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Abstract

The monitoring, reporting, and verification (MRV) of forest plots, especially their tree-
trunk diameters, is critical to achieving both forest protection and reforestation goals.
Today’s MRV processes are mostly manual, error-prone, and costly to carry out. In this
thesis, we design and implement an app running on a smartphone equipped with a time-
of-flight sensor that allows efficient, low-cost, and accurate measurement of tree trunk
diameters. The core focus is on designing an algorithm to identify, segment, and compute
the diameter of a target tree trunk in a depth image of a forest scene, even in the face of
natural leaf and branch occlusion. The algorithm runs in real-time on the phone, allowing
user interaction to improve the quality of the results. We evaluate the app in realistic
settings and find that in a corpus of 55 sample tree images, it estimates trunk diameter
with mean error of 7.8%. We also explore a newly released alternative to the time-of-flight
sensor, Google’s ARCore Depth API, which uses a depth-from-motion algorithm based
on a monocular phone camera and accelerometer sensors. We conclude that this API is
currently inadequate for the proposed application and offer suggestions for its improvement.
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Chapter 1

Introduction

1.1 Overview and Motivation

Carbon sequestration in trees can play a key role in decarbonizing the atmosphere and
averting catastrophic climate change. In its 2018 report, the Intergovernmental Panel on
Climate Change (IPCC) highlights that all pathways to limit global warming to 1.5°C rely
on active removal of atmospheric carbon dioxide, with most published plans incorporating
forest carbon sequestration as a key component of this removal [36]. However, strategies
to achieve reforestation and anti-deforestation goals, whether through policy- or market-
based incentives, face a technological challenge: they require monitoring, reporting, and
veri�cation (MRV) of forest plots in situ to measure the actual degree of sequestration
achieved [24][17][29].

Current forest MRV is based on a standardized, manual inventory process that involves
mapping out sample plots with ribbon or rope, then using tape measures or calipers to
�nd the diameter of each tree trunk in the plot [31]. This labor-intensive process has four
negative consequences. First, it limitssample size; thus only a tiny fraction of forested
land has been sampled. Second, it limits thenumber of data pointsthat can be collected
per tree. Third, manual measurements are challenging to carry out indense, diverse forests
such as the tropics, where signi�cant undergrowth may surround trunks. Finally, it places
an onerous administrative burden on small-scale reforestation e�orts.

Terrestrial Laser Scanning (TLS) has been proposed and used to address some of these
problems. In this approach, surveying LiDAR instruments, sometimes purpose-built for
forestry applications, create precise point clouds of forest scenes at a range of 50-100 me-
ters. However, these instruments are expensive (as costly as$200K USD), complex to
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operate, and bulky. They also produce a point cloud data format that requires complex,
often vendor-speci�c software, lengthy o�ine computation times, and sometimes man-
ual intervention during post-processing. In contrast, we explore the use of novel infrared
time-of-ight (depth) sensors, along with a depth-based image segmentation algorithm, to
measure tree trunks in near real-time in natural forest settings. Speci�cally, we obtain
depth images using a commodity smartphone, segment the images, that is, separate the
trunk from the foreground and background, and then automatically estimate the trunk
diameter. We compare this to the results obtained manually through the traditional ap-
proach and �nd that our approach is around four times faster, while incurring a small error
of < 8%.

Although we are not the �rst to use smartphones for forest plot inventories, prior
attempts assume that tree trunks are well-spaced, brightly lit, relatively small, and have
minimal occlusion [12][13]. In practice { particularly in the natural forest environments
that carbon sequestration incentive schemes should hope to foster { these conditions are
unlikely to hold. In contrast, we are able to accurately measure tree trunk diameter
(scienti�cally referred to as Diameter at Breast Height, DBH) under complex and realistic
�eld conditions.

Our ultimate goal is to enable small-scale landowners to bene�t from policy incentives
for healthy, naturally-managed, biodiverse forests, despite low-lying vegetation, climbing
vines, and fallen branches. MRV systems for carbon credits should not be limited to
well-resourced groups or those with large plots of land to reforest. The MRV process
should scale down as well as up, incentivizing reforestation on any small plot of underused
land. Existing technological solutions are either prohibitively expensive or require highly
favorable forest conditions. Our approach provides measurement tools that facilitate good
climate policy.

