
Creating and shaping light at single
photon level

by

Supratik Sarkar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering
(Quantum Information)

Waterloo, Ontario, Canada, 2021

© Supratik Sarkar 2021



Author’s declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The ability to control light at the single photon level is essential for fully harnessing
the power of quantum information theory, and precision measurements. In this thesis, we
study two phenomena which can help us to create, and shape light at the smallest scale. In
the first part of the thesis, we explore deterministic single photon subtraction based upon
single photon Raman interaction of a single three-level Λ-type quantum emitter in a bi-
modal cavity or coupled with a chiral waveguide. We study the effect of photon subtraction
from different types of optical inputs - continuous-wave or pulsed coherent states and Fock
states, and dependence of the fidelity of subtraction upon key system parameters. We also
discuss the suitability and prospects of using different emitter-waveguide systems reported
in literature to successfully extract a single photon from an optical input. We find that
a quantum dot coupled with a photonic crystal waveguide with high group index could
subtract photons with fidelity close to unity. Moreover, we explore how such a SPRINT-
based single photon subtraction process can be used to create non-Gaussian states with
negative values of Wigner distribution, and negative conditional entropies. Such states can
be used as quantum resources in various fields of quantum information theory. Finally, as
an interesting example, we also discuss how this mechanism can also be used to create
non-classical Fock states of arbitrary photon number.

In the second part of this thesis, we study how to shape the emission from a single solid-
state quantum emitter, in particular an NV− center in diamond, using two dimensional
patterns with sub-wavelength features. We propose a pattern etched on the surface of a
diamond sample that enhances the NV’s emission in a particular direction, and maximizes
coupling with a waveguide substantially far away from the diamond-air interface. Our pro-
posed structure was designed using the adjoint optimization technique, which significantly
reduces the amount of computational resources compared to brute-force methods to design
an optical element with desired properties. Our structure exhibits a higher directionality
of emission compared to other nanophotonic structures reported in the literature – solid
immersion lenses, nanopillars, and bull’s eye structures. Finally, we also discuss in details
the steps pertaining to setting up a confocal microscope in our laboratory for imaging NV
centers, and characterizing our proposed device.
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Chapter 1

Introduction

In the end of the nineteenth century, it seemed that physicists were pretty confident that
most of physics had been already figured out. After all, classical mechanics, Maxwell’s
equations, and thermodynamics seemed to explain most of the natural phenomena. How-
ever, at the turn of the century, in 1900, Max Planck laid the foundation stone for a
quantum theory of electromagnetic waves with his work on black-body radiation [1]. It
might seem that his work to quantize the emission/absorption of electromagnetic energy
into discrete quantities was an act of desperation to match the experimentally observed
black-body radiation spectrum. But within half a decade, in 1905, Einstein in his land-
mark work on photoelectric effect proposed the concept of a photon – the fundamental
unit of electromagnetic radiation [2]. However, in 1927, it was Paul Dirac who finally put
the pieces of Maxwell and Einstein’s theory together by treating light as a collection of
harmonic oscillators, and started the field of quantum electrodynamics [3]. That led to the
understanding of phenomena like the spontaneous emission, the Lamb shift, and Casimir
forces. Finally, in 1963, Roy Glauber in his seminal paper laid the groundwork for the
current understanding of light by studying photon statistics, and showing the difference
between a coherent laser and other sources of light [4].

Once we had quite an advanced understanding of light, and how it interacts with matter,
we started exploring how to use the various degree of freedoms of a photon as quanta of
information. But to fully realize the promise quantum optics holds in quantum information
theory, we need to have proper control over the light at single photon level. In this thesis,
we explore two ways we can engineer the behavior of light at the single photon level. First,
we explore how to deterministically subtract a single photon from an arbitrary beam of
light. Second, we shall investigate how we can shape photon emission from an NV center
using custom made nanophotonic structures.
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1.1 Deterministic single photon subtraction

In the first half of the thesis, we shall study deterministic single photon subtraction from
an arbitrary state of light using single photon Raman interaction with a single three-level
Λ-type quantum emitter. Single photon subtraction has been used to study fundamental
principles of quantum mechanics, and has been shown to be an useful tool to create non-
classical resource states for use in quantum information theory [5–7]. However, most of the
photon subtraction based on heralding techniques rely upon a beamsplitter type operation,
which lead to very low rates of successful subtraction. Moreover, they are non-deterministic
in nature, rely upon the heralded detection of a single subtracted photon, and the fidelity
depends upon the intensity of the incident beam. Thus, deterministic photon subtraction
which can provide improved success rates, and can subtract a single photon irrespective of
the strength of the input beam is a topic of great interest.

In Chapter 2, we begin by providing a brief background to the problem of single photon
subtraction, and cavity quantum electrodynamics. Next, we investigate how to perform
deterministic single photon subtraction in a bi-modal cavity. We also study the temporal
dynamics of the single photon Raman interaction, and study three different situations.
First, we look at the system’s response with a continuous-wave (CW) coherent input.
Then, we investigate what would happen if the cavity mode is initialized with a pulsed
coherent state or a Fock state. In Chapter 3, first, we start by providing a brief background
to waveguide quantum electrodynamics. Later, we propose and investigate the feasibility
of deterministic single photon subtraction using a three-level emitter coupled to a chiral
waveguide instead of a bi-modal cavity. Moreover, we explore how the mechanism works
for three different types of input – a continuous-wave (CW) coherent state, a coherent
Gaussian pulse, and a Fock state input. We study the important system parameters that
need to be considered for experimental design, and predict how recently reported emitter-
waveguide systems might perform. Later, in Chapter 4, we ask the question if this kind
of deterministic single photon subtraction mechanism can be employed to generate entan-
glement, and non-classical states. We show that SPRINT-based single photon subtraction
can be used to create non-Gaussian quantum states with negative Wigner functions, and
negative conditional entropies. Such states can be used as quantum resources in quantum
computing, quantum information theory, and quantum cryptography. Finally, as an in-
teresting example, we show how this mechanism can also be used to create Fock states of
arbitrary photon number. We conclude with a brief discussion about the future directions
of the ongoing project.
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1.2 Inverse design of nanophotonic structures for di-

rectional emission from NV centers

NV centers have been one of the most prospective solid state emitters for quantum technolo-
gies, with applications to quantum sensing in particular. It provides multiple advantages
over other quantum emitters, one of the most important one being easy initialization and
long coherence times for room temperature operations [8–10]. Efficiently coupling emission
from the emitter to a waveguide in the far-field is a challenging problem. In this thesis,
we have tried to address that problem with tailor-made nanophotonic structures designed
with the help of optimization algorithms.

In the second half of the thesis, we will study how we can use nanophotonic structures
to control the emission properties of an NV center in a diamond substrate for efficient cou-
pling with a waveguide. Such nanophotonic structures can be modeled as an antenna, and
the NV center can be treated as a classical dipole. In Chapter 5, we provide a background
on the classical and quantum theory of dipole radiation to understand why we can study
such problems under the umbrella of classical antenna theory. In Chapter 6, we introduce
the working principles of adjoint optimization based solutions to inverse design problems in
electromagnetic theory. We discuss the adjoint optimization algorithm in sufficient detail,
and show how it helps in reducing the amount of computational resources. Moreover, we
also introduce the two ways in which we can perform adjoint optimization, namely geom-
etry and topology optimization. We also briefly discuss how we can design nanophotonic
devices by employing the level set method to impose fabrication dependent optimization
constraints. Finally, in Chapter 7, we propose our device designed with the help of adjoint
optimization. The proposed device helps in directional emission of radiation from NV cen-
ters, and enhances free space coupling of the emitter with a nanofiber, without the presence
of separate optical arrangements for the purpose of efficient coupling. For comparison, we
also study the performance of other nanophotonic structures proposed in the literature
to enhance the emission properties of solid state emitters. Then, we discuss the confocal
microscopy setup we built in our laboratory to image the NV centers in diamonds. We
conclude with a brief discussion about the future directions of the project, which mainly
consists of fabricating and characterizing our proposed device.

The computer programs used for numerical simulations has been provided in the Ap-
pendix section of this thesis.
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Part I

Deterministic single photon
subtraction
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Chapter 2

Deterministic single photon
subtraction with a three-level emitter
in a bi-modal cavity

2.1 Motivation

Subtraction of a single photon from a light pulse has been an interesting problem in the re-
cent times, as it can be used to probe the fundamental nature of quantum mechanics [5, 11].
It can be an effective tool in generating non-classical exotic states of light. Non-classical
states are an essential resource for quantum computation and communication [6, 12, 13],
and lie at the heart of harnessing quantum supremacy. Single photon subtraction has
been experimentally used for enhancing entanglement via entanglement distillation, and
for creation of hybrid entangled states [6, 14–16]. Moreover, it can be used to investi-
gate the quantum commutation rules, which form the very basis of quantum optics [5].
Heralded single photon subtraction using a low reflectance beamsplitter as shown in Fig.
2.1a has been used to generate various non-Gaussian states of light like Fock states [17],
and Schrödinger’s cat states with a negative Wigner function [6, 18–22]. In this simplistic
approach, the detection of a single photon by the photo-detector in the mode with the
subtracted photons projects the output to state [23, 24]

ρ̂out =
1

N

∑
n

ânρ̂â
†
n,
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(a)

(b) (c)

Figure 2.1: (a) The mechanism of heralded single photon subtraction with a beamsplitter.
The detection of a single photon by the photo-detector in the reflected mode heralds a
single photon subtraction in the transmitting mode. (b) The Hinton diagram of the anni-
hilation operator. (c) The Hinton diagram of the deterministic subtraction operator. The
coefficients of |n− 1〉 〈n| in the annihilation operator scale as

√
n, whereas it is independent

of n for the deterministic subtraction operator.

where ân is the annihilation operator of mode n (in a more generalized scenario it could also
be a linear combination of the annihilation operators of the different modes with individual
weights [23]), ρ̂ is the input state, and N is the total number of modes. For a single mode
input, the output is simply âρ̂â†. However, this kind of non-deterministic/ probabilistic
single photon subtraction has a disadvantage because of its low success rates. The low
success probability can be attributed to the probabilities associated with the subtraction
of greater than one photon. Even for a weak optical input, there are non-zero probabilities
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that greater than one photon will be subtracted. Also, in this type of heralded single
photon subtraction mechanism, the probability of successful subtraction is dependent upon
the intensity of the input optical signal, as â =

∑
n

√
n |n− 1〉 〈n|. Thus, more photons

will be subtracted if the input light field has more photons. Also, this type of photon
subtraction is highly incoherent leading to a mixed state of purity of 1/N [23]. Apart from
using low-reflectance beamsplitters, single photon subtraction has also been demonstrated
by heralding measurement of the output of a non-linear optical process [23, 25]. In Ref.
[23], the input beam was incident on a χ(2) BiBO crystal along with a strong gate beam
to create an up-converted photon by sum frequency generation as shown in Fig. 2.2a. The
detection of the up-converted photon heralds photon subtraction from the input. Even
though it can provide superior mode selectivity over using a simple beamsplitter, it is still
a non-deterministic process.

However, unlike the probabilistic photon subtraction mechanism discussed above, an
ideal deterministic photon subtraction operator should be Ŝ = |0〉 〈0| + ∑

n |n− 1〉 〈n|,
where the probability of subtraction is independent of the input number state. The Hinton
diagrams of the operators are shown in Figs. 2.1b, and 2.1c. The size and the colour
of the matrix elements are proportional to the value. Unlike, the annihilation operator,
the deterministic subtraction operator has identical coefficients for the |n− 1〉 〈n| matrix
elements, and is independent of n.

In 2011, Honer et al. in their seminal work proposed deterministic single photon sub-
traction using Rydberg blockade phenomenon as shown in Fig. 2.2c [26]. A strong laser of
Rabi frequency Ωc couples the excited Rydberg state with a very high principal quantum
number |e〉i to an intermediary state |p〉i such that detuning ∆c � Ωc. The |g〉i ↔ |p〉i
atomic transition is driven by a probe field of frequency Ωp. When an atom absorbs a pho-
ton and ends up in the excited Rydberg state, the rest of the atoms within the Rydberg
blockade radius rB experience a shift in their electronic levels due to strong interaction
with the excited atom. Thus, the subtracted photon resides as a coherent superposition
of a single excitation in atoms within the Rydberg blockade radius. The ensemble has the
following two bright states: the ground state |G〉 = |g1, g2, . . . , gN〉 and the excited state

|E〉 =
(

1/
√
N
)∑

i |g1, . . . , ei, . . . , gN〉 for N atoms in the blockade radius. The collective

Rabi frequency for the |G〉 ↔ |E〉 transition is Ω =
√
N ΩcΩp

4∆c
. The ensemble superatom

also has N−1 dark states given by |Di〉. Inhomogenous dephasing couples the excited state
to the dark states. As a result, the single photon excitation inhabits within the N levels
of the superatom. Once a single photon has been extracted from the probe, the ensemble
becomes transparent for subsequent photons. Using a Rydberg atom ensemble has certain
advantages. It results in greater coupling, which translates to a higher co-operativity, since
the coupling strength scales as

√
N . Moreover, the fidelity of a successful subtraction using
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(a)

(b)

(c)

Figure 2.2: (a) Single photon subtraction via sum-frequency generation using a χ(2)

non-linear crystal [23]. The input signal interacts with a strong gate beam in the
non-linear material. The detection of a single up-converted photon heralds a single
photon subtraction in the input. (b) Single photon subtraction based upon single
photon Raman interaction using a three-level quantum emitter coupled to opposite
directions in a waveguide via a micro-resonator of high quality factor [27]. At the
end of the subtraction process, the emitter has switched from |1〉 → |2〉, and becomes
transparent to the incident field. (c) Single photon subtraction using an ensemble
of Rydberg atoms as proposed by [26]. The single subtracted photon resides as a
coherent superposition of a single excitation in atoms within the Rydberg blockade
radius rB.
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the Rydberg atoms scales as N/ (N + 1). Later, in 2016, Tresp et al. implemented single
photon subtraction using a Rydberg ensemble of 87Rb atoms [28].

Later in 2015, Rosenblum et al. experimentally extracted a single photon from an opti-
cal pulse using a single laser cooled 87Rb atom, with a three-level Λ energy scheme, coupled
with a micro-resonator with a high quality factor as shown in Fig. 2.2b [27]. Exploiting
the single photon Raman interaction or SPRINT mechanism [29–31], they successfully sub-
tracted a single photon from the red mode travelling to the right, and transferred it to the
blue mode going to the left with pretty high efficiency. Unlike using a beamsplitter or a
non-linear crystal, Rydberg blockade and SPRINT are self-terminating processes, i.e., the
medium becomes transparent to the input signal after a photon has been subtracted. So,
it is not possible to subtract more than a single photon. In subsequent sections, we shall
discuss how such a SPRINT based photon subtraction works in detail.

Though it is possible to subtract single photons using cold atomic systems, the main
obstacle in these technologies lie in the cumbersome nature of the physical system, and
difficulties associated with loading and efficient coupling between these laser cooled atoms
with the mode of the waveguide. On the contrary, solid-state emitters offer the promise of
an on-chip platform, and can be a viable candidate for miniaturized quantum technologies
[32]. Some of the solid state emitter platforms that can be considered for such applica-
tions are nitrogen-vacancy (NV) [33], or silicon-vacancy (SiV) centers in diamonds [34],
defect centers in silicon carbide (SiC) [35], zinc oxide (ZnO) [36], rare-earth ion impuri-
ties in yttrium aluminium garnet (YAG) [37], and yttrium orthosilicate (YOS) crystals
[32, 37]. Other potential lower dimension solid state emitters and platforms are defects
in 2D hexagonal boron nitrides (hBN) [38], 1D carbon nanotubes (CNT) [39], and 0D
quantum dots (QD) [32, 40]. In particular, QDs coupled with photonic crystal waveguides
(PCWs) are a very promising platform since a very small mode volume, and low group
velocity is achievable with PCWs, which lead to high coupling efficiencies.

In this chapter, we investigate deterministic single photon subtraction using SPRINT
in a three-level quantum emitter coupled to a bi-modal cavity. Similar to Ref. [27, 41],
our proposal relies on the SPRINT mechanism [29–31]. We discuss the temporal dynamics
of the SPRINT mechanism inside the cavity for different types of optical input. First, we
look at the case of single photon subtraction from a continuous-wave (CW) coherent input
by driving the system using a coherent CW source. Second, we shall study what happens
if a coherent state with a specified mean photon number is injected into the cavity, and the
system is left to evolve. Third, we shall also study the dynamics of the photon subtraction
process with an input Fock state. Finally, we investigate the second order auto-correlation
function of the photon-subtracted mode to look for signatures of non-classical light.

I will like to thank Dr. Jinjin Du, and Prof. Michal Bajcsy for helpful discussions
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regarding the work reported in this chapter. All the Python programs used for simulations
in this chapter are available in Appendix C.

2.2 A quantum emitter in a cavity

2.2.1 A quantum emitter coupled with a single cavity mode

The proposed system for deterministic single photon subtraction consists of a single three-
level Λ-type quantum emitter coupled with a bi-modal cavity. But before diving into that,
first we look at the interaction of a two-level system coupled with a cavity mode as shown
in Fig. 2.3. Solving the Maxwell’s wave equations under the boundary conditions set by
the geometry of the cavity gives rise to a discrete spectrum of field solutions called modes
characterized by its wavevector k. Each mode is associated with a certain spacio-temporal
distribution of electric and magnetic fields in the cavity, much like the standing waves in a
string held at both ends. Mathematically, the mode of the electromagnetic field is a vector
field fk(r, t), which is a normalized solution of the Maxwell’s equations and satisfies the
following relationships [42]: (

∇2 − 1

c2

∂2

∂t2

)
fk(r, t) = 0, (2.1a)

∇ · fk(r, t) = 0, (2.1b)

1

V

˚
V

|fk(r, t)|2d3r = 1. (2.1c)

Here V is a fairly large volume where the system is confined, and the fields are normalized
over. One can construct an orthonormal mode basis {fk1(r, t), fk2(r, t), . . . , fkN

(r, t)}, such
that all solutions of the Maxwell’s equations can be expressed as a linear superposition in
that basis. The positive frequency component of the complex electric field could be ex-
pressed as E(+)(r, t) =

∑
ki
Eifki

(r, t). The field has a discrete spectrum owing to confining
it in a finite volume V . Also, the modes satisfy the orthogonality condition

1

V

˚
V

f∗ki
(r, t)fkj

(r, t)d3r = δij. (2.2)

For simplicity, let us consider that the two-level atom interact with only one cavity
mode. We can make this assumption if the atom is on resonance or close to resonance with
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Figure 2.3: A two-level emitter interacting with the field inside a cavity with a single
mode. The frequency of the cavity mode is ω, whereas the transition frequency is ωeg. The
frequency detuning is given by ∆ = ω − ωeg.

the fundamental cavity mode frequency. The ground state |g〉 and the excited state |e〉
have a transition frequency ωeg, whereas ω is the resonance frequency of the cavity mode
under consideration (see Fig. 2.3). The detuning of the cavity mode from the atomic
transition is given by ∆ = ω − ωeg.

The total Hamiltonian of the system, H, is the sum of the atomic Hamiltonian HA,
the Hamiltonian of the cavity field mode HF , and the interaction Hamiltonian HAF . It is
given by H = HA +HF +HAF where

HA = ~ωegσ†σ, (2.3a)

HF = ~ωa†a (2.3b)

HAF = ~g(σa† + σ†a). (2.3c)

In these equations, σ = |g〉 〈e| is the atomic lowering operator, a is the annihilation operator
of the cavity mode, and g is the coupling constant giving the strength of interaction between
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the cavity modes and the emitter given by

g = −ê · dge
√

ω

2~ε0Vm
. (2.4)

Here, ê is the unit polarization vector of the cavity mode at the position of the two-level
emitter, dge = 〈g|d |e〉 is a dipole matrix element of the emitter with dipole operator d, and
Vm is the mode volume. This is the well-known Jaynes-Cummings Hamiltonian for an atom
interacting with a single cavity mode near resonance under rotating wave approximation.
It also assumes the dipole approximation can be used, i.e., the atom is considered to be
much smaller than the wavelength.

The total quantum state of the system is expressed as |ψA, ψF 〉, where ψA is the atomic
state and ψF is the cavity field state. To solve this system, we can use the ansatz wave-
function

|ψ(t)〉 =
∞∑
n=0

(cg,n(t) |g, n〉+ ce,n(t) |e, n〉) , (2.5)

where |g(e), n〉 means that the atom is in state |g〉 (|e〉), and there are n photons in the
cavity. Plugging the ansatz in the Schrödinger’s equation

d

dt
|ψ(t)〉 = − i

~
H |ψ(t)〉 , (2.6)

gives us the coupled differential equations

ċg,n+1(t) = −i(n+ 1)ωcg,n+1(t)− ig
√
n+ 1ce,n(t), (2.7a)

ċe,n(t) = −ig
√
n+ 1cg,n+1(t)− i(ωeg + nω)ce,n(t). (2.7b)

For initial conditions defined by cg,n+1(0) = 1, i.e., the atom is in the ground state and
there are n + 1 photons in the cavity, at resonance (i.e. ∆ = 0), we get the following
solution

cg,n+1(t) = cos
(
g
√
n+ 1t

)
, (2.8a)

ce,n(t) = −i sin
(
g
√
n+ 1t

)
. (2.8b)
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The population in the two states oscillate as

Pg,n+1(t) = |cg,n+1(t)|2 =
1

2

[
1 + cos

(
2g
√
n+ 1t

)]
, (2.9a)

Pe,n(t) = |ce,n(t)|2 =
1

2

[
1− cos

(
2g
√
n+ 1t

)]
. (2.9b)

Thus, the system oscillates between the states |g, n+ 1〉 and |e, n〉 with a Rabi oscillation
frequency of 2g

√
n+ 1.

2.2.2 Introducing dissipation

Now, we can introduce dissipation in the system. We consider the spontaneous emission
rate Γ, and the cavity decay rate κ. Then, for the density matrix ρ, we can write down
the Liouville-von Neumann equation of motion as

dρ(t)

dt
= − i

~
[H, ρ(t)] + ΓL[σ]ρ(t) + κL[a]ρ(t), (2.10)

where the Lindblad superoperator acting on the density matrix takes care of the dissipation,
and is explicitly defined as

L[o]ρ(t) = oρ(t)o† − 1

2

[
ρ(t)o†o+ o†oρ(t)

]
, (2.11)

for operator o coupling the system with the environmental bath modes. Now, one can
introduce the following two collapse operators C1 =

√
Γσ, and C2 =

√
κa. That allows us

to write the master equation as

dρ(t)

dt
= − i

~
[H, ρ(t)] +

∑
k

1

2

[
2Ckρ(t)C†k − ρ(t)C†kCk − C†kCkρ(t)

]
(2.12)

This can be re-arranged in the following fashion:

dρ(t)

dt
= − i

~

[
Heffρ(t)− ρ(t)H†eff

]
+
∑
k

Ckρ(t)C†k, (2.13)
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where the effective non-Hermitian Hamiltonian is given by

Heff = H − i~
2

∑
k

C†kCk. (2.14)

It must be noted that the effective Hamiltonian is non-Hermitian, and has imaginary
eigenvalues. One can use this Hamiltonian to solve quantum trajectories satisfying the
non-unitary Schrödinger’s equation [43]

d

dt
|ψ(t)〉 = − i

~
Heff |ψ(t)〉 . (2.15)

We will be solving the open quantum system master equations numerically in Python
using QuTiP [44, 45]. One can use the vanilla Lindblad master equation solver (mesolve)
in QuTiP for simple simulations. For an N -dimensional Hilbert space, the master equation
evolves density matrix of sizeN×N , withN2 terms. This can be computationally expensive
for large values of N . However, the stochastic quantum Monte Carlo solver (mesolve) can
be useful for simulations in such situations, i.e., when N is large. The following digression
gives a brief look into the inner mechanisms of the quantum Monte Carlo method.

Quantum Monte Carlo simulations

In the Monte Carlo algorithm, we use the non-Hermitian Hamiltonian in Eq. 2.14 to evolve
the wavefunction which is an N -dimensional vector instead of an N×N matrix. This helps
in reducing the computational complexity of solving the transient response of the quantum
system. For a sufficiently small time interval ∆t, the wavefunction at time t + ∆t can be
calculated from the wavefunction at time t using the relationship

|ψ′(t+ ∆t)〉 = e−iHeff∆t/~ |ψ(t)〉 ≈
(

1− iHeff∆t

~

)
|ψ(t)〉 . (2.16)

The new wavefunction is not normalized because of the action of the non-Hermitian Hamil-
tonian. Thus, we get
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〈ψ′(t+ ∆t)|ψ′(t+ ∆t)〉 = 1−∆t
i

~
〈ψ(t)|Heff −H†eff |ψ(t)〉

= 1−∆t
∑
k

〈ψ(t)|C†kCk |ψ(t)〉

= 1−
∑
k

pk

= 1− p. (2.17)

The time should be discretized such that, p� 1. Thus, 1− p is the probability amplitude
of the state ψ′(t + ∆t) at time t + ∆t. This means, the probability of a quantum jump
happening in the time range (t+ ∆t] is p.

Now, we pick a random number r uniformly distributed within the range [0, 1]. If the
random number is greater than p, i.e., for r > p , no quantum jump takes place, and we
set the new normalized wavefunction at time t+ ∆t as

|ψ(t+ ∆t)〉
∣∣∣∣
No jump

=
|ψ′(t+ ∆t)〉√

1− p . (2.18)

Most of the time r > p, as p � 1. However, when p > r, a quantum jump takes place.
The quantum state collapses to the wavefunction

|ψ(t+ ∆t)〉
∣∣∣∣
Jump Ck

=
Ck |ψ(t)〉√

〈ψ(t)|C†kCk |ψ(t)〉
=
Ck |ψ(t)〉√
pk/∆t

(2.19)

with probability pk/p, where pk = ∆t 〈ψ(t)|C†kCk |ψ(t)〉. Using the new normalized state
at t + ∆t, we calculate the state at t + 2∆t using the same procedure. We continue
this process until the end of the simulation time. This stochastic process of simulation is
repeated multiple times, each giving a slightly different ‘trajectory’ of the quantum state
in the Hilbert space. Finally, the state of the quantum system at any time τ is the result
of the average of all the simulated quantum trajectories.

Thus, the average density matrix at time t+ ∆t is given by [46]

ρ(t+ ∆t) = (1− p) |ψ
′(t+ ∆t)〉√

1− p
〈ψ′(t+ ∆t)|√

1− p + p
∑
k

pk
p

Ck |ψ(t)〉√
pk/∆t

Ck 〈ψ(t)|√
pk/∆t

. (2.20)
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Figure 2.4: Transient response and transmission of a two-level emitter coupled with a
cavity in the (a, c) strong coupling regime with Γ = κ = g/10, and (b, d) weak coupling
regime with Γ = κ = 10g. In both the scenarios, the coupling strength is g = 2π×10 GHz.

Doing some algebra, we arrive at the following relationship:

ρ(t+ ∆t) = ρ(t)− i∆t

~
[H, ρ(t)] + ∆tΓL[σ]ρ(t) + ∆tκL[a]ρ(t), (2.21)

which gives the master equation

dρ(t)

dt
= − i

~
[H, ρ(t)] + ΓL[σ]ρ(t) + κL[a]ρ(t). (2.22)

This shows, that for a large number of trajectories, the Monte Carlo simulation is equivalent
to solving the master equation. Moreover, it is computationally favourable for simulating
quantum systems with a large Hilbert space. Thus, we shall be using QuTiP’s master
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equation solver or the Monte Carlo solver while simulating the systems in this chapter
based upon computational power required.

We numerically solve the dynamics of the interaction between the two-level emitter
and the single cavity mode in QuTiP for two different cavity regimes as shown in Fig. 2.4.
First, we consider the strong coupling regime with the coupling strength g = 2π×10 GHz,
and the dissipation rates are Γ = κ = g/10. In this case, we can see the damped Rabi
oscillations, before the excitation is lost to the radiative bath modes. Next, we also look
at the system dynamics for Γ = κ = 10g in the weak coupling regime. Here, the atom and
the mode is very feebly coupled and the Rabi oscillations are no longer visible. The cavity
mode simply decays exponentially.

Next, we drive the cavity with a weak coherent drive given by the Hamiltonian Hin =
Ωd

(
ae−iωdt + r†eiωdt

)
where Ωd = 0.01g. The drive must be weak, so that we can truncate

the Hilbert space at only one excitation or the first manifold. For g >> κ/2 in the
strong coupling regime (see Fig. 2.4c), we observe that the transmission spectrum splits
by 2g, because of the creation of dressed states. Using a stronger drive would create
additional peaks corresponding to dressed states in the higher manifolds. However, in the
weak coupling regime, no splitting is observed, and the transmission peaks at resonance.
However, the transmission peak with the weakly coupled atom is slightly wider compared
to the completely empty cavity due to the inclusion of a new channel in the system, through
the spontaneous emission rate of the emitter.

2.3 Photon subtraction in a bi-modal cavity

The proposed system for deterministic single photon subtraction consists of a single three-
level Λ-type quantum emitter, initialized in the ground state |1〉, which is coupled to a
bi-modal cavity as shown in Fig. 2.5. In the ideal case, the red mode with the annihilation
operator r has right-hand circularly polarized (RHCP) photons, while the blue mode with
the annihilation operator l has left-hand circularly polarized (LHCP) photons. Each of the
two transitions of the emitter is coupled to one of the cavity modes. Specifically, the emitter
is coupled to the bi-modal cavity such that, |1〉 → |3〉 transition requires an RHCP photon
and |2〉 → |3〉 transition requires an LHCP photon. The basic principle behind the SPRINT
mechanism can be described as follows. When photons in the red cavity interact with the
Λ-type emitter, the emitter gets excited to |3〉. When the incoming light has a greater
pulsewidth compared to the decay time of |3〉, there cannot be subsequent emission from
the |3〉 → |1〉 transition, because of the destructive interference of subsequent re-emission
with the incoming field [27]. Thus, the emitter can only de-excite via the |3〉 → |2〉
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Figure 2.5: The schematic of a three-level quantum emitter coupled with a bi-modal cavity.

transition, thereby emitting a single photon into the blue l mode. Once in state |2〉, the
emitter stops interacting with the red r mode.

We can use three different approaches to study the atom-light interaction in the cavity.
First, we can use a classical drive to get photons into the cavity mode. This is a quasi-
semi-classical approach, in the sense that we do not track the state of the classical driving
field. We follow only the states in the cavity mode, and the state of the three-level emitter.
This is similar to the semi-classical model of light-matter interactions that describe Rabi
oscillations, where we only follow the state of the quantum emitter, and not the classical
field. This approach leads to a coherent state of the field in the cavity in the steady-state
limit. Experimentally, this corresponds to shining a laser beam onto the cavity.

Secondly, we can initialize the cavity to a particular state of the field, and then let it
evolve. In this chapter, we shall see the dynamics of the system when the cavity is initialized
with a coherent state, and a Fock state. This is similar to introducing a coherent or Fock
state pulse into the cavity.

Third, one can use a feeder cavity or a waveguide to introduce the optical signal into
the bi-modal cavity as in Ref. [41]. This approach allows us to track the state of the input
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field, and control the interaction properties of the external input field and the system. We
will briefly discuss how we can model the feeder cavity system. However, we shall only be
exploring the first two cases in details in this thesis.

2.4 Continuous-wave coherent drive input

First, we will consider subtracting a single photon from an incoming continuous-wave (CW)
coherent state. Let us consider we have a three-level Λ-type quantum emitter, initialized in
its ground state |1〉, in a bi-modal cavity as shown in Fig. 2.5. A CW coherent laser beam
is sent as an input to the red mode with the mode operator r. This mode interacts with the
|1〉 ↔ |3〉 atomic transition, and their coupling strength is given by g1. The Hamiltonian
of the system is given by

H = H0 +Hint +Hin (2.23)

such that

H0/~ = ωrr
†r + ωll

†l + ω1σ33 + (ω1 − ω2)σ22, (2.24a)

Hint/~ = g1(rσ31 + r†σ13) + g2(lσ32 + l†σ23), (2.24b)

Hin/~ = Ωd(re
−iωdt + r†eiωdt), (2.24c)

In these equations, ωr (ωl) is the frequency of the |1〉 ↔ |3〉 (|2〉 ↔ |3〉) atomic transition,
g1 (g2) is the coupling strength of the |1〉 ↔ |3〉 (|2〉 ↔ |3〉) transition with the r (l) mode,
ωd is the frequency of the input coherent drive, and Ωd is the drive strength. The CW
coherent laser drive strength is given by Ωd =

√
κrP/~ωd, where P is the power of the

input laser beam.

