructure of the system can be obtained by diagonalizing the Hamiltonian
over a grid of k-points, from which the bandgap and effective masses can be found. And taking
the derivative of E[n(r)] with respect to atomic displacements provides information about the net
forces acting on atoms, which (in combination with global optimization methods) can be used to
‘relax’ the atomic positions within the unit cell to their lowest energy configuration.

In this report, I use the open-source Quantum Espresso [25] code to preform DFT calculations in
order to extract atomic orbitals and bandstructure information for monolayer 2D materials such
as MoS2. Typically this is done by defining a unit cell containing both the monolayer atoms (in
plane) surrounded by a 2-3 nm of free space. This vaccum space ensures that when the unit case
is periodically tiled, the monolayer is far enough apart from its periodic image in the ‘z’ direction
that interlayer interactions are negligible.
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2.1.2 Maximally Localized Wannier Functions

The wavefunctions solved for by DFT in the previous section have the form of Bloch waves, which
are periodic and defined over all space. However, in order to create tight-binding Hamiltonians
(which will be detailed in the next section), we require knowledge about the strength of interaction
between individual orbitals within a unit cell and between a unit cell and its nearest neighbor
cells. For this, the basis of period Bloch functions need to be converted into a set of localized
orbitals which can reproduce the same energy eigenstates.

This can be done by taking superpositions of Bloch functions at k-points within the first Brillouin
Zone (BZ) [26]:

w0(r) =
V

(2π)3

∫
BZ

dkψj,k (2.10)

The resulting w0 are ‘Maximally Localized Wannier Functions’ (MLWF) which are centered on
the atom within the unit cell which produced orbital ψj , and decay exponentially farther from
the atomic center. Adding an additional phase factor within the integral has the effect of shifting
this MLWF around in space, where it can be placed on the corresponding atom in another unit
cell. If R is a real-space translation vector, then the following is a wannier function translated to
the atomic center at j:

|Rj〉 =
V

(2π)3

∫
BZ

dke−ik·R |ψj,k〉 (2.11)

These MLWFs are not eigenstates of the Hamiltonian, but can be used to produce the same set
of energy eigenvalues. In this thesis, I transform the delocalized Bloch wavefunctions used in
DFT to a localized MLWF basis using the Wannier90 code [27], and extract effective interactions
between them to construct a tight-binding Hamiltonian.

2.1.3 The Tight Binding Approximation

To calculate the electronic states available in a periodic crystal, we use the fact that the electron
density must be reproduced when the crystal is shifted by the lattice constant ‘a’. For example,
in a 1D lattice:

ρ(x) = ρ(x+ a) = ρ(x+ 2a) = ρ(x+ 3a) . . . (2.12)

where ρ(x) is the electron density at position x along the lattice, which can be written as the
square of the wavefunction:
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ρ(x) = Ψ(x)∗Ψ(x) (2.13)

For equation 2.12 to be satisfied, the periodicity of the wavefunction Ψ(x) should follow:

Ψ(x+ a) = µΨ(x)

Ψ(x+ 2a) = µ2Ψ(x)

. . .

Ψ(x+ na) = µnΨ(x)

(2.14)

where µ is a constant such that µ∗µ = 1, so that the periodicity of the wavefunction is equal to
the periodicity of the lattice. To satisfy this condition, µ must be of the form:

µ = eika (2.15)

where ‘k’ has units of inverse length. Applying our constraint of periodicity ‘a’ to µ, the general
form of the wavefunction can be written as a sum of products of enika and various basis states
φ(x):

Ψ = eikaφ1(x) + e2ikaφ2(x) + e3ikaφ3(x) + . . .

=
∑
n

enikaφn(x) (2.16)

This is the general Bloch wavefunction for periodic crystals. To find the energy eigenstates of
this Bloch wavefunction at a given wavevector value ‘k’, we can take the expectation value of the
Hamiltonian:

Ek =

∫
Ψ(k)∗HΨ(k)dx

=

∫ ∑
m

e−mikaφ∗n(x)H
∑
n

enikaφm(x)dx

=
∑
n

∑
m

ei(n−m)ka

∫
φ∗m(x)Hφn(x)dx

(2.17)

The term φ∗m(x)Hφn(x) is an overlap integral between basis states in different lattice sites, and
the sum carries over every pair of unit cells in the lattice. To simplify, we can introduce two
approximations:

12



if n = m→ φ∗m(x)Hφn(x) = α

if |n−m| = a→ φ∗m(x)Hφn(x) = β
(2.18)

where α and β are constants in the case of this simple 1D lattice. The condition of n = m
corresponds to the overlap of the unit cell wavefunction with itself, to which we assign a value
of α. The condition |n −m| = a corresponds to n and m being nearest-neighbor sites, and we
can assign the same value of β to unit cells in either direction since the interactions are identical.
Equation 2.18 for a 1D lattice can then be simplified to:

Ek = α+ βeika + β∗e−ika (2.19)

This is referred to as the ‘tight-binding’ approximation, since it only considers interactions be-
tween each cell and its nearest neighbors. The tight binding approximation can be extended to
2D systems by considering vector-valued wavevectors and lattice translation vectors ‘r’:

Ek = α+ βeik·r + β∗e−ik·r (2.20)

With the eight nearest-neighbors in a 2D lattice with lattice constants ‘a’ and ‘b’, this can be
written as:

Ek = α+ βeikxa + β′e−ikxa + γeikyb + γ′e−ikyb + δ1e
ikxa+ikyb+

δ′1e
−ikxa−ikyb + δ2e

ikxa−ikyb + δ′2e
−ikxa+ikyb

(2.21)

where γ and δ correspond to the nearest neighbors in the ‘y’ direction and the diagonals, respec-
tively (see Fig. 2.3). The effect of multiple basis functions per unit cell can be added by using
matrix-valued coefficients which contain the interaction parameters between every two orbitals
in each unit cell.

2.1.4 Zone Folding

The method presented in section 2.2 requires that the unit cell of the channel material is or-
thorhombic, such that it can be tiled across the rectangular device channel. However, the 2D
materials studied in this thesis have structures are either hexagonal (in the case of MoS2) or
trigonal (in the case of PtSe2).

To satisfy this, we use orthorhombic ‘supercells’ which in place of unit cells. The corresponding
supercell in k-space is a rectangle which is contained within the hexagonal Brillouin zone. The
repeated rectangular cell in k-space then contains parts of the original hexagonal Brillouin zone
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which are ‘folded’ into it. This zone folding is shown schematically in Fig. 2.2a and b. An
example for the hexagonal primitive cell (2.2c) and orthorhombic supercell (2.2d) bandstructures
are shown in 2.2b.

Figure 2.2: First brillouin zone of a hexagonal unit cell (a), with zone folding to the corresponding
rectangular cell (b) indicated with arrows. The bandstructures for the hexagonal unit cell and
rectangular supercell are shown in (c), and (d) respectively.
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2.1.5 Complex Energy Eigenstates

To solve for the real-valued energy solutions of the tight-binding Hamiltonian (Eqn.2.21), we
can simply evaluate it at a specified real-values points in k-space. However, the full set of
energy eigenvalues includes complex-valued solutions which have real-part energy values within
the material bandgap, and correspond to spatially decaying wavefunctions. To include these
solutions, a different approach is needed. We start by writing out the eigenvalue equation for the
Hamiltonian:

[H]Ψ = EΨ (2.22)

The nearest-neighbors for a rectangular supercell are shown in Fig.2.3, which uses the following
lattice vectors:

Figure 2.3: Schematic of all nearest neighbors (cells with bold outline) for a rectangular lattice
with orthogonal basis vectors a1 and a2.

