An Empirical Study on Bash
Language Usage in Github

by

Zheyang Li

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics (MMath)
in
Computer Science

Waterloo, Ontario, Canada, 2021

(© Zheyang Li 2021

Author’s Declaration

I hereby declare that I authored or co-authored all the materials included in this thesis: see
Statement of Contribution below. This is a true copy of the thesis, including any required
final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Statement of Contribution

This project is a joint work with two other PhD students from the SWAG lab: Yiwen
Dong and Yongqgiang Tian. All algorithms were designed and implemented by the author,
Zheyang Li. Yiwen helped with brainstorming research ideas and the manual inspection
in the last research question. Both Yiwen and Yonggiang helped with giving suggestion to
the writing of the thesis.

111

Abstract

The Bourne-again shell (Bash) is a prevalent scripting language for orchestrating shell
commands and managing resources in Unix-like environments. At the time of writing,
it is one of the mainstream shell dialects that is available on most GNU Linux systems.
However, the unique syntax and semantic of shell languages could easily lead to unintended
behaviors if carelessly used. Prior studies primarily focused on replacing Bash with different
languages and there is not much empirical evidence studying the usage of the Bash itself
in practice.

In this study, we perform a wide-ranging empirical study of Bash usage, based on an
analysis over one million open-source Bash scripts found in Github repositories. We identify
and discuss which features and utilities of Bash are most often used. Using static analysis,
we find that Bash scripts are often error prone, and the error-proneness has a moderately
positive correlation with the size of the script. We also find that the most common problem
areas concern quoting, resource management, command options, permissions, and error
handling. We envision that the findings of this study can be beneficial for learning Bash
and future studies that aim to improve shell and command-line productivity and reliability.
In addition, we provide a large dataset of Bash script source code, parse trees and code
smell reports of each collected Bash script to facilitate future research in Bash language.

v

Acknowledgements

I would like to thank my supervisor Chengnian Sun for their guidance and support on
this study. I would also like to thank Yiwen Dong and Yonggiang Tian who helped me
brainstorm ideas and proofread the writing.

[would like to thank Professor Godfrey and Professor Nagappan for reviewing my thesis
and providing feedback.

Lastly I would like to thank my family for their love and support.

Table of Contents

List of Figures
List of Tables
List of Listings
1 Introduction

2 Background

2.1 History
2.2 Bash Language Features
2.2.1 Parameter Expansion & Special Parameters
2.2.2 Pipeline
2.2.3 Redirection
2.2.4 Command Substitution . . .

2.3 Summary

3 Dataset

3.1 Bash Script Collection (Github API)
3.2 IntelliJ Shell Parser and Parse Trees
3.3 ShellCheck and Code Smell Reports

3.4 Commit History

vi

ix

xi

S O O S Ot Ut

J

3.5 Database 13

3.6 Data Availability 14
Results 15
4.1 RQI1: What are the commonly used language features and utilities in Bash
SCTIPES? . o o e 15
4.1.1 Motivation 15
4.1.2 Approach 15
413 Results. 18
4.2 RQ2: How frequently do code smells occur in Bash scripts? What are the
most common code smells? 0oL o oL 21
4.2.1 Motivationo 21
4.2.2 Approach 21
423 Results. 22
4.3 RQ3: What are the most common bugs that arise in Bash shell scripts as
they evolve? 25
4.3.1 Motivationo 25
4.3.2 Approach 25
433 Results. 27
4.4 Summary 30
Related Work 31
Discussion 32
6.1 Threats to Validity 32
6.1.1 Internal Validity 32
6.1.2 External Validity 33
6.2 Future Usage of Dataset 33
6.2.1 Bash Language Model 33

vii

7 Conclusions

References

Viil

34

35

List of Figures

3.1
3.2

4.1
4.2

Data Collection Process 8
Database Schema 13
The Percentage of Files Containing Each Bash Language Feature. 17

Correlation between the Size of Bash Scripts and the Average Number of
Code Smells 23

X

List of Tables

4.1 Bash Language Features oL 16
4.2 Common Bash Language Features 19
4.3 Top 30 Bash Builtin Usage 20
4.4 Top 30 GNU Core Utility Usage, 20
4.5 Percentage of Bash Scripts with ShellCheck Reports 23
4.6 Top 5 ShellCheck Reports 24
4.7 Sampled Bash Github Projects, 27
4.8 Bug Category Distribution 00 28

List of Listings

1.1 Example of no word splitting 1
1.2 Example of word splitting 2
3.1 Exampleof a Bash script 10
3.2 The Parse Tree of the Bash Script in Listing 3.1 10
3.3 Example of a ShellCheck Report 12
3.4 ShellCheck command 12
3.5 Cloning command 13
4.1 Example of Bash syntaticbug 0000 26
4.2 Example of Bash semanticbug. 0000 26
4.3 Example of Application semanticbug 27

X1

Chapter 1

Introduction

A shell is a program that serves as a command-line interface to an operating system such
as Unix; the ability to create scripts using a shell language allows developers to effectively
orchestrate the interactions of other command-line tools and to manage system resources.
Because of their power and utility shell languages such as Sh, Bash, and Zsh are among the
most popular languages in common use; they are among the ten most popular languages in
Github, based on the number of unique contributors [12]. However, unlike other popular
programming languages such as JavaScript and Python, shell languages are domain specific,
designed for interacting with the UNIX environments. Shell languages can be difficult to
learn and are well known for having unintuitive syntax and semantics. For example, if
a string variable contains whitespace (one of the default input field separators, known as
IFS), the retrieval of the variable value would be split by the IFS and becomes multiple
words. In Listing 1, the variable x does not contain whitespace and the script will correctly
execute because no default word splitting will be applied to the variable x. However, in
Listing 2, word splitting would be applied to variable x because of the change from dashes
to whitespace characters. It would cause $x to be substituted with the literal values this
is a sentence. Thus, the predicate will become if [this is a sentence = "..."
1, which causes a syntax error when the if statement is executed. The way to avoid such
behavior is to double quote the variable "$x", so that the predicate will be interpreted as
the comparison between two strings: if ["this is a sentence" = "..."].

Listing 1.1: Example of no word splitting

#!/bin/bash
x="this-is-a-sentence"
if [$x = "..." 1;
then

No error in the if statement...
fi

Listing 1.2: Example of word splitting

#!/bin/bash
x="this is a sentence"

--if [$x = "..." 1;

++if ["$X" = " "];

then

Syntax error in the if statement...

fi

These two examples of word splitting show one of the many subtleties in shell lan-
guages and generally such characteristics can make shell scripting error-prone and hard to
maintain.

To combat the error-prone nature of shell scripts, there has been an increasing interests
in improving its quality by using static analysis tools. For instance, ShellCheck [17], an
open-source static analysis tool in Github with more than 22,000 stars, is designed to find
subtle syntactic or semantic issues in shell scripts, supporting a variety of shell dialects.
Its popularity implies the high demand in improving the quality of shell scripts.

Further, there are studies such as Bash2py [0] that converts Bash scripts to Python
scripts, NL2Bash [19] and NLC2CMD challenge (English to Bash) in the IBM project
CLAI [!] that aim to improve shell productivity by utilizing techniques from NLP and
machine learning. These studies introduce a way to circumvent the shortcomings of writing
shell scripts by converting it to or from different languages that are easier to maintain and
debug.