To eliminate the time harmonic components in the coherent drive field, we go to a
frame rotating with the frequency ωd using the unitary transformation given by

U = exp
[
−itωd

(
r†r + l†l + σ33

)]
. (2.25)
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The Hamiltonian in the rotating frame is given by

Hrot = U †HU + i
∂U †

∂t
U. (2.26)

In the rotating frame, the Hermitian Hamiltonian gets modified to

H̃0/~ = (ωr − ωd)r†r + (ωl − ωd)l†l + (ω1 − ωd)σ33 + (ω1 − ω2)σ22, (2.27a)

H̃int/~ = g1(rσ31 + r†σ13) + g2(lσ32 + l†σ23), (2.27b)

H̃in/~ = Ωd(r + r†). (2.27c)

The non-Hermitian effective Hamiltonian of the system can be expressed as

H̃eff = H̃0 + H̃int + H̃in −
i~
2

∑
k

C†kCk, (2.28)

where,

C1 = rout =
√
κrr, C2 = lout =

√
κll, (2.29a)

C3 =
√
γcohσ33, C4 =

√
γ1σ13, C5 =

√
γ2σ23. (2.29b)

In these equations, Ck’s are the different collapse operators corresponding to different
quantum jumps, κr (κl) is the transmission loss of the red (blue) cavity corresponding to
the mode r (l), γ1 (γ2) is the spontaneous emission rate from the |3〉 → |1〉 (|3〉 → |2〉)
transition, and γcoh is the pure coherence decay/ dephasing rate beyond the coherence
decay rate resulting from spontaneous emission, such that the total coherence decay rate is
given by γ⊥ = γ1

2
+ γ2

2
+γcoh. For simplicity, here we shall consider the co-operativity to be

high. We ignore the collapse operators C4 and C5 corresponding to radiative spontaneous
emission leading to population decay. Moreover, we also consider that the cavity is driven
resonantly, i.e., ωr = ωd. First, we shall start with the simplest cases, and run a few
diagnostics to check that the simulation model is working properly.
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Figure 2.6: The time evolution of mean photon number in the cavity for Hilbert space of
dimension N = 4, 8. For N = 8, the mean photon number in the cavity saturates at unity
as expected. However, for N = 4, the saturation point is truncated to ∼ 0.8.

I. Drive an empty cavity resonantly

If there is no atom in the cavity, and the cavity is driven resonantly, H0 = Hint = 0. The
equation of motion for the expectation value of any operator O is given by

d〈O〉
dt

= Tr

[
Odρ

dt

]
. (2.30)

Using that, we can write down the equation of motion for the mode r as

d〈r〉
dt

= −iΩd −
κr
2
〈r〉. (2.31)

The steady state solution of the differential equation gives

α = 〈r (t→∞)〉 = −2iΩd

κr
. (2.32)

Thus, in steady state the average photon number in the cavity is n̄ = 〈r†r〉 = |α|2 = 4Ω2
d/κ

2
r.

For our simulations, we set ωd = ωr = 2π × 200 THz, κr = 2π × 0.25 GHz, P = 52
pW. That gives n̄ = 1. The non-Hermitian master equation is solved in Python using
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QuTiP, and the solution matches our expectations, as seen in Fig. 2.6. However, one has
to be cautious about the size of the Hilbert space while solving the system of equations on
QuTiP. The cavity mode has an infinitely large Hilbert space, unlike the two-level emitter.
We can keep on populating higher number states with a stronger drive. However, for our
simulations we need to truncate the Hilbert space to a low dimension to speed up our
computation. But truncating the Hilbert space too aggressively produces incorrect results,
since we start ignoring the higher order state occupations. For this simulation, a Hilbert
space with dimension N ≥ 7 gives the correct answer. However, using N = 5 truncates
n̄ to ∼ 0.9. Fig. 2.6 shows the dependence of the time evolution of the mean number
of photons in the cavity with size of Hilbert space (for N = 4, 8). The proper choice of
N depends strongly on the driving strength, as that determines the probability of higher
order excitation states, and hence the level at which the Hilbert space could be truncated.

II. Drive an empty cavity resonantly with N = 2

Now, for educational purposes, we set the size of the Hilbert space to N = 2. That makes
the situation similar to externally driving a two-level system (TLS). Thus simulating the
same system with N = 2 gives the dynamics of a driven dipole oscillator. We simulate the
system for κr = 0, 2π×25 MHz corresponding to an undamped, and a moderately damped
condition. The power is set to 13.25 nW, which corresponds to a strong drive in this
scenario. We observe the system oscillating at it’s ‘Rabi frequency’, just like an externally
driven TLS oscillator. Fig. 2.7 shows the mean cavity photon number for κr = 0, 2π × 25
MHz.

III. Complete model

Now, finally we add a 3 level Λ-type atomic system in the cavity so that the two modes,
r and l, can talk with each other via the emitter. The system is characterized by the
parameters: ωd = ωr = ω1 = 2π × 200 THz, ω2 = ωl, ωr − ωl = 2π × 0.5 GHz, g1 = g2 =
2π× 10 GHz, κr = κl = γcoh = 2π× 0.25 GHz, γ1 = γ2 = 0, P = 52 pW. This corresponds
to a steady state mean photon number of unity in the r mode of the cavity. The coupling
strength of 2π × 10 GHz was chosen according to reported values in the literature for
quantum dots coupled with photonic crystal cavities [41, 47, 48]. Typically, the coupling
strengths for such systems lie in the range ∼ 1 − 40 GHz [41]. The coupling strength is
directly related to the spatial confinement of the field in the cavity, and thus the mode
volume. Here we considered γ1, γ2 << g1, g2, κr, κl, as in the case of a nano-cavity and set
γ1 = γ2 ≈ 0 for simplicity.
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Figure 2.7: Plots of average photon number in r mode, i.e., 〈r†r〉 for κr = (a) 0, (b) 2π×25
MHz. FFT of the oscillations in average photon number with κr = (c) 0, (d) 2π×25 MHz.
The frequency of oscillation is twice the drive strength Ωd, reminiscent of the fact that the
Rabi frequency is twice the coupling strength.

Fig. 2.8 shows the transient dynamics of the system, and the steady state in the r
mode of the cavity. As expected, the atom which was initialized in |1〉, eventually ends up
in |2〉, whereby the atom becomes transparent to the incoming laser. The state in the r
mode of the cavity saturates to a coherent state with average photon number unity. Also,
a single photon has been successfully extracted from the incoming drive field, and released
into the left mode, as verified from the fact that the time integral of 〈l†outlout〉 saturates to
unity. Accordingly, we can also define the probability of a single photon subtraction at
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Figure 2.8: (a) The transient dynamics of the atomic levels, the cavity modes, and the
input-output modes of the cavity with a coherent laser drive. The units of 〈r†outrout〉 and
〈l†outlout〉 are in GHz. (b) The photon statistics of the r mode in the cavity in steady state
condition. (c) The Wigner function of the r mode in the cavity in steady state condition.
(For a more formal introduction to Wigner functions please refer to Chap. 4.)
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time t as

P =

ˆ t

0

〈l†outlout〉dt. (2.33)

This is the probability of observing a single LHCP photon at the output of the blue cavity
in time t. However, the number of photons actually subtracted from the incoming filed
could be more. That is because photons can also escape the red cavity because of non-zero
κr, even before SPRINT takes place.

2.5 Pre-specified initial state

2.5.1 Coherent state input

In this section, we consider the situation where a coherent state with a specified average
input photon number (n̄ = 1 in our case) is in the r mode of the cavity. Then, we shall
evolve the state of the system to study the dynamics of the atom, and the relevant modes.
First, we write down the effective non-Hermitian Hamiltonian as

Heff = H0 +Hint −
i~
2

∑
k

C†kCk, (2.34)

where H0, Hint, and Ck’s are the same as in Eq. 2.24. However, this time we do not have
the classical input drive. We set the initial condition to |ψ(0)〉 = |α, 0, 1〉, which refers to
the presence of a coherent state α in the r mode, vacuum in the l mode, and the emitter
in the ground state |1〉. We use the Hamiltonian to evolve this initial condition in Python
using QuTiP’s master equation solver.

Once again, we start with the simple case of a cavity with no atoms in it. We simulate
it for κr = 2π×0.25 GHz, and get the transient dynamics as seen in Fig. 2.9. As expected,
the mean number photons in the r mode exponentially decays with time, and the entire
photon is collected at the output as the time integral of 〈r†outrout〉 saturates to unity.

Next, we put an atom in the cavity so that the two modes start interacting via the
atomic transitions. The system is characterized by the same set of parameters as earlier:
ωd = ωr = ω1 = 2π × 200 THz, ω2 = ωl, ωr − ωl = 2π × 0.5 GHz, g1 = g2 = g = 2π × 10
GHz, κr = κl = γcoh = 2π× 0.25 GHz, γ1 = γ2 = 0. The transient dynamics of the system
with these system parameters is shown in Fig. 2.10a. We observe that the probability of
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Figure 2.9: The transient dynamics of the cavity (with no atom) when the r cavity mode
is initialized with a coherent state of average photon number one.

photon subtraction (given by the time integral of 〈l†outlout〉) from the r mode is quite low,
and about ∼ 0.3, which is similar to 〈σ22〉, or the probability of the atom ending up in
state |2〉 in the steady state in magnitude.

From the transient response of the system Fig. 2.10a, we notice that there are some
fast oscillations in the system. We perform FFT of 〈l†outlout〉 to analyse the oscillation
frequencies. From the results shown in Fig. 2.11, we see that the oscillation frequencies are
n ×
√

2g/2π, and n ×
√

3g/2π corresponding to two-photon, and three-photon processes
respectively where n ∈ {1, 2}. We can also observe, higher-order manifolds, but their
contributions are small. Also, the oscillations in the r and l modes are π out of phase with
each other.

However, ideally we do not want such many-photon Rabi oscillations in the l mode.
We want the single photon emitted in the l mode to be ejected from the cavity quickly, so
that it does not get re-absorbed by the atom. Ideally, that should also increase the speed
of single photon subtraction. We can achieve that by having a lossy cavity for the l mode.
Thus, we set κr = 2π × 0.25 GHz, and κl = 2π × 25 GHz; and simulate the system. The
other parameters of the system have been kept unchanged. The transient dynamics of the
system with higher κl is shown in Fig. 2.10b. This shows that increasing κl dampens the
oscillations, speeds up the process of photon subtraction, and more importantly increases
the probability of a single photon being subtracted from the r mode to ∼ 0.6. However,
the probability still does not go up to one. This is primarily due to the large vacuum
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Figure 2.10: The transient dynamics of the atomic levels, the cavity modes, and the input-
output modes of the cavity when the r mode is initialized with a coherent state with n̄ = 1,
for (a) κr = κl = 2π× 0.25 GHz, and (b) κr = 2π× 0.25 GHz, and κl = 2π× 25 GHz. The
units of 〈r†outrout〉 and 〈l†outlout〉 are in GHz.
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Figure 2.11: The FFT of 〈l†outlout〉 showing two-photon and three-photon Rabi-oscillations
in the system.

component present in weak coherent pulses – for example the probability of zero photons
present in a coherent pulse with average photon number of 1, 2, and 3 is approximately
0.37, 0.13, and 0.05, respectively.

2.5.2 Fock state input

In this subsection, we consider that the r mode in the cavity is initialized with a Fock
state (the two photon Fock state |2〉 for our simulations), instead of a coherent state. The
transient dynamics of the system is shown in Fig, 2.12. Once again, we find that having
a higher κl increases the chance of a proper single photon subtraction from the r mode.
Also, the process of subtraction is much faster, and as a result energy lost through decay
channels is also less when 100κr = κl = 2π × 25 GHz. For a leaky mode l, we see that we
can achieve a perfect single photon subtraction with the Fock state even with low levels of
excitation. We simulated our system with the same system parameters for a single photon
Fock state |1〉 input, and still got a perfect single photon subtraction from the r mode, as
shown in Fig. 2.13.

Parameter considerations

Now, we try to consider the role of different cavity parameters, like the coupling strength
and the cavity decay in determining the probability of successful single photon subtraction
from mode r. As expected, we find that the probability of successful subtraction is max-
imum for g1 = g2 for any given value of cavity decay rate. Fig. 2.14a shows the contour
plot of the probability of single photon subtraction from a single photon Fock state |1〉
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Figure 2.12: The transient dynamics of the atomic levels, the cavity modes, and the input-
output modes of the cavity when the r mode is initialized with the Fock state |2〉, for (a)
κr = κl = 2π × 0.25 GHz, and (b) κr = 2π × 0.25 GHz, and κl = 2π × 25 GHz. The units
of 〈r†outrout〉 and 〈l†outlout〉 are in GHz.
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Figure 2.13: The transient dynamics of the atomic levels, the cavity modes, and the input-
output modes of the cavity when the r mode is initialized with the Fock state |1〉, for
κr = 2π × 0.25 GHz, and κl = 2π × 25 GHz. The units of 〈r†outrout〉 and 〈l†outlout〉 are in
GHz.

as a function of the coupling strengths g1 and g2 for κr = κl = 2π × 0.25 GHz. As we
can see, the probability is highest around g1 ≈ g2. However, it is much less that one.
We noticed this previously when we chose the cavity decay rates to be equal. Choosing
κr = 2π×0.25 GHz and κl = 2π×25 GHz solves this issue, and we can have perfect single
photon subtraction along g1 ≈ g2 as shown in Fig. 2.14b. We also notice that the coupling
strengths do not need to be strictly equal, and one can get unit probability of subtraction
even with a small mismatch in the coupling strengths.

Thus, we find that it is important to note the range of permissible cavity decay rates
that still allow us to have perfect single photon subtraction. For that we fix our coupling
rate at g1 = g2 = g = 2π × 10 GHz, and sweep over the two cavity decay rates κr and κl
as shown in Fig. 2.14c. As we can see from the figure, κr should be lower than a threshold
value. If the cavity for r mode is too leaky, the photon might be lost from the cavity
even before it interacts with the emitter. On the contrary, there are stricter bounds on
the values of κl we can choose. If κl is too low, the subtracted photon in the l mode can
get re-absorbed. Thus ideally, κl ≥ g. But, κl cannot be too high, and has a turn-around
point around κl ∼ 100g. However, till now we ignored the population decay rates and used
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Figure 2.14: The single photon subtraction probability from a single photon Fock state
|1〉 as a function of the coupling strengths g1 (in GHz) and g2 (in GHz) for (a) κr = κl =
2π × 0.25 GHz, and for (b) 100κr = κl = 2π × 25 GHz. For (a,b) γcoh = 2π × 0.25 GHz,
γ1 = γ2 = 0 was used. (c,d) The dependence of single photon subtraction probability from
a single photon Fock state |1〉 on cavity decay rates κr and κl for g1 = g2 = g = 2π × 10
GHz with (c) γcoh = 2π× 0.25 GHz, γ1 = γ2 = 0, and (d) γcoh = γ1 = γ2 = 2π× 0.25 GHz.
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γ1 = γ2 ≈ 0. However, if we consider the atomic linewidth into our calculations, we end
up having stronger bounds on the permissible values of the cavity decay rates as seen in
Fig. 2.14d. Here we picked the atomic spontaneous decay rates to be γ1 = γ2 = 2π × 0.25
GHz, which is a reasonable value for quantum dot systems. We notice that having non-zero
gamma1 and γ2 restricts the values of κl, and ideally κl ∼ 10g to achieve close to unit
probability of deterministic single photon subtraction.

2.6 Using a cascaded feeder/ source cavity

Another way we can introduce photons into the system is by using a feeder/ source cavity
or a waveguide to send the input pulse. In particularly, we will briefly see how it can be
done with a cavity using a system as shown in Fig. 2.15. A single-sided feeder cavity can
be used to create a properly designed pulse. That pulse can be sent over to the bi-modal
cavity using some kind of waveguide system. Preferably, it should be a chiral waveguide
allowing uni-directional flow of photons from the feeder to the bi-modal cavity. That stops
photons from the red mode in the target cavity flow back into the feeder cavity.

The single photon subtraction from the pulse takes place in the target cavity that
houses the three-level emitter as we discussed in the previous sections. This model, has
certain advantages over using CW coherent laser beam or initializing the cavity mode with
a coherent or a Fock state. It helps us track the input state unlike our previous models.
In this model, the Hamiltonian of the system gets modified to

H = H0 +Hint +Hs, (2.35)

where H0 and Hint are the same as before. Hs is the source Hamiltonian given by Hs =
~ωsr†srs, where rs is the annihilation operator, and ωs is the resonant frequency of the
feeder cavity mode. The source cavity mode collapse operator C1 gets modified to

C1 = rout =
√
κsrs +

√
κrr, (2.36)

where κs is the decay rate of the source cavity, while the other collapse operators remain
unchanged. The interaction of the cavity modes, and the emitter is governed by the non-
Hermitian effective Hamiltonian

Heff = H0 +Hint +Hs −
i~
2

∑
k

C†kCk. (2.37)
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Figure 2.15: Schematic of using a cascaded feeder cavity to create a well-defined input
pulse, from which a single photon is deterministically subtracted in the target cavity.

The target cavity is initialized as |ψt〉 = |0, 0, 1〉, i.e., both the modes have vacuum, and the
emitter is in state |1〉. Next, we can initialize the rs mode of the source cavity accordingly,
and observe the dynamics of the system as it evolves according to the non-Hermitian
Hamiltonian using QuTiP’s Monte Carlo master equation solver. But in this thesis we will
not be explicitly solving this model.

However, we must note that the cavity parameters required for single photon subtrac-
tion to happen in this model can be expected to differ from the cavity parameters needed
for the case when the cavity is initialized with a coherent or a Fock state. The reason be-
ing, for efficient photon subtraction, it is important to get the input pulse into the target
cavity. The decay rate of the red cavity mode κr cannot be too low, since that would make
it difficult to inject the input pulse into the cavity. That would put a lower limit in the
range of permissible κr’s. However, κr cannot be too high, since that would result in the
photons leaking from the red cavity easily, and that would in turn decrease the probability
of subtraction. Moreover, the choice of κr will also hinge upon the choice of κs, since the
impedances of the two cavities must be matched to efficiently get the pulse from the source
to the target cavity.
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Figure 2.16: The second order auto-correlation function for both modes r and l for: (a)
CW coherent laser input (inset shows that the value of g(2) for mode r goes below one,
thereby showing sub-Poissonian photon statistics), and (b) when the r mode in the cavity
is initialized with coherent state with average photon number one, and Fock state with two
photons with κr = 2π × 0.25 GHz, and κl = 2π × 25 GHz.

2.7 Second order auto-correlation function

In this section, we shall look at the second order auto-correlation function g(2)(τ) of the pho-
ton subtracted fields to look for non-classical signatures generated as a result of SPRINT.
The second order auto-correlation function for a mode m with annihilation operator am
can be mathematically defined as:

g(2)(τ) =
〈a†ma†mamam〉
〈a†mam〉2

. (2.38)

First, we shall consider the case, where a CW coherent beam of laser is sent into mode
r, as discussed in Sec. 2.4. Initially, both the modes are in the vacuum state. A classical
Gaussian CW coherent laser is sent into the r mode. The second order auto-correlation
function of the coherent state is 1. However, we observe g(2) < 1 in the photon subtracted
mode, as shown in the inset of Fig. 2.16a. This indicates that the process of photon
subtraction leads to introduction of non-classicality/ sub-Poissonian photon statistics into
the otherwise classical r mode.
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Next, we revisit the case from Sec. 2.5, where we initialized with a coherent state in the
r mode. Once again, we observe a second order auto-correlation less than unity, as shown
in Fig. 2.16b, even though it is a coherent state. That is followed by a super-bunching
event whereby g(2) > 1. With time g(2) decays to zero, as all the photons eventually leak
out of the cavity.

For a Fock state with n photons, g(2) = 1− 1/n. So, for the two Fock state input |2〉 as
discussed in Sec. 2.5.2, the second order auto-correlation starts at 0.5 at t = 0. Then, it
decays gradually until all the photons have leaked out of the cavity, and eventually becomes
zero.
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Chapter 3

Deterministic single photon
subtraction with a three-level emitter
coupled to a chiral waveguide

3.1 Motivation

In this chapter, we propose and investigate the feasibility of deterministic single photon
subtraction using a single three-level quantum emitter coupled to a chiral waveguide instead
of a bi-modal optical cavity [41]. Using a waveguide instead of a cavity offers several
advantages – such as the removal of the need to spatially couple, and temporally match the
input light into a cavity, as well as relaxed requirement on spatial positioning of the emitter.
Additionally, there would be no need to worry about controlling a cavity-emitter detuning,
and cascading of multiple photon subtraction stages should be significantly simplified.

In Sec. 3.2, we start by introducing the theoretical formulations for a single two-level
quantum emitter coupled to a one-dimensional (1D) single mode waveguide. Next, we
discuss how to use a single quantum emitter coupled with a waveguide for single photon
subtraction. In Sec. 3.3.1, we introduce the theoretical formulations for a perfectly chiral
waveguide. We use the input-output formalism proposed by Gardiner et al. in Ref. [49] to
get the relevant input-output relations, and the coupled differential equations of motion for
the relevant operators. In Sec. 3.3.2, we describe how realistic waveguides with chirality
less than unity can be studied under the same framework. Furthermore, in Section 3.4
we numerically simulate the probability of a single photon subtraction for different optical
inputs – continuous-wave coherent state, coherent Gaussian pulse, and Fock states. Finally,
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we discuss a variety of recently reported three-level emitter and waveguide systems in terms
of their potential to subtract a single photon from an optical pulse, and find that photonic
crystal waveguides have the potential to become a platform in which the probability of
successful single photon subtraction can approach unity.

The work reported in this chapter is a continuation of the work done by previous
graduate student Golam Bappi [50]. I will like to thank Dr. Jinjin Du, and Prof. Michal
Bajcsy for helpful discussions regarding the work reported in this chapter. The Python
programs used for simulations in this chapter are available in Appendix C.

3.2 A quantum emitter coupled with a waveguide

At the inception, we will consider a two-level quantum emitter coupled with a 1D waveg-
uide. The extension of the problem to a three-level quantum coupled to a 1D waveguide
with two chiral modes is pretty straightforward.

First, for simplicity let us consider the Hamiltonian for a 1D optical cavity of length
L, parallel to the direction of propagation of light. For a planewave propagating in such a
cavity, the modes are separated by ∆k = 2π/L under periodic boundary conditions. The
total energy of the modes in the cavity is sum of the energies of the individual modes, and
is given by

H/~ =
∑
k

ωkâ
†
kâk, (3.1)

where âk (â†k) is the annihilation (creation) operator of the mode with wavevector k in

this discrete picture, and obey the commutation relationship
[
âk, â

†
k′

]
= δk,k′ . In the limit

L → ∞, we jump from the discrete mode picture to continuous mode formalism in an
infinitely long waveguide by using the conversion relationship

∑
k

→ 1

∆k

ˆ ∞
−∞

dk.

The new continuous mode operator ãk is related to the discrete mode operator by the
relationship

âk →
√

∆kãk. (3.2)
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Figure 3.1: A simplified model of a two-level emitter coupled with a 1D waveguide when
a single photon is sent into the waveguide from the left.

Also, the continuous mode operators follow the commutation relationship
[
ãk, ã

†
k′

]
=

δ (k − k′). The discrete Kronecker delta is connected to the Dirac delta function by the
transformation

δk,k′ → ∆kδ (k − k′) . (3.3)

Thus, the Hamiltonian for the guided mode can be expressed in the continuum limit as

H/~ =

ˆ ∞
−∞

dkωkã
†
kãk. (3.4)

The limit of the integration can be justified as we will be only considering near resonant
interactions between the emitter and the waveguide, and we can ignore far detuned inter-
actions, Henceforth, we will be working in the continuum limit, and will be dropping the
tilde on the operators for notational convenience.

Now, we return to the case of the two-level emitter coupled with a 1D waveguide. The
Hamiltonian for such a simplified system, as shown in Fig. 3.1, is given by the sum of the
Hamiltonian corresponding to the waveguide Hwg, the atomic Hamiltonian Ha, and the
interaction Hamiltonian Hint, such that, H = Hwg +Ha +Hint, where

Hwg/~ =
∑
k

ωka
†
kak, Ha/~ = ωegσee, (3.5a)
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Hint/~ =
∑
k

V (k)
(
akσ+ + a†kσ−

)
. (3.5b)

Here, ωeg is the frequency of the |g〉 ↔ |e〉 transition, σ−(+) is the lowering (raising) operator

for the emitter, ak (a†k) is the annihilation (creation) operator for incoming photons in the
wavevector mode basis, and the projection operator σee = |e〉 〈e|. V (k) is the coupling
constant between the waveguide mode k and the emitter, and is given by

V (k) = d

√
ωk

2~ε0Vm
, (3.6)

where d is the atomic dipole matrix element, and Vm = πR2L is the effective mode vol-
ume for a waveguide of radius R. In the continuous mode limit we can reformulate this
Hamiltonian as:

H/~ = ωegσee +

ˆ ∞
−∞

a†kakωkdk +

ˆ ∞
−∞

V (k)

√
L

2π

(
akσ+ + a†kσ−

)
dk, (3.7)

We can study the response of this system in multiple ways. We shall briefly explore the
situation when a single photon is incident from the left using two separate formalisms
– first, the real space approach, and second, the input-output formalism and scattering
matrix based approach.

Method I: Real space approach

Assuming that the dispersion relationship of the waveguide can be linearized around the
transition frequency ωeg, i.e., ωk = vg|k|; the coupling constant is frequency independent,
i.e., V (k) = V ; and there are two independent left and right-propagating modes, the
continuous k-space Hamiltonian can be expressed in the position space as [51]

H/~ = ωegσee − ivg
ˆ ∞
−∞

dx

[
r†(x)

∂

∂x
r(x)− l†(x)

∂

∂x
l(x)

]
+

ˆ ∞
−∞

dxV δ(x)
(
r†(x)σ− + r(x)σ+ + l†(x)σ− + l(x)σ+

)
, (3.8)
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where V =
√
LV , vg is the group velocity of guided mode, and l(x) (r(x)) is the destruction

operator for left (right) travelling photons at x in the waveguide. A derivation of this
Hamiltonian is provided in Appendix A

The eigenstate of the Hamiltonian in Eq. 3.7 for a photon incident from the left with
group velocity vg and wavevector k is

|Ψk〉 =

ˆ ∞
−∞

dx
(
uR(x)r†(x) + uL(x)l†(x)

)
|0, g〉+ ek |0, e〉 , (3.9)

where ek is the probability that the emitter is excited, uR(x) and uL(x) are mode functions
of photons travelling in the left and right directions respectively. If only one photon is sent
from the left, the mode functions take the following form

uR(x) =

{
eikx for x < 0

teikx for x > 0
(3.10a)

uL(x) = re−ikx for x < 0, (3.10b)

where t and r are the transmission and reflection coefficients, and the emitter is located
at x = 0. Furthermore, we can check the value of the mode functions at the input and
output of the waveguide. In the limits of x→ −∞ (at input) and x→∞ (at output) we
get the relationships:

lim
x→∞

uR(x) = t, lim
x→−∞

uR(x) = 1, lim
x→∞

uL(x) = 0, lim
x→−∞

uL(x) = r. (3.11)

We solve the eigenvalue equation H |Ψk〉 = Ek |Ψk〉 for the transmission and reflection
coefficients t and r respectively, under the assumption of a slowly varying field, to arrive
at the following solution:

t = eib cos b, r = ieib sin b, ek = −vg
V
eib sin b, (3.12)

where the phase shift is given by b = tan−1 (V 2/vg∆k), where detuning between the incident
field and the atomic transition is ∆k = ωeg − Ek/~. For sanity check, we can verify that
|r|2 + |t|2 = 1 is satisfied. We define J = V 2/vg. It is an important parameter of the system
with units of frequency. The reflectivity is a Lorentzian with a width proportional to J .
The transmittance has been plotted in Fig. 3.2 for different values of J . We observe that
on resonance the photon is completely reflected, and higher emitter-waveguide coupling
results in a wider spectral window for reflection.
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Figure 3.2: The single photon transmittance |t|2 for different values of J/ωeg. The light is
completely reflected at resonance.

Method II: Input-output formalism and scattering matrix approach

We can also study the system using input-output formalism. Since this method is more
involved, first, we shall consider the simple Hamiltonian of a two-level emitter coupled with
a waveguide supporting wave-propagation in only one direction as follows (this time we
express the Hamiltonian in frequency mode basis):

H/~ = ωgeσee +

ˆ
a†ωaωωdω +

V
√
vg

ˆ (
σ+aω + σ−a

†
ω

)
dω. (3.13)

It is important to note that this Hamiltonian is normalized by group velocity, and the
annihilation operator aω is defined as aω(k) = ak/

√
vg for the mode labeled by frequency ω

in the frequency mode basis. The input and the output mode operators can be defined as
[49]

ain (t) =
1√
2π

ˆ
dωaω (t0) e−iω(t−t0), (3.14a)

aout (t) =
1√
2π

ˆ
dωaω (t1) e−iω(t−t1), (3.14b)
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where t0 is a time long before, and t1 is a time long after the interaction between the
emitter and the input signal. They follow the commutation relationship [ain (t) , aout (t′)] =
δ (t− t′). By solving the Heisenberg equations of motion we arrive at the following input-
output relationship [49, 52]

aout(t) = ain(t)− i
√

2

τ
σ−(t). (3.15)

for spontaneous emission rate into guided mode γg = 2/τ = 2πV 2/vg. For now, we shall
consider that the emitter only couples with the waveguide modes, and ignore its coupling to
any dissipative baths. The input-output formalism is very useful for few photon transport
problems, since the dynamics of the emitter with the modes gives us about the field’s
properties at the input and the output of the coupled systems. In later sections we shall
see in more details how to reach the input-output relationship as shown in Eq. 3.15.

The input-output formalism can be directly associated with the well known scattering
matrix approach. The scattering matrix is mathematically defined in terms of the time

evolution operator Uint(t0, t1) = T exp
[
−i
´ t1
t0
dtHint(t)

]
in the interaction picture as [53]

S = lim
t0→−∞
t1→∞

Uint(t1, t0) (3.16)

= lim
t1→∞

Uint(t1, 0)× lim
t0→−∞

Uint(0, t0) (3.17)

= Ω†−Ω+, (3.18)

where Ω± are the Møller wave operators. T is known as the Dyson chronological operator,
and it properly orders the time discretized evolution operators as its name suggests. The
Møller wave operators are given by Ω+ = limt0→−∞ Uint(0, t0), and Ω− = limt1→∞ Uint(0, t1).
If |i1, i2〉 and |o1, o2〉 are the two particle input and output states corresponding to photons
of frequency in and on respectively ∀n ∈ {1, 2}, the scattering matrix elements are given
by

So1,o2;i1,i2 = 〈o1, o2|S|i1, i2〉. (3.19)

This formalism easily allows us to scale up to n-body scattering problems. The scattering
eigenstates

∣∣i1, i±2 〉 are the states that the input will evolve to at t1 →∞, and the state at
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t0 → −∞ from which we arrived at the current input in the interaction picture. They are
related to the current input through the Møller wave operators as

∣∣i1, i+2 〉 = lim
t0→−∞

Uint(0, t0) |i1, i2〉 = Ω+ |i1, i2〉 , (3.20a)

∣∣i1, i−2 〉 = lim
t1→∞

Uint(0, t1) |i1, i2〉 = Ω− |i1, i2〉 . (3.20b)

This implies that the scattering matrix element can be expressed as

〈o1, o2|S|i1, i2〉 = 〈o1, o2|Ω†−Ω+|i1, i2〉 = 〈o1, o
−
2 |i1, i+2 〉.

The scattering matrix elements can be expressed in terms of the input-output operators as

〈o1, o
−
2 |i1, i+2 〉 = 〈0|aout(o1)aout(o2)a†in(i1)a†in(i2)|0〉, (3.21)

where ain(out)(in) = Ω+(−)ainΩ†+(−),
[
ain(out)(in), a†in(out)(on)

]
= δ(in − on), and they create

the input-output scattering eigenstates a†in(in) |0〉 = |i+n 〉 and a†out(on) |0〉 = |o−n 〉. A simple
Fourier relationship relates the operators ain(out)(t) and ain(out)(k) in time and k-space as

ain(out)(t) =
1√
2π

ˆ
ain(out)(k)e−iktdk. (3.22)

Ref. [53, 54] provide a more detailed discussion of the scattering matrix approach in waveg-
uide quantum electrodynamics (QED). Here we have only introduced concepts necessary
to understand the next steps of our calculation.

