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Abstract 

The advances in additive manufacturing (AM) have opened new possibilities in design and 

manufacturing that were not previously attainable. AM has found application in several industries such 

as aerospace, medical, automotive, power, and a host of others. Of its many unique selling points, one 

of the most appealing is the design freedom it offers due to its capability to produce structurally complex 

parts. In design for additive manufacturing (DfAM), one of the most common structural design tools is 

topology optimization. Topology optimization is a mathematical tool that obtains the optimal structural 

layout of a design for an objective, and together with additive manufacturing, optimal structural designs 

are possible with almost no manufacturability concern so long certain constraints are adhered to.  

Many efforts have gone into topology optimization for design-independent loads such as point forces, 

restricted or design-independent pressure loads, torques, etc., including the considerations for additive 

manufacturing. However, fewer works exist for design-dependent loads, especially when multiple load 

cases are concerned. Furthermore, even fewer works have attempted to develop topology optimization 

models for design-dependent loads while considering manufacturability.  

In this research, frameworks have been proposed to handle topology optimization of structures under 

design-dependent loads (thermal stress load – TSL, centrifugal loads, and design-dependent pressure 

loads) and AM constraints (overhang and feature size control). The first framework for design-dependent 

loads is achieved by introducing the Boundary Identification and Load Evolution (BILE) model, load 

thresholding, and sensitivity scaling in a weighted multiobjective topology optimization process. The 

BILE model, specifically for pressure loads, resulted in optimal designs under 80 seconds and 100 

iterations for 5,000 to 13,000 design elements using a regular desktop computing power. Load 

thresholding applied to thermal stress loads for a threshold 𝜂 = 0.8, resulted in a reasonably stable 

optimization process. Also, sensitivity scales were applied to sensitivity contributions from TSLs and 

centrifugal loads. This ensured that optimal solutions were obtained with fewer numerical instabilities 

while using simple optimizers at low optimization iterations. The second framework developed is a post-

topology optimization process for overhang feature elimination. Aside from the fact that volume 

correction is possible in this framework, boundary identification and overhang elimination, being key 

stages in the model, consumed only 8% of the combined process of topology optimization and overhang 

feature control. Two design case studies were printed using Laser Powder Bed Fusion (LPBF) and 

Material Extrusion, known as Fused Deposition Modeling (FDM), for manufacturability validation. 

Additional performance validation studies to investigate the relationship between manufacturing 
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constraints, residual surface stresses and structural performance were carried out on the optimized LPBF 

parts. No meaningful effect of overhang and feature size control was discovered on the residual stresses 

formed for Hastelloy X parts. However, bending test results revealed a 30% decrease in the maximum 

load (and a 40% increase in compliance) when a 65° overhang angle constraint was placed on a Hastelloy 

X optimized part. Fortunately, the performances improve when smaller angles (45° or 50°) and feature 

size (5𝑎) constraints are imposed. Finally, an image-based initialization and post-processing code for 

topology optimization is provided to aid research and teaching. 
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Chapter 1. Introduction 

1.1.    Motivation 

Design and Manufacturing are key components of the development cycle of a product [1]. 

Manufacturability-based design (Design for manufacture) is a concept that considers the manufacturing 

technology for a product during the design process and is paramount for successful product development. 

As an overview of the design process for the development of any product by any manufacturing 

technology, the major steps include (1) Part selection, (2) conceptualization (3) detailed design 

(embodiment design, which will usually be justified by analysis/virtual testing), (4) manufacturing, (5) 

testing. Similarly, in design for additive manufacturing (DfAM), the major steps include (1) part 

selection and concept development, (2) topology optimization and result interpretation for AM, (3) 

design justification, (4) additive manufacturing and, (5) material verification and mechanical testing [2].    

As opposed to subtractive and formative manufacturing, according to ASTM, Additive Manufacturing 

(AM) is defined as “the process of joining materials to make parts from 3D model data, usually, layer 

upon layer [3]. Due to the nature of typical AM processes, it affords engineers to idealize out of the box 

and optimize design solutions without being restricted by the structural complexity of the result. AM 

technologies have previously been deployed in producing prototypes but more recently, industries have 

become increasingly interested in extending these technologies to producing fully functional metal parts 

[4]. This is noticed in several recent works in aerospace and aeronautics [4]–[8], automotive [9]–[12], 

Medical [12]–[14], Space [2], [15], [16], Power ([17], [18]) and a host of others. 

Within the workflow of DfAM is the use of a popular and robust tool for obtaining conceptual, in some 

cases working designs, known as topology optimization. Topology optimization is a type of structural 

optimization that suggests optimal placement of material for an efficient structure [19]. This 

mathematical tool helps for weight reduction in parts while maximizing performance (in many cases, 

stiffness); and this is a crucial criterion in the aerospace and automotive industries [20]. To obtain 

optimal results that are manufacturable by AM, some manufacturing restrictions such as overhanging 

members, minimum feature size, build-support structure, distortion/residual stresses, anisotropic 

material properties, surface finish, orientation/build direction, layering patterns, shrinkage, etc must be 

dealt with. This is made possible when these constraints are incorporated into the design cycle [19]. In 

the last decade, several studies have focused on AM constrained topology optimization based on 

structural loads, such as in [21]–[26] and others. Although parts under a pair of design-dependent and 
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design-independent loads such as temperature distribution and a force [27], [28], body loads and a force, 

or centrifugal loads and a force [29], etc, have been studied, there are only a few works on the 

combination of several design-dependent loads. Popular efforts to address design-dependent topology 

optimization have either been in thermo-mechanical problems without considering other design-

dependent loads as in [30]–[33] or pure thermal-based problems optimizing for cooling as in [32], [33]. 

Moreover, the manufacturability of structural designs obtained from a multi-physics and multi-objective 

topology optimization model should be considered. Developing a framework for topology optimization 

of structures under design-dependent loads increases the spectrum of load cases that can be addressed in 

the DfAM workflow. Although introducing manufacturing constraints within topology optimization 

decreases structural efficiency to certain degrees, the designer is assured a more robust DfAM process. 

The main motivations of this research are as follows: 

1. A multi-objective topology optimization process is vital to structurally design rotating parts 

under extreme temperature and pressure conditions. This is particularly important for 

optimally designing rotating turbine parts that operate close to the combustion chamber. The 

prevalent loads, in this case, are thermal stress loads (TSLs), centrifugal loads, and 

unrestricted or design-dependent pressure loads from fluid effects. 

2. To facilitate the manufacturability of topologically optimized parts, a framework can be 

developed to control overhang features and their sizes. The development of a suitable 

methodology should be influenced by an easy and seamless integration or workflow with the 

complex multiphysics and multiobjective topology optimization model developed in 1.  

3. Experimental validation of the framework in 2 is necessary, not for justification only, but to 

provide an understanding of the quantitative and qualitative relationships between 

manufacturing constraints and structural performance. 

4. Most of the frameworks and processes are developed in 2D for ease of implementation, 

therefore, the provision of an initialization and post-processing algorithm for general 2D 

topology optimization is essential and can be made open source for research and educational 

purposes.  

1.2.    Aim and Objectives  

The basis for this work is to address design for additive manufacturing by considering topology 

optimization of structures under design-dependent loads and manufacturing constraints. This research, 

therefore, aims to develop two major frameworks: one for multi-physics and multi-objective topology 
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optimization of structures under design-dependent loads and the other for topology optimization 

considering additive manufacturing constraints. The frameworks will come decoupled with one 

addressing topology optimization for design-dependent loads and the other handling additive 

manufacturing constraints in the topologically optimized parts. Notwithstanding, a seamless workflow 

is expected from the first to the second framework.  

For the implementation of this aim, the following objectives will be followed: 

1. Develop a computationally efficient 2D model for topology optimization of structures under 

design-dependent loads such as thermal stress loads from a temperature distribution, 

centrifugal forces, and design-dependent pressure loads. 

2. Develop an efficient model to control overhang features and their sizes while ensuring 

compatibility with the model in 1. 

3. Carry out experimental validation studies to investigate surface residual stress formation and 

structural performance for the model in 2.  

4. Develop an initialization and post-processing algorithm for 2D topology optimization that will 

be beneficial for research and educational purposes. 

1.3.     Outline  

This thesis has been organized to address the aim and objectives as follows: Chapter 2 reviews additive 

manufacturing, topology optimization of structures under design-independent and dependent loads, and 

topology optimization for additive manufacturing. Chapter 3 presents the modeling of thermal stress 

and centrifugal loads while considering load thresholding. Chapter 4 presents and elaborates on a new 

Boundary Identification and Load Evolution (BILE) model for topology optimization of structures under 

design-dependent pressure loads. Chapter 5 presents a multiphysics and weighted multiobjective 

topology optimization model considering sensitivity scaling. Chapter 6 elaborates on the development 

and implementation of a post-topology optimization process for overhang feature elimination in additive 

manufacturing. Chapter 7 presents an experimental validation of the effects of overhang angle and 

feature size control on surface residual stress and structural performance. Chapter 8 presents a new and 

open-source initialization and post-processing code for 2D topology optimization, finally, Chapter 9 

presents conclusions and recommendations for future work.  

A graphical outline showing the organization of the chapters in this thesis is shown in Figure 1.1. 
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Figure 1.1: A graphical view of the thesis organization 
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Chapter 2: Literature Review 

This chapter will first broadly review additive manufacturing, then go over design for additive 

manufacturing frameworks, and elaborate on the theoretical backgrounds for structural optimization 

with a focus on topology optimization. Thereafter, several efforts to develop topology optimization for 

additive manufacturing will be discussed. Finally, some efforts that have helped advance the use and 

knowledge transfer of topology optimization models will be presented. 

2.1   Additive Manufacturing 

According to ASTM [3], additive manufacturing (AM) is defined as “the process of joining materials to 

make parts from 3D model data, usually layer upon layer”. There are several other terms used to describe 

AM technology such as 3-D printing, direct digital manufacturing (DDM), layered manufacturing, and 

additive fabrication [34]. It applies to a wide range of materials such as polymers, metals, concretes, 

rubbers, resins, glass, biomedical products, etc. [35], [34]. Unlike rapid prototyping, AM specifically 

looks at obtaining consumer products rather than mock-ups [35]. In a broad sense, For AM to be 

functional, it requires raw materials, supports, and utilities all controlled by a CAD file containing the 

geometry of the model and process parameters that can be as many as 150 different variables [36]. Figure 

2.1 shows the essential requirements and representation of AM, while Figure 2.2 shows a typical Laser 

Powder Bed Fusion (LPBF) additive manufacturing technology. 

 

Figure 2.1: Basic representation of AM. Adapted and modified from [36] 
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Figure 2.2: 3D schematic of a Laser Powder Bed Fusion AM 

There are 7 broad AM technologies which consist of all different commercial variants of the technology 

[36] and [3]: 

• Direct energy deposition: focused thermal energy is used to fuse materials by melting as they are 

being deposited. 

• Powder Bed Fusion: thermal energy selectively fuses powders in a powder bed. 

• Binder jetting: a liquid bond is used to join materials selectively in a powder bed. 

• Material extrusion: the material is selectively dispensed through a nozzle or orifice. 

• Material jetting: material droplets are selectively deposited to form a part. 

• Sheet lamination: Sheets of material are joined to form an object. 

• VAT photopolymer: liquid polymer in a vat is selectively cured by light-activated 

photopolymerization. 

It is noteworthy that AM is possible because of other technologies such as computer-aided design 

(CAD), computer-aided manufacturing (CAM), and computer numerical control (CNC). These three 

technologies substantially metamorphosed into AM [37]. 

AM process usually commences with obtaining a set of 2D profiles such as those generated from CAD 

tools or Computed Tomography (CT) scans. These profiles are then transformed into digital data 
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(volume or facet models) using solid modeling or image reconstruction software. This data is usually 

checked for errors for correction if necessary and support structures may be added depending on the 

specific AM technology [38]. The lump sum of the object model and support structures is sliced into 

several “2D sections” with micron thickness along the proposed build direction using an AM-specific 

software such as Magics from Materialize. An AM machine builds the object in a layer-by-layer process 

based on the discretized model.  

2.2.     Design for Additive Manufacturing 

It is popular that the development of a robust DfAM knowledge base consisting of tools, rules, processes, 

and methodologies has been particularly challenging owing to the lack of understanding, yet, of the 

application of DfAM [38]. DfAM aims at synthesizing shapes, sizes, geometric microstructures, and 

material compositions and microstructures to best utilize manufacturing process capabilities to achieve 

desired performance and other lifecycle objectives [39]. Several efforts have attempted to develop 

methodologies for an all-inclusive DfAM, such as in [39]–[46], etc. This review will take a closer look 

at the methods proposed by Yang and Zhao [46] and Kumke et al. [47].  

Yang and Zhao [46] proposed a two-part process design methodology for an initial design model. The 

first process design is to analyze the initial CAD model and carry out part consolidation to conform to 

certain specified functional and performance requirements; they defined this step as functional 

integration. The second step is to carry out structural optimization to obtain either a lighter weight, better 

heat dissipation, or an improved dynamic response depending on performance requirements. Topology 

optimization is usually adopted during this stage due to its several attractive qualities we will discover 

in later sections. In both stages, there is interfacing with manufacturing, assembly, and standardization 

constraints. Figure 2.3 shows a flow chart of this design method. 
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Figure 2.3: AM-enabled design methodology [46] 

Kumke et al. [47] proposed a new design framework, which is an offshoot from the conventional 

VD12221 design methodology. They argued that their framework has advantages over previous methods 

for its comprehensiveness and modularity, which allow easy interfacing with existing DfAM tools and 

methods. They stated that with their method, integrating AM tools and methods could be done in the 

correct design phases as well as facilitate a goal-oriented utilization of AM design potentials. They also 

claimed that their framework ensures sufficient support and guidance notwithstanding the user’s 

knowledge base or experience in AM. Their design framework is shown in Figure 2.4. 
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Figure 2.4: DfAM framework [47] 
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2.3.   Structural Optimization Methods 

2.3.1. Structural Optimization  

Structural optimization attempts to obtain the most efficient structural layout of a model, part, 

component, or system. This form of optimization consists of three broad aspects: sizing optimization, 

shape optimization, and topology optimization. A typical sizing optimization solution finds the optimal 

thickness of member areas in a truss structure [48]. The thicknesses of the members become the design 

variables for the problem formulation and optimization of the structure’s compliance, deflection, or peak 

stress is performed as dictated by performance requirements. The challenge inherent in sizing 

optimization is the fact that there has to be an already established structural layout that restricts design 

freedom. In shape optimization, the goal is to find the best shape for a prescribed domain; consequently, 

the shape of a solid or empty domain becomes the design variable that optimizes the structure’s 

performance within a designable volume. Just as in sizing optimization, there is also restriction with 

design freedom because an a priori shape has to be established before the optimization is initialized. 

Topology optimization entails the determination of features such as the number and location of squares 

and the connectivity of the domain [48]. Figure 2.5 shows the different structural optimization methods.  

 

Figure 2.5: The three classifications of structural optimization. (a) Sizing optimization, (b) Shape 

optimization, (c) Topology optimization. Sizing and shape optimization initially start with a predefined 

structural layout with optimal thickness [48] 

The definition of a general structural optimization (SO) problem follows [49]: 
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(𝑆𝑂)

{
  
 

  
 
minimize 𝑓(𝑥, 𝑦) with − respect − to 𝑥 and 𝑦

 

 subject to    

{
 
 

 
 
behavioral constraints on 𝑦

 
design constraints on 𝑥

 
equilibrium constraint

     (2.1) 

In this formulation, x and y are design and behavioral variables. Design constraints are constraints 

imposed on the design variable x while behavioral constraints are constraints on the state variable y and 

the combination of these constraints is possible.  The equilibrium constraint is 

𝑲(𝑥)𝒖 = 𝑭(𝑥)     (2.2) 

Where K(x) is the stiffness matrix of the structure being a function of the design variable, u is the 

system’s displacement vector and F(x) is the external or internal force vector (or combination of both) 

which may or may not be a function of the design variable. For a frequent case where the stiffness is 

invertible, 

𝒖 = 𝒖(𝑥) = 𝑲(𝑥)−1𝑭(𝑥)     (2.3) 

The displacement vector in equation 2.3 can be treated as a state-space variable and substituted as a 

variable in the objective function 

(SO) {
min
𝑥
             𝑓(𝑥, 𝒖(𝑥))

s. t.       𝑔(𝑥, 𝒖(𝑥)) ≤ 0
     (2.4)  

2.3.2. Topology Optimization  

Topology optimization aims at obtaining the optimal material distribution within a design space and 

usually does this by minimizing an objective function (e.g compliance) under constraints for a designable 

volume [43]. The first known paper on topology optimization was published by Michell, an Australian 

inventor, in 1904. He derived optimality criteria for the least weight layout of trusses [50]. Since then, 

there have been several efforts that have made topology optimization an attractive and efficient tool 

within a general design for manufacturing. 

Currently, and amongst available classes, there are three popular general methods for topology 

optimization which are density-based, hard-kill, and level set methods. Solid Isotropic Material with 

Penalization (SIMP) and Rational Approximation of Material Properties (RAMP) are density-based 

methods with SIMP being the more popular scheme. In simple terms, SIMP applies a power-law 
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penalization to relate stiffness and density where the density variables for mesh elements have values 

between 0 and 1; 0 meaning void element and 1 full dense/solid element [51]. RAMP differs from SIMP 

by only the penalization or interpolation function which is a ratio of the density variable and a penalized 

density function. Hard-kill methods consist of Evolutionary Structural Optimization (ESO) and Bi-

directional Evolutionary Structural Optimization (BESO) with BESO gaining more popularity. Both 

methods are similar in the fact that they iteratively add a finite amount of material within a given design 

space but BESO has the added advantage of removing material when necessary. In these methods, 

heuristic criteria are adopted and may or may not have strict dependence on the sensitivity information 

of the structure [52]. In the Level Set Method (LSM), Level Set Functions (LSF) are generated to 

determine the boundaries of a design and topologies change with change in the level set function [51]. 

The difference between a conventional design and a topology optimized version is shown in Figure 2.6. 

 

Figure 2.6: Original metal part (left-most part) and its topology optimized versions [52]. 

Topology optimization problem formulation is broadly discussed in Chapters 3 and 4 but briefly 

introduced here. If u and v are taken as displacement fields that define equilibrium of the elastic structure 

and kinematically admissible virtual displacement field respectively, for an elastic structure with a fixed 

boundary Γ𝑑, we have [53] 

∫𝝐𝑇
 

Ω

(𝒗)(𝑫𝝐(𝒖))𝑑Ω =  ∫𝒇𝑇𝒗𝑑Ω
 

Ω

+∫ 𝒕𝑇𝒗𝑑Γ
 

Γ𝑡

                                    (2.5) 

The left-hand side of 2.5 is the system’s strain energy in the elastic domain which is a combination of 

work done by forces f, applied on Ω and surface traction forces on Γ𝑡. By using notations from functional 

analysis and energy bilinear form for internal work and load linear form for external work,   

𝑎(𝒖, 𝒗) = 𝑙(𝒗),       ∀𝒗 ∈ 𝐕                                                           (2.6) 

Where  
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𝑎(𝒖, 𝒗) = ∫𝝐𝑇
 

Ω

(𝒗)(𝑫𝝐(𝒖))𝑑Ω                                                      (2.7) 

and 

𝑙(𝒗) = ∫𝒇𝑇𝒗𝑑Ω
 

Ω

+∫ 𝒕𝑇𝒗𝑑Γ
 

Γ𝑡

                                                        (2.8) 

Topology optimization based on obtaining the stiffest structural layout means minimizing compliance 

or strain energy. It aims at ensuring the structural layout gives the least response possible to external 

loads and surface traction forces. Therefore, the structural problem by minimizing compliance 𝑙(𝐮) can 

be formulated thus: 

Minimize                     𝑙(𝐮)                                                                                     

subject to                    𝑎(𝒖, 𝒗) = 𝑙(𝒗),       ∀𝒗 ∈ 𝐕                                 (2.8) 

and                      𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠                                                     

2.8 is subjected to the comparison of internal work, 𝑎(𝒖, 𝒗) and external work, 𝑙(𝒗) on the system. This 

can be translated to the finite element equation 

𝑲(𝑥)𝑼(𝑥) = 𝑭                                                                (2.9) 

Where K and U are the stiffness matrix and displacement vector respectively due to the external load 

vector F. With compliance 𝑙(𝐮) = 𝑭𝑻𝑼 and volume constraint, the optimization problem in 2.8 

transforms to: 

min                          𝑐(𝑥) = 𝑭𝑇𝑼(𝑥) 

subject to:           𝑲(𝒙)𝑼(𝑥) = 𝑭 

𝑉(𝑥)

𝑓𝑉0
≤ 1                                                               (2.10) 

𝟎 ≤ 𝒙 ≤ 𝟏                                                                         

To solve this non-linear optimization problem by the Optimality Criteria Method, the following 

functions are implemented:  

OCM updates the design variables depending on the optimality conditions being met as follows [54]: 



14 

 

𝑥e
new = {

max(0, 𝑥𝑒 −m)            if 𝑥𝑒𝐵𝑒
𝜂
≤ max(0, 𝑥𝑒 −𝑚) 

min(1, 𝑥𝑒 +𝑚)            𝑖𝑓 𝑥𝑒𝐵𝑒
𝜂
≥ min(1, 𝑥𝑒 −𝑚) 

 𝑥𝑒𝐵𝑒
𝜂
                                        otherwise       

                             (2.11) 

where m and 𝜂 are move limits and numerical damping coefficient, respectively. The numerical damping 

coefficient is commonly given a value of ½ and 𝐵𝑒 is obtained as  

𝐵𝑒 =
−
𝜕𝑐
𝜕𝑥𝑒

𝜆
𝜕𝑉
𝜕𝑥𝑒

                                                                           (2.12) 

𝜆 is a Langrangian multiplier whose value must be chosen so that the volume constraint is met. Usually, 

the appropriate value is found using the numerical bisection method [54]. 

To solve this non-linear optimization problem by the Globally Convergent Method of Moving 

Asymptotes, the problem statement in 2.10 can be compared to a general optimization problem [55]: 

Minimize:    𝑓0(𝑥) + 𝑎0𝑧 +∑(𝑐𝑖𝑦𝑖 +
1

2
𝑑𝑖𝑦𝑖

2)

𝑚

𝑖=1

 

subject to:  𝑓𝑖(𝑥) − 𝑎𝑖𝑧 − 𝑦𝑖 ≤ 0,   𝑖 = 1. . . , 𝑚                              (2.13) 

𝑥 ∈ 𝑋, 𝑦 ≥ 0, 𝑧 ≥ 0. 

where x is the independent design variable and y, z are dependent state variables, also, the objective and 

constraint functions 𝑓0, 𝑓1, …… , 𝑓𝑚 must be differentiable. For Equations 10.10 and 10.13 to be 

equivalent, 2.13 must be written as  

Minimize    𝑓0(𝑥)                           

subject to  𝑓𝑖(𝑥) ≤ 0,   𝑖 = 1. . . , 𝑚                                    (2.14) 

𝑥 ∈ 𝑋. 

where  𝑎0 = 1, 𝑎𝑖 = 0 for all 𝑖 > 0, 𝑧 = 0, 𝑑𝑖 = 1 and 𝑐𝑖 = “a large number”. Subproblems are obtained 

for 𝑓𝑖(𝑥), 𝑖 = 0,1, … . . , 𝑚 and solved by either of two methods: dual approach or primal-dual interior-

point approach. The subproblem for GCMMA is given as [55]:  

𝑓𝑖
(𝑘,𝑣)

=∑(
𝑝𝑖𝑗
(𝑘,𝑣)

𝑢𝑗
(𝑘) − 𝑥𝑗

+ 
𝑞𝑖𝑗
(𝑘,𝑣)

𝑥𝑗 − 𝑢𝑗
(𝑘)
) + 𝑟𝑖

(𝑘,𝑣)
,    𝑖 = 0,1, …… ,𝑚

𝑛

𝑗=1

             (2.15) 

where 𝑝, 𝑞 are coefficients of the convex subproblem, which are a function of the sensitivity information 

during the kth outer and “vth” inner iterations where the sensitivity remains constant throughout v 

iterations in a kth iteration. 𝑟 is the residual of the value of subproblem at the “kth” iteration subtracted 
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from the actual function's value. For an optimal solution of these sub-problems, the KKT optimality 

conditions are both necessary and sufficient. 

When a sub-problem has been developed, an iterative solution step is taken to arrive at appropriate values 

of the design variables that give an optimum structure (minimum compliance in this case): 

i. Step 0: Choose a starting point 𝐱(𝟎), and let the iteration index be 𝑘 = 0. 

ii. Step 1: Given an iteration point 𝒙(𝒌), calculate 𝑓𝑖(𝒙
(𝑘)) and the gradients 𝛻𝑓𝑖(𝒙

(𝑘)) for 𝑖 =

0,1, …… ,𝑚. 

iii. Step 2: Generate a sub-problem 𝑃(𝑘) by replacing in 𝑃, the (usually implicit) functions 𝑓𝑖 by 

approximating explicit functions 𝑓𝑖
(𝑘)

, based on the calculations from step 1. 

iv. Step 3: Solve 𝑃(𝑘) and let the optimal solution of this subproblem be the next iteration point 

𝒙(𝒌+𝟏). Let 𝑘 = 𝑘 + 1 and go to step 1.  

MMA is done such that each 𝑓𝑖
(𝑘)

 is obtained by a linearization of 𝑓𝑖 in variables of the type 
1

𝑥𝑖−𝐿𝑖
 𝑜𝑟

1

𝑈𝑗−𝑥𝑗
 

which are dependent on the signs of the derivatives of 𝑓𝑖 at 𝒙(𝒌). The values of 𝐿𝑖 𝑎𝑛𝑑 𝑈𝑗 are normally 

changed between the iterations and are popularly referred to as ‘moving asymptotes’. Article by Prof 

Krister Svanberg [55] is recommended to the reader for more information on MMA and GCMMA.    

2.3.3. Design-dependent topology optimization  

Many studies on structural optimization, topology optimization particularly, have focused on point loads 

while some extensions have been made to uniformly distributed loads and pressure on non-designable 

regions. A challenging aspect of topology optimization is the presence of design-dependent loads in a 

structural design problem. In such a case, the loads depend on the material volume and/or layout over 

the design domain and are subject to changes during the optimization process [56]. Gao and Zhang [56] 

classified these into: 

a. Transmissible or sliding force: This force maintains its magnitude but consistently changes 

its line of action as the topology changes during optimization. 

b. Body load: This load is a result of the inertia load of the design. As material distribution 

changes within the optimization process, the magnitude and centroid of this load change. 

Centrifugal loads can come under this class because the force exerted on a rotating body 

largely depends on its weight then also on the position of the center of rotation and the 

rotational speed. 
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c. Surface pressure load: When the surface on which this load is supported is designable, then 

it can be defined as a design-dependent load case. Gao and Zhang [56] further classified this 

load into solid weight, hydrostatic, and snow weight pressure. 

d. Thermo-elastic stress load: Thermal loads have gained more interest in recent times because 

of complications that arise from thermal stresses which depend not only on the changing 

topology but changing Young’s Modulus and thermal expansivity. For this kind of load, a 

term called Thermal Stress Coefficient is usually introduced within thermo-structural 

topology optimization methodology to ensure simultaneous material interpolation and 

penalization of element stiffness and thermal stress load [56]. 

2.3.3.1. Thermo-mechanical Topology Optimization 

There have been several interesting studies on design-dependent topology optimization especially 

related to thermo-mechanical problems. As early as 1995, Rodrigues and Fernandes [57] formulated a 

computational model for topology optimization based on the material distribution for a 2-D linear-elastic 

solid subjected to thermal loads. In their work, the temperature distribution was a uniform steady-state 

temperature independent of the design. Their study showed that even for simple models and at low-

temperature changes, optimal topologies obtained strongly depend on these temperature effects. In 2006, 

Li, Steven, and Xie [31] proposed an evolutionary optimization procedure by thermo-elasticity to 

address varying temperature distribution throughout the design domain. Their model’s iterative loop 

included transient heat analysis by conduction, finite element thermo-elastic analysis, and design 

modifications. Works that were done separately by Hou, Zhu, and Li [58] and Deaton, Grandhi [59] 

addressed thermo-mechanical topology optimization by stress-based criteria while maximizing stiffness. 

This is achieved by including a constraint of a global stress measure based on a p-norm function so that 

the number of stress constraints is reduced in topology optimization. Compliance minimization is the 

common objective function for most topology optimization approaches, however, in this case, a stress 

constraint in the form of the p-norm function is added to the usual volume constraint. It is worthy to note 

that Gao and Zhang [56] and Deaton and Grandhi [59] both concluded that the classical SIMP material 

interpolation function encountered numerical difficulties for thermo-mechanical topology optimization 

which is largely due to the existence of null values in the stiffness matrix for elements with zero design 

variables as this causes singularity issues. Also, the SIMP function significantly penalizes the stiffness 

values of intermediate density elements (which regularly occur in thermo-mechanical topology 

optimization) causing an undesirably high number of near-zero values in the stiffness matrix. They 

therefore suggested that the RAMP interpolation function is more efficient for design-dependent 
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topology optimization procedures. SIMP and RAMP interpolation functions are defined by the 

functions: 

SIMP:                    𝐸(𝑥𝑒) = 𝑥𝑒
𝑝𝐸0                                                                  (2.16)   

RAMP:                    𝐸(𝑥𝑒) =
𝑥𝑒

1 + 𝑝(1 − 𝑥𝑒)
𝐸0                                            (2.17) 

For density values close to zero (𝑥𝑒 ≅ 0), the interpolation schemes in the sensitivity function become  

SIMP:                         
𝑑𝐸(𝑥𝑒 ≅ 0)

𝑑𝑥𝑒
= 𝑝𝑥𝑒

𝑝−1𝐸0 → 0                                                                 (2.18) 

RAMP:                    
𝑑𝐸(𝑥𝑒 ≅ 0)

𝑑𝑥𝑒
=
1 + 𝑝(1 − 𝑥𝑒) + 𝑝𝑥𝑒

2

(1 + 𝑝(1 − 𝑥𝑒))
2 𝐸0 →

1

𝑝 + 1
𝐸0                           (2.19) 

2.18 shows that SIMP neglects the significance of elements with design values close to zero but RAMP 

gives low-density elements with at the least, a factor of 
1

𝑝+1
 of the material property (Young’s Modulus).  

Figure 2.7 shows an L-shaped design case study carried out by Deaton and Grandhi [59]. Figure 2.8 

shows the results of purely mechanical loads on the design for SIMP and RAMP. It is noticed that there 

is a considerable amount of intermediate elements left in the results from RAMP compared to that from 

SIMP. In Figure 2.9 the optimization of a combination of mechanical and thermal loads is presented and 

a slightly different structural layout is observed to enable the thermal expansion of structural members.  