However, these existing efforts do not solve a critical question to improve shell usability:
What are the fundamental facts and characteristics of shell language usage? It is currently
unclear how and how well developers are using shell language features and utilities in prac-
tice. It is also unclear what are the common faults in shell scripts. Without understanding
such questions, it will be difficult for researchers to improve the quality of shell scripts.
The answers of these questions will give us a better understanding of the current state of
shell language usage. It will help developers in writing better shell scripts and help future
studies in improving shell and command-line productivity and reliability.

In this study, we aim to address the lack of understanding in the usage of shell language
by conducting an empirical study on the usage of shell scripts. More specifically, we focused
on Bash, one of the mainstream shells and the default one in many Unix-like systems. We

leveraged the abundant source code from the open-source community by gathering and
statically analyzing over one million Bash scripts in Github. Then we followed up with
a manual inspection to study the evolution of Bash scripts. We manually inspected 200
bug-fixing commits of Bash scripts and performed thematic-analysis to identify common
bugs that developers encounter during the Bash script development.

Overall, we attempted to answer the following research questions:

e RQ1: What are the commonly used language features and utilities in Bash scripts?

e RQ2: How frequently do code smells occur in Bash scripts? What are the most
common code smells?

e RQ3: What are the most common bugs that arise in Bash scripts as they evolve?

With the above RQs, we aim to shed some light into the usage of Bash language features
and utilities, the Bash script quality and code smells, and the characteristics of common
bugs found in the evolution of Bash scripts. We believe having insight of practical Bash
usage would be beneficial for new Bash practitioners and future research in command-line
tooling and shell productivity and reliability improvements.

Our study has the following major contributions.

1. We empirically identified the common language features and utilities used in Bash
scripts.

2. We empirically showed that Bash script sizes and the number of code smells have a
moderately positive correlation.

3. We empirically identified the common themes of code smells and bugs in open-source
Bash scripts.

4. We curated a large dataset of Bash script source code, their parse trees and ShellCheck
code smell reports for future research in Bash language.

5. To ensure reproducibility and to benefit the community, we have made all our data
and code publicly available. !

ISource code and data can be found here:

http://bit.ly/37PLx3n

Chapter 2

Background

2.1 History

The term “shell” refers to a command-line interface and a type of scripting languages
designed for orchestrating tools and managing resources in the Unix-like environment. It
first began with Ken Thompson in Bell Labs in 1971 when Unix was first introduced [21].
There were utilities such as glob for wildcard expansion and pattern matching, if command
to execute statements conditionally, simple redirection, command separator with “;” and
background processes with “&”.

The Bourne shell, known as sh in the V7 UNIX, was made by Stephen Bourne at
AT&T Bell Labs in 1977. The Bourne shell brought the concept of control flows, loops,
and variables into shell scripts and it became the inspiration for many later derivative
shells. The Bourne-again shell, commonly known as Bash, is one such derivative intended
to replace the Bourne shell. As a GNU project written in 1988 by Brian Fox, Bash has
become one of the mainstream shells and it is the standard shell included in many GNU
Linux distributions such as Ubuntu and Fedora. The latest version of Bash, Bash 5.0, was
released about 2 years before this writing in January 2019, celebrating 30 years of active
development [9].

Despite Bash having decades of history it is an extension to the Bourne shell and it
inherits all the shell syntax and semantic that are less-intuitive for backward compatibility
purposes. For instance, commands in shell scripts are sensitive to white spaces. This incurs
extra development overhead to programmers and it is difficult to debug. In addition, many
Bash features involve expansions such as variable expansion, filename expansion, and tilde

expansion. However, the expansion model that specifies the expansion order can be hard to
follow and understand once multiple expansions are compounded with each other. These
are only the tips of the iceberg that showcase the unintuitive side of Bash. Bash syntax
and semantic can easily lead to unintended behaviors if developers are not aware of the
nuances.

There have been prior studies addressing the usability issues of Bash as mentioned in
chapter 1. There is also an anecdotal list of common Bash mistakes compiled by users in
the Bash community called Bash Pitfalls [11]. However, at the time of this writing, we are
not aware of any large-scale empirical research studying the usage of Bash language.

2.2 Bash Language Features

Before the inception of UNIX and shell, there was the Job Control Language(JCL), a
language designed by IBM for ”glueing” mainframe programs in OS360. Similarly, shell
languages are similar in that fashion. They are command languages that usually serve as
the glue code in the UNIX environments to control the execution of external programs in
an interpreted manner. Compared to traditional general-purpose high-level programming
languages such C++ and Python that have rich language features and libraries, shell
languages have a limited set of features that are domain specific and mostly designed for
tasks in the shell environments.

This section briefly introduces some Bash features to facilitate the understanding of
the study. More details on the language features can be found in the Bash manual [10].

2.2.1 Parameter Expansion & Special Parameters

Parameter expansion is used to expand the value of a variable. The most basic form
is ${var} where the expansion returns the value of the variable var. There are many
other parameter expansion rules that perform a variety of substitutions to the variable.
For example ${var:=word} would return the value of var if it is not empty, otherwise it
assigns the expansion of word to var and returns the newly assigned value.

There are several constant variables that have special meanings. To name a few, there
are $7 that refers to the exit status of the most recent executed command in Bash, $0
that refers to the name of the Bash scripts, $* and $@ that expand to all the positional
parameters of the command-line arguments used in invoking the scripts.

2.2.2 Pipeline

Pipeline (1) is a shell language feature that creates a chain of commands. It is in the form
of

cmd; | cmdy | --- | cmd,

where the standard output of a command is passed as standard input to the next command
in the pipeline.

2.2.3 Redirection

Similar to the pipeline feature, redirection (>) redirects the standard input and output of
a command and it often deals with UNIX file handles such as standard input, output and
error. There are a variety of redirection rules in Bash but the basic redirection rule is in
the form of cmd > file where the output of cmd is redirected as the input to the file file,
effectively writing the output of cmd to the given file.

2.2.4 Command Substitution

Command substitution is in the form of $(cmd) where the command cmd is run in a
separate shell environment and the return value of command substitution is the standard
output of the command. For example, TMP DIR=$ (mktemp -d) runs the command mktemp
in a subshell to create a temporary directory and assigns the temporary directory name to
the variable TMP_DIR.

2.3 Summary

Shell is a both a command-line interface and a type of scripting languages used in the
UNIX environments. In this chapter, we have introduced the history of shell and Bash, as
well as showing some Bash features.

Chapter 3

Dataset

In this study, we first collected a corpus of approximately 1.3 million Bash scripts from
around 510,000 public Github repositories to understand the general Bash usage. To
further investigate whether the more popular scripts have different characteristics than the
general Bash scripts, we collected an extra corpus of approximately 15,000 Bash scripts
from the top 1,000 public shell repositories ranked by Github repository stars. The Github
star is a measurement of developer interest. We used the same assumption made in Ray et
al.’s study [3] that it is an indication of popularity and we adopted such scheme to identify
popular Bash scripts. During the Bash script collection, any entry that appeared in both
Bash corpora was only kept in the smaller corpus, ensuring that no duplicate elements
exist across the two corpora.

We will refer to the dataset from the general repositories as the general dataset and
the dataset from the top 1,000 repositories as the top 1k dataset.