1.2 System Requirements

In the interest of the goals discussed above, we have the following speci�c requirements for
our system and its associated algorithm:

ˆ Accessible: The image-acquisition system should be low-cost, and the computational
cost of the algorithm should be low as well. The system should be useable on multiple
platforms, and those platforms should be accessible to a relatively non-specialized
user.
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ˆ Accurate: The algorithm should be accurate.

ˆ Real-time: The algorithm should complete with a low-enough delay that the user can
correct errors in collected data immediately and seamlessly during �eldwork. Ideally,
a real-time system should also provide guidance to users to improve data collection.

ˆ Single image: The algorithm should not require multiple images of a tree from di�er-
ent vantage points, since these may signi�cantly slow data collection and be di�cult
to obtain in dense or tropical forests.

ˆ Handles reasonable occlusion:The algorithm should not assume that the trunk image
is unoccluded.

1.3 Contributions

Our work meets the above requirements, improving the MRV process for small-scale forest
carbon sequestration projects by using depth sensor-enabled mobile phones to make forest
inventories easier to perform, more e�cient, and more accurate. Speci�cally, we make the
following contributions:

ˆ We design an algorithm that exploits a low-cost smartphone time-of-ight sensor to
estimate DBH from a single image, even with naturally-occurring occlusion, and in
poor lighting conditions.

ˆ We implement our design and build it into an app on a Huawei P30 Pro Smartphone,
demonstrating that the algorithm has low enough computational cost to run on this
accessible commodity platform in near real-time.

ˆ We evaluate our app in realistic forest settings and �nd that in a corpus of 55 sample
tree images, it estimates DBH with an RMSE of 4.1 cm (7.8%). These results are
unfortunately a�ected by a single outlier; we discuss the appropriate modi�cations
to our algorithm to avoid its cause in the future and note that without this sample,
the RMSE drops to 2.5 cm (7.5%).

ˆ We incorporate real-time user feedback through our app UI, increasing trunk detec-
tion to 100% in our tested forest without requiring high user expertise.
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ˆ Recognizing that even time-of-ight sensors are somewhat specialized hardware, we
port our algorithm to Google's ARCore Depth API, which can acquire depth on
commonly-used mobile phones equipped only with a monocular camera. We o�er
speci�c suggestions for the improvement of ARCore depth-from-motion to allow it
to be usable in a forest MRV context.
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Chapter 2

Background

In this chapter, we present additional context for our work, especially for readers unfamiliar
with current developments in forest science.

2.1 Traditional Forest Inventory

Forest surveying is a well-established �eld, practiced in both managed timber forests and
partially-managed or unmanaged natural growth forests. The United Nations' Intergovern-
mental Panel on Climate Change (IPCC) collected peer-reviewed practices in their Land
Use and Forestry report [31], o�ering a global standard for forest carbon measurement.
Similar detail is provided in the UK's Woodland Carbon Code (WCC) [45]. The WCC
lays out a more explicit bureaucratic process as well, including reporting spreadsheets
for forest carbon projects that allow them to earn credits and payment from government
programs. Both speci�cations follow the same general process: the land is �rst divided
into relatively homogenous strata, and the strata divided into equally sized plots along
a uniform grid. Plot size varies based on the density of trees in the stratum; the WCC
recommends targeting around twenty trees per plot. Due to time and resource constraints,
not every plot is measured in the �eld, but instead a subset of plots are sampled and their
characteristics extrapolated to the other plots in the stratum.

In the �eld, the plots are typically marked out by hand, using a GPS device, tape
measure, and rope or ribbon; a laborious and time-consuming process. Within each plot,
foresters measure the diameter at breast height (DBH) of each tree, and may also record
species and total tree height information. DBH measurements are performed either by
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measuring tree circumference and dividing by� , or by using specialized calipers that �t
around the trunk [37]. Height can be calculated with trigonometry using only a meter
stick, but surveyors often use technical equipment such as a hypsometer. Top-of-the-line
all-in-one-devices cost around$2000, though there are cheaper models for around$300
USD.1 The appropriate species identi�cation is done manually by �eld experts.