Using the aforementioned formulation of scattering matrices, we get the S matrix for a
single input photon to be

〈o1|S|i1〉 = 〈0|aout(o1)a†in(i1)|0〉 =
1√
2π

ˆ
〈0|aout(t)|i+1 〉eio1tdt. (3.23)

On solving the Heisenberg equations of motion for σee and σ− with the given Hamiltonian,
and using the definition of the input-output operators, we get

dσee
dt

= −i
√

2

τ

(
σ+(t)ain(t)− a†in(t)σ−(t)

)
− 2

τ

[
σee(t) +

1

2

]
, (3.24a)
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dσ−
dt

= i2

√
2

τ
σeeain − i

(
ωeg − i

1

τ

)
σ− = i2

√
γgσeeain − i

(
ωeg − i

γg
2

)
σ−. (3.24b)

Now, using the input-output relationship of the waveguide mode from Eq. 3.15 we get:

〈0|aout|i+1 〉 =〈0|ain|i+1 〉 − i
√

2

τ
〈0|σ−|i+1 〉

=〈0|aina†in(i1)|0〉 − i
√

2

τ
〈0|σ−|i+1 〉

=
eii1t√

2π
− i
√

2

τ
〈0|σ−|i+1 〉. (3.25)

We solve Eq. 3.24b, and use Eq. 3.25 to arrive at the following relationships:

〈0|σ−|i+1 〉 =
1√
2π
e−ii1t

√
2/τ

(i1 − ωeg) + i/τ
, (3.26a)

〈0|aout|i+1 〉 =
1√
2π
e−ii1t

(i1 − ωeg)− i/τ
(i1 − ωeg) + i/τ

. (3.26b)

From there we get the S matrix to be

〈o1|S|i1〉 =
1√
2π

ˆ
〈0|aout(t)|i+1 〉eio1tdt =

(i1 − ωeg)− i/τ
(i1 − ωeg) + i/τ

δ(i1 − o1). (3.27)

Thus, the transmission coefficient is

t1-way =
(Ek/~− ωeg)− i/τ
(Ek/~− ωeg) + i/τ

, (3.28)

for input frequency i1 = Ek/~. Since there is only one mode, the transmittance |t|2 is one.
Similarly, the excitation amplitude is given by

ek =

√
2/τ

(Ek/~− ωeg) + i/τ
. (3.29)
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Now that we have studied the one-way propagation model, it can be extrapolated to
the two-way propagation situation by introducing left and right propagating modes. We
can define the Hamiltonian as

H/~ = ωgeσee +

ˆ (
r†ωrω − l†ωlω

)
ωdω +

V
√
vg

ˆ [
σ+ (rω + lω) + σ−

(
r†ω + l†ω

)]
dω, (3.30)

where rω (lω) is the annihilation operator of the photons traveling right (left). In a similar
fashion, we can establish the input-output relationships for the two chiral modes, and
calculate the S matrix for a single photon input using the method in Ref. [52]. Upon doing
that, we get

〈0|rout(o1)r†in(i1)|0〉 =
1

2
(t1-way + 1) δ(o1 − i1) = tδ(o1 − i1). (3.31)

Thus, the transmission coefficient is

t =
Ek/~− ωeg

(Ek/~− ωeg) + i/τ
=

Ek/~− ωeg
(Ek/~− ωeg) + iγg

2

, (3.32)

which is same as the one derived using the real-space Hamiltonian approach in method I.
The transfer matrix relating the input and output of the waveguide coupled to the two-level
emitter is given by

L+

L−

 =


1− i J

∆k

−i J
∆k

i
J

∆k

1 + i
J

∆k



R+

R−

 , (3.33)

where L± (R±) are the field amplitudes with positive and negative k-vectors on the left
(right) of the two-level system.

Introducing dissipation

Until now, we have only considered that the emitter can radiate into the guided mode
mode only. However, we can take system dissipation into account by considering coupling
of the system with a reservoir/ bath mode with mode operators bω and b†ω as shown in Fig.
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Figure 3.3: Figure showing coupling of the two-level emitter to the waveguide modes and
the bath mode. The rates of emission onto the guided modes and the bath are γg and γrad
respectively.

3.3. First, for simplicity we consider the case of uni-directional propagation. Including the
new bath mode modifies the Hamiltonian in Eq. 3.13 to

H/~ = ωgeσee +

ˆ
a†ωaωωdω +

ˆ
b†ωbωωdω +

√
γg
2π

ˆ (
σ+aω + σ−a

†
ω

)
dω+√

γrad
2π

ˆ (
σ+bω + σ−b

†
ω

)
dω (3.34)

where γrad is the decay rate into the bath mode. Using this Hamiltonian modifies Eq.
3.24b to

dσ−
dt

= i2
√
γgσeeain + i2

√
γradσeebin − i

(
ωeg − i

γg
2
− iγrad

2

)
σ−. (3.35)

On solving the scattering matrix for a radiative spontaneous emission rate γrad, we find
that the transmission and reflection coefficients can be readily derived by using the simple
transformation ωeg → ωeg − iγrad2

[55]. In general, for n loss channels with different rates
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Figure 3.4: The single photon transmittance (solid line) and reflectance (dash-dotted line)
for different values of γg/γtotal, where γtotal = γg + γrad, and detuning ∆k = Ek/~− ωeg.

of dissipation, we can use the transformation ωeg → ωeg − i
∑

n
γn
2

. We can extend this
to case of the waveguide with the counter-propagating modes. Doing so, we find that the
transmission coefficient is

t =
(Ek/~− ωeg) + iγrad

2

(Ek/~− ωeg) + i
(γg

2
+ γrad

2

) . (3.36)

The effect of the radiative loss is shown in Fig. 3.4. The reflectance at resonance
(∆k = Ek/~ − ωeg = 0) decreases as photons couple more with the radiative modes with
increasing γrad. Moreover, the maximum reflectance is calculated to be Rmax = (γg/γtotal)

2

at resonance, as reflected in Fig. 3.4.

3.3 Photon subtraction in a waveguide

Having introduced the basics of waveguide QED, in this section we are in a position to
discuss deterministic single photon using a three-level quantum emitter coupled with a
waveguide.
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3.3.1 Perfectly chiral waveguide

The proposed system for deterministic single photon subtraction consists of a single three-
level Λ-type quantum emitter, initialized in the ground state |1〉, which is coupled to a
1D chiral waveguide. In the chiral waveguide, the light is confined at a wavelength or
sub-wavelength scale. That results in significant interaction between the light’s spin and
orbital angular momentum. Under this kind of tight confinement, the polarization of
light is no longer transverse to the direction of propagation. There is also a non-zero
longitudinal component of polarization along the direction of propagation. The electric
field at position r follows the time-reversal symmetry relationship E−k(r) = E∗k(r) for
wave-vectors k and −k. That implies, for a mode with transverse circular polarized light,
the counter-propagating mode has circular polarization of opposite polarity [56]. Thus, the
two modes can now co-exist in the chiral waveguide because of broken symmetry along the
longitudinal direction of propagation.

In the ideal case with a perfectly chiral waveguide, the right-hand circularly polarized
(RHCP) photons can only propagate from left to right, while the left-hand circularly
polarized (LHCP) photons can only propagate from right to left. Each of the two transitions
of the emitter is coupled with equal co-operativity that is much greater than unity to one of
the chiral modes. Specifically, the emitter is coupled to the waveguide such that, |1〉 → |3〉
transition requires an RHCP photon and |2〉 → |3〉 transition requires an LHCP photon.
The basic principle behind the SPRINT mechanism in the waveguide is similar to the case
of the bi-modal cavity, and can be described as follows. When photons traveling in the
waveguide from left to right interact with the Λ-type emitter, the emitter gets excited to
|3〉. When the incoming light has a greater pulsewidth compared to the decay time of
|3〉, there cannot be subsequent emission from the |3〉 → |1〉 transition, because of the
destructive interference of subsequent re-emission with the incoming field [27]. Thus, the
emitter can only de-excite via the |3〉 → |2〉 transition, thereby emitting a single photon
that travels to the left. Once in state |2〉, the emitter stops interacting with the left to
right propagating light.

The Hamiltonian for such a system is given by the sum of the Hamiltonian correspond-
ing to the waveguide Hwg, the atomic Hamiltonian Ha, and the interaction Hamiltonian
Hint, such that, H = Hwg +Ha +Hint, where,

Hwg/~ =

ˆ ∞
−∞

(
r†ωrω − l†ωlω

)
ωdω, (3.37a)

Ha/~ = ω1σ33 + (ω1 − ω2)σ22, (3.37b)
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Figure 3.5: The schematic of a three-level Λ-type quantum emitter coupled with a perfectly
chiral 1D waveguide.

Hint/~ = V1

ˆ ∞
−∞

(
rωσ31 + r†ωσ13

)
dω + V2

ˆ ∞
−∞

(
lωσ32 + l†ωσ23

)
dω. (3.37c)

Here, ω1 is the frequency of |1〉 ↔ |3〉 transition, ω2 is the frequency of |2〉 ↔ |3〉 tran-
sition, and σab = |a〉 〈b| are the atomic transition operators from state |b〉 to state |a〉,
∀ {a, b} ∈ {1, 2, 3}. rω and r†ω are the bosonic creation and annihilation operators associ-
ated with the mode traveling to right, lω and l†ω are the bosonic creation and annihilation
operators associated with the mode traveling to left. The bosonic mode operators follow
the commutation relationship

[
lω (t) , l†ω (t′)

]
=
[
rω (t) , r†ω (t′)

]
= δ (t− t′). We consider

that the modes are monochromatic circularly polarized plane waves. Our Hamiltonian is
normalized by group velocity, and the annihilation operator aω is defined as aω(k) = ak/

√
vg,

∀a ∈ {l, r}, where k is the wavevector and vg is the group velocity of the waveguide mode.
The coupling constants V1 and V2 with the relevant waveguide modes can be expressed

as V1 =

√
γ

(1)
r /2π and V2 =

√
γ

(2)
l /2π [52, 57], with γ

(i)
r(l) representing the spontaneous

emission rate from the |3〉 → |i〉 transition into the right-(left-) propagating modes of the
waveguide [58]:

γ
(i)
r(l) =

ngr(l)
σ

(i)
0 γ

(i)
0

2Amoder(l)
(~r)

. (3.38)
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Here, γ
(i)
0 is the spontaneous emission rate of the |3〉 → |i〉 transition in free space and σ

(i)
0

is resonant scattering cross section, ngr(l)
is the group index of the right- (left-) propagating

mode, and Amr(l)
(~r) is the effective area of the right-(left-) propagating mode for the emitter

located at position ~r. The effective area of a mode i, Amodei(~r), for the emitter located at
position ~r is defined as [58]

Amodei(~r) =

´
ε(~r′)|E(~r′)|2d3r′

aε(~r)|E(~r)|2 , (3.39)

where a is the lattice constant of the waveguide, E(~r) and ε(~r) are the electric field and the
dielectric constant at position ~r, and the integration runs over the space occupied by a unit
cell of the waveguide. In our model we considered monochromatic circularly polarized plane
waves propagating in the waveguide. The exact spatial field profile in the waveguide can be
determined by solving the wave-guiding equations under boundary conditions determined
by the particular geometry of the waveguide. But in this chapter, we will mainly focus on
the photon statistics at the input and output ports of the waveguide, and will not consider
the propagation of the modes inside the waveguide into account.

Since the coupling constants V1 and V2 only describe the interaction of the emitter with
the waveguide modes, we also define the coupling efficiency of each |3〉 → |i〉 transition of
the emitter to the two waveguide modes to account for the other decay channels as [59, 60]

β(i) =
γ

(i)
r + γ

(i)
l

γ
(i)
r + γ

(i)
l + γ

(i)
rad + γ

(i)
nr

, (3.40)

where γ
(i)
rad is the rate of decay into non-guided radiation modes, γ

(i)
nr is intrinsic non-

radiation decay rate, and γ
(1)
l = γ

(2)
r = 0 in a perfectly chiral waveguide considered at the

moment.

In this scenario, the single emitter co-operativity for the |3〉 ↔ |i〉 transition is given
by [58, 59]

C(i) =
β(i)

1− β(i)
=

γ
(i)
g

γ
(i)
rad + γ

(i)
nr

, (3.41)

where γ
(i)
g is the rate of spontaneous emission into the guided mode. Thus, for a perfectly

chiral waveguide, γ
(1)
g = γ

(1)
r and γ

(2)
g = γ

(2)
l . For SPRINT in the coupled emitter-waveguide

system, both the modes should be symmetric and have similar co-operativity. Thus, for
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simplicity we will drop the superscripts, and consider β(1) = β(2) = β. Also, the co-
operativity can be simplified as

C =
β

1− β =
σ0

Amode
neff , (3.42)

where σ0 is the dipole cross-sectional area, Amode is the mode area, and neff = c/vg is the
effective refractive index. Thus, we can also express the coupling efficiency as

β =
σ0

σ0 + Amode (vg/c)
. (3.43)

We obtain the Heisenberg equations of motion for the mode operators rω and lω as

ṙω = −i [rω, H] = −iωrω − iV1σ13, (3.44a)

l̇ω = −i [lω, H] = iωlω − iV2σ23. (3.44b)

The input and output mode operators can be defined as

rin (t) =
1√
2π

ˆ
dωrω (t0) e−iω(t−t0), (3.45a)

lin (t) =
1√
2π

ˆ
dωlω (t0) eiω(t−t0), (3.45b)

rout (t) =
1√
2π

ˆ
dωrω (t1) e−iω(t−t1), (3.45c)

lout (t) =
1√
2π

ˆ
dωlω (t1) eiω(t−t1), (3.45d)

where t0 is a time long before, and t1 is a time long after the interaction between the emitter
and the pulse. These are essentially the Fourier counterparts of the frequency domain
operators, and follow the commutation relationships [lin (t) , lout (t′)] = [rin (t) , rout (t′)] =
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δ (t− t′). Following the derivation for the input-output formalism in Ref. [49], one can
arrive at the following relationships:

1√
2π

ˆ
dωrω = rin − i

√
π

2
V1σ13

= rout + i

√
π

2
V1σ13, (3.46a)

1√
2π

ˆ
dωlω = lin − i

√
π

2
V2σ23

= lout + i

√
π

2
V2σ23. (3.46b)

From this, we can derive the input output relationship of the modes as [49]

rout = rin − i
√

2πV1σ13, (3.47a)

lout = lin − i
√

2πV2σ23. (3.47b)

Now, we can also write down the Master equation for the density operator ρ by plugging
in the Lindbladians as

ρ̇ = −i [H, ρ] + 2γ1L (σ13) ρ+ 2γ2L (σ23) ρ

= −i [H, ρ] + 2γ1σ13ρσ31 + 2γ2σ23ρσ32

− (γ1 + γ2) (σ33ρ+ ρσ33) , (3.48)

where the Lindblad superoperator are given by L (a) ρ = aρa† − 1
2

{
a†a, ρ

}
, where {·, ·}

is the anti-commutator operation. From Eq. 3.48, we arrive at the set of Optical Bloch
Equations (OBEs) corresponding to the various transitions:

σ̇11 = i
√

2πV1

(
σ31rin − σ13r

†
in

)
+ 2

(
πV 2

1 + γ1

)
σ33, (3.49a)

σ̇22 = i
√

2πV2

(
σ32lin − σ23l

†
in

)
+ 2

(
πV 2

2 + γ2

)
σ33, (3.49b)
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Figure 3.6: Figure illustrating the principle behind the input-output formalism for a chiral
waveguide coupled with a three-level atom. Figure adapted from Ref. [61].

σ̇33 = −i
√

2πV1

(
σ31rin − σ13r

†
in

)
−i
√

2πV2

(
σ32lin − σ23l

†
in

)
−2
[
π
(
V 2

1 + V 2
2

)
+ γ1 + γ2

]
σ33,

(3.49c)

σ̇12 = i
√

2πV1σ32rin − i
√

2πV2σ13l
†
in − i (ω1 − ω2)σ12, (3.49d)

σ̇13 = i
√

2πV1 (σ33 − σ11) rin − i
√

2πV2σ12lin −
[
π
(
V 2

1 + V 2
2

)
+ γ1 + γ2 + iω1

]
σ13, (3.49e)

σ̇23 = i
√

2πV2 (σ33 − σ22) lin − i
√

2πV1σ21rin −
[
π
(
V 2

1 + V 2
2

)
+ γ1 + γ2 + iω2

]
σ23. (3.49f)

The OBEs for σ21, σ31, and σ32 can be calculated easily by taking the complex conjugates
of OBEs for σ12, σ13, and σ23 respectively. Here it must be noted that the system is
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composed of the emitter and the waveguide, and thus, the spontaneous emission rates, 2γ1

(= γ
(1)
rad + γ

(1)
nr ) and 2γ2 (= γ

(2)
rad + γ

(2)
nr ), in the OBEs are the spontaneous emission rates

into the radiative and non-radiative modes that are not coupled with the waveguide. This
set of coupled differential equations dictate the entire dynamics of the photon subtraction
process.

Fig. 3.6 illustrates the core principle behind the input-output formalism for a chiral
waveguide coupled with a three-level atom. The initial condition of the mode operators
and the atom (which is treated as a bath here) at t = t0 = −∞ is the input of the system.
The dynamics of the system is governed by the quantum Langevin equations, which take
into account the contributions from different system parameters. The output of the system
is given by the the state of the system operators at t = t1 = ∞. The quantities t0 and
t1 have been defined in Eq. 3.45. The output of the system gives access to the emission
spectrum, and experimentally observed quantities like transmitance, reflectance, state of
the emitter, etc.

3.3.2 Imperfectly chiral waveguide

The previous formulation is true only in the ideal limit. The schematic of a three-level Λ
system coupled with an imperfectly chiral waveguide is shown in Fig. 3.7. This effectively
modifies our Hamiltonian to H = Hwg +Ha +Hint, where

Hwg/~ =

ˆ ∞
−∞

(
r†ω1rω1 + r†ω2rω2 − l†ω1lω1 − l†ω2lω2

)
ωdω, (3.50a)

Ha/~ = ω1σ33 + (ω1 − ω2)σ22, (3.50b)

Hint/~ = V1R

ˆ ∞
−∞

(
rω1σ31 + r†ω1σ13

)
dω + V2L

ˆ ∞
−∞

(
lω2σ32 + l†ω2σ23

)
dω

+ V1L

ˆ ∞
−∞

(
lω1σ31 + l†ω1σ13

)
dω + V2R

ˆ ∞
−∞

(
rω2σ32 + r†ω2σ23

)
dω. (3.50c)

The coupling constants are defined in a way that is similar to the ideal case, i.e., V1R =√
γ

(1)
r /2π, V1L =

√
γ

(1)
l /2π, etc.

To include the anticipated non-idealities associated with an imperfectly directional
waveguide into our model, we define the quantitative chirality of a waveguide as

ξ =
V 2

1R

V 2
1R + V 2

1L

=
V 2

2L

V 2
2R + V 2

2L

. (3.51)
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Figure 3.7: The schematic of a three-level Λ-type quantum emitter coupled with an im-
perfectly chiral waveguide.

If we define V 2
1 = V 2

1R + V 2
1L, and V 2

2 = V 2
2R + V 2

2L, the coupling strength of the |1〉 ↔ |3〉
transition with the right propagating mode is then given by V1R =

√
ξV1, and the coupling

strength with the left propagating mode is V1L =
√

1− ξV1. Similarly, we can define
V2L =

√
ξV2, and V2R =

√
1− ξV2 for the |2〉 ↔ |3〉 transition.

The modified Hamiltonian gives us the modified Heisenberg equations of motion for rω
and lω,

ṙω = −iωrω − i (V1Rσ13 + V2Rσ23) , (3.52a)

l̇ω = iωlω − i (V2Lσ23 + V1Lσ13) , (3.52b)

and the modified input-output relations,

rout = rin − i
√

2π (V1Lσ13 + V2Rσ23) , (3.53a)

lout = lin − i
√

2π (V2Lσ23 + V1Lσ13) . (3.53b)

Similarly, the OBEs will be replaced by a new set of coupled differential equations and
solving that would give us the transition rates and occupation probabilities of the emitter.
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3.3.3 Probability of single photon subtraction

I. Perfectly chiral waveguide

We define a successful deterministic subtraction as an event where a single photon is
subtracted from the input optical pulse, and sent to the left-propagating output, while the
emitter ends in state |2〉 and stops interacting with the right-propagating input field . The
probability of such event in time τ can be expressed as the integral of the expectation value
of the number operator for that mode over time τ . Thus, the probability of a successful
deterministic subtraction for a perfectly chiral waveguide is given by

P =

ˆ τ

0

〈l†outlout〉dt

=

ˆ τ

0

2πV 2
2 〈σ33〉dt. (3.54)

Once in state |2〉, the emitter no longer interacts with the incoming field. Detecting a
single photon in the left-propagating mode, or detecting the atom in |2〉 can act as exper-
imental heralding signals to confirm the subtraction of a single photon. Since we assumed
high co-operativity of the guided modes to ensure success of SPRINT, we can expect the
subtracted photon to go into a guided mode, rather than into some radiation mode with
high probability. In the limits of ideal chirality and for large co-operativity, calculating
the expression given in Eq. 3.54 is essentially similar to calculating the probability of the
atom ending up in state |2〉, mathematically expressed by 〈σ22(τ)〉.

Here, it must also be noted that in the low co-operativity regime, the emission of a single
photon into the radiation mode also counts as an event of photon subtraction from the input
mode. In that scenario, one cannot detect the subtracted photon in the left-propagating
mode to ensure that subtraction has indeed taken place. If the emitter makes |3〉 → |2〉
transition while radiating to the bath, detecting the emitter in state |2〉 might be a stronger
heralding/ post-selective measurement to experimentally ensure photon subtraction has
happened. However, unfortunately, for low co-operativity, the emitter might also undergo
the |3〉 → |1〉 transition, and emit a photon into the radiation mode. That re-initializes
the emitter to |1〉, and it can undergo another SPRINT interaction, thereby subtracting
more than one photon before finally ending up in |2〉. However, for weak input signals, the
chances of that happening is low.
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II. Imperfectly chiral waveguide

Following the previous definition of the probability of single photon subtraction in a chiral
waveguide, we can define the probability of subtraction in an imperfectly chiral waveguide
as

P =

ˆ τ

0

〈l(2)†
out l

(2)
out〉dt

=

ˆ τ

0

2πV 2
2L〈σ33〉dt

=

ˆ τ

0

2πξV 2
2 〈σ33〉dt, (3.55)

where l
(2)
out = lin − i

√
2πV2Lσ23. This corresponds to the probability of collecting a single

photon in the left output while the emitter relaxes to state |2〉, thereby signalling a suc-
cessful single photon subtraction, and can also be expressed as ∼ ξ〈σ22(τ)〉 in the high
co-operativity regime.

It is important to note that even if the emitter ends up in |2〉, but the emitted photon
couples to the right-travelling mode since ξ 6= 1, the emitter will become transparent to
the incoming field. However, it cannot be considered to be a successful event of photon
subtraction. Thus, experimentally one can ensure that a successful subtraction has taken
place only if the atom is detected in |2〉, and there is a single photon detected in the left-
propagating mode. Eq. 3.55 essentially gives the probability of such an event occurring.

However, the mean number of photons from the input mode might slightly differ from P ,
since a photon lost to the radiative mode also constitutes an event of successful subtraction.
The emitter might radiate to the bath while making either |3〉 → |1〉 or |3〉 → |2〉 transition.
If it makes the |3〉 → |1〉 transition, the number of photons subtracted from the input
field can be greater than one as discussed earlier. But unfortunately, it is difficult to
experimentally verify that a successful event of subtraction has happened in that case. We
can safely ignore such rogue events if we can satisfy the criteria of high co-operativity.

III. Alternative benchmark for photon subtraction

Another alternative benchmark for photon subtraction that could be used is the difference
in the total number of photons going into the waveguide, and the total number of photons
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detected at the output on the waveguide on the right. Mathematically, it can be expressed
as

Nsub =

ˆ τ

0

(
〈r†inrin〉 − 〈r†outrout〉

)
dt. (3.56)

In the limits of perfect coupling and chirality and high co-operativity, it is essentially the
same as the definition of probability given in Eq. 3.54, and saturates at unity. However,
as discussed earlier, for low co-operativity there can be situations where more than one
photon is subtracted from the incoming field.

3.4 Numerical simulations and results

In the previous section we have seen how we can derive the OBEs using the input-output
relationships. For a given type of input optical signal |ψin〉, we calculate the expectation
values 〈σ̇ab〉 = 〈ψin|σ̇ab|ψin〉 for all a’s and b’s from Eq. 3.48. This gives us a set of
differential equations for each kind of optical input which is solved using Python under
the constraint that 〈σ11(0)〉 = 1, i.e., the emitter is in state |1〉 initially. Solving them
gives us the expectation values of the atomic operators, from which we can calculate the
probability of a successful single photon subtraction using Eq. 3.55.

3.4.1 Different optical inputs

For our simulations, we consider three different kinds of input optical signals to the waveg-
uide. First, we consider a continuous-wave coherent input state. Then we consider the
case of a coherent Gaussian input pulse, and pulsed Fock state inputs for calculating the
photon subtraction probabilities.

For continuous-wave coherent input |α〉 in the rin mode, such that

rin |α〉 =
α√
2π

exp (−iωt) |α〉 , (3.57)

we can directly calculate the expectation values of 〈σ̇11〉, 〈σ̇33〉 and 〈σ̇13〉 in the rotating
frame from Eqs. 3.49a, 3.49c and 3.49e respectively.

〈σ̇11〉 = iV1 (〈σ31〉α− 〈σ13〉α∗) + 2
(
πV 2

1 + γ1

)
〈σ33〉, (3.58a)
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Figure 3.8: (a) The probability of a successful single photon subtraction and, (b) instanta-
neous transmission as a function of time for a continuous-wave coherent source of light as
input for the case of a perfectly chiral waveguide with ideal coupling efficiency (ξ = β = 1),

and assuming γ
(1)
r = γ

(2)
l , which means V1 = V2. The chances of single photon subtraction

at an earlier time increases with an increase in |α|2, which is the rate of the average number
of photons arriving into the system in MHz.

〈σ̇33〉 = −iV1 (〈σ31〉α− 〈σ13〉α∗)− 2
[
π
(
V 2

1 + V 2
2

)
+ γ1 + γ2

]
〈σ33〉, (3.58b)

〈σ̇13〉 = iV1 (〈σ33〉 − 〈σ11〉)α−
[
π
(
V 2

1 + V 2
2

)
+ γ1 + γ2 + i (ω1 − ω)

]
〈σ13〉. (3.58c)

Next, using the identity for the Laplace transform of a derivative, L [〈σ̇33〉] = sL [〈σ33〉]−
〈σ33(0)〉, we get three simultaneous equations for 〈σ11(s)〉, 〈σ33(s)〉, and 〈σ13(s)〉. On solv-
ing the set of equations under the constraint that the emitter is initialised in state |1〉, i.e.,
〈σ11(s)〉 = 1, we get

〈σ33(s)〉 =
2V 2

1 |α|2{s+ π(V 2
1 + V 2

2 ) + γ1 + γ2}[
4V 2

1 |α|2(s+ πV 2
2 + γ2){s+ π(V 2

1 + V 2
2 ) + γ1 + γ2}

+ s[s+ 2{π(V 2
1 + V 2

2 ) + γ1 + γ2}][{s+ π(V 2
1 + V 2

2 ) + γ1 + γ2)2 + (ω1 − ω)2}

] .
(3.59)

Thus, for a waveguide with chirality ξ, the probability of observing a photon in the left-
propagating mode coming from the |3〉 → |2〉 transition is
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P =

ˆ ∞
0

2πV 2
2L〈σ33〉dt

= 2πV 2
2L lim

s→0
s
L [〈σ33〉]

s
=

πξV 2
2

πV 2
2 + γ2

=
ξ

1 + (2γ2/πV 2
2 )

=
ξ

1 + 2γ2/γg
= ξβ. (3.60)

In the limit of strong coupling (β ∼ 1), such that γ
(2)
g � 2γ2, and V2 �

√
γ2/π, we always

get unity probability of the event of successful single photon subtraction for arbitrary
strength of the input field, and a perfectly chiral waveguide (ξ = 1). As can be seen from
Fig. 3.8, the time at which unit probability is reached, and the emitter becomes transparent
to the incoming field decreases as we increase the average photon number arriving into the
system per unit time, since the emitter can be more easily excited if the input has larger
number of photons. Also, the transmission doesn’t quite drop off to zero for higher rate
of photon input, since the rate of atomic decay can only absorb one photon. Also, the
emission from |3〉 → |1〉 transition cannot destructively interfere with the high rate of
incident photons. For the simulations we used γ0 = 2π× 5.2227 MHz corresponding to D2
transition in Cesium (Cs) atoms.

However, for practical purposes, the performance of the photon subtraction scheme is
more intriguing when the input into the system is a pulsed state of light. When a Gaussian
pulsed coherent state defined by [62]

α (t) =

√
2n̄

4
√
πτ 2

exp
{(

2t2/τ 2
)}
, (3.61)

and satisfying the property rin (t) |α〉 = α(t) |α〉, is sent into the system, the controllable pa-
rameters are the pulsewidth τ , and the average photon number 〈n〉. Using the methodology
shown previously, one can calculate the equations for 〈σ̇ab〉, and solve them numerically.
After solving them numerically we observe, for a constant average photon number, the
probability of a single photon subtraction increases with increase in pulsewidth, until it
saturates to a constant value, as shown in Fig. 3.9a.

It is important to notice that the probability of a successful single photon subtraction is
less than unity for small values of average input photon number, even in the ideal limit of
chirality and coupling efficiency being set to one. This is similar to the results we observed
in Chapter 2, where we found that the probability of single photon subtraction is less than
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Figure 3.9: The probability of the event of a successful single photon subtraction as a
function of the pulsewidth for (a) pulsed coherent input (n̄in = 0.5, 1, 2, 3) and (b) Fock
state input (nin = 1) with perfect chirality and coupling efficiency. For both of them, an
increase in the probability P is observed with an increase in the pulsewidth τ .
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Figure 3.10: The right-propagating input (dot-dashed) and the output (solid) pulse shape
for (a) pulsed coherent input (n̄in = 1, 3, 5) and (b) Fock state input (nin = 1, 3, 5) of
pulsewidth τ = 100/γ0. For this simulation perfect chirality and coupling efficiency was
considered.

one when the cavity was initialized in a coherent state. The average number of photons
subtracted increases with an increase in n̄in, and n̄out converges to n̄in − 1 for n̄in ∼ 4 (in
our simulation with τ = 100/γ0), as shown in Fig. 3.11a. This is similar to the results
recently reported from our group for numerical simulation of photon subtraction with a
charged QD coupled to a bi-modal cavity [41]. Fig. 3.10a shows the number of photons in
the right-propagating input pulse, and the right-propagating output of the waveguide. The
difference in the area of the curves gives the expectation value of the number of subtracted
photons.

Next, we consider the case of a pulsed Fock state input. The N photon Fock state with
N independent single photon wave packets defined by their Gaussian amplitude profile
α(t) is defined as [62]

|N〉 =

(
r†in,α

)N
√
N !

|0〉 , (3.62)
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Figure 3.11: The variation in the number of subtracted photons for different input photon
numbers for (a) pulsed coherent input, and (b) Fock state input with perfect chirality and
coupling efficiency. For both the simulations τ = 100/γ0, and ξ = β = 1.
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where r†in,α is the photon wave-packet creation operator given by

r†in,α(t) =

ˆ
dtα(t)r†in(t) =

ˆ
dωα(ω)r†in(ω), (3.63)

where
´
|α(t)|2dt =

´
|α(ω)|2dω = 1. We can again write down the expectation values

of the rate of change of the time derivative of the density matrix elements to numerically
calculate the probability of a successful single photon subtraction.

Once again, just like in the case of a pulsed coherent state input, we observe that the
probability of photon subtraction increases with an increase in pulsewidth τ , as shown in
Fig. 3.9b. However, unlike the case of coherent pulses, for Fock state input the probability
of single photon subtraction reaches unity even for values of input photon number as
low as one, in the ideal limit of perfect chirality, and coupling efficiency. Once again,
this corroborates our simulations in Chap. 2, where we observed a photon subtraction
probability of unity even with photon numbers as low as one, for a Fock state input. The
variation in the number of subtracted photons with input photon number is shown in
Fig. 3.11b, and displays a similar trend to what was recently predicted for the bi-modal
cavity platform from our group [41]. Fig. 3.10b shows the number of photons in the right-
propagating input pulse, and the right-propagating output of the waveguide. We can see,
that for a single photon Fock state input, the entire photon has been reflected back, and
the expectation value of the number of right-propagating photons at the output is zero.

It thus appears that, in the ideal limit, chiral waveguides are essentially equivalent to
bi-modal cavities in SPRINT-based photon subtraction. The primary difference is that is
that there is no frequency selectivity provided by the presence of a cavity mode, and the
desired photon emission by the |3〉 → |2〉 transition relies only on a proper combination of
selection rules, and the chirality of the waveguide. As a result, realizing photon subtraction
with a chiral waveguide, and an emitter with a more complicated level structure, such as
found in alkali atoms, will require a proper selection of the states forming the Λ-system.

3.4.2 Experimental feasibility

(I) Parameterization

In Section 3.3.1 we assumed our systems to be perfectly chiral, namely ξ = 1. We also
assumed that the coupling efficiency between the atomic transition modes and the waveg-
uide modes are unity, i.e., β = 1. Now, the dependence of the probability of single photon
subtraction on the coupling constant of the transitions, the chirality of the waveguide and
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(c) (d)

Figure 3.12: Contour plots showing the dependence of (a) the coupling strength V and
the chirality ξ (with β = 1), and (b) the coupling strength V and the coupling efficiency β
(with ξ = 1) on the probability of photon subtraction. From the plots we observe that the
probability of a successful single photon subtraction is not a strong function of the coupling
strength, but instead is a function of the chirality ξ, and the coupling efficiency β of the
system, as long as the coupling strength is not too small. (c) The variation of probability
of single photon subtraction from a continuous-wave coherent input as a function of ratio
of coupling strengths. (d) Average number of photons subtracted from a coherent pulse of
width τ = 100/γ0 as a function of the mean photon number of the input pulse, and the
ratio of coupling strengths. Once again ξ = β = 1 was considered.
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the coupling efficiency are considered. Fig. 3.12a and 3.12b shows that the probability is
not explicitly dependent upon the coupling strength (as long as it is not too small), but is a
function of the chirality of the waveguide and the coupling efficiency. Thus, given the chi-
rality of a waveguide, and the coupling efficiency of the emitter’s transitions to the modes
of the waveguide, we should be able to predict the performance of the emitter-waveguide
system as a potential candidate for single photon subtraction.

The success of SPRINT relies upon the symmetry of the emitter system. The parame-
ters related to the two emitter transitions corresponding to the two modes must be ideally
equal. Thus, we check the probability of a successful single photon subtraction from a
continuous-wave coherent input with |α|2 = 1 by varying the ratio of coupling constants.
For simplicity, ξ = β = 1 was considered for the simulation and the coupling strength V1

was fixed (while V2 was varied). Fig. 3.12c shows that ideally the coupling strengths should
be as similar as possible, with a maximum permissible difference of an order of magnitude.