The overall collection process is illustrated in Figure 3.1. We first collected the Bash
scripts and their relevant metadata such as commit history and messages using Github
API. For each script, we leveraged IntelliJ’s shell parser and ShellCheck to generate parse
trees and code smell reports respectively.

o T j
Intelli] parser Parse trees

N
OB & B =

Github Bash scripts ShellCheck Reports = Database

|

Commit messages and other metadata

Figure 3.1: Data Collection Process

3.1 Bash Script Collection (Github API)

The General Dataset

We collected approximately 1.3 million Bash scripts using the Github Code Search APT!
with the following parameters:

1. Keyword: bash

2. Qualifier 1: in:file

3. Qualifier 2: language:shell

4. Qualifier 3: size:n...n+1 where n ranges from 0 to 49999

Github uses the tool Linguist? to detect the language of source code file and labels all
varieties of shell scripts (e.g., Zsh, Ksh, Bash) as “shell”. To ensure that we only have
Bash scripts, we used the keyword “bash” in the API and performed filtering locally based
on the Bash shebang * with the following regular expression:

1
2

3shebang is the first line of code in a shell script that specifies the interpreter

8

https://docs.github.com/en/rest/reference/search#search-code
https://github.com/github/linguist

“#1.x[\/\\\s] (bash)\b

To understand the regular expression, it can be broken down into several parts:

e “#!: This means the matching string has to start with the characters #!.

e .*x: This means that there can be any number of characters following #!.

[\/\\\s]: This is a character group that matches either the \, /, or any whitespace
characters. This is used to cover all kinds of path ending that could lead to the Bash
binary.

(bash) : This matches the exact word “bash’ in the shebang.

e \b: This is a metacharacter that indicates the boundary of the matching string.

The Github API itself also has several limitations:

1. Only the default branch is considered.

2. Only files smaller than 384 KB are searchable.

3. You must always include at least one search term when searching source code.
4. Query returns a maximum of 1,000 results.

Due to the fourth limitation of Github API that it can only return one thousand results
per query, we constructed 25,000 queries with each only looking for files within specific file
size range in byte(s). In the end, we used the following list of byte ranges: 0-1, 2-3, ...,
49,997-49,998, 49,999-50,000. Github Code Search can return files with size up to 384KB,
but we realized during the data collection process that the amount of shell scripts returned
per query quickly declines after the query qualifier of file size was set to 10,000 bytes and
beyond. We decided to stop our queries at the byte range of 49,999-50,000 bytes to collect
a good amount of samples within a reasonable time frame.

The Top 1,000 Dataset

Additionally, we collected approximately 15,000 Bash scripts from the top 1,000 shell
repositories in Github ranked by stars.

To identify the top 1,000 shell repositories in Github, we constructed the Github search
query using the Github Repository Search API with the following parameters:

9

—_

. Qualifier 1: language:shell

[\]

. Qualifier 2: sort=stars
3. Qualifier 3: order=desc
4. Qualifier 4: per_page=100

With the above parameters, the Github query returns 100 results per page and we
stepped through 10 pages of results to collect the top 1,000 shell repositories ranked by
stars. Then we searched locally based on the Bash shebang to identify any Bash scripts
in each repository. To ensure there is no overlap, we removed all duplicates in the general
dataset.

3.2 IntelliJ Shell Parser and Parse Trees

Listing 3.1: Example of a Bash script

#!/bin/bash
echo *.mp3 | grep song

IntelliJ IDEA is a popular open-source IDE. It provides an API layer called Program
Structure Interface (PSI) that allows developers to create parser plugins for different types
of files. IntelliJ’s shell parser is one of the many available parser plugins and it supports
parsing shell scripts.

We created a Java program that calls the shell parser on each of the collected Bash
script. The parse tree output was saved to the database. Listing 3.1 and Listing 3.2 give
an example of what a parse tree would look like for a simple Bash script.

Listing 3.2: The Parse Tree of the Bash Script in Listing 3.1

{
"text": "#!/bin/bash\n",
"element": "shebang"

1,

{

"children": [{
"children": [{

10

"children": [
{
"children": [
{
"children": [...],
"text": "echo",
"element":
"GENERIC_COMMAND_DIRECTIVE"

~—

"children": [...],
"text": "*x.mp3",
"element": "LITERAL"

¥

1,

"text": "echo *.mp3",

"element": "SIMPLE_COMMAND"

"text": ulu,
"element": |||||

"children": [
{
"children": [...],
"text": "grep",
"element":
"GENERIC_COMMAND_DIRECTIVE"

"children": [...],
"text": "song",
"element": "LITERAL"
}
1,
"text": "grep song",
"element": "SIMPLE_COMMAND"
b
1,
"text": "echo *.mp3 | grep song",
"element": "PIPELINE"
H,
"text": "echo *.mp3 | grep song",
"element": "PIPELINE_COMMAND"

11

3,

"text": "echo *.mp3 | grep song",
"element": "COMMANDS_LIST"

3.3 ShellCheck and Code Smell Reports

ShellCheck is a popular open-source static analysis tool for finding subtle issues in shell
scripts and it has become the most starred Haskell project in Github. Given a shell
script, it can generate a report for each detected issue. For each report, it comes with a
severity rating, the location of the issue and an explanation message. The severity rating is
classified into four categories: error, warning, info, style. The following is a short example
of a generated SheckCheck report in JSON format:

Listing 3.3: Example of a ShellCheck Report

"file":"...",

"line":3,

"endLine":3,

"column":6,

"endColumn":6,

"level":"info",

"code" :2086,

"message":"Double quote to prevent globbing and
word splitting."

Listing 3.4: ShellCheck command

shellcheck -f json -s bash -x <file_path>

The dataset includes the ShellCheck reports in JSON format for the most recent commit
snapshot of each collected Bash script. The ShellCheck reports were generated using
ShellCheck version 0.7.0 with the command in Listing 3.4.

12

3.4 Commit History

Besides all the generated content such as the parse trees and ShellCheck reports, the
dataset also includes commit history information on the main branch for each collected
Bash script. More specially, the commit metadata includes commit message, commit SHA
and commit date.

Listing 3.5: Cloning command

git clone --single-branch --no-tag --filter=blob:1imit=50k
<clone_url> <clone_dest>

For each Bash script, we first cloned their corresponding Github repository using the
command in Listing 3.5. Within the cloned repository, we iterated through all commits of
a given Bash script and collected the relevant commit metadata.

3.5 Database

bash_file
PK | file id integer bash_file_content
bash_file_parse_tree
sha text PK | file_id integer —rep —
name text
path text fl tent text PK | file_id integer
url text ¢_content tex }
. file_size integer
glt_url text h parse_tree text
html_url text UNIQUE
repo_id integer
bash_file_git_commit bash_repo bash_file_sc_output
PK | (file_id, commit_sha) PK | repo_id integer PK | file_id integer
1
file_id integer name text sc_output text
file_name text full_name text
file_path text description text
repo_id integer url text
commit_sha text fork integer

commit_msg text
date integer

Figure 3.2: Database Schema

Figure 3.2 presents the schema of the database. All the metadata of each Bash script
are stored in bash_file table. We identified the distinct Bash script based on their file

13

content SHA. The content of the distinct Bash scripts are stored in bash file content
table. The parse trees and ShellCheck code smell reports are stored as JSON strings
in the tables bash file parse_tree and bash file_sc_output respectively. The table
bash_repo stores the repositories information and the table bash file git_commit stores
the commit history of each Bash script.

3.6 Data Availability

To ensure reproducibility, all the collected data and scripts mentioned in this thesis are
made publicly available and can be found here:

14

https://bit.ly/37PLx3n

Chapter 4

Results

This chapter covers the motivation, approach and the results for each of the research
question mentioned.