With the lattice vectors:

a1 = a ·
[

1

0

]
a2 = b ·

[
0

1

] (2.23)

Which leads to the nearest-neighbor tight binding Hamiltonian:

[H]Ψ = [α+ βeikxa + β′e−ikxa + γeikyb + γ′e−ikyb + δ1e
ikxa+ikyb+

δ′1e
−ikxa−ikyb + δ2e

ikxa−ikyb + δ′2e
−ikxa+ikyb]Ψ = EΨ

(2.24)

Where α, β, etc are matrices containing the interaction parameters between the unit cells and
their nearest neighbors, as described in the previous section. The size of each of these NxN
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matrices is N = (# atoms per unit cell)×(# basis functions per atom) = (# basis functions per
unit cell). For the MoS2 rectangular cell with 2 Mo atoms (containing 5 basis functions each
based on the 5 d orbitals) and 4 S atoms (containing 3 basis functions each based on the 3 p
orbitals), each matrix would be N = (5× 2) + (4× 3) = 22.

We will solve for all the values of the wavevector kx at pre-specified values of ky. So gather the
terms related to kx:

[H]Ψ = [(β + δ1e
ikyb + δ2e

−ikyb)eikxa + (β′ + δ′1e
−ikyb + δ′2e

ikyb)e−ikxa

+(α+ γeikyb + γ′e−ikyb)]Ψ = EΨ
(2.25)

Redefine some terms to simplify:

α̂← (α+ γeikyb + γ′e−ikyb)

β̂ ← (β + δ1e
ikyb + δ2e

−ikyb)

β̂′ ← (β′ + δ′1e
−ikyb + δ′2e

ikyb)

(2.26)

[H]Ψ = [α̂+ β̂eikxa + β̂′e−ikxa]Ψ = EΨ (2.27)

Define λ = eikxa, so that λ2 = e2ikxa and λ0 = 1

[β̂λ2 + (α̂− EI)λ1 + β̂′λ0]Ψ = 0 (2.28)

This polynomial eigenvalue equation can be solved for all values of λ with a standard QZ factor-
ization algorithm, such as the one used by MATLAB’s ‘polyeig()’ function. The solutions for kx
can then be calculated using kx = −i 1a log(λ).

For a hexagonal cell with lattice constant ‘a’ and lattice vectors as shown in Fig.2.4:

The lattice vectors for the zigzag cell (figure 2.4a) are:

a1 = a0 ·
[

1

0

]
a2 = a0 ·

[
−1/2√

3/2

] (2.29)

We can condense some of the full expression for the tight binding hamiltonian ‘H’ into ‘h’ and its
transpose:

[H]Ψ = [α+ h+ h′]Ψ = EΨ (2.30)
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Figure 2.4: Schematic of all nearest neighbors (cells with bold outline) for a (a) zigzag and (b)
armchair hexagonal lattice with basis vectors a1 and a2.

h = βei[kx ky ]·(a1+a2) + γei[kx ky ]·(a1−a2) + δ1e
i[kx ky ]·(a1) + δ2e

[kx ky ]·(a2)

= βe
i[kx ky ]·

[
1/2√
3/2

]
a

+ γe
i[kx ky ]·

[
3/2

−
√
3/2

]
a

+ δ1e
i[kx ky ]·[ 10 ]a + δ2e

[kx ky ]·
[
−1/2√
3/2

]
a

(2.31)

To simplify, let’s set ky to zero, such that our energy eigenvalue solutions will be constrained to
the kx axis:

h = βe
1
2
ikxa + γe

3
2
ikxa + δ1e

ikxa + δ2e
− 1

2
ikxa (2.32)

Plug this into Eqn.2.30:

[α+ βe
1
2
ikxa + γe

3
2
ikxa + δ1e

ikxa + δ2e
− 1

2
ikxa

+β′e−
1
2
ikxa + γ′e−

3
2
ikxa + δ′1e

−ikxa + δ′2e
1
2
ikxa − EI]Ψ = 0

(2.33)

Now we can define a parameter λ = e
1
2
ikxa and collect factors of λ:

[γ′λ−3 + δ′1λ
−2 + (β′ + δ2)λ

−1 + (α− EI)λ0 + (β + δ′2)λ
1 + δ1λ

2 + γλ3]Ψ = 0 (2.34)

Multiply out by λ3:

[(γ′)λ0 + (δ′1)λ
1 + (β′ + δ2)λ

2 + (α− EI)λ3 + (β + δ′2)λ
4 + (δ1)λ

5 + (γ)λ6]Ψ = 0 (2.35)
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Doing the same for the zigzag cell (Fig. 2.4b) with the following lattice vectors gives the eigenvalue
equation:

b1 = a0 ·
[

3/2√
3/2

]
b2 = a0 ·

[
3/2

−
√

3/2

] (2.36)

[(β′)λ0 + (δ′2 + δ′1)λ
3 + (α− EI + γ + γ′)λ6 + (δ2 + δ1)λ

9 + (β′)λ12]Ψ = 0 (2.37)

Similarly to Eqn.2.28, Eqns.2.35 and 2.37 can be solved for all λ by QZ factorization, and then
kx = −2i 1a log(λ). Figure 2.5 shows the solutions of kx up the edge of the first Brillouin zone
for a 6 eV energy range around the midgap, for both the armchair and zigzag cell. The real
values (plotted on the right side of each graph) are the energies of the stable eigenstates of the
tight binding Hamiltonian. The complex-numbered solutions correspond to unstable or decaying
states, and the imaginary part of each complex solution (plotted on the left side of each graph)
is proportional to the lifetime of a carrier in that state. This scheme can be easily extended
to include more nearest neighbors if more tight-binding interactions are needed to accurately
reproduce the DFT bandstructure.

Figure 2.5: Real and imaginary bandstructure as a function of kx for the (a) armchair and (b)
zigzag cells, which have the unit cells shown in figure 2.4. These are plotted to the edge of the
Brillouin zone along the kx axis, which for the armchair cell is the ’K’ high symmetry point and
for the zigzag cell is the ’M’ point.
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2.1.6 Monolayer Dielectric Constants

The self-consistent NEGF-Poisson Framework which will be discussed in section 2.2 uses Poisson’s
equation to solve for the electrostatic potential U(x) along the device channel ‘x’ when given an
electron charge density ρ(x) :

∇ · [∇U ] =
q

ε
ρ(x) (2.38)

Where ε = εrε0 is the static dielectric constant of the material, which characterizes its polarizabil-
ity in response to an applied field. The value of the dielectric constant εr used here significantly
affects the variation of electrostatic potential between the contacts and the channel. In this thesis,
the dielectric constants for monolayer TMDs are extracted from ab-initio DFT calculations. We
use an ion-clamped approximation which neglects atomic displacements.

The electronic (high frequency) contributions to the dielectric constant can be directly calculated
for the monolayer+vacuum supercell using Quantum Espresso’s ph.x function. This gives us the
following tensor:

εSC =

εSC‖ 0 0

0 εSC‖ 0

0 0 εSC⊥

 (2.39)

Where εSC is the dielectric constant of the supercell, which consists of a monolayer TMD plus
the “vacuum space” to separate it from its periodic images in the z-axis. εSC‖ is the in-plane

permittivity of this supercell, and εSC‖ is its out-of-plane permittivity, perpendicular to the 2D
monolayer. These supercell dielectric constants are influenced by the individual anisotropic per-
mittivities of the monolayer εm and the vaccuum relative permittivity εvac = 1. To extract the
dielectric constants for only the monolayer, we can employ basic capacitor models as shown in
Fig.2.6.

