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Abstract

Persistent memory is a byte-addressable and durable storage medium that provides
both performance benefits of main memory and durability of secondary storage. It is
possible for a data structure to recover near-instantly after a system failure by accessing
recovery data directly in persistent memory through memory operations. A variety of
researches have been working on building persistent data structures for persistent mem-
ory. Some persistent data structures are said to be detectable, which means they can
tell whether the last operation invoked before crash took effect or not. In this thesis, I
propose an abstract data type DetectableT with its sequential specification, which can be
composed with a base data type to make the base data type detectable. To show how
to design detectable data structures based on DetectableT , a detectable lock-free queue
algorithm called Detectable Queue, which composes DetectableT with Queue, is presented.
One difficulty in the implementation of Detectable Queue is to get the result of a compare-
and-swap (CAS) operation after a crash since the result of CAS is stored in volatile CPU
registers. To help detectable data structures handle this common problem, I provide a syn-
chronization primitive called CASWithEffect, which executes a CAS operation and stores
the result into persistent memory atomically using private variables. With CASWithEf-
fect, another detectable queue algorithm called CASWithEfffect Queue is provided as a
substitute for Detectable Queue with a simpler design. Regarding correctness, I prove that
both Detectable Queue and CASWithEffect satisfy strict linearizability. The data struc-
ture implementations are evaluated using Intel Optane Persistent memory. I compare both
Detectable Queue and CasWithEffect queue with another queue algorithm - Log Queue.
The result shows that Detectable Queue has the best performance.
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Chapter 1

Introduction

Over the past years, there has been intensive research based on byte-addressable non-
volatile memory (NVM), which provides performance comparable to volatile DRAM and
preserves its content under transient failures (e.g., power outages). Before the emergence of
persistent memory, the traditional computer architecture included volatile byte-addressable
main memory (e.g., DRAM) and non-volatile block-addressable secondary storage (e.g.,
hard disk). This lead to a separation of in-memory data structures and sequential on-disk
structures for recovery, such as transaction logs. Eventually, through a single layer in the
memory hierarchy, NVM offered the performance benefits of main memory and durability
of secondary storage. Unlike secondary storage, NVM can be accessed directly by normal
load and store instructions. Instead of slowly transferring logs to secondary storage blocks,
the system can access recovery data in NVM through memory operations. Therefore, it
potentially allows for almost instant recovery for any data structure after a system failure.
This leads to increasing interest in how to design recoverable and durable in-memory data
structures working specially with persistent memory.

To take advantage of persistent memory’s non-volatility, the data stored in persistent
memory have to be in a state which can be recovered to a consistent state after a system
crash. One major challenge for designing durable data structures for persistent memory is
that the CPU caches still remain volatile. There is no guarantee on when or in what order
the data in the caches are written back to persistent memory. A thread may read a value
which has not been written back to persistent memory, which may be lost in the case of
crash and cause inconsistency. To ensure consistency, specific instructions, such as cache
line flush instructions and memory fences, must be used to enforce order and explicitly
write a cache line back to persistent memory.
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There has been a lot of research work on developing persistent data structures. Some
work focuses on building algorithms by leveraging various forms of logging to implement
transaction [8–10, 23, 26, 27], while others aim at removing logging entirely to reduce
overhead and implementing recoverable and concurrent data structures [6, 11–13, 29, 30,
34, 36]. Some of these persistent data structures [4–6, 13] are said to be also detectable.
From [13], a detectable data structure provides a mechanism to determine whether the
last operation executed before crash takes effect or not upon recovery. Friedman et al.
[13] presents a detectable log queue algorithm, which obtains an operation’s status by
storing the response of each operation into persistent memory. All of the above detectable
data structures request to save additional bookkeeping data so that recovery can obtain
the status of the last invoked operation before crash. Based on this feature, I propose
an abstract data type DetectableT , which can be composed with a base data type (e.g.,
Queue) to make the base data type detectable, and provide the definition of Detectability
based on DetectableT . This is the first definition for detectability through a specific data
type. Defining detectability through a data type makes it more generic and requiring
less stringent system assumptions. In [4], Attiya et al. proposed a linearizability property
called nesting-safe recoverable linearizability (NRL) to define detectability. Their definition
requires stronger system assumptions, which include saving instructions into persistent
memory. Compared to NRL, the definition of detectability in this thesis does not need
such strong system assumptions and can be implemented on current hardware system as
shown in Chapter 9.

In the first contribution of this thesis, I provide the sequential specification ofDetectableT .
With respect to whether the arguments or returned value of an operation exists, I di-
vide operations into four types. For each operation type, the sequential specification of
DetectableT is presented with different bookkeeping data. For example, for an operation
without arguments or returned value, the sequential specification only includes the status
variable which shows whether the operation has been completed. For an operation with
both arguments and returned value, besides the status variable, the sequential specification
also includes the arguments and returned value. Based on DetectableT , the definition of
detectability is provided. To show how to design a detectable data structure according
to the proposed sequential specification of DetectableT , I develop a detectable algorithm
called Detectable Queue with Queue (one of the most fundamental data types) as the base
type for DetectableT . In Detectable Queue, I use private variables in persistent mem-
ory, which can only be accessed by their owner thread, as auxiliary variables to store the
bookkeeping data of each operation for every single thread.

Detectable Queue is based on Michael and Scott’s lock-free queue (MS queue) [28],
which uses compare-and-swap (CAS) for synchronization among threads. One difficulty of
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designing Detectable Queue is that the result of a CAS operation is in the volatile CPU
registers and if a crash happens, the result will be lost. It is not easy to know whether a CAS
operation before a crash has been successful or not by simply re-reading the variable which
CAS was applied to because the variable may have already been overwritten by another
thread before or after the crash. To help detectable data structures handle this common
problem, I provide a synchronization primitive called CASWithEffect which executes a CAS
operation and stores the effect of this CAS operation into an auxiliary private variable in
persistent memory atomically. The private variable can be inspected during recovery to
get the effect of its owner thread’s last CAS operation. With the help of CASWithEffect,
I develop another detectable queue data structure called CASWithEffect Queue, which
provides the same detectability as Detectable Queue but with a much simpler design.

Regarding the correctness properties for persistent data structures, a variety of defini-
tions have been proposed [4, 7, 24, 31]. The correctness property I consider for Detectable
Queue and CASWithEffect is strict linearizability, proposed by Aguilera and Frølund [1],
which requires that an operation that is interrupted by a crash either takes effect before
the crash or not at all.

The rest of this thesis is organized as follows. Chapter 2 discusses related work. Chapter
3 introduces the system model and presents some terminologies used in this thesis. Chapter
4 describes a new data type DetectableT and provides its sequential specification. The
Detectable Queue algorithm and CASWithEffect algorithm are provided in Chapter 5 and
6 respectively. Chapter 7 describes the memory management mechanism used in this
thesis. Chapter 8 provides the proof of correctness for the Detectable Queue algorithm.
The experimental evaluation for the two algorithms with Intel Optane persistent memory
is presented in Chapter 9. Chapter 10 concludes this thesis.
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Chapter 2

Related Work

There have been a number of works focusing on designing concurrent persistent data struc-
tures. Several previous approaches incorporate transaction memory, relying on redo and
undo logging to keep track of the process’s status before crash [10, 35]. Brown and Avni [9]
proposed a persistent hybrid transnational memory, providing a solution combining both
software and hardware transnational memory for persistent memory. These approaches
usually provide general and convenient interfaces, however their bookkeeping information
in logs causes great overhead and undermines performance. To mitigate this problem, some
works proposed optimised log-based algorithms [23, 26]. Izraelevitz et al. [23] presented
JUSTDO logging, which only records its most recent store instruction as a minimal log
and resumes the operation after failure without rolling back. Other works aim at designing
recoverable and concurrent data structures that avoid logging entirely [12, 13, 34]. Fried-
man et al. [13] proposed three novel implementations of a persistent and lock-free queue.
David et al. [12] illustrated how to design log-free concurrent data structures and presented
several lock-free algorithms including a persistent linked list and hash table. Some papers
tried to improve performance by reducing the overhead of cache write-back instructions.
Nawab et al. [30] proposed a persistent hash map that periodically writes data back to
persistent memory. The work of [13] presented a relaxed persistent queue with a sync
operation to persist a batch of data. Cohen et al. [11] presented a universal construction
which uses at most one write-back instruction per one update operation. Nawab et al. [29]
introduced timely sufficient persistence, which persists a minimal amount of data just in
time to maintain a consistent status. Some of these persistent data structures [4–6, 13] are
said to be detectable [13], which makes it possible to retrieve the effect of the last oper-
ation being executed before a crash. The work of [13] presented a detectable queue data
structure using logs as auxiliary variables to store bookkeeping information. Both Attiya
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et al. [4] and Ben-David et al. [6] proposed recoverable and detectable CAS operations with
unique identifiers that represent each operation being stored. Detectable data structures
always need additional space in persistent memory to store auxiliary bookkeeping data.
Ben-Baruch et al. [5] investigated the upper and lower bounds on the space complexity
of detectable objects and presented a bounded-space detectable CAS algorithm. There is
also some research working on persistent synchronization primitives. Wang et al. [36] im-
plemented Persistent Multi-Word Compare-And-Swap (PMwCAS) by adding persistency
and recovery on top of Harris et al.’s MwCAS [19].