 

Figure 2.7:  Design domain with loading and boundary conditions [59] 
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Figure 2.8: Topology optimized results for the L-shaped design in pure mechanical loading. Resulting 

topologies for (a) SIMP, (b) RAMP [59]. 

 

Figure 2.9: Topology optimized results for the same design in Figure 2.7 but under coupled thermal 

and mechanical loads of material usage = 33.2%. A constant temperature change of 20°C is applied 

[59]. 

From studies, it is common for thermo-mechanical optimization to produce results with significant 

gray/intermediate elements more so when lower penalty values are used. Since the structural 

interpretation of these gray elements is difficult, many research efforts have looked into using multi-

material models to handle this problem as in the works by Vantyghem et. al. [60], Takezawa and Kobashi 

[61]. Applications of thermo-mechanical topology optimization have been extended to compliant 

actuators by Du et. al. [62] where they used mesh-free methods, additionally, thermal-actuated 

compliant, and electro-thermal complaint mechanisms were done by Ansola et. al. [63]. Jahan et. al [64] 

developed a topology optimization model for redesigning traditional injection molding tools. They 

aimed at minimizing compliance (while ensuring low weight considerations) and maximizing heat 

conduction which led to a multi-objective thermo-mechanical topology optimization based on 

compliance and heat conduction.  
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2.3.3.2. Topology Optimization considering centrifugal loads 

Topology optimization considering loads arising from rotational effects, such as centrifugal loads, was 

analyzed by Enrico et. al [51] using a turbine disk. They utilized level set methods for optimization 

because they encountered numerical difficulties with density-based methods. They carried out a two-

stage structural optimization with the first being topology optimization to generate a solution consisting 

of solid, void, and “intermediate” regions. The second stage was lattice structure optimization of the 

intermediate regions which involved obtaining optimized lattice structure parameters to transform the 

porous zones to an explicit lattice structure design shown in Figure 2.10.  

  

Figure 2.10: Design and non-design domain for turbine disk optimization (left) and stress distribution 

of optimized design (right) [51]. 

Zheng and Gea [29] also studied the effect of dynamical structures considering body loads. Using a 

rotating arm as a case study, they observed that their optimized results had more mass concentrated near 

the center of rotation as should be expected. An important design criterion was to minimize the moment 

of inertia which is directly proportional to the power required for rotation. Therefore, they formulated a 

multi-objective optimization of compliance and kinetic energy minimization using weight factors to 

ensure comparable magnitudes of the objective values. The problem is formulated as shown in equation 

2.15 while Figure 2.11 shows results of topology optimization of the rotating arm. 

min Π = 𝑤1𝐹
𝑇𝑈 + 𝑤2

1

2
𝐼𝜔2 

subject to:𝐾𝑈 = 𝐹𝑐  

∑ 𝑉(𝑥𝑒)
𝑛
𝑒=1

𝑓𝑉0
≤ 1                                                                (2.15) 

0 ≤ 𝑥𝑒 ≤ 1 
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0 ≤ 𝐸𝑚𝑖𝑛 ≤ 𝐸𝑒 ≤ 𝐸0 

 

Figure 2.11: Free-body diagram of a rotating arm (left) and optimized design considering both 

gravitational and centrifugal forces from both structural and non-structural mass [29]. 

2.3.3.3. Topology optimization for design-dependent pressure loads 

There have been several impressive works to address unconstrained pressure loads such as hydrostatic, 

snow weight, and solid pressure. Topology optimization of structures under pressure loads can be 

formulated either as design-independent or design-dependent subject to the nature of the design problem. 

For design-dependent pressure loads, as the optimization carries on, these loads might change in 

direction only or in both magnitude and direction depending on the methodology devised to update the 

changing pressure. If they change in magnitude, there will be a load sensitivity term in the sensitivity 

function that has to be calculated for and it is usually non-trivial.  

A significant aspect of these problems is the identification of changing topological boundaries and 

several researchers have devised methods for this. Cheng and Kikuchi [65] applied a fictitious thermal 

load to simulate this dependent load, Niu et al [66] proposed a density threshold method to evaluate 

contact pressure value for elastic continuum structures in frictionless contact to improve the uniformity 

of contact pressures. Li et. al. [67] proposed a simple algorithm based on digital image processing and 

regional contour tracking technology which identified and generated the changing topological boundary 

on every iteration. Zheng et. al. [68] introduced a pseudo-equal-potential function while Wang et. al [69] 

employed an image segmentation technique based on Distance Regularized Level Set Evolution 

(DRLSE) for material boundary identification. Figure 2.12 shows the topology optimization of a 

structure under unidirectional design-dependent pressure loads for using the Optimality Criteria Method 

(OCM) and the Method of Moving Asymptotes (MMA).  
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Figure 2.12: Optimization of different structures under unidirectional pressure load. (a) the design 

problems, (b) Optimized results using Optimality Criteria Method, (c) Optimized results using Method 

of Moving Asymptotes [67]. 

Lee and Martins [70] proposed a boundary identification scheme which with the help of some predefined 

void region, iteratively joined points of equal densities. They also pointed out that by using an iso-density 

line to define generated boundaries, no extra artificial variable might influence the final result required. 

Picelli et.al. [71] employed the BESO scheme while introducing a buoyancy inequality constraint to set 

a minimum required buoyancy effect which they measure by combined volumes of solid structure and 

voids. Hammer et.al. [72] used interpolation schemes to obtain a set of corner nodes. These nodes were 

fit by Bezier cubic splines to obtain load-carrying surfaces. Since these load-carrying surfaces are 

obtained from the nodes of finite elements, the loads were applied directly to boundary elements and the 

external load sensitivity was close to zero. This will avoid complex load sensitivity computations often 

carried out such as the finite difference method in [73]. More recently, Picelli et. al. [74] by level-set 

topology optimization utilized a coupled fluid-structure methodology which was solved by obtaining 

fluid pressure first, determining the fluid-structure interface next, and finally carrying out structural 

analysis. For both fluid and structural domains, they used bilinear elements and isoparametric mapping. 

Kumar et. al. [75] modeled design-dependent pressure loads on structures and compliant mechanisms 
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using Darcy’s law coupled with a “drainage” term. The need for the drainage term was to ensure 

structural boundaries that are not in contact with the fluid domain were excluded from loading. 

2.4. Topology Optimization for Additive Manufacturing 

With design freedom as a major advantage of additive manufacturing, many industries and researchers 

have adopted topology optimization as an important tool in DfAM. For topology optimization to be 

successfully integrated into DfAM, the constraints posed by this manufacturing technology must be 

captured in the optimization algorithms. This section will examine several efforts by researchers to 

incorporate additive manufacturing constraints within topology optimization. Several of these 

constraints that have been captured are overhang minimization or elimination [22], [76]–[82], minimum 

feature thickness [83]–[87], self-supporting feature constraint (very similar to overhang feature control), 

void elimination [88]–[90], build orientation optimization [91]–[93], support structure minimization or 

elimination [94]–[96], residual stress or deformation reduction [93], [97], etc. Some of these constraints 

are discussed in the following sections. 

2.4.1. Overhang Minimization and Elimination 

Overhanging features of parts built by laser powder bed fusion AM cause a significant increase in cost 

and printing time because more sacrificial material is needed to support them. Overhangs are arguably 

the most studied AM constraint in topology optimization. An overhanging feature lacks sufficient 

supporting material beneath it in such a way that it is either perpendicular or at an angle subtended to 

the building direction; a well-supported element or feature is shown in Figure 2.13. Although several 

researchers have suggested 45o as the minimum self-supporting angle, the choice of the angle must be 

governed by the technicalities of the process [76]. Gaynor and Guest [76] included three more minimum 

overhang angle constraints which depended on the feature size thickness shown in Figure 2.14. 

 

Figure 2.13:Element density with supporting elements in a 2D FE mesh 
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Figure 2.14: Different allowable minimum self-supporting angles for satisfying overhang constraints 

[78] 

Typically, in defining or building up the overhang constraint, an evaluation of the contour for resulting 

topologies on every iteration should be done [98]. Several researchers have deployed different 

methodologies to identify edges and formulate an expression for overhang as a constraint within the 

optimization problem. Two common aspects in resolving overhanging features are predetermining a 

build direction or orientation and formulating an element overhang expression that can be coupled with 

the objective function or included as a constraint in the optimization problem statement. Overhang 

formulations solved as constraints in optimization problems can be seen in [98], [80]. Zhang et. al. [99] 

considered hanging features alongside overhang features shown in Figure 2.15, Xinyi et. al. [100] looked 

at overhang reduction by coupling normalized compliance and overhang expressions serving as the 

objective function for minimization.  

 

Figure 2.15: Optimum designs showing the difference in topologies of overhanging constraint alone 

against combined overhanging and hanging constraints [99]. 
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Employing a continuous front propagation mechanism, Van de Ven et. al. [82],[101] made use of a 

“printable” density variable for overhang control. RAMP material interpolation was used in conjunction 

with the Method of Moving Asymptotes optimizer by Svanberg [55]. Figure 2.16 shows optimal designs 

with overhang constraints as obtained by Van de Ven et. al. [101]  and Gaynor and Guest [76] 

 

Figure 2.16: Optimal designs with 45 ͦoverhang angles for a half and full MBB beam by [101] and 

[76]. 

Garaigordobil et.al. [98] and Zhao [102] formulated overhang constraints added to the material volume 

constraint in their topology optimization problem definition. In the former, after a contour detection is 

done, the constraint is computed as a ratio of the number of self-supported contours to the total number 

of acceptable and unacceptable contours. The work by Zhao formulated an overhang constraint by 

summing the density squares of unsupported elements. Using the Bi-directional Evolutionary Structural 

Optimization (BESO) approach, Minghao et.al. [103] developed a layer-wise overhang restriction 

constraint within the updating scheme. The framework using uniform cuboid voxels can achieve 45° 

overhang thresholds while arbitrary angle thresholds can be implemented by changing the aspect ratio 

of the voxels. Wang et.al. [100] formulated a consolidated objective function comprising of compliance 

and an overhang function and then attempting to simultaneously minimize both. In this case, instead of 

eliminating overhangs, their results included some unsupported features as should be expected in a 

minimization scheme. 

2.4.2. Self-Supporting Constraint 

AM technologies such as Selective Laser Melting (SLM) and Fused Deposition Modelling (FDM) need 

sacrificial structures for mechanical support and proper heat dissipation without which the part quality 

cannot be guaranteed. Support structures are therefore inevitable to support the base of the part but can 

be minimized or eliminated when printing features within the part. This constraint is very similar to an 

overhang and/or hanging constraint but slightly differs in the sense that a self-supporting constraint 

usually deals with the whole part while an overhang constraint deals with features or regions in a part. 

In general, the definitions of these constraints have been interchanged or taken as the same by several 

research efforts. 
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Guo et. al. [22] proposed two methods to ensure optimized topologies comply with certain self-

supporting angles. The methods are known as Moving Morphable Components (MMC) and Moving 

Morphable Voids (MMV). The first method takes the inclination angle of features or components in the 

topology as the design variable. The second method introduces printable features (voids) such that their 

interfaces are represented by B-spline curves used in the problem formulation; thereafter, the problem 

is solved as a shape optimization problem rather than topology optimization. Langelaar [77] developed 

an AM filter for density-based topology optimization which has semblance as the typical layerwise AM 

process. In this way, any feature inclined at an unacceptable angle will be banned from the design space. 

Figure 2.17 shows Langelaar’s AM filter for an optimized 2D half MBB beam built using different 

baseplate positions. 

 

Figure 2.17: Topology optimized half MBB beam with AM filter and Heaviside projection with 

baseplate indicated in blue [77]. 

Another effort to factor a self-supporting constraint in topology optimization is seen in the work by 

Mezzadri et. al. [104] where they focused on both volume and compliance constraint-based topology 

optimization approaches for self-supporting support structures. To resolve the self-supporting problem, 

Zhang and Zhou [105] introduced polygon-featured holes as basic primitive designs whose movements, 

deformations, and intersections can control the outcome of the structural topology. They made use of a 
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finite cell method (FCM) which has the finite element method (FEM) incorporated in it. Other innovative 

works that capture self-supporting and overhang constraints can be seen in [106], [78], [107], [84]. 

There are several drawbacks to the constraint formulations discussed. Firstly, some of them are restricted 

to eliminating overhanging features at one angle threshold only e.g. Langelaar’s overhang restrictive 

filter for 45°. Secondly, although most of them being integrated methods ensure structural optimality, 

they will usually contribute to increases in computation cost and inefficiency. This is caused by the 

several chains of gradient calculations that should be made due to the additional constraint or objective 

overhang functions. Furthermore, this will bring to question their capabilities to perform in complicated 

multiphysics and multiobjective topology optimization problems.  

2.4.3. Void filling constraint 

Powder-bed AM technologies build a part in a layerwise manner in such a way that unmelted powders 

fill holes and cavities within the part. Therefore, in most cases, it is paramount that these unmelted 

powders are removed during post-processing, so a usual design criterion is to ensure that there are 

channels through which these powders can be taken out. During topology optimization, there is the 

possibility of obtaining results with completely or partially enclosed cavities. Researches have been done 

to mitigate this problem by formulating void filling constraints within topology optimization. An 

innovative methodology proffered as a solution was formulated by Liu et. al. [90] in 2015 which they 

referred to as the Virtual Temperature Method (VTM). The first step was to establish the connectivity 

of the structure by classifying structures without voids as “simply-connected” and those with voids as 

“multiply-connected”. Simply-connected structures should have holes or voids that have channels 

leading out of the structure while multiply-connected structures have completely closed voids. Once 

these definitions are implemented, the ‘void’ elements are assigned with a ‘virtual’ heat source while 

solid elements are assigned as thermally insulating materials. A heat conduction problem is then 

formulated and solved to obtain temperature values of all elements within the design domain. Thereafter, 

a constraint is set up within the optimization algorithm such that the maximum temperature in the domain 

during the process is enforced to be less than or equal to a threshold temperature set before the 

optimization’s commencement. This will ensure that voids are avoided or minimized during topological 

formation. Figure 2.18 shows optimized topologies obtained with and without void elimination.  
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Figure 2.18: Optimized designs of an aerospace bracket. The two left designs are without the void 

filling constraint while this constraint is included in the optimized topology on the right. 

2.4.4. Minimum feature thickness  

Very thin features are undesirable in a design to be additively manufactured due to the minimum sizes 

allowable for different AM technologies. The minimum wall thickness is usually dictated by the melt-

pool width in the case of Laser Powder Bed Fusion (LPBF) and nozzle diameter in the case of Fused 

Deposition Modelling (FDM). In most topology optimization algorithms, the minimum size feature is 

controlled by filtering methods with sensitivity and density filter being the most popular [48], [108], 

[109]. Osanov and Guest [110] addressed minimum feature size through the layer-wise nature of additive 

manufacturing process by a modified Heaviside Projection Method (HPM) which is common in 

achieving geometric constraints in topology optimization. The Heaviside Projection Method (HPM) is a 

popular filtering method for solving mesh-dependent and checkerboarding problems in topology 

optimization similar to sensitivity and density filtering. The modification of the HPM was in the search 

area of neighboring elements for filtering. The standard HPM uses a spherical search volume while the 

Osanov and Guest used a cylindrical volume to mimic the layer-by-layer AM process. 

Minimization of thin features and support structures was carried out by Mhapsekar et. al. [84]. They 

implemented the density filter in SIMP for feature size control by using a cylindrical search volume as 

Osanov and Guest which is comparable to the layer-wise process of AM. Figure 2.19 and Figure 2.20 

show the size feature control by Mhapsekar et. al. 
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Figure 2.19: Single layer neighborhood of element [84]. 

 

Figure 2.20: Unconstrained and constrained TopOpt cantilever topologies. It is observable that the 

right cantilever has a controlled size feature unlike that on the left [84]. 

2.4.5. Anisotropic material property considerations  

In most additive manufacturing technologies, part anisotropy is prevalent especially in the build 

direction. In a study by Chiu et. al. [111], they discovered that when anisotropy is considered in topology 

optimization of parts to be additively manufactured, less material savings is achieved for a volume 

fraction minimization formulation as opposed to utilizing isotropic material properties. They concluded 

that anisotropy can significantly affect the topological optimality of parts and recommended using 

anisotropic material properties for AM-related topology optimization processes. Some works have 

considered topologically optimizing parts against anisotropy such as the strength-based topology 

optimization model developed by Mirzendehdel, Rankouhi, and Suresh [112] where they minimized a 

p-norm factor of safety function while limiting the designs to a compliance threshold. Liu and To [113] 

addressed both anisotropic material property considerations and self-supporting constraint by 

formulating a deposition path planning level set topology optimization algorithm. They considered 

material properties for both build and in-plane raster directions. The use of build orientation optimization 

to enhance the performance of parts to be additive manufactured was implemented by Ulu et.al [114]. 
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In their work, they utilize the Euler angles of the parts as design variables and obtain the values that 

maximize the parts’ minimum facture of safety.   

2.5.    Experimental validation studies for topology optimized parts 

From the author’s knowledge, no research work has investigated the effects of topology 

optimization/including manufacturability constraints on residual stress formation on the part surface or 

throughout the bulk material. This might be because many research efforts [115]–[117] suggest that 

residual stresses in LPBF are most impacted by temperature gradients and cooling rates/patterns. Many 

efforts, however, have studied the impact of topology optimization on structural performance. Zhu [118] 

developed an experimental testing method to investigate the correlation between the numerically 

obtained performance of topology optimized structures manufactured by stereolithography (SLA) and 

their practical values. Using SLA again, Li et.al [119] investigated the relationship between directional 

parameters and transverse isotropy of printed parts. They observed that the elastic or Young’s Modulus 

varied by 6.6% while the strength varied by around 23.8% when they evaluated isotropic properties in 

the transverse direction. Clausen et.al [120] investigated the buckling performances of a topology 

optimized infill structure and an optimized solid structure based on compliance minimization. They 

discovered that a porous in-plane structure was as much as 5 times better than a solid structure while a 

porous out-of-plane structure was 3 times better. Other experimental validation and verification studies 

on topology optimized cellular-type structures can be seen in [121]–[123] and topology optimized parts 

for various applications can be seen in [124]–[127]. 

2.6.   Some open-source frameworks for topology optimization 

To date, Table 1 in [128] shows that a greater number of topology optimization codes handle 2D [129] 

[130] [54], [131]–[138] compared to 3D [130] [139]–[141] design problems and the reasons are not far-

fetched: much less computational cost, ease of implementation especially considering new approaches, 

ease of understanding by beginners in this field, etc. As much as 3D cases are more practical and are 

getting more popular in implementation due to improvements in software and hardware, many real 

design problems can be simplified to 2D forms without losing significant accuracy. Unfortunately, a 

common attribute to many of the available open-source codes is the rigidity in defining initial free-form 

domains, loads, and support conditions. Additionally, users cannot easily translate the results obtained 

from optimization to manufacture-ready models. With the advancement of additive manufacturing 

technologies, it will be of immense benefit to have an open-source code that allows users to go almost 
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seamlessly from a structural problem to a printable model using topology optimization and without 

interfacing with too many software tools while saving computational cost. A few works have considered 

free-form designs, such as the PolyMesher developed by Talischi et.al. [133], which is a mesh generator 

for polygonal elements written in Matlab. They reported that polygonal meshes are immune to 

checkerboarding issues commonly associated with the use of lower-order triangular or rectangular 

meshes. Also, they described the good adaptability of these polygonal meshes to intricate domains. In 

2013, a free form design modeler (FDDM) in conjunction with a topology variation modeler (TVM) was 

developed by Cai and Zhang [142]. They achieved this by using mathematical R-functions in the form 

of implicit Level Set Functions (LSFs). To interpret topological results, Chou and Lin [143] introduced 

the improved automated structural optimization system (IASOS) which they reported is an improvement 

on the automated structural optimization system (ASOS) by using a polygonal image-interpreting 

technique to replace the existing value-based method. Aage, Andreassen, and Lazarov [141] developed 

a fully parallel open-source framework suitable for high-resolution topology optimization capable of 

manufacture-ready designs. More recently in 2018, Gamache et.al. [144] introduced an image-based 

truss recognition system that was developed to interpret aircraft structures design via topology 

optimization.  

Regardless of these innovative techniques to address the initialization and post-processing of structural 

design problems for topology optimization, in the author’s best knowledge, there is still no freely 

available Matlab code that holistically covers free-form initialization, deployment of several topology 

optimization approaches, and post-processing for 2D topology optimization. 

2.7.      Summary 

In this chapter, the design for additive manufacturing (DfAM) has been reviewed and topology 

optimization which is an important tool for structural design and optimization has been theoretically 

elaborated on. More focus was placed on topology optimization of structures under design-dependent 

loads because it falls under the scope of this work. Topology optimization tailored for additive 

manufacturing has also been reviewed by exploring the various efforts that have considered important 

AM constraints. Finally, a brief review of open-source frameworks for topology optimization was 

presented.  

Based on this extensive review, several studies have investigated and developed frameworks for 

multiphysics and multiobjective topology optimization, however, they are usually limited to a pair of 
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design-independent and -dependent loads. To enhance topology optimization for DfAM by effectively 

designing parts that operate under complex load conditions, more load cases (especially involving 

several design-dependent loads) should be studied. Also, the development and availability of robust 

optimization-integrated AM constraints (e.g. overhang elimination) have been provided by several 

research efforts, notwithstanding, there is no assurance of the effectiveness of these schemes for topology 

optimization models considering design-dependent loads. Therefore, the development of a suitable 

scheme that introduces an AM constraint for part manufacturability with little to no effect on the 

multiphysics and multiobjective topology optimization model is recommended.  
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Chapter 3: Modeling Thermoelastic Stress and 

Centrifugal Loads for Topology Optimization considering 

Load Thresholding. 

3.1 Introduction 

This chapter will establish the thermal stress and centrifugal load equations of a rigid body under 

elevated temperature and angular rotation necessary to resolve the body’s response for topology 

optimization. In Chapter 2, topology optimization has been very well established for pure mechanical 

loads such as point forces and restricted pressure. In literature, topology optimization for thermal/fluid 

effects based on maximizing cooling [145], minimizing heat conduction [146], [147], [32], or 

maximizing/minimizing pressure drop for fluid-flow problems [148], [149], [150] have been well 

studied. Rotor components close to the combustion chamber in gas or steam turbine engines operate 

under high thermal, rotational, and pressure conditions. These components are usually made of high-

strength ductile superalloys with excellent fatigue [151] and creep properties [152]. They can also 

excellently retain their elasticity for over 400 MPa yield strength at significantly high temperatures 

[153]. Therefore, to topologically optimize these components for a single material, the consolidated 

compliance from thermal stress, pressure, and rotational loads can be minimized. The formulations are 

based on linear elastic material models since superalloys such as Hastelloy X are considered the 

component material and no plastic flow is induced under the load conditions. This chapter will focus on 

thermal stress and centrifugal loads while design-dependent pressure loads are left for Chapter 4. 

3.2. Thermoelastic Stress Load (TSL) 

Structures under thermal and mechanical loads (point forces or restrained pressure) will experience 

significant topological changes during optimization as opposed to being under mechanical loads only. 

The reason is that a body under elevated temperature deforms according to its thermal expansivity [154] 

in addition to its Young’s Modulus [27]. The load experienced by a body or element resulting from an 

elevated temperature is referred to as thermal stress or thermoelastic stress load (TSL) [27]. As will be 

pointed out in later sections, the thermal stress load in an element is dependent on its amount of material 

within the volume occupied by the element. Therefore, as the topology of the entire structure is being 

updated, the magnitude and/or direction of this load on every element will change accordingly, the 
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reason they are referred to as design dependent. Figure 3.1 shows a structure with constant elevated 

temperature in (a) and steady temperature distribution in (b) with a mechanical load and a fixed boundary 

condition. 

 

Figure 3.1: Thermo-mechanically loaded structures (a) with constant temperature change (b) with a 

temperature distribution 

  

3.2.1 Thermal Stress Coefficient 

In a thermo-elastic problem, the cell elastic strain energy of an element in a discretized material space 

will depend on its temperature change with ambiance, material’s coefficient of thermal expansivity, and 

Young’s Modulus. The cell’s elastic strain energy can be defined as the potential mechanical energy in 

the elastic body [58]. For the rigid body in Figure 3.1, if we assume that the material properties are 

temperature independent, temperature distribution remains constant through any given period (steady-

state), and no plastic strain, we can express the cell elastic strain energy Φe
𝑚 in terms of the cell’s stress 

𝜎𝑒
𝑚 and strain 𝜀𝑒

𝑚 as: 

Φ𝑒
𝑚 =

1

2
∫𝜎𝑒

𝑚𝜀𝑒
𝑚𝑑Ω

 

Ω

                                                                   (3.1) 

For a solid element,  

Φ𝑒
𝑚 =

1

2
∬𝜎𝑒

𝑚𝜀𝑒
𝑚𝑑v

 

v

 

Recall that the total strain 𝜀𝑒 is a consolidation of the elastic strain from mechanical load 𝜀𝑒
𝑚 and thermal 

load 𝜀𝑒
𝑡ℎ 
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𝜀𝑒 = 𝜀𝑒
𝑚 + 𝜀𝑒

𝑡ℎ                                                                      (3.2) 

The total stress on the cell is 

𝜎𝑒 = 𝐷𝑒𝜀𝑒                                                                       (3.3) 

Therefore, the stress from elasticity because of pure mechanical load can be obtained thus:  

=
1

2
∬(𝜀𝑒 − 𝜀𝑒

𝑡ℎ)𝑇𝐷𝑒(𝜀𝑒 − 𝜀𝑒
𝑡ℎ)ℎ𝑑𝑢𝑑𝑣

 

A

 

=
1

2
∬(𝜀𝑒

𝑇𝐷𝑒𝜀𝑒 − 2𝜀𝑒
𝑇𝐷𝑒𝜀𝑒

𝑡ℎ + (𝜀𝑒
𝑡ℎ)𝑇𝐷𝑒𝜀𝑒

𝑡ℎ)ℎ𝑑𝑢𝑑𝑣
 

A

 

Thermal strain vector  

𝜀𝑒
𝑡ℎ = 𝛼𝑒(𝑇𝑒 − 𝑇𝑎𝑚𝑏)𝜙

𝑇                                                   (3.4) 

Φ𝑒 =
1

2
∬(𝑢𝑒

𝑇𝐵𝑇𝐷𝑒𝐵𝑢𝑒 − 2𝑢𝑒
𝑇𝐵𝑇𝐷𝑒𝛼𝑒∆𝑇𝜙

𝑇 + 𝛼𝑒∆𝑇
𝑇𝐷𝑒𝛼𝑒∆𝑇𝜙

𝑇𝜙)ℎ𝑑𝑢𝑑𝑣
 

A

           (3.5) 

The differential of strain energy w.r.t displacement should be zero for a steady heat problem, therefore 

𝜕Φ𝑒

𝜕𝑢𝑒
=
1

2
∬(2𝐵𝑇𝐷𝑒𝐵𝑢𝑒 − 2𝐵

𝑇𝐷𝑒𝛼𝑒∆𝑇𝜙
𝑇)ℎ𝑑𝑢𝑑𝑣

 

A

= 0                                     (3.6) 

If elastic stress is a consequence of the thermal effects on the cell, the first term in 3.6 is the resultant 

load that is an effect of the thermal expansion from the second term, therefore, thermal load for an 

element with unit thickness can be expressed as 

𝐹𝑒
𝑡ℎ =∬𝐵𝑇𝐷𝑒𝛼𝑒∆𝑇𝜙

𝑇𝑑𝑢𝑑𝑣
 

A

                                                 (3.7) 

Where  

𝐵𝑖 =

[
 
 
 
 
 
𝜕𝑁𝑖
𝜕𝑢

0

0
𝜕𝑁𝑖
𝜕𝑣

𝜕𝑁𝑖
𝜕𝑣

𝜕𝑁𝑖
𝜕𝑢 ]
 
 
 
 
 

                                                                      (3.8) 

for a plane stress problem, 
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𝐷0 =
1

1 − 𝜇2
[

1 𝜇 0
𝜇 1 0

0 0
1 − 𝜇

2

] 

𝐷𝑒 = 𝐸𝑒𝐷0 

𝜀𝑒
𝑚 = 𝜀𝑒 − 𝜀𝑒

𝑡ℎ                                                             (3.9) 

Where 𝐵 and 𝐷𝑒 are differential shape function matrix and material matrix for plane stress respectively, 

𝛼 is the coefficient of linear thermal expansivity, 𝐸𝑒 is Young’s Modulus, 𝑢𝑒 is displacement vector of 

nodes of an element, 𝜇 is Poisson’s ratio, ∆𝑇 is the change in temperature with ambiance, and 𝜙 =

[1 1 0] is the thermal strain unit displacement vector for 2D problems. It should also be noted that steady-

state thermal condition is assumed for this formulation, therefore,  ∆𝑇 is independent of time. 

𝐷𝑒 and 𝛼𝑒 are material properties that both depend on the pseudo-density design variable, 𝑥𝑒. It should 

be noted that variables with subscript or superscript “e” indicate a property for an element in the 

discretized domain. The material matrix is expressed as: 

𝐷𝑒 = 𝐸𝑒𝐷0                                                               (3.10) 

Substituting equation 4.8 into 4.5 gives  

𝐹𝑒
𝑡ℎ =∬𝐵𝑇𝐸𝑒𝐷0𝛼𝑒∆𝑇𝜙

𝑇𝑑𝑢𝑑𝑣
 

A

 

= 𝐸𝑒𝛼𝑒∆𝑇∬𝐵𝑇𝐷0𝜙
𝑇𝑑𝑢𝑑𝑣

 

A

                                                     (3.11) 

𝐸𝑒and 𝛼𝑒 can be combined into one variable called Thermal Stress Coefficient (TSC) [27] and denoted 

by 𝛽𝑒 and can be expressed by the RAMP function, which has been highly recommended in literature 

for design-dependent loads [27], [155], in equation 4.10 

𝛽𝑒 = 𝐸𝑒𝛼𝑒 

=
𝑥𝑒

1 + 𝑞2(1 − 𝑥𝑒)
𝐸0𝛼0                                          (3.12) 

In 3.12, 𝑞2 is the penalization factor of the RAMP scheme for TSC. 𝑞1 is left for the penalization of the 

Young’s Modulus property which will be presented in Chapter 5. 