In the out-of-plane direction, εSC⊥ is treated as a series combination of the monolayer capacitance
Cm and vacuum capacitance Cvac (Fig.2.6a):

1

CSC
=

1

Cvac
+

1

Cm
(2.40)

This can be written in terms of the permittivities, relative thicknesses, and areas:

c

εSC⊥ A
=

c− t
εvac⊥ A

+
t

εm⊥A
(2.41)
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Figure 2.6: Schematic representations of how the (a) out-of-plane and (b) in-plane supercell
capacitances can be written as (a) series or (b) parallel combinations of the monolayer and
vacuum capacitances. The grey section at the bottom of the supercell indicates the monolayer
material.

Where c is the total thickness of the supercell, t is the thickness of the TMD monolayer, and A
is the out-of-plane area of the supercell. Solving this equation for εm⊥ , we get:

εm⊥ =
1

c
t (

1
εSC
⊥
− 1)− 1

(2.42)

The in-plane permittivity can be similarly treated as a parallel combination of the two capaci-
tances (Fig.2.6b):

CSC = Cvac + Cm (2.43)

εSC‖ cl

w
=
εvac‖ (c− t)l

w
+
εm‖ tl

w
(2.44)

Where l and w are the length and width of the supercell. Once again solving for εm‖ :

εm‖ = 1 +
c

t
(εSC‖ − 1) (2.45)
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Equations 2.42 and 2.45 can be used to remove the contributions of the vacuum from the supercell
permittivity. However, there is a notable difficulty in determining the value of the monolayer
thickness ‘t’ for a 2D TMD. To start, we can identify a range of possible values: t must be greater
than the intralayer chalcogen spacing (S - S in MoS2) but less than the interlayer transition metal
spacing (Mo - Mo in MoS2) (see Fig.2.7a). Although ε‖ is only slightly dependant on ‘t’ within
such a small range, ε⊥ can vary over an order of magnitude. Therefore, selecting a thickness
within this range is non-trivial.

To introduce a more consistent thickness and dielectric constant for 2D materials, Ref [28] defines
an “effective isotropic model” in which the ‘t’ used is the thickness obtained by setting ε‖ = ε⊥.
Fig.2.7b illustrates this method using the extracted dielectric tensor for monolayer MoS2.

Figure 2.7: (a) Schematic of three stacked MoS2 monolayers pictured in side-view, where the
interlayer transition metal spacing (tMo−Mo) and intralayer chalcogen spacing (tS−S) are pictured,
along with a probable value for the monolayer thickness tm. (b) The in-plane (ε‖) and out-of-
plane (ε⊥) dielectric constants of monolayer MoS2 in the 2D phase as shown in (a), plotted as
a function of monolayer thickness as used in 2.42 or 2.45. The thickness at which the system
becomes isotropic is tiso. The upper bound on the ‘t’ axis corresponds to tMo−Mo.

At the extracted tiso of 0.54 nm, εm⊥ = εm‖ = εmiso = 17.0598, which is in close agreement with

previous literature [28] [20]. This value of εmiso is also independent of the supercell thickness used to
calculate tiso. The ionic (low frequency) contributions of the dielectric constants, which include
the atomic displacements resulting from an applied electric field, can also be calculated with
Density Functional Perturbation Theory (DPFT) via Quantum Espresso’s dynmat.x function.
However, these are generally less significant for 2D materials [29].
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2.2 The NEGF-Poisson Transport Framework

The eigenstates of an isolated system can be solved by the Schroedinger Equation:

H |Ψ〉 = E |Ψ〉
[EI −H] |Ψ〉 = 0

(2.46)

Where H is the Hamiltonian, and E are the energies corresponding to the eigenstates |Ψ〉. In the
case of a non-isolated system with open boundary conditions, we can add an additional source
term S:

[EI −H − Σ] |Ψ〉 = |S〉 (2.47)

Where Σ is a self-energy term which renormalizes the energies of the channel in the presence of
the inflow from S. [EI−H−Σ]−1 is the Green’s function of the Hamiltonian, G, which describes
how the eigenstates respond to the boundary conditions.

This formalism can be used to model a transistor channel under ballistic conditions, using a
discrete matrix representation. For this, the channel potential U (which is calculated under the
influence of the drain and gate biases) can be included in the Green’s function, and the self-energy
can be split into two terms to account for the existence of the source (Σs) and drain (Σd):

G(E) = [(E + i0+)I −H − U − Σs − Σd]
−1 (2.48)

where i0+ is a small imaginary value which shifts the poles of G(E) into the complex plane to
avoid numerical instabilities. U is a diagonal square matrix such that U(x, x) is the channel
potential at point x. The matrices which make up the tight-binding hamiltonian:

h = α+ βeik·r + β∗e−ik·r (2.49)

are assembled into a hamiltonian which describes the entire channel (and used in Eqn.2.48):

H =



α β 0 · · · 0

β+ α
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . α β
0 · · · 0 β+ α


(2.50)
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where each α matrix along the diagonal corresponds to an atomic site along the real-space di-
mension of the channel. Other nearest neighbor matrices are included within α and β.

Just as the Hamiltonian specifies the properties of an isolated system, all the relevant quantities
for this non-isolated system can be extracted from the Green’s function. The diagonal of the
anti-Hermitian part of the Green’s function, calculated with

A(E) = i[G−G+] (2.51)

gives the density of states along the real-space direction of the device, such that Tr(A) is the
total density of electronic states available. We define two other matrices which extract the anti-
Hermitian parts of the self-energy matrices:

Γs = i(Σs − Σ+
s )

Γd = i(Σd − Σ+
d )

(2.52)

These quantities can be used to calculate the transmission across the channel:

T (E) = Tr(ΓsGΓdG
+) (2.53)

And when multiplied by the availability of states across the channel, which can be found using
the fermi functions in the source (fs) and drain (fs), and the charge (x2 for spin), this gives us
the current at that energy:

I(E) =
2q

h
T (E)(fs(E)− fd(E)) (2.54)

The total current is just this value integrated over all energies. The electron and hole densities
across the channel are found by:

n = 2

∫
dE

2π
GΓsG

+

p = 2

∫
dE

2π
GΓdG

+
(2.55)

Using these values of n and p, the channel potential U can then be solved using Poisson’s Equation:

∇ · [εr∇U ] =
q

ε0
[ND −NA − n+ p] (2.56)
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where ND and NA are the chosen donor and acceptor concentrations as a function of the device
length, and εr is the static dielectric constant of the channel. The effects of the source, drain,
and gate electrodes can be included as boundary conditions when solving this equation in a
finite-difference scheme. Equations 2.48 and 2.56 are then solved self-consistently until both the
channel potential and charge vary minimally across iterations. At that point, the current can be
calculated using Eqn.2.54.
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3

Designing an Ultra-sensitive
Grounded-Gate Photodiode

Statement of Contributions: The work in this chapter is adapted from the journal ar-
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collection of all experimental data was done by Mohammed Naqi, Sooho Choo, Sangjin
Kang, and Jeonghun Kim from Sungkyunkwan University. The project was supervised by
Prof. Youngki Yoon (University of Waterloo) and Prof. Sunkook Kim (Sungkyunkwan
University).