Recent work of persistent memory proposed several definitions of correctness condi-
tions for persistent concurrent objects with concerns of durability [4, 17, 31]. Aguilera and
Frølund [1] proposed strict linearizability, which preserves locality (the strict linearizabe
histories of two objects merged together is also strict linearizabe) and the program order,
but may forbid some wait-free implementations. Berryhill et al. [7] proposed recoverable
linearizability which permits a wait-free implementation and maintains locality, but may
lose the program order in some situations. Izraelevitz et al. [24] proposed durable lin-
earizability, which is a special case of recoverable linearizability for system-wide failures.
Durable linearizability guarantees that all complete operations before a crash will have
their effects visible while the in-flight operations may or may not complete after the crash.
To reduce the overhead caused by persistency, they also proposed a weaker correctness con-
dition: buffered durable linearizability, which only keeps a linearizable subhistory including
part of the events before a crash.

Attiya et al. [4] proposed nesting-safe recoverable linearizability (NRL) and defined
detectability through NRL. Their model requires the following system assumptions: “a
recovery function Op.Recover is invoked by the system to recover from a crash” and
“Op.Recover has access to a designated per-process non-volatile variable LIp, identifying
the instruction of Op that p was about to execute” [4]. Compared to NRL, the definition
of detectability in this thesis through data type DetectableT does not require system to in-
voke recovery. The recovery for DetectableT is determined by the application. Besides, no
instruction needs to be stored in persistent memory for DetectableT . Without these strong
assumptions, DetectableT can be implemented on current hardware system as shown in
Chapter 9.

Other works focused on the study of recoverable mutual exclusion (RME) problems
introduced by Golab and Ramaraju [16], which allows process to regain its previously
owned mutex during recovering after a crash. Further studies [14, 25] presented different
RME algorithms with different time complexity and fault tolerance properties. Ramaraju
introduced the Swap-And-Store primitive, which stores the result of a swap operation,
in his recoverable mutual exclusion thesis [32]. In Golab and Hendler [15]’s paper, they
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proposed RME models under system-wide failures instead of one process failure.
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Chapter 3

Preliminaries

In this chapter, I will present the system model, some terminologies and algorithms used
in my persistent data type design and correctness analysis.

3.1 CPU Support for Persistent Memory

I assume a store model where byte-addressable persistent memory is attached directly to
the memory bus. While the main memory is persistent, CPU caches and registers are
volatile, i.e., their contents are lost after a failure such as a power outage. One difficulty
for volatile caches is that there is no guarantee on when or in what order the data in the
caches are written back to the persistent memory. The cache line write-back can actually
happen at any time. A cache line flush instruction is used to explicitly flush data to the
persistent memory. One such instruction on Intel systems is CLFLUSH, which receives a
memory address and flushes the entire cache line containing that address to the memory.
When CLFLUSH flushes a cache line, it also invalidates the cache line. There is a new
flushing instruction – CLWB, which may not invalidate the cache line when writing back it.
I also need to make sure the cache line write-backs are not reordered. SFENCE, a memory
fence instruction, ensures the global visibility of every store instruction executed before in
program order. SFENCE is used with flushing instructions to guarantee durability and
ordering. In the algorithms of this thesis, I use a flush instruction, which receives a memory
address, to represent both a cache line flush instruction and memory fence instruction.
Another difficulty for volatile CPU registers is that the response of an operation is stored
in registers which will be lost during a failure. I will discuss this problem in Chapter 4
with details.

7



3.2 Histories

The model used in this thesis is closely based on Herlihy and Wing’s [22]. I consider a
system consisting of n asynchronous processes, denoted p1, ..., pn, which communicate
through shared objects using memory access primitives. Each process has access to the
persistent memory with atomic memory instructions including read, write and read-modify-
write primitives. The state of a process, including the program counter and stack pointer,
is stored in the processor’s registers. As in previous work [7], I consider only one type of
failure, a system crash which can happen at any point and may recover later. Upon such a
crash, the contents of persistent memory are preserved while the contents of CPU caches
and registers are lost. All processes running when a system crash happens lose their states.
After the system recovers, a process that crashed before may resume through a recovery
routine.

Every shared object has a unique identity and belongs to a data type, which provides
a set of operations to define its behavior. A process, after invoking an operation on an
object, must wait for the response of that operation before invoking another operation if
there is no crash happening. Multiple processes can invoke operations on the same shared
object concurrently.

The execution of an operation is modeled by two events: an invocation event and a
response event. The invocation event, denoted 〈INV, pi, X, op(a)〉, represents that process
pi invokes an operation op on an object X with a sequence of arguments a. The response
event, denoted 〈RES, pi, X, r〉, represents that process pi receives the response of its last
invoked operation on an object X with a sequence of returned values r.1 For atomic
operations, I consider the invocation and response happening at the same time, which can
be treated as one event which includes both the invocation and response. In Section 3.1,
it mentions that the cache line write-back can actually happens at any time even with out
executing a flush instruction. To represent cache line write-back in a history, I make a
simplifying assumption that cache line write-back only happens when a flush instruction
is executed and define a flush event in a history to indicate that a flush instruction has
been executed. There is also a system crash event, denoted 〈Crash〉, which represents
that a system crash occurs. I make an assumption that crash represents both a system
failure and the subsequent execution of a single process recovery procedure, which will be
explained later in this thesis. The recovery and crash are considered atomic for simplicity.
As in [13, 22], an execution of a concurrent system is modeled by a history, which is a

1The response event is distinct from the return statement of an operation, and occurs after the operation
has returned.
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finite sequence of invocation events, response events and crash events. A subhistory of
a history H is a subsequence of the events in the history H. For an invocation event
I in a history H, the first following response event R, which is performed by the same
process P on the same object before P ’s next invocation (if any on that object), is I’s
matching response. An invocation which does not have a matching response is pending in
H. A history H is sequential if: (1) each response event is immediately preceded by an
invocation event which the response matches; (2) each invocation event, except possibly
the last one, is immediately followed by its matching response. A sequential history only
includes operation events and excludes crash events.

For a process p, the process subhistory of a history H, denoted H|p, is the subsequence
of events in H which are performed by p. Similarly, for an object X, the object subhistory
of H, denoted H|X, is the subsequence of events in H which happen on X. Since crash
events apply to all processes in the system, H|p and H|X retain all crash events. Two
histories H and H ′ are equivalent if for every process p, H|p = H ′|p. A history H is well-
formed if for every process p: (1) each response event in H|p is immediately preceded by
an invocation event which the response matches; (2) each invocation event in H|p, except
possibly the last one, is immediately followed by its matching response or a crash event.
Unlike a sequential history, a well-formed history can contain crash events. All histories in
this thesis are assumed to be well-formed.

An operation O in a history H is a pair consisting of an invocation event I and I’s
matching response R, if R exists. If R does not exist, O only includes I. An operation
is complete if the matching response exists and pending if there is no matching response.
A complete operation with invocation and response events is denoted [X, op(a)/res(r), pi],
where X is an object and pi is a process. The object and process can be omitted if they
are clear from the context. Let op0 and op1 be two complete operations in H. Operation
op0 happens before op1 if the matching response event of op0 precedes the invocation event
of op1 in H. This happens-before relation defines an irreflexive partial order, denoted <H ,
on the operations of H. If neither op0 <H op1 nor op1 <H op0 holds, op1 and op0 are
concurrent in H. If H is a sequential history, <H becomes a total order.

Each object has a type that defines the object’s abstract state and the effect of different
operations on this state. A type can be formalized using a sequential specification, as
explained in more detail in Section 3.5.1. A sequential history H is legal if for every object
X of some type T , the operations and responses in H|X are consistent with a sequence of
state transitions allowed by the sequential specification of T .
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3.3 Progress Properties

A shared object implementation is recoverable lock-free if it guarantees infinitely often some
operations complete in a finite number of steps unless there are infinitely many failures. The
recoverable lock-free property ensures that if any process is taking steps, some operation
will make progress or a failure happens.

3.4 Correctness Properties

Linearizability is a widely adopted correct condition for shared objects in concurrent sys-
tems. It can only be used for histories without crash events. For a given history H, its
completion H ′ is defined as: first extending H by appending matching responses for a
subset of pending invocations in the end; then removing remaining pending invocations.

Definition 3.1 (Linearizability [22]). A well-formed history H without crash events is
linearizable if there exist a completion H ′ of H and a legal sequential history S, such that:

L1. H ′ is equivalent to S, and

L2. <H⊆<S (i.e., if op1 <H op2 and both ops. appear in S then op1 <S op2).

Informally, the completion H ′ shows that a pending invocation may take effect or not
before its response returns. Both situations need to be considered. Linearizability requires
that each complete operation takes effect at some point of time, called the operation’s
linearization point, between the invocation and response [18]. Besides, the happens-before
order of operations in H must be retained in S according to L2. A correctness property
P is local if a history H satisfies P if and only if, for every object X accessed in H, H|X
satisfies P . Linearizability is a local property.

For histories with crash events, strict linearizability is one correctness condition. For a
given history H, its strict completion H ′ is defined as: first adding matching responses for
a subset of pending operations before the next crash event (if any) or in the end if no such
crash event exists; then removing remaining pending invocation and crash events.

Definition 3.2 (Strict Linearizability [1]). A well-formed history H is strictly linearizable
if there exist a strict completion H ′ of H and a legal sequential history S, such that:

SL1. H ′ is equivalent to S, and

SL2. <H′⊆<S (i.e., if op1 <H′ op2 and both ops. appear in S then op1 <S op2).
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Informally, strict linearizability requires a pending operation to take effect before a crash
or, not at all. No pending operation can take effect after a crash. Strict linearizability is
a local property. However, it precludes some wait-free data structures [7, 24].