Therefore, thermal stress load 𝐹𝑒
𝑡ℎ can be written as 
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𝐹𝑒
𝑡ℎ = 𝛽𝑒∆𝑇∬𝐵𝑇𝐷0𝜙

𝑇𝑑𝑢𝑑𝑣
 

A

                                             (3.13) 

After integration, 

𝐹𝑒
𝑡ℎ =

𝛽𝑒∆𝑇

2(1 − 𝜇)
[−1 − 1 1 − 1 1 1 − 1 1]𝑇                                 (3.14) 

3.2.2 Steady-State Heat Transfer 

Structures under steady-state thermal distribution should have this distribution updated as topology 

changes. Also, if there are convective effects around surfaces, it should affect the temperature 

distribution in the design. For a steady-state heat problem, the thermal distribution can be updated on 

every iteration by calculating the heat transfer equation.  

Fourier’s equation for heat transfer is given as 

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘
𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘
𝜕𝑇

𝜕𝑧
) + 𝑄 =

𝜌𝑐𝜕𝑇

𝜕𝑡
                                  (3.15) 

In 3.15, 𝑥, 𝑦, 𝑧 are spatial coordinates, 𝜌 is the material density and 𝑐 is the specific heat capacity. For 

every finite element, the temperature can be obtained as 

𝑇𝑒 = [𝑁𝑖]{𝑇𝑖}𝑒                                                      (3.16) 

Where 𝑁𝑖 and 𝑇𝑖 are shape functions and nodal temperatures respectively. This equation can be 

differentiated to obtain the temperature gradient within the element given as 

{
  
 

  
 
𝜕𝑇

𝜕𝑥
𝜕𝑇

𝜕𝑦
𝜕𝑇

𝜕𝑧}
  
 

  
 

=

[
 
 
 
 
 
 
𝜕𝑁1
𝜕𝑥

𝜕𝑁2
𝜕𝑥

…    

𝜕𝑁1
𝜕𝑦

𝜕𝑁2
𝜕𝑦

…    

𝜕𝑁1
𝜕𝑧

𝜕𝑁2
𝜕𝑧

…    

𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦
𝜕𝑁𝑖
𝜕𝑧 ]
 
 
 
 
 
 

                                                      (3.17) 

3.17 can be rewritten as 

{𝑇}𝑒
′ = [𝐵𝑖]{𝑇𝑖}𝑒                                                        (3.18) 

The heat transfer equation in 3.14 can be rewritten by Galerkin method as follows [156] 

∫(
𝜕𝑞𝑥
𝜕𝑥

+
𝜕𝑞𝑦

𝜕𝑦
+
𝜕𝑞𝑧
𝜕𝑧

− 𝑄 +
𝜌𝑐𝜕𝑇

𝜕𝑡
)𝑁𝑖𝑑𝑉

 

𝑉

= 0                                       (3.19) 
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The discretized finite element equations for heat transfer problems can be expressed in a general form 

as [156] 

[𝐶]{𝑇̇} + ([𝐾̃𝑐] + [𝐾̃ℎ] + [𝐾̃𝑟]){𝑇} = {𝑅𝑇} + {𝑅𝑄} + {𝑅𝑞} + {𝑅ℎ} + {𝑅𝑟}            (3.20) 

Where [𝐶] is the matrix of material heat capacity, [𝐾̃𝑐] is the conductivity matrix, [𝐾̃ℎ] is the convective 

matrix, [𝐾̃𝑟] is the radiative matrix and {𝑅𝑇}, {𝑅𝑄}, {𝑅𝑞}, {𝑅ℎ}, {𝑅𝑟} are heat loads by conduction, 

volume conduction, surface conduction, convection, and radiation respectively. 𝑘, ℎ, 𝑄, 𝑞𝑠 are the 

thermal conductivity, convective heat transfer coefficient, heat energy, and surface heat flux 

respectively.  

For steady and linear heat transfer, equation 3.19 becomes  

([𝐾𝑐] + [𝐾̃ℎ]){𝑇} = {𝑅𝑄} + {𝑅𝑞} + {𝑅ℎ}                                (3.21) 

The matrices are defined as 

[𝐾̃𝑐] = ∫𝑘[𝐵]𝑇[𝐵]𝑑𝑉

 

𝑉

 

[𝐾̃ℎ] = ∫ℎ[𝑁]𝑇[𝑁]𝑑𝑆

 

𝑆

 

{𝑅𝑄} = ∫𝑄[𝑁]𝑇𝑑𝑉

 

𝑉

                                                                  (3.22) 

{𝑅𝑞} = ∫𝑞𝑠[𝑁]
𝑇𝑑𝑆

 

𝑆

 

{𝑅ℎ} = ∫ℎ𝑇𝑒[𝑁]𝑇𝑑𝑆

 

𝑆

 

In 3.22 𝑆 and 𝑉 denote surface and volume domains respectively.  

3.3. Load considerations in rotating structures 

Several components operate in dynamic states, a peculiar one being the operation of rotor components 

in a gas or steam turbine. In rotation, a structure comes under centrifugal loads that will exert a 

displacement response away from the center of rotation. The severity of this response will depend on the 
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structure’s mass, rotational speed, and distance from the center of rotation. Also, the moment of inertia 

of a rotating structure contributes to the power consumed, therefore, minimization of its kinetic energy 

can be necessary for structural optimality depending on the position of the rotational axis [29]. The 

topology optimization model in the previous chapter essentially remains the same except for an 

additional objective - kinetic energy minimization. 

If we assume a rigid body of mass 𝑚 and density 𝜌0 shown in Figure 3.2(a) is rotated by a shaft by 

𝑁rpm, the weighted multiobjective function can be written as  

 

Figure 3.2: A rotating structure showing (a) the free body diagram (b) the nodal centrifugal forces (in 

red) on an element in a discretized region. 

min Obj. F = 𝑤1𝐶𝑐(𝑥𝑒) + 𝑤2Ψ(𝑥𝑒)                                                   (3.23) 

3.23 can be written as 

min Obj. F = 𝑤1𝐹𝑐𝑈𝑐 + 𝑤2 (
1

2
𝐼𝜔2)                                                   (3.24) 

Where 𝐶𝑐(𝑥𝑒) is the compliance function for centrifugal loads and Ψ(𝑥𝑒) is the kinetic energy function 

while 𝐹𝑐, 𝑈𝑐, 𝐼, and 𝜔 are the centrifugal force, displacement, moment of inertia, and rotational speed 

respectively of the structure.    

Recall that  

𝐹𝑐 = 𝑚𝜔
2𝑟                                                                           (3.25) 

In the finite element form, and considering the design variable 𝑥𝑒 for optimization,  
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𝐹𝑒
𝑐 = 𝑥𝑒𝜌0𝜔

2𝑟𝑒                                                                                

𝐹𝑒
𝑐 = 𝑥𝑒𝜌0𝑣𝑒 (

2𝜋𝑁

60
)
2

𝑟𝑒                                                         (3.26) 

The moment of inertial 𝐼 of the rotating body around an axis at a distance 𝑟 

𝐼 = 𝑚𝑟2                                                                                      

𝐼𝑒 = 𝑥𝑒𝜌0𝑟𝑒
2                                                                       (3.27) 

Inserting 3.26 and 3.27 into 3.24, 

min Obj. F = 𝑤1 {𝑥𝑒𝜌0𝑣𝑒 (
2𝜋𝑁

60
)
2

𝑟𝑒}𝑈𝑐 + 𝑤2 {
1

2
𝑥𝑒𝜌0𝑟𝑒

2 (
2𝜋𝑁

60
)
2

}                        (3.28) 

To simplify the objective function for rotational loads to be used in topology optimization, the kinetic 

energy term is neglected because all the independent variables except 𝑈𝑐 are present in both terms. 3.28 

becomes  

 min Obj. F = {𝑥𝑒𝜌0𝑣𝑒 (
2𝜋𝑁

60
)
2

𝑟𝑒} 𝑈𝑐                                           (3.29)  

The force definition in equation 3.26 can be further defined in finite element vector form for a 

homogenous bilinear square mesh as illustrated in Figure 3.4(b) by 3.30. 

 

𝐹𝑒
𝑐 = 

1

4
𝑥𝑒𝜌0 (

2𝜋𝑁

60
)
2

𝑟𝑒[1 0 1 0 1 0 1 0]                                         (3.30) 

Where 𝑓𝑢, 𝑓𝑣 represent every nodal centrifugal force component in the 𝑢 and 𝑣 directions respectively.  

3.4.  A case study considering load thresholding 

A case study is presented to compare thermoelastic stress and centrifugal loads. A cantilever structure 

with a temperature distribution as shown in Figure 3.3 is rotated about a vertical axis. Thermal boundary 

conditions of constant temperatures 400°𝐶 and 250°𝐶 are placed on two perimeter sections of the 

domain while other sections are assumed to be under adiabatic conditions. The cantilever rotates at 

400 𝑅𝑃𝑀. The material properties are assumed to be: linear thermal expansivity 𝛼 = 3 × 10−6/𝐾,  

density 𝜌0 = 8000 𝑘𝑔/𝑚3, Young’s Modulus 𝐸0 = 100 𝐺𝑃𝑎, and Poisson’s ratio 𝜇 = 0.3. The domain 
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was discretized by 13,400 homogenous bilinear square elements with a length of 4 𝑚𝑚. Equations 3.14 

and 3.30 were applied for thermoelastic stress load and centrifugal load respectively. The load fields and 

distributions are shown in Figure 3.4. 

 

Figure 3.3: A rotating cantilever with a temperature distribution 

The quiver arrows in Figure 3.4(a) show the gradient of the load field with larger arrows indicating larger 

gradients and the direction indicating the movement from smaller load areas to larger ones – essentially 

establishing the load path. As expected, centrifugal load paths are directed outwards from the center of 

rotation with a gradual load increase peaking at regions farthest away from the center of rotation. 

Thermoelastic stress load paths are expectedly more intricate with the gradients moving away from lower 

load to higher load regions. In Figure 3.4(b), the element load distributions are shown. Since 

homogenous mesh elements were used, an equal number of elements is observed in every load category 

for centrifugal loads. However, for TSLs, all the elements are acted upon by 60% and over of the 

maximum absolute load in the TSL vector. The inherent nonuniformity of the load gradients can have 

an impact on the topology optimization of structures under these loads, however, the most impact comes 

from the relatively close load contribution from every element in the optimization as experienced in the 

TSL vector. To simplify these load contributions for topology optimization, a threshold is introduced.  
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Figure 3.4: Centrifugal and thermoelastic stress (a) load fields (b) element load distribution. 

Thresholding is common in topology optimization: as filters to obtain sharp or crisp boundaries in the 

resulting density field maps [83], [108], [109], [157], modeling geometric uncertainties [158], modeling 

AM overhang restrictive filters [76], etc. In this study, the smoothed Heaviside function expressed in the 

work by Wang et. al. [108] as opposed to the non-differentiable exact Heaviside function is utilized to 

place a threshold on the thermal stress and centrifugal load values as expressed in 3.31-3.33: 

𝐹̂𝑙𝑜𝑎𝑑 = 𝐻(𝐹𝑙𝑜𝑎𝑑
′ )𝐹𝑙𝑜𝑎𝑑                                                             (3.31) 

𝐻(𝐹𝑙𝑜𝑎𝑑
′ ) =

tanh(𝛽𝜂) + tanh(𝛽(𝐹𝑙𝑜𝑎𝑑
′ − 𝜂))

tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))
                                           (3.32) 

𝐹𝑙𝑜𝑎𝑑
′ =

𝐹𝑙𝑜𝑎𝑑
max(||𝐹𝑙𝑜𝑎𝑑||)

                                                        (3.33) 

𝐻(𝐹𝑙𝑜𝑎𝑑
′ ) is the smoothed Heaviside function where 𝜂 is the threshold parameter which ranges from 0 to 

1 and 𝛽 is the smoothing parameter. The higher the smoothing parameter, the more exact the 

thresholding function i.e peaking threshold attains perfection at 𝛽 = ∞. 𝐹𝑙𝑜𝑎𝑑
′  is a normalized load 

parameter obtained by dividing the load vector 𝐹𝑙𝑜𝑎𝑑 by the maximum absolute load in the vector 
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max(||𝐹𝑙𝑜𝑎𝑑||) as shown in 3.33. Figure 3.5 shows the Heaviside function for different smoothing 

parameters at 𝜂 = 0.5.  

 

Figure 3.5: Smoothed Heaviside function for different smoothing parameters β. 

3.31 and 3.32 are applied to the TSL and centrifugal load fields obtained in Figure 3.4 and the effects on 

the new load distributions are presented in Figure 3.6 to Figure 3.9. In these figures, it is observed that 

the thresholds (𝜂 = 0.1, 0.4, 0.6, 0.8) placed on centrifugal loads significantly affect the load distribution 

with over 50% of the loads on elements set to 0 when 𝜂 = 0.6, 0.8. However, TSL field and distribution 

are not affected at all for 𝜂 = 0.1, 0.4 in Figure 3.6 and Figure 3.7 while loads on a little over 500 

elements are reduced when 𝜂 = 0.6 in Figure 3.8. For 𝜂 = 0.8 in Figure 3.9, loads on about 3000 

elements (about 22% of the total number) are set to 0 for TSL distribution. On the one hand, load 

thresholding affects centrifugal loads considerably and if used in topology optimization, a significant 

inaccuracy in load representation is expected. Moreover, centrifugal loads exhibit directional uniformity 

ensuring fewer numerical instabilities during optimization  
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Figure 3.6:  Centrifugal and thermoelastic stress load (a) fields (b) distributions for η=0.1 

 

 

Figure 3.7:  Centrifugal and thermoelastic stress load (a) fields (b) distributions for η=0.4 
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Figure 3.8:  Centrifugal and thermoelastic stress load (a) fields (b) distributions for η=0.6 

 

 

Figure 3.9: Centrifugal and thermoelastic stress load (a) fields (b) distributions for η=0.8 
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Conclusively, there is less need for thresholding centrifugal loads in topology optimization. On the other 

hand, for TSL, some distortion in the field and distribution is only found when 𝜂 = 0.8, however, the 

field map is very similar to the initial map before thresholding whereas the load on around 3000 elements 

is set to 0. As will be observed in Chapter 5, thresholding the TSL field is quite beneficial to ensure the 

optimizer can update the pseudo-density design variables based on less random sensitivity information 

thereby reducing the chance of numerical instabilities in later iterations of the optimization. 

3.3  Summary 

In this chapter, the modeling of thermoelastic stress and centrifugal loads for topology optimization has 

been elaborately presented. The thermoelastic stress load (TSL) on an element in the discretized model 

is derived from its strain energy noting that the thermal strain resulting from an elevated temperature 

will cause thermal or thermoelastic stress load on the element. Centrifugal loads are much easier to 

derive from Newton’s Second Law. The fields and distribution from both loads were analyzed with the 

use of the Heaviside function as a thresholding strategy. It was observed that centrifugal loads might not 

require thresholding for two reasons: first, thresholding generally simplifies the load model leading to a 

less accurate displacement response of the structure to the load, second, there is directional uniformity 

in the centrifugal load field ensuring less numerical instabilities during optimization with or without 

thresholding. Whereas, TSLs across elements are closely related in magnitude with about 97% of all 

elements having load values between 60% and 90% of the maximum elemental load. Also, there is high 

directional nonuniformity that can induce significant numerical challenges during optimization. 

Although there is bound to be some loss in accuracy for TSLs when thresholding is used, achieving a 

stable optimization process outweighs this downside.  
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Chapter 4: Topology Optimization of Structures under 

Design-Dependent Pressure Loads by a Boundary 

Identification and Load Evolution (BILE) Model  

4.1.    Introduction 

Topology Optimization of structures under pressure loads can be formulated either as design-

independent or design-dependent subject to the nature of the design problem. For design-dependent 

pressure loads, as the optimization carries on, these loads might change in direction only or in both 

magnitude and direction depending on the methodology devised to update the changing pressure. If they 

change in magnitude, there will be a load sensitivity term in the sensitivity function that has to be 

calculated for and it is usually non-trivial. A significant challenge in topology optimization for design-

dependent pressure load is identifying the change in the topological boundaries. In this chapter, the 

Boundary Identification - Load Evolution (BILE) model is proposed and it is set up by obtaining 

boundary and loading nodes located on the nodes of boundary elements throughout the optimization 

process. This two-step process of boundary identification and load movement or evolution involves 

firstly, a volume fraction threshold, which increases on every iteration for boundary identification. 

Secondly, a parameter is introduced that defines the number of iterations for load evolution between two 

boundary identification steps, which can also control the speed of optimization. 

4.2.    Problem formulation using the SIMP model  

The mathematical basis of conventional topology optimization is robust and well understood. If we 

consider a structural element in Figure 4.1(a), which comprises material and non-material domains, we 

assume the entire domain is chosen such that it accommodates given loads and boundary conditions. 

When the structure is optimized for design-independent or restricted pressure loads, there is a change in 

the topology but the magnitude and direction of the pressure load remain the same as observed in Figure 

4.1(b). However, when acted upon by design-dependent pressure loads, the resulting topology as well 

as the pressure surface, magnitude, and direction change also in Figure 4.1(c). In this structure, we have 

fixed degrees of freedom 𝜞𝒖  (can be applied to point, surface or body), loads on surfaces 𝜞𝒕, and body 

forces Fb. This chosen domain, usually called a ground structure, can be optimized based on minimizing 

the system’s internal energy. The minimum internal or strain energy  problem can be formulated from 
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the principle of virtual work which introduces an arbitrary virtual displacement 𝑣 for an elastic structure 

with a fixed boundary 𝜞𝒖, [53]: 

∫𝝐𝑇
 

Ω

(𝒗)(𝑫𝝐(𝒖))𝑑Ω =  ∫𝑭𝒃
𝑇𝒗𝑑Ω

 

Ω

+∫ 𝑷𝑇𝒗𝑑Γ
 

Γ𝑡

                                    (4.1) 

 

Figure 4.1: A structural element showing (a) Its original geometrical state with load and boundary 

conditions, (b) change in the state due to design-independent load (c) change in the state due to design-

dependent load (dotted boundary in (b) and (c) show the original state in (a)) 

The left-hand side of 4.1 is the strain energy of the system in the elastic domain which is a combination 

of work done by forces Fb, applied on Ω and surface traction forces P on Γ𝑡; D is the material matrix 

while 𝝐 is the total strain in the elastic region. It should be noted that u and v are spatial variables as 

opposed to velocity fields which is common in structural optimization. By using notations from 

functional analysis and energy bilinear form for internal work and load linear form for external work,   

𝑎(𝒖, 𝒗) = 𝑙(𝒗),       ∀𝒗 ∈ 𝐕                                                           (4.2) 

where  

𝑎(𝒖, 𝒗) = ∫𝝐𝑇
 

Ω

(𝒗)(𝑫𝝐(𝒖))𝑑Ω                                                      (4.3) 
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and 

𝑙(𝒗) = ∫𝑭𝒃
𝑇𝒗𝑑Ω

 

Ω

+∫ 𝑷𝑇𝒗𝑑Γ
 

Γ𝑡

                                                        (4.4) 

Topology optimization based on obtaining the stiffest structural layout means the minimization of 

compliance or strain energy. It aims at ensuring the structural layout gives the least response possible to 

external loads and surface traction forces. Therefore, the structural problem by minimizing compliance 

𝑙(𝐮) can be formulated thus: 

Minimize                     𝑙(𝐮)                                                                                     

subject to                    𝑎(𝒖, 𝒗) = 𝑙(𝒗),       ∀𝒗 ∈ 𝐕                                 (4.5) 

and                   𝑑𝑒𝑠𝑖𝑔𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠                                                         

4.5 is subjected to the comparison of internal work, 𝑎(𝒖, 𝒗) and external work, 𝑙(𝒗) on the system. This 

can be translated to the finite element equation 

𝑲(𝑥)𝑼(𝑥) = 𝑭                                                                (4.6) 

where K and U are the stiffness matrix and global displacement vector; respectively, due to the external 

load vector F. With compliance 𝐶 ≡ 𝑙(𝐮) = 𝑭𝑻𝑼 and volume constraint, the optimization problem in 

4.5 transforms to: 

min 𝐶 = 𝐹𝑇𝑈 = 𝑈𝑇𝐾𝑈 =∑𝐸𝑒(𝑥𝑒)𝑢
𝑇𝑘0𝑢

𝑛

𝑒=1

 

subject to: 𝐾(𝑥)𝑈(𝑥) = 𝐹 

∑ 𝑉(𝑥𝑒)
𝑛
𝑒=1

𝑓𝑉0
≤ 1                                                             (4.7) 

where 0 < 𝑥𝑚𝑖𝑛 ≤ 𝑥𝑒 ≤ 1 and 0 ≤ 𝐸𝑒 ≤ 𝐸0 

4.7 applies the classical SIMP interpolation function because a minimal limit greater than 0 is set on the 

density design variable to avoid singularities in the stiffness matrix. In the modified SIMP function [54], 

this limit is placed on the material property (Young’s Modulus) and the problem statement in 4.7 

becomes:  
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min 𝐶 = 𝐹𝑇𝑈 = 𝑈𝑇𝐾𝑈 =∑𝐸𝑒(𝑥𝑒)𝑢
𝑇𝑘0𝑢

𝑛

𝑒=1

 

subject to: 𝐾(𝑥)𝑈(𝑥) = 𝐹 

∑ 𝑉(𝑥𝑒)
𝑛
𝑒=1

𝑓𝑉0
≤ 1                                                             (4.8) 

0 ≤ 𝑥𝑒 ≤ 1 

0 < 𝐸𝑚𝑖𝑛 ≤ 𝐸𝑒 ≤ 𝐸0 

In this case, 0 density design values are permitted without risking singularities in the stiffness matrix. 

The Young’s modulus function becomes 

𝐸𝑒(𝑥𝑒) = 𝐸𝑚𝑖𝑛 + 𝑥𝑒
𝑝(𝐸0 − 𝐸𝑚𝑖𝑛)                                                  (4.9) 

For structures under pressure loads, the problem formulation follows the same procedure as discussed 

but extended to uniformly distributed load P, on a line, in a 2D domain, or on a surface in a 3D domain. 

As illustrated in Figure 4.1(b), the design-independent pressure’s magnitude, direction, and location on 

the structure remain the same throughout the optimization process. However, for an unconstrained or 

design-dependent pressure load in Figure 4.1(c), there will be the movement of pressure nodes, 

depending on the evolving topology at every iteration which might also involve changes in pressure 

magnitudes. The challenge, therefore, is two folds: tracking the design’s evolving topological boundary 

and applying the pressure load appropriately on every iteration of the optimization. Although there have 

been several studies done to resolve these challenges [67], [159] [72], [160], this study proposes a 

simplistic model that is easy to apply and computationally efficient. 

4.3.    The BILE model  

Essentially, when a solid design is acted upon by a fluid medium, every surface of the solid in contact 

with the fluid will be acted upon by fluid pressure and if the design’s geometry is updated, all newly 

formed surfaces in contact with the fluid will take up the same pressure as illustrated in Figure 4.2(a) 

and Figure 4.2(b). Initially, in a density-based finite element topology optimization method, the pressure-

loading surface is strictly defined by the design domain, but as the density of the finite elements is 

updated, some boundary elements end up with either intermediate or zero density values. This destroys 

the integrity of the original surface and a new surface geometry has to be determined. Therefore, the 
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foremost challenge is to establish a threshold function that selects boundary nodes within a discretized 

model from elements with intermediate density values. 

 

Figure 4.2: Fluid pressure changes to topological surface variations 

From these carefully selected boundary nodes, loading nodes are derived and act as points for equivalent 

forces [159] which will evolve as the optimization progresses. Although [159] utilized a pseudo-equal 

potential curve to identify loading surfaces, in the BILE model, a simple boundary identification is done 

by selecting nodes that have neighboring elements with a mean density value below a predefined 

threshold. Loading nodes are then drawn from the boundary nodes within an orthogonal view from 

original pressure surfaces. Finally, the direction of pressure loads which should be normal to the loading 

surface on every node is achieved by computing the gradient of two nearest but opposite nodes for every 

node of interest. The simple BILE model is elaborately discussed in subsequent sub-sections.  

4.3.1. Identification of topological boundary 

The first step for this model is to define the boundary nodes of the design on every iteration. In Figure 

4.3, we observe that at the beginning of optimization, a uniform density value is applied to all elements 

and the boundary of this design is defined by all the nodes (in red) on the four sides of the domain. As 

the optimization progresses to an nth iteration, a new topology is formed and its boundary is defined by 

new nodes based on a threshold density value. The mean density value, 𝑥̅𝑛,𝑖 of all neighboring elements 

𝑥𝑛,𝑖 about a node 𝑛, shown in Figure 4.4, is used to compare with the threshold density value 𝑓𝑡ℎ.  
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Figure 4.3: Topological boundary and load evolution for design-dependent pressure loads 

 

 

Figure 4.4: Elements 𝑥𝑛,𝑖 surrounding a node n. 

The threshold density value typically increases and is different on every iteration because as the 

optimization matures the topological boundaries become more defined and boundary elements adopt 

larger design density values. In Figure 4.5, the mean density of boundary elements throughout the 

optimization is shown. In the first 20 iterations for all three plots, the mean density oscillates around 0.2 

but steadily increases thereafter. To apply a threshold to the density of boundary elements, the dotted 

plot is modeled by an appropriate function. An exponential function in 4.10, as opposed to a linear one, 

is utilized to step up this value after every iteration because the rate at which boundary elements become 

more defined rapidly increases at later stages in optimization:  
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𝑓𝑡ℎ = 𝑓exp
(
𝑖𝑡
𝜇
−1)
                                                         (4.10) 

 

Figure 4.5: Volume fraction threshold, the mean density of boundary elements and percentage number 

of low and intermediate-density elements (0.5 and below) at (a) μ = 40, (b) μ=60 and (c) μ=80.  

In 4.10, 𝑓𝑡ℎ is the volume fraction threshold at every iteration, 𝑖𝑡 is the iteration number, 𝜇 is a factor 

that controls the threshold’s rate of increase, while 𝑓 is the volume fraction constraint in the problem 

definition. After several numerical investigations, 𝜇 can be given a value of 50 – 150 for most problems 

but assigned a value greater than 150 for optimizations that are anticipated to be much slower. In any 

problem, 𝑓𝑡ℎ is capped at 0.8. Figure 4.5 shows for a numerical solution how the exponential function 

defines a unique value of volume fraction threshold which is usually less than the average density value 

of boundary elements. Towards the end of optimization, both values converge (indicated by a circle) 

because the boundary elements are more defined and have density values approaching 1 (solid). For 𝜇 =

40 in Figure 4.5(a), 𝑓𝑡ℎ quickly converges to the mean density of boundary elements at around the 50th 

iteration, but as 𝜇 is increased to 60 in Figure 4.5(b) and 80 in Figure 4.5(c), 𝑓𝑡ℎ is kept lower than the 

mean density of boundary elements for a longer period (65th and 110th iterations respectively). Therefore, 

higher values of 𝜇 should be used for potentially slower optimization problems. The figure also shows 



53 

 

that there is a significant drop in the percentage of elements with a density value of 0.5 and less during 

the early stages of optimization (0 to 20th iteration) which steadily drops as the optimization matures. 

During the early stages of optimization, the number of nodes with a mean density of surrounding 

elements less than the threshold is expectedly high from discussions in the previous paragraph, therefore 

to reduce this number, surrounding adjacent nodes as shown in Figure 4.6 are investigated and used as 

a basis for choosing a boundary node. 

 

Figure 4.6: Surrounding adjacent nodes 𝑆𝑛 to node 𝑛. 

Every surrounding node 𝑆𝑛 to node 𝑛 also has surrounding density elements 𝑥𝑠𝑛,𝑙. 𝑥𝑛,𝑖 is a vector of 

density elements surrounding node 𝑛 for 𝑖 ranging from 1 to 4 for 2D quadrilateral elements and 1 to 12 

for 3D hexahedral elements while 𝑥𝑠𝑛,𝑙 is the corresponding vector of density elements surrounding node 

𝑆𝑛 for 𝑙 from 1 to 4. For every node 𝑛, there are four 𝑆𝑛 nodes in the 2D domain and six in the 3D 

domain. Boundary nodes in a 2D domain can be chosen by the selection criteria: 

𝑏𝑛 =  {
Node 𝑛                        〈∀(𝑥̅𝑠𝑛,𝑙 < 𝑓𝑡ℎ) ∈ [1,2]〉  ∥  〈{∀(𝑥𝑛,𝑖 > 0) = 2} ∧ (𝑥̅𝑛,𝑖 > 𝑓𝑡ℎ)〉  

0                                    any other case                                                                                       
(4.11) 

In 4.11, 𝑏𝑛 is a vector of nodes that define the boundary at every iteration. As previously mentioned, the 

initial iterations in optimization are characterized by high numbers of intermediate or grey elements, 

therefore even with the seemingly narrow band created by the selection criteria in 4.11, 𝑏𝑛 will still 

consist of many nodes that do not smoothly define the boundary. To obtain a set of nodes that closely 

define the boundary on every iteration, an outer node selection is made from the collection of boundary 

nodes as illustrated in Figure 4.7. 
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                                                          (a)                                                    (b)             

Figure 4.7: The nth iteration of an optimization showing (a) all the boundary nodes, bn in red 

by the selection criteria in equation 3.2 and (b) final boundary nodes, in cyan, emanating from 

a selection of outer nodes from (a) 

4.3.2. Pressure load application and evolution 

Loading nodes are selected from the generated boundary nodes to form the loading surface. These 

loading nodes are the basis on which equivalent forces are applied to the design. In this study, simple 

assumptions are employed to identify loading nodes. A loading node, 𝐿𝑛, is equal to a boundary node 

if: 

i. The node is a translational distance away from any node on the initial load surface of the 

design problem (in the direction of any mesh grid,). 

ii. There is no other boundary node between the node being investigated and the initial load 

surface. 

The selection of loading nodes is illustrated in Figure 4.8 
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Figure 4.8: Loading node selection from boundary nodes (boundary nodes in red, loading nodes in 

green). 