–

3.1 Background

A single monolayer of MoS2 has an optical absorption several times higher than that of bulk
silicon. [31] Due to these strong light-matter interactions, it has been explored as a candidate
material for optoelectronics, and several studies have reported high-performance MoS2 photode-
tectors [32, 33, 34, 35, 36, 37].

MoS2 photodetectors have been designed using intrinsic P-I-N junctions (shown schematically in
Fig.3.1(a)), P-N heterojunctions (Fig.3.1(b)), and Schottky-barrier devices with metal contacts
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(Fig.3.1(c)). In the first two cases, photogenerated carriers can be efficiently separated at the
junctions, leading to a higher photoresponse compared to the third case in which this process
occurs in the intrinsic material. However, intrinsic junctions must be formed using either a
chemical, elemental, or electrostatic doping method. Although techniques have been developed
to perform this, doping remains a significant experimental challenge in the construction of 2D
material devices. Chemical doping techniques are highly dependent on environmental conditions,
[38, 39] elemental doping causes limited vertical junction formation which leads to lower charge
mobility, [40] and the electrostatic doping method has led to devices with low photoresponses due
to the additional electric fields. [41]

Heterojunction photodiodes with dissimilar materials have also been studied, using MoS2/Si, [42,
43] MoS2/GaN, [44] MoS2/graphene, [45, 46] MoS2/Black Phosphorus, [47, 48] and MoS2/pentacene,
[49, 50] and show improved electrical and optical properties compared to homojunction photo-
diodes. However, despite notable performance improvements in terms of photoresponsivity and
sensitivity, homo- and heterojunction photodiodes are limited by low carrier mobility, difficult
processing techniques, and unstable photoresponsive behavior. [51, 52] They are also limited by
the quality of the interface, which is highly dependent on the fabrication methods used to make
them.

Schottky-barrier diodes with instrinsic channels are a more experimentally accessible device struc-
ture for these photodetectors. [53, 54] In this case, a voltage applied across the two metal con-
tacts encourages the separation of photogenerated carriers, while the Schottky barriers present
at the metal-MoS2 interfaces discourage the injection of carriers into the channel, which therefore
suppresses ’dark’ current. However, although the presence of the Schottky barriers discourages
thermionic current it is still possible for carriers to tunnel into the channel. Since the sensitivity
of a photodetector depends on its ability to deliver current under illumination while suppressing
current under dark conditions, this results in a lower sensitivity overall.

Figure 3.1: (a) Schematic of a p-i-n junction with two p-type and n-type contacts separated by an
intrinsic, un-doped layer. Carriers which are generated within the intrinsic layer are seperated by
a field across the terminals, and drift to the contacts. (b) Schematic of a p-n junction, consisting
of a p-type and n-type region. Photogenerated carriers at the junction are seperated by the
staggered band alignment. (c) A schematic of a Schottky-barrier diode, which is made with an
intrinsic material contacted with two metals. Carriers are generated in the instrinsic region and
collectd by the metal contacts.

26



In this work we introduce a device design which overcomes the reduced sensitivity of the intrinsic
schottky-barrier photodiode without introducing complicated fabrication processes. This is done
by reducing the dark current by introducing rectifying behaviour at the source-channel junc-
tion, using a ”grounded-gate design”. This strategy relies heavily on the atomic-thinness of the
MoS2 channel, which allows for a high level of control over the source-channel and channel-drain
tunneling barriers. The physics and operation of the device are presented in the next section.

3.2 Device Design and Operation

Figure 3.2(c) outlines the device architecture which we used, which is a compromise between a
three-terminal phototransistor (Fig.3.2(a)) and a two-terminal photodiode (Fig.3.2(b)). Rather
than explicitly including a third contact, the ’gate’ terminal is shorted to the source contact,
which is then grounded. This has a similar electrostatic effective to that of a gate terminal, while
avoiding the additional complexity of a three-terminal device.

Figure 3.2: (a) Schematic of a conventional three-terminal phototransistor. (b) Schematic of
a two-terminal photodiode. (c) Schematic of the ’grounded-gate’ photodetector introduced in
this work, where the source terminal extends over the channel to resemble a gate contact and
introduce rectification at one end.

The rectification effect caused by the presence of a grounded-gate terminal serves to increase the
photosensitivity of the device by decreasing the dark current under the forward bias condition.
This can be seen clearly by comparing it to a regular two-terminal M-S-M photodetector, in
which the energy bands are symmetric under forward and reverse bias. Figure 3.3 displays the
band diagrams for both of these cases, which can be used to investigate current flow in the device
in each state of operation. The band diagrams of the two-terminal photodetector are symmetric
for both reverse and forward bias, and in both cases there is a non-negligible amount of current
which can tunnel into the channel under dark conditions.

Meanwhile for the grounded-gate design under reverse bias, the energy barrier created at the
gate-drain junction is sharp enough to allow for tunneling current in the same direction as the
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photocurrent. However, in forward bias, the energy barrier at the source-gate junction is too
wide to permit tunneling current and high enough to prevent significant thermionic current,
while photocurrent is unobstructed.

Figure 3.3: Band structures of a two terminal metal-semiconductor-metal device ((a), (c)) and
the grounded-gate device ((b), (d)) under forward bias ((a), (b)) and reverse bias ((c), (d)) of +1
V. The two-terminal device shows lack of tunneling current suppression. Adapted from Ref [30]
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3.3 Simulated Device Details

Dark current in the device was simulated using the non-equilibrium Green’s function (NEGF)
formalism with electrostatics described by the Poisson equation. The simulated device structure
was a Schottky barrier FET with a Schottky barrier height of ΦBn = 0.1 eV, and a 40 nm-long
monolayer MoS2 channel. A 20 nm gate was used with 10 nm gate underlap on each side. The
gate oxide was 2.5 nm thick SiO2. These model parameters (Schottky barrier height, gate metal
work function) were found such that the simulated ID–VD characteristics (which are shown later
in Fig.3.7(b)) resemble the corresponding experimental data (Fig.3.7(a)).

The Hamiltonian for the NEGF transport solver was constructed using an effective mass ap-
proximation (m∗ = 0.45m0). Due to the relatively short channel length, ballistic transport was
assumed through the channel. The photoconductive effect was considered to calculate photocur-
rent (Iph), using: [55]

Iph =
Ach
Lch

VD∆σ (3.1)

Where Ach is the cross-sectional area of the channel, ∆σ = qµ∆n is the conductivity of the
material, µ is the carrier mobility, and ∆n is the density of photogenerated carriers. The excess
carrier density is calculated with ∆n = gτr where g = ηPabs/hν is the generation rate, and
τr is the carrier recombination lifetime. η and hν are the internal quantum efficiency and the
single photon energy, and Pabs is the absorbed power density which was calculated using Pabs =
Pinc[1 − ea⊥d + ea‖d]. ea⊥d and ea‖d are the absorption coefficients in the vertical and lateral
directions, d is the thickness of monolayer MoS2, and Pinc is the incident optical power density.

3.4 Results

3.4.1 Simulation Results

To illustrate the device operation, Fig.3.4 presents the simulated ID–VD characteristics, where
at positive drain voltages, the dark current for the grounded-gate photodiode is negligible but
that of the two-terminal device is steadily increasing. Without a gating effect under forward
bias to obstruct dark current flow, tunneling current is significant as compared to that with the
grounded-gate photodiode. The addition of the gate terminal adds the capability to have a preset
modulation of the potential along the channel without needing to operate it as a three-terminal
device.