We also plot the number of photons subtracted as a function of the average photon
number of a pulsed coherent input, and the ratio of the two coupling strengths, as shown
in Fig. 3.12d. Once again, the probability of single photon subtraction is symmetric around
the peak at V1 = V2, and also increases with increasing n̄in. Thus, once can compensate
for a little mismatch in symmetry of the coupling strengths by increasing the intensity of
the input, as long as the asymmetry isn’t too high.

(II) Different emitter-waveguide systems

Finally, we plot the probability of a single photon subtraction as a function of the waveg-
uide’s chirality and coupling efficiency for a continuous-wave coherent optical input in
Fig. 3.13 to predict the upper limit of single photon subtraction probabilities for some
of the recently reported experimental emitter-waveguide platforms, with the effects of the
waveguide mode area and group index shown in the inset.

A laser-cooled Cesium atom coupled with a chiral nanofiber (NF) [63, 64] is one of the
most extensively studied emitter-waveguide systems. Though the nanofiber shows a fairly
high chirality (ξ = 0.92) [56], the coupling efficiency β is not very high. For example, it
can reach ∼ 0.2 − 0.28 depending on the specific selected transition in the D2–line of Cs
atom (it goes up to a maximum of β ∼ 0.28 for the Me = ±5 sublevel) in the hypothetical
scenario when the atom is located directly on the surface of the nanofiber with a radius
of a = 200nm [63, 65]. Practically though, it is not possible to put the atom directly on
the surface of the nanofiber, and the coupling efficiency decays exponentially as a function
of distance from the nanowire. Fig. 3.13 shows the predicted probability of single photon
subtraction for the Cesium atom on the surface of the nanofiber (r/a = 1), and in a
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Figure 3.13: Contour plot showing the photon subtraction probabilities for (i) cold Cs
atoms on the surface of a nanofiber (r/a = 1) (cyan dot), and (ii) 215nm away from the
surface of a nanofiber (r/a = 2) of radius a = 215nm (yellow dot), (iii, iv) cold Cs atoms
and APCW for guided modes with group index ng between 2 and 10 (hatched region), (v)
charged QDs and PCW (black dot), and (vi) for a Rb-microresonator system (black bar)
as reported in Ref. [27] for a continuous-wave coherent input. Inset shows the dependence
of coupling efficiency on σ0ng/Amode.

more realistic case, if the atom is trapped 215nm away from the surface (r/a = 2) of a
nanofiber with β ∼ 0.06 − 0.08 [66]. We see that an atom coupled to a nanofiber is not
an ideal system to be used for deterministic photon subtraction. This is not particularly
surprising as the coupling efficiency is less than 0.5, implying a co-operativity of C < 1. For
SPRINT to be successful in photon subtraction, the emitter should interact predominantly
with the guided mode, compared to other parasitic radiation and non-radiation modes,
i.e., the co-operativity should be greater than unity. At the same time, this platform
offers some interesting advantages. Compared to probabilistic single photon subtraction
implemented with a beamsplitter and photon detector, this system may provide a more
robust heralding mechanism that does not have to rely on a single-shot measurement of a
photon, since a successful subtraction can be confirmed by measuring the final state of the
atom. Additionally, although the tapered nanofiber cannot compete in terms of coupling
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efficiency with photonic crystal waveguides that we will discuss shortly, the positioning
requirement is significantly relaxed in this platform as the nanofiber chirality is independent
of the location of the atom along the fiber [60].

The use of photonic crystal waveguides (PCWs) instead of a plain nanofiber opens the
possibilities to increase both the chirality and the coupling efficiency, e.g., through group
velocity engineering. In particular, the effects of group velocity on the emitter’s coupling
efficiency to the mode of the waveguide can be illustrated well in the regime when the non-
radiative decay can be neglected. In this regime, the co-operativity of the emitter with
respect to a specific waveguide mode, can be written as C = γmode/γrad ≈ γmode/γ0. The
relationship γrad ≈ γ0 offers a good approximation for waveguides based on 1D photonic
crystals, while 2D and 3D photonic crystal waveguides can result in γrad < γ0.

For example, Goban et al. achieved β ∼ 0.26 for Cesium atoms coupled to alligator
photonic crystal waveguide (APCW) [58]. The reported device operated in a region of
group index ng ∼ 2 to improve the interaction between the optical signal and the emitter.
Further improvement can be achieved by fabricating the waveguide so that the wavelength
of the atomic transition is closer to the waveguide’s bandgap, although one would also
need to tweak the design to make the structure chiral. For example, with ng ∼ 10 one can
expect a co-operativity of ∼ 3.2, and a coupling efficiency of ∼ 0.75. Using a PCW with
even higher group index would allow for high coupling efficiencies even when the atom is
trapped further away from the waveguide resulting in a larger effective Amode (Fig. 3.13,
inset). This would, in turn, reduce the experimental challenges that arise in trapping cold
atoms at sub-wavelength distances from surfaces, and for example, open the possibility to
trap the atoms using an optical tweezer reflected from the surface of the waveguide [67].
While achieving large group index in PCWs can be challenging as disorder from fabrication
imperfections can create localized, cavity-like modes, observations of ng ∼ 58 have been
reported [59].

At the same time, solid state emitters can achieve an extremely large coupling effi-
ciency, such as the coupling efficiency of β ∼ 0.98 reported by Arcari et al. for a charged
quantum dot (QD) coupled with a PCW with high ng. Unlike laser-cooled atoms, solid
state emitters can be relatively easily embedded in a PCW, which leads to a significant re-
duction in the effective Amode even before group index engineering is considered. The high
coupling efficiencies reported for the QD-PCW system, combined with superior directional
properties available with a PCW [70, 71], can result in probability of deterministic single
photon subtraction reaching almost unity. However, the potential drawbacks of solid-state
emitters compared to laser-cooled atoms include the need to apply high magnetic field to
form a Λ-system for some emitters, such as QDs, and challenges to realization of cascaded
photon subtraction as finding multiple emitters with identical |1〉 → |3〉 transition energy
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Table 3.1: Values of coupling efficiency, chirality, mode area, and group velocities for
various emitter-waveguide systems reported in the literature.

Emitter Waveguide ξ β Amode vg

Cs NF (a = 200nm) - 0.2 (r/a ∼ 1) [63, 65] - -
Cs NF (a = 200nm) - 0.06 (r/a ∼ 2) [63, 65] - -
Cs NF (a = 215nm) - 0.06 (r/a ∼ 2) [66] 1.8µm2 [66] ∼ c
Cs NF (a = 250nm) 0.92 [56] - - -
Cs APCW - 0.26 [58] 0.2µm2[58] c/2[58]
QD PCW - 0.98 [59] 0.4µm2 [59] c/58 [59]
QD PCW 0.90− 0.98 [68] 0.90− 1 [68] - c/10 [68]
QD PCW - 0.85 [69] - -
QD PCW - 0.90 [70] 1.1µm2 [70] c/70 [70]

can be difficult.

Finally, we present Table 3.1 which provides an overview of experimental emitter-
waveguide systems reported recently in the literature, including the parameters relevant
to their potential use for photon subtraction.
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Chapter 4

Non-classical state generation using
deterministic single photon
subtraction

4.1 Motivation

In this chapter, we investigate how deterministic single photon subtraction can be used to
generate non-classical states, like Fock states. First, we give a brief introduction to the
Wigner function and Gaussian state formalisms, and why non-Gaussian states are impor-
tant in quantum information theory. Then, we study how the SPRINT-based single photon
subtraction process can be used to create non-Gaussian quantum states with negative con-
ditional entropies. Next, we shall see how this process can be used to create arbitrary Fock
states, and finally conclude with future outlook.

4.2 Wigner function formalism

The quantum state can be expressed in an infinite dimensional Hilbert space with the
help of observables with continuous eigenspectra, somewhat analogous to the phase space
representation of classical mechanics. The quadrature operators for a bosonic mode in
the phase space can be represented as linear combination of creation, and annihilation
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operators, as shown

q =
1√
2

(
a+ a†

)
, p =

i√
2

(
a† − a

)
. (4.1)

They are often expressed in a vectorial representation as X = (q1, p1, . . . , qN , pN)T for N
bosonic modes where T denotes the transposition operation of the row vector of length
2N . Unlike canonical variables in classical mechanics, these quadrature operators do not
commute. The commutation relationship is given by [q, p] = i, or, more generally [Xi, Xj] =
iΩij where Ωij is the element of a 2N × 2N symplectic matrix:

Ω =
N⊕
k=1

ω, ω =

(
0 1
−1 0

)
. (4.2)

The 2N × 2N symplectic matrix is an N -time direct sum (
⊕

) of the simplest 2 × 2
symplectic matrix ω. Also, from CCR (canonical commutation relations) algebra, for two
operators A, and B [72]:

∆A ·∆B ≥ 1

2
|〈[A,B]〉|2. (4.3)

This directly leads to the widely know uncertainty relationship ∆q∆p ≥ 1/2. The quadra-
ture operators are observables with continuous eigenspectra, and obey the following eigen-
value equations:

q |q〉 = q |q〉 , p |p〉 = p |p〉 , (4.4)

The eigenvectors |q〉, and |p〉 form an orthogonal basis, and are related by Fourier transform:

|p〉 =
1√
2π

ˆ ∞
−∞

eipq |q〉 dq, |q〉 =
1√
2π

ˆ ∞
−∞

e−ipq |p〉 dp. (4.5)

For any given density matrix ρ, the Wigner characteristic function is given by the expec-
tation value of the Weyl displacement operator D(Λ) as:

χ[ρ](Λ) = Tr [ρD(Λ)] = Tr
[
ρ exp

{
iXTΩΛ

}]
, (4.6)
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where the vector Λ belongs to the 2N dimensional phase space. The Weyl displacement
operator D(Λ) results in a displacement in the symplectic phase space. It acts on the mode
operators as:

D†(Λ)XD(Λ) = X + Λ. (4.7)

The quasi-probabilistic Wigner function is given by the Fourier transform of the Wigner
characteristic function:

W [ρ](X) =
1

(2π2)N

ˆ
R2N

d2NΛ exp
{
−iXTΩΛ

}
χ[ρ](Λ). (4.8)

For a single mode density matrix ρ, the Wigner function can also be expressed in terms of
the phase space co-ordinate (q, p) as

W (q, p) =
1

2π

ˆ ∞
−∞

eipx〈q − x

2
|ρ|q +

x

2
〉dx. (4.9)

In terms of the field operator, the Wigner function takes the following form:

W (α) =
1

π2

ˆ ∞
−∞

eλ
∗α−λα∗ Tr

[
ρeλa

†−λ∗a
]
d2λ, (4.10)

where Tr
[
ρeλa

†−λ∗a
]

= Tr [ρD(λ)] is the Wigner characteristic function is terms of the field

operator, and α = (q + ip) /
√

2 where q and p are the field quadratures and not operators.
The Wigner function is directly related to the histograms of the quadrature measurements
by a homodyne measurement setup. The probability distribution of quadrature q after
applying a phase shift of θ to the state is given by the Radon transform

Pr(q, θ) =

ˆ ∞
−∞

W (q cos θ − p sin θ, q sin θ + p cos θ)dp. (4.11)

Fig. 4.1 shows how the quasi-probabilistic Wigner function is related to the probability
distribution of the quadrature measurements in a homodyne detection experiment. This
probability distribution is a form of marginal of the Wigner function as it is the integral
projection of the Wigner distribution onto the plane perpendicular to the phase-space, and
positioned at an angle θ with respect to the q quadrature. The angle θ is controlled by the
phase of the local oscillator in the homodyne measurement setup.
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Figure 4.1: The integral projection of the Wigner function onto the plane oriented at
an angle θ to the q quadrature gives Pr(q, θ), which is the probability distribution of
quadrature measurements from a homodyne measurement setup. The figure has been
adapted from Ref. [73].

The Wigner function of a density matrix can be expressed in terms of moments of vari-
ous orders. The first moment is defined by the expectation value X̄ = 〈X〉 = Tr(ρX).
The second moment is the covariance matrix σ, whose elements are given by σij =
1
2
〈{∆Xi,∆Xj}〉, where the curly bracket {, } is the anti-commutator operation. More

importantly, the uncertainty theorem can be expressed in terms of the covariance matrix
as σ+ iΩ/2 ≥ 0 [74], which highlights the fundamental statistical importance of the second
moment in particular.

Gaussian states

Gaussian states are a special class of quantum states that have a Gaussian Wigner function.
These states can be completely characterized by their first two moments, as the higher order
moments go to zero. The Wigner function of a Gaussian state with covariance matrix σ is
given by [75]:

W (X) =
exp

[
−1

2
(X − X̄)Tσ−1(X − X̄)

]
πN
√

Det(σ)
. (4.12)
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Similarly, the class of quantum operations (channels) that transform any arbitrary
Gaussian state to another Gaussian state is a Gaussian operation. Any Gaussian unitary
operation can be characterized by the map:

(S, d) : X → SX + d, (4.13)

where S is a 2N × 2N real matrix and d ∈ R2N . It is an affine map consisting of a linear
transformation X → SX, where S is symplectic, or in other words SΩST = Ω; and a
phase space displacement X → X + d. The Gaussian unitary operation can be completely
characterized by its action on the first two moments [76]:

X̄ → SX̄ + d, V → SV ST . (4.14)

4.2.1 Why do we care about non-Gaussian quantum states?

Extended Gottesman-Knill theorem in phase space

First, let us define the Pauli group, and the Clifford group. Any element of the Pauli group
can be defined by Pn = {±1,±i} × {I,X, Y, Z}⊗n, where I is the identity matrix, and X,
Y , Z are the Pauli X, Y and Z matrices respectively. An element of the Clifford group
is defined by Cn =

{
U : UPnU

† = Pn
}

. In other words, the Clifford group normalizes the
Pauli group. Examples of some popularly used Clifford gates are the Hadamard gate, the
CNOT gate, and the phase gate.

The Gottesman-Knill (GK) theorem proves that all Clifford group operations can be
efficiently simulated in polynomial time on a probabilistic classical computer, and we need
a non-Clifford operation for universal quantum computing [77]. An example of such a
non-Clifford gate is the T (π/8) gate. The GK theorem can be extended to the continuous
variable phase space. The Gaussian operations in continuous variable regime are analo-
gous to the Clifford operations in the discrete variable formulation. These operations are
quadratic functions of quadratures, and it has been shown that they are not sufficient for
universal computing. We need non-Gaussian (non-Clifford) operations which are at least
cubic functions of quadratures, for example something like exp [itqmpn] where m+ n ≥ 3.

Non-Gaussianity and negative Wigner functions can be studied under the resource
theoretic framework, and it has been shown that such features can be used as quantum
resources that contribute towards computational speed-up. They can also be used for
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other applications like entanglement distillation1 [79], and non-deterministic noiseless linear
amplification [80–82]. Heralded single photon subtraction has been used as a non-Clifford
operation for creating non-Gaussian states with negative Wigner functions [23], and thus
it can be used as a tool to harness this resource. But the low success rate of such heralded
processes proves to be a serious bottleneck for such applications. Thus, a more deterministic
photon subtraction can play a key role in improving the performance of such protocols.

4.3 Entanglement entropy

The von Neumann entropy of a quantum state given by the density matrix ρ is a measure
of the minimum amount of quantum resources required to encode the state [83]. Formally
it is defined as [84]:

S(ρ) = −Tr (ρ log2 ρ) (4.15)

If λi are the eigenvalues of the density matrix, then the von Neumann entropy can be
expressed as S(ρ) = −∑i λi log2 λi. We can clearly see from the definition that the
entropy is non-negative since

∑
i λi = 1, and thus λi ≤ 1. The entropy is zero for a pure

state when only one of the eigenvalues is 1, and the rest are 0. The maximum possible
value of the entropy is log2 d for a completely mixed state in a d-dimensional Hilbert space.

The Shannon conditional entropy is defined for any two random variables X and Y
as H(X|Y ) = H(X, Y ) − H(Y ), where H(X, Y ) is the joint Shannon entropy. It gives
the entropy of X, given that we know Y . For a bipartite quantum system AB, we can
similarly define the conditional entropy as S(A|B) = S(A,B)−S(B). For classical systems,
the joint Shannon entropy is always greater than or equal to the entropy of any of the
subsystems, i.e., H(X, Y ) ≥ H(X), H(Y ). This always makes the conditional Shannon
entropy non-negative, i.e., H(X|Y ) ≥ 0. However, that is not true for von Neumann
entropies. If the subsystems are entangled, the joint entropy can be smaller than the
entropy of the individual subsystems. A simple example for that is any of the Bell states.
The Bell states are pure states, and thus have joint von Neumann entropy of zero. This
makes the von Neumann conditional entropy S(A|B) negative. It has been proved that
non-negative conditional entropies, and satisfying Bell’s inequalities are equivalent as a
necessary condition for separability [85]. Also, the negative conditional entropy is sufficient
to show non-separability of any quantum state. We will use this fact later in the chapter
to show the creation of entanglement by deterministic single photon subtraction.

1In fact, there exists a no-go theorem that proves that Gaussian operations cannot achieve entanglement
distillation from Gaussian input states [78].
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4.4 Creating non-classical states from Gaussian states

Once again, in this section we shall revisit the problem with a three level emitter in a
bi-modal cavity for different optical inputs and initialization conditions as discussed in
Chapter 2. We solve the relevant master equations using Python’s QuTiP package to get
the transient response of the system. That gives us the density matrix of the composite
system Ψ(t) = ψr(t) ⊗ ψl(t) ⊗ ψΛ(t) at any time t. The quantum state of the composite
system Ψ is simply a tensor product (⊗) of the quantum states of the r mode ψr, the
l mode ψl and the Λ emitter ψΛ. We trace out the density matrices of the individual
components, i.e., the r mode, the l mode and the Λ emitter to get the density matrices of
the sub-systems ρk(t), where k ∈ {r, l,Λ}. From the density matrix we directly calculate
the Wigner function of the modes and the emitter as

W [ρk(t)](q, p) =
1

2π

ˆ ∞
−∞

eipx〈q − x

2
|ρk(t)|q +

x

2
〉dx, (4.16)

where the tuple (q, p) is the co-ordinate of the phase space. One can switch between the
We investigate the Wigner function of the modes and the emitter to investigate if we can
create quantum states with negative Wigner functions and non-Gaussian statistics using
SPRINT-based deterministic single photon subtraction.

4.4.1 Continuous-wave coherent drive input

Once again, we start our investigation with the case where the r mode is being resonantly
driven by a CW coherent source as discussed in Sec. 2.4. Initially, both the modes (mode
r and mode l) are vacuum states, and the atom is in its ground state. Then, the mode
r is driven with a CW coherent laser of power P = 52 pW. All the system parameters
are the same from our previous discussion in Sec. 2.4: ωd = ωr = ω1 = 2π × 200 THz,
ω2 = ωl, ωr−ωl = 2π× 0.5 GHz, g1 = g2 = 2π× 10 GHz, κr = κl = γcoh = 2π× 0.25 GHz,
γ1 = γ2 = 0.

In steady state condition, the r mode ends up in a coherent state with an average photon
number of one, the l mode ends up in the vacuum state as all the photons eventually leak
out of the cavity from that mode as observed in Fig. 4.2a. But more interestingly, the
emitter is left in a highly non-Gaussian state with a negative Wigner function. We search
for the instant we can observe the single photon in the l mode. In other words, we look for
the time t, when ρl(t) is closest to a single photon Fock state |1〉. But since the interaction
time, i.e., the time for

´ t
0
dt〈l†outlout〉 to saturate to one is pretty long (see Fig. 2.8), it is
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(a)

(b)

(c)

Figure 4.2: (a) The Wigner functions of the r mode, the l mode, and the quantum emitter
in steady state when a CW coherent laser is used to drive the r mode. The r mode is
a coherent state with mean photon number one, and the emitter is highly non-Gaussian.
The single photon leaks out from mode l, leaving it in a vacuum state. (b) The Wigner
functions for the system driven by a CW coherent laser when the instantaneous single
photon fidelity of mode l is the highest (∼ 0.35). (c) The Wigner functions when the
instantaneous fidelity of the single photon in mode l is the highest (∼ 0.72), for the case
where mode r is initialized with a coherent state of mean photon number one. The quantum
emitter is in a highly non-Gaussian state, and has negative Wigner function.
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difficult to find the single photon state at any particular point in time. Looping over the
entire interaction time, we find that the single photon Fock state created in the l mode has
a maximum instantaneous fidelity2 of only 0.35 at around 2.5 ns as shown in Fig. 4.2b.

To properly show the induced quantum correlations in the system, we also plot the
conditional entropy S(ρ|ρk) for ρk corresponding to density matrices of the r mode, l
mode, and the three-level Λ emitter. Here ρ is the joint density matrix of the complete
system. In Fig. 4.3a we can clearly see the conditional entropies S(ρ|ρl) and S(ρ|ρΛ)
have negative values, which is a signature for entanglement between the l mode and the Λ
emitter. Eventually, because of non-zero κl, the photon leaks out from the l mode. Thus
one of the entangled sub-systems is lost, and thereby the conditional entropy saturates at
zero with time. However, for κl = 0 (all other system parameters are the same), both
S(ρ|ρl) and S(ρ|ρΛ) saturate to at −1 as shown in Fig. 4.3b. Also, we observe that
S(ρ|ρl(Λ)) = −S(ρl(Λ)). This implies S(ρ, ρl(Λ)) = 0, i.e., ρ is a pure state, and the l mode
and Λ emitter form an entangled Bell state.

4.4.2 Coherent state input

Next, we initialize our model with a coherent state with an average photon number of
one in r mode as discussed in Sec. 2.5. As observed earlier, the interaction time is much
shorter when we initialised the r mode with a coherent state compared to driving the r
mode with a CW coherent drive input. In this case, we can clearly observe non-Gaussian
characteristics in the l mode, as shown in Fig. 4.2c. In this simulation, κr = κl = 2π×0.25
GHz was considered, and all the other system parameters were kept unchanged. The single
photon Fock state in the l mode has a maximum instantaneous fidelity of 0.72 at 31 ps.
The emitter can also be seen to exist is a highly non-Gaussian state with a negative Wigner
function.

The coherent state is a classical Gaussian state of light with a positive Gaussian Wigner
function. In this section, we observed that even though we began with highly classical Gaus-
sian states as inputs to the systems, we ended up creating non-Gaussian resource states
with negative Wigner functions, and negative conditional entropies using SPRINT-based
deterministic single photon subtraction. This type of entangled systems with quantum
properties, and on-demand creation of non-classical single photon states can have applica-
tions in the fields of quantum communication, quantum networks, and quantum metrology.

2The fidelity of two density matrices ρ1 and ρ2 is given by F (ρ1, ρ2) = Tr
√√

ρ1ρ2
√
ρ1, and is a measure

of similarity of ρ1 and ρ2. Thus, the single photon fidelity of the quantum state ρl is F (ρl, |1〉 〈1|).
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Figure 4.3: The time evolution of the entropy of the r mode, the l mode, and the three-level
quantum emitter, along with their respective conditional entropies for a CW coherent laser
drive when (a) κr = κl = γ = 2π × 0.25 GHz, and (b) κr = γ = 2π × 0.25 GHz, κl = 0.
The conditional entropies S(ρ|ρl) and S(ρ|ρΛ) are negative, thereby showing the presence
of entanglement in the system.
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(a)

(b)

Figure 4.4: (a) The Wigner functions of the l mode, the r mode and the emitter at t = 0.
The r mode is initialized with the two photon Fock state |2〉. (b) During the photon
subtraction process, the maximum fidelity of the single photon Fock state in mode r is
0.93 at t = 29 ps. At the same time, the fidelity of the single photon state in mode r is
0.91. We can also see that the Wigner function of the emitter is highly non-Gaussian, and
negative. For the simulations κr = κl = 2π × 0.25 GHz was used. All other parameters
are the same as used in Sec. 2.5.2.

4.5 Arithmetic with Fock states

In this section, once again we will be briefly visiting the situation from Sec. 2.5.2, where
the r mode of the bi-modal cavity is initialized with the two photon Fock state |2〉, as
shown in Fig. 4.4a. We then let the system evolve, and search for the timestamp when we
can notice a single photon Fock state |1〉 in the l mode with highest instantaneous fidelity.
The instantaneous fidelity of the state in mode l reaches a maximum of 0.93 at t = 29 ps
as shown in Fig. 4.4b. At the same time, we observe that there is a single photon Fock
state of fidelity 0.91 in mode r. One can also look at this operation as adding a single Fock
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state photon to mode l, while subtracting a single Fock state photon from mode r.

Thus, such a SPRINT-based module can act as a deterministic “photon subtractor”
for the r mode, and a deterministic “photon adder” for the l mode in the Fock basis. By
cascading multiple three level emitters, or by switching the output modes once again into
the input modes of the bi-modal cavity along with proper re-initialization of the emitter, it
might be possible to create any higher order Fock state from smaller Fock states, and vice
versa. However, having photons in the l mode can make the process not self-terminating
unlike the SPRINT interaction we studied thus far, and might require fine-tuning of the
system parameters along with some heralding/control processes to have an efficient single
photon adder. It might be an interesting to explore the feasibility of such a stimulated
Raman process for creating arbitrary Fock states on-demand in the next step of this project.

4.6 Future direction

In the first part of this thesis, we have seen that the SPRINT-based deterministic single
photon subtraction can be used to subtract a single Fock state photon from any arbitrary
source of light. However, it turns out that this operations is fundamentally different from
simply the operation of the ideal deterministic photon subtraction operator Ŝ = |0〉 〈0| +∑

n |n− 1〉 〈n|. Even though the SPRINT-based process behaves similar to the Ŝ operator
for a Fock state input, it has a very different effect on an input coherent state as shown
in Fig. 4.5. Initially, from the Wigner distribution it might seem that the coherent state
is getting squeezed. However, it is easily verified that it is not a squeezed state once the
marginal Wigner distributions are plotted (see Fig. 4.5b), where the marginals of the
Wigner function are defined by:

Wq(q, p) =

ˆ
W (q, p)dp = 〈q| ρ |q〉 = Pr(q, 0), (4.17a)

Wp(q, p) =

ˆ
W (q, p)dq = 〈p| ρ |p〉 = Pr

(
q,
π

2

)
. (4.17b)

From Fig. 4.5 and 4.5b, we observe that the operator results in increased variance
of q, but does not decrease the variance of p below the quantum limit. Going forward, it
might be useful to develop a better understanding of what results in the difference between
the SPRINT-based subtraction process, and the ideal subtraction operator by performing
process tomography of SPRINT.
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Figure 4.5: (a) The Wigner function of a coherent state with a mean photon number of 1
photon, before and after being operated on by the ideal deterministic subtraction operator
Ŝ. It stretches the Wigner function towards the vacuum. It makes the Wigner function
look like an elongated squeezed state. (b) However, it can be easily verified that it is not a
squeezed state once the marginal Wigner distributions are plotted. The operator results in
increased variance of x, but does not decrease the variance of p below the quantum limit.

82



We have also shown that we can create non-Gaussian quantum states using the SPRINT-
based photon subtraction mechanism. However, in our simulations we have not noticed
any Wigner negativity in the mode from which the photon was subtracted. It might be
useful to see if non-classical states can be observed in that mode by carefully optimizing
over the simulation parameters like coupling strength of the emitter, strength of the cavity,
and others.

Another avenue of future work would be to study if this kind of SPRINT-based pho-
ton subtraction/addition mechanism can be used for applications in quantum information
processing like entanglement distillation. Heralded photon subtraction has been used for
entanglement distillation from Gaussian states [6, 86]. It will be interesting to investigate
if the SPRINT-based photon subtraction can be used for similar purposes.
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Part II

Inverse design of nanophotonic
structures for directional emission

from NV centers

84



Chapter 5

Antenna formalism for quantum
emitters

5.1 Motivation

In this chapter, we perform an ab initio study of the classical and quantum formulations
of radiating dipoles. We try to understand why we can treat an emitter as a classical
dipole in certain optics problems, and formulate the interaction between an emitter and a
scattering nanoparticle using classical antenna theory. We shall also look at some of the
important parameters of the emitter-nanoparticle system using definitions from antenna
theory to develop an intuition of the problem. The goal is to give a background for Chapter
7, where we shall explore how we can control the emission pattern of a Nitrogen Vacancy
(NV) center using sub-wavelength photonic structures, which essentially behave as optical
antennas.

5.2 Classical formulation

5.2.1 Radiation reaction formalism

In the classical picture, we can model a dipole source of radiation as a harmonic oscillator.
The oscillating charge experiences a back-action or radiation reaction because of its own
emission. The motion of the undriven harmonic is described by the second order differential
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equation

mr̈(t) + ω2
0mr(t) = Fr(t), (5.1)

where m is the mass, ω0 is the natural frequency of the oscillator, ω2
0m is the linear spring

constant, and Fr is the radiation reaction force on the oscillating dipole. The radiation
reaction force is given by the Abraham-Lorentz formula

Fr(t) =
q2

6πε0c3

...
r (t), (5.2)

where q is the charge of the oscillating dipole, ε0 is the permittivity of free space, and c is
the speed of light. Considering a time harmonic solution to the equation of motion given
by r(t) = r0 exp(−iω0t), we get

...
r = −ω2

0 ṙ. Substituting this in the expression for the force
Fr(t), we find that the force introduces damping in the system. Apart from attenuating the
dipole oscillation strength, the damping also shifts the resonance frequency. If we assume
a small damping γ0 � ω0, then for a dipole with harmonic time dependence p(t) = p(t)p̂
radiating in free space, the equation of motion is given by

p̈(t) + γ0ṗ(t) + ω2
0p(t) = 0, (5.3)

where the damping constant γ0 is the spontaneous emission rate in free space, and is given
by

γ0 =
1

4πε0

2q2ω2
0

3mc3
. (5.4)

Now, if a scattering object object is present in the field of the dipole, Eq. 5.3 gets
transformed to

p̈(t) + γ0ṗ(t) + ω2
0p(t) =

q2

m
p̂ · Es(t), (5.5)

where Es(t) is the scattered electric field at the location of the dipole because of the
presence of the scattering object. Under the assumption that we can express the time
dependence of the dipole, and the reflected electric field as p(t) = p0 exp(−iΩt), and
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Es(t) = Es0 exp(−iΩt) respectively, the complex frequency Ω = ω− iγ/2 can be expressed
as [87]

Ω = ±ω0

(
1− q2

2p0mω2
0

Re (p̂ · Es0)− γ0

8ω2
0

)
− iγ0

2

(
1± q2

p0mω0γ0

Im (p̂ · Es0)

)
. (5.6)

If we assume ω2 � |q2p̂ · Es0/(p0m)|, γ2
0 , i.e., for small perturbations and small damping,

the real part of Ω is ∼ ±ω0. Considering only the physically viable solution with + sign,
at resonance we get:

γ

γ0

= 1 +
q2

p0mω0γ0

Im (p̂ · Es0) = 1 +
6πε0
|p0|2

c3

ω3
0

Im (p∗0 · Es0) . (5.7)

5.2.2 Green’s function formalism

From classical electromagnetic theory, the current density arising from a dipole moment
located at r0 is given by

j(r, t) = ṗ(t)δ (r− r0) . (5.8)

Assuming harmonic time dependence of the current density and the dipole moment, we
have

j(r) = −iωpδ (r− r0) . (5.9)

From Poynting’s theorem, the power radiated by a current source with harmonic time
dependence is given by

P ′ = −1

2

ˆ
V

Re (j∗ · E) dV =
ω

2
Im (p∗ · E(r0)) (5.10)

For an arbitrarily oriented dipole p placed at r0, the induced electric field at point r
can be determined by the dyadic Green’s function of the medium as (see Fig. 5.1)

E(r) = ω2µ0µ
←→
G (r, r0;ω) · p(r0). (5.11)
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Figure 5.1: The dyadic Green’s function
↔
G(r, r0) gives the electric field E at point r due

to an arbitrarily oriented dipole p located at r0.

In Cartesian coordinate Green’s dyadic is a 3× 3 matrix given by

←→
G =

Gxx Gxy Gxz

Gxy Gyy Gyz

Gxz Gyz Gzz

 , (5.12)

where the first column specifies the electric field of a unit dipole oriented along one of
the x-axis, the second column specifies the electric field of a unit dipole oriented along
one of the y-axis, and the third column specifies the electric field of a unit dipole oriented
along one of the z-axis. The elements of the matrix are the scalar Green’s functions. In a
homogenous environment, the electric field satisfies the wave equation

∇×∇× E(r)− k2E(r) = iωµ0µj(r). (5.13)

Upon substituting j(r) = −iωpδ (r− r0), we get

∇×∇×←→G (r, r0)− k2←→G (r, r0) =
←→
I δ (r− r0) , (5.14)

where
←→
I is the unit dyad. Upon solving the Green’s dyadic under Lorentz gauge, it can

be expressed in terms of the scalar Green’s function G(r, r0) as [88]

←→
G (r, r0) =

[←→
I +

1

k2
∇∇

]
G(r, r0) =

[←→
I +

1

k2
∇∇

]
exp(±ik|r− r0|)

4π|r− r0|
. (5.15)
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Here, G(r, r0) = exp(±ik|r− r0|)/4π|r− r0| represents a spherical wave propagating from
the origin for positive sign, and a spherical wave focusing at the origin for the negative
sign in a homogenous environment.