When the loading nodes are known, the angle at which each equivalent force acts on its respective node 

has to be determined. For a node under investigation, this angle is calculated counter-clockwise from the 

normal of a line joining two closest loading nodes to the positive vertical direction as shown in Figure 

4.9(a). This angle is given as: 

Δ𝜃𝑗 = |tan−1 (
∆𝑣𝑗

∆𝑢𝑗
)| 

𝜃𝑗 =

{
 
 

 
 Δ𝜃𝑗                     + ∆𝑢𝑗 , +∆𝑣𝑗
𝜋 − Δ𝜃𝑗             + ∆𝑢𝑗 , −∆𝑣𝑗
π + Δ𝜃𝑗            − ∆𝑢𝑗 , −∆𝑣𝑗
2π − Δ𝜃𝑗         − ∆𝑢𝑗 , +∆𝑣𝑗

,       𝑗 = 1,2,3… . . 𝑛                    (4.12) 

In 4.12, j is the number of a loading node in 𝐿𝑛⃗⃗⃗⃗  of length 𝑁. From these calculated angles, the equivalent 

forces can be expressed as: 

𝐹𝑗 =
𝑃𝐴

𝑁
{cos(𝜃𝑗) u + sin(𝜃𝑗) v }                                                  (4.13) 

𝑃 is the pressure magnitude, A is the area of the surface under pressure tantamount to the length of a line 

or curve segment for 2D problems, 𝑁 is the length of loading node vector 𝐿𝑛 which will be presented in 

subsequent paragraphs, while 𝑢 and 𝑣 are Cartesian spatial coordinates for horizontal and vertical 

directions respectively. In the BILE model, since equivalent forces that represent pressure loads are 

located on the outer nodes of boundary elements, the norm of each nodal force is approximated to being 
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equal across all nodes and in every iteration. To further elaborate on the aforementioned, if we assume 

the finite elements in Figure 4.3 are squares of length 𝑙, and 𝑛 is the number of nodes on the loading 

surface with a pressure P (force/length in the 2D case), consequently, 

• in the 1st iteration, the norm of each equivalent force is given as 
𝑃×11𝑙

𝑛
=

𝑃×11𝑙

12
= 0.92𝑃𝑙 

• in the nth iteration, the norm of each equivalent force is given as 
𝑃×17𝑙

𝑛
=

𝑃×17𝑙

18
= 0.94𝑃𝑙 

As observed, there will exist very little change in the norm/magnitude of every equivalent force from 

one iteration to the next. The finer the mesh, the less this change. The only dissimilarity in the equivalent 

nodal forces is their horizontal and vertical force components which depend on the angle the forces are 

subtended at. However, this angle does not depend on the density of the elements rather on the 

location/orientation of the two closest loading nodes to the node under investigation.  

This method of approximating the equivalent force directions and angles is illustrated in Figure 4.9. 

 

 

Figure 4.9: (a) Generating equivalent force angles for a loading node (b) determining the force 

direction at this node (c) load movement by ξ 

Once the force angle is established, the direction and movement of this load from the node to the next is 

determined. To obtain the force direction, the mean densities of surrounding elements two nodes away 

from the node of interest on opposite sides and along the axis of the force (shown in magenta in Figure 

4.9(b)), are investigated and compared with each other. Whichever opposite node has a mean density of 

surrounding elements higher than the other dictates the direction of the force at the loading node of 
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interest, this is shown in Figure 4.9(b). The movement of loading nodes are determined by an updating 

scheme in 4.14:  

𝐿𝑛𝑗,𝑘+1 = {
𝐿𝑛𝑗,𝑘 + 𝜉           𝑥̅𝑗,𝑖

𝑘+1 < 𝑓𝑚𝑜𝑣𝑒_𝑡ℎ𝑟𝑒𝑠ℎ      

𝐿𝑛𝑗,𝑘               𝑥̅𝑗,𝑖
𝑘+1 ≥ 𝑓𝑚𝑜𝑣𝑒_𝑡ℎ𝑟𝑒𝑠ℎ

                          (4.14) 

𝐿𝑛⃗⃗⃗⃗  is a vector of loading nodes, 𝑘 is the optimization iteration number, 𝜉 is a load evolution parameter 

that corresponds to the movement of a loading node from its present location to the closest node in the 

force direction at that node. For an iso-parametric four-node square element, this parameter is typically 

the movement to any of the remaining three nodes in the finite element related to the node under 

investigation. In this model, a key assumption/approximation is that in every load evolution iteration, a 

loading node is only allowed to move to another node in the same finite element (e.g. for a four-node 

isoparametric square element, a loading node will only move to any of the other three nodes which are 

either a horizontal, vertical or diagonal distance away). In Figure 4.9(c), a diagonal movement is utilized 

due to the orientation of the equivalent force and density of surrounding elements. 𝑓𝑚𝑜𝑣𝑒_𝑡ℎ𝑟𝑒𝑠ℎ is a 

density threshold that controls load movement and can be given a value between 0.8 and 1 from 

numerical investigations. 

In this model, the load evolution is carried out an integer-multiple-number of times boundary 

identification is done. This model is developed in Matlab with its foundation on the 88-line code 

recommended by Andreassen et al. [54]. A workflow of the BILE model for topology optimization of 

structures under design-dependent pressure loads is shown in Figure 4.10.  
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Figure 4.10: Workflow of the BILE model for topology optimization of structures under design-

dependent pressure loads (Z is a set of positive integers). 

In Figure 4.10, 𝑛𝑙𝑒 is the number of iterations between two boundary identification steps, while 𝑍 is the 

integer number space. In other words, if boundary identification is to be done once in three iterations, 

𝑛𝑙𝑒 should be 3. In the first iteration, it = 0, boundary identification must be carried out, and in subsequent 

iterations the ratio 
𝑖𝑡

𝑛𝑙𝑒
 determines if boundary identification is done or not. After several numerical 

investigations using the BILE model, it is recommended that 𝑛𝑙𝑒 be given a higher value (4 to 7) in the 

infant stages of optimization and decreased (to 2 or 3), when the optimization stabilizes. This study 
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solves the non-linear topology optimization problem using the Optimality Criteria Method for all 

examples presented and Method of Moving Asymptotes (MMA) [55] in the last example.  

4.4.    Sensitivity analysis and Filtering 

Sensitivity analysis is a very important step in gradient-based topology optimization methods. It is 

simply obtaining the first derivatives of the objective and constraint functions with-respect-to the design 

variable. The adjoint method elaborately discussed in [161] is used for sensitivity analysis. This method 

has previously been applied to control systems and is now adapted to multidisciplinary optimization 

problems [162]. The objective function, compliance is redefined as an augmented function of the density 

design variable, 𝑥 with an introduction of a Lagrange multiplier: 

𝐶∗ = 𝐶(𝑈, 𝑥) − 𝜆𝑇(𝐾𝑈 − 𝐹)                                                        (4.15) 

From the definition of the compliance function in the problem statement in Equation 2.8, Equation 4.1 

can become 

𝐶∗ = 𝑈𝑇𝐾𝑈 − 𝜆𝑇(𝐾𝑈 − 𝐹)                                                         (4.16) 

The first derivative of 4.16 becomes 

𝜕𝐶∗

𝜕𝑥
=
𝜕𝑈𝑇

𝜕𝑥
𝐾𝑈 + 𝑈𝑇𝐾

𝜕𝑈

𝜕𝑥
+ 𝑈𝑇

𝜕𝐾

𝜕𝑥
𝑈 − 𝜆𝑇(

𝜕𝐾

𝜕𝑥
𝑈 + 𝐾

𝜕𝑈

𝜕𝑥
−
𝜕𝐹

𝜕𝑥
)              (4.17) 

The first two terms on the RHS of 4.17 can be arranged to have  

𝜕𝐶∗

𝜕𝑥
= 2𝑈𝑇𝐾

𝜕𝑈

𝜕𝑥
+ 𝑈𝑇

𝜕𝐾

𝜕𝑥
𝑈 − 𝜆𝑇(

𝜕𝐾

𝜕𝑥
𝑈 + 𝐾

𝜕𝑈

𝜕𝑥
−
𝜕𝐹

𝜕𝑥
)                          (4.18) 

The Lagrange multiplier, 𝜆 is an arbitrary variable that can adopt any value. For a rigid body in 

equilibrium, 𝐾𝑈 − 𝐹 =  0, therefore a value of 2𝑈 is assigned to this variable to eliminate the derivative 

of 𝑈. 4.18 then becomes 

𝜕𝐶∗

𝜕𝑥
= −𝑈𝑇

𝜕𝐾

𝜕𝑥
𝑈 + 2𝑈𝑇

𝜕𝐹

𝜕𝑥
                                                  (4.19) 

The first term on the RHS of 4.19 is trivial therefore focus is frequently placed on the second term. The 

sensitivity of the “load” term is usually calculated by finite difference schemes [69], which can be 

tedious and involve several function calls that increase computational cost. In this model, which is an 

element-based search [67] for nodes that define loading surfaces, the pressure load converted to 
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equivalent forces acts directly on loading nodes with every equivalent force approximately maintaining 

the same magnitude on every iteration. As discussed in section 3b, between iterations, there will be 

insignificant changes in the magnitude of every equivalent force since the length of the load line and the 

number of loading nodes increase or decrease simultaneously. The finer the mesh, the much less this 

change. Therefore, the magnitude of every equivalent nodal force is kept constant throughout the 

optimization. However, the equivalent force is allowed to change direction depending on its 

corresponding loading angle which is a function of the layout of neighboring nodes that have been 

selected only from four nodal square mesh elements. Therefore, the force magnitude is not dependent 

on the density of boundary elements. Also, since the number of elements that host loading nodes is 

usually small compared to the total number of mesh elements, the partial derivative 
𝜕𝑭

𝜕𝑥
 can be set to zero. 

Therefore, the sensitivity of compliance for every element becomes 

𝜕𝑐𝑒
𝜕𝑥𝑖

= −𝑢𝑒
𝑇
𝜕𝐾

𝜕𝑥𝑖
𝑢𝑒 = −𝑝𝑥𝑖

𝑝−1(𝐸0 − 𝐸𝑚𝑖𝑛)𝑢𝑒
𝑇𝑘0𝑢𝑒                          (4.20) 

Assuming each element has a unit volume for a constant mesh size space- and time-wise,   

𝜕𝑣𝑒
𝜕𝑥𝑒

= 1                                                                       (4.21) 

The formation of checker-boarding features is a usual occurrence due to binary values density variables 

are forced to take. To resolve this problem and obtain realistic solutions, filtering becomes important. 

Several filtering methods exist amongst, which sensitivity, density, and Heaviside function filtering are 

most popular. A sensitivity filter is utilized and is expressed as [54]:  

𝜕𝑐̂𝑒
𝜕𝑥𝑒

=
1

𝑚𝑎𝑥(𝛾, 𝑥𝑒) ∑ 𝐻𝑒𝑖
 
𝑖∈𝑁𝑒

∑𝐻𝑒𝑖

 

𝑖∈𝑁𝑒

𝑥𝑖
𝜕𝑐𝑒
𝜕𝑥𝑖

                                         (4.22) 

where 𝑁𝑒 is the set of neighboring elements 𝑖 which have center-to-center distance 𝑑(𝑒, 𝑖) to element e 

less than set filter radius 𝑟𝑚𝑖𝑛 . To avoid divisions by zero in the fraction in 4.22, 𝛾 is assigned a small 

value as 10−3. 𝐻𝑒𝑖 is a weight factor expressed as: 

𝐻𝑒𝑖 = max(0, 𝑟𝑚𝑖𝑛 − 𝑑(𝑒, 𝑖))                                                (4.23)   
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4.5.     Numerical Examples 

In this section, some examples are presented to explain and show the validity of the BILE model. For all 

examples, the design domain is discretized by 5,000 to 13,000 four nodal square plane stress elements, 

with the number depending on the type of problem as some get increasingly difficult to converge with 

an increase in mesh elements. For all examples, the pressure magnitude is set at 1 and material properties 

are 𝐸0 = 1, 𝐸𝑚𝑖𝑛 = 1 × 10−9, 𝑣 = 0.3. The filter radius is set to 2.5 times the finite element length. 

Optimality Criteria Method (OCM) was used as an optimizer for all problems. The Method of Moving 

Asymptotes (MMA) was used only in the first and last examples for computational comparisons with 

OCM. For all examples, convergence was set at a density error limit of 0.015 and the number of iterations 

capped at 300. An Intel Core i7 CPU processor with a speed of 3.6 GHz and RAM size of 16.0 Gigabyte 

was used. The choice of values for threshold volume fractions 𝑓𝑡ℎ and number of iterations between 

successive boundary identification steps, 𝑛𝑙𝑒 are discussed in the first example.  

4.5.1. Unidirectional externally loaded structures 

The BILE model is used to study how a design-dependent unidirectional pressure load can influence the 

resulting topology of an optimized structure. The design domain shown in Figure 4.11 is a rectangle of 

length 𝐿 and width 
𝐿

2
. The pressure load is located at the top edge with two fixed points 0.1𝐿 away from 

the two bottom vertices and 7200 (120 × 60) square mesh elements were used, this problem was solved 

by the optimality criteria method. This representative example has also been studied by several other 

authors [67], [65], [159], and the resulting topology is arch-like. Figure 4.12 shows the history of volume 

fraction threshold 𝑓𝑡ℎ which defines the topological boundary on every iteration. There is a steady 

increase in this value from around 0.1 to 0.35 because the topological boundary becomes more distinct 

as optimization progresses. In the same figure, the number of iterations for load evolution between 

successive boundary identifications 𝑛𝑙𝑒 is shown and is kept at 7 for the first 63 iterations. It reduces to 

4 thereafter while ending at a value of 3 in the 84th iteration. It should be noted that when 𝑛𝑙𝑒 is a value 

of 7, there are 7 iterations, which strictly perform load evolution (meaning a change in location of the 

equivalent force) in between two successive boundary identification iterations. This number can be 

varied depending on how topologies mature for specific problems but overall, it is recommended that it 

should drop once optimization approaches convergence. Three major regimes of the optimization history 

at the 4th, 63rd, and 84th iterations have been highlighted by dotted lines and respective topological 

figures. Initially in optimization when a majority of the elements are “grey”, 𝑓𝑡ℎ is low, compliance 𝐶 is 
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high while overall volume fraction remains the same. As the optimization matures, 𝑓𝑡ℎ is allowed to 

increase exponentially, while 𝐶 rapidly drops till it reaches a steady-state with some numerical instability 

just before the 60th iteration. This history for these variables is similar for all examples using the BILE 

model. Although the optimization was allowed to run above 100 iterations, it converges at the 81st 

iteration which took approximately 56 seconds using the OCM. The optimization was also carried out 

using the MMA and this resulted in a total time of 108 and 73 seconds for volume fractions 0.35 and 0.4 

respectively. When a finer mesh is applied, it is recommended that the maximum number of iterations 

and 𝑛𝑙𝑒 placed on the optimization be increased likewise. 

 

Figure 4.11: Domain and boundary conditions for a structure under uni-directional pressure load. 
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Figure 4.12: Histories of 𝑓𝑡ℎ, 𝑛𝑙𝑒, 𝐶 and 𝑓. 
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Figure 4.13: Several iterations of the optimization in example 1 showing boundary nodes and loading 

nodes in red and green respectively. 

 

Figure 4.14: Convergence history for the optimized unidirectionally loaded structure 
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In Figure 4.13, we observe that the load nodes evolve by 𝜉 from the 1st to 8th iteration for every iteration 

movement. At the 8th iteration, though, a fresh boundary identification was done from where new 

boundary nodes are determined and loading nodes extracted from them. Therefore boundary 

identification is carried out every iteration after 𝑛𝑙𝑒 iterations. The convergence history is shown in 

Figure 4.14. 

4.5.2. Multi-directional externally loaded structures 

For a multi-directional external load problem, the same design domain in example 1 is used but 

additional pressure loads are placed on the left and right-hand sides shown in Figure 4.15, all other 

design and optimization parameters are left the same. We observe a similar arch-like structure as in 

example1 but in a more curved form. Optimization convergence was reached in approximately 44 

seconds for 60 iterations. This problem has also been solved by several researchers [72], [65] and the 

resulting topologies are similar.  

 

Figure 4.15: Structure under multi-directional pressure load (a) Design domain and boundary 

conditions (b) Optimized structure showing the boundary and loading nodes (c) Optimized structure 

(d) optimized result by Chen and Kikuchi [67]. 
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Apart from the more curved form the resulting topology takes, there are more loading nodes identified 

at the bottom external sides of the topology which is influenced by the extra side pressures absent in the 

example in 4.5.1. 

4.5.3. Solid and hollow structures submerged in fluid 

Although several factors should be considered when designing submerged pressure vessels, we will use 

the BILE model to optimize strength/stiffness. One of the many applications of submerged pressure 

vessels is underwater structures, which will have a water pressure head acting all on every external 

surface. In this example, two different structural forms shown in Figure 4.16 are considered. They are 

completely solid structures that have similar design domains but are defined by different boundary 

conditions. 

 

 

Figure 4.16: Design domain and boundary conditions for solid submerged structures with a quarter 

design on the right for implementation. (a) roller supports (b) completely fixed supports. 

For Figure 4.16(a) and Figure 4.16(b), the design domain is a square with constant pressure acting all 

over the external surface; Figure 4.16(a) is supported by rollers to restrict freedom in one axis at the 

support locations while Figure 4.16(b) has its support locations completely fixed. The optimization is 
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constrained to a volume fraction of 10% and 25% in the first and second designs respectively. For the 

first design (Figure 4.16(a)), the same value for 𝑛𝑙𝑒 was used as in previous examples (4.5.1 and 4.5.2) 

but reduced earlier in optimization. A smaller initial 𝑛𝑙𝑒 was utilized for the second design (Figure 

4.16(b)) because of the position of the supports as the loads will have less travel distance compared to 

Figure 4.16(a). It is important that 𝑛𝑙𝑒 is carefully selected and reduced during optimization depending 

on the problem being solved. The evolution of the first design is shown in Figure 4.17 while the histories 

of 𝑛𝑙𝑒, 𝑓𝑡ℎ and full optimized solid is shown in Figure 4.18. From the iterations shown in Figure 4.17, a 

gradual and steady progression to the final topology is observed and it is the reason why a higher number 

of load evolution iterations was reserved for the early stages in the optimization only i.e 𝑛𝑙𝑒 is 7 only for 

the first 40 iterations shown in Figure 4.18. Also, the number of mesh elements can influence 𝑛𝑙𝑒 where 

a smaller mesh size should mean the use of a higher initial 𝑛𝑙𝑒. The total time for optimization was 

approximately 60 seconds for 70 iterations. 

 

Figure 4.17: Optimization history for the design problem in Figure 4.16(a) of a submerged structure. 
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Figure 4.18: (a) Optimization history for 𝑛𝑙𝑒 and 𝑓𝑡ℎ , (b) Final topology for Figure 16a. 

The optimization of the second design presented in Figure 4.16(b) is shown in Figure 4.19. The resulting 

topology shows the heavy influence of change in boundary conditions on a design. In this example also, 

it is observed that two values of 𝑛𝑙𝑒 are maintained throughout the optimization: 3 is assigned in the first 

45 iterations and 2 is assigned after that. Unlike the first design, the pressure load has less travel distance 

throughout the optimization because the fixed supports are close to the domain edges. These design 

problems have also been studied by [159], [69], and [67], and they show closely matching topologies to 

the results obtained by the BILE model. 

 

Figure 4.19: (a) Optimization history for n_le and f_th, (b) Final topology for Figure 4.16b 
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The final sets of designs for this example are hollow rectangular structures shown in Figure 4.19. the 

first design problem, Figure 4.20(a) is self-supported and the second design, Figure 4.20(c) has extra 

external supports fixed at some points on the edges of the inner surface.  

(a) (b)    

(c)        (d)  

Figure 4.20: Topology optimization of submerged hollow structures (a) (c) Design problem definitions 

(b) (d) Optimized solutions 

 

The result of optimization for the first structure (Figure 4.20(b)) shows a weak point close to either the 

left or right side and it is reasonable why this design will not be adopted in actual design implementation. 

The compliance of this optimized design is 57.8C Nm, where 𝐶 is a value from actual material properties. 

To improve this design, extra supports can be introduced within the first design resulting in Figure 

4.20(c), this has been previously recommended by Liang et.al. [160]. The optimized result in Figure 

4.20(d) shows no distinct weak point and we can conclude it is an improved design from (a) because it 

has significantly lower compliance of 𝐶 Nm, approximately 60 times less. This design probem has also 

been studied by [163] and [67]. 
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4.5.4. Internally loaded structures 

This penultimate example shows how the BILE model solves the topology optimization of internally 

loaded structures. The design problem consists of the same domain as the first two examples in this 

section but pressure load acts on the bottom edge shown in Figure 4.21. 

 

Figure 4.21: Design domain and boundary conditions 

This example finds application in several underwater pressure structures such as the Liquid and Gas 

Storage tank in the upstream exploration and production stages in the oil and gas industry [67]. Since 

the progression of optimization towards convergence was anticipated to be steeper compared to the 

examples in the last previous section, 𝑛𝑙𝑒 values used in the examples in 4.5.1 and 4.5.2 were adopted 

here. This problem slightly differs from previous numerical problems because the number of 

intermediate elements with volume fraction 0.5 and below drops more rapidly comparatively. In Figure 

4.22 it is observed that these elements (density 0.5 and below) constitute only 30% of the total number 

of elements at the 20th iteration as opposed to 40% in the numerical example presented in Figure 4.5. 

Likewise, we observe the mean density of boundary elements to be higher than 0.4 before the 5th iteration 

compared to Figure 4.5 which does not exceed 0.3. This is likely a result of the fixed boundary conditions 

being placed adjacent and on the same loading surface as the pressure load. Consequently, the 

optimization might result in extra structures formed within the arch (similarly presented in [65]) when a 

‘move’ threshold 𝑓𝑚𝑜𝑣𝑒_𝑡ℎ𝑟𝑒𝑠ℎ as in previous examples is used. Therefore a higher move threshold 

(between 0.9 and 1) is recommended. The final topologies for volume fraction 0.1, 0.2 and 0.3 are shown 

in Figure 4.23. 
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Figure 4.22: Mean density of boundary elements and percentage of elements with a volume fraction of 

0.5 and below for optimization of an internally loaded structure. 

 

 

Figure 4.23: Topology optimized structures for volume fraction of (a) 0.1 (b) 0.2 and (c) 0.3 

4.5.5. The Piston problem 

The final example is the popular piston problem defined in Figure 4.24. The domain is fixed at the center 

of the bottom edge signifying the piston’s contact with the connecting rod while it is supported in the 

horizontal direction on the left and right edges signifying the combustion chamber’s cylindrical walls; 

the pressure load acts on the top edge. Results of the topology optimized structure using OCM and MMA 

closely match with slight differences in some “internal” features shown in Figure 4.25. As anticipated, 



72 

 

OCM gives slightly lower compliance of 𝐶 Nm compared to MMA which gives 1.15𝐶 Nm. Generally, 

designs by several authors such as Lee and Martins [73], Li et.al. [67], Wang et. al [164], Bruggi and 

Cinquini [165], and Sigmund and Clausen [166] have similar strut-like features that stem from the center 

of the bottom edge.  

 

Figure 4.24: Design domain and boundary conditions of the piston problem. 

 

Figure 4.25: Optimized solutions of the piston problem for a volume fraction of 0.3 (a) OCM (b) 

MMA 

4.6.    Summary 

In this study, a new, simple but realistic BILE model was proposed to deal with topology optimization 

of design-dependent pressure loads. Using the modified SIMP model, OCM, and MMA as optimizers, 

the BILE model effectively tracks evolving topological boundaries while introducing a load evolution 

or movement and can be summarised as: 

1) A unique value of a threshold volume fraction is defined on every iteration by an exponential 

function. Boundary nodes are then extracted from boundary elements based on this threshold.  

2) Loading nodes are obtained from these boundary nodes with influence from the original loading 

pattern of the design.  
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3) Equivalent force angles are calculated for every loading node and the pressure load is substituted 

by equivalent forces, which have the same magnitude across all loading nodes and in every 

iteration.  

Some advantages of this model are: 

1) From point 3 above, there are insignificant differential changes of the equivalent forces with-

respect-to the density design variable causing load sensitivity to be zero, thereby eliminating 

tedious computations. 

2) Reduced computational cost is a consequence of 1; most results were obtained under 80 seconds 

and 100 iterations for problems discretized by 5,000 to 13,000 four-nodal square elements. 

3) Boundary identification and load evolution schemes are very easy to implement.  

This model is also easily adaptable to 3D cases, as the major extension will involve considering an 

additional loading angle (𝜙) such that the equivalent nodal force becomes a function of the nodal force 

magnitude (
𝑃𝐴

𝑛
) , 𝜃 and 𝜙; this can also be written as 𝐹𝑗 = 𝑓(

𝑃𝐴

𝑛
, 𝜃, 𝜙). A challenging aspect of this 

model is the selection of optimized values of volume fraction threshold and 𝑛𝑙𝑒. These variables can be 

smartly determined from experience and an understanding of the design problem, nonetheless, this work 

can be further developed by systematically selecting the aforementioned controlling parameters 

depending on the design problem.  In general, this model is a promising tool for topology optimization 

of structures under design-dependent loads and further work will be done to enhance the workflow and 

develop 3D case studies. 
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Chapter 5: Weighted Multi-Objective Topology 

Optimization by Sensitivity Scaling 

5.1.     Introduction 

In this chapter, the weighted strategy for multiobjective topology optimization for design-independent 

loads is first presented to explain the significance of Pareto optimal sets and weight selection in 

multiobjective optimization (MOO) problems. Next, the multiobjective topology optimization problem 

formulation and sensitivity analysis of a mix of design-independent load (point force load) and design-

dependent loads (centrifugal and TSL from Chapter 3) are studied. Using the Optimality Criteria Method 

(OCM), a sensitivity scale factor is introduced in the consolidated sensitivity equation to always ensure 

the sensitivity of load contributions that cause more numerical instability in the optimization are 

comparable to those that result in better stability. A series of design solutions are obtained using different 

weight factors and the topological density images, histories of the scale factors, sensitivity, and objective 

functions are analyzed. Finally, a practical design case is optimized while comparing the results with the 

capabilities of HyperWorks, a commercial structural optimization software.  

5.2.  Weighted Multiobjective Topology Optimization for Design-

Independent force loads 

A general multiobjective optimization (MOO) problem is given as [167]: 

min⏟
𝑥

𝑓(𝑥 ) = [𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥),……… . . , 𝑓𝑘(𝑥)]
𝑇                                       (5.1) 

subject to: 𝑔𝑗(𝑥) ≤ 0; 𝑗 = 1,2,3, ………𝑚 

in 5.1, 𝑓(𝑥) is a vector of objective functions, 𝑓𝑘(𝑥) is an objective function in 𝑓(𝑥) with 𝑘 defining the 

number of functions. 𝑔𝑗(𝑥) is a series of constraint functions with 𝑗 ranging from 1 to 𝑚; this also limits 

the feasible design domain. 𝑥 is a vector of design variables with a finite number length in the real integer 

space.  

For MOO problems, there can be several optimums, therefore, the Pareto optimal set is used to define a 

set of solutions. For a solution to be considered a point in the set, it is impossible to improve one objective 

by moving from that point without a decline in another objective. To achieve the Pareto optimal set in 
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MOO problems, the use of the weighted sum of objectives is very popular and well established for years 

[28], [167]–[173]. 

Multiobjective topology optimization is a common type of MOO and taking a simple cantilever problem 

with two load cases as shown in Figure 5.1, the Pareto optimal set is obtained by varying the weights of 

the objective contributions (compliance in this case) from 0 to 1 with the sum of all weights amounting 

to 1. First, the problem statement is written in 5.2 as a p-norm function to minimize the maximum of all 

objective functions [168], [174]:  

 

Figure 5.1: Simple cantilever design problem with two load cases. 

 

min
𝑥𝑒

𝐶 = (∑(𝑤𝑖𝐶𝑖)
𝑄

𝑘

𝑖=1

)

1
𝑄

                                                              (5.2) 

For the special case where 𝑄 = 1, 5.2 becomes a linear weighted sum given as 

min
𝑥𝑒

𝐶 =∑𝑤𝑖𝐶𝑖

𝑘

𝑖=1

                                                                     (5.3) 

The problem statement for two load cases can be represented as:  

min
𝑥𝑒 

𝐶 = 𝑤1𝐶1 + 𝑤2𝐶2 = 𝑤1𝐹1
𝑇𝑈1 + 𝑤2𝐹2

𝑇𝑈2 = 𝑤1∑𝐸𝑒𝑢1,𝑒
𝑇 𝑘0𝑢1,𝑒

𝑛

𝑒=1

+ 𝑤2∑𝐸𝑒𝑢2,𝑒
𝑇 𝑘0𝑢2,𝑒

𝑛

𝑒=1

 

subject to:  𝐾𝑈1 = 𝐹1             

           𝐾𝑈2 = 𝐹2 

∑ 𝑉𝑒
𝑛
𝑒=1

𝑓𝑉0
≤ 1                                                                         (5.4) 
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𝑤1 + 𝑤2 = 1 

0 ≤ 𝑥𝑒 ≤ 1   

0 < 𝐸𝑚𝑖𝑛 ≤ 𝐸𝑒 ≤ 𝐸0    

For this problem, the modified SIMP material interpolation function is utilized as given in 5.5: 

𝐸𝑒(𝑥𝑒) = 𝑥𝑒
𝑝(𝐸0 − 𝐸𝑚𝑖𝑛) + 𝐸𝑚𝑖𝑛                                                 (5.5) 

Where 𝑝 is the penalty on the pseudo-density design variables. 

The sensitivity of the compliance function similar to 4.20 in Chapter 4 is given as:  

𝜕𝐶

𝜕𝑥
= − {𝑤1 (𝑈1

𝑇
𝜕𝐾

𝜕𝑥
𝑈1) + 𝑤2 (𝑈2

𝑇
𝜕𝐾

𝜕𝑥
𝑈2)}                                          (5.6) 

 

Figure 5.2: Plot of the Pareto optimal set for the cantilever problem in Figure 5.1. 