To further improve the photodetection capabilities of this design, two areas could be targeted;
increasing the photocurrent by making the generation of excess carriers more efficient, or sup-
pressing dark current. Since the former can be investigated experimentally by varying wavelength
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Figure 3.4: Electrical characteristics (dark current) of both the proposed grounded-gate pho-
todiode (solid black lines) and a two-terminal device (dashed green lines). Adapted from Ref
[30].

and incident power density, here we focus on the suppression of the dark current to increase the
sensitivity of the photodetector while leaving the photocurrent unchanged.

In principle, for three-terminal devices, dark current can be suppressed by increasing the channel
potential barrier through gate voltage modulation. A similar effect can be achieved in the pre-
sented grounded-gate device by choosing a gate metal with a different work function, defined as
Φm = −eΦV − EF , where ΦV is the electrostatic potential of the vacuum and EF is the Fermi
level of the metal. For the device simulations preformed here, a nominal gate metal work function
Φ0
m was used for the photodiode design.

Figure 3.5(a) presents the effect of changing the gate metal work function with respect to Φ0
m on

the dark current of the photodiode. When increased (eg Φm−Φ0
m > 0 eV), the energy barrier for

electron injection from the source to the channel under forward bias is increased, which further
suppresses the thermionic current. This reduction in dark current serves to improve the sensitivity
of the design. Figure 3.5(b) presents the change in sensitivity based on the simulated range of the
variation of gate metal work function. Notably, an increase of 0.20 eV causes over three orders of
magnitude of increase in the sensitivity. Therefore, the device design can be optimized to detect
very low levels of light by using a gate metal with a larger metal work function.
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Figure 3.5: (a) Effect of changing the gate metal work function on the electrical characteristics
(dark current) of the device. (b) Effect of changing the gate metal work function on the sensitivity
of the grounded-gate photodiode. Adapted from Ref [30].

3.4.2 Comparison to Fabricated Device

To explore the performance under illumination, a device was experimentally fabricated and char-
acterized under different wavelengths and intensities of light. The fabricated device uses a mul-
tilayer MoS2 semiconductor layer between metal source and drain electrodes made of titanium
and gold (Ti/Au), as well as a global bottom gate terminal which is permanently shorted to the
ground contact of the source (VG = 0V ) following the design presented in Fig.3.2. The multilayer
MoS2 was transferred onto the global bottom-gate/dielectric (Al2O3) layers through mechanical
exfoliation. Figure 3.6 presents a schematic outline of the fabrication process (a), and an image
of the device with the MoS2-flake channel (b).

Figure 3.7 shows a comparison of the simulated and experimental ID-VD curves, in which the
dark current (shown in black) displays the expected rectification effect. The ID–VD curve has
an increase in current (ID) by three orders of magnitude under forward bias when illuminated
with blue light (405 nm) with a power intensity of 430Wm−2. On the contrary, the change in
current at the reverse bias is relatively insignificant under illumination. This effect is highlighted
in Fig.3.8, which compares the ID-VD characteristics of the grounded-gate photodiode with a
conventional two-terminal photodiode, following the theoretical results from Fig.3.4. As expected,
the grounded-gate device shows a high level of rectification that is not present in the symmetric
characteristics of the two-terminal device.

The grounded-gate device was then evaluated according to several key figures of merit for photode-
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Figure 3.6: (a) A sequential fabrication process of the proposed photodiode. (b) An optical image
of the photodiode. Adapted from Ref [30].

tection, such as responsivity (R), sensitivity (S) and specific detectivity (D∗). Photoresponsivity
is a measure of photodetector gain, and is calculated as:

R =
Iph
Pinc

(3.2)

Photosensitivity is defined as:

S =
Iph
Idark

(3.3)
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Figure 3.7: (a) Electrical measurement of the grounded-gate photodiode under dark and light
illuminations (blue light (405 nm), incident power density Pinc = 430Wm−2. (b) Simulated
electrical measurement of the photodiode design under dark and illuminated conditions (blue
light (405 nm), Pinc = 430Wm−2). Adapted from Ref [30].

Figure 3.8: Experimental comparison of the proposed grounded-gate terminal device with the
two-terminal device, showing a pronounced decrease in dark current due to the thicker tunneling
barrier at the source-channel junction. Adapted from Ref [30].

Where Idark represents the dark current. Photocurrent can be obtained by Iph = ID - Idark. Due
to the dark current being the dominant source of noise in this photodetector, the sensitivity can
be thought of as a signal-to-noise ratio. The specific detectivity is defined as:
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D∗ =
RA

1/2
ch

(2eIdark)1/2
(3.4)

Where e is the elementary charge. The responsivity and sensitivity of the photodiode were
measured under blue light at various power intensities from 200 to 3mW , and the functional
relationship of photoresponsivity and light power is fitted by a power law behaviour R = P β−1inc

with a fitting parameter β = 0.37. Results show responsivities in the range of 0.2 − 1.1AW−1

(see Fig.3.9(a)), exhibiting high reliability in photodetection. The sensitivity was in the range
of 20 − 180 and also distinctly linear. The specific detectivity of the photodiode was measured
under different wavelengths of light at an incident power of 500, which is shown in Fig.3.9(b).
As the wavelength increases from blue to red, there are gradual decreases in detectivity and
responsivity due to the reduced photon energy [56]. The results show linear trends in the range
of 6.5 − 3.2 × 1010 Jones for detectivity and 1.1 − 0.5AW−1 for responsivity, indicating highly
sensitive and responsive performance.

Figure 3.9: (a) The photoresponsivity and sensitivity measurements of the proposed photodiode
under blue (405 nm) light illumination at different power ranges from 200µW to 3mW . The
photoresponsivity versus power intensity curve is fitted to the power law (RP−1inc). (b) The pho-
toresponsivity and photodetectivity representations of various light illuminations with different
wavelength (405, 532, and 638 nm) at same power of 500. (c) The photo-switching characteristics
of the device under blue, green and red light illumination in 10 s pulses, up to 150 s at the same
power of 200µW . Adapted from Ref [30].

Next, the time-domain behaviour of the device was characterized by measuring its phororesponse
under pulses of light with different wavelengths (638, 532, and 405 nm) at a constant VD = 1
V. Under red light (638 nm) of intensity 200, the current increased by one order of magnitude
with a rise time of 194.19ms and a fall time of 48.53ms. Green (blue) pulses of the same intensity
generated larger increases in current (1.5 orders of magnitude) with rise time of 234.31 ms (127.14
ms) and fall time of 24.29 ms (127.12 ms), which can be seen in Fig.3.9(c). Also pictured is the
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reproducibility of the photoresponse for seven cycles (repeats of 10s ON and 10 s OFF, with 150
s in total). Both the photoresponse amplitude and switching speed were stable throughout the
measurement, demonstrating robustness.

In Fig.3.10 we compare this grounded-gate photodiode with recently reported PN homo/ het-
erojunctions using the benchmark parameters of device configuration, deposition method, re-
sponsivity, detectivity, and rise and fall times. In comparison to the other reported devices, the
photodiode presented in this work demonstrates reliable photoresponsivity (> 1AW−1), high
photodetectivity (6 × 1010 Jones), and highly stable response time (100–200ms), which can be
achieved through simple processing methods. The demonstrated grounded-gate MoS2 photodiode
therefore shows promising potential for next-generation applications in the field of optoelectronics.