4.1 RQ1l: What are the commonly used language fea-
tures and utilities in Bash scripts?

4.1.1 Motivation

Two important aspects of a programming language are the available language features and
libraries. In this case, Bash is a scripting language that has its own language features and
it often serves as the glue code for many utilities in the Unix-like environment. To examine
the usability of Bash language, we want to first investigate and identify the core usage of
Bash language features and utilities. We believe that such information would be useful for
future research in Bash tooling or new Bash practitioners.

For example, command line repair or conversion tools such asBash2Py [(] and NL2Bash |
can prioritize working on the common language features and utilities to improve its effi-
ciency.

4.1.2 Approach

We approached this question by first defining the scope of language features and utilities,
and then generating a parse tree for each collected Bash script from Github. Instead of

15

Table 4.1: Bash Language Features

pipelines:
lists of commands:
compound commands:

I, 1&
5. & |, &&
until, while, for, if, case, select, [[...]]

grouping: subshell, { commands }
function: (function definition)
variable: (variable definition)
shell parameters: positional, special, e.g., , $0, $7
expansion: brace, tilde, parameter, arithmetic, filename
redirection: >, >> Heredoc, Here-string...
substitutions: command, process
array: array=(valuel, value2, ...)
alias: alias name="Hello, world!"

computing the raw frequency of feature and utility usage from each file, we computed the
relative frequency of files that contain certain features and utilities to prevent large or
repetitive files from skewing the results.

Language Features. To investigate the usage of language features, we focused on the
major language features listed in Table 4.1. These language features were extracted from
the Bash 5.0 manual [10].

Utilities. A large numbers of command line utilities exist in the Unix-like systems. To
make the study feasible, we limited the scope of utilities by only considering the builtins [24]
and the utilities from the GNU coreutils package [11]. Bash builtins are innate function-
alities that are implemented inside Bash while utilities from GNU coreutils are external
programs. The former includes 57 builtin utilities, such as echo, cd and set, and the lat-
ter consists of 102 external utilities, including rm, mkdir and cp. There are three common
utilities shared by the two groups, which are echo, test and pwd. In total our study takes
156 (= 57 + 102 — 3) utilities. By combining both groups, we believe that it would cover
most of the operations needed to develop Bash scripts.

Parse Trees. Once the scope of language features and utilities was defined, we used
the IntelliJ shell parser to generate a parse tree for each Bash script and analyzed the
language feature and utility usage extracted from the parse tree nodes. To give an example,
Listing 3.2 is a parse tree of the Bash script example in Listing 3.1.

By traversing each parse tree, we counted the number of times each language feature
and utility that appears. To avoid the scenario of a particular file skewing the usage of
certain language features, we counted the number of files that contain the features rather
than the raw counts of the features and utilities.

16

Bash Language Feature Usage

IGeneral
S0% - I Top 1000
S
5o 60% -
s
=
8
5 40% -
¥
<
0% -

“Q\’Q) \OQ '%'\OQ/ .\,QQ’%Q\QJ Q,})Q;& :‘\'XOQ'\OQ é\’é KQQ\\\ C@‘ZJ ,\é&\@xbﬁ@ \O‘(’\\Q/Q\)’\"\OQ'\OQ '\OQ &\Q)@
S FETITASTTS TN OIS P FF S &2

4?009 & QJ&& < Q&%\;@Q bé? @QQ@@ & S N S
VRPN AR N > RO S

Qb' ®® Q)C)\’ QO &‘Q@ .\/Q'Q S @Q) D &‘b’ Q)%

Qo »Q,) - X0 \Q S

S SIS S S 3
00‘9 < N & <

Figure 4.1: The Percentage of Files Containing Each Bash Language Feature.

Majority of the nodes in the parse tree can be directly mapped to one of the Bash
language features. However, the few exceptions are pipeline, filename and tilde expansions:
Pipeline is a common parent node in the grammar defined by IntelliJ and it is possible
that a pipeline contains only one simple command; filename and tilde expansions are only
handled after the parsing stage and they do not get expanded in the parse trees. To address
the pipeline issue, we only included the pipeline language feature when the pipeline tree
node has two or more children in the parse tree, indicating the pipeline contains multiple
commands with either | or |&. To address the issue of filename and tilde expansions, we
further parsed the value of terminal nodes in the parse trees and searched for *, ? and ~.

17

4.1.3 Results

Language Features

Figure 4.1 plots the usage of each of the selected Bash language features from the general
dataset in red and the top 1k dataset in blue. Each bar shows the probability of a feature
being used given an arbitrary Bash script. The x-axis labels in Figure 4.1 are the language
features and they are sorted in descending order based on their popularity (i.e., the per-
centage of files that contains such feature) from the general dataset. The following are a
few interesting observations based on the results.

Observation 1 — Loop is less commonly used than conditional in Bash scripts.
Conditional and loop expressions are both fundamental building blocks that manage the
control flow of a program. Based on Figure 4.1, if statement has a 70%/58% file oc-
currence percentage in both datasets while for loop and while loop only have less than
40%/30% file occurrences respectively. It suggests that Bash developers do not usually
work on repetitive tasks and the Bash scripts follow a more linear fashion with only con-
ditional branches.

Observation 2 — Array is not commonly used in Bash scripts. In the original
Bourne shell, arrays are not supported. In contrast, one of the additional builtin features
from Bash is the support of array. Despite being a builtin feature and supposedly a useful
data structure in many other programming languages, a quick inspection on Figure 4.1
suggests that array usage is relatively minimal with around 10%/15% occurrences in the
collected Bash scripts.

Observation 3 — The popularity of Bash language features are similar across
the general dataset and the top 1k dataset. Although the x-axis labels are sorted
based on popularity from the general dataset in red, the language feature usage in the top
1k dataset follows a similar descending order. To measure the differences of the language
feature usage among the two datasets, we computed the average differences in file occur-
rence percentage for each feature. It resulted in each language feature having an average
of only 5.6% more usage in the general dataset than the top 1k dataset. Additionally, we
inspected and listed the ten most commonly used features from both datasets in Table 4.2.
We can observe that the top ten features are almost the same, with the exception that
the general dataset has more filename expansions while the top 1k dataset has more Bash
conditionals [[...]].

While the language feature usage from the top 1k dataset follows a similar descending
order, the usage of Bash conditional [[...]] of compound command and command list

18

Table 4.2: Common Bash Language Features

Rank General Top 1k
1 variable variable
2 command substitution command substitution
3 if if
4 parameter expansion parameter expansion
5 redirection redirection
6 pipeline pipeline
7 special parameter grouping ...
8 grouping {...} special parameter
9 function definition [[--]]
10 filename expansion function definition

are the exceptions. They have a much similar usage in both datasets than the usage of
other language features.

Utilities.

Table 4.3 and Table 4.4 show the usage of top 30 Bash builtins and GNU core utilities
from both the general and the top 1k datasets. Entries that only appear in one dataset
but not the other are highlighted in red.

Observation 4 —File, path and directory related utilities are more commonly
used in Bash scripts. Table 4.4 shows that the five most commonly used utilities from
the GNU coreutil package in both datasets are the same. rm deletes a file or directory;
mkdir creates a directory; cat reads the content of a file; dirname takes a path and removes
the trailing ” /” component in the path; cp copies a file or a directory to a destination. All
of these are utilities that manage files, path and directories.