Following the forest inventory, estimated carbon sequestration is derived usingallomet-
ric equations, which relate measured tree features to tree biomass. These equations are
often speci�c to a species or other classi�cation of tree (e.g. hardwood, etc.), to account
for di�ering wood density and growth characteristics. Some allometric equations include
tree height as an independent variable, but many use only tree classi�cation and DBH,
since height is not always easy or possible to determine, especially in dense forests where
individual tree tops are not visible. These statistical models are developed based on tree
measurement followed bydestructive harvesting: cutting down the tree to precisely calcu-
late its biomass. Further equations relate biomass to an estimate of a tree's carbon storage,
which is aggregated into an estimate of total forestcarbon stock. Finally, re-measuring the
same trees or plots year after year results in an estimate ofcarbon sequestration rate. For
an example of the practices used to develop these models across a given classi�cation of
tree, see Singh et al. [40].

Though this process is well-established, it has several key limitations. First, it is both
time- and cost- intensive. Carrying equipment into the forest, marking out plots, and
measuring each tree individually all take time. Second, a relatively high level of expertise
is required to correctly place sample plot boundaries, measure trees quickly and accurately,
and identify tree species. The time and expertise both translate to costs that small-scale
reforestation e�orts may not be able to meet. Finally, the entire process yields only a few
data points per tree (such as species, DBH, height) { and not rich datasets, such as images,
that could provide additional information after the surveyors have left the forest or serve
as an auditable trace of the data collection process.

The high barrier to entry also impacts the overall accuracy of the process. The greater
the time, cost, and expertise required, the less total land can be easily surveyed, meaning
that surveyors have to rely more heavily on statistical sampling methods to extrapolate
carbon stock estimates [31]. It also leads to under-representation of forests that are dense,
diverse, and hard-to-reach, such as tropical forests.

1Sample devices can be found atforestrytools.com.au
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2.2 Terrestrial Laser Scanning

One relatively widespread technology for automatic ground-based forest inventories is Ter-
restrial Laser Scanning (TLS). Forest ecologists use medium-range surveying LiDAR as
well as some purpose-built LiDAR instruments to collect point cloud representations of
forest plots [50]. Their results have been impressive, speeding up the forest inventory pro-
cess and leading to direct improvements in allometric equations for biomass estimation [27].
In particular, TLS can estimate biomass without destructive harvesting, by using the full
point cloud to estimate tree and branch volume for the entire tree. As a result, TLS has es-
pecially improved allometric models for larger, older trees and trees in remote or protected
areas, such as tropical rainforests [10] [42].

However, TLS instruments have direct trade-o�s between signal noise and range and
sensor cost, and instruments with the high-end speci�cations used in existing forest surveys
are quite expensive. One detailed study, published in 2018 but with �eld work done in
2015, used LiDAR costing 100K-200K USD per instrument [9]. The authors mention
that their instruments are at the upper end of TLS scanner cost, with a range of 700
m and a pointing accuracy of millimeters at that range. Several authors mention that
TLS scannerscan cost closer to 10K USD, but their research actually uses an instrument
costing over 50K USD [9] [50]. Wilkes et al. note that instrument weight can also be an
issue, given that many sensors are over 10 kg and \can be heavy and awkward to carry
through dense vegetation" [50]. Finally, the processing of forest TLS point clouds requires
a combination of complex, often vendor-speci�c software for aggregation and segmentation,
the full pipeline of which is not standardized nor professionally packaged. For these reasons,
TLS seems suitable primarily for well-funded research groups, and to our knowledge has
not been widely adopted either in government MRV programs or small-scale reforestation
e�orts.