After the small digression on dyadic Green’s function, we substitute for the value of
the electric field from Eq. 5.11 in Eq. 5.10, and we arrive at

P ′ =
ω3|p|2
2c2ε0ε

Im
[
p̂ · ←→G (r0, r0;ω) · p̂

]
. (5.16)

In free space, the real part of the Green’s function
←→
G 0(r, r0;ω) diverges as r approaches

r0. However, the imaginary part still exists, and Im
[←→

G (r0, r0;ω)
]

= (ω/6πc)
←→
I [88].

Therefore, we get the expression for the power radiated in free space as

P0 =
|p|2ω4

12πε0εc3
. (5.17)

Considering that the electric field at r0 is composed of both direct, and scattered electric
field components, i.e., E(r0) = E0(r0) + Es(r0), we get [88]

P

P0

=
P0 + P ′

P0

= 1 +
6πε0ε

|p|2
c3

ω3
Im (p∗ · Es(r0)) = 1 +

6π

k
Im
[
p̂ · ←→G (r0, r0;ω) · p̂

]
, (5.18)

where P = P0 + P ′ is the total power radiated in the presence of a scattering medium.
From Eqs. 5.7 and 5.18, we get the relationship [88]

P

P0

=
γ

γ0

. (5.19)

Hence, from Eq. 5.7 and Eq. 5.18, we notice that the modified decay rate in the presence
of a scattering medium depends just upon the reflected electric field at point r0, i.e., at
the position of the dipole itself. The problem is highly simplified, as the new decay rate
can be calculated by calculating the field at a single point, without the need for modal
analysis. Rather one can use real space wave propagation methods used in antenna theory
to calculate the modified decay rate.
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5.3 Quantum formulation

For a two level quantum emitter with ground state |g〉, and excited state |e〉 separated by
transition frequency ω, coupled weakly with a scattering object, Fermi’s golden rule gives
the decay rate as [88]

Γ =
πω

3~ε0
|〈g|p|e〉|2ρp(r0, ω), (5.20)

where ρp(r0, ω) is the partial local density of states (PLDOS), and is given by

PLDOS: ρp(r0, ω) = 3
∑
ki

[
p̂ · (fki

f∗ki
) · p̂

]
=

6ω

πc2
Im
[
p̂ · ←→G (r0, r0;ω) · p̂

]
, (5.21)

where (fki
f∗ki

) denotes an outer product, and fki
are the normal modes of the electric field.

The normal modes are solutions of the wave equation

∇×∇× fk(r, ωk)− ω2
k

c2
fk(r, ωk) = 0, (5.22)

and satisfy the orthogonality condition

˚
V

f∗ki
(r, ωki

)fkj
(r, ωkj

)d3r = δij, (5.23)

The electric field operator is given by Ê =
∑

k

[
E

(+)
k âk(t) + E

(−)
k â†k(t)

]
, where âk (â†k) is

the annihilation (creation) operator, and the complex electric field can be expressed in
terms of the normal modes as

E
(+)
k =

√
~ωk

2ε0
fk, E

(−)
k =

√
~ωk

2ε0
fk. (5.24)

The PLDOS at a point in space is a measure of the the number of electromagnetic
modes available at that point, and directly governs the rate of radiation as shown by
Fermi’s golden rule. For an isotropic and homogeneous medium, if the transition has no
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preferred fixed dipole axis p̂, we can calculate the total LDOS by averaging over all possible
orientations as

LDOS: ρ(r0, ω) = 〈ρp(r0, ω)〉 =
2ω

πc2
Im
[
p̂ · Tr

{←→
G (r0, r0;ω)

}
· p̂
]
. (5.25)

The volume integral of the LDOS gives the density of states (DOS), such that

DOS: ρ(ω) =
1

V

˚
V

ρ(r0, ω)d3r. (5.26)

Using Im
[←→

G (r0, r0;ω)
]

= (ω/6πc)
←→
I in free space, we get the relationship:

Im
[
p̂ · Tr

{←→
G (r0, r0;ω)

}
· p̂
]

= 3× (ω/6πc) = ω/2πc (5.27)

In free space, this gives

ρ0 = (2ω/πc2)× (ω/2πc) = ω2/π2c3, Γ0 = ω3|〈g|p|e〉|2/3πε0~c3 (5.28)

This means that the lifetime of the emitter, which is inverse of the decay rate given by
Fermi’s golden rule is determined by the Green’s function of the surrounding medium of
the emitter. The modification of the spontaneous emission rate and the emission linewidth
of the emitter due to the presence of the surrounding embedding material is known as
Purcell effect. The ratio of the spontaneous emission rate of the emitter in the embedding
material to its emission rate in vacuum, i.e., Γ/Γ0 is the Purcell factor.

5.4 Bridging the classical and quantum formulations

The classical dipole radiation power P ′ in Eq. 5.16 can be expressed in terms of the PLDOS
as

P ′ =
πω2

12ε0
|p|2ρp(r0, ω). (5.29)

Comparing this to the spontaneous emission rate for the two-level quantum emitter, we
find that [89]

P ′

Γ
=

|p|2
|〈g|p|e〉|2

~ω
4
. (5.30)
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This is an important relationship, and we can intuitively verify it from the fact that the
classical dipole moment is twice the dipole moment of the optical transition because of the
contribution of both 〈g|p|e〉 and 〈e|p|g〉 [90]. Also, the atomic transition rate from the
excited state to the ground state, which is equal to the spontaneous emission rate can be
expressed as P ′/(~ω).

Spontaneous decay of an emitter is a quantum effect, and one needs quantum electro-
dynamics to properly investigate it. But the simple relationship in Eq. 5.30 implies that
we can treat the source of radiation as a classical dipole current source in suitable contexts
in the weak interaction picture, as the Green’s function formalism bridges the gap between
the classical and quantum pictures through the LDOS. The classical and quantum descrip-
tions give similar results as long as the radiation reaction is much greater than vacuum
energy, and plays the predominant role in controlling the LDOS. Both classical and quan-
tum electromagnetic theories agree upon the modes available to the emitter, even though
the physics behind the decay is different. This is essentially because we can decompose the
Green’s function into a set of normal modes (see Eq. 5.21), which remain the same in both
quantum and classical formalism [88]. Invoking the relationship in Eq. 5.30 thus allows us
to treat the quantum emitter as a classical dipole in our simulations and calculations.

From the ongoing discussion, we also noticed that the decay rate of the classical dipole
depends only upon the value of field at the position of the dipole. This makes antenna
theory an useful tool to study the radiation properties of an emitter in the presence of a
scattering object, where the scattering object can be modeled as an antenna. The physical
properties of the scattering object, like geometry is captured by the dyadic Green’s function,
which in turn controls the LDOS, and the decay rate of the emitter.

5.5 Antenna formalism

Once we have established the fact that we can study effects on the spontaneous emission
of an emitter in the vicinity of a scattering object in the form of antenna theory, we try to
recast the phenomenon of Purcell effect into antenna theory jargon. The scattering object,
which might be a nanoparticle, acts as an antenna for the quantum emitter. Due to the
emitter, a dipole is induced in the nanoantenna. This induced dipole in turn radiates,
thereby increasing the LDOS at the site of the emitter. This results in an enhanced decay
rate of the emitter in the presence of the nanoparticle.

For a radiating dipole p(r0, t) with harmonic time dependence, the average radiated
power is given by Eq. 5.10. We compare this with the power dissipated by a load ZL in
a circuit, given by P = Re(ZL)|I|2/2, where I is the current flowing through the load. If
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we consider the dipole is radiating along the z axis, the current I (in A ·m), voltage V (in
V ·m−1), and specific impedance Z (in Ω ·m−2) maps to the dipole moment, the Green’s
function and the electric field as [91]

I ↔ −iωpz(r0), V ↔ −Ez(r0), Z ↔ −iωµ0µGzz(r0, r0;ω). (5.31)

From Eq. 5.10, we can express the antenna resistance is terms of LDOS as [89]

Re(Z) =
π

12ε0
ρp(r0, ω). (5.32)

Thus, a higher antenna resistance refers to higher LDOS, and subsequently a higher decay
rate. Following suit, we can define the Purcell factor of any arbitrary nanoantenna for a
low-loss emitter as [90]

F =
Re(Zin)

Re(Z0,in)
=

Im (Gzz(r0, r0;ω))

Im (G0,zz(r0, r0;ω))
, (5.33)

where Zin, and Z0,in are the input impedances of the emitter in the presence, and absence
of the nanoantenna.

5.5.1 Circuit model

In Ref. [91], Greffet et al. have presented a circuit model for explaining the interac-
tion between the quantum emitter and the nanoantenna. They have shown, that we can
successfully represent a quantum emitter, and nanoantenna as a collection of lumped cir-
cuit elements. A two level quantum emitter with a Lorentzian polarizability of the form
α(ω) = α0/(ω

2
0 − ω2 − iγω) has an internal impedance given by

Zin =
i

ωαε0
=

γ

α0ε0
+ i

ω2
0

α0ε0ω
− i ω

α0ε0
. (5.34)

Thus, the quantum emitter can be modeled as a series connection of a resistor with resis-
tance Rin = γ/α0ε0, an inductor with inductance Lin = ω2

0/α0ε0ω
2, and a capacitor with

capacitance Cin = α0ε0/ω
2. Similarly they have shown, that the microcavity nanoantenna

can be modeled as a parallel RLC circuit, where R = Qω/ε0Veffω
2
r , L = 1/ε0Veffω

2
r , and

C = ε0Veff, where Q is the quality factor, ωr is the resonance frequency, and Veff is the
effective mode volume of the nanoantenna. The equivalent circuit of the emitter and the
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(c)

Figure 5.2: Equivalent circuit diagram for (a) a quantum emitter, (b) a nanoantenna, and
(c) Purcell enhancement of emission from an emitter in the presence of a nanoantenna.
Vext represents the background field in the case of absorption. For the case of spontaneous
emission, Vext = 0.

nanoantenna is shown in Fig. 5.2. In the absence of a nanoantenna, the radiative efficiency
of the emitter is defined by ηrad = R0/(Rin +R0), where R0 is the vacuum resistance, and
is given by R0 = ωµ0 × Im [G0(r0, r0;ω)] = ω2/6πε0c

3. Similarly, the radiative yield of the
nanoantenna is defined by ηna = Rnr/(Rr +Rnr), where Rr and Rnr are the radiative and
non-radiative resistances. The Purcell factor (the enhancement in the spontaneous emission
of the emitter in the presence of nanoantenna) of the nanoantenna is Fna = (R0 +R)/R0.
From this, it is easy to see that the Purcell enhancement of the emitter in the presence
of the nanoantenna is given by the ratio of the specific resistances if the emitter and the
nanoantenna are on resonance. Thus,

F =
R0 +Rηna

R0 +R +Rin

. (5.35)

By assuming R� R0, the Purcell factor can be expressed as [91, 92]

F =
1 + Fnaηna
1 + Fnaηrad

. (5.36)
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5.5.2 Antenna parameters

i. Antenna radiation efficiency

The antenna radiation efficiency is defined as the ratio of the power radiated to the total
dissipated power as

ηrad =
Prad

Prad + Ploss
. (5.37)

Ploss is the power lost because of thermal effects and other loss channels. The intrinsic
quantum yield of emitter is defined by the ratio of power radiated to the total power
dissipated by the quantum emitter in the absence of nanoantenna

ηi =
P0,rad

P0,rad + P0,int

, (5.38)

where P0,int and P0,int represent the radiated power and intrinsic losses (arising from inter-
nal transitions) of the emitter in absence of the nanoantenna. Thus, taking the intrinsic
loss into account, the effective antenna radiation efficiency can be reformulated as [89]

ηrad =
Prad/P0,rad

Prad/P0,rad + Ploss/P0,rad + (1− ηi) /ηi
. (5.39)

For ηi � 1, we can see that the overall efficiency of radiation is enhanced due to the presence
of the nanoantenna, which helps in increasing the LDOS for more efficient emission.

ii. Antenna directivity and antenna gain

The directive gain or directivity of an antenna is given by the ratio of radiation intensity
in a particular direction to the radiation intensity averaged over all directions. It can be
expressed as

D(θ, φ) =
4π

Prad
U(θ, φ), (5.40)

95



Figure 5.3: The radiation pattern U(θ, φ) of an antenna, showing the main (front) lobe,
the back lobe, and multiple side lobes. The dotted circle represents the radiation pattern
of an isotropic antenna. The front to back ratio is given by the ratio of the forward, and
the backward radiated powers.

where U(θ, φ) is the radiation intensity along a particular direction defined by the zenith/
polar angle θ and azimuthal angle φ, such that,

‹
Ω

U(θ, φ)dΩ =

ˆ φ=2π

φ=0

ˆ θ=π

θ=0

U(θ, φ) sin θdφdθ = Prad, (5.41)

where dΩ is an infinitesimal element of the solid angle. The maximum directivity is
the directivity in the direction of the maximum radiation intensity, given by Dmax =
4πUmax/Prad. Fig. 5.3 shows the radiation pattern of an antenna.

The antenna gain is defined as the ratio of radiation intensity in a direction to the
radiation intensity that would be obtained if the power accepted by the antenna were
radiated isotropically. Thus, it is given by

G =
4π

Prad + Ploss
U(θ, φ) = ηradD. (5.42)
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Another important measure of directional emission by an antenna that we shall be
using in Chapter 7 is the front to back ratio (FBR). This is a ratio of the power in any
specified direction of interest (forward direction), and the power radiated in the opposite
direction (backward direction), i.e., 180◦ away from the angle of interest. Thus, it can be
expressed as

FBR (in dB) = D|forward,dB −D|backward,dB. (5.43)

Thus, we can increase the gain by including a nanoresonator antenna in the vicinity of
an emitter to increase the radiation efficiency. We can also design nanoantennas (e.g.
metasurfaces and different kinds of grating patterns) which allows us to have some degree
of control over the directivity, and thus engineer the radiation pattern of an emitter. In
Chapter 7 we shall investigate how we can design sub-wavelength photonic structures to
control the radiation properties of an NV center.
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Chapter 6

Adjoint optimization and inverse
design

6.1 Motivation

In this chapter, we shall delve into the theoretical background necessary for understanding
the inverse design approach based on adjoint optimization used in Chapter 7 for designing
custom-made nanophotonic structures with desired properties.

6.2 Adjoint method for electromagnetic theory

The entire realm of electromagnetic (EM) theory is governed by the set of four Maxwell’s
equations. The interaction of EM fields with a scattering medium can be easily derived by
solving the Maxwell’s equations. However, often we come across the non-trivial scenario
whereby we need to design a scattering medium, that gives a certain response to an incident
field. In such a situation, one cannot guarantee that a physical solution for the problem
exists. Even if the solution exists, one cannot guarantee that there would be a unique
solution. What makes the process of design by specification even harder is that there exists
too many degrees of freedom while designing even a nanoscale device. Thus, designing the
device using a brute force approach by exhausting the rich parameter space as shown in
Fig. 6.1 is not feasible. The adjoint optimization approach offers substantial speed-up
compared to the brute force approach, and in this section we shall explore how it works.
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The optimization problem of finding the best structure with the desired response to
the incident field can be setup mathematically as:

Maximize
through spatial variation of ε,µ

F (E,H, ε, µ, ω)

Under constraints: ∇ · E =
ρ

ε
,

∇ ·H = 0,

∇× E = −µ∂H

∂t
,

∇×H = J + ε
∂E

∂t
. (6.1)

Here, the permittivity ε(r), and the permeability µ(r) are the parameters that encompass
the properties of the device that we can control, and F (E,H, ε, µ, ω) is the figure of merit
(or cost function) that we want to maximize (or minimize - as dictated by the problem at
hand). Thus, in simple words, we are interested in finding the vales of ε, and µ for our
nano-structure, under the framework of Maxwell’s equations. To make our life simpler, if
we choose non-magnetic materials, µ = µ0, we only need to optimize for the permittivity ε.
One can also have harmonic time dependence of the fields, viz., E(t) = Ee−iωt to further
simplify the problem. The resultant optimization problem can be solved using gradient
based techniques. We start by discretization of the device into small pixels, with each
pixel being represented by its permittivity εi. But the device can consist of millions or
billions of pixels. Thus, calculating the derivative of the cost function with respect to all
the design parameters (i.e. finding the change in the figure of merit due to change in all
the individual values of εi) is computationally expensive. But as we shall see, the adjoint
method simplifies the problem substantially.

Now, to illustrate the principle of the adjoint optimization, we consider the following
simple example. An electric field Ein is incident on the device characterized by its permit-
tivity ε(r). The operation of the device can be visualized as a transformation T (ε) on the
input field. As a result of the interaction with the device, the electric field at some specific
point r0 is E(r0) (for simplicity, and without loss of generality, we can consider that the
field is scalar everywhere). Now, suppose we want to maximize the absolute value of the
field at the point r0. Thus, we can choose the figure of merit to be F = 1

2
|E(r0)|2. For

simplicity, we consider material invariance in the out-of-plane direction, and the field is
linearly polarized in the out-of-plane direction as well. This reduces the structure to a 2D
lattice and we can consider that the fields are scalar. This is just for ease of understanding
and notational convenience, and one can easily use the vectorial representations instead.
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Figure 6.1: The brute force approach tries to find the best permittivity profile to maximize
the square of the absolute value of the electric field at r0 by iterating over all the possible
dielectric inclusions. A dielectric change is made at every possible point, and the best
inclusion is retained at every iteration. Each iteration contains N + 1 simulations. This
process is repeated until |E(r0)|2 no longer improves.

100



(a)

(b)

Figure 6.2: (a) Each dielectric inclusion can be approximated with an induced dipole
moment pind(r) at the point of inclusion r. (b) Because of Lorentz reciprocity theorem,
the electric field at r0 because of the presence of a dipole at r is equal to the electric field
at r because of the presence of the same dipole at r0. This makes the Green’s function
symmetric such that G(r0, r) = G(r, r0).

Next, we introduce a small change of dielectric permittivity ∆ε of volume ∆V at posi-
tion r. That changes the figure of merit F by [93]

∆F =
1

2
|Enew(r0)|2 − 1

2
|Eold(r0)|2

=
1

2
[Eold(r0) + ∆E(r0)] [E∗old(r0) + ∆E∗(r0)]− 1

2
Eold(r0) · E∗old(r0)

=
1

2

[
Eold(r0) ·∆E∗(r0) + E∗old(r0) ·∆E(r0) + |∆E(r0)|2

]
≈ Re [E∗old(r0) ·∆E(r0)] (Neglecting smaller terms for small inclusion) (6.2)

where Eold(new)(r0) is the old (new) value of electric field at r0 before (after) the introduction
of ∆ε at r, and ∆E(r0) is the change in electric field at r0 resulting from the change, i.e.,
Enew(r0) = Eold(r0)+∆E(r0). The small change in the dielectric at r results in an induced
dipole moment pind(r) = αEnew(r) ≈ ∆ε∆V Enew(r) at r as shown in Fig. 6.2a. Here, α
is the polarizability of the dielectric inclusion, and is a function of the permittivity and
the geometry of the inclusion. For a spherical inclusion of permittivity ε2 in place of ε1,
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the polarizability is given by αsphere = 3ε0∆V ε2−ε1
ε2+2ε1

where ε0 is the permittivity of free
space. Thus, in the limit of small ∆ε, in free space we can express the polarizability as
αsphere = ∆ε∆V . One can consider any shape for the dielectric inclusion, and choose the
polarizability accordingly using the Clausius-Mossotti relationship. Thus, the change in
electric field at r0 can be expressed as:

∆E(r0) = G(r0, r) · pind(r) = ∆ε∆V G(r0, r) · Enew(r), (6.3)

where G(r0, r) is the scalar Green’s function, and it is equal to the electric field at r0

because of a unit dipole at r. Thus, one can rearrange Eq. 6.2, and Eq. 6.3 to get:

∆F

∆εr
= ε0∆V Re [E∗old(r0) ·G(r0, r) · Enew(r)] , (6.4)

where εr is the relative permittivity of the inclusion and ε0 is the permittivity of free space,
such that ∆εr = ∆ε/ε0. For infinitesimal ∆εr, we can consider Enew(r) ≈ Eold(r). If ∆εr
is not small enough, we can compensate by making ∆V smaller. That gives us

∆F

∆εr
= ε0∆V Re [E∗old(r0) ·G(r0, r) · Eold(r)] (6.5)

According to Lorentz reciprocity theorem, the electric field at r0 because of the presence of
a unit dipole at r is equal to the electric field at r because of the presence of a similar unit
dipole at r0. This tells us that the Green’s function is symmetric, and we get G(r0, r) =
G(r, r0) (see Fig. 6.2b). Using this relationship, we find that the derivative of the figure
of merit can be expressed as

∆F

∆εr
= Re [(ε0∆V G(r, r0) · E∗old(r0)) · Eold(r)]

= Re
[
EAd(r) · Eold(r)

]
. (6.6)

The adjoint electric field is given by EAd(r) = ε0∆V G(r, r0) ·E∗old(r0) [94]. This represents
the field at r due to a dipole at r0 with amplitude pind(r0) = ε0∆V E∗old(r0). It turns out
that only two simulations are necessary to calculate the derivative of the figure of merit.

In the first (forward) simulation we find the strength of the electric field in our region
of interest before any dielectric modifications. That gives us the values of Eold(r) for all
values of r including r0. In the second (adjoint) simulation, we calculate the field produced
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Figure 6.3: The adjoint optimization approach reduces the number of simulations at each
iteration from N + 1 to only two: (a) forward simulation, and (b) adjoint simulation. In
forward simulation we calculate the electric field at r0, and the region of interest as a result
of the incident field Ein. In the adjoint simulation, a dipole is driven at r0 to calculate the
adjoint electric field. This greatly simplifies the process of calculating the derivative of the
merit function ∆F/∆εr.

at all locations r in the region of interest by an oscillating dipole pind(r0) = ε0∆V E∗old(r0)
located at r0. That gives us the values of EAd(r) for all values of r. So the derivative of the
figure of merit or cost function F with respect to the design parameter εi for every pixel ri
(and thus the effect of dielectric modification at any point ri) can be calculated using only
two simulations as shown in Fig. 6.3. That is a great reduction in computational resources
compared to the N + 1 simulations needed for a brute force approach.

Thus, we can now iteratively calculate the optimum values of the permittivity of our
device for our task by using gradient descent/ascent technique, with the highly efficient
adjoint approach of calculating the gradient of the merit function F as a subroutine. In
each iteration, we calculate the derivative of F using the forward and adjoint simulations.
Then, we move along the direction of the steepest descent/ascent in the parameter space
of the merit function by making the relevant dielectric change, in pursuit of the global
minima/maxima.
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6.2.1 Shape and topology optimization

There are two ways we can optimize the geometry of the device by changing/perturbing
the permittivity of the design domain at each iteration. The first type is a boundary
(shape) perturbation at the surface of the two materials permittivity ε1, and ε2 as shown
in Fig. 6.4a. It changes the outline of the device without changing its topology. The
second type is a topological perturbation, which results from the addition of dielectric ε2
in place of dielectric ε1 (as shown in Fig. 6.4b), and vice-versa. This results in a change
in the topology of the device. Thus, the topology perturbation method is more versatile
compared to the boundary perturbation, and we shall be using it for the purpose of our
optimization in Chapter 7. In this section, we shall briefly describe how these two different
methods work [93, 95].

6.2.2 Topological perturbation

The relationship given in Eq. 6.6 can be generalised for 3D inverse design problems. The
electric and magnetic fields are three-dimensional vectors, and the spatial variation of
permittivity is given by the permittivity tensor. The merit function can be a function of
the entire region of interest. In such a scenario, one might represent the merit function as

F (E,H) =

˚
V

f(E(r),H(r))d3r, (6.7)

such that the merit function is the result of calculating some function f(E,H) over the
entire region which has a volume of V . Since E and H are complex functions, we can write
the change in the figure of merit dF as

δF = 2 Re

˚
V

[
∂f

∂E
(r) · dE(r) +

∂f

∂H
(r) · dH(r)

]
d3r. (6.8)

We can define Green’s functions
←→
G EP (r, r′) and

←→
GHP (r, r′) which give the electric and

magnetic field at r due to an unit electric dipole at r′, such that the field variations is given
by

dE(r) =
1

Vpert

˚
Vpert

←→
G EP (r, r′)pind(r′)d3r′, (6.9a)
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(a)

(b)

Figure 6.4: (a) A boundary perturbation changes the geometry of the surface between the
two materials without changing the topology. (b) The topological perturbation changes
the topology of the design domain by inclusion/removal of new material. For example, in
this figure, addition of a material of permittivity ε2 in the place of ε1 changes the topology
of the design. The volume of the dielectric addition (shown in pink) is Vpert.

dH(r) =
1

Vpert

˚
Vpert

←→
GHP (r, r′)pind(r′)d3r′, (6.9b)

where Vpert is the volume over which the permittivity changes. We substitute these equa-
tions into the expression for δF , and use the symmetry of the Green’s function, i.e.,

GEP
ij (r, r′) = GEP

ji (r′, r) and GHP
ij (r, r′) = −GEM

ji (r′, r) where
←→
G EM(r′, r) gives the electric

field at r′ due to a magnetic dipole at r. That yields [93]:
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δF =
2

Vpert

Re

{˚
Vpert

d3r′pind(r′)

˚
V

d3r

(←→
G EP (r′, r)

∂f

∂E
(r)−←→G EM(r′, r)

∂f

∂H
(r)

)}

=
2

Vpert

Re

{˚
Vpert

d3r′pind(r′) · EAd(r′)

}
. (6.10)

The induced dipole, the amplitude of the electric dipole ∂f
∂E

(r), and the amplitude of the

magnetic dipole ∂f
∂H

(r) can be calculated in the forward simulation. The second part of the
expression gives the adjoint field as a result of the oscillating electric and magnetic dipoles
at r.

Now, for topology a topological perturbation, we simply replace the induced dipole
with the expression pind(r′) = 3ε0Vpert

ε2−ε1
ε2+2ε1

Eold(r′) for a spherical inclusion under the
assumption Enew(r′) = Eold(r′). This gives us the change in the merit function to be

δF = 2 Re

{
3ε0

ε2 − ε1
ε2 + 2ε1

Eold(r′) · EAd(r′)

}
. (6.11)

For any other geometry of dielectric inclusion with polarizability tensor←→α , we have δF =
2

Vpert
Re
{←→α Eold(r′) · EAd(r′)

}
. As we observed, this method creates an inclusion of ε2 in a

material of ε1, and thus changes the topology of the structure. In the forward simulation
we calculate Eold(r′), and in the adjoint simulation we find the adjoint field EAd(r′) at
every point r′. Then we add a dielectric inclusion ∆ε such that δF is maximized. We
repeat this process until the merit function saturates.

6.2.3 Boundary perturbation

For shape optimization via boundary perturbation, let us consider that there is a material
of permittivity ε2 in a region of permittivity ε1. We shall be morphing the boundary of
the two materials via small boundary perturbations. Let us consider a differential surface
area dA where the boundary changes perpendicular to the surface by dr⊥ as shown in Fig.
6.4a. Then, we can re-write Eq. 6.10 as

106



δF =
2

Vpert

Re

{˚
Vpert

pind(r′) · EAd(r′)dr⊥dA

}

=
2

Vpert

Re

{¨
A

pind(r′) · EAd(r′)δr⊥(r′)dA

}
(

For infinitesimal perturbation, we can consider

ˆ
dr⊥ → δr⊥(r′).

)
(6.12)

Next, we decompose the field into components parallel (‖) and perpendicular (⊥) to
the surface. Then, by using the boundary conditions, for small perturbations, the new
electric field is given by

Enew(r′) ≈ E
‖
old(r′) +

D⊥old(r′)

ε2
= E

‖
old(r′) +

ε1
ε2

E⊥old(r′). (6.13)

Using this relationship, for a small spherical inclusion we get

δF = 2 Re

{
(ε2 − ε1)

(
E
‖
old(r′) +

ε1
ε2

E⊥old(r′)

)
· EAd(r′)

}
. (6.14)

If we also decompose the adjoint field as EAd(r′) = EAd,‖(r′) +
DAd,⊥(r′)

ε1
= EAd,‖(r′) +

ε1
ε2

EAd,⊥(r′), we get

δF =
2

Vpert

Re

¨
A

[
(ε2 − ε1)E

‖
old(r′) · EAd,‖(r′) + (ε2 − ε1)

D⊥old(r′)

ε2
· D

Ad,⊥(r′)

ε1

]
δr⊥(r′)dA.

(6.15)

To move along the gradient in the parameter space, we can simply assign [93]

δr⊥(r′) ∼ Re

[
(ε2 − ε1)E

‖
old(r′) · EAd,‖(r′) + (ε2 − ε1)

D⊥old(r′)

ε2
· D

Ad,⊥(r′)

ε1

]
, (6.16)

upto some factor (a hyperparameter) for all points r′ on the surface. As observed, this
only leads to changing the boundary of the surface. In the forward simulation we calculate
Eold(r′) and the amplitude of the adjoint dipoles. In the adjoint simulation, we calculate
the adjoint field. Finally, we change the boundary of the object using the update rule given
in Eq. 6.16.
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Figure 6.5: The signed level set function φ(x, y) is negative inside the material with per-
mittivity ε2, and positive in the region with permittivity ε1. And the zeros of the level set
function φ(x, y) = 0 define the boundary between the two materials.

6.3 Fabrication dependent optimization constraints

In order to be able to converge at any arbitrary geometry, we can treat each pixel on the
boundary of the object as a particle evolving semi-autonomously. However, this gives rise
to two important issues. First, this method of optimization is computationally inefficient
as it requires a lot of processing capacity. Second, we might converge at a geometry which
might have sharp edges/ narrow bridges/ tiny islands making it very difficult to accurately
produce using standard fabrication techniques.

By using level set methods (for more in-depth exploration please check Ref. [96, 97])
one can significantly reduce the amount of computational resources required, and set con-
straints that ensure that we converge at a structure that can be accurately made in a
cleanroom. For example, for a geometry with only two types of materials, the essential
information is carried by the boundary between the two regions. Thus, we construct a
signed level set function φ(x, y) : R2 → R which encodes the information of the boundary
between the materials. The boundary lies on the curve φ(x, y) = 0. Also, the value of the
function is positive for one material, and negative for another (see Fig. 6.5), i.e.,

ε(x, y) =

{
ε1 for φ(x, y) > 0

ε2 for φ(x, y) < 0.
(6.17)

Another interesting feature of the the level set function is that it is a distance function,
i.e., the magnitude of the function at any point is its distance from the closest boundary.
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For example, for a circle, φ(x, y) =
√
x2 + y2 −R. This results in the interesting property

|∇φ(x, y)| = 1, ∀x, y, where ∇φ = ∇xφ+∇yφ.

Now, this level set function can be evolved by making it a time-dependent function,
and using the following Hamilton-Jacobi partial differential equation (PDE):

∂φ

∂t
+ v(x, y)|∇φ| = 0, (6.18)

where v(x, y) : R2 → R is a scalar velocity field. One simple choice of the velocity field can
be v = dF

dφ
. We start the simulation at t = 0, and continue evolving the structure until we

converge.

However, to avoid designs with sharp corners and edges, we can select a better velocity
field. Thereby, we change our evolution PDE to [98]:

∂φ

∂t
− w(%)%|∇φ| = 0, (6.19)

where, % is the local curvature (in two dimensions) as given by:

% = ∇ ·
( ∇φ
|∇φ|

)
, (6.20)

and w(%) is a function that restricts the local curvature to go above a threshold %thres. In
the most simple case, w(%) can be a function that has a value of 1 for curvature greater than
%thres, and a value of 0 otherwise. However, other kinds of smoother weighing function w
can be chosen for better performance [98]. Evolving the level set function this way instead
of evolving each and every point and keeping track of the entire design region proves to be
a significantly simpler task computationally.

Even after selecting the aforementioned parameters carefully, there might still exist
narrow bridges and small islands with low curvatures. Morphological dilation can be used
to fill up small holes, or thicken/dilate narrow/small features. Morphological erosion can
also be used to remove small islands, and remove small, narrow features. Some curvature
filters can also we used to smoothen any remaining rough nooks and crannies [98]. Finally,
we can arrive at a design that can be accurately fabricated in a cleanroom with standard
techniques.
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Chapter 7

Inverse design of optical antennas for
engineering directional emission from
NV centers

7.1 Motivation

NV centers are solid state color centers found in diamonds, which are formed when a
nitrogen atom replaces a carbon atom in the diamond lattice. These point defects have
now been quite extensively studied for half a century, and have emerged as a promising
platform for quantum sensing [10, 99–104], quantum memories [105–107], and quantum
information processing [8, 108, 109]. They are a promising candidate among other solid
state emitters because of a myriad of favourable properties like high integrability [110, 111],
stable room temperature operations [9, 112], easy electronic spin state initialization and
readout using microwave and optical pulses [113–115], long electron spin coherence time
[100, 116, 117], and precise geometrical control using ion implantation [118, 119]. But for
efficient readout of NV centers for any application, it is essential to control its emission
pattern. In this chapter, we propose a device for efficient extraction of light from NV
centers, by achieving control over its radiation pattern using adjoint optimization.