Persistent atomicity is another correctness property, which allows a pending operation
to take effect after a crash. This is particularly relevant to some implementations in which
an operation invoked by process p0 can be completed by process p1 after p0 fails through
helping mechanisms. For a given history H, its persistent completion H ′ is defined as:
first adding matching responses for a subset of pending operations before the same process
invokes another operation (if any) or in the end if no following operation is invoked by the
same process; then removing remaining pending invocation and crash events.

Definition 3.3 (Persistent Atomicity [17]). A well-formed history H is persistently atomic
if there exist a persistent completion H ′ of H and a legal sequential history S, such that:

PL1. H ′ is equivalent to S, and

PL2. <H′⊆<S (i.e., if op1 <H′ op2 and both ops. appear in S then op1 <S op2).

It has been proved that persistent atomicity is not a local property [7]. An alternative
property, called recoverable linearizability, is proposed which is a local property. Recover-
able linearizability deals with happens-before relation differently from strict linearizability
and persistent atomicity. Given a history H, suppose there are two operations op0 and op1
invoked by the same process on the same object in H. The operation op0 is invoked before
op1 if the invocation event of op0 precedes the invocation event of op1. This invoked-before
relation defines an irreflexive partial order, denoted �H , on the operations of H.

Definition 3.4 (Recoverable Linearizability [7]). A well-formed history H is recoverable-
linearizable if there exist a strict completion H ′ of H and a legal sequential history S, such
that:

RL1. For every object X in H ′, H ′|X is equivalent to S|X;

RL2. <H⊆<S (i.e., if op1 <H op2 and both ops. appear in S then op1 <S op2); and

RL2. �H⊆<S (i.e., if op1 �H op2 and both ops. appear in S then op1 <S op2).

Informally, recoverable linearizability allows a pending operation, which is invoked by
process P on object X, to take effect before the linearization point of another operation
invoked by P on X after a crash.

Both persistent atomicity and recoverable linearizability are based on the failure model
which assumes a single process can recover or reincarnate after a crash event. Durable
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linearizability only considers a full-system failure mode, in which processes fail together as
a part of a full-system crash and are replaced by new processes when the system recovers.
For a given historyH, I define its durable completionH ′ as: first adding matching responses
for a subset of pending operations in the end; then removing remaining pending invocation
and crash events.

Definition 3.5 (Durable Linearizability [24]). A well-formed history H is durably lineariz-
able if there exists a durable completion H ′ of H, such that: H ′ is linearizable.

Informally, durable linearizability allows a pending operation in a history to take effect
anytime after its invocation. It is also a local property.

3.5 Specifying Shared Objects

In this section, I provide the definition of data type, and present some shared objects used
in the thesis.

3.5.1 Definition of Data Type

An object has a data type, which defines a set of possible values to reflect the object’s state
and provides a set of operations as the only means to manipulate the state. I use the same
axiomatic style as in [22] to formalize an object’s sequential specification. In this style,
a sequential specification is described using a state transition relation which shows the
object’s states before invoking an operation and after receiving the invocation’s response.

A data type T is defined by a sequential specification [22] which consists of

- a set S representing all possible states for an object X of type T ,

- the initial state s0 ∈ S,

- a set OP of operations which T provides to manipulate X’s state,

- a set R of possible values X can return for OP ,

- a state transition function δ : S ×OP → S and

- a response function ρ : S ×OP → R.

The sequential specification defines the allowed behaviour in a sequential history for
an object X when an operation op of T is invoked on X. If δ(s, op) = s′, it means that
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when an operation op is invoked on an object in state s, the object moves to state s′. If
ρ(s, op) = r, it means that when an operation op is invoked on an object in state s, r (a
specific value or a void response) is returned to the process which invokes op.

In the axiomatic style, a pre-condition is used to describe an object’s state before an
operation being invoked, and a post-condition to describe, after the operation is complete,
the object’s state and returned values. If an operation op with an argument list a is executed
by process p on an object X, [X, op(a)/res(r), p] is used to denote it as explained in Section
3.2. If the process p and object X are clear from the context, they can be omitted. The
sequential specification of a FIFO (first-in-first-out) Queue [22] is shown in Figure 3.1. In
Axiom 3.1, the pre-condition true means that enqueue can be invoked in every state of
the queue object. The post-condition shows that after the enqueue operation is complete,
the new queue value is the old queue value with the argument e being appended. The
pre-condition of Axiom 3.2 shows that this state transition for dequeue only applies when
the queue value is not empty. The post-condition indicates that dequeue removes the first
item of the queue and returns the first item. Axiom 3.3 demonstrates that when the queue
value is empty, dequeue returns a NULL value without changing the state.

{true}
[enqueue(e)/res()]

{q′ = append(q, e)}
(Axiom 3.1)

{q 6= []}
[dequeue()/res(e)]

{q′ = rest(q) ∧ e = first(q)}
(Axiom 3.2)

{q = []}
[dequeue()/res(e)]

{e = NULL}
(Axiom 3.3)

Figure 3.1: Axioms for queue operations

3.5.2 Verifying that Implementations are Strictly Linearizable

From Herlihy and Wing’s model [22], an abstract type ABS is implemented by a represen-
tation type REP . An operation in the abstract type (abstract operation) is implemented
by a sequence of operations in the representation type (representation operations) that
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takes place within the abstract operation. Therefore, a history H of an implementation
contains events of both ABS objects and REP objects. For abstract operations, each
operation has two event: invocation and response (Section 3.2). For representation opera-
tions, I consider each operation as an atomic operation with the invocation and response
happening at the same time. Therefore, there is only one event happening for each rep-
resentation operation. The subhistory of ABS evens in H is denoted H|ABS and the
subhistory of REP events in H is denoted H|REP . For a given history H, the value of an
object in H after the end of one strict linearization of H is called a strict linearized value of
H. Since H of an ABS object can have more than one strict linearization, SLin(H|ABS)
denotes the set of all strict linearized values of H for an ABS object. For an REP object,
assuming REP is deterministic, since the operations of REP are considered atomic, there
is only one strict linearized value of H|REP , denoted SV (H|REP ). The allowed values of
REP objects are characterized by a predicate I, called the representation invariant. Each
representation value is mapped to a nonempty set of abstract values by an abstraction
function A. According to [22], the technique of verifying that REP implements ABS fo-
cuses on proving that for every history H of the implementation, the following statement
s(H) holds.

Letting r = SV (H|REP ), I(r) holds and A(r) ⊆ SLin(H|ABS)

Figure 3.2: Statement s(H).

3.5.3 Read-Modify-Write Primitives

Atomic read-modify-write primitives are widely used in concurrent lock-free data struc-
tures. One of these primitives is CAS (compare-and-swap), which takes three arguments
(a target shared address, an old value, a new value), and returns the current value of the
target address [21]. Figure 3.3 shows the procedure of CAS.

CAS puts the new value to the target address if the old value matches the current value
of that address atomically. Based on CAS, there are two other primitives: DCAS (Double-
Word-Compare-And-Swap) which modifies two words atomically, and MwCAS (multi-word
compare-and-swap) which modifies arbitrary words atomically. The return value of DCAS
or MwCAS is boolean, indicating whether it updates the addresses. The procedure of
MwCAS is shown in Figure 3.4, in which MwCAS updates a list of target addresses to the
new values if the old value of every target address equals to the corresponding old value
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1 u in t 64 t CAS( u in t 64 t ∗ addr , u i n t 64 t o , u i n t 64 t nVal ) {
2 Atomical ly {
3 u in t 64 t curV = (∗ addr ) ;
4 i f ( o == curV ) {
5 ∗addr = nVal ;
6 }
7 re turn curV ;
8 }}

Figure 3.3: CAS Operation

atomically. CAS is provided by contemporary multiprocessors in hardware, while DCAS
and MwCAS can be built using CAS through software mechanisms such as [2, 19, 20].

One common problem of using CAS (conditional synchronization operation) with a
dynamic memory algorithm is ABA problem [21]. Suppose a memory node A, which holds
data of 1, is stored in an address X. Process p1 reads A from X and gets A’s data. Then
p1 intends to replace 1 with 2 using another memory node C through CAS. Before p1
executes CAS, other processes p2 and p3 races ahead of p1 for some time. During this time,
p2 changes the value of X to B, and A, as a memory node, is recycled. Then p3 gets A
from the memory pool, sets its data to 3 and puts A back to X. After that, p1 executes
CAS successfully on X, which causes a problem. Process p1 is supposed to replace data
1 with 2, but ends with replacing 3 with 2. To handle this problem, a lock-free memory
reclamation approach is always needed.

9 bool MwCAS( u in t 64 t ∗∗ addrList , u i n t 64 t ∗ oList , u i n t 64 t ∗ nList ,
u i n t 8 t n) {

10 Atomical ly {
11 f o r ( u i n t 8 t i = 0 ; i < n ; i++) {
12 i f (∗ ( addrLi s t [ i ] ) != oL i s t [ i ] ) r e turn f a l s e ;}
13 f o r ( u i n t 8 t i = 0 ; i < n ; i++) {
14 ∗( addrLi s t [ i ] ) = nLi s t [ i ] ; }
15 re turn true ;
16 }}

Figure 3.4: MwCAS Operation

Another important synchronization primitive is FAS (fetch-and-store), which takes two
arguments: a target shared address and a new value as shown in Figure 3.5. FAS puts the
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new value to the target address and returns the current value of the target address. Unlike
CAS, FAS always updates the shared variable. FAS is also provided by modern hardware.