Figure 3.10: Responsivity, detectivity and response time comparison of our MoS2-based grounded-
gate photodiode with recently reported PN junction photodetectors distinguished by device con-
figuration. Adapted from Ref [30].
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Strain-Tuning PtSe2 for High
ON-Current Lateral Tunnel
Field-Effect Transistors

Statement of Contributions: I am the sole author of the contents of this chapter,
which is under review at the time of submission of this thesis. This project was supervised
by Prof. Youngki Yoon.

–

4.1 Introduction

As energy dissipation becomes an increasingly pressing issue for modern electronics, the emergence
of steep-switching devices poses low-power alternatives to conventional silicon transistors. One
such device is the tunnel field-effect transistor (TFET), [57] in which current is driven by band-
to-band tunneling rather than thermionic emission. This device is not subject to the fundamental
thermionic switching limit of 60 mV/dec at 300 K, and presents an opportunity to operate at a
low supply voltage and minimal leakage currents.

The operation of a TFET is briefly presented in Fig.4.1. The device consists of source, channel,
drain, and gate terminals much like a conventional transistor. However, unlike in a MOSFET,
in a TFET the source and drain are oppositely doped. When a drain voltage is applied, the
band-bending in the channel region allows for two tunneling barriers to emerge at the source-
channel and channel-drain junctions. Current can flow from the source to the drain when carriers
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tunnel from the valence bands of the source to the conduction bands of the channel or drain. By
controlling this band-bending, the gate bias can modulate the flow of tunneling current through
these junctions. Going from the OFF state (where the channel bandgap is positioned such that
it maximizes the thickness of the junction tunneling barriers) to the ON state (where a high gate
bias causes one tunneling barrier to become significantly narrower) can be done very abruptly
since the carriers being transported are taken from the heavily-populated valence band rather
than the tail end of a fermi distribution in the conduction band. This leads to incredibly sharp
switching characteristics, and subthreshold swings below 60 mV/dec.

Figure 4.1: Operating mechanism of a TFET structure (top), showing the channel potential and
current (middle row) and current-voltage characteristics (bottom) for the device in the ambipolar
ON states (blue and red) and OFF state (black).
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Achieving this sharp switching in practice requires excellent electrostatic control over the tun-
neling region, which has led to several investigations into using planar two-dimensional semicon-
ductors such as phosphorene and the transition metal dichalcogenides (TMDs) as TFET channel
materials [58, 59, 60, 7, 6, 61, 62]. These materials are atomically thin, which facilitates precise
control over the tunnel barrier by a gate electrode. However, while the operating principles of
a TFET allow for low OFF currents and steep switching characteristics, the ON-state perfor-
mance is limited by material properties of the channel. The ON currents (ION) achievable with
lateral TFET structures made from most well-studied monolayer TMDs are generally low due
to their large bandgaps and large effective masses. [58] To boost the ON current while using
two-dimensional channel materials, TFETs made with multilayer structures [59, 63] or vertical
heterostructures [60, 64] have been proposed. However, these strategies may require more complex
fabrication processes, and sacrifice the superior electrostatic control possible with an atomically
thin monolayer.

It would be useful to instead overcome the shortfalls of 2D monolayer channels by employing
methods to tune the relevant material parameters. Given the considerable flexibility of 2D mono-
layers, [65] mechanical strain is one such method. These materials have been strained using
pressure differences [66], thermal expansion on flexible substrates [67], and applied electric fields
[68], and the resulting modulations of material properties are in good agreement with theoretical
predictions [66, 67, 68]. Strain-engineering therefore presents an opportunity to optimize the
performance of monolayer TMD TFETs while using simple lateral architectures which makes full
use of their thinness.

(a) (b)
Pt Se

G

G

Oxide
S DChannel

Oxide

Figure 4.2: (a) A schematic of the double-gated lateral TFET structure simulated in this work,
where the channel is made of monolayer PtSe2 in the 1T phase. (b) Top view of the atomistic
configuration of 1T-PtSe2. The side-view is shown within the channel in (a).

In this chapter, we identify that strained monolayer platinum diselenide (PtSe2) TFET devices
can deliver high ION while maintaining steep switching characteristics. PtSe2 is a newer addition
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to the TMD family and the recent development of a direct-selenization monolayer growth method
[69] has led to it being experimentally accessible for electronic applications. [70, 71, 72] We study
the performance of strained PtSe2 TFET devices using full-band quantum transport simulations
to accurately capture carrier transport through satellite valleys which undergo changes in relative
position under strain.

4.2 Channel Material Properties

The type of device structure considered here is a double-gated FET, as shown schematically in
Fig. 4.2(a), and the channel material is monolayer PtSe2 in its stable 1T phase (Fig. 4.2(b)).
To first study how the channel material properties can be tuned by tensile strain, we construct
a Hamiltonian matrix with tight-binding-like parameters for PtSe2, using a basis of maximally
localized Wannier functions (MLWF), which match density functional theory (DFT) bands. [73]
DFT calculations are performed with Quantum Espresso, [25] within the generalized gradient
approximation (GGA) with projector augmented wave (PAW) pseudopotentials. After an initial
relaxation of the unit cell, biaxial tensile strain is implemented by changing its in-plane lattice
dimensions according to aε = a0(1 + ε), where ε is the strain considered, and a0 and aε are the
unstrained and strained lattice constants, respectively. This is followed by a fixed-cell relaxation
of the atomic positions. We use an effective isotropic model [28] to extract dielectric constants (κch
= 20.35, 22.51, 26.25) and monolayer thickness (tch = 0.52 nm, 0.5 nm, 0.48 nm) for the strained
cells (ε = 0%, 2.5%, 5%). Wannier90 is then used to extract tight-binding-like parameters using
MLWF. [27] The calculated bandgap (1.34 eV) is slightly larger than the value experimentally
determined (1.2 eV), [69] but this would not significantly change our conclusion.

Figure 4.3(b) shows a polar plot of effective masses for PtSe2 subjected to 0%-5% biaxial tensile
strain, where 0o is along the Γ→M direction as indicated in Fig. 4.3(a). The conduction band
minimum and valence band maximum at which the effective masses are calculated are labelled
as ‘A’ and ‘B’, respectively. The smallest electron effective mass can be found at 180o along the
M → Γ direction, which decreases from 0.21m0 for unstrained PtSe2 to 0.18m0 for 5% strained
PtSe2. The right panel of Fig. 4.3(c) presents the strain-induced change in bandstructure along
the Γ → M direction. Under tensile strain, the maximum valence band energy along this path
shifts from the Γ point to lie near the conduction band minimum along Γ→M (point ‘A’ in Fig.
4.3(a)). The left panel of Fig. 4.3(c) shows the imaginary wavevector solutions, which correspond
to the rate of spatially-decaying eigenstates of the MLWF Hamiltonian. The states found within
the gap are available for carriers to occupy during band-to-band tunneling. Although the valence
band maximum lies along Γ→ K (point ‘B’ in Fig. 4.3(a)), the existence of a smooth imaginary
band connecting the direct gap at Γ → M (Fig. 4.3(c), left panel) implies that it would be the
dominant path for tunneling current when the device is in the ON state. [74].