Observation 5 — Bash utility usage is relatively similar across the general
dataset and the top 1k dataset. In terms of Bash builtins, the differences in the top
30 popular builtins between the two datasets are minimal. Table 4.3 shows that alias and
let only appeared in the top 30 list from the general dataset while type and hash only
appeared in the top 30 list from the top 1k datasets. Out of these 4 builtins, the highest
utility usage is 3% from alias, which is much less substantial compared to the rest of the
builtin usage. Similarly, the top 30 popular GNU core utilities from both datasets almost

19

Table 4.3: Top 30 Bash Builtin Usage Table 4.4: Top 30 GNU Core Utility Usage

General Top 1k General Top 1k
builtin | file(%) builtin | file(%) utility | file(%) utility | file(%)
echo 7.7 echo 54.8 rm 33.1 cat 19.8
[55.9 [37.2 mkdir 30.1 mkdir 18.6
exit 52.7 exit 33.3 cat 28.7 rm 17.7
cd 38.1 set 28.8 dirname 23.2 dirname 16.6
set 25.5 cd 20.2 cp 23.0 cp 9.4
pwd 23.2 source 19.5 date 16.6 true 7.5
export 21.1 export 14.1 sleep 12.0 cut 7.5
source 18.1 local 13.1 mv 11.9 basename 7.2
shift 14.8 . 11.0 basename | 11.6 chmod 7.0
read 13.7 pwd 8.9 Is 11.5 sleep 6.9
local 12.2 return 8.7 cut 10.3 head 4.6
. 11.8 shift 7.6 chmod 9.9 sort 4.4
return 11.6 printf 7.2 tr 9.1 mv 4.4
printf 10.2 read 7.1 true 7.4 tr 4.3
eval 9.2 exec 5.0 touch 6.6 touch 4.2
break 7.8 break 4.3 head 6.6 date 4.0
test 7.4 eval 4.2 we 6.4 mktemp 3.9
exec 6.8 declare 4.2 In 6.0 uname 3.9
unset 6.5 trap 3.7 uname 5.5 In 3.8
trap 5.7 unset 3.3 tee 5.4 chown 3.6
declare 4.4 command 2.8 sort 5.4 readlink 3.4
pushd 4.4 continue 2.7 tail 5.0 we 3.2
getopts 4.2 test 2.5 readlink 4.6 Is 2.9
popd 4.2 pushd 2.3 mktemp 3.2 tail 2.7
continue 4.0 popd 2.1 chown 2.9 id 1.8
alias 3.2 kill 1.7 hostname 2.7 tee 1.7
kill 2.9 hash 1.6 seq 2.5 seq 1.6
let 2.7 type 1.6 id 2.5 hostname 1.2
command 2.5 getopts 1.5 whoami 1.5 uniq 0.9
wait 2.5 wait 1.3 uniq 1.5 install 0.6

20

contain the same 30 entries, with the exception of whoami and install. Overall, the Bash
scripts in both datasets exhibit very similar usage of utilities.

4.2 RQ2: How frequently do code smells occur in
Bash scripts? What are the most common code
smells?

4.2.1 Motivation

As mentioned in Section 1, there exist studies such as Bash2Py [6], NL2Bash [19] and
NLC2CMD [1] (English to Bash) that attempt to convert Bash scripts to Python scripts
or convert commands from natural language to Bash commands. One of the practicalities
of these studies is that it avoids the overhead of developing and maintaining Bash scripts
due to its less intuitive syntax and semantics. We want to investigate and gain insights
into the general quality of Bash scripts and whether or not having syntactic or semantic
issues is a common characteristic.

4.2.2 Approach

To answer the question, we used ShellCheck reports as the measurement of Bash script
quality.

As mentioned previously in section 3.3, ShellCheck is an open-source static analysis
tool that can catch many syntactic and semantic issues hidden in shell scripts. It first
started in 2012 and it has been gaining popularity over time.

Given a shell script, it generates a report for each detected issue. For each report, it
comes with a severity rating, the location of the issue and an explanation message. The
severity rating is classified into four categories: error, warning, info, style. Style related
reports are considered free of mistakes as we do not care about stylistic improvement in
this study. Listing 3.3 is a short example of a generated SheckCheck report.

One problem we found in using ShellCheck was that the severity rating is not clearly
defined among error, warning and info, and there is no available information from its official
documentation as far as we are concerned. To mitigate this issue, we applied ShellCheck
to each script and treated all reports regarding error, warning and info as potential code

21

smells. Overall, we ran ShellCheck on the most recent commit snapshot of each collected
Bash script. Analysis on the ShellCheck reports was conducted to identify the distribution
of report severity and common issues reported.

4.2.3 Results

Prevalence of code smells. The distribution of report severity from both the general
and the top 1k dataset is listed in Table 4.5. There are two groups of severity rating that
are considered. The first group counts the percentage of Bash scripts that have at least
one of error, warning and info reports; the second group counts the percentage of issue-free
Bash scripts that only has style reports or empty reports.

Observation 6 — Code smells are prevalent in Bash scripts and it is more
prevalent in the general dataset than those in the top 1k dataset. As Table 4.5
demonstrates, the overall data suggests that code smells are prevalent in Bash scripts.
More specifically, only 19.1% of Bash scripts in the general dataset have only style or no
ShellCheck reports. The data suggest that code smells or potential bugs are quite common
in the general population of Bash scripts. In contrast, 46.5% of Bash scripts that are from
the top 1k dataset are free from any error, warning or info reports. The results are to
be expected because they are more likely to be maintained by multiple developers and
potentially have gone through many reviews or static analysis such as ShellCheck before
getting committed to their Github repositories.

Themes of code smells. Table 4.5 shows that it is quite common for Bash scripts
to have code smells or mistakes that go unrecognized, even if the script is popular and
potentially well maintained by multiple developers. In order to understand the details,
we pooled together all reports of error, warning and info severity and showed the 5 most
common reports from our Bash script corpora in Table 4.6. We further categorized and
labeled each distinct report to find common characteristics among them. The bold entries
in the tables indicate that they appear in both the general and the top 1k datasets.

Observation 7 — Quoting, word splitting, error handling, array and return
value are the common themes of code smells. Table 4.6 shows that the top 5
ShellCheck reports of the two datasets are similar. Four out of five types of reports are
the same. By looking at the bold entries of the table, we can see that the common code
smells categories are quoting, word splitting, array, error handling and return value.

Correlation between the size of Bash script size and number of code smells.
Figure 4.2 shows the correlation between the size of Bash script and the average number of

22

Table 4.5: Percentage of Bash Scripts with ShellCheck Reports

Severity Rating General Top 1k
Error/Warning/Info 1,071,330 (80.9%) 7,707 (53.5%)
Style/None 252,934 (19.1%) 6,699 (46.5%)
0 —
=
) - 350
S 140
&
S 120 - 300
3)
=
=
L
'(j:) 80 200 g
= g
O A
o 60 150
e
g 40 100
Z
L
& 20 50
—
>
< 0 0

10000 20000 30000 40000 50000
Bash Script Size (byte)

=)

Figure 4.2: Correlation between the Size of Bash Scripts and the Average Number of Code
Smells

code smells (i.e., ShellCheck reports) per script size. The x-axis is the size of Bash script
in byte and the y-axis is the corresponding average number of code smells. Due to the
large size of data points, we applied hexagon binning to show the correlation as well as the

23

Table 4.6: Top 5 ShellCheck Reports

(a) Top 5 ShellCheck Reports from the General Dataset

Code Category Files(%) Message

SC2164 Error handling 21.5% Use cd ... exit in case cd fails.

SC2046 Quoting, Splitting 20.9% Quote this to prevent word splitting.

SC2162 Command option 12% read without -r will mangle back-
slashes.

SC2155 Return value 8.7% Declare and assign separately to avoid
masking return values.