17 u in t 64 t FAS( u in t 64 t ∗ addr , u i n t 64 t n) {
18 Atomical ly {
19 u in t 64 t curVal = ∗addr ;
20 ∗addr = n ;
21 re turn curVa ;
22 }}

Figure 3.5: FAS Operation

3.6 Background Algorithms

3.6.1 Michael and Scott’s Queue

In this thesis, I present several persistent lock-free queue algorithms based on Michael and
Scott’s lock-free queue (MS queue) [28], which uses CAS for synchronization. MS queue
includes a linked list of nodes with two queue pointers: head and tail pointing to the
queue’s first and last node respectively as shown in Figure 3.6. The head pointer always
points to a sentinel node, which is considered as a place-holder instead of a queue node
with a meaningful value. When an MS queue is initiated as an empty queue, both the
head pointer and tail pointer points to a sentinel node.

23 c l a s s QueueNode {
24 u in t 64 t ∗ pData ;
25 QueueNode ∗ next = NULL;}
26

27 c l a s s MSQueue {
28 QueueNode ∗ phead ;
29 QueueNode ∗ p t a i l ;
30 void enqueue (QueueNode ∗ enqNode ) ;
31 QueueNode ∗ dequeue ( ) ;}

Figure 3.6: MS Queue classes
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32 void MSQueue : : enqueue (QueueNode ∗ node ) {
33 whi le ( t rue ) {
34 QueueNode ∗ l a s t = p t a i l ;
35 QueueNode ∗ next = la s t−>next ;
36 i f ( l a s t == ( p t a i l ) ) {
37 i f ( next == NULL) {
38 i f (CAS(& la s t−>next , NULL, node ) == NULL) {
39 CAS(&p t a i l , l a s t , node ) ;
40 re turn ;}}
41 e l s e {
42 CAS(&p t a i l , l a s t , next ) ;}}}}

Figure 3.7: Enqueue operation of MS Queue

Figure 3.7 shows the enqueue operation, which receives a new queue node and reads
the last node of the queue from the tail pointer. Then, the operation checks whether the
next pointer of the last node is NULL, and tries to append the new node to the last node
by using CAS if it is (line 38). If the CAS succeeds, it calls another CAS to update the
tail pointer to the new node and returns. If appending fails, the operation retries by going
back to reading the current value of the tail pointer. If the next pointer of the last node
is not NULL, which means another node has already been appended to the last node, the
operation helps to update the tail pointer to the new last node (line 42).

43 QueueNode ∗ MSQueue : : dequeue ( ) {
44 whi le ( t rue ) {
45 QueueNode ∗ f i r s t = phead ;
46 QueueNode ∗ next = f i r s t −>next ;
47 QueueNode ∗ l a s t = p t a i l ;
48 i f ( f i r s t == phead ) {
49 i f ( f i r s t == l a s t ) {
50 i f ( next == NULL) {
51 re turn NULL;}
52 CAS(&p t a i l , l a s t , next ) ;}
53 e l s e {
54 i f (CAS(&phead , f i r s t , next ) == f i r s t ) {
55 re turn next ;}}}}}

Figure 3.8: Dequeue operation of MS Queue

The pseudo code of the dequeue operation is shown in Figure 3.8. The dequeue opera-
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tion reads the first node from the head pointer, the next node from the next pointer of the
first node, and the last node from the tail pointer (line 45-47). If the first node is equal to
the last node and the next node is NULL, which means there is only a sentinel node in the
queue, the operation returns a NULL pointer (line 51). If the first node equals to the last
node and the next node is not NULL, which means the next node has just been appended
to the queue, the operation helps to update the tail pointer to the next node (line 52).
Otherwise, the operation tries to update the head pointer to the next node by using CAS
(line 54). If the CAS succeeds, it returns the next node because the next node is removed
from the queue and becomes the current sentinel node. If CAS fails, the operation will
retry until it successfully removes a node or the queue becomes empty.

The memory management for queue nodes will be explained in Chapter 7.
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Chapter 4

Detectability

One problem for persistent data structures is how to detect the effect of the last invoked
operation before a crash since the response of an operation is stored in volatile CPU
registers. Take a persistent lock-free queue structure as an example. If a thread is executing
a CAS operation to add a queue node to the tail of the queue before a crash, then after
restarting, the thread should be able to know the result of its previous enqueue operation.
If the enqueue operation did not take effect, the thread may retry it with the same queue
node. In this way, the crash does not become an obstacle to the thread’s normal execution
path. A data structure is considered detectable if it is possible for a thread to determine
the effect of its last invoked operation before a crash [13].

Friedman et al. presented two algorithms for durable concurrent queues, known as
Durable Queue and Log Queue, in [13]. While both of them satisfy durable linearizability
[24], only Log Queue is noted as a detectable implementation, which provides a mechanism
to get the effects of the last operation being executed before a crash. The difference between
the two queues is that after a crash, Log Queue provides the ability for a thread to tell
whether its previous operation was completed. The thread can finish it if it was not.
Compared to Durable Queue, Log Queue generates a log for each thread’s operation to
store some additional recovery information. In the enqueue operation, before trying to link
a new node to the tail of the queue, Log Queue first stores a pointer to the new node into
the thread’s enqueue log. Then during recovery, if the stored node appears in the queue,
the thread discovers that the new node has already been appended to the queue. In the
dequeue operation, Log Queue saves the response (a dequeued node) of the operation into
the thread’s dequeue log so that after a crash, the thread can retry the dequeue operation
if there is no dequeued node in the log. In general, while the recovery of Durable Queue
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ensures the consistency of the persistent queue, the recovery of Log Queue provides an
additional ability for threads to complete unfinished operations after a crash.

After analyzing the above two queue algorithms, I find that the detectable implementa-
tion requests a certain information to be stored so that recovery can use this information to
get the status of the last invoked operation. This feature can be generalized as an abstract
data type and composed with other data types (e.g., Queue) to make them detectable.
In [4], Attiya et al. describe detectable data structures through a correctness property
(nesting-safe recoverable linearizability), which is different from my approach. In the next
section, will provide the details of this abstract data type.

4.1 DetectableT Data Type

I consider detectability as an additional ability for recovery of persistent data types. To
build detectable data structures, I design an abstract data type DetectableT. DetectableT
must be composed with another data type, which I call a base type. A base type always
provides several operations, called base operations, to read and update its state. For
example, if DetectableT is integrated with queue type, the base type is queue, and base
operations are dequeue and enqueue. If some additional bookkeeping of base operations is
stored, recovery can determine a base operation’s state based on the bookkeeping data. For
an operation executed by a process, there exists an executing status to show the progress of
execution, and possibly some arguments and returned values. To represent this execution,
DetectableT uses a status value to denote the executing status, an argument list to store
the arguments and a returned value list to store the returned values. This information,
including the executing status, returned values and arguments, can be returned when
getting the effect of an operation.

DetectableT adds three functions for a base operation op to become detectable: a
prepareOp function, detectableOp function and retrieveOp function. I call these op-
erations, which help to achieve detectability for a base operation, auxiliary operations.
For example, for a dequeue operation, DetectableT adds a prepareDequeue function,
detectableDequeue function and retrieveDequeue function. Process pi calls the prepareOp
function of a base operation op on object X to indicate its intention of invoking op. The
prepareOp function also stores the arguments of op if any. Then in the detectableOp func-
tion, pi executes op using the stored arguments with the executing status being updated
and returned values being saved. The detectableOp function has the same returned val-
ues as op. If a crash happens when detectableOp is being executed, during recovery, the
state of X has to be recovered by some roll-back or roll-forward procedures to guarantee
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consistency. A pending operation which is rolled-forward during recovery must have all its
bookkeeping data stored and updated in the same way as a complete operation; a pending
operation which is rolled-back must revert any changes it made. After that, pi calls the
retrieveOp function to obtain op’s effect which includes the executing status, argument
list and returned value, if any. Recovery implicitly happens before the retrieveOp function
being called. The detectableOp function takes effect either before regrieveOp or not at
all. Since detectability, as an additional ability, is a plug-in function, DetectableT main-
tains the ability to execute base operations without injecting detectability by not storing
bookkeeping data.

When getting the effect of an operation of DetectableT objects, the effect consists of
two parts: the first part indicating whether the operation takes effect and the second part
storing the returned values if the operation completes. For an operation with arguments,
the argument list is also returned so that it is possible for an operation to be re-executed
with the same arguments when not completed before a crash.

4.2 WDetectableT Data Type

In some situations, there is no need to return as much information as DetectableT requires
when getting the effect. Some algorithms do not ask for the argument list. For example,
if a process always passes a fixed value to an operation, the process will not ask for the
argument value after a crash. Also, some algorithms do not need to know an operation
has been completed if the effect of this operation does not update its object’s state. Take
a dequeue operation as an example. When a dequeue operation returns a NULL pointer
without changing a queue’s state, a process, which tries to get a queue node from the
queue, will retry the dequeue operation until it gets one. After a crash, it is unnecessary
to notify the process that its previous dequeue operation completes and returns a NULL
pointer. For these algorithms, DetectableT returns more information than needed, which
may cause more overhead during the implementation. Therefore, I design another data type
WDetectableT (weak DetectableT ) to not return unnecessary information when getting the
effect for the above two situations. In the next section, I provide the sequential specification
for both DetectableT and WDetectableT objects.
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4.3 Sequential Specification of DetectableT and WDe-

tectableT Objects

A base type B, which is composed to DetectableT or WDetectableT, is denoted D{B} or
D′{B} respectively. Every operation in B is made detectable in D{B} and D′{B}. For
a base operation op of B to become detectable, three auxiliary operations (prepareOp,
detectableOp and retrieveOp) must be added in D{B} or D′{B}. Since op is executed
within detectableOp, the state transition of the base operation op is part of the state
transition of detectableOp. I use s and s′ to denote the state before op being invoked and
after op being completed, respectively. The state transition function and response function
of op are denoted δ(s, op) and ρ(s, op) respectively, where s represents the before state, op
represents the operation. The bookkeeping data of op includes a status value, an argument
list and returned value list, which are denoted Sp[op], Ap[op] and Rp[op], respectively. The
initial value of every bookkeeping data item is ⊥.