In Figure 5.2, it is observed that the weights of the load case determine the structural layout of the 

optimized topology. The weights also depict the gradient [167] of the consolidated compliance function 

such that  
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∇𝐶𝑖𝐶 =

{
 

 
𝜕𝐶

𝜕𝐶1
𝜕𝐶

𝜕𝐶2}
 

 

= {
𝑤1
𝑤2
}                                                          (5.7) 

Recall that an infinite number of Pareto optimal sets can be obtained on the right of the curve in Figure 

5.2, therefore, to obtain the overall minimum Pareto optimal set for 𝐶, and noting that 𝐶 is a function of 

𝑥, the grad in 5.7 can be written as: 

𝜕𝐶

𝜕𝑥
=
𝜕𝐶

𝜕𝐶1

𝜕𝐶1
𝜕𝑥

+
𝜕𝐶

𝜕𝐶2

𝜕𝐶2
𝜕𝑥

                                                   (5.8) 

From 5.7, 5.8 can be written as: 

𝜕𝐶

𝜕𝑥
= 𝑤1

𝜕𝐶1
𝜕𝑥

+ 𝑤2
𝜕𝐶2
𝜕𝑥

                                                    (5.9) 

By setting 
𝜕𝐶

𝜕𝑥
= 0, we obtain 

𝑤2
𝑤1

= −

𝜕𝐶1
𝜕𝑥
𝜕𝐶2
𝜕𝑥

                                                                  (5.10) 

𝑤2
𝑤1

= ‖

𝜕𝐶1
𝜕𝑥
𝜕𝐶2
𝜕𝑥

‖                                                                 (5.11) 

From 5.9, the minimum Pareto optimal set can be obtained by selecting weight factors of the objective 

functions that are a ratio of their respective sensitivity functions. For design-dependent loads, these 

analogies are quite different. After all, the sensitivity functions become more intricate because the loads 

depend on the design variables. This contributes to numerical instabilities that make the optimization a 

lot more difficult to converge. However, the ratio of the sensitivities as demonstrated in 5.9 can be 

applied in a sort of ‘sensitivity scaling’ scheme to enhance the stability of the optimization for design-

dependent loads; this is presented in the following sections.  
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5.3    Weighted Multiobjective Topology Optimization for Design-

Independent and Design-Dependent Loads 

In this section, the cantilever problem in Figure 3.2 of Chapter 3 is studied here. However, a point force 

is added at the bottom right vertex of the cantilever as illustrated in Figure 5.3. A similar rotating 

cantilever problem is tackled in [29], however, without temperature distribution. This problem is 

resolved by minimizing the structure’s compliance, however, because compliance values (in turn 

sensitivity values) from the various load contributions might be dissimilar in magnitude, they are usually 

normalized. Two normalization strategies are popular in literature: one is dividing the compliance 

functions by an initial or reference value as seen in [175]–[177], the other is by utilizing a min-max 

scaling as observed in [168], [170], [172], [178], [179]. In this work, the second normalization is used 

while streamlining it to the use of max scaling as done in [170]. From 5.2, the problem statement 

becomes:  

 

Figure 5.3: A cantilever problem with a temperature distribution, point force, and rotated about an axis 

by an angular velocity. 

min
𝑥𝑒

𝐶̂ = {𝑤𝑡ℎ
𝑄 (𝐶̂𝑡ℎ)

𝑄
+ 𝑤𝑐

𝑄(𝐶̂𝑐)
𝑄
+ 𝑤𝑓

𝑄(𝐶̂𝑓)
𝑄
}

1
𝑄

= {𝑤𝑡ℎ
𝑄 (∑

𝑐𝑒
𝑡ℎ

𝑐𝑒,𝑚𝑎𝑥
𝑡ℎ

𝑛

𝑒=1

)

𝑄

+ 𝑤𝑐
𝑄 (∑

𝑐𝑒
𝑐

𝑐𝑒,𝑚𝑎𝑥
𝑐

𝑛

𝑒=1

)

𝑄

+ 𝑤𝑓
𝑄 (∑

𝑐𝑒
𝑓

𝑐𝑒,𝑚𝑎𝑥
𝑓

𝑛

𝑒=1

)

𝑄

}

1
𝑄

  

subject to:  𝐾𝑈𝑡ℎ = 𝐹𝑡ℎ             
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      𝐾𝑈𝑐 = 𝐹𝑐 

      𝐾𝑈𝑓 = 𝐹𝑓 

(𝐾̃𝑐)𝑇 = 𝑅𝑇 

∑ 𝑉𝑒
𝑛
𝑒=1

𝑓𝑉0
≤ 1                                                                     (5.12) 

0 ≤ 𝑥𝑒 ≤ 1   

0 < 𝐸𝑚𝑖𝑛 ≤ 𝐸𝑒 ≤ 𝐸0    

Material function based on RAMP is used: 

𝐸𝑒 =
𝑥𝑒

1 + 𝑞1(1 − 𝑥𝑒)
𝐸0                                                          (5.13) 

𝛽𝑒 =
𝑥𝑒

1 + 𝑞2(1 − 𝑥𝑒)
𝐸0𝛼0 

Where 𝐶, 𝐶̌𝑡ℎ, 𝐶̌𝑐, 𝐶̌𝑓 are the consolidated/global normalized compliance function, normalized 

compliance from TSL, normalized compliance from centrifugal loads, and normalized compliance from 

a point force respectively. (𝑐𝑒
𝑡ℎ, 𝑐𝑒,𝑚𝑎𝑥

𝑡ℎ ), (𝑐𝑒
𝑐, 𝑐𝑒,𝑚𝑎𝑥

𝑐 ), and (𝑐𝑒
𝑓
, 𝑐𝑒,𝑚𝑎𝑥
𝑓

), are the elemental compliance 

values and maximum elemental compliance values for TSL, centrifugal loads, and point force 

respectively. (𝐹𝑡ℎ, 𝑈𝑡ℎ), (𝐹𝑐, 𝑈𝑐), (𝐹𝑓 , 𝑈𝑓) are the load and displacement vectors for thermoelastic stress, 

centrifugal, and point force respectively.  

In literature 𝑄 = 1, and 𝑄 = 2 are very popular [168] where the former transforms the consolidated 

compliance function to a linear weighted sum of the individual compliance functions and the latter 

upwards is a min-max optimization approximation. In this work, 𝑄 = 1 is used, therefore, the 

consolidated compliance function in 5.12 is given as: 

min
𝑥𝑒

𝐶̂ = 𝑤𝑡ℎ𝐶̂𝑡ℎ + 𝑤𝑐𝐶̂𝑐 + 𝑤𝑓𝐶̂𝑓 

= 𝑤𝑡ℎ∑
𝑐𝑒
𝑡ℎ

𝑐𝑒,𝑚𝑎𝑥
𝑡ℎ

𝑛

𝑒=1

+ 𝑤𝑐∑
𝑐𝑒
𝑐

𝑐𝑒,𝑚𝑎𝑥
𝑐

𝑛

𝑒=1

+ 𝑤𝑓∑
𝑐𝑒
𝑓

𝑐𝑒,𝑚𝑎𝑥
𝑓

𝑛

𝑒=1

                                  (5.14) 

 



80 

 

5.2.1. Sensitivity Analysis, Sensitivity Scaling, and Filtering 

Sensitivity analysis is simply obtaining the derivative of the objective and constraint functions with-

respect-to the pseudo-density design variable. The derivative of the compliance function is well 

described in 4.15 to 4.19 in Chapter 4 using the adjunct method. First, the derivative of the left-hand 

side of 5.14 will become 

𝜕𝐶̌

𝜕𝑥
= 𝑤𝑡ℎ

𝜕𝐶̌𝑡ℎ
𝜕𝑥

+ 𝑤𝑐
𝜕𝐶̌𝑐
𝜕𝑥

+ 𝑤𝑓
𝜕𝐶̌𝑓

𝜕𝑥
                                       (5.15) 

Therefore, 4.19 is presented here for the derivative of each load case:  

𝜕𝑐𝑒
𝑡ℎ

𝜕𝑥𝑒
= −(𝑢𝑒

𝑡ℎ)𝑇
𝜕𝑘𝑒
𝜕𝑥𝑒

𝑢𝑒
𝑡ℎ + 2(𝑢𝑒

𝑡ℎ)𝑇
𝜕𝐹𝑒

𝑡ℎ

𝜕𝑥𝑒
                                       (5.16) 

𝜕𝑐𝑒
𝑐

𝜕𝑥𝑒
= −(𝑢𝑒

𝑐)𝑇
𝜕𝑘𝑒
𝜕𝑥𝑒

𝑢𝑒
𝑐 + 2(𝑢𝑒

𝑐)𝑇
𝜕𝐹𝑒

𝑡ℎ

𝜕𝑥𝑒
                                       (5.17) 

𝜕𝑐𝑒
𝑓

𝜕𝑥𝑒
= −(𝑢𝑒

𝑓
)
𝑇 𝜕𝑘𝑒
𝜕𝑥𝑒

𝑢𝑒
𝑓
+ 2(𝑢𝑒

𝑓
)
𝑇 𝜕𝐹𝑒

𝑓

𝜕𝑥𝑒
                                       (5.18) 

Since 𝐹𝑓,𝑒 in 5.18 is design-independent, its derivative with 𝑥𝑒 is 0, therefore, 5.18 becomes 

𝜕𝑐𝑒
𝑓

𝜕𝑥𝑒
= −(𝑢𝑒

𝑓
)
𝑇 𝜕𝑘𝑒
𝜕𝑥𝑒

𝑢𝑒
𝑓
                                                    (5.19) 

In this work, the Optimality Criteria Method (OCM) [129], [130] as elaborated in Chapter 2 is used as 

an optimizer. Although this optimizer is identified as less robust than other convex approximation 

methods such as MMA and GCMMA [180], IPOPT [181], MDQA [182], GCMMA-GBMMA [183], it 

is a very stable optimizer with much less parameter tuning, unlike the others. Also, optimizers such as 

OCM and MMA are only capable of resolving monotonic structural optimization problems [27]. A 

topology optimization problem is referred to as monotonic if the sign of the sensitivity function stays 

the same for all elements in the domain and throughout the optimization process. The sensitivity function 

in 5.19 obtained for point force compliance is monotonic as the sign never changes, however, those for 

TSL and centrifugal loads, 5.16 and 5.17, are not because of the load sensitivity term they possess.  

Strictly speaking, OCM and MMA are ordinarily not capable of handling these complicated 

multiobjective topology optimization formulations, however, a sensitivity scaling scheme is presented 

in this work to ensure the overall sensitivity term stays monotonic or near monotonic. This is done by 
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scaling the “unstable” sensitivity terms such that the stable term drives the overall or consolidated 

sensitivity term. To achieve this, some scale factors are introduced to individual sensitivity functions. 

The individual scaled sensitivities become:   

𝜕𝐶̂𝑡ℎ
𝜕𝑥

= Υ𝑡ℎ
𝜕𝐶̌𝑡ℎ
𝜕𝑥

                                                              (5.21) 

𝜕𝐶̂𝑐
𝜕𝑥

= Υ𝑐
𝜕𝐶̌𝑐
𝜕𝑥

                                                                  (5.22) 

𝜕𝐶̂𝑓

𝜕𝑥
= Υ𝑓

𝜕𝐶̌𝑓

𝜕𝑥
                                                                  (5.23) 

5.21 to 5.23 can be inserted into 5.15 to obtain the overall scaled sensitivity function: 

𝜕𝐶̂

𝜕𝑥
= 𝑤𝑡ℎ (

𝜕𝐶̂𝑡ℎ
𝜕𝑥

) + 𝑤𝑐 (
𝜕𝐶̂𝑐
𝜕𝑥
) + 𝑤𝑓 (

𝜕𝐶̂𝑓

𝜕𝑥
) 

= 𝑤𝑡ℎ (Υ𝑡ℎ
𝜕𝐶̌𝑡ℎ
𝜕𝑥

) + 𝑤𝑐 (Υ𝑐
𝜕𝐶̌𝑐
𝜕𝑥
) + 𝑤𝑓 (Υ𝑓

𝜕𝐶̌𝑓

𝜕𝑥
)                                    (5.24) 

In 5.24, Υ𝑡ℎ, Υ𝑐, Υ𝑓 are scale factors for the sensitivities from TSL, centrifugal load, and point force 

respectively. They are defined thus: 

Υ𝑡ℎ =
max (‖

𝜕𝐶̌𝑡ℎ
𝜕𝑥𝑒

‖)

max (‖
𝜕𝐶̌𝑓
𝜕𝑥𝑒

‖)

                                                            (5.25) 

Υ𝑐 =
max (‖

𝜕𝐶̌𝑐
𝜕𝑥𝑒

‖)

max (‖
𝜕𝐶̌𝑓
𝜕𝑥𝑒

‖)

                                                               (5.26) 

Υ𝑓 =

max(‖
𝜕𝐶̌𝑓
𝜕𝑥𝑒

‖)

max(‖
𝜕𝐶̌𝑓
𝜕𝑥𝑒

‖)

= 1                                                        (5.27) 

Moving forward, the sensitivity before scaling can be rewritten as 
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𝜕𝑐̌𝑒
𝜕𝑥𝑒

=
𝑤𝑡ℎ

𝑐𝑒,𝑚𝑎𝑥
𝑡ℎ (

𝜕𝑐𝑒
𝑡ℎ

𝜕𝑥𝑒
) +

𝑤𝑐
𝑐𝑒,𝑚𝑎𝑥
𝑐 (

𝜕𝑐𝑒
𝑐

𝜕𝑥𝑒
) +

𝑤𝑓

𝑐𝑒,𝑚𝑎𝑥
𝑓

(
𝜕𝑐𝑒

𝑓

𝜕𝑥𝑒
)                                  (5.28) 

𝜕𝑐̌𝑒
𝜕𝑥𝑒

=
𝑤𝑡ℎ

𝑐𝑒,𝑚𝑎𝑥
𝑡ℎ (−(𝑢𝑒

𝑡ℎ)𝑇
𝜕𝑘𝑒
𝜕𝑥𝑒

𝑢𝑒
𝑡ℎ + 2(𝑢𝑒

𝑡ℎ)𝑇
𝜕𝐹𝑒

𝑡ℎ

𝜕𝑥𝑒
) +

𝑤𝑐
𝑐𝑒,𝑚𝑎𝑥
𝑐 (−(𝑢𝑒

𝑐)𝑇
𝜕𝑘𝑒
𝜕𝑥𝑒

𝑢𝑒
𝑐 + 2(𝑢𝑒

𝑐)𝑇
𝜕𝐹𝑒

𝑡ℎ

𝜕𝑥𝑒
)

+
𝑤𝑓

𝑐𝑒,𝑚𝑎𝑥
𝑓

(−(𝑢𝑒
𝑓
)
𝑇 𝜕𝑘𝑒
𝜕𝑥𝑒

𝑢𝑒
𝑓)                                                                                                                               (5.29) 

Finally, the scaled sensitivity is given as:  

𝜕𝑐̂𝑒
𝜕𝑥𝑒

=
𝑤𝑡ℎ

𝑐𝑒,𝑚𝑎𝑥
𝑡ℎ Υ𝑡ℎ (−(𝑢𝑒

𝑡ℎ)𝑇
𝜕𝑘𝑒
𝜕𝑥𝑒

𝑢𝑒
𝑡ℎ + 2(𝑢𝑒

𝑡ℎ)𝑇
𝜕𝐹𝑒

𝑡ℎ

𝜕𝑥𝑒
) +

𝑤𝑐
𝑐𝑒,𝑚𝑎𝑥
𝑐 Υ𝑐 (−(𝑢𝑒

𝑐)𝑇
𝜕𝑘𝑒
𝜕𝑥𝑒

𝑢𝑒
𝑐 + 2(𝑢𝑒

𝑐)𝑇
𝜕𝐹𝑒

𝑡ℎ

𝜕𝑥𝑒
)

+
𝑤𝑓

𝑐𝑒,𝑚𝑎𝑥
𝑓

Υ𝑓 (−(𝑢𝑒
𝑓
)
𝑇 𝜕𝑘𝑒
𝜕𝑥𝑒

𝑢𝑒
𝑓)                                                                                                                          (5.30) 

The derivatives of the design-dependent loads with-respect-to the pseudo-density design variable 𝑥𝑒 are 

given as:  

𝜕𝐹𝑒
𝑡ℎ

𝜕𝑥𝑒
=
𝜕𝛽𝑒
𝜕𝑥𝑒

∆𝑇

2(1 − 𝜇)
[−1 − 1 1 − 1 1 1 − 1 1]𝑇                                 (5.31) 

where  

𝜕𝛽𝑒
𝜕𝑥𝑒

=
1 + 𝑞2

(1 + 𝑞2(1 − 𝑥𝑒))
2 𝐸0𝛼0                                                 (5.32) 

𝜕𝐹𝑒
𝑐

𝜕𝑥𝑒
= 𝜌0 (

2𝜋𝑁

60
)
2

𝑟𝑒                                                         (5.33) 

Assuming each element has a unit volume for a constant mesh size space- and time-wise,   

𝜕𝑣𝑒
𝜕𝑥𝑒

= 1                                                                       (5.34) 

A sensitivity filter is utilized as in Chapter 4 and is expressed as [54]:  
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𝜕𝑐̆𝑒
𝜕𝑥𝑒

=
1

𝑚𝑎𝑥(𝛾, 𝑥𝑒) ∑ 𝐻𝑒𝑖
 
𝑖∈𝑁𝑒

∑𝐻𝑒𝑖

 

𝑖∈𝑁𝑒

𝑥𝑖
𝜕𝑐̌𝑒
𝜕𝑥𝑖

                                         (5.35) 

where 𝑁𝑒 is the set of neighboring elements 𝑖 which have center-to-center distance 𝑑(𝑒, 𝑖) to element e 

less than set filter radius 𝑟𝑚𝑖𝑛 . To avoid divisions by zero in the fraction in 5.33, 𝛾 is assigned a small 

value as 10−3. 𝐻𝑒𝑖 is a weight factor expressed as: 

𝐻𝑒𝑖 = max(0, 𝑟𝑚𝑖𝑛 − 𝑑(𝑒, 𝑖))                                                (5.36)   

A flowchart showing the major steps in the multiphysics and multiobjective topology optimization 

model is shown in Figure 5.4. 
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Figure 5.4: Workflow of the multiphysics and multiobjective topology optimization model 
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5.2.2. Numerical Results 

5.2.2.1.   Effects of TSL thresholding on numerical stability 

In this section, the effects of thresholding TSL as concluded in Chapter 3 are presented. Three values – 

0, 0.5, 0.8 – of the threshold parameter 𝜂 are used and the optimization each time is run for 30 iterations 

as the targeted number of minimum iterations for this case. The weighted factors for this problem were 

assigned as 𝑤𝑡ℎ = 0.5, 𝑤𝑐 = 0,𝑤𝑓 = 0.5. In Figure 5.5, when 𝜂 = 0, there is no threshold placed on the 

TSL vector, therefore, all the nodal TSLs in the finite element mesh contribute to the displacement 

response for thermoelastic compliance and in turn the compliance sensitivity. As pointed out in Chapter 

3, the magnitude of every elemental TSL load is at least 60% of the maximum. As a result, the 

sensitivities of all the elements in the optimization domain become closely matched creating no distinct 

load path for a structural layout to be established thereby inducing instabilities in the optimality criteria. 

This further creates erroneously large sensitivity magnitudes after some iterations until the optimization 

produces indefinite numerical values. This is seen in Figure 5.5 for 𝜂 = 0 where the optimization fails 

after the 5th iteration. For 𝜂 = 0.5, the optimization up until the 25th iteration and similar issues as 

described previously arise. Finally, for 𝜂 = 0.8, the optimization lasts till the 30th iteration and beyond. 

As opposed to the previous cases, setting a higher threshold ensures that there is a more defined load 

path in thermoelastic compliance sensitivity. Although a higher threshold can quite underestimate the 

TSL in some iterations (3rd and 5th in Figure 5.5), this occurs in a few iterations in the early stages of the 

optimization. 
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Figure 5.5: TSL field for η=0, 0.5, and 0.8 for the rotating cantilever problem in Figure 5.3. 

5.2.2.2. Bi-objective topology optimization for a pair of design-dependent and -independent loads.  

The results of topology optimization for a pair of objectives for the rotating cantilever are presented in 

this section for 𝜂 = 0.8 on TSL only. Additionally, the scale factors for sensitivity contributions from 

TSL and centrifugal loads are further scaled down to a factor of 10−1. This is to ensure that the full 

range of the weight factors 0 < 𝑤𝑖 < 1 is studied with minimal numerical instability. In the first half of 

this study, the pair of TSL and point force is considered, therefore the weight factor for centrifugal loads 

is set to 0 (𝑤𝑐 = 0). The consolidated compliance function (RHS of 5.14) becomes: 

min
𝑥𝑒

𝐶̂ = 𝑤𝑡ℎ𝐶̂𝑡ℎ +𝑤𝑓𝐶̂𝑓                                                   (5.37) 

While the sensitivity function becomes: 
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𝜕𝐶̂

𝜕𝑥
= 𝑤𝑡ℎ (Υ𝑡ℎ

𝜕𝐶̌𝑡ℎ
𝜕𝑥

) + 𝑤𝑓 (Υ𝑓
𝜕𝐶̌𝑓

𝜕𝑥
)                                     (5.38) 

First, the most stable result is presented in Figure 5.6 and it comes from optimizing the cantilever 

subjected to a point force only. Since the sensitivities from other load cases are scaled to that of the point 

force, the results in Figure 5.6 are taken as the reference for the bi-objective and tri-objective cases. For 

all problems under this section, 13400 bilinear square elements are used in the discretized domain while 

the convergence limit is set at 10−3 for the design variable or a maximum of 80 iterations.  

 

Figure 5.6: (a) Topology (b) normalized compliance history and (c) sensitivity history for the 

cantilever problem for 𝑤𝑓 = 1. 

In Figure 5.6, the normalized compliance history shows that the objective is minimized and convergence 

is attained just after 50 iterations. It should be noted that the scale on the 𝑦-axis of the plots is computed 

as:  

sign(𝑦). log10(𝑦)                                                           (5.39) 

The sensitivity presented all through this chapter is the sum of the sensitivities of all elements for either 

a load case or a consolidated objective. A deep dive is observed in the sensitivity shown in Figure 5.6(c), 

this happens at a point in the optimization where there is a shift in the distribution of the design variable 
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from more uniform intermediate values (~0.5) to values closer to 0 or 1. There now exists a significant 

number of elements that are close to but not equal to 0. Since the RAMP interpolation function is used, 

elements with very low-density values (close to but not 0) keep a significant portion of their sensitivities 

while those close to or up to 1 have an increase in their sensitivities thereby causing a sharp increase in 

the overall sensitivity.   

 

Figure 5.7: (a) Topology, (b) scale factor history, (b) normalized compliance history, and (c) 

sensitivity history for the cantilever problem for 𝑤𝑡ℎ = 0.1 and 𝑤𝑓 = 0.9. 

 



89 

 

 

Figure 5. 8: (a) Topology, (b) scale factor history, (b) normalized compliance history, and (c) 

sensitivity history for the cantilever problem for 𝑤𝑡ℎ = 0.5 and 𝑤𝑓 = 0.5. 
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Figure 5.9: (a) Topology, (b) scale factor history, (b) normalized compliance history, and (c) 

sensitivity history for the cantilever problem for 𝑤𝑡ℎ = 0.9 and 𝑤𝑓 = 0.1. 

In Figure 5.7 to Figure 5.9, it is observed that very low scale factors (0 < Υ𝑡ℎ ≪ 1) are initially (first 20 

iterations) required to balance up the sensitivity of the TSL load case with that of the point force because 

TSLs cause a greater sensitivity due to the load vector randomness. However, after around 20 iterations, 

the sensitivity stabilizes and Υ𝑡ℎ maintains values closer to 1. The sensitivity histories from TSL are also 

initially complicated but become more in-line with that of the point force after some iterations. There is, 

therefore, no complication in the consolidated sensitivity history and this is important for the 

optimization to arrive at a structurally meaningful layout. Lastly, as 𝑤𝑡ℎ is increased relative to 𝑤𝑓 

compliance minimization becomes poorer. Therefore, the less the values 𝑤𝑡ℎ assume, the better the 

objective minimization.  

Next, the pair of centrifugal loads and a point force is presented. 5.37 and 5.38 becomes:  
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min
𝑥𝑒

𝐶̂ = 𝑤𝑐𝐶̂𝑐 +𝑤𝑓𝐶̂𝑓                                                   (5.37) 

While the sensitivity function becomes: 

𝜕𝐶̂

𝜕𝑥
= 𝑤𝑐 (Υ𝑐

𝜕𝐶̌𝑐
𝜕𝑥
) + 𝑤𝑓 (Υ𝑓

𝜕𝐶̌𝑓

𝜕𝑥
)                                     (5.38) 

 

Figure 5.10: (a) Topology, (b) scale factor history, (b) normalized compliance history, and (c) 

sensitivity history for the cantilever problem for 𝑤𝑐 = 0.1 and 𝑤𝑓 = 0.9. 
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Figure 5.11: (a) Topology, (b) scale factor history, (b) normalized compliance history, and (c) 

sensitivity history for the cantilever problem for 𝑤𝑐 = 0.5 and 𝑤𝑓 = 0.5. 
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Figure 5.12: (a) Topology, (b) scale factor history, (b) normalized compliance history, and (c) 

sensitivity history for the cantilever problem for 𝑤𝑐 = 0.9 and 𝑤𝑓 = 0.1. 
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Figure 5.13: Topology optimization of a rotating cantilever structure by Zheng and Gea [29] shown in 

(a) considering (b) gravitational force from the non-structural mass depicted in (a) – can be referred to 

as a point force, and (c) gravitational and centrifugal forces from both structural and non-structural 

masses. 

From Figure 5.10 to Figure 5.12, it is observed that the scale factor history is less complicated for 

centrifugal loads compared to TSLs. It generally means that centrifugal loads contribute to better 

numerical stability compared to TSLs and this reflects in the distinction of the topological results. For 

the compliance and sensitivity histories, the general trends as observed for TSLs apply here also, 

however, these histories are much less complicated for centrifugal loads. It is also important to note that 

during some periods in the optimization when centrifugal sensitivities become very high possibly due to 

‘floating’ intermediate elements, the scaling ensures that they remain comparable to the force 

sensitivities. Interestingly, there is a good correlation between the results obtained at higher 𝑤𝑐 values 

in this study and those obtained by Zheng and Gea [29] back in 2006 as shown in Figure 5.13. It is a 

general conclusion that when centrifugal loads are considered for a rotating structure, more mass is 

deposited close to the axis of rotation.  

Finally, for this section, the full weight factor variation is presented in Figure 5.14 by plotting the 

normalized consolidated compliance function against the weight factor ratios 
𝑤𝑡ℎ

𝑤𝑓
 and 

𝑤𝑐

𝑤𝑓
: 
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Figure 5.14: Effects of weight factor ratio on the normalized compliance for two pairs of loads 

 In Figure 5.14, the normalized compliance against 
𝑤𝑡ℎ

𝑤𝑓
 can be described as a sinusoidal increase, 

therefore, fairly less predictable. However, a gradual increase is observed in the normalized compliance 

values as 
𝑤𝑐

𝑤𝑓
 increases. This also further establishes the loads’ contributions to optimization stability as 

observed in previous figures.  

5.2.2.3.Tri-objective topology optimization for two design-dependent loads and one design-

independent load. 

Finally, the results of topology optimization for all loads on the rotating cantilever are presented in this 

section for 𝜂 = 0.8 on TSL only. As in the previous section, the scale factors for sensitivity contributions 

from TSL and centrifugal loads are further scaled down to a factor of 10−1. However, the maximum 

iteration number is reduced to 40 as further iterations caused more numerical instability with little 

topological changes. Three topological, scale, compliance, and sensitivity results each for low-, medium-

, and high-value weight factors for TSL and centrifugal loads are presented.  
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Figure 5.15: (a) Topology, (b) scale factor history, (b) normalized compliance history, and (c) 

sensitivity history for the cantilever problem for 𝑤𝑡ℎ = 0.1, 𝑤𝑐 = 0.1 and 𝑤𝑓 = 0.8. 
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Figure 5.16: (a) Topology, (b) scale factor history, (b) normalized compliance history, and (c) 

sensitivity history for the cantilever problem for 𝑤𝑡ℎ = 0.3, 𝑤𝑐 = 0.3 and 𝑤𝑓 = 0.4. 
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Figure 5.17: (a) Topology, (b) scale factor history, (b) normalized compliance history, and (c) 

sensitivity history for the cantilever problem for 𝑤𝑡ℎ = 0.4, 𝑤𝑐 = 0.4 and 𝑤𝑓 = 0.2. 

For the optimization of all three loads shown in Figure 5.15 to Figure 5.17, compliance minimization is 

best at low weight factors of design-dependent loads; also, the final normalized compliance slightly 

increases as their weight factors increase. This minimization considering all three loads using the regular 

OCM optimizer will be impossible without scaling the sensitivity contributions of design-dependent 

loads. As observed in previous sections, the scale factors for TSLs are relatively closer to 1 while those 

for centrifugal loads are in the range of 0 < Υ𝑐 < Υ𝑡ℎ < 1. This implies that the centrifugal sensitivities 

are higher in magnitude than TSL sensitivities as observed in Figure 5.15(d), Figure 5.16(d), and Figure 

5.17(d). As a result of sensitivity scaling, the force sensitivities are kept the lowest throughout the 

optimization ensuring numerical stability and a definite structural layout.  
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Finally, for this section, the full weight factor variation is presented in Figure 5.18 by plotting the 

normalized consolidated compliance function against the weight factor ratios 
𝑤𝑡ℎ

𝑤𝑓
 and 

𝑤𝑐

𝑤𝑓
 for all loads 

considered in this study.  

 

Figure 5.18: Effects of weight factor ratio on the normalized compliance for all three loads combined 

 In Figure 5.18, lower weight factors for TSL and centrifugal loads give considerably lower normalized 

compliances as their height maps are lower. However, there are some higher combinations of weight 

factor ratios that can give relatively low compliance values. This might be a result of the sinusoidal trend 

for 
𝑤𝑡ℎ

𝑤𝑓
 when considering TSLs and point force only as observed in Figure 5.14. 
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5.2.2.4.Tri-objective topology optimization for TSLs, centrifugal loads, and design-dependent 

pressure loads.  

To apply the developed methodology to a practical design scenario, the labyrinth seal mounted in the 

balancing drum of a steam turbine is studied. This is a suitable example because the loads on the seal 

are a high-temperature distribution, boundary fluid pressure, and a high rotational speed. Cangioli et.al. 

[184] studied a thermo-elastic bulk flow model on labyrinth seals and they outlined a list of practical 

values for these loads, therefore, they will be adopted here also. Figure 5.19 shows the location of the 

seal on the steam turbine shaft and a model of a labyrinth seal in (a). The figure also shows the free body 

diagram of a cross-section of the seal in (b) which will be used for topology optimization. Some material 

properties assumed for this study are density 𝜌0 = 8220 𝑘𝑔/𝑚3, linear thermal expansivity 𝛼0 =

1.6 × 10−5/𝐾, and Young’s Modulus 𝐸0 = 190 𝐺𝑃𝑎. The design specification consists of a ‘teeth-like’ 

feature at the top of the domain that must be present in the final topologies. Therefore, this feature is left 

preserved throughout the optimization process. As in the previous example, it is assumed that no plastic 

flow is induced as a result of the applied loads, therefore, the FEA is carried out under linear elastic 

conditions. For this problem, 8960 elements were used, the volume fraction target is 0.4, and a RAMP 

penalization factor of 40 was used. The consolidated normalized compliance in 5.24 and sensitivity 

function in 5.30 remain the same with subscript 𝑝 (for pressure) replacing 𝑓. 

s

 

Figure 5.19: (a) The location of a labyrinth seal on a turbine shaft [169] and a model seal [170], (b) 

free-body diagram of a cross-section of the seal showing the loads and boundary conditions. 
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First, steady-state thermal analysis is carried out on the seal, and the distribution is seen in Figure 5.20. 