2.3 Satellite and Aerial Approaches

Outside of terrestrial approaches, foresters and forest ecologists also work with Aerial Laser
Scanning (ALS): LiDAR sensors mounted on planes, helicopters, and Unmanned Aerial
Vehicles (UAVs). An aerial forest view can also be obtained from satellite data, which is
increasingly available from private and public sources [33]. Moreover, aerial and terrestrial
approaches do not need to be mutually exclusive; researchers are discussing using TLS
data to improve satellite and aerial estimates of above-ground biomass [41].
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Aerial approaches enjoy the advantage of being extremely fast, and are able to cover a
wide area of ground, even in locations that might otherwise be di�cult to access. However,
they naturally cannot obtain data below the forest canopy, and so tend to underestimate
forest biomass. Understory trees, or trees whose tops do not reach the outer canopy, are a
particular source of error [8]. In addition, aerial approaches are less suited to smaller-scale
projects: ALS can be quite expensive (even more so than TLS) because of equipment and
ight costs, though cheaper versions are becoming available through the use of drones.
Satellite data, on the other hand, is still not available at high enough resolution and
frequency to measure carbon storage in individual forest projects. We therefore limit our
evaluation to comparisons with terrestrial methods only.

2.4 Depth Measurement on Mobile Phones

Mobile phone software for creating depth images is rapidly becoming more widespread.
Apple released depth capabilities in its ARKit in June 20172, Huawei o�ers depth through
AREngine3, and Google published its long-awaited Depth API as part of ARCore in June
20204. As the package names suggest, the target use case of depth data on mobile phones is
Augmented Reality (AR), which allows the user to interact virtually with their real-world
environment. The Apple and Google software packages provide depth data on a subset of
compatible phones even without a specialized depth sensor, using Structure from Motion
(SfM) [38] or stereo vision techniques from multiple rear-facing cameras. However, higher
resolution, acquisition speed, and responsiveness can be achieved with a dedicated sensor,
and thus far Huawei, Apple, and Samsung have all released agship devices equipped with
an infrared time-of-ight (ToF) sensor.

Time-of-ight sensors are low-cost, short-range depth sensors that o�er millimeter ac-
curacy for depth measurements at a range of up to 4 m [28]. The sensor emits infrared
waves and measures the round-trip time for the waves to bounce o� of objects in the envi-
ronment and return to the sensor. Straightforward velocity calculations convert the time
measurement to distance. In Android APIs, the images produced by the depth sensor are
formatted in a standard DEPTH16 format, with each pixel containing a 13-bit depth mea-
surement (in mm) and a 3-bit con�dence value [15]. However, the Android documentation
does not specify what the con�dence value should represent, and we found that it was used
inconsistently or not at all by di�erent vendor implementations.

2https://developer.apple.com/augmented-reality/arkit/
3https://developer.huawei.com/consumer/en/hms/huawei-arengine/
4https://developers.google.com/ar/develop/java/depth/overview
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Time-of-ight sensors are known to be less e�ective under certain conditions, such as in
bright sunlight and when measuring pure black objects. However, we have not encountered
this issue in a shady, naturally forested environment. In fact, since time-of-ight sensors
emit their own infrared light, they work very well in low light conditions.

2.5 Image Segmentation

Image segmentation, or grouping the pixels that belong to di�erent objects in an image, is
an established area of computer vision and a key requirement for automatic forest inventory
tools. In this section, we o�er a general (non-comprehensive) background on segmentation
techniques. We discuss forest-speci�c approaches to point cloud and image segmentation
in Section 3.1.

One basic image segmentation problem is to assign a label to each pixel according
to whether it is in the foreground or background of an image. Some well-established
approaches to this problem includek-means segmentation[34], and region growing [1].
K-means segmentation seeks to assign pixels to clusters such that the sum of squared
di�erences between pixels and the mean of their assigned cluster is minimized. In region
growing techniques, the algorithm begins with sets of seed pixels from the foreground
and/or background of the image. These seeds are grown by iteratively adding connected
pixels that are su�ciently similar to their neighbors already in the seeded region.

A more challenging problem issemantic segmentation, which attempts to identify the
objects contained in an image and label each pixel with its corresponding object. Neural
networks have been applied to this task, most notably ResNet [19]. The above algorithms
were designed with RGB images, though some could be adapted to depth (or RGB+depth)
images as well. In addition, some dedicated research has been done on RGB+D image
segmentation through convolutional neural networks and other approaches, though this
area is relatively newer[18][39].