A base operation does not necessarily have arguments or returned values. Regarding
whether the argument list or returned value list exists, I divide base operations into four
operation types as shown in table 4.1. When getting the effect of operations of different
operation types, different information is provided. For example, returned values can only
be provided for an operation which has returned values. Therefore, I provide a separate
sequential specification for each operation type.

Operation Type Arguments Returned Values
NARG NRET T N N
HARG NRET T Y N
NARG HRET T N Y
HARG HRET T Y Y

Table 4.1: Operation types categorized according to whether the argument list or returned
value list exists.

The first operation type, denoted NARG NRET T, indicates a base operation with no
arguments or returned values. One example of NARG NRET T is the clear operation of
a list, which deletes all the entries. The sequential specification of D{B} objects for this
operation type is shown in Figure 4.1. The bookkeeping data only includes the status value
Sp[op] to store the executing status. Axiom 4.6 shows op is executed without detectability.
To execute a detectable operation, the prepareOp function (Axiom 4.1) must be called first
to set Sp[op] to BEGIN DECT OP. Then in Axiom 4.2, Sp[op] is set to END DECT OP
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when op is completed. Axiom 4.2 also applies to a pending operation which is completed
during recovery for this operation. The effect is decided on the value of Sp[op]. With BE-
GIN DECT OP status, retrieveOp returns NoEffect (i.e., op takes no effect), while with
END DECT OP status, retrieveOp returns HasEffect (i.e., op takes effect) and AckRe-
sponse (i.e., a void return value), as shown in Axiom 4.3 and Axiom 4.4. It is possible for
a process to call retrieveOp when there is no op invoked before a crash. In this situation,
NoExecutedOp is returned as shown in Axiom 4.5. Since there is no argument or returned
value for operation type NARG NRET T, the sequential specification of D′{B} objects is
the same as D{B}.

{true}
[prepareOp()/res(), p]

{S ′
p[op] = BEGIN DECT OP}

(Axiom 4.1)

{Sp[op] = BEGIN DECT OP}
[detectableOp()/res(), p]

{s′ = δ(s, op) ∧ S ′
p[op] = END DECT OP}

(Axiom 4.2)

{Sp[op] = BEGIN DECT OP}
[retrieveOp()/res(NoEffect,⊥), p]

{}
(Axiom 4.3)

{Sp[op] = END DECT OP}
[retrieveOp()/res(HasEffect, AckResponse), p]

{}
(Axiom 4.4)

{Sp[op] = ⊥}
[retrieveOp()/res(NoExecutedOp,⊥), p]

{}
(Axiom 4.5)

{true}
[op()/res(), p]

{s′ = δ(s, op)}
(Axiom 4.6)

Figure 4.1: The sequential specification for D{B} and D′{B} objects regarding operation
type NARG NRET T.

The second operation type, denoted HARG NRET T, indicates a base operation re-
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ceiving an argument list with no returned values, such as an enqueue operation. The
sequential specification of D{B} for this operation type, shown in Figure 4.2, is based on
the sequential specification for operation type NARG NRET T with a value Ap[op] being
added to record the argument list. Axiom 4.12 shows op is executed without detectability
as in the base type. For a detectable operation, in Axiom 4.7, besides setting Sp[op] to
BEGIN DECT OP , the argument list of op is passed to Ap[op], such as a new queue node
to be enqueued. Then in Axiom 4.8, op is executed with the argument value in Ap[op] and
Sp[op] is updated to END DECT OP . When retrieveOp is called, besides the effect of
op, the argument is also returned so that a re-execution with the same argument is possible
for an operation that did not take effect.

{true}
[prepareOp(a)/res(), p]

{A′
p[op] = a ∧ S ′

p[op] = BEGIN DECT OP}
(Axiom 4.7)

{Sp[op] = BEGIN DECT OP}
[detectableOp()/res(), p]

{s′ = δ(s, op(Ap[op])) ∧ S ′
p[op] = END DECT OP}

(Axiom 4.8)

{Sp[op] = BEGIN DECT OP}
[retrieveOp()/res(NoEffect,⊥, Ap[op]), p]

{}
(Axiom 4.9)

{Sp[op] = END DECT OP}
[retrieveOp()/res(HasEffect, AckResponse, Ap[op]), p]

{}
(Axiom 4.10)

{Sp[op] = ⊥}
[retrieveOp()/res(NoExecutedOp,⊥,⊥), p]

{}
(Axiom 4.11)

{δp[op(a)]}
[op(a)/res(), p]

{s′ = δ(s, op(a)}
(Axiom 4.12)

Figure 4.2: The sequential specification for D{B} objects regarding operation type
HARG NRET T.
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The sequential specification of D′{B} objects for operation type HARG NRET T is
shown in Figure 4.3. Compared to the specification for D{B}, the only difference is that
in the retrieveOp function, the argument value is not returned.

{true}
[prepareOp(a)/res(), p]

{A′
p[op] = a ∧ S ′

p[op] = BEGIN DECT OP}
(Axiom 4.13)

{Sp[op] = BEGIN DECT OP}
[detectableOp()/res(), p]

{s′ = δ(s, op(Ap[op])) ∧ S ′
p[op] = END DECT OP}

(Axiom 4.14)

{Sp[op] = BEGIN DECT OP}
[retrieveOp()/res(NoEffect,⊥), p]

{}
(Axiom 4.15)

{Sp[op] = END DECT OP}
[retrieveOp()/res(HasEffect, AckResponse), p]

{}
(Axiom 4.16)

{Sp[op] = ⊥}
[retrieveOp()/res(NoExecutedOp,⊥), p]

{}
(Axiom 4.17)

{δp[op(a)]}
[op(a)/res() p]

{s′ = δ(s, op(a)}
(Axiom 4.18)

Figure 4.3: The sequential specification for D′{B} objects regarding operation type
HARG NRET T.

The third operation type, denoted NARG HRET T, indicates a base operation receiving
no argument and returning a list of values, such as a dequeue operation. The sequential
specification of D{B} objects for this operation type is based on the sequential specification
of D{B} for NARG NRET T with a value Rp[op] being added to record the returned
value list as shown in Figure 4.4. Axiom 4.24 shows the original way of executing op
with a returned value list r. The specification of prepareOp in Axiom 4.19 is the same as
Axiom 4.1 with Sp[op] being updated to BEGIN DECT OP . When op is executed in a
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detectable way, the returned value list is passed to Rp[op] (Axiom 4.20). In retrieveOp
(Axiom 4.22), the value of Rp[op] is returned. For an incomplete operation, the specification
of retrieveOp in Axiom 4.21 is the same as Axiom 4.3, returning NoEffect.

{true}
[prepareOp()/res(), p]

{S ′
p[op] = BEGIN DECT OP}

(Axiom 4.19)

{Sp[op] = BEGIN DECT OP}
[detectableOp()/res(ρ(s, op)), p]

{s′ = δ(s, op) ∧ S ′
p[op] = END DECT OP ∧R′

p[op] = ρ(s, op)}
(Axiom 4.20)

{Sp[op] = BEGIN DECT OP}
[retrieveOp()/res(NoEffect,⊥), p]

{}
(Axiom 4.21)

{Sp[op] = END DECT OP}
[retrieveOp()/res(HasEffect, Rp[op]), p]

{}
(Axiom 4.22)

{Sp[op] = ⊥}
[retrieveOp()/res(NoExecutedOp,⊥), p]

{}
(Axiom 4.23)

{true}
[op()/res(ρ(s, op)), p]

{s′ = δ(s, op)}
(Axiom 4.24)

Figure 4.4: The sequential specification for D{B} objects regarding operation type
NARG HRET T.

The sequential specification of D′{B} objects for the operation type NARG HRET T
is shown in Figure 4.5. For an operation op, the specifications of D{B} and D′{B} are
the same in the prepareOp, retrieveOp and op functions. For the detectableOp function, I
divide operations into two categories: opc and opo. The opc represents operations which will
not update the state of an object in some situations, such as a dequeue operation defined
in Axiom 3.2, which cannot get a dequeued node from an empty queue. The opo represents
the other operations except opc, such as an enqueue operation defined in Axiom 3.1. For
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opo (e.g., enqueue), the sequential specification of detectableOpo (e.g., detectableEnqueue)
is shown in Axiom 4.28, the same as detectableOp in Axiom 4.20. For opc (e.g., dequeue),
according to whether or not the operation can update the object’s state, there are two
axioms of detectableOpc (e.g., detectableDequeue). I define UStatus [opc] to denote a state
value set in which the opc will update the state. For example, UStatus [opc] is a queue
set excluding the empty queue for a dequeuing operation. In the pre-condition of Axiom
4.26, the state s is in UStatus [opc], which means the opc will update the state. In this
condition, the state s′ after the operation being completed is not equal to s with Sp[opc]
being updated to END DECT OP and Rp[opc] being updated to the returned value. In
the pre-condition of Axiom 4.27, the state s is not in UStatus [opc], which means the opc
will not update the the state. In this condition, the state s′ after the operation being
executed is equal to s with Sp[opc] and Rp[opc] not being updated.