First, in Sec. 7.2, we provide a brief introduction to the properties (crystal structure
and electronic level structure) of NV centers essential for subsequent discussions. Then, in
Sec. 7.3, we shall study the performance of some nanophotonic structures previously used
by other research groups to efficiently extract light from various quantum emitters. In Sec.
7.4 we propose our structure designed with the help of adjoint optimization technique, and
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(a)
(b)

Figure 7.1: (a) An NV center in the fcc diamond lattice formed by a lattice vacancy
(grey) along with a nitrogen atom (green). (b) Schematic of the defect structure of an NV
center with the vacancy (grey), the substitutional nitrogen atom (green), and the nearest
neighbour carbon atoms (blue). The dipole axis lies along the major symmetry axis in the
Z-direction. The NV center radiates perpendicular to the [111] surface of the diamond
unit cell.

predict its performance. Finally, in Sec. 7.5, we discuss the confocal microscope we have
built for imaging the NV centers, and for characterization of the proposed device. We
conclude with a brief discussion about the future direction of the project.

The work in this chapter has been done together with Vinodh Raj Rajagopal Muthu.
Both of us have contributed to the simulations, as well as the experimental work reported
in this chapter. Dr. Rubayet Al Maruf helped us setup the confocal microscope. I would
also like to thank Dr. Behrooz Semnani and Prof. Michal Bajcsy for helpful discussions,
and guidance throughout the project.

7.2 NV center structure

7.2.1 Crystalline structure

The NV center is a point defect in diamond formed by a lattice vacancy along with a
substitute nitrogen atom. Unlike an emitter in free space, the geometry of the fcc diamond
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(a) (b)

Figure 7.2: (a) Normalized photoluminiscence (PL) spectrum of single NV0 (in blue) and
NV− (in red) centers with their ZPLs at 575 nm and 637 nm respectively when excited
with off-resonant green light at 532 nm at room temperature (T = 300K). Figure adapted
from Ref. [122]. (b) The PL spectrum of NV− at room temperature (T = 300K) and at
low temperatures (T = 1.8K). Figure adapted from Ref. [123].

crystal define the symmetries, and physical properties of the defect center. It is oriented
along the [111] crystalline direction [120]. The NV center is known to have C3v symmetry,
which determines the dipole transitions in its electronic level structure. It means that the
NV center is structurally invariant under C3v symmetry operations – two rotations by 120◦

rotations about the NV axis (C3, and C−1
3 ), three reflections on vertical planes containing

the NV axis and a carbon atom (R1, R2, and R3), and the identity (I) operation. For
further details about the C3v symmetry, and the transformations the different electronic
levels (A1, A2, E) undergo under the different symmetry operations, the reader can refer
to L.I. Childress’ PhD thesis [121]. Fig. 7.1 shows a model of the crystalline structure of
the NV center.

7.2.2 Electronic level structure

The NV center is known to exist in two different charge states: the negatively charged NV−,
and the neutral NV0 state. NV0 has five electrons (one each from the three neighboring
carbon atoms, and two from nitrogen’s valence band), whereas NV− has six electrons, thus
making it negatively charged. They can be distinguished by their distinct zero phonon
line (ZPL). The ZPL is a sharp peak in the fluorescence spectrum arising from photons
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Figure 7.3: The electronic level structure of an NV center, showing the triplet ground
state 3A2, the excited state 3E, and the metastable 1A1, and 1E states. The vibronic levels
associated with the phonon sideband transitions have been shaded yellow.

emitted when the NV center decays from the excited state directly to ground state without
interaction with the phonons (vibrations) of the diamond lattice. NV− exhibits a ZPL at
637 nm (1.945 eV), whereas NV0 exhibits a ZPL at 575 nm (2.156 eV) (see Fig. 7.2a).
NV− have been widely studied, and is the commonly used form of NV center. For the
purpose of our study, we will only be considering NV− centers only.

Fig. 7.3 shows the schematic of the NV center level structure. The NV center has an
optical ZPL transition between the ground state triplet 3A2, and the excited 3E levels.
The ground state triplet splits due to spin-spin, and spin-orbit interactions into the A1

level corresponding to ms = 0, and two E levels corresponding to ms = ±1, where ms

is the magnetic quantum number. The ms = 0, and ms = ±1 levels have a separation
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Figure 7.4: The electronic ground state 3A2 of the NV center, showing the zero field
magnetic splitting of 2.87 GHz, and the Zeeman splitting of the ms = ±1 states under the
effect of a magnetic field B||, parallel to the z-axis.

of ∼ 2.87 GHz. The 637 nm ZPL transition, along with the detection of 2.87 GHz zero
field magnetic splitting of the ground state using hole burning [124], electron paramagnetic
resonance (EPR) [125], or optically detected magnetic resonance (ODMR) [116] act as the
experimental signatures of detecting an NV center. Apart from the fine-structure splitting,
the application of a magnetic field B|| parallel to the NV z-axis causes a Zeeman split of
B||×5.6 MHz/G in the ms = ±1 level (see Fig. 7.4) [115, 126]. Similarly, the excited state
3E also shows spin degeneracy, and there is a splitting of ∼ 1.41 GHz among the ms = 0,
and ms = ±1 states [127].

The electronic states also have a continuum of vibronic states associated with them.
When a green laser at 532 nm is used to excite the NV center in its ground state, it is
excited to one of the excited vibronic states. Now, the NV center might decay to the ground
state through multiple pathways. The vibronic levels of the NV center decay readily to
the excited state 3E via emission of phonons. Primarily, the excited state decays through
the phononic sideband (PSB) which extends approximately from 650 nm to 800 nm. The
excited state can also decay through a metastable 1A1 level (see Fig. 7.3) through inter
system crossing (ISC). However, occasionally the excited state also decays directly from the
3E level to the 3A2, without the help of any phononic sidebands. That gives rise to the red
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ZPL fluorescence at 637 nm. The ZPL is more prominent at lower temperatures, but can
still be resolved at room temperature (see Fig. 7.2b). However, unfortunately, irrespective
of the large range of temperature, only a very small amount (∼ 3−4%) of the total emission
goes into the ZPL [128, 129]. Still, the ZPL is an important part of the spectrum, and is
useful for quantum information processing because the sideband radiation, which makes
up the bulk of the spectrum unfortunately loses its coherence and dephases very quickly.

Spin initialization and readout

The NV center’s spin can be polarized using an off-resonant green excitation at room
temperature. Though there are various debates and some open questions about the exact
mechanism of the optically induced spin polarization, the following model gives us an
intuitive picture, and matches experimental observations. At thermal equilibrium, the
ground state of the NV center is in an approximately equal mixture of the different spin
states. Upon illumination with green light, the NV center is excited to the 3E level. The
transitions between the 3E to 3A2 level follow the spin selection rule ∆ms = 0, i.e., they are
spin-preserving. So, decay from the ms = 0 excited state results in the NV center ending
up in the ms = 0 ground state. However, if the excited state is in ms = ±1 spin state,
it can undergo inter system crossing with probability 1/3, and decay via the 1A1 →1 E
transition. As shown in Fig. 7.3, this makes the NV center end up in the ms = 0 ground
state. Thus, in a few optical cycles the ground state of the NV center can be almost
completely spin-polarised to the ms = 0 level. Once in the ms = 0 ground state, we can
successfully go to ms = ±1 spin states using resonant microwave π−pulses. One can also
create a superposition of the spin states of the form 1/

√
2 (|0〉+ i |1〉) by using a microwave

π/2−pulse. If this state to precess for a time t, the spin |1〉 component picks up a phase
of φ, thereby giving the state 1/

√
2
(
|0〉+ ieiφ |1〉

)
. Thus, using the proper pulse sequence

one can create any arbitrary superposition of the spin states.

Readout of the spin state of the NV center at room temperature is possible by using an
off-resonant green laser just like spin initialization. Upon illumination by the green light,
the ms = ±1 state fluoresces less than the ms = 0 state. This happens due to the higher
probability of inter system crossing from the ms = ±1 excited state. Over the course of a
few optical excitation cycles, the initial ms = ±1 state results in fewer optical transitions
from the excited state to the ground state. Thus, one can readout the state by integrating
over the fluorescence spectrum. Usually, the fluorescence from the ms = ±1 state is about
20−40% lower compared to the ms = 0 state [121, 130]. However, if we illuminate the NV
center for too many cycles, it will eventually end up being spin polarized to the ms = 0
level. Thus, careful consideration of the detection window is necessary. However, at low
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temperature, the spin decay rate is very small, and the fluorescence is visible. So, a laser
resonant with the ms = 0 transition is used. The NV center fluoresces only if the emitter
was in the ms = 0 state. Ref. [109] reported a readout fidelity of 95% using this method.

7.3 Engineering emission pattern of NV centers with

nanophotonic structures

Over the years, multiple nanophotonic structures have been explored for efficient extraction
of light from quantum emitters. Some of the prominent ones include solid immersion lenses
(SILs) [33, 131–134], nanopillars [135–139], and bull’s eye gratings [140–142]. Here, we
shall provide a quantitative comparison of these structures’ ability to successfully direct
the extracted light out of an NV center embedded in a diamond in a particular direction. In
particular, for our application, we want the radiation to be confined in a primary radiation
lobe pointed perpendicular to the surface of the diamond with a small half angle, and thus
have low numerical aperture (NA). These structures can be effectively considered to be
optical antennas that direct the emission from the emitter.

A rectangular slab

The simplest case we can consider is that of an NV center embedded in a rectangular slab
of diamond. The NV center radiates along the 〈111〉 axis. Thus, to maximize collection
efficiency, we consider a diamond sample cut along the (111) surface throughout our study.
Hence, the NV center can be modeled as a radiating dipole with its axis parallel to the
surface. However, the large refractive index mismatch at the diamond-air interface results
in Fresnel reflection. For normal incidence, the Fresnel reflection coefficient is

r =
ndiamond − nair

ndiamond + nair

≈ 0.4. (7.1)

The amount of reflection is higher for greater angles of incidence, and total internal reflec-
tion occurs once the angle of incidence exceeds the critical angle (θc = 23.6◦). In fact, most
of the radiation is reflected back into the diamond sample, as can be seen from the field,
and directivity plots in Fig. 7.5. The photons that make it out of the slab successfully
aren’t highly directional either, but are scattered across a rather wide angle. This makes
the rectangular slab highly non-ideal for extracting emission from the NV center, and
specialized nanophotonic structures are needed to guide the emission out of the diamond.
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Figure 7.5: The simulation geometry, the observed electric field profile along the
X − Z plane at y = 0, and the radiation pattern (with directivity and FBR) for a
rectangular slab, a solid immersion lens (SIL), a nanopillar, and a bull’s eye structure.
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Solid immersion lenses (SILs)

SILs try to overcome the problem of total internal reflection at higher angles of incidence.
The NV center is located at the focus of a hemisphere with radius 2.5µm (see Fig. 7.5),
so that the emitted rays are perpendicular to the diamond-air interface. This reduces
the amount of reflection at the surface, and improves the amount of light extracted from
the NV center in the upward direction. Fig. 7.5 shows the finite difference time domain
(FDTD) simulations of the field pattern, and the directivity for a SIL with radius 2.5µm.
The maximum directivity (Dmax) is 4.71dB, with a front-to-back ratio (FBR) of 3.80dB.
However, the SIL does not show high selectivity in its upward propagating field. The main
radiation lobe in the upward direction is spread across a half angle of nearly 90◦, and thus
has a high numerical aperture (NA∼ 1). Our goal is to have a geometry that can confine
the radiation to a narrow cone, and provide a highly directional pattern of radiation. Thus,
the SIL isn’t an ideal candidate for our purpose. However, the performance of this basic
version of SIL can be improved by putting a layer of reflecting material (for example Au
as in Ref. [134]) below the emitter to enhance the upward radiation.

Nanopillars

The nanopillar is a cylindrical structure with the NV center embedded in it. The photons
emitted by the NV center are coupled to the guided fundamental mode HE11 of the nanopil-
lar/nanowire. At the top of the nanopillar, the guided mode couples with the modes in the
free space, and thus propagates forward. In our simulations, we used nanopillar of height
2.3µm, and radius 230nm corresponding to dimensions reported in Ref. [139]. The field
distribution and the directivity of the emission obtained from FDTD simulations is shown
in Fig. 7.5. Our FDTD simulations show a maximum directivity of 6.86dB, and an FBR
of −3.19. More, importantly the upward directivity is only 3.66dB. The mode mismatch
between the guided modes in the nanopillar with the free space propagation mode can be
decreased for more efficient free space propagation of the radiation by tapering the top of
the pillar.

Bull’s eye gratings

The bull’s eye geometry is a high contrast distributed Bragg reflector (DBR) etched in a
circular 2-dimensional pattern, with the NV center at its center [140–142]. We simulated a
bull’s eye with a periodicity a = λ/ndiamond, corresponding to a second-order Bragg grating
at λ = 680nm. The planar 2D Bragg grating reflects back the emitted light, that might
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propagate radially in-plane out from the emitter. This provides a tight horizontal confine-
ment along the X − Y plane. On the other hand, the effective refractive index near the
interface is lowered because of the grating structure. Hence, the light that travels verti-
cally, along the Z direction, faces a lower refractive index mismatch at the interface. This
helps more photons to successfully couple from the NV center embedded in the diamond
to free space. Hence, the bull’s eye geometry selectively enhances emission in the vertical
direction, while providing a tight horizontal confinement. Fig. 7.5 shows the simulated
field pattern,

and the directivity achieved with a bull’s eye pattern. From the radiation pattern, we can
clearly observe the superior horizontal field confinement in the bull’s eye compared to the
other structures, as the upward propagating field is confined within a half angle of ∼ 45◦.
The maximum directivity achieved is 5.64dB, with an FBR of −4.94dB.

7.4 Adjoint optimization based approach

None of the previously discussed nanophotonic structures provide the flexibility to arbi-
trarily control the emission properties of the NV center. However, adjoint optimization
method provides the flexibility to design a geometry suited for a specific application. We
aim to design a 2D grating on the surface of a (111)−oriented diamond sample, such that
most of the radiation from an NV center embedded in the diamond can couple with free
space. We want the structure to provide high directivity in the upward direction. In other
words, the radiation pattern should have the main lobe with a small half angle in the
upward direction with a large positive value of FBR. In most applications, we will need
to couple the radiation from an emitter into a waveguide. Thus, additionally we want
to maximize the coupling of the NV center’s radiation with a waveguide (a nanofiber in
particular) by suitably shaping the mode’s spatial profile. That would eliminate the need
for bulky optics elements like lenses for efficiently coupling the radiation into the nanofiber.
With this goal in mind, let us formally define the problem statement that we have tried to
provide a solution for.

Problem statement:

Suppose there is an NV center 0.5µm below the surface of a (111)−oriented diamond
sample. Also, there is a single mode nanofiber of radius r = 0.7µm sitting 2µm above the
diamond sample. What pattern can we etch on the surface of the diamond to maximize
the mode overlap between the guided mode in the fiber, and the radiation from the NV
center?
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Figure 7.6: A schematic representation of implementation of the adjoint optimization
algorithm using lumopt API. Here, we have shown the simplest update relationship for a
gradient ascent/descent process with learning rate α for simplicity. However, the actual
update relationships used are usually much more complicated.

7.4.1 Simulation process overview

We use Lumerical’s inverse design suite to solve our adjoint optimization problem. The
optimization process is performed in Python by the LumOpt, whereas the electromagnetic
FDTD simulations are performed by Lumerical [94]1. The Lumerical Automation API
coordinates the simultaneous processes by interfacing the calculations done in Python and
on Lumerical. A simplified version of the simulation process is shown in Fig. 7.6. First, the
initial geometry of the problem is defined in Lumerical. We want to optimize the parameters
inside the optimization region of the geometry. Next, we run the forward, and the adjoint

1The source code for the LumOpt wrapper is available in Ref. [143].
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simulations in Lumerical to calculate the derivative of the figure of merit with respect to the
design parameter. The gradient descent/ascent (or any other gradient based optimization
methods like the L-BFGS-B2, which is the default method used by Lumerical) optimization
subroutine to update the geometry in each iteration runs in Python. In each iteration, the
geometry in the optimization region is updated accordingly to maximize the merit function.
We keep on iterating, and updating the geometry until the merit function saturates. We
use the more generalized and versatile topology optimization method, instead of shape
optimization to update the geometry of the optimization region in our problem.

Initial geometry

We initialize our optimization region with a bull’s eye pattern etched onto the diamond
surface, with the NV center being at the center of the bull’s eye as shown in Fig. 7.7a.
The depth of etching is 0.3µm, and the periodicity is λ/ndiamond ≈ 282nm corresponding
to the second order Bragg grating for wavelength λ = 680nm. We selected the particular
central wavelength as we wanted to optimize collection for the entire spectrum, and the
NV center’s spectra has as maximum at ∼ 680nm. We chose to initialize our simulation
with the bull’s eye because we are interested in a 2-dimensional etch pattern unlike the
nanopillar or the SIL. The advantages of the bull’s eye pattern over its counterparts are
manyfold – it is easier to fabricate, is better suited for integrated development, and provides
better mechanically stability on account of being a 2D structure. But most importantly,
it also provides a tighter confinement of the field propagating in the upward direction
compared to structures like the nanopillar and the SIL. Thus, we think it provides a good
starting point for the optimization algorithm to start looking at the feature space.

Optimization region

We choose a 3µm× 3µm square with the emitter at its center as the optimization region.
In other words, we are aiming for a pattern with a footprint ≤ 3µm× 3µm.

Figure of merit

For our problem, we choose the figure of merit to be the transmission of the NV center
emission into the fundamental TE mode of the nanofiber. Mathematically, we can define it

2L-BFGS-B is a form of limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bounded
variables serving as the only constraints of optimization.
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Initial geometry Optimized geometry
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Figure 7.7: (a) The initial geometry used for the optimization. (b) The optimized etching
pattern the algorithm converged at. (c) The electric field profile in the X − Z plane at
y = 0 with the optimized pattern. (d) The radiation pattern (with directivity and FBR)
achieved with the optimized structure.
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Figure 7.8: The normalized learning curve, i.e., the evolution of the figure of merit (F)
with iterations during the optimization process.

as the overlap integral between the emission of the NV center and the fundamental mode
of the waveguide at the surface of the fiber. Explicitly, this is given by

F =
|
˜

E×H∗m · dS +
˜

E∗m ×H · dS|2˜
Re{Em ×H∗m} · dS

, (7.2)

where E and H are the electric and magnetic fields at the input of the nanofiber calculated
from the forward simulation, and Em and Hm are the electric and magnetic field profiles
of the fundamental mode of the fiber [94]. The integration is performed over the spectral
range of the dipole with its peak at 680nm. As opposed to only maximizing the free space
extraction of light from the NV centers as reported in Ref. [144, 145], our design also
performs mode shaping for efficient coupling with the waveguide mode. We shall discuss
more about the work reported in these publications later in Sec. 7.6.

Optimized geometry

After running the simulation, we get the optimized geometry as shown in Fig. 7.7b.
The field distribution achieved with the optimized geometry, and the directivity of the
emission are also shown in Fig. 7.7. We notice that the optimized geometry provides
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an improvement in the directivity of the radiation pattern by minimizing side lobes, and
constricting the main radiation lobe within a half angle of ∼ 45◦. The maximum directivity
achieved is 7.32dB with an FBR of 4.71dB. This turns out to be significantly superior to
the performance of the previously proposed structures we studied in Sec. 7.3.

7.4.2 Sensitivity analysis

Now, even though we optimized our geometry for an NV center 0.5µm below the air-
diamond interface, and at the center of the optimization region, it is practically very
difficult to exactly satisfy those conditions. Thus, we perform sensitivity analysis to test
the sensitivity of the optimized structure to the location of the emitter.

Analysis I: Emission sensitivity

To test the positional sensitivity of the NV center on the light extraction efficiency, we
exploit the reciprocity condition from antenna theory, that allows us to interchange the
transmitter, and the receiver. Thus, this time we excite the diamond sample with the
fundamental mode of the nanofiber. This fundamental mode source with a central wave-
length of λ = 680nm is positioned 2µm above the diamond’s surface (exactly where the
nanofiber collecting the radiation from the NV center would be) as shown in the top row
of Fig. 7.9. As expected, we notice that the strength of the electric field is maximum at
the ideal location of the NV center, i.e., exactly 0.5µm below the surface, and at the origin
of the FDTD simulation region (at x = y = z = 0 as shown in the middle row of Fig. 7.9).
The third row of Fig. 7.9 shows how quickly the strength of the field decays around the
maxima. That signifies the amount of permissible error/flexibility in the position of the
NV center with respect to its ideal location, without causing major loss in the collection
efficiency. We observe that the sensitivity along the x and y axis has a full width half
maximum (FWHM) of 200nm and 160nm respectively. The performance of the optimized
structure is even more resilient to changes in the z direction, and has an FWHM of almost
a micrometer.

Analysis II: Excitation sensitivity

However, it is also important to confirm if all the NV centers falling within the hotspots
shown in Fig. 7.9 are being excited in the first place. To check that, we test the positional
sensitivity of the NV center to the green excitation laser at 532nm. In other words, we
investigate what is the volume of the diamond sample where the excitation beam is focused,
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Figure 7.9: The field pattern (second row), and the sensitivity of the location of the NV
center (third row) when the optimized structure is illuminated with a fundamental mode
source (first row) centered at λ = 680nm positioned 2µm above the diamond surface.
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Figure 7.10: The field pattern (second row), and the sensitivity of the location of the NV
center (third row) when the optimized structure is illuminated with a fundamental wave
source (first row) at λ = 532nm.
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and the NV centers are successfully excited. Thus, we excite the structure from above using
a fundamental mode source at 532nm positioned at the tip of the fiber. From the results of
our simulations as shown in Fig. 7.10, we observe that the structure is successful in focusing
the excitation beam at the location of the NV center pretty well. The field concentration is
maximum at x = y = 0 along the horizontal plane, and the FWHM is ∼ 140−160nm across
both the axis. However, we see that the field intensity maxima does not lie exactly at z = 0
(since the design is optimized for a different wavelength). Still, the field intensity is strong
enough to excite the an NV center at z = 0. From this simulation, we can conclude that
the same fiber can be successfully used to excite the NV centers, and collect the emission
simultaneously. That is a significant advantage provided by our proposed structure.

Moreover, the NV centers in a < 5ppb diamond are approximately ∼ 100nm away from
each other. So, the probability of exciting more than one NV in the z = 0 plane is low.
However, one might excite NV centers at a different depth, due to the broad peak along
the z− axis. But as we shall see in the next section, we can minimize the fluorescence from
background NV centers using a confocal setup.

7.5 Confocal microscopy

To observe the fluorescence from the individual NV centers, we use a confocal scanning
microscopy setup. Unlike a simple fluorescence microscopy setup, the confocal microscope
helps in getting high contrast images of the NV centers, by filtering out off-focus radiation
from surrounding NV centers in the sample. First, we shall briefly look at the basic working
principle of a confocal microscopy setup in Sec. 7.5.1 before discussing our experimental
setup in greater details.

7.5.1 Theory

In a standard fluorescence microscopy, the fluorescence from the entire illuminated part of
the sample is imaged in one shot. This results in a low resolution image of the fluorescing
sample, because the light coming from the off-focus regions of the sample are imaged along
with the part of the sample on focus. Confocal microscopy helps us avoid that problem
through spatial filtering, and also provides control over the depth of field. It collects the
emission only from the part of the sample under focus, and blocks secondary emissions from
off-focus regions of the sample. The basic principles of operation of a confocal microscope
is explained with Fig. 7.11.
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Figure 7.11: Figure showing the principles of confocal microscopy of NV centers in a piece
of diamond. As shown in the inset, the diffraction limited focus might have multiple NV
centers. However, the confocal setup helps us to reject the light coming from unwanted
NV centrs in the background, and create a high resolution image of the NV centers we
want to image (ones that lie on the source plane and the optical axis).

When the NV centers in the diamond are excited with a green laser at 532nm, they
emit red light (PSB at ∼ 650 − 800nm, with ZPL at 637nm) upon decay. There is a
dichromatic (or simply dichroic) mirror that reflects the green light, but allows red light to
pass through. When the green light hits the diamond, there might be multiple NV centers
inside the diffraction limited focus of the laser beam (as shown in the inset of Fig. 7.11).
Again, the light is scattered inside the diamond, and might excite other NV centers not
in focus. The confocal microscope setup blocks the light from surrounding NV centers –
either off-focus on the source plane containing the NV-center of interest (blue dot in Fig.
7.11), or at a different depth inside the diamond sample (purple dot in Fig. 7.11). The
off-focus NV centers on the source plane but away from optical axis are imaged away from
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the optical axis on the image plane, and is blocked by the pinhole. On the other hand, the
NV centers on the optical axis at a different depth are imaged away from the image plane,
and the pinhole blocks most of its light, thereby creating a sharp image of the NV centers
on the source plane only, with very little background scattering.

The image of points on the source plane of the objective is formed on the plane of the
pinhole (image plane), and thus they are known as conjugate planes. Also, the pinhole
is a conjugate point of the focal point of the objective lens, hence giving this setup its
name – confocal microscopy. Now, the image of the entire source plane can be created
by using a pair of mechanically rotating mirrors to raster scan the green laser across the
entire diamond sample. We achieve this using a galvanometer mirror (or simply galvo) in
our experimental setup.

7.5.2 Experimental design

Modeling wave propagation through optical setup

For designing the confocal microscope setup, and to determine essential experimental pa-
rameters, we follow the Gaussian wave propagation model used in Ref. [146]. We use the
complex-ray description of a Gaussian beam, and propagate it using the ABCD matrices
from ray optics [147, 148].

The propagating beams are considered to be Gaussian or TEM00, and can be expressed
as (in polar coordinates) [149]:

Ψ(r) = Ψ0
w0

w(z)
exp

[
− r2

w2(z)

]
︸ ︷︷ ︸

Amplitude

exp

[
ikz − i tan−1

(
z

z0

)]
︸ ︷︷ ︸

Longitudinal phase

exp

[
ik

r2

2R(z)

]
︸ ︷︷ ︸

Radial phase

, (7.3)

where r =
√
x2 + y2, z0 is the Rayleigh length, w0 =

√
λz0/π is the beam radius/waist,

R(z) = z
[
1 + (z0/z)2] is the radius of curvature at z, and z−axis is the optical axis. The

beam radius is considered to be the distance from the optical axis where the intensity of
the Gaussian beam is 1/e2. The beam radius can be expressed as

w(z) = w0

√
1 +

(
z

z0

)2

= w0

√
1 +

(
λz

πw2
0

)2

. (7.4)
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Figure 7.12: The hyperbolic Gaussian beam profile with the two rays: ξ along the asymp-
tote, and η parallel to z−axis which is also the optical axis.

The beam profile is hyperbolic in nature, and asymptotic to the line passing through the
origin at an angle θ0 ≈ w0/z0 = λ/πw0 (in paraxial regime) as shown in Fig. 7.12. Thus,
we can define a complex ray X = ξ+ iη, where ξ and η are two rays that completely define
the Gaussian beam. For simplicity, we consider ξ to be a ray diverging from the focus at
the asymptotic angle θ0, and η is a beam parallel to the optical axis at ray waist (see Fig.
7.12). Thus, these rays can be expressed as the following ray vectors:

ξ =

(
0
θ0

)
, η =

(
w0

0

)
. (7.5)

The beam profile is given as w(z) =
√
ξx(z)2 + ηx(z)2, where ξx(z) ≈ zθ0 = w0z/z0 and

ηx(z) = w0 are the beam waists (the x components) of the respective rays at z. One can
check that at z = 0, the diverging ray ξ passes through the optical axis, and that implies
ξx(0) = 0. Also, the waist ray is at a distance of w0 away from the optical axis, and that
implies ηx(0) = w0. That gives w(0) = w0.

Once we are provided with the initial Gaussian beam input, we can write down the
diverging and waist rays in terms of the ray vectors. Next, we can propagate the rays ξ
and η using the ABCD matrices for propagation through air, and through a thin lens (of
focal length f), as given by:

Mair =

(
1 z
0 1

)
, Mlens =

(
1 0
− 1
f

1

)
, (7.6)

to find the beam radius at any point along the optical path. The Mathematica code
(inspired from Ref. [146]) used to calculate the beam, along with the plot of the the red
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beam width as it passes through the lenses is given in Appendix E. It helps is visualizing
the beams as they pass through different optical components, and measure the beam waist
at any point of the setup.

Diamond sample

We will be using highly pure type IIa diamonds purchased from Applied Diamond Inc. for
fabricating our proposed device. We got two different grades of diamond samples – with
< 1ppm, and < 5ppb nitrogen concentrations (1ppm refers to a density of 1.76 × 1017

NVs/cc). The diamond samples are cut along the (111) orientation, so that the emission
from the NV centers are perpendicular to the surface of the diamond for greater extraction
efficiency.

Objective

We are using the Mitutoyo MY 100X-806 objective which provides a 100× magnification,
and has a numerical aperture (NA) of 0.7. The objective provides a magnification of 100
for a tube lens of focal length 200mm and working distance 6mm. For a tube lens of focal
length ftube, the magnification will be m = 100× ftube(mm)/200(mm). Thus, the effective
focal length (EFL) is the design focal length divided by the design magnification, i.e., f =
fdesign tube lens/mdesign = 200(mm)/100 = 2mm. Also, we can calculate the back aperture
diameter/ entrance pupil diameter (EP) to be D = 2 × f × N.A = 2 × 2 × 0.7 = 2.8mm.
The spot diameter for the green laser (532nm) is φ = 4λf/πD ≈ 0.48µm. The objective
also has a field number (FN) of 24. That means, the field of view (FOV) diameter is
FN/magnification = 24/100 = 0.24mm.

The objective is also infinity corrected. It means that the input of the objective needs to
be collimated to be focused on the focal plane. If the collimated beam is not parallel to the
optical axis, the image will still be formed on the focal plane, but away from the optical axis.
This type of objective is advantageous as the beam of light is parallel/collimated between
the objective and the tube lens. That makes the magnification independent of the distance
between the objective and the tube lens. Also, addition of filters/mirrors/beamsplitters on
the path between the objective and the tube lens does not change the location of image
formation.
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Table 7.1: The magnification settings available in the confocal microscope setup.

fL1 (mm) fL2 (mm) fL3 (mm) Magnification

100 100 100 50
200 100 100 100
100 35 100 ∼143
200 35 100 ∼286

Galvanometer (galvo) mirrors

We are using a two axis galvo (GVSM002-US) from Thorlabs to scan over the diamond
sample. To scan over the sample, we are using a manual controller circuit (see Appendix F)
for now. In the future, the process of raster scan might need to be automated using a data
acquisition (DAQ) board for better control. The galvo also allows us to choose between
the following resolution modes - 0.5, 0.8, and 1 V/deg. With GPS011 linear power supply
unit it provides an angular resolution of 0.0008◦ (15 µrad).

Dichroic mirror

The 552nm single-edge laser dichroic beamsplitter from Semrock transmits (> 94 − 95%)
light above 552nm, and reflects (> 96 − 99%) the light for lower wavelengths. Thus, it
transmits the red light emitted by the NV centers, while reflecting the green laser used for
excitation. It works as a filter to separate the excitation field from the emission field.

Magnification settings

The effective magnification provided by the objective is mobj = 100× fL1(mm)/200(mm),
where L1 is the tube lens focal length (see Fig. 7.13). The net magnification by the
microscope is given by mtotal = mobj × fL3/fL2 = 0.5 × fL1fL3/fL2. For the images in
Figs. 7.14c, 7.14d, 7.14e, we used fL1 = 100mm, fL2 = fL3 = 200mm. Thus, the total
magnification is 50×. In the final microscope, the magnification options available are
shown in Table 7.1. The lenses are mounted on flip mounts to help us easily switch
between different magnifications.
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Table 7.2: Experimental components for confocal microscopy of NV centers.

Component Manufacturer
Part number/
Specifications

Diagram1

Laser Lighthouse Photonics Sprout-G S2
Fiber-coupled red LED Thorlabs M625F2 S1

Diamond sample (type IIa) Applied Diamond Inc.
< 1ppm, < 5ppb,
(111) orientation

D

Translation stage
Thorlabs MBT616D TS1
Machifit LD60-LM TS2

Galvo mirror Thorlabs GVSM002-US GM
Objective Mitutoyo MY 100X-806 O

CMOS camera
FLIR BFS-PGE-31S4M-C C2
Edmund Optics EO-5012M C1

Dichroic mirror Semrock LM01-552-25 DM
Mirrors Newport 10D620ER.2 M

Lens
Thorlabs AC254-035-A-ML L2
Thorlabs AC254-100-A-ML L1,L2,L3
Thorlabs AC254-200-A-ML L1

90-10 Beamsplitter Thorlabs BSN10 BS
Fiber 50-50 beamsplitter Thorlabs TM50R5F2A EXP2

Iris Thorlabs IDA25Z I
Single mode fiber optic
patch cable

Thorlabs SM600 SMF

Multimode fiber optic
patch cable

Thorlabs M76L02 MMF

Breadboard Thorlabs MB12 BB
Flip mount Thorlabs TRF90 FM
1 See Fig. 7.13
2 For g(2) measurement

7.5.3 First operations with the microscope

In Fig. 7.14 we can see the first images taken with our microscope. Initially, we use a 5×
microscope objective to verify the alignment of the optics. Fig. 7.14a shows the first image
taken with the microscope with the 5× objective. We observe the image of a microscope
calibration slide using only the red LED as illumination. In the figure, each division of
the scale is 10µm apart. Next, we switch to the 100× objective we got from Mitutoyo to
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take images, and verify our achieved magnification. With the 100× objective we took the
image of an e-beam lithography dose test wafer shown in Fig. 7.14b. Each square in the
pattern has a dimension of 2.5× 2.5µm. The total magnification of the image is 50×.