 

Figure 5.20: Temperature distribution of labyrinth seal 
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Figure 5.21: Resulting topologies for TSL, centrifugal, and pressure loads for (a) in-house, 𝑤𝑡ℎ =

0,𝑤𝑐 = 0,𝑤𝑝 = 1, (b) Hypermesh 𝑤𝑡ℎ = 0,𝑤𝑐 = 0,𝑤𝑝 = 1, (c) in-house, 𝑤𝑡ℎ = 0,𝑤𝑐 = 0.9, 𝑤𝑝 =

0.1, (d) Hypermesh 𝑤𝑡ℎ = 0,𝑤𝑐 = 1,𝑤𝑝 = 0, (e) in-house 𝑤𝑡ℎ = 0,𝑤𝑐 = 0.1, 𝑤𝑝 = 0.9, (f) 

Hypermesh 𝑤𝑡ℎ = 0,𝑤𝑐 = 10,𝑤𝑝 = 1, (g) in-house 𝑤𝑡ℎ = 0.15,𝑤𝑐 = 0.2, 𝑤𝑝 = 0.65, (h) Hypermesh, 

𝑤𝑡ℎ = 1,𝑤𝑐 = 25000, 𝑤𝑝 = 110. 
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In Figure 5.21, the topological results are obtained from the in-house developed methodology and a 

commercial FEA/structural optimization software – Hypermesh by Hyperworks®. For the in-house 

methodology, black is solid and white is void while for Hypermesh, red is solid, and blue is void. 

Although there are many key similarities between both methodologies, there are very important 

differences also. A major difference is the fluid pressure effect on the final structure. As presented in 

Chapter 4 and several works of literature [71], [75], [185]–[188], design-dependent pressure loads leave 

arch-like features or structures on the external surfaces they act on. Although this is observed in the 

results from the in-house development methodology, they are absent from the results obtained by 

Hypermesh. Due to this fact, several intermediate elements are sticking to the left and right edges of the 

initial domain which might cause difficulties when attempting to interpret the results for further 

studies/use. For almost pure centrifugal loads in In Figure 5.21(c) (𝑤𝑡ℎ = 0,𝑤𝑐 = 0.9, 𝑤𝑝 = 0.1), there 

is a disconnection between the bottom and top features; this is possible because there is no structural 

boundary condition on the top features (the teeth) and since the weight factor for centrifugal loads is 

much higher than others, more material is deposited closer to the axis of rotation thereby cutting off the 

preserved teeth.  

Finally, very large weight factors such as 𝑤𝑐 = 25000 in Figure 5.21(h) are used in Hypermesh to 

balance out the sensitivity and compliance values for numerical stability. This is unnecessary in the in-

house methodology because of sensitivity scaling. Conclusively, there are several differences between 

the in-house methodology and Hypermesh; first, the scaled sensitivity approach is absent in Hypermesh, 

secondly, they use the SIMP function as opposed to the RAMP which is widely recommended for 

design-dependent loads, thirdly, they utilize design-independent pressure loads. Additionally, 

differences in the optimizers used can cause disparities in the final compliances and consequently the 

topologies.  
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5.3.    Summary 

A multiobjective topology optimization methodology has been elaborated for either a mix of design-

independent and design-dependent loads or only design-dependent loads. First, a Pareto front was 

implemented on a simple cantilever problem with 2 load cases to show the essence of weight factors in 

multiobjective topology optimization. Next, the developed methodology was presented. In addition to 

thresholding loads with high magnitudes and irregular nodal load directions as elaborated in Chapter 3, 

sensitivity scaling is introduced to ensure the sensitivities from loads that lead to numerical instabilities 

in the optimizer are comparable to those that are more stable. This ensures that weight factors are kept 

between 0 and 1. To show the effectiveness of the proposed methodology, two design cases were studied. 

The first case study was a rotating cantilever subjected to an elevated temperature distribution and a 

point force. An extensive study was carried out on a pair of design-dependent and design-independent 

loads, as well as all three loads combined. The second case study was on a labyrinth seal in a steam 

turbine. The design problem was topologically optimized by the in-house methodology and Hypemesh. 

Finally, comparisons were made with results from Hypermesh. Results between both methodologies 

showed a good basic correlation while significant topological differences were observed in the effect of 

pressure loads. For both case studies, adopting lower weight factors (typically below 0.5) for TSLs and 

centrifugal loads contributed to less numerical instabilities while resulting in lower compliance values 

and more distinct/practical structural topologies.  

 

 

 

 

 

 

 

 

 

 



105 

 

Chapter 6: A Post-Topology Optimization Process for 

Overhang Feature Elimination in Additive 

Manufacturing. 

6.1.     Introduction 

This chapter is focused on developing a new, fast, and efficient post-topology optimization process for 

overhang feature elimination in additive manufacturing. As overhanging features directly impact down-

skin surface roughness and overall printability; they are strong justifications for gaining arguably the 

most attention of all structural-based manufacturing constraints from researchers. In this new post-

topology optimization method, every stage of transforming theoretically optimal structures to 

manufacture-enabled structures from the identification of unsupported features to the introduction of 

support-free trusses is done within the density voxel field of the optimized topology. Also, to eliminate 

the increase in material volume which naturally characterizes post-topology optimization methods, a 

volume correction stage is included and is optional depending on the user’s preferences.  Another key 

importance of post-topology optimization methods is their independence from optimizers, interpolations 

functions, and other ‘tuning’ parameters that may affect the optimization process. The overhang 

elimination process will be presented for 2D cases in this article and will be extended to 3D cases in the 

future. 

6.2 Description of methodology 

This study is primarily predicated on the use of Laser Powder-Bed Fusion (LPBF) AM as the 

manufacturing technology but can be extended to Fused Deposition Modelling (FDM). LPBF, as shown 

in Figure 2.2, uses metal powder in a bed as feedstock which a laser selectively scans layer by layer 

(likened to a micro-welding process [189]) till the part is completely printed [190], [191]. One of the 

foremost design rules for this technology is introducing sacrificial supports for overhanging features 

with inclination angles less than 40° to the build plate for print success [192] and also for limiting poor 

surface roughness on the down-skin [193], [194]. Leary et. al. [195] identified three distinct zones for 

overhanging features in FDM: Robust zone, ϕ ≥ 40° with features having no identifiable defect, 

Compromised zone, 30° ≤ ϕ < 40°, with features having identifiable defects and Failed zone, ϕ < 30° 

with features that are completely not self-supporting. In many cases, the minimum overhanging feature 
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angle applied during pre-processing for LPBF and FDM printing can range between 35° and 50°. In the 

current methodology, support trusses inclined at a specified minimum angle are introduced into the 

optimized topology in unsupported areas. This process is explained in the following sub-sections: 

6.2.1 Detecting overhanging features 

The process of detecting overhanging features is done in two major steps: first, identifying the boundary 

of the topologically optimized design using mesh nodes, and second, extracting nodes from boundary 

nodes that define overhanging or unsupported features according to an imposed self-supporting angle 

threshold. The density-based gradient topology optimization method is adopted in this study and 

homogenous, uniform four-noded quads are the element type.  

6.2.1.1 Boundary Identification 

The topological boundary is defined by boundary nodes that are selected by comparing the mean density 

of elements around a mesh node with a threshold value. As observed in Figure 6.1, node 𝑛 is surrounded 

by elements with density 𝑥𝑛,𝑖; the mean density value, 𝑥̅𝑛,𝑖 is used to compare with a threshold density 

value 𝑓𝑡ℎ.  If 𝑥̅𝑛,𝑖 is lower than 𝑓𝑡ℎ, node n is selected as a boundary node. 𝑓𝑡ℎ in this study is 0.1 and it 

can be tightened or relaxed depending on the contrast of the topological boundary. Furthermore, for 

optimal designs that might have a significant number of intermediate density elements (0 < 𝑥 < 1), 

elements 𝑥𝑠𝑛,𝑙 associated with nodes 𝑆𝑛 surrounding node 𝑛  are also used in the selection of boundary 

nodes. 𝑥𝑛,𝑖 is a vector of density elements surrounding node 𝑛 for 𝑖 ranging from 1 to 4 for 2D 

quadrilateral elements and 1 to 12 for 3D hexahedral elements while 𝑥𝑠𝑛,𝑙 is the corresponding vector of 

density elements surrounding node 𝑆𝑛 for l from 1 to 4. For every node 𝑛, there are four 𝑆𝑛 nodes in the 

2D domain and six in the 3D domain. Boundary nodes in a 2D domain can be chosen by the selection 

criteria: 

b𝑛 =  {
Node 𝑛                        〈∀(𝑥̅𝑠𝑛,𝑙 < 𝑓𝑡ℎ) ∈ [1,2]〉  ∥  〈{∀(𝑥𝑛,𝑖 > 0) = 2} ∧ (𝑥̅𝑛,𝑖 > 𝑓𝑡ℎ)〉  

0                                    any other case                                                                                        
     (6.1) 
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Figure 6.1: Identifying a boundary node and its surrounding nodes in a topological boundary 

  

6.2.1.2 Identifying unsupported features 

The angles subtended by the tangents to the topological boundary at every boundary node obtained in 

2.1.1 are computed. Using an optimized half MBB beam, these tangent angles defined in (6.2) are 

graphically described in Figure 6.2. 

𝜃𝑏𝑛 = tan−1 (
𝑣2 − 𝑣1
𝑢2 − 𝑢1

)                                                                (6.2) 

 

Figure 6.2: Boundary nodes (blue squares) of an optimized design with an enlarged portion showing 

coordinates C1 (𝑢1, 𝑣1) and C2 (𝑢2, 𝑣2) of the line tangent at a node bn. 

In (2), for a boundary node 𝑏𝑛, C1 (𝑢1,𝑣1) is the cartesian coordinate of the closest node (apart from 

those that are one element away from bn along 𝑢⃗ ) on the left of bn; the same analogy follows for C2. 

Equation (2) is calculated for all boundary nodes and each angle is compared with the overhang angle 

threshold. To select nodes that define overhanging edges or surfaces, the selection criteria are applied: 
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𝑜𝑣𝑛 = {
Node 𝑏𝑛                           {(𝜃𝑏𝑛 < 𝜃𝑡ℎ𝑟𝑒𝑠ℎ) ∧ (𝑥̅𝑏𝑛+𝜉,𝑖 < 0.1𝑓𝑡ℎ)}                    

0                                         any other case                                                          
    (6.3) 

In (3), 𝑜𝑣𝑛 is a set of nodes that define overhanging edges, 𝜃𝑡ℎ𝑟𝑒𝑠ℎ is the feature inclination angle limit 

or overhanging angle threshold while 𝜉 is a small movement from a node in 𝑜𝑣𝑛 to another mesh node 

vertically downwards. The parameter 𝜉 which is elaborately described in [185] is in this study assigned 

as two nodes away from the 𝑜𝑣𝑛 node under investigation in the downward vertical direction. 

Overhanging features in the optimized topology in Figure 6.2 can be observed in Figure 6.3 for a 45° 

angle threshold. To maintain a definite edge in the overhanging regions, a continuous connection of the 

overhanging nodes is made as observed in the enlarged portion of Figure 6.3. We recall that the overhang 

nodes, 𝑜𝑣𝑛 are drawn from boundary nodes 𝑏𝑛 which are located at the element vertices or mesh grid 

of the design domain. Moving forward, these nodes are repositioned to element centers for convenience. 

An overhang node is moved from its mesh point to the center of the element located at the top right side 

of the mesh point. 

 

Figure 6.3: Nodes in orange showing overhanging edges for the optimized topology in Figure 6.2. the 

enlarged region shows an edge connection made in purple 

Once unsupported features are identified, the next step of adding self-supported trusses is initiated.   

6.2.2 Introducing support-free trusses 

To introduce support-free trusses into an optimized topology, geometrical forms of topology optimized 

designs against overhang elimination in literature are first analyzed. Most of these studies in literature 

have results with geometrically similar internal features [101], [196], [76], [197], [198], [98]. Results 

from three studies [76], [197], and [196] are shown in Figure 6.4. 
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Figure 6.4: Optimized topologies considering overhang elimination from studies by (a) Gaynor and 

Guest [13], (b) Langelaar[14], (c) Leary [16]. Similar geometrical internal structures are highlighted in 

green and yellow 

The geometrical similarities in Figure 6.4 can be observed in the internal features which consistently 

have two parts: the highlighted green portion which will be designated as a ‘root’ and a yellow portion 

designated as a ‘stem’. A combination of the root and stem will represent a self-supported truss member 

to be introduced in an unsupported optimal topology for overhang elimination. Therefore, the focus will 

be drawn on designing this root and stem for every truss member. 

i. Designing the root: In the enlarged portion in Figure 6.3, the nodes that form the edge 

connection are used to define the new truss’s root and these nodes are shown in Figure 6.5(a) 

again. The base length of the root is determined by two nodes which are a distance 𝜒 nodes 

apart, in Figure 6.5(a), 𝜒 is 5 nodes. Invariably, a longer χ translates to a larger truss root while 

a shorter χ to a smaller truss root. The angle of inclination of a line joined by these two nodes 

is calculated and will be designated as 𝜃𝜒. If the overhang angle threshold is 𝜃𝑡ℎ𝑟𝑒𝑠ℎ, as shown 

in Figure 6.5(b), projections of 𝜃𝑡ℎ𝑟𝑒𝑠ℎ − 𝜃𝜒 and 𝜃𝑡ℎ𝑟𝑒𝑠ℎ + 𝜃𝜒 are made on the design elements 

from the two nodes. The elements in the intersection (Figure 6.5(c)) of these projections form 
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the truss root in Figure 6.5(d) and are assigned as solids with a density value of 1. All elements 

that form the root of the self-supported truss are shown in green in Figure 6.5. 

ii. Designing the stem: First, the lowest element in the root is identified, then all other elements 

inclined at approximately 𝜃𝑡ℎ𝑟𝑒𝑠ℎ downwards from this element are identified and assigned as 

solids (Figure 6.5(e,f)). The direction of projection from the lowest element is made the same 

as that of the overhang nodes for the first support-free truss on the overhanging feature. As 

observed in Figure 6.5(g), this direction is changed for the next truss stem but the same angle 

𝜃𝑡ℎ𝑟𝑒𝑠ℎ is maintained. 

 

Figure 6.5: Stages in modeling support-free trusses for an overhanging feature. (a-d) modeling the root 

(e,f) modeling the stem (g) introducing a second truss 
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From the aforementioned steps, we can expect a ‘checkerboard’ density distribution of the additional 

support-free trusses as shown in Figure 6.5(g), therefore further fine-tuning is carried out to obtain 

smoother boundaries. The densities of elements that define the support-free trusses are filtered in (6.4) 

and thresholded by a Heaviside function in (5). 

𝑥̃𝑠𝑡 = 
∑ 𝐻𝑠𝑡,𝑗𝑥𝑗𝑗∈𝑁𝑠𝑡

∑ 𝐻𝑠𝑡,𝑗𝑗∈𝑁𝑠𝑡

                                                                    (6.4)  

𝑥̂𝑠𝑡 = 1 − 𝑒−𝛽𝑥̃𝑠𝑡 + 𝑥̃𝑠𝑡𝑒
−𝛽                                                         (6.5) 

While 𝑠𝑡 denotes the additional support-free elements in (4) and (5), 𝑥̃𝑠𝑡 and 𝑥̂𝑠𝑡 are the filtered and 

physical densities respectively of 𝑠𝑡 elements, 𝑁𝑠𝑡 is a set of neighboring elements whose center-to-

center distance, ∆(𝑠𝑡, 𝑗) to a support-free element is less than a specified filter radius, 𝑟𝑚𝑖𝑛. 𝛽 is a 

regularization parameter that determines the thresholding severity of the Heaviside projection. 𝐻𝑠𝑡,𝑗 is a 

weight factor for support-free elements expressed as 

𝐻𝑠𝑡,𝑗 = max(0, 𝑟𝑚𝑖𝑛 − ∆ (𝑠𝑡, 𝑗))                                                    (6.6) 

Figure 6.6 highlights the implementation of the proposed methodology which commences with obtaining 

an optimized topology for a particular design case in (a), then a boundary identification is done according 

to Equation (6.1) in (b). Thereafter, overhanging features are determined by identifying overhanging 

nodes from boundary nodes according to Equation (3) in (c), then support-free trusses are added 

underneath overhanging features following the procedure in Section 2.1.3 in (d), finally, a density filter 

and Heaviside projection are applied to the introduced support-free trusses in (e). 
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Figure 6.6: The post-process methodology showing the major stages (a) An optimized topology (b) 

boundary identification of optimized topology (c) identification of overhang features subtended less 

than 45° to the build plate (build plate is assumed to be just below the horizontal bottom surface of the 

structure)(d) inclusion of support-free trusses to identified overhanging features (e) applying the 

density filter and Heaviside projection to support-free trusses. 

6.3   Numerical studies 

To investigate the feasibility of the proposed methodology, a couple of design problems are topologically 

optimized with and without overhang elimination while examining some aspects of the post-T.O. 

process. First, overhang elimination considering volume correction is studied, second, the effects of 

feature size limitation and angle threshold on compliance and volume fraction of the resultant support-

free structure are investigated. Finally, the proposed methodology’s independence from material 

interpolation schemes and optimizers is studied while comparing the computational costs of key stages 

of the methodology with and without volume correction. 
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In this study, the Method of Moving Asymptotes (MMA) [199] and Optimality Criteria Method (OCM) 

are utilized as optimizers while Simple Isotropic Material with Penalization (SIMP) and Rational 

Approximation of Material Properties (RAMP) as material interpolation methods. The core strength of 

the proposed methodology, being a post-T.O. process, is its adaptability to any and every class of T.O. 

using uniform quad elements in a discretized domain. 

6.3.1 Overhang elimination with volume correction 

A consequence of adding support-free trusses to overhanging features is an increase in the desired 

volume fraction. In Figure 6.6, there is a 7% increase in volume fraction from (a) to (e). This volume 

increase potentially becomes larger when the truss thickness and/or angle are increased. For example, 

the increase in volume fraction in Figure 6.6 rises from 7% to 10% when the filter radius is increased 

from 4𝑎 to 5𝑎: 𝑎 is half the length of a finite square element. Also, Leary et. al. [196] realized an over 

30% increase in volume fraction for 60° support-free trusses. Therefore it is necessary to correct this 

volume fraction for designs subject to strict material requirements. To achieve this, a volume correction 

according to (7) is proposed and computed after the step in Figure 6.6(e) 

𝑓𝑛𝑒𝑤 = 𝑓 − 𝛾(𝑓𝑜𝑙𝑑 − 𝑓)                                                             (6.7) 

𝑓 is the required volume fraction, 𝑓𝑜𝑙𝑑 is the volume fraction after support-free trusses have been added, 

𝑓𝑛𝑒𝑤 is the new computed volume fraction for the forthcoming step and 𝛾 is a correction factor that 

typically ranges from 1 to 1.5 after several numerical investigations.  

A second topology optimization process is done using the newly obtained 𝑓𝑛𝑒𝑤 which gives a topology 

with a volume less than that of the original topology. Thereafter, steps (b) to (e) in Figure 6.5 are carried 

out to end up with a topology having a volume fraction closely matching the required value.  
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Table 6.1: Overhang elimination with and without volume correction for an optimized topology at 

different orientations. The red lines show the location of the build plate on the design. 

Without volume correction With volume correction 

 

Without overhang elimination: 𝐶0 = 0.208 𝑁𝑚, 𝑓0 = 0.5 

 

𝐶 = 0.96𝐶0, 𝑓 = 1.11𝑓0 

 

𝐶 = 1.19𝐶0, 𝑓 = 𝑓0 

 

𝐶 = 0.95𝐶0, 𝑓 = 1.22𝑓0 

 

𝐶 = 1.21𝐶0, 𝑓 = 1.03𝑓0 

 

𝐶 = 0.99𝐶0, 𝑓 = 1.07𝑓0 

 

𝐶 = 1.07𝐶0, 𝑓 = 𝑓0 
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𝐶 = 0.98𝐶0, 𝑓 = 1.09𝑓0 

 

𝐶 = 1.08𝐶0, 𝑓 = 𝑓0 

In Table 6.1, comparisons are made between overhang-restricted topologies with and without volume 

correction. We observe up to 22% increase without volume correction and after correction is done, the 

original volume fraction is maintained although slight changes may be obtained such as the 3% increase 

in the second orientation. A fallout from volume correction is an increase in compliance; this is expected 

because in attempting to correct the volume, a lower volume fraction is used in the second topology 

optimization process resulting in a higher compliance history compared to the first T.O. process as 

observed in Figure 6.7. Another observation from Table 6.1 is that part orientation greatly affects the 

volume of support-free trusses needed for overhang elimination and final compliance value. In Figure 

6.7, although the compliance after the 1st T.O. process without volume correction is the lowest in all 

scenarios, there is a significant jump in the volume fraction. However, the volume fraction after the 2nd 

T.O. process with volume correction is right at the originally specified value while the compliance is at 

an intermediate value between the 1st and 2nd T.O. processes. Summarily, going for volume correction 

or not is dependent on which requirement between strength and volume is more stringent for the 

designer. 
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Figure 6.7: Compliance, C, and volume fraction, f history of topology optimization stages, and 

overhang elimination with and without volume correction. T.O. and V.C. mean topology optimization 

and volume correction respectively and the required volume fraction is 0.5 

The basic workflow of this methodology is shown in the schematic diagram in Figure 6.8 
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Figure 6.8: Workflow of post-topology optimization overhang elimination scheme 

6.3.2 Effects of minimum feature thickness and angle threshold  

In structural design for AM using T.O., controlling the minimum feature size is important because of 

manufacturability restrictions on the AM technology. Theoretically, the minimum feature size for LPBF 

can be as low as the laser’s beam diameter but in practice, it should be a multiple of the diameter. In the 

case of FDM, in theory, minimum feature thickness can assume the size of the nozzle but in practice, an 

integer multiple is recommended [200]. Minimum values of 0.3 mm and 1 mm have been recommended 

for LPBF and FDM respectively [192], [200]. Likewise, the printability of overhanging features is 

dependent on the angle of inclination and AM technology. In literature, several research efforts ([76], 

[192], [201], [200]) have identified between 40° to 50° as the range of minimum angle threshold to 

successfully print overhanging features without support structures in LPBF and FDM. Notwithstanding, 
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this angle threshold can be varied depending on the feature thickness. Typically, smaller feature 

thicknesses can allow a relatively small feature to be printed at much lower angles (< 30°)[76] 

Nonetheless, this might increase the surface roughness of downfacing surfaces. It is, therefore, necessary 

to ensure feature thickness and angle of inclination are flexible parameters for a robust overhang 

elimination procedure. In this methodology, 𝑟𝑚𝑖𝑛 and 𝜃𝑡ℎ𝑟𝑒𝑠ℎ are the controlling parameters; Figure 

6.9(a-b) shows different values of these parameters and how they influence compliance and corrected 

volume fraction.  

 

(a) 
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(b) 

Figure 6.9: Effect of (a) filter radius and (b) overhanging angle threshold on compliance and volume 

fraction for γ=1.2. The filter radius is an integer multiple of half the finite element length, 𝑎. 

We immediately observe that an increase in feature thickness and overhang angle threshold in Figure 

6.9(a-b) translates to an increase in compliance. There is an approximately 19% increase in compliance 

in both cases from left to right because as feature thickness or angle increases, there is more material 

relatively assigned to the additional ‘inefficient’ trusses. This trend is not seen in volume fraction 

because it is a corrected parameter. However, there is a small increase in the volume fraction in Figure 

6.9(b) but this can be adjusted by increasing the correction factor 𝛾 slightly. 

6.3.3 Material interpolation methods and optimizers 

An important characteristic of a post-process overhang elimination method is its independence from 

material interpolation schemes and optimizer types. Several studies have shown that the RAMP 

interpolation scheme compared to SIMP has proven to be more effective in handling thermo-mechanical 

and other design-dependent topology optimization problems [59], [56], [155], [202]. Also, optimizers 

for non-linear structural optimization vary in specific functionalities such as attempting to obtain global 

solutions and solving non-monotonic problems prevalent in thermo-mechanical topology optimization. 

When optimizing for these complicated scenarios, the computational cost is increased, and convergence 
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can become more difficult to attain. Therefore, rather than complicate already intricate topology 

optimization models with an integrated overhang elimination scheme, a post-process method becomes 

crucial. Using a different and more complicated hook design problem in Figure 6.10, the post-process 

method is used to show its independence from optimizers and material interpolation methods.  

 

Figure 6.10: A hook design problem. Forces are shown in the black arrows, the build plate is shown in 

red, and the build direction in blue 
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Table 6.2: Optimized topologies with and without overhang elimination for optimizers (OCM and 

MMA) and material interpolation functions (SIMP and RAMP) 

 

OCM MMA 

SIMP RAMP SIMP RAMP 

Without 

overhang 

elimination 

    

With 

overhang 

elimination 

    

 

The resulting topologies without overhang elimination in Table 6.2 are all similar with SIMP having 

slightly more finer features, furthermore, overhang elimination is applied seamlessly irrespective of the 

interpolation method and optimizer type. We observe small overhang regions in the corrected models 

shown in red in Table 6.2 that are acceptable as long as their lengths are within the allowable horizontal 

overhang length of the AM technology. Additionally, Liu and Yu [203] in an experimental study 

discovered that small-sized horizontal overhangs printed fine and are, therefore, allowable in a design. 

Van de Ven [82] also suggested that in practical settings, eliminating overhangs might not be necessary 

except in impenetrable regions. However, the length of small overhang regions can be further reduced 
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by decreasing 𝜒 which will ensure more strut roots are formed within the overhanging feature. Some 

rough edges can be observed in the figures in Table 6.2. The rough edges can be avoided by increasing 

the resolution of the optimization or eliminated by using a mesh-based tool (such as MeshLab [204]) to 

smoothen the part.   

The computing time can show the efficiency of the proposed methodology and will be discussed. Using 

14,630 four-node square elements on an intel core i7, 16 Gb RAM, the time duration of different stages 

in this methodology was recorded for the problem in Figure 6.11. As anticipated, in Table 6.3 and Figure 

6.11, out of an average total duration of 354 seconds, the two T.O. stages (stages 1 and 4) took up an 

average combined duration of about 340 seconds or over 90% in Figure 6.12(a). Each boundary 

identification and overhang elimination stage (stages 2 and 3) took a little over 11 seconds or 3% and 1 

second or 0.3% respectively. These stages (2 and 3) take a combined 3.3% of the computational cost and 

are therefore comparatively much less expensive than other stages. Also in Figure 6.11, irrespective of 

the interpolation method or optimizer, the performance of the boundary identification and overhang 

elimination stages remain fairly constant and they take significantly less time compared to both topology 

optimization stages. Reasonably, we expect an increase in these time values using more design elements 

but their performances are detached from the T.O. process being a major contribution of this 

methodology. Furthermore, executing this methodology without volume correction cuts the total time 

duration by half and reduces stages 2 and 3 to a combined value of 8% in Figure 6.12(b). Additionally, 

optimizing the implementation of stages 2 and 3, e.g. eliminating iterative sub-routines, reducing stored 

arrays, and applying parallel computing methods, will greatly further reduce their computational cost 

contributions. 
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Table 6.3: Duration of stages in the post-T.O. process overhang elimination method with volume 

correction for a sample problem, two material interpolation methods, and optimizers. 

 

OCM – secs (%) MMA – secs (%) 

SIMP RAMP SIMP RAMP 

Stage 1: Initial T.O. 158 (47) 181 (46) 144 (38) 150 (45) 

Stage 2: Boundary ID 11.6 (3.4) 11.6 (3) 12.3 (3.3) 11.2 (3.3) 

Stage 3: Overhang 

Elimination 
1.9 (0.56) 1.54 (0.39) 2.08 (0.55) 1.2 (0.36) 

Stage 4: Final T.O. 149 (44) 183 (47) 195 (52) 162 (48) 

Stage 5: Repeat 2 and 3 16 (4.7) 14.3 (3.6) 20.9 (5.6) 12.6(3.7) 

 

Figure 6.11: Time duration of stages in T.O. and post-T.O overhang elimination with volume 

correction 
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(a)                                                                                  (b) 

Figure 6.12: Percentage time duration of the stages in proposed methodology (a) with volume 

correction and (b) without volume correction 

6.4 Manufacturability 

To further assess the practical viability of this methodology, the half MBB beam and hook design 

samples in previous sections are printed via LPBF and FDM. The half MBB beam is printed in two 

orientations: the flat base on the build platform as shown in Figure 6.13(b) and the flip side is shown in 

Figure 6.14(c). The hook design is only printed the right way up as shown in Figure 6.13(d) and (e). 

Some LPBF and FDM process parameters used are shown in Table 6.4 and Table 6.5 respectively. In 

both AM processes, the overhang angle was taken as 45°. The optimized half MBB structure in Figure 

6.13(a) is without overhang elimination, therefore, internal support structures were added. In addition to 

the increased build time and volume, these structures can offer difficulties during removal and increase 

the part surface roughness as observed in the figure. However, when the proposed overhang elimination 

model is applied in two orientations, Figure 6.13(b) and (c), we have well-printed structures with 

observably better down-surface qualities even with very short horizontal overhangs. The same scenarios 

are seen for the hook design in Figure 6.13(d) and (e). 
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Table 6.4: LPBF process parameters used for manufacturability studies 

Parameter Type/value 

Machine 

Material 

EOS M290 

Hastelloy X 

Power 190 W 

Speed 1000 m/s 

Layer thickness 40𝜇𝑚 

Scanning strategy Stripe 

Beam offset 40𝜇𝑚 

 

 

(a)                                                                         (b) 

 

(c) 
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(d)                                                                   (e) 

Figure 6.13: LPBF manufacturability tests showing an optimized half MBB beam (a) without overhang 

elimination (b) with overhang elimination (c) with overhang elimination in a flipped orientation (d) an 

optimized hook without overhang elimination (e) an optimized hook without overhang elimination (e) 

an optimized hook with overhang elimination. 

The same parts were printed using FDM and an overhang angle threshold of 45°. In the parts with internal 

support structures (Figure 6.14(a) and (d)), even though downfacing surface quality might not be 

excessively adversely affected, the difficulty in support removal is noticed. Also in comparison to the 

optimized parts with overhang elimination in Figure 6.14(b), (c), and (e), the optimized parts without 

overhang elimination exhibit poorer part print possibly due to the presence of extra support material and 

its interference with the extruder nozzle. Also, the optimized parts with overhang elimination consumed 

less material and time because of the absence of internal support structures. 
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Table 6.5: FDM process parameters used 

Parameter Type/value 

Machine 

Material 

G_Code generator 

Layer thickness 

Anycubic Mega i3 

Polylactic acid (PLA) 

Cura SteamEngine 4.6.1 

200𝜇𝑚 

Infill density 

Support infill rate 

20% 

25% 

Bed temperature 70°𝐶 

 

 

(a)                                                                    (b) 

 

(c) 
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(d)                                                     (e) 

Figure 6.14: FDM manufacturability tests showing an optimized half MBB beam (a) without overhang 

elimination (b) with overhang elimination (c) with overhang elimination in a flipped orientation (d) an 

optimized hook without overhang elimination (e) an optimized hook with overhang elimination. 