The fourth operation type, denoted HARG HRET T, indicates a base operation with
an argument list and returned value list. For example, the remove operation of a list
takes a specified position as the argument and returns the value of the removed entry. The
sequential specification of D{B} objects for this operation type, as shown in Figure 4.6,
is combined from the specifications of D{B} for the operation type HARG NRET T and
NARG HRET T with all three values (Sp[op], Ap[op], Rp[op]) to record the bookkeeping
data. Axiom 4.38 shows that op is executed without detectability. For the detectable
operation, the sequential specification of prepareOp in Axiom 4.33 is the same as Axiom
4.7, with Sp[op] and Ap[op] being updated. In Axiom 4.34, op is executed with the value
in Ap[op]. Then Rp[op] is updated with the returned value list and Sp[op] is updated
to END DECT OP . For a complete operation, both Rp[op] and Ap[op] are returned in
retrieveOp (Axiom 4.36). For an incomplete operation, the specification of retrieveOp in
Axiom 4.35 is the same as Axiom 4.9, returning NoEffect and Ap[op].

The specification of D′{B} objects for the operation type HARG HRET T is shown in
Figure 4.7. Compared to the specification of D{B}, the differences are in the detectableOp
and retrieveOp functions. For the retrieveOp function, the argument value is not returned
(Axiom 4.43 and Axiom 4.44). For the detectableOp function, as in the specification of
D′{B} for the operation type NARG HRET T, the operations are divided into opc and
opo. The axiom for detectableOpo is the same as Axiom 4.34. There are two axioms for
detectableOpc to deal with two conditions: the opc updates the state or not. Axiom 4.40
and Axiom 4.41 show that only when the opc updates the state, Sp[opc] and Rp[opc] are
updated.
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{true}
[prepareOp()/res(), p]

{S ′
p[op] = BEGIN DECT OP}

(Axiom 4.25)

{Sp[opc] = BEGIN DECT OP ∧ s ∈ UStatus[opc]}
[detectableOpc()/res(ρ(s, opc)), p]

{s′ = δ(s, opc) ∧ s′ 6= s∧
S ′
p[opc] = END DECT OP ∧R′

p[opc] = ρ(s, opc)}

(Axiom 4.26)

{Sp[opc] = BEGIN DECT OP ∧ s 6∈ UStatus[opc]}
[detectableOpc()/res(ρ(s, opc)), p]

{s′ = δ(s, opc) ∧ s′ = s}
(Axiom 4.27)

{Sp[opo] = BEGIN DECT OP}
[detectableOpo()/res(ρ(s, opo)), p]

{s′ = δ(s, opo) ∧ S ′
p[opo] = END DECT OP ∧R′

p[opo] = ρ(s, opo)}
(Axiom 4.28)

{Sp[op] = BEGIN DECT OP}
[retrieveOp()/res(NoEffect,⊥), p]

{}
(Axiom 4.29)

{Sp[op] = END DECT OP}
[retrieveOp()/res(HasEffect, Rp[op]), p]

{}
(Axiom 4.30)

{Sp[op] = ⊥}
[retrieveOp()/res(NoExecutedOp,⊥), p]

{}
(Axiom 4.31)

{true}
[op()/res(ρ(s, op)), p]

{s′ = δ(s, op)}
(Axiom 4.32)

Figure 4.5: The sequential specification for D′{B} objects regarding operation type
NARG HRET T.
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{true}
[prepareOp(a)/res(), p]

{A′
p[op] = a ∧ S ′

p[op] = BEGIN DECT OP}
(Axiom 4.33)

{Sp[op] = BEGIN DECT OP}
[detectableOp()/res(ρ(s, op(Ap[op]))), p]

{s′ = δ(s, op(Ap[op])) ∧ S ′
p[op] = END DECT OP ∧R′

p[op] = ρ(s, op(Ap[op]))}
(Axiom 4.34)

{Sp[op] = BEGIN DECT OP}
[retrieveOp()/res(NoEffect,⊥, Ap[op]), p]

{}
(Axiom 4.35)

{Sp[op] = END DECT OP}
[retrieveOp()/res(HasEffect, Rp[op], Ap[op]), p]

{}
(Axiom 4.36)

{Sp[op] = ⊥}
[retrieveOp()/res(NoExecutedOp,⊥,⊥), p]

{}
(Axiom 4.37)

{true}
[op(a)/res(ρ(s, op(a)), p]

{s′ = δ(s, op(a))}
(Axiom 4.38)

Figure 4.6: The sequential specification for D{B} objects regarding operation type
HARG HRET T.
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{true}
[prepareOp(a)/res(), p]

{A′
p[op] = a ∧ S ′

p[op] = BEGIN DECT OP}
(Axiom 4.39)

{Sp[opc] = BEGIN DECT OP ∧ s ∈ UStatus[opc]}
[detectableOpc()/res(ρ(s, opc(Ap[op]))), p]

{s′ = δ(s, opc(Ap[op])) ∧ s′ 6= s∧
S ′
p[opc] = END DECT OP ∧R′

p[opc] = ρ(s, opc(Ap[op]))}

(Axiom 4.40)

{Sp[opc] = BEGIN DECT OP ∧ s 6∈ UStatus[opc]}
[detectableOpc()/res(ρ(s, opc(Ap[op]))), p]

{s′ = δ(s, opc(Ap[op])) ∧ s′ = s}
(Axiom 4.41)

{Sp[opo] = BEGIN DECT OP}
[detectableOpo()/res(ρ(s, opo(Ap[op]))), p]

{s′ = δ(s, opo(Ap[op])) ∧ S ′
p[opo] = END DECT OP ∧R′

p[opo] = ρ(s, opo(Ap[op]))}
(Axiom 4.42)

{Sp[op] = BEGIN DECT OP}
[retrieveOp()/res(NoEffect,⊥), p]

{}
(Axiom 4.43)

{Sp[op] = END DECT OP}
[retrieveOp()/res(HasEffect, Rp[op]), p]

{}
(Axiom 4.44)

{Sp[op] = ⊥}
[retrieveOp()/res(NoExecutedOp,⊥), p]

{}
(Axiom 4.45)

{true}
[op(a)/res(ρ(s, op(a)), p]

{s′ = δ(s, op(a)}
(Axiom 4.46)

Figure 4.7: The sequential specification for D′{B} objects regarding operation type
HARG HRET T.
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4.4 Definition of Detectability

I consider detectability is only for base operations. For example, the base operations of
DetectableT integrated with queue are enqueue and dequeue. According to the sequen-
tial specification, a prepareEnqueue operation is also added to D{queue}. However, de-
tectability only applies to the enqueue operation because prepareEnqueue is an auxiliary
operation to help get the effect of enqueue.

I define two levels of detectability: strong detectability and weak detectability. The type
D{B} represents strong detectability and the type D′{B} represents weak detectability.

Based on the type D{B}, I give the definition of strong detectability.

Definition 4.1 (Strong Detectability). Given a data type T , T is strongly detectable if
there exists a type B such that T = D{B}.

For example, if T = D{queue}, T is strongly detectable. The base type of T is
queue, and the base operations of T are enqueue and dequeue. There are three auxil-
iary functions for each base operation in T , such as prepareEnqueue, detectableEnqueue
and retrieveEnqueue. When calling the retrieveEnqueue function or retrieveDequeue
function, the information including the returned value and the argument list, defined in
the sequential specification of D{queue}, is returned.

Similarly, based on the type D′{B}, I give the definition of weak detectability.

Definition 4.2 (Weak Detectability). Given a data type T , T is weakly detectable if there
exists a type B such that T = D′{B}.
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Chapter 5

Implementing Detectable Queue

In Chapter 4, I provide the definition of detectability. In this chapter, I will talk about
how to implement detectable data types based on the sequential specification defined in
Section 4.4 through a queue example.

5.1 Private Variables

I assume that there are two types of variables in the persistent memory: shared variables
which can be accessed by all threads, and private variables which belong to one specific
thread. Generally speaking, a private variable can only be accessed by its owner thread and
a single recovery thread. During recovery, a private variable may be accessed by a thread
who is responsible for recovery to regain consistency. Private variables can be applied to
recovering persistent data structures. A thread can store some bookkeeping information
into its private variables, and inspect them during recovery to arrive at a clear picture of
what happened before a crash. For example, in Golab and Hendler’s recoverable queue
lock [14], when entering the critical section, every thread attempts to append itself to the
tail of the shared lock queue, and save the old value of the tail to its private variable. When
leaving the critical section, the thread updates its private variable again and removes itself
from the queue. Then after restarting, every thread determines whether it is in the lock
queue by inspecting the value in its private variable.
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5.2 Detectable Execution Using Private Variables

Different persistent and detectable data structures have been designed [6, 11, 13]. To
achieve detectability, normally, when an operation happens, some bookkeeping information
is written into auxiliary variables to record its status, arguments and returned values.
During recovery, the restarting process will read the information from specific memory
locations to obtain the effect of previous operations. For example, shared log variables
are used to store operations’ bookkeeping information in and Friedman et al.’s persistent
queue [13].

I consider using auxiliary private variables, which can only be accessed by their owner
thread and a single recovery thread, to store the effects of each operation to avoid con-
tention. As there is no read-write contention on such variables, the bookkeeping procedure
for the operations can be comparatively simplified and thus sped up to a certain degree.

I assume in the initialization, the application allocates a certain area of persistent
memory for private variables and assigns each thread private variables for every operation
defined in a data type. Then, a thread can get its private variables for an operation through
the getPrivateAddrByOpName function, which takes an operation name and an index as
the arguments. The index is for multiple private variables. If there is only one private
variable, the index argument can be omitted. The initial value of any private variable is
MEM INIT VAL. Another function provided by the system is selfThreadID which returns
the caller thread’s ID.