Next, we try to image a type Ib (100)-oriented diamond sample from Element Six with
an NV concentration < 200ppm [150]. The images of the diamond sample can be seen in
Fig. 7.14. In Fig. 7.14c, we used only the red LED (S1 in Fig. 7.13) as the illumination
source. Then, we turned on our green laser (S2 in Fig. 7.13) at 532nm, and a power of
7µW. On doing that, we observed the emergence of a bright spot, which has been circled
in Fig. 7.14d. Next, we turned off the red LED, and only the bright spot remained (see
Fig. 7.14e). The bright spot has a diameter of ∼ 0.8µm, and we suspect it might be an NV
center since it fluoresces at a wavelength above 552nm (cut-off wavelength of the dichroic
mirror) upon excitation with green laser at 532nm. However, more tests like detection of
ZPL, and hyperfine splitting of the electronic ground state can be performed to objectively
verify that it is indeed an NV center.

7.6 Recently reported photon extractors designed us-

ing adjoint optimization

Recently we learnt about the efforts of two other groups in designing light extractors for
NV centers embedded in diamond using adjoint optimization [144, 145]. Unlike us, both
of them used (100)−oriented diamond as their substrate where the NV center axis is at an
angle of 35.3◦ with respect to the diamond’s surface. Choosing a (111)−oriented diamond
is advantageous by default, since the NV center radiates perpendicular to the surface of
the substrate in this orientation.

In Ref. [144], Wambold et al. proposed a silicon based light extractor designed using
topology optimization as shown in Fig. 7.15a for use in applications related to quantum
sensing. They used the spectrum-averaged extraction efficiency of light from the NV center
as a broadband figure of merit given by [144]:

F =

´
INV (λ)× η(λ)dλ´

INV (λ)dλ
, (7.7)

where INV (λ) is the normalized spectrum of an NV center, and η(λ) is the extraction
efficiency at a particular wavelength λ given by the ratio of the number of photons emitted
into free space in the presence of the extractor to the number of photons emitted into
free space in the absence of the extractor. The structure consists of a layer of Si on the
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(a) (b)

(c) (d) (e)

Figure 7.14: (a) The first image of a calibration slide taken with our microscope using
a 5× objective. Each division on the scale is 10µm. (b) The first image taken with our
microscope using the 100× objective and a red LED illumination. Each square has a
dimension of 2.5 × 2.5µm. The reference scale bar is 5µm long. (c,d,e) One of the first
images taken of a diamond sample. In (c) we used only red LED illumination. In (d), when
we turned on the excitation green laser at 532nm along with the red LED, we noticed a
bright spot appear (circled). In (e) we switched off the red LED, and use only the green
laser. But the bright spot (∼ 0.8µm in diameter) is still visible, leading us to believe it
might be an NV center.
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(a)

(b)

Figure 7.15: Recently reported photon extractors designed using adjoint optimization. (a)
A Si based photon extractor proposed by Wambold et al.. Figure adapted from Ref. [144].
(b) A GaP based photon extractor proposed by Chakravarthi et al.. Figure adapted from
Ref. [145].

(100) surface of the diamond substrate. They optimized the thickness of the extractor,
and selected a 300nm thick Si layer for their design. The footprint of their design is
800nm × 800nm. They predict that their design is able to guide the upward radiation
from an NV center placed 10nm below the surface into a cone of half angle 30◦. They
also predicted a Purcell enhancement of ∼ 3, and a 35× enhancement in the about of
fluorescence extracted into free space at the surface of the structure. Though the structure
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does not involve etching into the diamond sample, the close proximity of the NV center to
the diamond-silicon might have undesirable effects which need to be studied experimentally.

In Ref. [145], Chakravarthi et al. reported the realization of a gallium phosphide (GaP)
based photon extractor as shown in Fig. 7.15b for use in applications related to quantum
information processing. They used topology optimization to design the photon extractor
for an NV center implanted at a depth of 100nm from the surface of the (100)−oriented
diamond sample. The GaP layer is 250nm thick, and the device has a footprint of 1.5µm×
1.5µm. In their optimization problem, they tried to maximize the flux passing through
a square monitor of size 1.5µm × 1.5µm, and located 400nm above the device as shown
in Fig. 7.15b. They reported an average flux enhancement of ∼ 6× and a maximum
14× enhancement of the photon extraction efficiency at ZPL. To make the device, they
transferred a 250nm thick GaP membrane on the diamond surface via wet lift-off, followed
by electron beam lithography (EBL) and reactive ion etching (RIE) of the GaP layer. In
the paper, the authors also noted a significant deterioration in the quality of the NV center
marked by linewidth broadening, spectral diffusion and ionization after the etching process.
Oxygen annealing at a high temperature was used to somewhat improve the state of the
emitter post-fabrication.

Both the devices reported in Ref. [144, 145] maximize the photon collection efficiency
in the near field of the device. On the contrary, we try to maximize the photon collection
efficiency into a nanofiber located 2µm away from the device. Moreover, our structure
also performs mode shaping to couple the emission into the waveguide. However, one
significant drawback for our device is that it involves the etching of the diamond substrate.
More importantly, from our work, and the work reported in Ref. [144, 145], we can see
how adjoint optimization can be used to design photonic devices for efficient extraction and
coupling of light from defect centers in a variety of solid state hosts for various applications
related to quantum sensing and information processing alike. This approach allows us to
easily tweak our design based on our need, and proves to be a powerful tool to solve
non-trivial problems in photonics.

7.7 Future directions

Due to unforeseen hurdles thrown by COVID-19, in this thesis we could not accomplish as
much as we would have liked to. The following constitute the main future landmarks in
the project going forward.
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7.7.1 Further design improvements

In our work, for simplicity we maximized the figure of merit function F for a dipole source
with a Gaussian spectrum, such that the center frequency of the spectrum matches the
center frequency of the NV spectrum. However, one can extend this formalism to optimize
the broadband performance of the structure by optimizing the device over a different range
of the spectrum. Or one could also design a device for maximizing the collection at the
ZPL frequency only.

The performance of the proposed device could also be be improved by introducing a
reflective metallic layer (for example gold) below the diamond sample to minimize loss
of radiation from emission in the backward direction. The introduction of the metallic
structure might also result in Purcell enhancement of the emission rate.

Furthermore, algorithmic/ automatic differentiation might be used going forward in-
stead of adjoint optimization as recently proposed in Ref. [151], to design multilayered
structures of optimized thickness. Moreover, this method using RCWA promises to be
faster that the adjoint optimization technique as well.

7.7.2 Confocal microscope setup

At the moment, we can scan small areas of the diamond sample by controlling the galvo
mirrors. However, to improve the range and control of the galvo movement, extra lenses
can be used to ensure that the back aperture of the objective and the galvo are conjugate
to each other. Also, to automate the raster scan of the diamond sample, a DAQ board
interface can be employed in the future.

7.7.3 Device fabrication

A major next step would be to fabricate our proposed device on the type IIb (111)-oriented
diamond samples acquired from Applied Diamond Inc. Multiple devices can be fabricated
on the sample, so that we have a higher chance of getting a device with a NV center near
its center, and at approximately the depth the device has been optimized for. Ref. [135–
137, 139, 152–155] provide a good guidance for choosing fabrication steps, and recipes for
etching the desired pattern on the diamond substrate.

The diamond samples we will be using are too small to be properly spin coated with a
resist without the formation of edge beads. One way to bypass that problem is to create a
recess of correct depth on a larger piece of silicon wafer, and sticking the diamond sample
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in it using some kind of adhesive or resist like vacuum grease/ crystal bond/ hydrogen
silsesquioxane (HSQ). However, further study is required to decide which works the best.
It is followed by cleaning the diamond surface, spin coating the resist, and developing it.
HSQ (FOx and/or XR e-beam resist) is the usual resists of choice while working with
diamond [135–137, 153, 155]. Another issue that needs to be studied is if we need to use
any hard mask masks for the fabrication process, and if so, what would be a good choice
for a mask. After the resist is patterned by lithography, we would need to etch the pattern
on the diamond sample. There are multiple etching recipes available in the aforementioned
references, starting from oxygen plasma etching, to etching with SF6 and Cl2. Proper care
needs to be taken while choosing the correct recipe for our purpose to avoid over-heating
or surface charge accumulation on the sample during the etching process.

Unfortunately, there is one drawback of etching the pattern directly on the diamond
substrate. The etching process can highly degrade the quality of the NV center emitters
in the diamond. Thus, the sample might require annealing after the etching process is
complete to rejuvenate the NV centers [156]. Another possible option is precisely ion-
implanting NVs at the center of the etched structure to avoid damaging the NVs during
the etching process.

I would like to acknowledge helpful discussions with personnel at Quantum-Nano Fabri-
cation and Characterization Facility (QNFCF) for guidance regarding possible fabrication
methods.

7.7.4 Device characterization

Once many devices have been fabricated, one needs to look for ‘ideal’ cases where the NV
center is near the center of the fabricated device, and at proper depth from the surface.
The etched structure should significantly enhance the number of counts recorded at the
photodetector even with a low NA objective, compared to a simple rectangular diamond
slab because of the highly directive properties of the structure. Thereafter, the collection
efficiency of the NV center’s radiation might be measured into a single mode fiber 2µm
away from the air-diamond interface for exact characterization of the device. However,
that would require additional experimental efforts. Another additional benchmark that
might be used for the device characterization is comparing the collection efficiencies at
different numerical apertures to show the highly directional properties of the device.
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Chapter 8

Conclusion

8.1 Deterministic single photon subtraction

In the first half of this thesis, we studied how we can perform deterministic single photon
subtraction using single photon Raman interaction (SPRINT), which can provide signif-
icantly higher success rates compared to heralded photon subtraction processes relying
upon beamsplitter like operations.

In Chapter 2, we studied the process of deterministic single photon subtraction in a
bi-modal cavity. We studied the performance, and temporal dynamics of such a system for
different types of input light. We find that we can achieve perfect single photon subtraction
with a CW coherent drive and Fock states, even with low input intensities for correct cavity
parameters. Whereas, for coherent pulses, that is not true. The input coherent pulse must
have sufficient mean photon number for a photon to be subtracted with unit probability.
We investigated the cavity parameters like the coupling strength (a measure of the mode
volume and thus spatial confinement provided by the cavity) and cavity decay rate (a
measure of the Q-factor and thus temporal confinement provided by the cavity) needed for
successful single photon subtraction from the single photon Fock state. We also studied
the second order auto-correlation function of the cavity modes. Interestingly, we observed
g(2) values below unity, followed by super-bunching even for an input CW coherent laser
drive.

In Chapter 3, we theoretically studied the feasibility of photon subtraction using a
single three-level emitter coupled with a chiral waveguide, for continuous-wave (CW) co-
herent drive, coherent Gaussian pulses, and Fock states as input. We noticed that in ideal
limits, with perfect chirality and coupling efficiencies, one can achieve perfect single photon
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subtraction with a CW coherent or a Fock state input of arbitrary intensity. However, for
Gaussian pulses of coherent light, we need the average photon number needs to be above
a threshold for a single photon subtraction with unit probability, even if the pulsewidth is
arbitrarily long. Also, the probability of success depends on the pulsewidth, i.e., the time
scale of the interaction, and increases with increasing pulsewidth. Later, we discussed the
influence of parameters like chirality, coupling efficiency, mode area, and group velocity
while choosing an emitter-waveguide pair for the purpose of photon subtraction. It seems
solid state emitters are preferable because of their larger coupling efficiencies, high inte-
grability (which also leads to smaller mode areas). On the other hand, photonic crystal
waveguides (PCW) have high chirality, and can provide high group index, leading to small
group velocity, and higher probability of subtraction. We concluded that quantum dots
(QD) coupled with high group index PCWs would be a great choice for SPRINT-based
photon subtraction in a waveguide system.

Finally, in Chapter 4, we explored the creation of non-classical states using photon sub-
traction process. We discussed how SPRINT can be used to create highly non-Gaussian
states, like Fock states with negative Wigner functions. We also observed negative condi-
tional entropies, suggesting the creation of entanglement in the system. As an interesting
example, we propose how such a SPRINT-based system could be potentially used to make
Fock states of arbitrary photon number. We conclude with a brief discussion on potential
future topics of investigation.

8.2 Inverse design of nanophotonic structures for di-

rectional emission from NV centers

In the second half of the thesis, we studied how to control the emission properties of an
emitter, particularly NV centers, using adjoint optimization technique. First, in Chapter
5, we looked at the ab initio derivations of the formalism of radiation in the classical,
and quantum pictures. We observed, how the local density of states (LDOS) bridges the
gap between the two domains, thereby allowing us to treat quantum emitters as classical
dipoles in suitable contexts for weak interactions. This simplifies many problems, and al-
lows us to study interaction of quantum emitters with a scattering medium using the tools
available in the arsenal of classical antenna theory. Finally, we provided the classical cir-
cuit/ antenna theoretic description of the interaction between an emitter, and a scattering
object/ nanoparticle.

In Chapter 6, we studied how we can use adjoint optimization to design devices that
have desired electromagnetic response. We showed how the optimization algorithm dras-

142



tically reduces computational resources needed for simulations by making clever use of
the concept of reciprocity in Maxwell’s electromagnetic theory. Finally, we briefly try to
introduce the concepts of shape and topology optimization using fabrication dependent
constraints for designing devices that be successfully manufactured by a foundry.

In Chapter 7, we propose a device to enhance directional emission of NV centers, and
efficient coupling with a nanofiber situated 2µm away from the diamond-air interface. First,
we provide a brief introduction to NV centers, and their crucial geometric and electronic
properties. Next, we compare the performance of nanophotonic structure reported in the
literature to enhance the emission properties of solid state emitters. Then, we explain
our design philosophy and the underlying process, and propose a device designed with the
help of adjoint optimization. Our device has a maximum directivity of 7.32dB, which is
higher that the previously discussed structures, like the solid immersion lens (SIL), the
nanopillar, or the bull’s eye pattern. The novelty of the device is that, it does not require
extra focusing elements to properly couple the light into the waveguide. Later, we discuss
in detail how we set up a confocal microscopy setup in our laboratory to image the NV
centers, and characterize our proposed device in the future. We conclude with a brief
discussion of the future steps to bring the project to fruition.
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[2] A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden
heuristischen Gesichtspunkt,” Annalen der Physik, vol. 322, no. 6, pp. 132–148, 1905.

[3] P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,”
in Special Relativity and Quantum Theory, pp. 157–179, Springer Netherlands, 1988.

[4] R. J. Glauber, “Coherent and incoherent states of the radiation field,” Physical Re-
view, vol. 131, pp. 2766–2788, sep 1963.

[5] V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules
by addition and subtraction of single photons to/from a light field,” Science, vol. 317,
pp. 1890–1893, Sep 2007.

[6] A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entan-
glement between gaussian states by coherent photon subtraction,” Physical Review
Letters, vol. 98, Jan 2007.

[7] M. Walschaers, S. Sarkar, V. Parigi, and N. Treps, “Tailoring non-gaussian
continuous-variable graph states,” Physical Review Letters, vol. 121, Nov 2018.

[8] L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-tolerant quan-
tum communication based on solid-state photon emitters,” Physical Review Letters,
vol. 96, Feb 2006.

[9] I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and
S. Prawer, “Diamond-based single-photon emitters,” Reports on Progress in Physics,
vol. 74, p. 076501, Jun 2011.

144



[10] F. Casola, T. van der Sar, and A. Yacoby, “Probing condensed matter physics with
magnetometry based on nitrogen-vacancy centres in diamond,” Nature Reviews Ma-
terials, vol. 3, Jan 2018.

[11] A. Zavatta, V. Parigi, M. S. Kim, and M. Bellini, “Subtracting photons from ar-
bitrary light fields: experimental test of coherent state invariance by single-photon
annihilation,” New Journal of Physics, vol. 10, p. 123006, Dec 2008.

[12] M. Walschaers, C. Fabre, V. Parigi, and N. Treps, “Statistical signatures of mul-
timode single-photon-added and -subtracted states of light,” Physical Review A,
vol. 96, Nov 2017.

[13] M. He, R. Malaney, and J. Green, “Quantum communications via satellite with
photon subtraction,” in 2018 IEEE Globecom Workshops (GC Wkshps), IEEE, Dec
2018.
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[138] S. A. Momenzadeh, R. J. Stöhr, F. F. de Oliveira, A. Brunner, A. Denisenko,
S. Yang, F. Reinhard, and J. Wrachtrup, “Nanoengineered diamond waveguide as a
robust bright platform for nanomagnetometry using shallow nitrogen vacancy cen-
ters,” Nano Letters, vol. 15, pp. 165–169, Dec 2014.

[139] E. Neu, P. Appel, M. Ganzhorn, J. Miguel-Sánchez, M. Lesik, V. Mille, V. Jacques,
A. Tallaire, J. Achard, and P. Maletinsky, “Photonic nano-structures on (111)-
oriented diamond,” Applied Physics Letters, vol. 104, p. 153108, Apr 2014.

[140] M. Y. Su and R. P. Mirin, “Enhanced light extraction from circular bragg grating
coupled microcavities,” Applied Physics Letters, vol. 89, p. 033105, Jul 2006.

[141] M. Davanço, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, “A circular
dielectric grating for vertical extraction of single quantum dot emission,” Applied
Physics Letters, vol. 99, p. 041102, Jul 2011.

156



[142] L. Li, E. H. Chen, J. Zheng, S. L. Mouradian, F. Dolde, T. Schröder, S. Karaveli,
M. L. Markham, D. J. Twitchen, and D. Englund, “Efficient photon collection from
a nitrogen vacancy center in a circular bullseye grating,” Nano Letters, vol. 15,
pp. 1493–1497, Mar 2015.

[143] C. M. Lalau-Keraly, “Lumopt: Python based continuous adjoint optimization wrap-
per for lumerical.” https://github.com/chriskeraly/lumopt.

[144] R. A. Wambold, Z. Yu, Y. Xiao, B. Bachman, G. Jaffe, S. Kolkowitz, J. T. Choy,
M. A. Eriksson, R. J. Hamers, and M. A. Kats, “Adjoint-optimized nanoscale light
extractor for nitrogen-vacancy centers in diamond,” Nanophotonics, vol. 10, pp. 393–
401, Nov 2020.

[145] S. Chakravarthi, P. Chao, C. Pederson, S. Molesky, A. Ivanov, K. Hestroffer,
F. Hatami, A. W. Rodriguez, and K.-M. C. Fu, “Inverse-designed photon extrac-
tors for optically addressable defect qubits,” Optica, vol. 7, p. 1805, Dec 2020.

[146] Patange, Om, “On an instrument for the coherent investigation of nitrogen-vacancy
centres in diamond,” Masters Thesis, 2013.

[147] H. Kogelnik and T. Li, “Laser beams and resonators,” Proceedings of the IEEE,
vol. 54, no. 10, pp. 1312–1329, 1966.

[148] J. Arnaud, “Representation of gaussian beams by complex rays,” Applied Optics,
vol. 24, p. 538, Feb 1985.

[149] D. A. Steck, Classical and modern optics. 2006.

[150] Element Six, “Cvd diamond handbook.” https://e6cvd.com/media/wysiwyg/pdf/

CVD_Diamond_Handbook_digital_01.07.20.pdf.

[151] S. Colburn and A. Majumdar, “Inverse design and flexible parameterization of meta-
optics using algorithmic differentiation,” Communications Physics, vol. 4, Mar 2021.

[152] L. Li, T. Schrder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E.
Trusheim, M. Lu, J. Mower, M. Cotlet, M. L. Markham, D. J. Twitchen, and D. En-
glund, “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nature
Communications, vol. 6, Jan 2015.

[153] B. J. M. Hausmann, “Nanophotonics in diamond,” PhD Thesis, 2013.

157

https://github.com/chriskeraly/lumopt
https://e6cvd.com/media/wysiwyg/pdf/CVD_Diamond_Handbook_digital_01.07.20.pdf
https://e6cvd.com/media/wysiwyg/pdf/CVD_Diamond_Handbook_digital_01.07.20.pdf


[154] M. Challier, S. Sonusen, A. Barfuss, D. Rohner, D. Riedel, J. Koelbl, M. Ganzhorn,
P. Appel, P. Maletinsky, and E. Neu, “Advanced fabrication of single-crystal diamond
membranes for quantum technologies,” Micromachines, vol. 9, p. 148, Mar 2018.

[155] M. Radtke, R. Nelz, A. Slablab, and E. Neu, “Reliable nanofabrication of single-
crystal diamond photonic nanostructures for nanoscale sensing,” Micromachines,
vol. 10, p. 718, Oct 2019.

[156] S. Cui, “Near-surface nitrogen vacancy centers in diamond,” PhD Thesis, 2014.

[157] K. Schönhammer, “Luttinger liquids: the basic concepts,” in Physics and Chemistry
of Materials with Low-Dimens, pp. 93–136, Springer Netherlands.

[158] T. Stauber, “Tomonaga-luttinger model with an impurity for a weak two-body in-
teraction,” Physical Review B, vol. 67, May 2003.

[159] T. Giamarchi, Quantum Physics in One Dimension. Oxford University Press, Dec
2003.

[160] J. Flannery, “Optical resonators integrated into a hollow core photonic crystal fiber
for enhanced light-matter interactions,” PhD Thesis, 2019.

158



APPENDICES

159



Appendix A

Deterministic single photon
subtraction with a three-level to a
chiral waveguide

A.1 Derivation of real space Hamiltonian

In the continuous mode limit we have the Hamiltonian

H/~ = ωegσee +

ˆ ∞
−∞

a†kakωkdk +

ˆ ∞
−∞

V (k)

√
L

2π

(
akσ+ + a†kσ−

)
dk. (A.1)

Here, we shall derive the real space Hamiltonian following the approach in Ref. [51].
We assume that we can linearize the dispersion relationship around the atomic transition
frequency as ωk ≈ ωeg + vg(k − keg) (see Fig. A.1). Moreover, we want to extend this
Hamiltonian to consider the case where there are two counter propagating modes: the
right-propagating mode with operator r(x), and the left-propagating mode with operator
l(x). Thus, we can have both positive and negative wavevectors. The linearized dispersion
relationships for the two counter-propagating modes are given by: ωr ≈ ωeg+vg(k−keg) for
the right-propagating mode, and ωl ≈ ωeg−vg(k+keg) for the left-propagating mode. Then
we shall use the substitution ωk = vg|k| to consider both positive and negative wavevectors,
and introduce the independent left and right modes in Eq. A.1. We also consider that the
coupling constant is frequency independent, i.e., V (k) = V . Doing so, we get:
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Figure A.1: The waveguide dispersion relationship is considered to be linear around ωeg
for near resonant interactions.

H/~ = ωegσee+

ˆ ∞
0

[
r†krk + l†−kl−k

]
vgkdk+

ˆ ∞
0

V
√

L

2π

[
(rk + l−k)σ+ +

(
r†k + l†−k

)
σ−

]
dk.

(A.2)

This mathematical treatment for a 1D quantum system is very similar to the Tomonaga-
Luttinger model [157–159]. For near-resonant interactions, contributions of far-detuned
interactions can be ignored. That allows us to set the lower limit of the integration to −∞
for simplicity. So, we get

H/~ = ωegσee +

ˆ ∞
−∞

[
r†krk − l†klk

]
vgkdk +

ˆ ∞
−∞

V
1√
2π

[
(rk + lk)σ+ +

(
r†k + l†k

)
σ−

]
dk,

(A.3)

where V =
√
LV . Now, we can move from k- space to real space using the Fourier transform

relationships:

l(x) =
1√
2π

ˆ ∞
−∞

lke
ikxdk, r(x) =

1√
2π

ˆ ∞
−∞

rke
ikxdk. (A.4)

Using this relationship, we get the real space Hamiltonian:
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H/~ = ωegσee − ivg
ˆ ∞
−∞

dx

[
r†(x)

∂

∂x
r(x)− l†(x)

∂

∂x
l(x)

]
+

ˆ ∞
−∞

dxV δ(x)
(
r†(x)σ− + r(x)σ+ + l†(x)σ− + l(x)σ+

)
, (A.5)
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Appendix B

Fabrication of photonic crystals for
making cavities inside hollow core
fibers

This work was done together with Vinodh Raj Rajagopal Muthu, and Dr. Rubayet Al
Maruf, with advice and assistance from Dr. Jeremy Flannery. We used the fabrication
recipe developed by Dr. Jeremy Flannery for fabricating the photonic crystals reported in
Ref. [160]. We started with a Si chip with a layer of SiN, and a protective PMMA coating
on top. The steps followed were (see Fig. B.1):

I. Remove PMMA

The PMMA was removed by sonicating the chip in Remover PG at 80◦C for 15mins.

II. Etch SiN to correct thickness

The SiN layer was etched down to 430nm thickness by reactive ion etching (RIE) (Oxford
Instruments ICP380). Standard reflectometry (Filmetrics F40) was used to measure the
thickness of the SiN layer before, and after etching process, and for measuring the etch rate.
We used a mixture of C4F8 at 130 SCCM, and SF6 at 60 SCCM, at 10mTorr pressure,
1000W ICP RF power, and 30W platen RF power. The platen temperature was 15◦C.
Before etching, the chamber was conditioned by running the recipe for 45mins with a
dummy sample to remove any impurities from the chamber.
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Figure B.1: The fabrication process for the photonic crystal membrane.

III. Deposit Aluminum

A 40nm layer of Al was deposited on the SiN film using e-beam physical vapour deposition
(Intlvac Nanochrome II) as a hard mask for step VIII.

IV. Spincoat ZEP

A 450nm thick layer of the positive resist ZEP520A (Zeon Chemicals) on the layer of Al.
A speed of 3000rpm was used for 60s, with a ramp of 3000rpm/s. The resist was developed
by baking it on a hot-plate for 2mins at 180◦C.
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V. E-beam lithography (EBL)

The hexagonal hole pattern was written on ZEP using EBL (JEOL JBX-6300FS) at
100keV. The pattern was developed by treating the chips with amyl-acetate for 90s.

VI. Etch Aluminum

First, any oxide layer on the chip is removed by etching with a mixture of Cl2 at 10 SCCM,
BCl3 at 40 SCCM, and 50 SCCM N2 at 5mTorr pressure, 800W ICP power, and 150W
HF power for 8s. Next, the Al is etched with a mixture of Cl2 at 40 SCCM, BCl3 at 10
SCCM, and 50 SCCM N2 at 5mTorr pressure, 800W ICP power, and 120W HF power for
10s.

VII. Remove ZEP

ZEP was removed by sonicating the chip in Remover PG at 80◦C for 15mins.

VIII. Etch SiN

The SiN layer is etched using the same recipe as in step II. The sample is over-etched to
etch a SiN layer 1.5 times thicker than the original layer to ensure that the holes properly
go through the SiN layer.

VIII. KOH wet etch

The Si substrate, and the Al hard mask is etched using KOH wet etch. The sample is
put in 45% conc. KOH solution at 80◦C for 1 hour, followed by two separate 5min long
baths in deionized water also at 80◦C. After that, the samples are immersed for 5min each
into two separate beakers with IPA. This step of the fabrication process was performed by
Rubayet al Maruf for us.
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Appendix C

Deterministic single photon
subtraction codes

C.1 Temporal dynamics of SPRINT with coherent

continuous input in waveguide

1 import numpy as np

2 import scipy.linalg as lin

3 import matplotlib.pyplot as plt

4 import matplotlib as mpl

5

6 mpl.rcParams.update ({'font.size': 20})

7 mpl.rcParams['font.family '] = 'serif '
8 mpl.rcParams['text.latex.preamble '] = [r'\boldmath ']
9

10 beta = 1 # Coupling efficiency

11 F = 1.4 # Purcell factor

12 gamma0 = 2*np.pi*5.22 # Spontaneous emission rate in free space

13 gamma_tot = F*gamma0

14 gamma_g = gamma_tot*beta # Guided gamma

15 gamma_r = gamma_tot *(1-beta) # Radiated gamma

16 gamma = gamma_r # Gamma in OBE

17

18 V1 = V2 = np.sqrt(gamma_g/np.pi) # Coupling strengths

19 xi = 1 # Directivity

20 VR1 = np.sqrt(xi)*V1

21 VL2 = np.sqrt(xi)*V2

22 VL1 = np.sqrt(1-xi)*V1
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23 VR2 = np.sqrt(1-xi)*V2

24 n = 1 # Input average photon number

25 alpha = np.sqrt (2*np.pi*n)

26

27 # [[ sigma_13], [sigma_31], [sigma_33], [sigma_11], [sigma_22 ]]

28 x = np.matrix ([[0] , [0], [0], [1], [0]])

29

30 # Matrix of co-efficients of Master 's Equation set

31 M = np.matrix ([[-(np.pi*(VR1 **2+ VL1 **2+ VR2 **2+ VL2 **2)+gamma), 0, 1j*VR1*

alpha , -1j*VR1*alpha , 0],

32 [0, -(np.pi*(VR1 **2+ VL1 **2+ VR2 **2+ VL2 **2)+gamma), -1j*VR1*

alpha , 1j*VR1*alpha , 0],

33 [1j*VR1*alpha , -1j*VR1*alpha , -2*(np.pi*(VR1 **2+ VL1 **2+ VR2

**2+ VL2 **2)+gamma), 0, 0],

34 [-1j*VR1*alpha , 1j*VR1*alpha , 2*np.pi*(VR1 **2+ VL1 **2), 0,

0],

35 [0, 0, 2*np.pi*(VR2 **2+ VL2 **2), 0, 0]])

36

37 t = np.linspace(0, 0.1, 1001)

38 sigma11 = np.zeros(len(t))

39 sigma22 = np.zeros(len(t))

40

41 lout1 = np.zeros(len(t))

42 lout2 = np.zeros(len(t))

43 rout1 = np.zeros(len(t))

44 rout2 = np.zeros(len(t))

45 routint2 = np.zeros(len(t))

46 routint1 = np.zeros(len(t))

47 routint = np.zeros(len(t))

48 sigma13 = np.zeros(len(t))

49 sigma31 = np.zeros(len(t))

50

51 # Initial condition

52 sigma11 [0] = 1

53 sigma13 [0] = 0

54 sigma31 [0] = 0

55 rout1 [0] = alpha **2/(2* np.pi)

56 routint2 [0] = 0

57 routint1 [0] = 0

58 routint [0] = 0

59

60 for i in range(1, len(t)):

61 x = lin.expm(M*t[i])*x

62 sigma13[i] = abs(x.item (0))

63 sigma31[i] = abs(x.item (1))

64 sigma11[i] = abs(x.item (3))
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65 sigma22[i] = abs(x.item (4))

66 lout1[i] = 2*np.pi*(VL1 **2)*abs(x.item (2))

67 lout2[i] = 2*np.pi*(VL2 **2)*abs(x.item (2))

68 rout1[i] = abs(alpha **2/(2* np.pi)+1j*VR1*(alpha*x.item (1)-alpha*x.

item (0))+2*np.pi*VR1 **2*x.item (2))

69 rout2[i] = 2*np.pi*(VR2 **2)*abs(x.item (2))

70 routint2[i] = routint2[i - 1] + (rout2[i] * 1 / 1001)

71 routint1[i] = routint1[i - 1] + (rout1[i] * 1 / 1001)

72 routint[i] = routint1[i] + routint2[i]

73

74 plt.plot(t, sigma22*xi , linewidth =1.5, label=r'$\int_ {0}^{t} \langle l^{\

dag}_{2,out} l_{2,out} \rangle dt^{\ prime}$')
75 ## Uncomment the following lines to plot them

76 #plt.plot(t, lout2 , linewidth =1.5, label=r'$\langle l^{\dag}_{2,out} l_

{2,out} \rangle$ ')
77 #plt.plot(t, rout1 , linewidth =1.5, label=r'$\langle r^{\dag}_{1,out} r_

{1,out} \rangle$ ')
78 #plt.plot(t, routint , linewidth =1.5, label=r'$\int_ {0}^{t} \langle r^{\

dag}_{out} r_{out} \rangle dt^{\ prime}$ ')
79 #plt.plot(t, sigma22*VL1 **2/( VR2 **2+ VL2 **2), linewidth =1.5, label=r'$\

int_ {0}^{t} \langle l^{\ dag}_{1,out} l_{1,out} \rangle dt^{\ prime}$ ')
80 #plt.plot(t, sigma22 *(1-xi), linewidth =1.5, label=r'$\int_ {0}^{t} \langle

r^{\dag}_{2,out} r_{2,out} \rangle dt^{\ prime}$ ')
81 #plt.plot(t, sigma11 , linewidth =1.5, label=r'$\langle \sigma_ {11} \

rangle$ ')
82 #plt.plot(t, sigma22 , linewidth =1.5, label=r'$\langle \sigma_ {22} \

rangle$ ')
83 plt.xlabel(r'$\rm{ \tau }$', fontsize =25)

84 plt.ylabel(r'$\rm{ \int_0 ^{\tau} \langle l_{out }^{(2)\dagger} l_{out

}^{(2)} \rangle dt }$', fontsize =25)

85 plt.title(r'$\xi = %g, \beta = %g, |\alpha |^{2} = %g$' % (xi , beta , alpha

**2/(2* np.pi)), fontsize =25)

86 plt.legend(loc =0)

87 plt.grid()

88 plt.show()

C.2 Dependence of deterministic single photon sub-

traction probability on pulsewidth with coherent

pulsed input in waveguide

1 def f(t, tau):