6.5 Summary 

In this study, a novel and alternative post-topology optimization method for dealing with the 

overhanging feature problem in many AM technologies such as LPBF and FDM has been presented. 

First, topology optimization is carried out on the design problem, secondly, boundary identification 

[185] and overhang detection as outlined in section 6.2 are done. Thirdly and finally, additional structural 

elements subject to a specified feature thickness and angle are introduced to support previously detected 

unsupported features. This addition can result in as much as a 22% increase in the volume fraction and 

a 4% decrease in compliance. For strict design volume adherence, a volume fraction (𝑓) correction can 

be introduced to obtain a new and lower 𝑓 which will be used in the final topology optimization, 

boundary identification and, overhang elimination stages. Several key reasons why this methodology is 

attractive are: 

i. Although the proposed method is post topology optimization, there is a seamless workflow 

from topology optimization because the type and number of design elements, density variables, 

feature size limit, and other controlling parameters are inputs. There is, therefore, no data 

conversion or transformation needed and consequently, both tools (topology optimization and 

overhang elimination) can be deployed easily as one. 
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ii. There is complete independence from several aspects of the topology optimization method used 

such as interpolation methods, optimizer types, parameter tuning, and others. Due to the nature 

of many integrated overhang elimination methods, they may either perform poorer or 

breakdown completely when major changes are introduced in the topology optimization scheme 

[197], [76], [102], [98], [100]. 

iii. This methodology allows for ample design expression regarding the geometrical properties of 

the additional support-free struts. In other words, the user or designer can dictate strict strut 

requirements such as thickness, orientation or angle, space between strut roots, and size of strut 

root (which in turn influences the number of struts added). 

iv. A direct consequence of post-topology optimization overhang elimination schemes is an 

increased final volume of the design. This is addressed by a volume correction step in this 

proposed methodology. 

v. The feasibility of the proposed methodology in practice was investigated by printing test 

samples via LPBF and FDM. 

Notwithstanding the several aforementioned benefits, there are a few challenges and limitations this 

methodology offers. In 3D design problems which will be more valuable, designing the struts’ roots will 

not be as straightforward as presented here; the base of each strut, prismatically shaped, will be defined 

by χ1 and χ2 along the axes perpendicular to the build direction. Also, the direction of strut inclination 

will become a little trickier and might require some optimization. The major limitation of this 

methodology is the shape of the finite element used. Currently, homogenous square (in 2D cases) or hex 

(which will be the case for 3D problems) elements are utilized. Although this is a popular type of element 

used in most topology optimization algorithms, the proposed methodology must be tweaked to 

accommodate other shapes. Moving forward, 3D extensions of the proposed methodology will be 

implemented and presented in the future. 
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Chapter 7: Experimental Validation of Topology 

Optimized Metal Parts Considering Overhang Feature 

and Size Control. 

7.1 Introduction  

Beyond manufacturability, to validate the post-topology optimization strategy for overhang elimination 

elaborated in Chapter 6, residual stress and bending test experiments are carried out on a sample problem. 

Leary et.al. [196] theoretically investigated the temperature distribution of self-supporting structures 

during AM process build. They discovered that these structures help to reduce the heat transfer resistance 

during the print thereby alleviating peak and average temperatures. Since the major contribution to 

residual stress in parts produced by metal AM is high-temperature gradients and rapid cooling [117], it, 

therefore, becomes important to investigate the influence of these self-supporting structures on the 

residual stress of the as-built part. First, in this Chapter, a preliminary X-Ray Diffraction (XRD) study 

is carried out to find a correlation or not between self-supporting features in a topologically optimized 

structure and the surface type 1 residual stress values [205] for AM Hastelloy X parts. Secondly, a robust 

3-point bending test is done to observe the influence of these structures on their load-displacement 

responses and compare results with numerically obtained compliance values.  

7.2 The Messerschmitt-Bolkow-Blohm (MBB) beam problem 

Besides the cantilever problem, the MBB beam is a widely adopted case study for most topology 

optimization algorithms or models [76], [81], [98], [106], [120], [206] for both numerical and 

experimental studies. It is adopted here to analyze residual stress and load-displacement responses of the 

as-built AM structure. The beam is first topologically optimized by the SIMP method [50], [207], [208] 

based on compliance minimization for a volume fraction of 0.5. Thereafter, the post-topology 

optimization algorithm is carried out on the density map to eliminate unsupported or overhanging 

features. In this study, three categories of optimized beams are studied: those without overhang 

elimination (WOE), different minimum feature sizes (𝑛𝑎 – where 𝑛 is an integer multiple of half the 

finite element size - 𝑎 - used in the optimization), and different overhang angle thresholds (𝜃). The MBB 

beam problem is shown in Figure 7.1, in (a), the problem with load and support locations is presented 

while (b) shows an input image file of half the domain used in ibipp.m for the optimization. ibipp.m is 
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an open-source program that has been developed to initialize free-form design domains for topology 

optimization and generate STL files for printing – this will be presented in Chapter 8.  

 

(a) 

 

(b) 

Figure 7.1: (a) The MBB problem showing the load and support locations and domain dimensions (b) 

the half MBB initial design domain used for optimization in ibipp.m. 

In Figure 7.1, a preserved region (shown in black in (a) and green in (b)) around the supports is added 

to improve stability during the bending tests. The problem is discretized using 270 × 77 (20790) 

bilinear homogenous square elements with a finite element length of 2𝑎 = 0.4 𝑚𝑚. The Optimality 

Criteria Method [129] was used as the gradient optimizer and 0.01 or 0.1 after 250 iterations were set as 

the convergence criteria. Altogether, 12 optimized designs were generated: two designs without 

overhang elimination, of minimum feature radii - 5𝑎 and 7𝑎 conveniently named 5𝑎-WOE and 7𝑎-

WOE respectively, 10 designs having overhang angle thresholds at 45°, 50°, 55°, 60°, and 65° with 

minimum feature radii of 5𝑎 and 7𝑎 respectively. In subsequent sections, the minimum feature size 

should be interpreted as the minimum feature radius. Figure 7.2 shows the different optimized designs 

in 2D and 3D: 
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Figure 7.2: Optimized designs showing the reference designs without overhang elimination (WOE) for 

minimum size 5𝑎 and 7𝑎 (middle figures), (a-e) 5𝑎 and (f-j) 7𝑎 with angles 45°, 50°, 55°, 60°, and 65° 

respectively. 
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7.3 Experimental Procedures 

7.3.1 Sample Production 

An EOS M290 LPBF machine equipped with a Ytterbium fiber was used to produce the tensile and topologically 

optimized samples. The printing was done under an argon environment and the build plate temperature was 80°𝐶. 

The Hastelloy x powders were gas-atomized and they were supplied by EOS GmbH. Other process parameters 

are shown in Table 7.1. Three repetitions of the optimized beam samples as shown in Figure 7.2 were printed 

also, with their build orientations as they are shown in the figure. Tensile samples oriented at 0°, 45°, and 90° to 

the plane of the substrate or build platform as shown in Figure 7.3 were printed with three, three, and five 

repetitions respectively for mechanical testing. The dimensions of the tensile samples can be seen in [151], [209]. 

The optimized samples tested for residual stresses were left on the substrate for measurement to prevent any stress 

relief. After residual stress tests were done, all samples were cut using electrical discharge machining (EDM). 

The printed samples are shown in Figure 7.4. 

Table 7.1: LPBF process parameters used for residual stress and bending tests 

Parameter Type/value 

Power 215 W 

Speed 1150 m/s 

Layer thickness 40𝜇𝑚 

Scanning strategy Stripe with 67° rotation 

Hatching distance 90 𝜇𝑚 
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Figure 7.3: Tensile samples in different orientations 

 

Figure 7.4: Printed tensile and optimized beam samples 

7.3.2 Residual Stress Measurements 

Preliminary residual stress measurements were done by X-Ray Diffraction (XRD) using a PULSTEC® μ-X360s 

Portable X-ray Residual Stress Analyzer. Two repeats of all optimized samples were analyzed by x-ray spot sizes 

or collimator sizes of 1 𝑚𝑚 and 2 𝑚𝑚 each. The target material was set to Ni-alloy with a diffraction plane of 

{3,1,1} while the x-ray incident angle was 30°. The direction of the measured residual stress 𝜎𝑥 is shown in 

Figure 7.5. 
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Figure 7.5: (a) The measured location, shown in the red ‘x’, and direction of the residual stress value, 

(b) the PULSTEC X-Ray residual stress analyzer  

7.3.3 Mechanical Testing 

Room temperature quasi-static tensile tests were done using the Instron® 8874 servo-hydraulic machine 

in the displacement control mode at a crosshead speed of 0.45 mm/min following ASTM E8 standard 

[210]. The load capacity of the testing machine was ±25𝑘𝑁 and an Instron® 2630-120 extensometer 

with a gauge length and travel of 8 𝑚𝑚 and ±4 𝑚𝑚 respectively was used. Thereafter, 3-point bending 

tests were carried out on the sample size using a crosshead speed of 1.5 mm/min. All tensile and bending 

samples were carried out under the same experimental conditions. The tensile and bending test setups 

are shown in Figure 7.6. 
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                  (a)                                                                            (b)  

Figure 7.6: (a) Tensile and (b) bending test setups. 

7.4.  Results and Discussion 

7.4.1. Residual stress 

Parameters such as scanning pattern, dwell time, and other process-related variables that have significant 

effects on the thermal history of a printed part are most likely to cause residual stresses [117]. The 

residual stress plots at the top-surface center of all optimized Hastelloy-X MBB beam samples are shown 

in Figure 7.7. Given the comparatively high standard deviations, it is observed that there is no significant 

effect of the overhang angle threshold and minimum feature size on the surface residual stress. The 

overlapping error bars for WOE, 45° and 50° show that the residual stress values for both feature sizes 

are indistinguishable within the standard deviation limits. Also, for the optimized cases without overhang 

elimination, there is no considerable residual stress difference with those that were optimized for 

manufacturability. A major reason could be that there are few structural differences between all samples 

(even with samples without overhang elimination as they were printed with support structures), 

especially during the build. This will cause their thermal histories to be closely related therefore leaving 

little to no difference on the surface residual stress values. In literature, studies have shown that the scan 

length and direction of the process hugely influence the residual stress formation and magnitudes [116], 

[117], [211]. Also, there have been suggestions to focus on finding the relationships between process 
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parameters and their associated residual stress distributions [212], and to validate commercial software 

packages on AM process simulation with experimental residual stress results [211]. Although Leary 

et.al. [196] noticed thermal history improvements when structures are optimized with manufacturability 

considerations, this may not have significant impacts on the residual stress distribution which in fact, is 

the most critical phenomenon considering thermal histories. However, since this study was limited to 

Hastelloy X as material and a few minimum feature sizes, an extended study using a few more materials 

and feature sizes is recommended.  

 

Figure 7.7: Effect of overhang angle threshold and minimum feature size on residual stress formation. 

7.4.2. Quasi-Static Response 

The engineering stress-strain curve and yield stress plots of the tensile samples printed in three 

orientations are shown in Figure 7.8. In Figure 7.8 (a), the vertical sample experiences more ductility 

than other orientations although the yield stress is the lowest in Figure 7.8(b). Similar trends for the 

reduction in mechanical strength as the build orientation moves towards 90° can be seen in [119] [213]. 

However, since Hastelloy is a very ductile material [151], [209] very high elongation is observed at 

lower yield strengths. The Young’s Modulus is highest at 90° with a value of 158 MPa and while this 

is in the range of reported additively manufactured Hastelloy X parts [151], [209] at 153 ± 5.5 GPa, the 

Young’s Modulus for 0° and 45° fell a little short at 141 and 136 MPa respectively. The same trend of 

Young’s Modulus can also be noticed in [118] although the samples reported were printed using DSM 
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Somos 14120 and Stereolithography (SLA). In this study, the yield stress drops slightly with an increase 

in the build orientation angle; the mean yield stress value is at 455 MPa. The slight reduction in the yield 

stress (rather than increase) with an increase in the orientation angle can be attributed to a small 

noisiness/nonlinearity in the engineering stress-strain results. The mean of the Young’s Modulus and 

yield stress were taken and used in an FEA simulation and the computation of the final compliance of 

the optimized beam structures. 

 

   (a)                                                                                 (b) 

Figure 7.8: Quasi-static tensile responses for Hastelloy X (a) Engineering stress-strain curves (b) Yield 

stress and Young’s Modulus plots. 
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      (a)                                                                                     (b) 

Figure 7.9: Load-displacement plots for the optimized MBB beams with a minimum feature size of (a) 

5𝑎 (b) 7𝑎 

The load-displacement plots of the optimized beams for minimum feature sizes 5𝑎 and 7𝑎 are shown in 

Figure 7.9. For the optimized beams without overhang elimination (WOE) the load-displacement plots 

are quite similar and this is not far-fetched from their similar structural topology seen in Figure 7.2 with 

only insignificant feature differences. These WOE beams can overcome more work compared to the 

optimized beams with overhang elimination. Since no manufacturability constraint (overhang 

elimination) was placed on them, their structural optimality is higher than those optimized under the 

constraint, consequently performing better functionally. For each minimum feature size, the higher the 

overhang angle threshold, the less work is overcome. Also, it is observed that at a particular angle 

threshold, a move from 5𝑎 to 7𝑎 slightly decreases the performance of the beam samples. It is expected 

that this decline in performance will exacerbate with a further increase in the minimum feature size. 

Therefore, while considering manufacturability, limiting the overhang angle threshold and minimum 

feature size to a minimum is recommended. Therefore, for relatively simple topologies, build orientation 

optimization may be considered only to obtain functionally optimal parts while eliminating overhanging 

regions. However, when dealing with significantly complex parts, introducing support-free trusses might 

be more beneficial to avoid difficulties in printability and support removal since build orientation 

optimization only might not be very helpful to eliminate overhanging regions. 
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7.4.3. Numerical and Experimental Comparisons 

Finally, the maximum forces in the load-displacement results obtained in the previous section will be 

compared with the compliance values obtained after optimization. Additionally, an FEA simulation is 

carried out to observe the similarities between numerical and experimental deformations of the 

optimized beams. Figure 7.10 shows the influence of the overhang angle threshold and minimum feature 

size on numerically obtained compliance values and the maximum force from the load-displacement 

response. An increase in compliance invariably results in a decrease in the maximum load possible for 

the structure. A similar trend for different topologies is seen in [118]. From Figure 7.10, when the 

manufacturability of a structure is considered by thresholding the overhanging feature angle and 

minimum feature size, there is more than a 40% increase in the compliance and a 30% decrease in the 

maximum load carried by the structure for 65° angle threshold and 7𝑎 minimum size. Between angle 

and feature size thresholds, from this study, the overhang angle threshold appears to influence the 

compliance and performance more, however, it should be noted that the marginal difference between 

successive angles and feature sizes is 5° and 4𝑎 respectively. The feature size is the diameter of the 

linear density filter which is twice the filter radius (2 × 𝑟𝑚𝑖𝑛), therefore 5𝑎 and 7𝑎 represent diameters 

of 10𝑎 and 14a respectively. The maximum change resulting from a change in the minimum feature 

size is between 5𝑎 55° and 7𝑎 55° beams with a 9% increase in compliance from 2700 Nm to 2950 Nm. 

Although there is also a maximum increase of 9% between successive angle thresholds from 60° to 65°,  

there is an 18% increase in the compliance when moving from a structure without overhang elimination 

(WOE) to one with a 45° angle threshold. This is understandably so because the minimum feature size 

is an integral specification in topology optimization to obtain mesh-independent results and prevent the 

formation of checkerboarding features [108], [109], [129], [208], [214]. 
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Figure 7.10: Influence of overhang angle threshold and minimum feature size on numerically obtained 

compliance values and the maximum force from the load-displacement response. 
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Figure 7.11: Deformed optimized MBB beam for (a) 7𝑎 WOE – simulation (b) 7𝑎 WOE – experiment 

(c) 5𝑎 45° – simulation (d) 5𝑎 45° – experiment 

In Figure 7.11, the deformed beams representing 7𝑎 WOE and 5𝑎 45° from simulation and experiment 

are shown. The simulation was carried out in Solidworks®’s static analysis and the material properties 

investigated in the experimental study were used. A maximum force of 8750 N was applied at the middle 

of the beam (where the load for the bending test was located). The matching deformation profile in both 

cases is noticed and areas of high-stress concentration at the top and bottom features are consistent with 

the deformed locations in the tested beams. The 5𝑎 45° beam experiences comparatively higher stresses 

and deformation further substantiating the effects of manufacturing constraints in a design.  
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7.5.    Summary 

In this chapter, an experimental study on the effects of manufacturing constraints – overhang angle 

threshold and minimum feature size – on residual stress formation and performance of as-built Hastelloy 

X samples has been done. 12 optimized MBB beams having structural variations from manufacturing 

constraints were studied. Without considering build orientation optimization, the study has shown that: 

a. Preliminary results point to the fact that these structural variations have little influence on the 

surface residual stress values for Hastelloy X parts. Irrespective of the minimum feature size or 

overhang angle threshold, the surface residual stresses remain relatively constant. 

b.  Manufacturing constraints have significant effects on the performance of a structure. The less 

the number of constraints and the lower their magnitudes, the better their performance. 

c. The overhang angle threshold was observed to adversely affect structural performance more than 

the minimum feature size. 
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Chapter 8: IBIPP for Topology Optimization: An 

Educational and Research Tool. 

8.1.    Introduction 

This work presents an open-source image-based initialization and post-processing (IBIPP) code for 2D 

topology optimization. Over the years, there have been several impressive research and educational 

open-source codes for topology optimization. They have made teaching, learning, and research in this 

field relatively easy, especially for those new to it. From the classic 99-line, SIMP density-based code 

by Sigmund [129] to much newer codes such as the new generation 99-line code [130], an ANSYS 

APDL code using the BESO method [215], elaborations on the use of sequential integer programming 

[216], using a geometry projection method [217], etc, the research and academic communities have been 

served with a plethora of open-source topology optimization codes. However, there are still several 

advancements that can be made to either enhance the flexibility and ease of use or seamlessly integrate 

several packages into one or enable practical results for manufacturing. To easily and seamlessly 

initialize arbitrary domains, loads, and boundary conditions, deploy several topology optimization 

approaches, and obtain manufacture-ready models, IbIPP has been developed, and technical details of 

its framework are elaborated in the following sections. 

8.2 Interpretation of Digital Images 

 A digital image is a discrete representation of data in spatial (location) and intensity (color) properties 

[218]. Several image data types can be defined depending on the intensity or color. Four common data 

types are binary, grayscale, RGB (Red, Green, and Blue) or true-color, and floating-point [218]. Binary 

images have one-pixel intensity data with an integer value of either 0 or 1, and grayscale images have 

one intensity data with integers between 0 and 255, RGB images have three intensity data with each 

integer from 0 to 255. In contrast, floating-point images store intensity data as floating points rather than 

integers. In this work, RGB intensity is used as it allows for a clear distinction between features in the 

image and relatively easy processing.  

To initialize 2D design problems for topology optimization approaches discussed in the previous section, 

an image that accurately depicts features of the problem such as loads, boundary conditions, preserved 

and non-design regions can be developed and processed as an input.  Using basic image vectorization 

and processing techniques, colors assigned to the features of the design problem can be analyzed, and 
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variables necessary for initialization extracted thereafter. A digital image comprises several pixels and 

is analogous to a discretized domain made up of finite elements. In Figure 8.1(a), the image defined by 

a function 𝑓(𝑥, 𝑦, 𝑧) has 𝑚 × 𝑛 number of pixels [219] with each pixel having an intensity of 𝑐𝑥,𝑦. For 

a true-color representation, the image function can be expressed in (8.1). 

𝑓(𝑥, 𝑦, 𝑧) =

[
 
 
 

𝑓(0,0, 𝑐0,0) 𝑓(0,1, 𝑐0,1) ⋯ 𝑓(0, 𝑛 − 1, 𝑐0,𝑛−1)

𝑓(1,0, 𝑐1,0) 𝑓(1,1, 𝑐1,1) ⋯ 𝑓(1, 𝑛 − 1, 𝑐1,𝑛−1)
⋮ ⋮ ⋯ ⋮

𝑓(𝑚 − 1,0, 𝑐𝑚−1,0) 𝑓(𝑚 − 1,1, 𝑐𝑚−1,1) ⋯ 𝑓(𝑚 − 1, 𝑛 − 1, 𝑐𝑚−1,𝑛−1)]
 
 
 
        (8.1) 

where 𝑥 and 𝑦 indicate the pixel location while 𝑐 indicates the intensity, for an RGB image, 𝑐 is a vector 

of size 3 and the overall data size is 𝑚× 𝑛 × 3. If this image is assumed to be the domain of a design 

problem, as shown in Figure 8.1(b), every element in the domain will represent a pixel area Ω. Therefore, 

(8.1) can be interpreted as (8.2-8.4), and the size of 𝑖 and 𝑗 are dependent on the level of image 

discretization. A new matrix consisting of finite elements can be derived from the image as: 

𝑔(𝑖, 𝑗, : ) = 𝑓[𝛼𝑖,𝑗, 𝛽𝑖,𝑗, : ]                                                       (8.2)  

where 𝑔(𝑖, 𝑗, : ) contains submatrices of  𝑓 where 𝛼𝑖,𝑗 and 𝛽𝑖,𝑗 are the row and column indices respectively 

in 𝑓 for a pixel area Ω𝑖,𝑗 as observed in Figure 8.1(b). the domain function 𝑔(𝑖, 𝑗, 𝑘) can be written as 

𝑔(𝑖, 𝑗, 𝑘) =

[
 
 
 

𝑔(1,1, 𝑑1,1) 𝑔(1,2, 𝑑1,2) ⋯ 𝑔(1, 𝑛𝑒𝑙𝑥, 𝑑1,𝑛𝑒𝑙𝑥)

𝑔(2,1, 𝑑2,1) 𝑔(2,2, 𝑑2,2) ⋯ 𝑔(2, 𝑛𝑒𝑙𝑥, 𝑑2,𝑛𝑒𝑙𝑥)

⋮ ⋮ ⋯ ⋮
𝑔(𝑛𝑒𝑙𝑦, 1, 𝑑𝑛𝑒𝑙𝑦,1) 𝑔(𝑛𝑒𝑙𝑦, 2, 𝑑𝑛𝑒𝑙𝑦,2) ⋯ 𝑔(𝑛𝑒𝑙𝑦, 𝑛𝑒𝑙𝑥, 𝑑𝑛𝑒𝑙𝑦,𝑛𝑒𝑙𝑥)]

 
 
 

    (8.3) 

(8.3) can be rewritten as  

𝑔(𝑖, 𝑗, 𝑘) =  

[
 
 
 
𝑑1,1 𝑑1,2 ⋯ 𝑑1,𝑛𝑒𝑙𝑥
𝑑2,1 𝑑2,2 ⋯ 𝑑2,𝑛𝑒𝑙𝑥
⋮ ⋮ ⋯ ⋮

𝑑𝑛𝑒𝑙𝑦,1 𝑑𝑛𝑒𝑙𝑦,2 ⋯ 𝑑𝑛𝑒𝑙𝑦,𝑛𝑒𝑙𝑥]
 
 
 

                                             (8.4) 

where 𝑑𝑖,𝑗 is obtained as 

𝑑𝑖,𝑗 =
1

𝑛𝑝𝑖,𝑗
∑𝑐𝑥,𝑦
Ω𝑖,𝑗

         (𝑥, 𝑦) ∈ Ω𝑖,𝑗                                               (8.5) 

where 𝑛𝑝𝑖,𝑗 is the number of pixels in element (i, j) within an area Ω𝑖,𝑗. 
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Figure 8.1: Coordinate representation of an image in (a) by common image processing packages, (b) 

an analogous representation of finite elements. 

In (8.3), 𝑛𝑒𝑙𝑦 and 𝑛𝑒𝑙𝑥 are the numbers of elements in the 𝑦 and 𝑥 directions respectively in a uniformly 

segmented image while 𝑑𝑖,𝑗 is the mean color intensity of the area signified by 𝑖, 𝑗. The reader is referred 

to [218], [219], and [220] for more details on this subject and related information. 

8.3 MATLAB Implementation 

IbIPP is a platform developed for 2D topology optimization which covers arbitrary design domain 

initialization, easy deployment of several open-source Matlab codes, and generating 3D-printable 

models. Using color codes, the design problem is represented as an image format, and several 

subroutines are applied to transform the data into useful inputs for topology optimization. Apart from 

homogenous square finite elements with unit length used for meshing, parameters are customizable. The 

program is initialized by entering the following code in the Matlab command prompt: 

ibipp(domain,nelx,volfrac,...) 

where domain is the name of the image file in string format (Portable Network Graphics - png is 

recommended),  volfrac is the volume fraction constraint placed on the problem while “...” 

indicates that the user can declare several other parameters through optional and name-value inputs. In 
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ibipp.m which is the main file, the major sections are default parameters’ declaration, input parser 

for required, optional, and name-value inputs, declaration of optimization parameters, declaration of 

parameters for load and boundary conditions, declaration of post-process parameters, domain 

initialization, resolution of load, boundary conditions, preserved and non-design domains, topology 

optimization, and post-processing. The critical aspects of the code are the sub-routines written for 

domain initialization, resolution of loads, boundary conditions, preserved and non-design domains, and 

post-processing. These will be discussed in detail in the following subsections from 8.3.1 to 8.3.5. 

8.3.1 Domain interpretation (imageprocessor.m) 

Before ibipp.m is run, the image representing the design problem must be prepared according to some 

set requirements. Any software or tool that allows a user to draw 2D sketches and specify RGB values 

for coloration can be used. The user is encouraged to use tools that enable sketching, and color 

application without permitting rendering capabilities such as ‘lighting’ or ‘environmental’ settings. 

There are 8 unique features identifiable by the program: design and non-design elements, nodes of point 

loads and pressure, fixed nodes in 𝑥 only, in 𝑦 only, and 𝑥 and 𝑦, preserved elements. The design domain 

is categorized into these features depending on the color intensities. The features are assigned some color 

codes, as shown in Table 8.1. 

Table 8.1: Design features and their color code representation 

Design feature Color code Element value 𝑓(𝑖, 𝑗) 

Designable domain 𝑅 ∩ 𝐺 ∩ 𝐵 < 200    1 

Non-designable domain 𝑅 ∩ 𝐺 ∩ 𝐵 > 200    0 

Point load 200 ≤ 𝑅∗ ≤ 255, 𝐺 = 0, 𝐵 = 0 20 +
𝑅 − 200

5
 

Pressure 200 ≤ 𝑅 ≤ 230, 100 ≤ 𝐺∗ ≤ 150, 𝐵 = 0 30 +
𝐺 − 100

5
 

Preserved region 𝑅 = 0, 200 ≤ 𝐺 ≤ 255, 𝐵 = 0 4 

Fixed region 𝑅 = 0, 𝐺 = 0, 200 ≤ 𝐵 ≤ 255 51 

Region fixed along 𝑥 100 ≤ 𝑅 ≤ 150, 𝐺 = 0, 200 ≤ 𝐵 ≤ 255 52 

Region fixed along 𝑦 𝑅 = 0, 200 ≤ 𝐺 ≤ 255, 200 ≤ 𝐵 ≤ 255 53 

Note: ibipp interprets any element with a color code outside the outlined rules as 0 or white 

* must be a multiple of 5 to allow several load cases; also, 𝑅 and 𝐺 must start at 200 and 100, respectively. 
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To enable multiple loads, the values of 𝑅 and 𝐺 for point loads and pressure in Table 8.1 must be a 

multiple of 5 and must start from 𝑅 = 200 for a point load and 𝐺 = 100 for a pressure load. This helps 

to preserve the order and method of associating load cases with their corresponding magnitudes. How 

the load nodes are subsequently extracted and the magnitudes applied are explained in section 3.3. In 

Figure 8.2, a half-MBB and another slightly more complicated design problem illustrate how images are 

generated for design problems. It is observed that for the load and boundary conditions in Figure 8.2(a,f), 

the regions in the design domain directly affected are depicted by the appropriate color codes according 

to Table 8.1. The size of these regions is dependent on the resolution intended for the optimization. The 

finer the resolution, the less the area these colored load and boundary regions should cover in Figure 

8.2(b,g). It is noteworthy that the choice of 𝑛𝑒𝑙𝑥 by the user should be carefully selected. In Figure 8.2 

(c,h to e,j), using a coarse resolution can lead to a wrong interpretation of the digital image, while a finer 

resolution ensures all features are well replicated. Notwithstanding, to strike a balance between correct 

image interpretation and computational cost resulting from applying finer resolutions, a rule of thumb 

for choosing an appropriate 𝑛𝑒𝑙𝑥 should be a minimum of twice the ratio of the smaller bounding box 

dimension and the least dimension of the smallest feature. The disjoint observed in some boundaries 

between features is a result of boundary elements that have color codes that are a mean of two different 

features. This might result in a color code that does not match any rule in Table 8.1 and those elements 

are therefore assigned a value of 0 (white) as pointed out in the sentence at the bottom of Table 8.1. The 

image interpretation is carried out by the subroutine 

[dom,nely] = imageprocessor(domain,nelx) 

In lines 2 to 11 in this subroutine, the image is read, discretized, and RGB values extracted. The element 

values are applied from lines 12 to 25 according to Table 8.1 and as illustrated in Figure 8.3. The outputs 

of imageprocessor.m are dom and nely, which are the matrix 𝑓(𝑖, 𝑗) and number of elements 

along the y-axis. 

Some points noteworthy when preparing an image file: the user is encouraged to use the minimum values 

of RGB ranges provided in Table 8.1 except for white (255, 255, 255), a colored region should not be 

bounded by a line of another color (e.g. a green region should not be bounded by a black line). Finally, 

the user is encouraged to go through the examples provided to have a better understanding of how to 

prepare an image for a design problem. 
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Figure 8.2: Effect of element size on image interpretation by ibipp.m. This shows (a,f) the design 

problems to be optimized, (b,g) input image representative of the design problems, and domain 

discretization by (c,h)  10×5(6) (d,i) 60×31(36), and (e,j) 150×77(90) mesh elements. 
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Figure 8.3: Image interpretation by the color codes and corresponding element values as outlined in 

Table 1 

8.3.2 Resolution of loads, supports, Non-design, and Preserved domains 

(loadandsupport.m) 

After interpreting the digital image into a matrix with element numbers representative of design features, 

the transformation of this matrix to useful nodal or elemental quantities must be carried out. This is done 

in the 59th line in ibipp.m where the subroutine loadandsupport.m is initiated. The subroutine is 

called by the following function command 

[F,fixeddofs,NonD,MusD,volfrac,edofMat1] = loadandsupport(nelx,... 

nely,Fmag,Fang,Pmag,dom,pre_support,pre_load,volfrac) 

 

In addition to nelx, nely, dom, and volfrac, other inputs to this function are Fmag which is a 

vector of force magnitudes depicted as 𝐹 in Figure 8.4, Fang which is the corresponding vector of force 

angles depicted as 𝜙 in Figure 8.4, Pmag which is a vector of pressure magnitudes, pre_support 

which is an option to preserve elements carrying fixed nodes, and pre_load which is an option to 

preserve elements that define the load nodes. In this subroutine, lines 5 to 9 declare the connectivity 

matrices of the domain’s nodal numbers and degrees of freedom which are used to extract load and 

support nodes.  