5.3 Detectable Queue Implementations

According to the definition of detectability in Section 4.4, to provide detectability for a
base type B, the implementation must be based on the sequential specification of D{B},
which adds three auxiliary functions for every operation in B. To demonstrate how to
implement a detectable data type, I use queue, one of the most fundamental data types,
as the base type, and design a detectable queue algorithm, called Detectable Queue, based
on MS queue [28] for persistent memory. MS queue, using a linked list to implement a
FIFO queue, is a widely-used lock-free concurrent data structure serving as one of queue
algorithms in the Java package java.util.concurrent.

The classes of Detectable Queue are shown in Figure 5.1. The DetectableQNode class
contains a data pointer (pData ), a next node pointer (next ), and a thread ID (deqThrea-
dID ) marking the node being removed from the linked list by a thread. The initial value
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of deqThreadID is -1. All the queue nodes are allocated from a node pool in the persistent
memory through an epoch-based memory management algorithm which will be discussed
in Chapter 7. In the DetectableQueue class, the phead field points to a sentinel node and
ptail points to the last node of the queue. If phead and ptail point to the same node,
it means the queue is empty with only a sentinel node. To show the differences between
the strong detectable queue and weak detectable queue, I represent both algorithms and
define the isStrongDetectability field in the queue class. In practice, for an application,
normally only one algorithm is needed. In the class, a total of six auxiliary functions for
the enqueue and dequeue operations are added.

57 c l a s s DetectableQNode {
58 u in t 64 t ∗ pData ;
59 DetectableQNode ∗ next = NULL;
60 u in t 64 t deqThreadID = −1;} ;
61

62 c l a s s DetectableQueue {
63 DetectableQNode ∗ phead ;
64 DetectableQNode ∗ p t a i l ;
65 bool i s S t r o n gDe t e c t a b i l i t y ;
66

67 void prepareEnqueue ( DetectableQNode ∗ enqNode ) ;
68 void detectableEnqueue ( ) ;
69 void retr i eveEnqueue ( u i n t 64 t ∗ e0 , u i n t 64 t ∗ e1 , u i n t 64 t ∗ a ) ;
70 void enqueue ( DetectableQNode ∗ enqNode ) ;
71

72 void prepareDequeue ( ) ;
73 DetectableQNode ∗ detectableDequeue ( ) ;
74 void ret r i eveDequeue ( u in t 64 t ∗ e0 , u i n t 64 t ∗ e1 ) ;
75 DetectableQNode ∗ dequeue ( ) ;
76 } ;

Figure 5.1: Detectable Queue classes

5.3.1 Enqueue Operation

The enqueue operation belongs to operation type HARG NRET T. According to the se-
quential specification of D{queue}, two pieces of information are needed to get the oper-
ation’s effect: the executing status and the argument. In my implementation, I use one
private variable to store the new queue node and decide the status based on the value in
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the private variable. Since modern 64-bit x86 processors implement 48 address bits [36],
the higher 16 bits can be used to store extra information. I define a flag, called OPCOM-
PLETE FLG, to indicate an operation is complete, which uses the highest bit of a word.
The OPCOMPLETE FLG flag is added to the node pointer in the private variable when
an enqueue operation completes. When getting the effect of a complete enqueue opera-
tion, for strong detectability, the argument is returned while for weak detectability, the
argument of an enqueue operation is not returned when getting its effect.

77 void DetectableQueue : : prepareEnqueue ( DetectableQNode ∗ node ) {
78 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (ENQUEUE) ;
79 f l u s h ( node ) ;
80 ∗pAddr = ( u in t 64 t ) node ;
81 f l u s h (pAddr ) ;
82 }
83 void DetectableQueue : : detectableEnqueue ( ) {
84 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (ENQUEUE) ;
85 DetectableQNode ∗ node = (DetectableQNode ∗) (∗pAddr ) ;
86 whi le ( t rue ) {
87 DetectableQNode ∗ l a s t = p t a i l ;
88 DetectableQNode ∗ next = la s t−>next ;
89 i f ( l a s t == ( p t a i l ) ) {
90 i f ( next == NULL) {
91 i f (CAS(& la s t−>next , NULL, node ) == NULL) {
92 f l u s h (& la s t−>next ) ;
93 ∗pAddr = (∗pAddr ) | OPCOMPLETEFLG;
94 f l u s h (pAddr ) ;
95 CAS(&p t a i l , l a s t , node ) ;
96 re turn ;}}
97 e l s e {
98 f l u s h (& la s t−>next ) ;
99 CAS(&p t a i l , l a s t , next ) ;}}}}

Figure 5.2: The prepareEnqueue and detectableEnqueue functions of Detectable Queue

In the prepareEnqueue function, the new queue node is flushed in to the persistent
memory first. Then the node pointer is stored in the private variable and persisted as
shown in Figure 5.2. The private variable is obtained by getPrivateAddrByOpName with
the enqueue operation name as the argument. Then in the detectableEnqueue function,
the new node is fetched from the private variable to be enqueued.

The executing thread first reads the last node and its next pointer from the queue. If
the next pointer is not NULL, which means another node has already been appended, the
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thread helps to persist the next pointer and move the tail pointer using CAS (lines 98-99).
The tail pointer does not need to be flushed because it can be deduced by the last pointer
of the queue, which has been persisted. If no node has been appended to the last node, the
executing thread tries to update the next pointer to the new node using CAS (line 91). If
the CAS is successful, the thread flushes the next pointer and moves the tail pointer to the
new node. The thread also adds the complete flag OPCOMPLETE FLG to the private
variable and persists it to indicate that this operation is complete. If crash happens after
the node being appended and before the complete flag OPCOMPLETE FLG being added,
the complete flag will be added through recovery. If the CAS failed, the thread will retry
by rereading the last node until it succeeds.

100 s t r u c t EnqueueEffect {
101 u in t 64 t e = MEM INIT VAL;
102 u in t 64 t r = MEM INIT VAL;
103 u in t 64 t a = MEM INIT VAL;
104 }
105

106 EnqueueEffect DetectableQueue : : re t r i eveEnqueue ( ) {
107 EnqueueEffect e f f e c t ;
108 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (ENQUEUE) ;
109 i f (∗pAddr == MEM INIT VAL) {
110 e f f e c t . e = NoExecutedOp ;
111 }
112 e l s e i f (∗pAddr & OPCOMPLETEFLG != 0) {
113 e f f e c t . e = HasEf fect ;
114 e f f e c t . r = AckResponse ;
115 i f ( i s S t r o n gDe t e c t a b i l i t y ) e f f e c t . a = ∗pAddr | ˜

OPCOMPLETEFLG;
116 }
117 e l s e {
118 e f f e c t . e = NoEffect ;
119 i f ( i s S t r o n gDe t e c t a b i l i t y ) e f f e c t . a = ∗pAddr ;
120 }
121 re turn e f f e c t ;
122 }

Figure 5.3: The retrieveEnqueue function of Detectable Queue

A thread calls the retrieveEnqueue function to get the effect, which is based on the value
in the private variable. If the value is MEM INIT VAL, which means the preparedEnqueue
function is never called by the thread, NoExecutedOp is returned. If OPCOMPLETE FLG
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123 void DetectableQueue : : enqueue ( DetectableQNode ∗ node ) {
124 f l u s h ( node ) ;
125 whi le ( t rue ) {
126 DetectableQNode ∗ l a s t = p t a i l ;
127 DetectableQNode ∗ next = la s t−>next ;
128 i f ( l a s t == ( p t a i l ) ) {
129 i f ( next == NULL) {
130 i f (CAS(& la s t−>next ,NULL, node ) == NULL) {
131 f l u s h (& la s t−>next ) ;
132 CAS(&p t a i l , l a s t , node ) ;
133 re turn ;}}
134 e l s e {
135 f l u s h (& la s t−>next ) ;
136 CAS(&p t a i l , l a s t , next ) ;}}}}

Figure 5.4: The enqueue function of Detectable Queue

is added in the value by the executing thread or recovery thread, which means the last
enqueue operation is complete before crash or during recovery, HasEffect is returned. Oth-
erwise, the value must be a new queue node to be enqueued and NoEffect is returned. For
strong detectability, the argument stored in the private variable is also returned. There
are no differences in the prepareEnqueue and detectableEnqueue functions for the strong
detectability and weak detectability. The reason is that there is only one variable in my
implementation representing both the executing status and input argument.

I also provide an enqueue function for persistent memory without detectability as shown
in Figure 5.4.

Compared to the detectableEnqueue function, the enqueue function does not need to
store the result into the private variable. The lines of code responsible for setting OP-
COMPLETE FLG and persisting the private variable are removed. Besides, the queue
node needs to be flushed into persistent memory in the beginning. Since it lacks detectabil-
ity, after restarting, a thread cannot know the result of its previous enqueue operation. A
memory leak may happen if a new queue node has already been allocated but not appended
to the queue in a system without memory garbage collection mechanism.

5.3.2 Dequeue Operation

The dequeue operation belongs to operation type NARG HRET T. According to the se-
quential specification of D{queue}, two variables are needed: a variable to store the exe-
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cuting status and a variable to store the returned queue node. Similarly to the detectable
enqueue algorithm, I use one private variable to store the returned node and decide the sta-
tus based on the value in the private variable. For weak detectability, the private variable
is not updated when a NULL pointer is returned from an empty queue.