SC2068 Quoting, Splitting, 6% Double quote array expansions to avoid

Array re-splitting elements

(b) Top 5 ShellCheck Reports from the Top 1k Dataset

Code Category Files(%) Message

SC2046 Quoting, Splitting 9.5% Quote this to prevent word splitting.

SC2164 Error handling 8.1% Use cd ... exit in case cd fails.

SC2155 Return value 5.3% Declare and assign separately to avoid
masking return values.

SC2128 Array, Expansion 3.2% Expanding an array without an index
only gives the first element.

SC2068 Quoting, Splitting, 2.6% Double quote array expansions to avoid

Array re-splitting elements.
density.

Observation 8 — The size of Bash script and the number of code smells have a
moderately positive correlation. As shown in Figure 4.2, the number of code smells
slowly increases as the script size gets larger. To quantify the correlation, we calculated
the Pearson correlation coefficient between the two variables using the following formula:

pxy=——"—"—> (4.1)

Cov(X,Y) is the covariance between X and Y, and ox and oy are the standard deviation
of X and Y respectively. The calculation resulted in a correlation coefficient value of 0.38,
which indicates a moderately positive correlation between script sizes and the number of
code smells.

24

4.3 RQ3: What are the most common bugs that arise
in Bash shell scripts as they evolve?

4.3.1 Motivation

The results from RQ2 give us a general picture of common mistakes in Bash scripts that
are hidden and overlooked. However, they do not include bugs that have been fixed during
the script development. To further understand the issues in Bash script usage, it would be
useful to look into the evolution of Bash scripts and identify common bugs of which the
developers were aware and that were fixed during the development. In doing so, we will
have a more holistic view of issues found in Bash scripts and evaluate whether common
bugs can be feasibly captured using static analysis tools such as ShellCheck.

4.3.2 Approach

To investigate the common bugs that manifest during the evolution of Bash scripts and
identify their characteristics, we randomly sampled bug-fixing commits and manually in-
spected each of the samples. In total, we studied 200 random bug-fixing commit samples.

Data collection and sampling. To identify bug-fixing commits, a keyword heuristic
technique was used on commit messages, similar to the method suggested by Ray et al. [3].
We filtered and identified any commit message that contains any of the following bug-fixing
related keywords: error, bug, fix, issue, mistake, incorrect, fault, defect, flaw, bugfiz.

Due to the large size of the collected Bash script corpora, a total of 200 bug-fixing
commits were randomly sampled. More specifically, the first 100 bug-fixing commits were
randomly sampled from five selected Bash projects based on their commit history. 20 com-
mits were randomly sampled from each project. Table 4.7 shows all the selected projects,
all of which are active in development and have a reasonable amount of stars, contributors
and development history. RVM ! is a command line tool for managing Ruby application
environment; devstack? is a set of scripts that facilitates the deployment of OpenStack
cloud; RetroPie-Setup?® is a collections of shell scripts that help setup Ubuntu on Rasp-
berry Pi and PC; dokku* is a tool to manage the lifecycle of applications; LinuxGSM?

TR W N

25

https://github.com/rvm/rvm
https://github.com/openstack/devstack
https://github.com/RetroPie/RetroPie-Setups
https://github.com/dokku/dokku
https://github.com/GameServerManagers/LinuxGSM

is a command line tool that facilitates the management of game servers. The rest 100
bug-fixing commits were randomly sampled from the general dataset in which there is no
overlap with the previously selected samples.

We adopted such sampling scheme in hopes of achieving a good balance between feasi-
bility and generalization of the inspection.

Manual inspection. To manually inspect each bug-fixing commit, Yiwen Dong and
I, who have experience with Bash, did the following tasks:

e Identify and categorize the bug(s)
e Identify how the relevant bug(s) was fixed
e Check whether it can be caught by ShellCheck if possible

We predefined a set of bug categories as a starting point based on a preliminary inspection,
with the possibility of adding new categories along the inspection process. Eventually, we
came up with the following four major categories.

e Bash syntactic bug
Any bug that is caused by misuse of syntax is considered a syntactic bug. They are
often caused by white space, indentation, newline, parentheses, etc.

Listing 4.1: Example of Bash syntatic bug

#!/bin/bash
x="this is a sentence."

——if ["$X" = n..'n].

++if [II$XII = n_ .];

missing the white space near the closing bracket
then

do something here
fi

e Bash semantic bug
Bash semantic bugs are the bugs related to the misuse of Bash features and utilities.
They are the focus of this inspection.

Listing 4.2: Example of Bash semantic bug

#!/bin/bash

--rm /some_folder

++rm -r /some_folder

missing option -r when working with folder

26

Table 4.7: Sampled Bash Github Projects

Projects Commits Stars Contributors Dev History
RVM 11,530 4.5k 556 12 years
devstack 10,050 1.8k 640 10 years
RetroPie-Setup 6,752 9k 146 9 years
Dokku 6,529 20.7k 401 8 years
LinuxGSM 5,787 2.6k 144 8 years

e Application semantic bug
Application semantic bugs are primarily related to bugs caused by application logic.
Most application bugs are domain-specific but we tried to gain more insights by
further providing a few sub-categories such as resource cleaning, file/path/directory
management and portability. Any application semantic bug that does not fit into
any sub-categories is given the generic sub-category.

Listing 4.3: Example of Application semantic bug

#!/bin/bash
--if [[cmdl && cmd2 && cmd3 1];
++if [[cmdl || cmd2 || cmd3]];
changes are due to application logic
then
do something here
fi

e False positive
Lastly, the false positive category denotes the commit is not at all related to any
bug-fixing activities (e.g., version update) or the bugs themselves are not in Bash
scripts.

All inspections were done individually, then the results were combined and discussed among
all the inspectors. Any conflict was discussed and resolved during the process.

4.3.3 Results

By inspecting 200 randomly sampled bug-fixing commits, we were able to identify 57 Bash
semantic bugs, 127 application semantic bugs, 2 Bash syntatic bugs and 33 false positives.

27

Although atomic commits are considered good practices in general, certain commits in-
cluded multiple bugfixes and we ended up inspecting more than 200 changes. The per
group distribution is shown in Table 4.8. Before the major inspection was conducted, we
initially came up with a few sub-categories under the category of application semantic bug
in hopes of finding common themes in them. However, it turned out that the majority of
application semantic bugs were quite generic and domain specific. Overall, we were able
to identify several common themes in Bash semantics bugs in our samples.

Table 4.8: Bug Category Distribution

Bash Application Bash False

Semantic Semantic Syntax Positive Total
General 22 61 2 21 106
Projects 35 66 0 12 113
Total 57 127 2 33 219

Common Bash Bugs. One of the objectives in the study is to identify common Bash
bugs. A quick inspection of Table 4.8 tells us that only two bugfixes were related to
syntax and seemingly it is rare to have bugs only caused by syntax issues. In contrast,
Bash semantic bugs are much more prevalent based on our inspection results. In the 57
Bash semantic bugs, the following are the common themes discovered in their root cause:

Quoting, 9/57 = 15.7%. As suggested by the collected ShellCheck reports in Sec-
tion 4.2.3 that quoting is one of the major themes of code smells and potential causes of
bugs, the results from the manual inspection also corroborate the findings from RQ2. A
closer look at the inspected bug-fixing samples reveals that Bash developers were having
quoting issues with expansions where globbing and word splitting would be performed
without quoting, or mixing up single quotes with double quotes. Based on our bug-fixing
samples, the former issue could be mostly caught by ShellCheck’s extensive quoting checks
where double quoting expansions is assumed to be the convention. However, ShellCheck
was less effective against the latter issue in our samples. The latter issue seems not as
common as the former one and thus it is harder to assume developer’s intention.