In our work, we seek a combination of basic and semantic segmentation. We do not
need to label every object in the image, but we do need to �nd the exact boundary between
one chosen foreground object (the tree trunk) and the rest of the image. Small errors in the
boundary, while not well-represented in the typical Mean Intersection Over Union (MIOU)
error metric for semantic segmentation neural networks [19], may translate to large errors
in DBH estimation. To our knowledge, there is no existing neural network for �nding trunk
DBH from RGB or RGB+D images of trees, nor is there an existing dataset of phone-based
RGB+D images large enough to train one.
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Chapter 3

Related Work

We now present prior work on using mobile technology to assist with forest inventories. We
�rst discuss the image segmentation problem, then three competing automated approaches
to estimate trunk DBH. Finally, we discuss the possibility of using generic mobile tools to
tackle the problem.

3.1 Image Segmentation for Forest Measurement

As discussed in Section 2.5, image segmentation is necessary to distinguish trees from the
surrounding understory, vegetation, and other trees in the background (see Figures 5.1,
5.2, 6.1, and 6.4 for examples from our dataset). This is a complex task due to occlusions,
variegated light conditions, and overall similarity of green and brown shades in the image.

In TLS, some researchers have used specialized dual-wavelength LiDAR to separate
leaves from branches [26]. Another approach is to carry out inventories in winter, in the
absence of leaves [42]. Of course, relying on leaf-o� conditions is not always possible and
limits inventories to deciduous forests. A third approach, taken by Bauwens et al., is to
clear nearby vegetation by hand during the survey and then use additional manual data
processing after the fact [4].

Unlike these more heavy-handed approaches, software-based point cloud segmentation
has been studied by Piermattei et al., who make use of the Forest Analysis Inventory Tool,
FAIT, developed at TU Wein [32]. The tool itself, as well as the Structure from Motion
pre-processing they use to derive tree point clouds, require substantial computational time
and power, and are not suitable for use during �eld operations. For forest TLS, one
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software package widely used for segmentation istreeseg , developed by Burt et al [6]1.
Like FAIT, this software is run o�ine after data collection. It separates trunks by looking
for neighborhoods of the point cloud that share similar surface normal vectors and are
therefore likely to belong to the same surface. Since these tools require extensive o�ine
processing, it is not possible to use them in real-time, which prevents them from being
integrated into a system that o�ers user interaction in the �eld. More speci�cally, they
cannot prompt users to retake a scan in case of errors in the software processing or �nal
result.

3.2 Structure from Motion (SfM)

Other researchers have also sought cheaper, more accessible automated forest inventory
methods than TLS. Some researchers have used Structure from Motion (SfM) algorithms
on mobile platforms to estimate the DBH of all trees in a plot [21][32]. Here, users are
asked to follow a speci�c path when moving around the plot perimeter and throughout
the plot, in order to ensure coverage of all trees with enough overlap between photos to
correlate images. Piermattei et al. keep a 1 m mean baseline between adjacent camera
images, and ultimately capture and process about 300-800 images for each plot containing
45-110 trees. Piermattei et al. also note that \additional photos were acquired [. . . ] to
avoid occlusions by stems, branches, twigs, and leaves" in denser areas of the plots. The
authors captured their images with a Nikon digital SLR camera and performed o�ine
processing with PhotoScan Pro to derive dense point clouds [32].

This approach is less expensive than TLS and may require less expertise. However,
it requires users to walk a pre-speci�ed path covering the entire plot, which may not be
possible in the presence of undergrowth. It also requires numerous photographs both to
perform SfM and to handle occlusion. Finally, SfM requires extensive post-processing of
images and cannot provide real-time operator feedback, for example to suggest that another
image be acquired due to too much occlusion. Indeed, Piermattei et al. report a trunk
detection rate as low as 65% in a plot classi�ed as \di�cult" based on the density of trunks
and degree of occlusion.