8.3.2.1 Unidirectional Forces 

Lines 12 to 30 extract the force nodes and apply the corresponding force magnitudes to form several 

load cases as many as the different element numbers representing forces. The user is allowed a maximum 
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of 11 force loads on a design domain from Table 8.1. Each force that represents a load case is stored in 

a unique column in the force matrix (the reader is referred to [54] and [129] for a robust explanation on 

implementing load cases in topology optimization), therefore, the size of the force matrix is determined 

by the total degrees of freedom (row dimension) and the number of forces (column dimension). As 

observed in the enlarged portion of Figure 8.4(a), the force node is located at the approximate center of 

the force elements and this should be considered when preparing the image representative of the design 

problem. 

 

Figure 8.4: Extracting (a) a force node (in blue) and (b) pressure nodes (in green) from corresponding 

force (shown in red) and pressure (shown in orange) elements. 

8.3.2.2 Pressure 

Lines 33 to 78 implement pressure loads by first extracting boundary nodes using the subroutine 

boundcurve.m (in Line 37); this will be discussed further in the next sub-section. Pressure nodes and 

their corresponding angles are obtained by boundcurve.m. This is important because pressure loads 

are applied as equivalent nodal forces at the boundary of the design domain where the ‘pressure 

elements’ are situated. In Figure 8.4(b), the orange elements are ‘pressure’ elements, and the green 

outline depicts the pressure nodes at the boundary of design and non-design domains. The magnitude of 
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the equivalent forces captured in line 43 is computed as the pressure magnitude divided by the number 

of pressure nodes. The equivalent forces are then resolved to their rectangular coordinates from line 44 

to 79 using the pressure magnitudes and angles. Like force loads, the program allows 11 different 

pressure loads according to the rule in Table 8.1 with each pressure load computed as a load case in the 

load matrix. For a design with a combination of unidirectional forces and pressures, the force and 

pressure load matrices are concatenated to form the global force matrix as computed in line 80. 

8.3.2.3 Defining supports 

Three major support types are feasible in this program: fixed, pinned, and roller supports. For a fixed 

support type, the degrees of freedom (DOFs) of all the nodes in the fixed region (depicted in blue) are 

constrained as shown in Figure 8.4(b). Like the fixed support is the pinned support with the difference 

in the area covered by the pinned support. Whereas the fixed support typically covers a larger area, a 

pinned support should cover a relatively small area. For roller supports, the support area also covers a 

small area but only one DOF of each node is fixed. The cyan-colored region in Figure 8.4(a) depicts a 

roller support type with DOF along the 𝑦-axis fixed. This area in the figure is relatively large for 

descriptive reasons and should be typically smaller for practical purposes. Lines 86 to 90 compute fully 

fixed DOFs while 91 to 96 and 97 to 102 compute fixed 𝑥- and 𝑦-DOFs respectively. 

 

8.3.2.4 Preserved and Non-design domains 

In IbIPP, three design features can be held as solids throughout the optimization: preserved, support, and 

load-carrying elements. Depending on the requirements of the user, multiple features can be preserved 

by making appropriate selections of the inputs ‘preserveLoad’ and ‘preserveSupport’ according to Table 

A in the Appendix. For features intended for preservation by design, there is no special selection as they 

should be represented in green in the input image file according to Table 8.1. Finally, regions that must 

be void throughout the optimization process are termed non-design features and carry an element value 

of 0 in the matrix 𝑓(𝑖, 𝑗). The implementation of preserved and non-design domains is carried out in 

Lines 106-137. 

8.3.3 Boundary Identification (boundcurve.m) 

In 8.3.2.2, a pressure load is implemented as a series of equivalent nodal forces acting normal to the 

pressure surface which is a curve in 2D. Consequently, in Line 37 in loadandsupport.m, the 
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boundcurve.m is initiated to obtain boundary nodes (Lines 3-11) and their corresponding angles 

(Lines 12-32) normal to the pressure curve.  

 

Figure 8.5: An enlarged portion of the pressure region in Figure 8.4(b) showing how pressure angles 

are computed. 

For a node to be considered a boundary node, the mean of its surrounding elements must be between 0 

and 1. In Figure 8.5, an enlarged portion of Figure 8.4 is shown to illustrate how pressure angles are 

computed; 𝜙𝑝 represents the angle of the equivalent force at a pressure node. For a node under 

consideration, the angle is obtained by connecting a line between its two nearest nodes and taking the 

angle from the positive vertical line to the normal to this line. Invariably, the angles possible are 0°, 45°, 

and 90°. A more elaborate strategy in identifying less distinctive topological boundaries can be seen in 

[185]. 

The last line in loadandsupport.m computes a new volume fraction to capture the effect of non-

design regions during optimization. 
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8.3.4 Adjusting Topology Optimization codes for IbIPP 

Three finite element-based topology optimization approaches have been adopted for IbIPP introduced 

in 8.1. For each approach, one open-source code is adopted: top88.m by Andreassen et.al [54] for 

SIMP/RAMP density-based method, esoL.m by Xia et.al. [221] for BESO, and levelset88.m by Otomori 

et.al [135] for the level-set method using a reaction-diffusion equation. Although there are newer and 

more efficient codes by several other authors, these were chosen because of their adaptability with IbIPP 

and relative popularity. To integrate the codes into IbIPP, some lines must either be deleted or modified. 

These modifications are as follows: 

In top88.m, the material properties are slightly modified, with the user having the ability to choose the 

Young’s Modulus and Poisson’s ratio values; the default values are set to 1 and 0.3, respectively. The 

lines that define the loads and supports are deleted while the column size of the preallocated 

displacement matrix is made equal to that of the force matrix. Line 47 is changed to accommodate the 

Heaviside projection in conjunction with the existing density and sensitivity filters. Line 54 is changed 

to include the stiffness matrix setup for the RAMP interpolation scheme when the sensitivity function 

after projecting the physical densities is added after Line 67. In Line 66, columns are activated for the 

displacement and force matrices. The objective and sensitivity calculations from Lines 58 to 60 are also 

modified to include an option for the RAMP interpolation scheme. After Line 77, the updated physical 

density through the Heaviside Projection is included. An important update is enforcing the values of 

preserved and non-design elements to 1 for solids and 0 for voids, respectively, after updating the 

physical densities. In calculating the new volume fraction in Line 85, the sum of the physical densities 

is divided by the difference between the total number of elements and the number of non-design 

elements. Finally, the continuation scheme for the regularization of 𝛽 is added after Line 87 using an if-

else statement. 

Most of the changes made in esoL.m are similar to those in top88.m. These changes can be seen in the 

following sections: material properties, define loads and supports, print results and plot densities, 

optimality criteria update of design variables.  

Finally, in levelset88.m, the changes are also similar to those made in previous codes. The following 

sections have been modified: Parameter definition, Load and boundary settings, FE-analysis, calculate 

sensitivities, print results, and update level set function. 
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8.3.5 Post-processing (datatostl.m) 

Several practical design problems can either be formulated or approximated as 2D problems. With this 

post-processing function, users can obtain manufacture-ready models, especially for 3D printing 

technologies. With IbIPP, a user can initialize arbitrary design domains, run topology optimization using 

any of the three major approaches with ample parameter control, and generate printable STL models 

almost seamlessly; all processes are carried out in Matlab while utilizing a regular desktop computational 

power. Two modeling types are possible in IbIPP: extrusion and revolution, also, symmetry can be 

applied. To initiate the subroutine datatostl.m, the name-value input ‘modelName’ and a 

corresponding filename ending with .stl in strings must be included as a function input. The subroutine 

is run when the following function call is made: 

datatostl(nelx,nely,xPhys,tx,form,ht,lr,theta,symm) 

tx is the STL filename which must end with .stl and be in string format, form is the modeling type, ht 

is a factor for extrusion-based modeling and it defines the extrusion length when it is multiplied by the 

minimum 2D dimension as illustrated in Figure 8.6(a), lr is a factor for revolution-based modeling that 

defines the distance of the optimized topology from the axis center. This distance is obtained when lr 

is multiplied by 𝑛𝑒𝑙𝑥. The axis of revolution is always parallel to the left side of the optimized 2D model 

as shown in Figure 8.6(b) and theta is the revolution angle. Finally, for symmetric design cases, symm 

allows the user to generate the mirror model of the optimized topology. Symmetric modeling and the 

mirror axis are specified when symm adopts a string input of left, bottom, right, or top as shown in Figure 

8.6(c).  
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Figure 8.6: Modeling options available in IbIPP. (a) Extrusion (b) Revolution (c) Symmetry 

In Line 2 in datatostl.m, a threshold of 0.5 is placed on every element of the pseudo-density matrix 

such that any value below is approximated to 0 or void. Lines 4 to 21 obtain the mirror form of the 

pseudo-density matrix only when symm has a value. Lines 23 to 35 generate a 3D matrix of the optimized 

topology depending on the modeling type. While simple instructions in Lines 26 to 28 handle extrusion, 

a subroutine revolve2D.m developed by Treeby and Cox in their k-wave Matlab Toolbox [222] was 

utilized to revolve a 2D matrix into 3D in Line 34. The subroutine was modified with the addition of 

Lines 60 to 75 in revolve2D.m to accommodate any angle of revolution. Finally, the 3D matrix is 

transformed into an STL file in Line 36 by the subroutine stlwrite.m developed by Sven [223]. 
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8.4 Numerical Results 

Examples are presented to elaborate on how IbIPP can be applied to different topology optimization 

problems. Although IbIPP is constrained to the use of homogenous 4-nodal equal bilinear quadrilateral 

elements, other setup and optimization parameters are easily customizable. As pointed out in section 3.4, 

all examples are based on the topology optimization approaches namely: SIMP density-based method 

implemented in top88.m by Andreassen et.al [54], BESO in esoL.m by Xia et.al. [221], and level-set 

method using a reaction-diffusion equation in levelset88.m by Otomori et.al [135]. To apply changes in 

the optimization algorithms, the reader is referred to the aforementioned articles for more details. Details 

of all input parameters possible in IbIPP are outlined in table A in the Appendix.  

8.4.1 Example 1 

Two simple problems are presented; the first is the half-MBB/MBB problem in Figure 8.7(a), which is 

one of the benchmark designs for topology optimization in literature over the years [109], [224], [225], 

[130], the other is a Hammerhead pier supporting four grid lines [224] in Figure 8.7(d). For the half-

MBB, the input image in Figure 8.7(b) has the red region with color code 200,0,0 that represents the 

force location, the cyan region with color code 0,200,200 that represents support elements fixed in the 

𝑦 − 𝑎𝑥𝑖𝑠 only and the purple region with color code 100,0,200 that represents support elements fixed 

in the 𝑥 − 𝑎𝑥𝑖𝑠 only. For the Hammerhead pier in Figure 8.7(d), there are four forces with regions that 

have color codes (200,0,0), (205,0,0), (210,0,0), (215,0,0) from left to right and fixed support region 

with color code 0,0,200. In IbIPP, fixed DOFs are obtained from support elements while the force 

location is situated at the center of the load region. As observed in Figure 8.7(b,e), to better represent 

the design problems, the load and support regions are made as small as possible to reduce the number of 

elements in these regions consequently pin-pointing the force location and reducing the number of fixed 

DOFs. However, recall that the smaller the load and support regions the higher the resolution required 

for optimization, so the user should strike a balance between model accuracy and computational cost. 

The optimized topologies in Figure 8.7(c,f) are obtained by entering the following commands: 

ibipp('half_mbb.png',500,0.4)→ Half-MBB 

ibipp('hammerhead.png',350,0.5,[1,1,1,1],[180,180,180,180],'preserve

Load',1,'optimization','levelset','tau',1e-4)→ Hammerhead pier 
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Figure 8.7: Topology optimization of (a) a half-MBB and (d) a hammerhead pier with the digital 

image inputs for IbIPP shown in (b) and (e), and the optimized structures in (c) and (f) respectively. 

With only three input arguments for the half-MBB problem, IbIPP invokes several default values shown 

in Table  A in the Appendix. Thus, a user can run an optimization using three arguments so long a single 

force is the load requirement. For multiple load cases, as seen in the Hammerhead pier, the force 

magnitudes and angles should be in vector form in the input argument while ensuring that the right vector 

element corresponds to the right load case as shown in Figure 8.7(e).  

8.4.2 Example 2 

The design problems showcased in this example show how preserved regions can be represented in the 

input image. To preserve some thickness of the bosses in the 2-point loading mechanical part in Figure 

8.8(a) and the bracket in Figure 8.8(d) [142], the green preserved regions are included beside the red 

load regions. Therefore, in addition to ‘preserveLoad’, ‘preserveSupport’ is included as an input 

argument as shown in the function declarations below: 

ibipp('2point.png',550,0.5,[2,2],[0,0],'preserveSupport',1,'preserve

Load',1,'filterRadius',2)→ 2-point loading mechanical part 
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ibipp('bracket.png',500,0.4,1,90,'preserveSupport',1,'preserveLoad',

1,'filterRadius',2,'optimization','BESO','ER',0.15)→ bracket 

At the boundary between force and preserved regions, there exists an element-sized interface that is 

neither a force nor a preserved region but a design domain (which may remain or be removed after 

optimization). This is so because this interface is a mean of both regions (𝑚𝑒𝑎𝑛([200,0,0], [0,200,0]) =

[100,100,0]) and therefore falls within the designable domain according to Table 8.1. The significance 

of this interface is greatly reduced when a high resolution is used for optimization. The optimized 

topologies are observed in Figure 8.8(c,f) and a close examination of Figure 8.8(c) will reveal that the 

elements within this interface have lower density values compared to neighboring elements. However, 

if the topology is extruded or revolved, more often than not, there will be no opening since a threshold 

of 0.5 for a solid element is placed on the density matrix in datatostl.m. 
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Figure 8.8: Topology optimization of a 2-point loading mechanical part (a-c) and a bracket (d-f). (a,d) 

show the design domains, (b,e) show the image input for IbIPP, and (c,f) show the optimized 

topologies 

8.4.3 Example 3 

In this penultimate example, a proximal femur model in Figure 8.9(a) is optimized. Two pressure loads 

are located at two top surfaces while the bottom surface is given a fixed condition. In the image 

representation, it is observed that the load and fixed regions are almost invisible except enlarged in 

Figure 8.9(b). This is due to the thin outer layer was preserved at the top of the bone, and consequently, 

and a fine resolution was used for optimization. As was pointed out in Example 1 for force loads, every 

pressure load region with a different magnitude is assigned a unique color code starting with 𝐺 = 100 
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in steps of 5. The image in Figure 8.9(b) has two pressure load cases having color codes 200,100,0 and 

200,105,0 from left to right. As is common for the optimization of structures under pressure loads, there 

are some grey regions or elements with intermediate density values in the optimized topology in Figure 

8.9(c). In this example, the RAMP density-based approach was utilized for optimization, and to reduce 

intermediate elements formed, especially in later stages of the optimization, a gradual increase from a 

low to high penalization factor can be utilized. Using a high penalty value throughout the optimization 

is feasible but will likely cause numerical instabilities as the number of iterations increases. The problem 

was solved by the function declaration: 

ibipp('bone.png',400,0.5,'pressure',[1,2],'filter',3,'filterRadius',

1.5,'preserveLoad',2,'densityType','RAMP') 

 

Figure 8.9: Topology optimization of a proximal femur model. (a) Design domain with load and 

boundary conditions, (b) input image for IbIPP, (c) optimized topology 

8.4.4 Example 4 

To implement the post-processing subroutine of IbIPP, two design problems are considered. The first is 

one half of a spanner design with the authors’ lab acronym (MSAM) inscribed as shown in Figure 

8.10(a). Half of the design is considered for optimization to save computational cost and time since a 

line of symmetry can be drawn in the middle. It is observed that additional regions are added as fixed 

regions in Figure 8.10(b) just to ensure some more material is distributed towards the head of the spanner. 

After the model is optimized in Figure 8.10(c), the post-processing subroutine datatostl.m receives 
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the density matrix and other data required for extrusion. By concatenating density matrix and its mirror 

matrix, and applying an extrusion length, the optimized model is obtained in Figure 8.10(d). For 

manufacturing purposes, such as printing the part, smoothening procedures might be required depending 

on the resolution of the optimization. Open-source codes such as MeshLab [204] can be used for 

smoothening and other mesh-related operations. Laplacian [226] and Taubin [227] Smooth operations 

were performed on the generated models in this example. The spanner model was printed using PLA via 

Fused Deposition Modeling (FDM) as shown in Figure 8.10(e). The user should recall that post-

processing is only initiated when the name-value input ‘modelName’ is included as an input argument 

in the function declaration as shown below: 

ibipp('half_spanner.png',500,0.5,'pressure',[1e6,1e6],'preserveSuppo

rt',1,'preserveLoad',2,'filter',3,'filterRadius',2,'YoungsModulus',1

90e9,'symmetry','right','modelName','spanner.stl','modelType','extru

de','extrudeLength',0.2) 

 

Figure 8.10: Workflow for generating an optimized spanner model using IbIPP. (a) The design 

problem with load and boundary conditions, (b) input image (c) optimized topology (d) generated 

model via symmetry and extrusion (e) printed spanner 

The second design is a curved cantilever beam shown in Figure 8.11(a) intended for revolution. The 

workflow is similar to the previous example with a difference in the ‘modelType’ and inputs 
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‘distancetoaxis’ and ‘revolutionAngle’ in place of ‘symmetry’ and ‘extrudeLength’. 

It should be noted that symmetry can also be applied to a model intended for revolution depending on 

the nature of the problem. However, care must be taken in applying the correct inputs. The inputs for 

‘Symmetry’ are ‘left’, ‘bottom’, ‘right’, and ‘top’ as illustrated in Figure 8.6(c) and described 

in Table A in the Appendix. The optimized and revolved model are shown in Figure 8.11(c) and Figure 

8.11(d) while the printed PLA part using FDM is shown in Figure 8.11(e). The function declaration for 

this design problem is: 

ibipp('circularpart.png',450,0.4,1500,270,'YoungsModulus',190e9,'opt

imization','BESO','filterRadius',4,'modelName','circularpart.stl','m

odelType','revolve','revolutionAngle',100,'distancetoaxis',0.1) 

 

 

Figure 8.11: Workflow for optimizing a curved cantilever beam meant for revolution. (a) The design 

problem of the cantilever cross-section with load and boundary conditions, (b) input image (c) 

optimized topology (d) revolved model (e) printed part 
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8.5 Note on extensions 

In the authors’ best knowledge, IbIPP is the first open-source image-based initialization and post-

processing code for topology optimization; therefore, there are many opportunities for enhancements. 

Some modifications and additions that can be made are not limited to the following: 

a. The exclusion of non-design elements in the optimization process. Because an image is always 

a rectangular/square representation, intricate design problems such as the several numerical 

examples presented will leave an undesirable number of non-design elements, which will cause 

unnecessary entries in several matrices. This will also significantly influence the computational 

cost in computing the 𝐻-matrix in density-based approaches and increase storage requirements 

for pre-allocated matrices. To exclude non-design elements from the optimization process, the 

connectivity matrices for node numbers and DOFs in Lines 7 and 9 in loadandsupport.m, 

Lines 13 to 15 in top88.m and esoL.m, Lines 25 to 27 and 33 to 34 in levelset88.m 

should be modified to exclude these elements. This will potentially also necessitate changes in a 

few other sections in these functions. 

b. Since IbIPP is suitable for discrete gradient-based topology approaches by utilizing finite 

elements, any new discrete approach can be easily included within Lines 63 and 73 in ibipp.m 

while ensuring the new approach is adapted accordingly with the discussion in Section 3.4 

serving as a reference. Also, other efficient optimizers such as MMA, GCMMA can be used for 

density-based methods enabling multi-constraint problems and ensuring global optimums. 

c. Other load types (such as heat fluxes, temperature constraints, voltages) and non-classical 

boundary conditions can be considered in imageprocessor.m subroutine. This will only 

involve expanding or modifying the color code rules in Table 8.1 according to the user’s 

requirements. Consequently, imageprocessor.m and loadandsupport.m have to be 

modified to identify the new loads and/or boundary conditions. This is quite straightforward 

because the process of identifying these new entities should typically be the same as those already 

captured in IbIPP.  
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8.6 Summary 

An image-based initialization and post-processing code for 2D topology optimization has been 

developed. It takes in an input image developed according to certain color code rules that correctly 

represent the features in a design problem for topology optimization. Depending on the user’s choice, it 

can also obtain a printable model based on the optimized topology. It offers a variety of advantages for 

research and educational purposes: 

a) It breaks the barrier of initializing arbitrary design domains and the flexibility in representing 

loads and boundary conditions. 

b) It offers researchers the ability to test a variety of design problems without frequently modifying 

or writing new lines of code. 

c)  It deploys several topology optimization approaches ensuring that researchers, teachers, and 

students can use a variety of these approaches with relative flexibility. It also facilitates the 

addition of new approaches. 

d) In many instances, the topological results might be required to undergo experimental tests. IbIPP 

provides a simplistic and easy platform to generate extruded, mirrored or revolved models. For 

low-resolution optimizations, the generated models might be composed of features with many 

jagged edges; open-source mesh-based tools can be employed to smoothen the features.  

These capabilities have been demonstrated and further work to improve sections of this tool and translate 

the code into other languages will be done. This source code is available at 

https://github.com/CADmaniac/IbIPP.git and this chapter has been published [228].  
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Chapter 9: Conclusions and Future Work 

9.1 Conclusions 

In this work, methodologies have been established to address topology optimization of structures under 

design-dependent loads and additive manufacturing constraints. Design-dependent loads captured in this 

work are thermal stress, centrifugal, and pressure loads, while manufacturing constraints considered are 

overhang feature angle and minimum feature size. To accomplish these objectives, first, a load 

thresholding approach was adopted to analyze the design-dependent loads and select load type(s) for 

thresholding. Secondly, design-dependent pressure loads were resolved by a novel Boundary 

Identification and Load Evolution (BILE) model. Thirdly, sensitivity scaling was introduced in the 

weighted multiobjective optimization problem for bi- and tri-objective topology optimization. Fourthly, 

a novel post-topology optimization process was developed to eliminate overhanging features while 

restricting feature sizes, thereby ensuring the manufacturability of structures produced by AM 

technologies. Finally, experimental validation studies were carried out for the post-topology 

optimization methodology, while an open-source framework for initializing 2D topology optimization 

problems and post-processing density image maps to STL files was developed.   

The following conclusions can be drawn from the frameworks developed:  

1. Load thresholding can be applied to simplify design-dependent loads with a closely packed 

magnitude distribution and high directional randomness in the discretized domain. Thermal 

stress loads (TSLs) and centrifugal loads were analyzed for a case study and TSLs were found 

to match the aforementioned characteristics. 

2. A simplistic and computationally efficient BILE model was developed to resolve design-

dependent pressure loads for topology optimization.  

3. The BILE model is simplistic and computationally efficient because it ensures insignificant 

differential changes of ‘equivalent’ forces with respect to the density design variable, thereby 

constraining the pressure load sensitivity to zero. 

4. All the results for topology optimization problems presented using the BILE model were 

obtained under 80 seconds, and 100 iterations for several 2D problems discretized between 5,000 

to 13,000 four-nodal square elements using an average desktop computer. 

5. All the results obtained using the BILE model closely match those obtained by other recent and 

older methodologies in the literature.  
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6. Scale factors, in addition to weight factors, were introduced to load sensitivities for 

multiobjective topology optimization. This is to establish a balance in magnitude between all 

load sensitivities making it possible to use monotonic optimizers such as OCM and MMA for 

complex multiphysics and multiobjective topology optimization problems.  

7. Some of the results of bi-objective topology optimization (for centrifugal loads and a point force) 

were compared with results from literature, and a good match was found. Also, the results of tri-

objective topology optimization were compared with those obtained from Hypermesh®, 

although key features of the final topologies corresponded, variations were present due to the 

significant differences in the adopted optimization approach and the implementation of design-

dependent pressure loads. 

8. A novel post-topology optimization process has been developed to address a coupled overhang 

feature angle and feature size control, which are important AM constraints  

9. Although the overhang elimination strategy is post-topology optimization, there is a seamless 

workflow from topology optimization because the type and number of design elements, density 

variables, feature size limit, and other controlling parameters are inputs in the strategy.  

10. Data conversion or transformation is required in a previous post-topology optimization process 

in [196]; however, it is not necessary for this novel method, therefore, both tools (topology 

optimization and overhang elimination) can be deployed easily as one. 

11. In the post-topology optimization method for overhang elimination, there is complete 

independence from several aspects of the topology optimization method, such as interpolation 

methods, optimizer types, parameter tuning, etc. However, the methodology is restricted to the 

use of 4-nodal square elements.  

12. In the overhang elimination methodology, the user or designer can prescribe strict strut 

requirements such as thickness, orientation or angle, space between strut roots, and size of strut 

root (which in turn influences the number of struts added). 

13. Post-topology optimization processes for overhang elimination can result in a volume increase 

of over 22%, and this new method can eliminate this by introducing a volume correction. Time 

analysis revealed that the stages of boundary identification and overhang elimination only took 

around 8% of the total time for the whole process. Using FDM and LPBF, this methodology was 

validated for manufacturability.  

14. The effects of manufacturing constraints on surface residual stresses were observed to be 

negligible for optimized Hastelloy X parts.  
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15.  The effects of manufacturing constraints on the performance of structures were experimentally 

investigated. A 30% decrease in the maximum force attainable (40% increase in compliance) 

was observed from a structure without overhang angle restriction to one with a 65° angle 

threshold. Also, an increase in the minimum feature size from 5𝑎 to 7𝑎 slightly decreased the 

height of the load-displacement curves.  

16. The number and magnitude of manufacturing constraints on a design can reduce the performance 

of a structure; however, overhang angle restriction contributes to a lower performance than 

feature size control. In general, lower thresholds for manufacturing constraints are encouraged 

for performance optimality. 

17. A simple image-based initialization and open-source post-processing code for 2D topology 

optimization has been written in Matlab for research and educational purposes.  

The developed and implemented methodologies expand the capabilities of current topology optimization 

strategies for design for additive manufacturing as it bothers on design-dependent load considerations 

and AM manufacturability. These methodologies can be further developed into new software packages 

for topology optimization or plugins for existing CAD-related tools.  

9.2   Future work 

The several extensions of this work that can be done are: 

1. A variety of design case studies can be investigated while considering other design-dependent 

loads, such as the effects of gravitational pull and fluid-flow for multi-objective topology 

optimization.  

2. Even with the use of scaled sensitivities, the topology optimization process is not devoid of 

numerical instabilities, especially when high weight factors for TSLs and centrifugal loads are 

used. The use of other robust and non-monotonic optimizers such as the family of convex 

approximations like the Globally Convergent Method of Moving Asymptotes (GCMMA) [229], 

Gradient-Based Method of Moving Asymptotes (GBMMA) [230], Interior-Point Optimization 

(IPOPT) [181], and Method of Diagonal Quadratic Approximation (MDQA) [182], [231] should 

be explored. 

3. The 3D extension of the BILE model for design-dependent pressure loads should be developed. 

4. To tackle more practical design problems, the 3D extension of the multi-objective topology 

optimization should be developed and studied. 
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5. Robust experiments on the results from the multiphysics and multi-objective topology 

optimization model are recommended for validation and the provision of insights to possible 

enhancements. 

6. Anisotropic material properties should be considered in the multiphysics and multiobjective 

topology optimization model.  

7. The post-topology optimization overhang elimination process is currently developed in 2D, an 

extension should be made to 3D where it will be particularly useful.  

8. Channel or void minimization/elimination should be considered as a constraint or filter in the 

AM-constrained topology optimization model.  

9. The image-based initialization and post-processing code can be written in other languages such 

as Python and C++, this will ensure a wider adoption and versatility.  
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Appendix 

Table  A: Table of Name-Value Input Parameters 

Name-value input Description Value Default 

value 

pressure  Pressure loads  1 

optimization Topology optimization 

approach   

Density, BESO, Level Set Density 

densityType Type of density-based 

method  

SIMP, RAMP SIMP 

preserveSupport Preserve elements within 

the support region(s) in the 

image 

0 – none 

1 – Only completely fixed 

elements 

2 – Only elements fixed in the 𝑥 −

𝑎𝑥𝑖𝑠 

3 – Only elements fixed in the 𝑦 −

𝑎𝑥𝑖𝑠 

4 – the union of 1 and 2 

5 – the union of 1 and 3 

6 - the union of 2 and 3 

7 – the union of 1, 2, and 3 

0 

preserveLoad Preserve elements within 

the load region(s) in the 

image 

0 – none 

1 – elements in the force region 

2 – elements in the pressure region 

3 – the union of 1 and 2 

0 

filterRadius  Specify filter radius for 

density-based and BESO 

approaches 

> 1 2 

Filter Specify filter type for 

density-based approaches 

1 – density 

2 – sensitivity 

3- Heaviside projection 

2 
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Beta  Regolarization parameter 

for Heaviside projection 

> 1 2 

penaltySIMP Penalty value for SIMP 

density-based approach 

> 1 3 

penaltyRAMP Penalization factor for 

RAMP density-based 

approach 

> 1 10 

ER Evolution ratio for BESO > 0 0.15 

Tau Regularization parameter 

for level set method 

(reaction diffusion) 

> 0 2 × 10−4 

YoungsModulus Youngs Modulus material 

property 

≥ 1  

PoissonRatio Poisson Ratio material 

property 

> 0 0.3 

modelName Name given to model 

obtained by extrusion or 

revolution of the optimized 

topology. Must end in .stl 

  

modelType Modeling by extrusion or 

revolution 

Extrude or revolve extrude 

extrudeLength Length for extrusion. It is a 

factor multiplied by the 

minimum of nelx and nely 

to obtain the length of the 3rd 

dimension 

> 0 0.1 

Symmetry Specifies the position of the 

line of symmetry for 

symmetry-based modeling 

None, Left, bottom, right, and top None  

Distancetoaxis Distance between the 

optimized topology and its 

center of revolution to the 

≥ 0 0 
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left for revolution-based 

modeling 

revolutionAngle The angle of revolution for 

revolution-based modeling 

≥ 0 360 

 

 