File, path and directory management, 8/57 = 14.0%. Files, paths and directories
are resources that developers frequently interact with and manage in their Bash scripts.
Based on the inspected bug-fixing samples, it is another common theme of bugfixes during
Bash script development. More specifically, most resource bugs revolve around the lack
of existence checking of resources. It seems to be the case that developers often assume

28

the existence of certain static resources in their Bash scripts and the assumption does not
always hold in all environments. As far as we are concerned, ShellCheck does not check
the existence of resources and it is not able to detect such type of bugs.

Suggestion to Bash practitioners - Adding checks to the existence of static
resources can be helpful. Although it is possible that resources are created dynamically
in Bash scripts, there are still many usage of statically specified resources. Adding checks
to the existence of static resources can help reduce some of the resource management bugs,
in which their existences are wrongly assumed.

Command option, 6/57 = 10.5%. Commands are the core of Bash scripts as they
provide the means for developers to interact with the operating systems. As part of the
commands, options are essential in specifying the desire behaviors. Based on our inspected
bug-fixing samples, command option is also a common source of error. These bugs are
mostly related to @ the usage of invalid options, () the improper usage of options. As far
as we are concerned, ShellCheck currently is only able to catch very few command option
bugs. The improper usage of option often depends on user intention and it is unlikely that
static analysis will be able to catch such bugs. However, the usage of invalid options of
common utilities can be feasibly caught with static analysis.

Suggestion to static analysis tools - Static analysis tools can incorporate
command option checking to reduce the usage of invalid flags. Table 4.3 and
Table 4.4 include the popular builtins and GNU core utilities found in the collected Bash
scripts. Static analysis can make use of mandb® that contains the information of system
command options, or creates its command option database to check invalid option usage
for common commands.

Permission, 6/57 = 10.5%. Permission plays an important role in the Unix-like sys-
tems. Certain commands and resources can only be used when the users are given the
sudo/root privilege. Based on the inspected samples, they did not have sudo/root privi-
lege by default and the permission bugs we identified concern missing command permission
and unexpected change of resource permissions. ShellCheck currently is not able to catch
permission bugs.

Error handling, 6/57 = 10.5%. In Section 4.2.3, one of the major themes in the
collected ShellCheck reports is error handling and our inspection on the random bug-
fixing samples align well with the previous finding. Several bugs were identified to have
chains of commands and developers assumed the success of each command. The general
fixes we observed are either adding || true to each command (i.e., cmdl || true) so

6

29

https://man7.org/linux/man-pages/man8/mandb.8.html

that command failure would not exit the script, or putting && in between each command
(i.e., cmdl && cmd2 && ... && cmdn) so that the subsequent commands are run only
if the previous commands have succeeded. To some degree, ShellCheck warns user about
potential command failure for certain commands such as cd. However, it is command
specific and it is quite limited in general.

4.4 Summary

In this chapter, we showed the motivation, approach and result for each of the research
question. Specifically, we identified the commonly used language features and utilities, the
common code smells and bugs in Bash scripts.

30

Chapter 5

Related Work

We are unaware of any large-scale empirical studies in Bash usage similar to ours in terms
of scope. There are a few studies and open-source tools that focus on debugging and testing
Bash scripts. Mazurak et al. [22] developed a static analyzer ABASH to identify common
security vulnerabilities in Bash scripts. D’Antoni et al. [5] focused on the usability of
command-line and developed a rule-based tooling called NoFAQ to automatically correct
problematic commands. Similar to Mazurak [22], Holen [17] developed a pattern-based
shell linter called ShellCheck in Haskell that catches popular syntax and semantic issues
in Bash scripts and it has gained popularity over time. There is also another open-source
tooling named BAT (Bash Automated Testing)! that facilitates the testing of Bash scripts.

In addition to Bash tooling and studies, there have been studies that focus on the
language feature usage in other programming languages. Dyer et al. [7] generated the
abstract syntax trees(AST) over 31,000 Java projects and empirically analyzed their lan-
guage feature usage. Similarly, Lammel et al. [18] also employed an AST-based approach
and empirically studied the API footprint and coverage in open-source Java repositories.
Collberg et al. [1] conducted a large-scale static analysis of Java bytecode from 1,132 java
jar-file and collected various metrics regarding the Java feature usage. In addition to Java,
Hills et al. [15] studied PHP language features using 19 large open-source repositories with
the focus on dynamic language feature. Out of 109 PHP language features, they identified
that 80% of files only use 74 language features. Similar to these studies, our work aim
to understand the fundamental usage of the shell language, and this study is the first one
focusing on Bash language.

thttps://github.com/sstephenson/bats

31

Chapter 6

Discussion

6.1 Threats to Validity

6.1.1 Internal Validity

Static analysis tool. In this study, we leveraged the static analysis tool to measure the
code quality of Bash scripts. Therefore, the performance of the static analysis tool could
affect our results. To mitigate this threat, we selected ShellCheck, which is one of the
most popular open-source static analysis tools for shell languages with more than 22,000
stars in Github. It has a long development history since 2012 and is active in development.
It is also integrated in some commercial IDE product (e.g., IntelliJ Idea). We believe it
provides a reliable ground truth for Bash script measurement.

Bash script analysis. The collected Bash scripts could have gone through ShellCheck
and the code smells or bugs could have been fixed, ignored or silenced. Based on the data,
we believe that such scenario is not common and it would have minimal impact on our
analysis.

Additionally, we conducted a manual inspection in our study. To address the threats
in manual inspection (e.g., human error), all inspectors are familiar with Bash and all
inspection results were discussed and combined. All the conflicted answers were resolved
during the process to minimize human error.

32

6.1.2 External Validity

Data collection. Regarding empirical studies, data is the new oil. In our study, we
collected over one million Bash scripts in hopes of having a more representative study.
However, all of our samples came from the same platform Github. Any close source and
proprietary Bash scripts were not included in this study, limiting the generalization of the
study to some extent. Additionally, we collected our Bash scripts in chunks using the
Github API. Due to its limitations, we could only collect 1,000 files per byte range and we
do not know the actual file size distribution of Bash scripts in the real world. To mitigate
the threat, we collected Bash scripts whose file sizes range from 1 to 50,000 bytes in hopes
of covering a wider spectrum and improving the generalization of the study.

6.2 Future Usage of Dataset

Besides answering the research questions, this study also contributes a large dataset of
Bash script source code, their parse trees and code smell reports. This study used the
dataset to analyze the usage of Bash language features and utilities, common code smells
and common bugs during the evolution of Bash script. In addition, we believe that it can
also be used for studying the Bash language model, which is not done in the study.

6.2.1 Bash Language Model

A language model is used to predict the probability of sequences of word. It is usually
used in the context of natural languages. However, there have been studies focusing on
the language models for programming languages. Hinder et al. [16] applies the N-gram
model to programming languages and the result suggests that they are generally repetitive
and predicable. In addition to using N-gram model, there are also studies that attempt
to use machine learning and NLP techniques to learn language models for programming
languages. Code2Vec [2] uses a similar idea from word2vec that encodes source code
snippets to high dimensional vectors in order to find code similarity. CodeBert [3], based on
the pre-trained natural language model BERT), fine tunes the deep neural models on source
code snippets. These studies apply more advanced neural models to study traditional
programming languages such as C++ and Python. Despite the fact that shell has been
among the ten most popular programming languages in Github, many of the programming
language model studies do not include shell languages. With the availability of this Bash
script dataset, we believe that it enables researchers to study Bash language model.