In contrast, our work based on a ToF sensor typically requires only a single photograph
per tree to accurately estimate DBH. We are able to perform all of the processing in near
real-time on the phone itself, and supply useful messages to allow users to adjust and

1https://github.com/apburt/treeseg
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correct recorded data while still on-site to ensure trees do not go undetected. Thus, our
work simultaneously improves data accuracy and reduces acquisition time.

3.3 Mobile Phone Apps

3.3.1 Generic Mobile Phone Measurement Apps

Before examining purpose-built mobile tools for DBH estimation such as those discussed
below, we also identi�ed and tested some generic mobile phone apps that might be accom-
plish the same task, such as CamToPlan [43] and Google Measure [16]. These are freely
available apps that measure the length of at surfaces. Typically, the user is asked to hold
the phone so that the object is displayed in the camera preview, and then tap or draw
the edge or line that they wish measured. We experimented with these apps to measure
tree DBH in the �eld, but found that they were unable to obtain consistent or accurate
measurements in almost all cases. We discuss our experiments with these apps further in
Section 6.3, where we conclude that because of large inconsistencies (up to 42 cm) between
measurements of the same tree, they are not currently robust enough to meet the accuracy
requirements of a trusted forest MRV system.

3.3.2 Project Tango

Other silvicultural researchers have used mobile phones with depth sensors and AR software
to estimate DBH. For example, Fan et al. used Project Tango [13], a purpose-built AR
phone from Google2, to estimate DBH, height, and the position of each tree trunk in their
target setting. They achieve an impressively low Root Mean Square Error (RMSE) of 1.26
cm and mean error (orbias) of 0.33 cm for DBH measurements. However, silvicultural
research focuses on highly-managed forests, such as those used for timber and commercial
purposes or found around urban areas, which tend to have well-spaced trees with only
one or two age classes, and no weeds or ground cover (especially near the tree base). The
authors did not respond to a request for their code, so we were not able to test their system
ourselves, but close analysis of their paper reveals ways that this environment dramatically
simpli�es the computational problem of identifying and measuring trees.

To get some sense of the di�erent environments used, consider Figure 3.1. On the top
row, we show two images from the evaluation environment used by Fan et al. The left image

2This line of AR phones have since been discontinued.
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Figure 3.1: Comparison of forest conditions between Fan et al. and our work. Top: Figures
7 and 8 from the work by Fan et al. [13]. The top right image shows the RGB part of an
RGB+depth image used in their evaluation dataset. Bottom left: A picture of two cedar
trees, which was taken in the Van Cortlandt Forest used in our evaluation. Bottom right:
RGB part of an RGB+depth image of one of the cedars, which we used in our evaluation
dataset. This image was taken with the phone held just inside the outer canopy.

gives additional context for the forest (it is from a section of the paper unrelated to DBH,
and so has other markings over it); the right image is the RGB part of an RGB+depth
image used to determine tree diameter. On the bottom left, we show two cedar trees that
exemplify the di�cult occlusions that occur in our dataset.3 Though the trunk is not
visible at a distance, by holding the phone just underneath the tree canopy, we capture
an RGB+depth image from which we determine diameter; the RGB part is shown on the

3Additional sample images from our dataset can also be found in Figures 5.1 and 5.2.
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Figure 3.2: Comparison of RGB and depth images between Fan et al. and our work.
Top: Figure 8 from the work by Fan et al. [13], showing a sample RGB and depth image
from their dataset. Bottom: RGB and depth image for one of the cedar trees used in our
dataset.

bottom right of the �gure. 4

In Figure 3.2, we show the RGB and depth images from the example image in Fan et
al. and from one of the two cedar trees. The reader may notice the di�erence in depth
images particularly, with the image from Fan et al. showing only the tree trunk, while our
sample has many depths that correspond to leaves and branches. Since the depth sensor
has a limited range of only a few meters, depth images taken in a forest with well-spaced
trees and no low-hanging branches or undergrowth will naturally capture only the target
tree trunk, as occurs in the sample image from Fan et al. The depth image therefore

4Incidentally, densely canopied cedars are also a good example of where our algorithm performs well
compared to manual forest inventories; we discuss this further in section 6.2.
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