The strain-tuned bandgaps and reduced effective masses are benchmarked against those of similar
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Figure 4.3: (a) Surface plot of the conduction band edge (left) and valence band edge (right)
within the first Brillouin zone for PtSe2 at ε = 0%. (b) Polar plot of the electron and hole effective
masses (m∗e and m∗h). 0o is equivalent to the Γ → M direction (the transport direction in this
work). (c) Bandstructures for the strained PtSe2 unit cells (ε = 0%, 2.5%, 5%) along the Γ→M
direction, showing the real (right) and imaginary (left) values of the wavevector calculated using
an extracted MLWF Hamiltonian. (d) Reduced effective mass (m∗r ) and bandgap for PtSe2 at
biaxial strains of ε = 0% (black) and 5% (green), compared to similar monolayer XSe2 materials.

moderate-gap XSe2 materials in Fig. 4.3(d). We consider the Γ → K direction for MoSe2 and
WSe2 since their smallest direct bandgaps lie at the K point. Under ε = 5%, PtSe2 shows a
bandgap of 0.94 eV and reduced effective mass of 0.17m0, lower than those of either MoSe2
or WSe2 under similar strain. Among the TMDs which have been experimentally grown in
monolayer thus far, we have therefore identified PtSe2 as one of the most promising candidates
for strain-tuned tunneling enhancement.

4.3 Device Simulation Results

The ON-current in a lateral TFET can be expressed as

ION ∝ exp

(
−πΛ

√
m∗rEg

2~(1 + ∆)

)
(4.1)

where Λ is the band-bending distance at the source-channel junction, m∗r is the reduced effective
mass (1/m∗r = 1/m∗e + 1/m∗h), Eg is the bandgap, ∆ = q(VDD−Vth)/Eg is the overdrive ratio,
VDD is the power supply voltage, and Vth is the threshold voltage. [75] The ION is inversely
related to η =

√
m∗rEg, a quantity which can be significantly tuned by strain. To numerically
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assess a device’s ON-state characteristics resulting from the change in η when PtSe2 is strained,
we simulate three lateral TFET devices using channel materials of 0%, 2.5%, and 5% strained
PtSe2, respectively. The devices have channel lengths (Lch) of 15 nm, source/drain extension
lengths (LS/D) of 15 nm, and 3.2 nm thick HfO2 oxide layers (equivalent oxide thickness, EOT
= 0.5 nm). Current is then calculated through the non-equilibrium Green’s function transport
framework, which is self-consistently solved with the Poisson equation. [76] Ballistic transport
is assumed due to the relatively small device length considered. The VDD is varied between 0.4
V and 0.8 V. The OFF current (IOFF) is set to 1×10−5 µA/µm (for drain voltage VD = 0.4),
1×10−6 µA/µm (for VD = 0.6), and 1×10−7 µA/µm (for VD = 0.8) to ensure the device is in
the ON state at VG - VOFF = VD.

Figure 4.4(a) plots the ID-VG curves for the three devices. We start with a moderate VD of 0.6
V and source (p-type)/drain(n-type) doping concentration (NS/D) of 5.59×1013cm−2. The device
with a 5% strained PtSe2 channel has an ION (11.2 µA/µm) over two orders of magnitude higher
than that of the unstrained channel (0.1 µA/µm), and a transconductance (gm = dID/dVG)
over 100 times greater (87.12 µS/µm vs. 0.78 µS/µm). We investigate the physical origin of
these changes in Fig. 4.4(b), which shows the channel potential corresponding to ION for the
devices in Fig. 4.4(a). In the ON state, the current is affected by the width of the source-channel
tunneling barrier, which is quantified within the inset of Fig. 4.4(b). This tunneling barrier width
decreases significantly with strain due to the reduced bandgap. The reduced effective mass would
additionally allow for greater penetration of carrier wavefunctions through this thinner tunneling
barrier. Since ION is highly dependent on VD and NS/D, we show heatmaps of ION for a range of
these parameters in Fig. 4.5. The 5% strained PtSe2 channel can achieve an ION of 116.2 µA/µm
at a VD of 0.8 V and NS/D of 8.64×1013cm−2. We note that in our device with doped contacts,
increasing NS/D narrows the depletion width, hence decreasing Λ in Eqn. (4.1) which boosts ION.

Next, we investigate the effects of strain on the OFF state characteristics. The minimum current
in the OFF state (Imin) occurs when all transmission happens via direct leakage through the
entire channel. In this case: [75]

Imin ∝ exp(−2Im(k)L′) (4.2)

where L’ is the ‘effective channel length’ which includes the channel length as well as the depletion
width, and Im(k) is the imaginary value of the wavevector. The reduction of this quantity with
strain (as seen in Fig. 4.3(c)) leads to increased penetration of carrier wavefunctions through the
bandgap of the channel, and therefore increased leakage. As shown in Fig. 4.6(a), Imin is over
two orders of magnitude larger for the 5% strained PtSe2 device at a given Lch due to its lower
Im(k). Imin also drastically increases as Lch decreases (left axis) unlike ION (right axis). A lower
Im(k) is required for high tunneling transmission in the ON state, but there is an accompanying
tradeoff in the leakage current which should be considered when optimizing the level of strain
applied to the channel.
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Figure 4.4: (a) ID-VG characteristics for the device shown in Fig. 4.2(a) for ε = 0%, 2.5%,
and 5%, with the following nominal device parameters: Lch = 15 nm, LS/D = 15 nm, NS/D =
5.59×1013cm−2, EOT = 0.5 nm and VD = 0.6 V. (b) Potential profile along the device at VG -
VOFF = 0.6 V for ε = 0%, 2.5%, and 5%. The inset quantifies the width of the tunneling barrier
’t’ as indicated in the main plot.

Finally, we examine the effects of strain on the minimum subthreshold swing (SSmin), which is
influenced by the band bending at the tunneling barrier. In aggressively scaled devices, this
band-bending is proportional to both the NS/D and the natural scaling length λ, which for a
double-gated TFET structure is [77]:

λ =

√
κch
2κox

(1 +
κoxtch
4κchtox

)tchtox (4.3)

Here, κch is the channel permittivity, κox is the oxide permittivity, and tch and tox are the
channel and oxide thicknesses, respectively. A short natural scaling length indicates a sharper
drop of electrostatic potential across the source-channel junction, which allows for the most abrupt
opening of an energy window for tunneling into the conduction band of the channel, resulting in a
low subthreshold swing. 2D monolayer channels benefit from smaller λ due to an atomically thin
tch, leading to a lower SS in lateral TFETs compared to multilayer or bulk-material channels.
The increase in κch with biaxial tensile strain is compensated by a further decrease in tch, leading
to an overall minimal increase in λ (1.19 nm for ε = 0% to 1.29 nm for ε = 5%). Figure 4.6(b)
plots SSmin for the three devices considered as a function of channel length. The strained devices
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Figure 4.5: Heatmaps of ION (in µA/µm) at VD = 0.4 V, 0.6 V, and 0.8 V, and NS/D =
5.59×1013cm−2, 6.60×1013cm−2, 7.62×1013cm−2, and 8.64×1013cm−2 are shown for ε = 0%
(left), 2.5% (middle), and 5% (right). IOFF = 1×10−5 µA/µm, 1×10−6 µA/µm, and 1×10−7

µA/µm were used for VD = 0.4 V, 0.6 V, and 0.8 V, respectively.

maintain similar SSmin as the unstrained device for channel lengths down to 10 nm, showing that
the scalability is not signficantly affected by the addition of strain until that point. We note that
at very short channel lengths (Lch < 10 nm), the SSmin is over 60 mV/dec since the direct leakage
current through the channel engulfs the entire subthreshold region.