33

Chapter 7

Conclusions

The Bourne-again shell, commonly known as Bash, is one of the mainstream shells available
in many Unix-like systems. In this study, we presented a large-scale empirical study on
Bash language usage in Github. By statically analyzing over one million Bash scripts
in Github, we identified the commonly used Bash language features and utilities in the
general and popular Bash scripts, showing that both groups share very similar usage. We
then studied the occurrences of code smells in Bash scripts with ShellCheck, showing that
Bash script is often error-prone and there could be many issues that go unrecognized.
Only 20% of general Bash scripts in our samples are free of code smells while 50% of
popular Bash scripts in our samples are free of code smells. We also looked into the
common themes of code smells, showing that quoting, word splitting, error handling, array
and return value are some of the common themes of code smells. Further, we showed
that there is a moderately positive correlation between the size of Bash script and the
number of code smells found in Bash scripts. Lastly we conducted a manual inspection
on randomly sampled bug-fixing commits of Bash scripts. We discovered several common
themes of bugs during the evolution Bash scripts, most of which concern quoting, resource
management, command option, permission and error handling. With the empirical results
from the study, we believe that they can be utilized to help Bash practitioners focus
on learning the common language features and utilities while paying more attention to
common code smells and bugs. Although shell has decades of history and is one of the
ten most popular programming languages in Github, our study suggests that there is still
room for improvement in script quality. We envision that the Bash usage insights from our
empirical results will be helpful to future research in improvement of shell scripting and
command-line productivity and reliability.

34

References

[1] Mayank Agarwal, Jorge J. Barroso, Tathagata Chakraborti, Eli M. Dow, Kshi-

2]

tij Fadnis, Borja Godoy, Madhavan Pallan, and Kartik Talamadupula. Project
clai: Instrumenting the command line as a new environment for ai agents, 2020.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning dis-
tributed representations of code. Proc. ACM Program. Lang., 3(POPL), January 2019.

Ray Baishakhi, Posnett Daryl, Devanbu Premkumar, and Filkov Vladimir. A large-
scale study of programming languages and code quality in github. Commun. ACM,
60(10):91-100, September 2017.

Christian Collberg, Ginger Myles, and Michael Stepp. An empirical study of java
bytecode programs. Software: Practice and Experience, 37(6):581-641, 2007.

Loris D’Antoni, Rishabh Singh, and Michael Vaughn. Nofaq: Synthesizing command
repairs from examples. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, page 582-592, New York, NY, USA, 2017.
Association for Computing Machinery.

lan J. Davis, Mike Wexler, Cheng Zhang, Richard. C. Holt, and Theresa Weber.
Bash2py: A bash to python translator. In 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pages 508-511, 2015.

Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. Mining billions
of ast nodes to study actual and potential usage of java language features. In Pro-
ceedings of the 36th International Conference on Software Engineering, ICSE 2014,

35

http://arxiv.org/abs/2002.00762
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3126905
https://doi.org/https://doi.org/10.1002/spe.776
https://doi.org/https://doi.org/10.1002/spe.776
https://doi.org/10.1145/3106237.3106241
https://doi.org/10.1109/SANER.2015.7081866

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]
[18]

page 779-790, New York, NY, USA, 2014. Association for Computing Machinery.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-
trained model for programming and natural languages, 2020.

Free Software Foundation. Bash, 09 2020. URL:

Free Software Foundation. Gnu bash manual, 12 2020. URL:

Free Software Foundation. Gnu core utilities, 12 2020. URL:

Github. The 2020 state of the octoverse, 2020. URL:

Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR 13, pages 233-236, Pis-
cataway, NJ, USA, 2013. IEEE Press. URL:

Greg. Bash pitfalls, 02 2021. URL:

Mark Hills, Paul Klint, and Jurgen Vinju. An empirical study of php feature usage:
A static analysis perspective. In Proceedings of the 2013 International Symposium
on Software Testing and Analysis, ISSTA 2013, page 325-335, New York, NY, USA,
2013. Association for Computing Machinery.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
On the naturalness of software. In Proceedings of the 34th International Conference
on Software Engineering, ICSE 12, page 837-847. IEEE Press, 2012.

Vidar Holen. Shellcheck, 2021. URL:

Ralf Lammel, Ekaterina Pek, and Jiirgen Starek. Large-scale, ast-based api-usage

analysis of open-source java projects. In Proceedings of the 2011 ACM Symposium on
Applied Computing, SAC "11, page 1317-1324, New York, NY, USA, 2011. Association
for Computing Machinery.

36

https://doi.org/10.1145/2568225.2568295
http://arxiv.org/abs/2002.08155
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/manual/
https://www.gnu.org/software/bash/manual/
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://octoverse.github.com/
https://octoverse.github.com/
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://mywiki.wooledge.org/BashPitfalls/
https://doi.org/10.1145/2483760.2483786
https://www.shellcheck.net/
https://doi.org/10.1145/1982185.1982471

[19]

[21]

[22]

23]

[24]

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. NL2Bash:
A corpus and semantic parser for natural language interface to the Linux operating

system. In LREC: Language Resources and Fvaluation Conference, Miyazaki, Japan,
May 2018.

Vadim Markovtsev and Waren Long. Public git archive: A big code dataset for all.
In Proceedings of the 15th International Conference on Mining Software Reposito-
ries, MSR 18, page 34-37, New York, NY, USA, 2018. Association for Computing
Machinery.

John R. Mashey. Using a command language as a high-level programming language.
In Proceedings of the 2nd International Conference on Software Engineering, ICSE
76, page 169-176, Washington, DC, USA, 1976. IEEE Computer Society Press.

Karl Mazurak and Steve Zdancewic. Abash: Finding bugs in bash scripts. In Pro-
ceedings of the 2007 Workshop on Programming Languages and Analysis for Security,
PLAS 07, page 105-114, New York, NY, USA, 2007. Association for Computing
Machinery.

V. Thakur, M. Kessentini, and T. Sharma. Qscored: An open platform for code quality
ranking and visualization. In 2020 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 818-821, 2020.

Ubuntu. bash-builtins, 2019. URL:

37

https://doi.org/10.1145/3196398.3196464
https://doi.org/10.1145/1255329.1255347
https://doi.org/10.1109/ICSME46990.2020.00101
https://doi.org/10.1109/ICSME46990.2020.00101
http://manpages.ubuntu.com/manpages/bionic/man7/bash-bu iltins.7.html
http://manpages.ubuntu.com/manpages/bionic/man7/bash-bu iltins.7.html

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Background
	History
	Bash Language Features
	Parameter Expansion & Special Parameters
	Pipeline
	Redirection
	Command Substitution

	Summary

	Dataset
	Bash Script Collection (Github API)
	IntelliJ Shell Parser and Parse Trees
	ShellCheck and Code Smell Reports
	Commit History
	Database
	Data Availability

	Results
	RQ1: What are the commonly used language features and utilities in Bash scripts?
	Motivation
	Approach
	Results

	RQ2: How frequently do code smells occur in Bash scripts? What are the most common code smells?
	Motivation
	Approach
	Results

	RQ3: What are the most common bugs that arise in Bash shell scripts as they evolve?
	Motivation
	Approach
	Results

	Summary

	Related Work
	Discussion
	Threats to Validity
	Internal Validity
	External Validity

	Future Usage of Dataset
	Bash Language Model

	Conclusions
	References