2 return np.sqrt (2)*np.exp(-2*(t/tau)**2)/np.power(np.pi*tau**2, 1/4)

3
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4 beta = 1 # Coupling efficiency

5 F = 1.4 # Purcell factor

6 gamma0 = 2*np.pi *5.22 # Spontaneous emission rate in free space

7 gamma_tot = F*gamma0

8 gamma_g = gamma_tot*beta # Guided gamma

9 gamma_r = gamma_tot *(1-beta) # Radiated gamma

10 gamma = gamma_r # Gamma in OBE

11

12 V1 = V2 = np.sqrt(gamma_g/np.pi) # Coupling strengths

13 xi = 1 # Directivity

14 VR1 = np.sqrt(xi)*V1

15 VL2 = np.sqrt(xi)*V2

16 VL1 = np.sqrt(1-xi)*V1

17 VR2 = np.sqrt(1-xi)*V2

18 n = 1 # Input average photon number

19 alpha = np.sqrt(n)

20

21 # Initial condition of [[ sigma_13], [sigma_31], [sigma_33], [sigma_11], [

sigma_22 ]]

22 x0 = np.matrix ([[0], [0], [0], [1], [0]])

23

24 # List of pulsewidth

25 tau = np.linspace(0, 15, 40)

26

27 prob = []

28

29 for j in range(0, len(tau)):

30 t = np.linspace(-5 * tau[j], 5 * tau[j], 50001)

31 sigma22 = np.zeros(len(t))

32 x = x0

33

34 for i in range(0, len(t)):

35 # Matrix of co -efficients of Master 's Equation set

36 M = np.matrix ([[-(np.pi * (VR1 ** 2 + VL1 ** 2 + VR2 ** 2 + VL2

** 2) + gamma), 0, 1j * np.sqrt(2 * np.pi) * VR1 * alpha * f(t[i],

tau[j]), -1j * np.sqrt(2 * np.pi) * VR1 * alpha * f(t[i], tau[j]),

0],

37 [0, -(np.pi * (VR1 ** 2 + VL1 ** 2 + VR2 ** 2 +

VL2 ** 2) + gamma), -1j * np.sqrt(2 * np.pi) * VR1 * alpha * f(t[i],

tau[j]), 1j * np.sqrt(2 * np.pi) * VR1 * alpha * f(t[i], tau[j]), 0],

38 [1j * np.sqrt(2 * np.pi) * VR1 * alpha * f(t[i],

tau[j]), -1j * np.sqrt(2 * np.pi) * VR1 * alpha * f(t[i], tau[j]), -2

* (np.pi * (VR1 ** 2 + VL1 ** 2 + VR2 ** 2 + VL2 ** 2) + gamma), 0,

0],

39 [-1j * np.sqrt(2 * np.pi) * VR1 * alpha * f(t[i],

tau[j]), 1j * np.sqrt(2 * np.pi) * VR1 * alpha * f(t[i], tau[j]), 2 *
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np.pi * (VR1 ** 2 + VL1 ** 2), 0, 0],

40 [0, 0, 2 * np.pi * (VR2 ** 2 + VL2 ** 2), 0, 0]])

41 x = x + (t[i] - t[i - 1]) * M * x

42

43 sigma22[i] = abs(x.item (4))

44

45 prob.append(sigma22 [50000]* beta)

46

47 plt.plot(tau , prob , 'ro', linewidth =1.5)

48 plt.plot(tau , prob , 'k', linewidth =1.5)

49 plt.xlabel(r'$\tau$', fontsize =25)

50 plt.ylabel(r'$P = \int_0 ^{\ tau} \langle l_{out }^{\ dagger} l_{out} \rangle

dt$', fontsize =25)

51 plt.title(r'$\overline{n}_{in} = %g ,\xi = %g, \beta = %g$' % (n, xi,

beta), fontsize =25)

52 plt.grid()

53 plt.show()

C.3 Dependence of deterministic single photon sub-

traction probability on input photon number for

Fock state input in waveguide

1 import numpy as np

2 import numpy.matlib as matlib

3 import matplotlib

4 import matplotlib.pyplot as plt

5

6 matplotlib.rcParams.update ({'font.size': 30})

7

8 def f(t, tau):

9 return np.sqrt (2)*np.exp(-2*(t/tau)**2)/np.power(np.pi*tau**2, 1/4)

10

11 beta = 1 # Coupling efficiency

12 F = 1.4 # Purcell factor

13 gamma0 = 2*np.pi*5.22 # Spontaneous emission rate in free space

14 gamma_tot = F*gamma0

15 gamma_g = gamma_tot*beta # Guided gamma

16 gamma_r = gamma_tot *(1-beta) # Radiated gamma

17 gamma = gamma_r # Gamma in OBE

18

19 V1 = V2 = np.sqrt(gamma_g/np.pi) # Coupling strengths

20 xi = 1 # Directivity

21 VR1 = np.sqrt(beta)*V1
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22 VL2 = np.sqrt(beta)*V2

23 VL1 = np.sqrt(1-beta)*V1

24 VR2 = np.sqrt(1-beta)*V2

25

26 N = 5 # Input photon number

27 tau = 1 # Pulsewidth

28

29 t = np.linspace (-5*tau , 5*tau , 50001)

30 sigma11 = np.zeros((N+1, len(t)))

31 lout2 = np.zeros ((N+1, len(t)))

32 lout2int = np.zeros ((N+1, len(t)))

33

34 M = matlib.zeros ((4*(N+1)**2, 4*(N+1) **2), dtype=np.complex)

35 x = matlib.zeros ((4*(N+1)**2, 1))

36

37 for i in range(N+1):

38 x[4*((N+1)*i+i)+3] = 1

39

40 for j in range(N+1):

41 M[4*((N+1)*i+j), 4*((N+1)*i+j)] = -(np.pi*(VR1 **2+ VL1 **2+ VR2 **2+

VL2 **2)+gamma)

42 M[4*((N+1)*i+j)+1, 4*((N+1)*i+j)+1] = -(np.pi*(VR1 **2+ VL1 **2+ VR2

**2+ VL2 **2)+gamma)

43 M[4*((N+1)*i+j)+2, 4*((N+1)*i+j)+2] = -2*(np.pi*(VR1 **2+ VL1 **2+

VR2 **2+ VL2 **2)+gamma)

44 M[4*((N+1)*i+j)+3, 4*((N+1)*i+j)+2] = 2*np.pi*(VR1 **2+ VL1 **2)

45

46 for i in range(1, len(t)):

47 for j in range(N+1):

48 for k in range(N+1):

49 if k >= 1:

50 M[4*((N+1)*j+k), 4*((N+1)*j+k-1)+2] = 1j*np.sqrt (2*np.pi)

*VR1*np.sqrt(k)*f(t[i], tau)

51 M[4*((N+1)*j+k), 4*((N+1)*j+k-1)+3] = -1j*np.sqrt (2*np.pi

)*VR1*np.sqrt(k)*f(t[i], tau)

52 M[4*((N+1)*j+k)+2, 4*((N+1)*j+k-1)+1] = -1j*np.sqrt (2*np.

pi)*VR1*np.sqrt(k)*f(t[i], tau)

53 M[4*((N+1)*j+k)+3, 4*((N+1)*j+k-1)+1] = 1j*np.sqrt (2*np.

pi)*VR1*np.sqrt(k)*f(t[i], tau)

54 if j >= 1:

55 M[4*((N+1)*j+k)+1, 4*((N+1)*(j-1)+k)+2] = -1j*np.sqrt (2*

np.pi)*VR1*np.sqrt(j)*f(t[i], tau)

56 M[4*((N+1)*j+k)+1, 4*((N+1)*(j-1)+k)+3] = 1j*np.sqrt (2*np

.pi)*VR1*np.sqrt(j)*f(t[i], tau)

57 M[4*((N+1)*j+k)+2, 4*((N+1)*(j-1)+k)] = 1j*np.sqrt (2*np.

pi)*VR1*np.sqrt(j)*f(t[i], tau)
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58 M[4*((N+1)*j+k)+3, 4*((N+1)*(j-1)+k)] = -1j*np.sqrt (2*np.

pi)*VR1*np.sqrt(j)*f(t[i], tau)

59

60 x = x+(t[i]-t[i-1])*M*x

61

62 for j in range(N+1):

63 lout2[j][i] = 2*np.pi*VL2 **2* abs(x.item (4*((N+1)*j+j)+2))

64 lout2int[j][i] = lout2int[j][i-1]+ lout2[j][i]*(t[i]-t[i-1])

65

66 plt.plot(range(1, N+1), np.linspace(1, N, N) - lout2int [1:, -1], 'bo --',
linewidth =1.5, label='After subtraction ')

67 plt.plot(range(1, N+1), range(1, N+1), 'k--', linewidth =1.5, label='
Before subtraction ')

68 plt.plot(range(1, N+1), lout2int [1:, -1], 'mo--', linewidth =1.5, label='
Subtracted photons ')

69 plt.xlabel(r'$n_{in}$', fontsize =25)

70 plt.ylabel(r'$n_{out}$', fontsize =25)

71 plt.xticks(range(1, N+1))

72 plt.legend(loc=0, fontsize =25)

73 plt.yticks(np.linspace(0, N, N+1))

74 plt.title(r'$\xi = %g, \beta = %g, \tau = %g$' % (xi, beta , tau),

fontsize =30)

75 plt.grid()

76 plt.show()

C.4 Temporal dynamics of SPRINT in a cavity with

no drive and with a coherent state (n̄ = 1) in r

mode initially

1 #Unit GHz

2 # Coupling strength

3 g_1 = g_2 = 2 * np.pi * 10

4

5 # Energy level frequencies

6 wr = 2*2*np.pi *10**5

7 wl = wa - 0.5*2* np.pi

8 w13 = 2*2*np.pi *10**5

9 w12 = 0.5*2* np.pi

10

11 # Frequencies in rotating frame if resonant drive is present

12 #del_wr = wr - wr

13 #del_wl = wl - wr

14 #del_w13 = w13 - wr
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15

16 # Loss terms

17 gamma = 2 * np.pi * 0.25

18 gamma31 = gamma32 = gamma

19 kappa = gamma

20 kappa_r = kappa

21 kappa_l = kappa

22

23 N = M = 5 # Size of Hilbert space

24 samples = 10001

25 t = 5

26 tlist = np.linspace(0,t,samples)

27

28 # Three atomic states

29 one = basis (3,0)

30 three = basis (3,1)

31 two = basis (3,2)

32

33 # Atom density matrix elements

34 sig11 = one*one.dag()

35 sig22 = two*two.dag()

36 sig33 = three*three.dag()

37 sig12 = one*two.dag()

38 sig13 = one*three.dag()

39 sig23 = two*three.dag()

40

41 # Tensor space will be in the form mode_r * mode_l * atom

42 r = tensor(destroy(N),qeye(M),qeye (3))

43 l = tensor(qeye(N),destroy(M),qeye (3))

44

45 sigma11 = tensor(qeye(N),qeye(M),sig11)

46 sigma22 = tensor(qeye(N),qeye(M),sig22)

47 sigma33 = tensor(qeye(N),qeye(M),sig33)

48 sigma12 = tensor(qeye(N),qeye(M),sig12)

49 sigma13 = tensor(qeye(N),qeye(M),sig13)

50 sigma23 = tensor(qeye(N),qeye(M),sig23)

51

52 # Initial condition

53 psi0 = tensor(coherent(N,1),basis(M,0),basis (3,0))

54 rho_i = psi0 * psi0.dag()

55

56 # Hamiltonian

57 H_int = g_1 * (r * sigma13.dag() + r.dag() * sigma13) + g_2 * (l *

sigma23.dag() + l.dag() * sigma23)

58 H_0 = wr * r.dag() * r + wl * l.dag() * l + w13 * sigma33 + w12 * sigma22

59 H = H_0 + H_int
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60

61 # Hamiltonian if resonant drive is present

62 #d = kappa /2

63 #Hd = d * (r + r.dag())

64 #H_int = g_1 * (r * sigma13.dag() + r.dag() * sigma13) + g_2 * (l *

sigma23.dag() + l.dag() * sigma23)

65 #H_0 = del_wr * r.dag() * r + del_wl * l.dag() * l + del_w13 * sigma33 +

w12 * sigma22

66 #H = H_0 + H_int + Hd

67

68 # Collapse operators

69 C_1 = np.sqrt(kappa_r) * r

70 C_2 = np.sqrt(kappa_l) * l

71 C_3 = np.sqrt(gamma) * sigma33

72 C_4 = np.sqrt(gamma31) * sigma13

73 C_4 = np.sqrt(gamma32) * sigma23

74 c_ops = [C_1 ,C_2 ,C_3 ,C_4 ,C_5]

75

76 options = Options ()

77 options.nsteps = 10000

78

79 # Uncomment the next 2 lines for Monte Carlo simulations

80 #ntraj = 100

81 #result = mcsolve(H,psi0 ,tlist ,c_ops ,[sigma11 ,sigma22 ,sigma33 ,r.dag()*r,l

.dag()*l,C_1.dag()*C_1 ,C_2.dag()*C_2],options=options ,ntraj=ntraj ,

progress_bar=HTMLProgressBar ())

82

83 # Master equation solver

84 result = mesolve(H,psi0 ,tlist ,c_ops ,[sigma11 ,sigma22 ,sigma33 ,r.dag()*r,l.

dag()*l,C_1.dag()*C_1 ,C_2.dag()*C_2],options=options ,progress_bar=

HTMLProgressBar ())

85

86 # Plot

87 fig , axes = plt.subplots(2, 2, figsize =(16, 8), sharex=True)

88

89 axes [0 ,0]. plot(tlist ,result.expect [0], label=r'${\ langle \sigma_ {11} \

rangle}$', lw=2)

90 axes [0 ,0]. plot(tlist ,result.expect [1], label=r'${\ langle \sigma_ {22} \

rangle}$', lw=2)

91 axes [0 ,0]. plot(tlist ,result.expect [2], label=r'${\ langle \sigma_ {33} \

rangle}$', lw=2)

92 axes [0 ,0]. legend(loc =1)

93

94 axes [0 ,1]. plot(tlist , result.expect [3], label=r'${\ langle r^{\ dag}r \

rangle}$',lw=2)
95 axes [0 ,1]. plot(tlist , result.expect [4], label=r'${\ langle l^{\ dag}l \
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rangle}$', lw=2)

96 axes [0 ,1]. legend(frameon=False , framealpha =1)

97

98 axes [1 ,0]. plot(tlist , result.expect [5], label=r'${\ langle r_{out }^{\ dag}

r_{out} \rangle}$', lw=2)

99 axes [1 ,0]. plot(tlist , result.expect [6], label=r'${\ langle l_{out }^{\ dag}

l_{out} \rangle}$', lw=2)

100 axes [1 ,0]. legend(frameon=False , framealpha =1)

101 axes [1 ,0]. set_xlabel('Time (ns)')
102

103 routint = np.zeros(len(tlist))

104 loutint = np.zeros(len(tlist))

105 rout = result.expect [5]

106 lout = result.expect [6]

107

108 for i in range(1,len(tlist)):

109 routint[i] = (rout[i]*((t)/samples) + routint[i-1])

110 loutint[i] = (lout[i]*((t)/samples) + loutint[i-1])

111

112 axes [1 ,1]. plot(tlist , routint , label=r'${\int_ {0}^{t} dt \langle r_{out

}^{\ dag}r_{out} \rangle}$', lw=2)

113 axes [1 ,1]. plot(tlist , loutint , label=r'${\int_ {0}^{t} dt \langle l_{out

}^{\ dag}l_{out} \rangle}$',lw=2)
114 axes [1 ,1]. legend(frameon=False , framealpha =1,loc='upper right ',

bbox_to_anchor =(1, 0.58))

115 axes [1 ,1]. set_xlabel('Time (ns)')
116

117 np.savez('Transient_initial_n_1_kappa_equal_N_5.npz',sigma11=result.
expect [0], sigma22=result.expect [1], sigma33=result.expect [2], r_dag_r=

result.expect [3], l_dag_l=result.expect [4], r_out=result.expect [5],

l_out=result.expect [6], int_r_out=routint ,int_l_out=loutint ,kappa_r=

kappa_r ,kappa_l=kappa_l ,N=N,tlist=tlist)

C.5 Calculating second-order correlation function

1 samples = 10001

2 t = 20

3 tlist = np.linspace(0,t,samples)

4

5 # Master equation solver

6 result = mesolve(H,psi0 ,tlist ,c_ops ,[r.dag()*r.dag()*r*r,r.dag()*r,l.dag

()*l.dag()*l*l,l.dag()*l],progress_bar=True)

7

8 # Calculate g(2) of modes r and l

9 g2_r = result.expect [0]/( result.expect [1]) **2
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10 g2_l = result.expect [2]/( result.expect [3]) **2

C.6 Calculating Wigner function W (x, p) when instan-

taneous fidelity of single photon in l mode is max-

imum

1 # Master equation solver

2 result=mesolve(H,psi0 ,tlist ,c_ops ,[], progress_bar=HTMLProgressBar ())

3

4 # Find time with maximum fidelity by looping through the density matrices

at different times

5 fid_list = []

6

7 for i in range(samples):

8 rho_l = (result.states[i]).ptrace (1)

9 fid_list.append(fidelity(rho_l ,fock_dm(N,1)))

10

11 t_id = np.argmax(fid_list)

12 rho_id = result.states[t_id]

13

14 # Reduced density matrices of modes r (0) and l (1), and the emitter (2)

15 rho0 = rho_id.ptrace (0)

16 rho1 = rho_id.ptrace (1)

17 rho2 = rho_id.ptrace (2)

18

19 xvec = np.linspace (-3,3,200)

20 W0 = wigner(rho0 ,xvec ,xvec ,'iterative ' ,2)
21 W1 = wigner(rho1 ,xvec ,xvec ,'iterative ' ,2)
22 W2 = wigner(rho2 ,xvec ,xvec ,'iterative ' ,2)
23

24 # Plot

25 fig , axes = plt.subplots(1, 3, figsize =(20 ,4.5))

26 cont0 = axes [0]. contourf(xvec , xvec , W0, 100, cmap='inferno ')
27 lbl0 = axes [0]. set_title(r"$t=%.1f$ ns, r mode" %(t*t_id/samples),

fontsize =20)

28 v1 = np.linspace(W0.min(), W0.max(), 10, endpoint=True)

29 cbar=fig.colorbar(cont0 , ax=axes[0], ticks=v1)

30 cbar.ax.set_yticklabels (["{:4.2f}".format(i) for i in v1])

31

32 cont1 = axes [1]. contourf(xvec , xvec , W1, 100, cmap='inferno ')
33 lbl1 = axes [1]. set_title(r"$t=%.1f$ ns, l mode" %(t*t_id/samples),

fontsize =20)

34 v1 = np.linspace(W1.min(), W1.max(), 10, endpoint=True)
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35 cbar=fig.colorbar(cont1 , ax=axes[1], ticks=v1)

36 cbar.ax.set_yticklabels (["{:4.2f}".format(i) for i in v1])

37

38 cont2 = axes [2]. contourf(xvec , xvec , W2, 100, cmap='inferno ')
39 lbl2 = axes [2]. set_title(r"$t=%.1f$ ns, $\Lambda$ emitter" %(t*t_id/

samples), fontsize =20)

40 v1 = np.linspace(W2.min(), W2.max(), 10, endpoint=True)

41 cbar=fig.colorbar(cont2 , ax=axes [2])

42 cbar.ax.set_yticklabels (["{:4.2f}".format(i) for i in v1])

C.7 Calculating the entropies

1 # Master equation solver

2 result=mesolve(H,psi0 ,tlist ,c_ops ,[], progress_bar=HTMLProgressBar ())

3

4 S_r =[]

5 S_l =[]

6 S_atom =[]

7 S_rho_r = []

8 S_rho_l = []

9 S_rho_atom = []

10

11 # Calculate the entropies

12 for i in range(0,len(tlist)):

13 rho = result.states[i]

14 rho1 = rho.ptrace (0)

15 rho2 = rho.ptrace (1)

16 rho3 = rho.ptrace (2)

17 S_rho_r.append(entropy_conditional(rho ,0,base =2))

18 S_rho_l.append(entropy_conditional(rho ,1,base =2))

19 S_rho_atom.append(entropy_conditional(rho ,2,base =2))

20 S_r.append(entropy_vn(rho1 ,base =2))

21 S_l.append(entropy_vn(rho2 ,base =2))

22 S_atom.append(entropy_vn(rho3 ,base =2))

23

24 # Plot

25 fig = plt.figure(figsize =(10 ,7))

26 plt.plot(tlist , S_r , 'r', label=r'$S(\ rho_r)$', lw=2)

27 plt.plot(tlist , S_l , 'g', label=r'$S(\ rho_l)$', lw=2)

28 plt.plot(tlist , S_atom , 'b', label=r'$S(\rho_{\ Lambda })$', lw=2)

29 plt.plot(tlist , S_rho_r , 'r:', label=r'$S(\rho|\ rho_r)$', lw=2)

30 plt.plot(tlist , S_rho_l , 'g:', label=r'$S(\rho|\ rho_l)$', lw=2)

31 plt.plot(tlist , S_rho_atom , 'b:', label=r'$S(\rho|\rho_{\ Lambda })$', lw

=2)

32 plt.legend(frameon=False , framealpha =1, fontsize =27, loc='upper right ',

177



bbox_to_anchor =(1, 1))

33 plt.xlabel('Time (ns)', fontsize =25)

34 plt.ylabel('Entropy ', fontsize =25)

C.8 Ideal deterministic single photon subtraction op-

erator

1 # N = Size of Hilbert space

2 def subtract(N, offset =0):

3 matrix = np.zeros([N, N], dtype=complex)

4 matrix [0,0] = 1

5 for i in range(0, N-1):

6 matrix[i,i+1] = 1

7 return Qobj(matrix , isherm=False)
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Appendix D

Inverse design codes

This work was done together with Vinodh Raj Rajagopal Muthu.

D.1 Lumerical code (.lsf)

1 switchtolayout;

2 selectall;

3 delete;

4

5 ## SIM PARAMS

6 opt_size_x = 3.0e-6;

7 opt_size_y = 3.0e-6;

8 opt_size_z = 300e-9;

9

10 fiber_rad = 700e-9;

11

12 dist_to_source = 200e-9;

13 dist_to_fiber = 2e-6;

14

15 grating_thickness = 300e-9;

16

17 size_x = opt_size_x + 1.5e-6;

18 size_y = opt_size_y + 1.5e-6;

19 size_z_min = - (grating_thickness /2 + dist_to_source + 50e-9);

20 size_z_max = grating_thickness /2 + dist_to_fiber + 50e-9;

21

22 wavelength = 680e-9;

23
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24 diamond_index = 2.41;

25 fiber_index = 1.44;

26 air_index = 1;

27

28 dx = 20e-9;

29

30 # DIAMOND SAMPLE

31 addrect;

32 set('name','diamond sample ');
33 set('x' ,0);
34 set('x span' ,2* opt_size_x);
35 set('y' ,0);
36 set('y span' ,2* opt_size_y);
37 set('z max',-grating_thickness /2);
38 set('z min',-grating_thickness /2 - 1e-6);

39 set('index ',diamond_index);
40

41 # OUTPUT FIBER

42 addcircle;

43 set('name','output fiber top');
44 set('x' ,0);
45 set('y' ,0);
46 set('radius ',fiber_rad);
47 set('z min',grating_thickness /2 + dist_to_fiber);

48 set('z max',grating_thickness /2 + dist_to_fiber + 5e-6);

49 set('index ',fiber_index);
50

51 # NV CENTER SOURCE

52 adddipole;

53 set('x' ,0);
54 set('y' ,0);
55 set('z',-grating_thickness /2 - dist_to_source);

56 set('amplitude ' ,1);
57 set('center wavelength ',wavelength);
58 set('wavelength span' ,0);
59 set('theta ' ,90);
60

61 # FDTD

62 addfdtd;

63 set('dimension ','3D');
64 set('background index ',air_index);
65 set('mesh accuracy ' ,3); #< To increase this , we also need to refine the

optimization mesh below 20nm

66 set('x min',-size_x /2);
67 set('x max',size_x /2);
68 set('y min',-size_y /2);
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69 set('y max',size_y /2);
70 set('z min',size_z_min - 0.5e-6);

71 set('z max',size_z_max);
72 set('auto shutoff min',1e-7);
73

74 # OPTIMIZATION FIELDS MONITOR IN OPTIMIZABLE REGION

75 addpower;

76 set('name','opt_fields ');
77 set('monitor type','3D');
78 set('x' ,0);
79 set('x span',opt_size_x);
80 set('y' ,0);
81 set('y span',opt_size_y);
82 set('z' ,0);
83 set('z span',opt_size_z);
84

85 # FOM

86 addpower;

87 set('name','fom');
88 set('monitor type','2D Z-normal ');
89 set('x' ,0);
90 set('x span',fiber_rad * 2.5);

91 set('y' ,0);
92 set('y span',fiber_rad * 2.5);

93 set('z',grating_thickness /2 + dist_to_fiber);

94

95 # FOR LATER VISUALIZATION

96 addindex;

97 set('name','global_index ');
98 set('monitor type','3D');
99 set('x min',-size_x /2);

100 set('x max',size_x /2);
101 set('y min',-size_y /2);
102 set('y max',size_y /2);
103 set('z min',-opt_size_z /2);
104 set('z max',opt_size_z /2);
105 set('enabled ',true);
106

107 # INITIAL BULLSEYE GEOMETRY

108 addstructuregroup;

109 set('name','initial_guess ');
110 mesh_order = 2;

111 period = wavelength/diamond_index; #< Second order Bragg grating

criterion

112 radius = 2 * period;

113 ridge_width = period /2;
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114

115 addcircle;

116 set('name','center_circle ');
117 set('x' ,0);
118 set('y' ,0);
119 set('radius ',radius - ridge_width);

120 set('z max',grating_thickness /2);
121 set('z min',-grating_thickness /2);
122 set('index ',diamond_index);
123 addtogroup("initial_guess");

124

125 for (0; 2*( radius + ridge_width) < opt_size_x; 0) {

126 addring;

127 set('name','ring');
128 set("x" ,0);

129 set("y" ,0);

130 set("inner radius",radius);

131 set("outer radius",radius + ridge_width);

132 set("z" ,0);

133 set("z span",grating_thickness);

134 set('index ',diamond_index);
135 addtogroup("initial_guess");

136 radius = radius + period;

137 }

D.2 Python code (.py)

1 # General purpose imports

2 import numpy as np

3 import os

4 import sys

5 import scipy as sp

6

7 # Uncomment the next two lines if using Linux

8 #import imp

9 #lumapi = imp.load_source (" lumapi", "/opt/lumerical /2019b/api/python/

lumapi.py")

10

11 # Optimization specific imports

12 from lumopt import CONFIG

13 from lumopt.geometries.topology import TopologyOptimization2D ,

TopologyOptimization3DLayered

14 from lumopt.utilities.load_lumerical_scripts import load_from_lsf

15 from lumopt.figures_of_merit.modematch import ModeMatch

16 from lumopt.optimization import Optimization
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17 from lumopt.optimizers.generic_optimizers import ScipyOptimizers

18 from lumopt.utilities.wavelengths import Wavelengths

19

20 # DEFINE BASE SIMULATION #

21 def runSim(params , eps_air , eps_diamond , x_pos , y_pos , z_pos , size_x ,

filter_R):

22

23 # DEFINE A 3D TOPOLOGY OPTIMIZATION REGION #

24 geometry = TopologyOptimization3DLayered(params=params , eps_min=

eps_air , eps_max=eps_diamond , x=x_pos , y=y_pos , z=z_pos , filter_R=

filter_R)

25

26 # DEFINE FIGURE OF MERIT #

27 # The base simulation script defines a field monitor named 'fom' at

the point where we want to modematch to the fundamental TE mode

28 fom = ModeMatch(monitor_name = 'fom', mode_number = 'Fundamental TE

mode', direction = 'Forward ', norm_p = 2)

29

30 # DEFINE OPTIMIZATION ALGORITHM #

31 optimizer = ScipyOptimizers(max_iter =40, method='L-BFGS -B',
scaling_factor =1, pgtol=1e-6, ftol=1e-4, scale_initial_gradient_to

=0.25)

32

33 # LOAD TEMPLATE SCRIPT AND SUBSTITUTE PARAMETERS #

34 script = load_from_lsf(os.path.join(CONFIG['root'], 'examples/
NV_grating/dipole_source.lsf'))

35

36 wavelengths = Wavelengths(start = 680e-9, stop = 680e-9, points = 1)

37 opt = Optimization(base_script=script , wavelengths = wavelengths , fom

=fom , geometry=geometry , optimizer=optimizer , use_deps=False ,

hide_fdtd_cad=True , plot_history=False , store_all_simulations=False)

38

39 # RUN THE OPTIMIZER #

40 opt.run()

41

42 if __name__ == '__main__ ':
43 size_x = 3000

44 size_y = 3000

45 size_z = 300

46

47 filter_R = 400e-9

48

49 # Permittivity of diamond and air

50 eps_diamond = 2.41**2

51 eps_air = 1**2

52
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53 if len(sys.argv) > 2 :

54 size_x = int(sys.argv [1])

55 filter_R = int(sys.argv [2])*1e-9

56 print(size_x ,filter_R)

57

58 x_points = int(size_x /20) + 1

59 y_points = int(size_y /20) + 1

60 z_points = int(size_z /20) + 1

61

62 x_pos = np.linspace(-size_x /2*1e-9,size_x /2*1e-9,x_points)

63 y_pos = np.linspace(-size_y /2*1e-9,size_y /2*1e-9,y_points)

64 z_pos = np.linspace(-size_z /2*1e-9,size_z /2*1e-9,z_points)

65

66 ## And then also a few systematic tests

67 paramList =[None , #< Use the structure

defined in the project file as initial condition

68 np.ones((x_points ,y_points)), #< Start with the

domain filled with eps_diamond

69 0.5*np.ones((x_points ,y_points)), #< Start with the

domain filled with (eps_diamond+eps_air)/2

70 np.zeros((x_points ,y_points)), #< Start with the

domain filled with eps_air

71 ]

72

73 for curParams in paramList:

74 runSim(curParams , eps_air , eps_diamond , x_pos , y_pos , z_pos ,

size_x *1e-9, filter_R)
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Appendix E

Gaussian beam waist calculation code

This work was done together with Vinodh Raj Rajagopal Muthu.

E.1 Mathematica code

1 (*ABCD Matrices *)

2 Lens[f_] := {{1, 0}, {-1/f, 1}};

3 Air[d_] := {{1, d}, {0, 1}};

4

5 (*The ray vectors at z=0*)

6 Xi[wavelength_ , w0_] := {{0}, {wavelength /(Pi*w0)}};

7 Eta[w0_] := {{w0}, {0}};

8

9 WInit = 1.4*2; (*The back aperture diameter of the objective is 2.8mm*)

10 Lambda = 532*(10^ -9);

11 f1 = 100; f2 = 200; f3 = 200;

12 d1 = ((f1^2)/f2) + f1 - (d3*((f1/f2)^2));

13 (*This relationship will be useful when putting lenses between the \

14 galvo and the objective ,so that the back aperture of the objective \

15 and the galvo are conjugate.However ,in this simulation the value of \

16 d1 does not matter.*)

17 d2 = f1 + f2; d3 = 150; d4 = f3;

18

19 (* Propagation through air*)

20 M1 = Air[z];

21 Eta1 = M1.Eta[WInit]; Xi1 = M1.Xi[Lambda , WInit];

22 R1 = Sqrt[Eta1 [[1]]^2 + Xi1 [[1]]^2];

23
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24 (* Propagation through lens L1*)

25 M2 = Air[z - d1].Lens[f1].Air[d1];

26 Eta2 = M2.Eta[WInit]; Xi2 = M2.Xi[Lambda , WInit];

27 R2 = Sqrt[Eta2 [[1]]^2 + Xi2 [[1]]^2];

28

29 (* Propagation through lens L2*)

30 M3 = Air[z - d1 - d2].Lens[f2].Air[d2].Lens[f1].Air[d1];

31 Eta3 = M3.Eta[WInit]; Xi3 = M3.Xi[Lambda , WInit];

32 R3 = Sqrt[Eta3 [[1]]^2 + Xi3 [[1]]^2];

33

34 (* Propagation through lens L3*)

35 M4 = Air[z - d1 - d2 - d3].Lens[f3].Air[d3].Lens[f2].Air[d2].Lens[

36 f1].Air[d1];

37 Eta4 = M4.Eta[WInit]; Xi4 = M4.Xi[Lambda , WInit];

38 R4 = Sqrt[Eta4 [[1]]^2 + Xi4 [[1]]^2];

39

40 Plot[Piecewise [{{R1 , z < d1}, {R2 ,

41 d1 < z < (d2 + d1)}, {R3 , (d1 + d2 + d3) > z > (d2 + d1)}, {R4 ,

42 z > (d1 + d2 + d3)}}], {z, 0, d1 + d2 + d3 + d4},

43 AxesLabel -> {"z (mm)", "Beam radius (mm)"}, ImageSize -> Large ,

44 LabelStyle -> {24, GrayLevel [0]}]
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Figure E.1: Beam radius of the red light while moving though the optical setup for fL1 =
100mm, fL2 = 200mm, and fL3 = 200mm.
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Appendix F

Galvo controller circuit

This work was done together with Vinodh Raj Rajagopal Muthu.

Figure F.1: The manual galvo controller circuit schematic.
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