4.4 Conclusion

In summary, strained-PtSe2 TFETs benefit from high electrostatic control with an atomically
thin monolayer, while also being able to deliver high ON currents due to the emergence of a
smaller direct gap and a lighter effective mass. A double-gated PtSe2 device under 5% biaxial
tensile strain can reach an ION above 116 µA/µm at a VD of 0.8 V, while maintaining an IOFF

below 1×10−7 µA/µm and SS well under 60 mV/dec. This device can be scaled down to 10 nm
before encountering performance degradation. Our work holds relevance for the emerging field of
2D-straintronics, and reveals that the potential of 2D monolayers for TFET applications cannot
be dismissed.
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Figure 4.6: (a) Minimum leakage current (Imin, left axis) and ION (right axis) and (b) minimum
subthreshold swing (SSmin) as a function of Lch for the devices using ε = 0%, 2.5%, and 5%
strained PtSe2 channel, with NS/D = 5.59×1013cm−2 and VD = 0.6 V.
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5

Conclusions

In this thesis, ab-initio simulations were used to demonstrate the potential of 2D transition
metal dichalcogenides for optoelectronic devices. In chapter 3, we developed a novel grounded-
gate photodetector design, which harnessed the superior electrostatic-control achievable with an
atomically-thin MoS2 channel to achieve rectifying characteristics in a two-terminal device and
minimize dark current. The resulting device therefore shows a high sensitivity to light, indicating
its potential for photodetector applications. In chapter 4, mechanical strain was used to tune
material parameters of 2D PtSe2 to demonstrate a TFET with high ON-current. Since TMDs
are highly flexible, mechanical strain - which can be implemented during the fabrication process,
or through physical bending - is able to tune properties such as the bandgap and effective mass in
a large range. The addition of strain is proposed as a simpler alternative to more experimentally-
involved strategies since it is capable of improving performance without sacrificing the steep
switching and improved scalability of an atomically-thin device channel.

5.1 Future Work

Although the work in Chapter 4 uses PtS2 due to its relative experimental maturity, there are
numerous other 2D monolayer materials not yet experimentally realized which could show even
better tunability under strain. For example, SnTe, TiNBr, and TiNCl [60] all have ION above 100
µA/µm in simulated monolayer TFETs, which is orders of magnitude higher than that of most
transition metal dichalcogenides. Architectural optimizations, such as using a heterogate dielec-
tric to reduce ambipolar transport characteristics, could also be explored as a way to minimize
leakage currents in conjunction with increased ION . Other physical effects, such as spin-orbit
coupling, could also be included in future works to see if they would improve or hinder per-
formance in reality. It would also be interesting to explore uniaxial or shear strains to see if
symmetry-breaking effects could be harnessed for improved device performance.
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In terms of computational work, possible next steps would be to investigate scattering-assisted
processes and how they would affect the current when modelling these transistor devices. Al-
though we operate well within the ballistic limit of transport at the length scales considered,
scattering from impurities (due to doping, for example) may still affect the results. Being able
to model experimental realities would allow device physicists to go beyond the ideal case when
assessing new materials. It would also be relevant to extend this work past simpler planar archi-
tectures and consider 3D FinFET structures, which may deliver the ultimate level of electrostatic
control when used with atomically thin 2D materials.

Beyond the scope of this thesis, much of the future work towards realizing 2D material devices is
on the experimental side. 2D materials are becoming increasingly promising for inclusion into a
standard electronics fabrication process, but they are still in the nascent stages of development
compared to conventional materials such as silicon and gallium arsenide. Bringing them to
experimental maturity is currently an active field of study as methods are being developed to
grow these materials in large-area [78], dope them [79], and improve contact properties [80].

5.2 Statement of Contributions

The following articles were submitted/published during the course of this degree, and my indi-
vidual contributions are indicated. This text is also included under the title of each chapter.

• Chapter 3: The work in this chapter is adapted from the journal article ”Ultrasensitive Mul-
tilayer MoS2-Based Photodetector with Permanently Grounded Gate Effect”, which was
published in Advanced Electronic Materials in Febuary 2020 [30]. As an equal-contributing
author, I preformed all of the simulations within this paper, prepared figures 1a-b, 2b-d,
3a-b, and 6a-b, and wrote the corresponding sections, assisted by Richard Han from the Uni-
versity of Waterloo. The device fabrication and collection of all experimental data was done
by Mohammed Naqi, Sooho Choo, Sangjin Kang, and Jeonghun Kim from Sungkyunkwan
University. The project was supervised by Prof. Youngki Yoon (University of Waterloo)
and Prof. Sunkook Kim (Sungkyunkwan University).

• Chapter 4: I am the sole author of the contents of this chapter. A slightly modified version
of this chapter has been submitted for publication at the time of submission of this thesis,
and is under review. This project was supervised by Prof. Youngki Yoon.

The following article was written during the course of this degree, but is not included within this
thesis:

• “Photoresponse of MoSe2 Transistors : A Fully Numerical Quantum Transport Simula-
tion Study”, published in ACS Applied Electronic Materials in October 2020, authored by
Gyuchull Han, Manasa Kaniselvan, and Youngki Yoon [81].
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[9] Y. Balaji, Q. Smets, Á. Śzabo, M. Mascaro, D. Lin, I. Asselberghs, I. Radu, M. Luisier, and
G. Groeseneken, “MoS2/MoTe2 heterostructure tunnel FETs using gated schottky contacts,”
Advanced Functional Materials, vol. 30, p. 1905970, nov 2019.

47



[10] J. Jiang, K. Parto, W. Cao, and K. Banerjee, “Ultimate monolithic-3D integration with
2D materials: Rationale, prospects, and challenges,” IEEE Journal of the Electron Devices
Society, vol. 7, pp. 878–887, 2019.

[11] M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one
nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Letters,
vol. 13, pp. 3664–3670, jul 2013.

[12] S. Gupta, S. N. Shirodkar, A. Kutana, and B. I. Yakobson, “In pursuit of 2D materials for
maximum optical response,” ACS Nano, vol. 12, pp. 10880–10889, sep 2018.

[13] G. Konstantatos, “Current status and technological prospect of photodetectors based on
two-dimensional materials,” Nature Communications, vol. 9, dec 2018.

[14] D. D. Fazio, I. Goykhman, D. Yoon, M. Bruna, A. Eiden, S. Milana, U. Sassi, M. Bar-
bone, D. Dumcenco, K. Marinov, A. Kis, and A. C. Ferrari, “High responsivity, large-area
graphene/MoS2 flexible photodetectors,” ACS Nano, vol. 10, pp. 8252–8262, sep 2016.

[15] K. Ye, L. Liu, Y. Liu, A. Nie, K. Zhai, J. Xiang, B. Wang, F. Wen, C. Mu, Z. Zhao, Y. Gong,
Z. Liu, and Y. Tian, “Lateral bilayer MoS2–WS2 heterostructure photodetectors with high
responsivity and detectivity,” Advanced Optical Materials, vol. 7, p. 1900815, jul 2019.

[16] H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High responsivity and gate tunable
graphene-MoS2 hybrid phototransistor,” Small, vol. 10, pp. 2300–2306, mar 2014.

[17] N. Li, Q. Wang, C. Shen, Z. Wei, H. Yu, J. Zhao, X. Lu, G. Wang, C. He, L. Xie, J. Zhu,
L. Du, R. Yang, D. Shi, and G. Zhang, “Large-scale flexible and transparent electronics
based on monolayer molybdenum disulfide field-effect transistors,” Nature Electronics, vol. 3,
pp. 711–717, sep 2020.

[18] S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano,
vol. 5, pp. 9703–9709, nov 2011.

[19] H. Peelaers and C. G. V. de Walle, “Effects of strain on band structure and effective masses
in MoS2,” Physical Review B, vol. 86, dec 2012.
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