137 void DetectableQueue : : prepareDequeue ( ) {
138 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (DEQUEUE) ;
139 ∗pAddr = OP INIT VAL ;
140 f l u s h (pAddr ) ;
141 }

Figure 5.5: The prepareDequeue function of Detectable Queue

142 s t r u c t DequeueEffect {
143 u in t 64 t e = MEM INIT VAL;
144 u in t 64 t r = MEM INIT VAL;
145 }
146

147 DequeueEffect DetectableQueue : : r e t r i eveDequeue ( ) {
148 DequeueEffect e f f e c t ;
149 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (DEQUEUE) ;
150 i f (∗pAddr == MEM INIT VAL) {
151 e f f e c t . e = NoExecutedOp ;
152 }
153 e l s e i f (∗pAddr == OP INIT VAL) {
154 e f f e c t . e = NoEffect ;
155 }
156 e l s e {
157 e f f e c t . e = HasEf fect ;
158 i f (∗pAddr == NULL) {
159 e f f e c t . r = NULL;
160 } e l s e {
161 e f f e c t . r = (∗pAddr )−>next ;
162 }
163 }
164 re turn e f f e c t ;
165 }

Figure 5.6: The retrieveDequeue function of Detectable Queue

In the prepareDequeue function (Figure 5.5), OP INIT VAL is written to the private

38



166 DetectableQNode ∗ DetectableQueue : : detectableDequeue ( ) {
167 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (DEQUEUE) ;
168 whi le ( t rue ) {
169 DetectableQNode ∗ f i r s t = phead ;
170 DetectableQNode ∗ next = f i r s t −>next ;
171 DetectableQNode ∗ l a s t = p t a i l ;
172 i f ( f i r s t == phead ) {
173 i f ( f i r s t == l a s t ) {
174 i f ( next == NULL) {
175 i f ( i s S t r o n gDe t e c t a b i l i t y ) {
176 ∗pAddr = NULL;
177 f l u s h (pAddr ) ;
178 }
179 re turn NULL;
180 }
181 f l u s h (& la s t−>next ) ;
182 CAS(&p t a i l , l a s t , next ) ;
183 }
184 e l s e {
185 ∗pAddr = f i r s t ;
186 f l u s h (pAddr ) ;
187

188 i f (CAS(& f i r s t −>deqThreadID , se l fThreadID ( ) , −1) ==
−1) {

189 f l u s h (& f i r s t −>deqThreadID ) ;
190 CAS(&phead , f i r s t , next ) ;
191 re turn next ;
192 }
193 e l s e {
194 i f ( f i r s t == phead ) {
195 f l u s h (& f i r s t −>deqThreadID ) ;
196 CAS(&phead , f i r s t , next ) ;
197 }
198 }
199 }
200 }}}

Figure 5.7: The detectableDequeue function of Detectable Queue
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variable and persisted, which indicates that an operation begins. In the retrieveDequeue
function (Figure 5.6), the effect is based on the value in the private variable. The effect
value of NoExecutedOp is returned when the value is MEM INIT VAL and NoEffect is
returned when the value is OP INIT VAL. Otherwise, HasEffect is returned. If the value
is a queue node, the next pointer of the queue node is returned. If the value is a NULL
pointer, a NULL pointer is returned.

The pseudo code of the detectableDequeue function is shown in Figure 5.7. The oper-
ation reads the first node Nf from the head pointer Ph, the next node Nn from the next
pointer of Nf , and the last node Nl from the tail pointer Pt (line 169-171). If Nf and Nl

point to the same node and Nn is NULL, which means there is only one sentinel node in
the queue, a NULL pointer is returned. For strong detectability, the NULL pointer is set
to the private variable and flushed. If Nf equals to Nl and Nn is not NULL, which means
a new node has just been appended to the last node, the operation helps by persisting Nn

and moving Pt to Nn.

201 DetectableQNode ∗ DetectableQueue : : dequeue ( ) {
202 whi le ( t rue ) {
203 DetectableQNode ∗ f i r s t = phead ;
204 DetectableQNode ∗ next = f i r s t −>next ;
205 DetectableQNode ∗ l a s t = p t a i l ;
206 i f ( f i r s t == phead ) {
207 i f ( f i r s t == l a s t ) {
208 i f ( next == NULL) {{
209 re turn NULL;}
210 f l u s h (& la s t−>next ) ;
211 CAS(&p t a i l , l a s t , next ) ;}
212 e l s e {
213 i f (CAS(& f i r s t −>deqThreadID , se l fThreadID ( ) , −1) ==

−1) {
214 f l u s h (& f i r s t −>deqThreadID ) ;
215 CAS(&phead , f i r s t , next ) ;
216 re turn next ;
217 }
218 e l s e {
219 i f ( f i r s t == phead ) {
220 f l u s h (& f i r s t −>deqThreadID ) ;
221 CAS(&phead , f i r s t , next ) ;
222 }}}}}}

Figure 5.8: The dequeue function of Detectable Queue
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If Nf and Nl point to different nodes, which means the queue is not empty, the executing
thread, called Ti, will try to set its thread ID to the deqThreadID field of Nf and move Ph

to Nn. Ti puts Nf to its private variable and persists it first. Then, Ti executs a CAS to
update the deqThreadID field of Nf to its own thread ID. If the CAS succeeds, Ti persist
the deqThreadID field, moves Ph to Nn and returns Nn, which is the dequeued node. If the
CAS fails, which means that another thread successfully updated the deqThreadID field,
Ti will retry the procedure. Ti has to write Nf to its private variable before it executes
CAS. The reason is that if Ti sleeps after a successful CAS, since a private variable can
only be accessed by its own thread, other threads can not help Ti put Nf to its private
variable. Then if a crash happens, Nf will be lost. The recovery procedure will check
every thread’s dequeue private variable to make sure the private variable only holds a node
whose deqThreadID is the variable’s owner thread. The head pointer Ph does not need to
be persisted after being updated because during recovery, Ph can be moved forward to the
first node whose deqThreadID field is -1.

I also provide a dequeue function without detectability as shown in Figure 5.8. Com-
pared to the detectableDequeue function, the code lines of storing the returned node and
persisting the private variable are removed. Since no detectability is required, the returned
node is not stored, which maybe lost after a crash. The thread cannot obtain the result of
its previous dequeue operation even if this dequeue operation was actually successful. For
a system without garbage collection, this may cause memory leak.

5.3.3 Recovery

When the computer restarts from a crash, a single recovery thread Ti is started by the
application to recover the detectable queue. Ti, which has access to all working threads’
private variables, will recover pending operations by reading the values of private variables
and setting new values to them. Then, working threads can call the retrieveEnqueue and
retrieveDequeue functions to get the effects of their previous operations and then begin
new enqueuing and dequeuing operations. Ti traverses the queue from the head pointer
and checks the value in the deqThreadID field of the current visiting node Ni. If the value
is not -1, Ti moves the head pointer to the next pointer of Ni and flushes the head pointer.
If Ni is in a thread’s enqueue private variable without the OPCOMPLETE FLG flag,
OPCOMPLETE FLG flag is set to the node pointer to indicate the enqueue operation
is complete. Then the updated value in the enqueue private variable is flushed. If Ti
reaches the tail pointer and the current node Ni’s next pointer is not NULL, the tail
pointer is moved to the next pointer of Ni and flushed to the persistent memory. After
traversing the queue, Ti visits every thread’s enqueue and dequeue private variables. For a
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node pointer without the OPCOMPLETE FLG flag in the enqueue private variable, if the
deqThreadID field of the node pointer is not -1, which means the node has been appended
to the queue and removed by another thread, OPCOMPLETE FLG is added to the node
pointer and the updated value is flushed. Because of the memory management, this node
cannot be reclaimed before crash. For a node pointer in the dequeue private variable, if
the deqThreadID field of the node pointer does not equal to the private variable’s owner
thread ID, OP INIT VAL is written to the private variable and flushed to show that the
dequeue operation does not take effect. After the recovery procedure, working threads can
get effects based on the values in their private variables.
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Chapter 6

CASWithEffect Primitive

In chapter 5, I presented how to use private variables to implement detectable persistent
data structures through a lock-free MS queue example. To make the data structure persis-
tent and detectable, several store and flush instructions are added explicitly. One difficulty
of designing a detectable MS queue is that the result of a CAS operation is in the volatile
CPU registers, which will be lost after a crash. To simplify the detectable data structure
design, I provide a synchronization primitive called CASWithEffect, which atomically ex-
ecutes a CAS operation on a shared variable and stores the effect of this CAS operation
into an auxiliary private variable.

The CASWithEffect primitive performs a CAS operation to update a target variable
with a new value and stores the effect into a specified auxiliary private variable. If a crash
happens when executing CASWithEffect, the caller process can access its private variable
to get the effect of the CAS operation after restarting. CASWithEffect takes a succeeded
effect value se and a failed effect fe value as arguments. The initial value of the private
variable is iv. Suppose process p executes CASWithEffect with an old value o and a new
value n. If the CAS operation is successful, se is put into the private variable and o is
returned. Otherwise, fe is put into the private variable and the current value in the target
variable is returned. After a crash, p reads the value from its private variable. If the value
equals to se, it means the CAS operation has successfully updated the target address. If
the value equals to fe, it means the CAS failed in updating the target address because
the old value o did not match the value in the target address. If the value equals to iv, it
means the CAS did not take effect at all. Some algorithms do not need to know the CAS
failed and they can choose not to provide the failed effect value. Then, when a CAS failed,
nothing is written to the private variable.
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Although CASWithEffect is a primitive, not a data type, it can be transformed into a
data type with state. The state for the CASWithEffect data type includes the value tv in
the target variable and the value pv[p] in the private variable belonging to process p. Then
the arguments of the CASWithEffect operation only have four arguments: the old value,
the new value, the succeeded effect and the failed effect. The sequential specification is
defined in Figure 6.1. Axiom 6.1 shows that when the old value o matches tv, the new
value n is put to the target variable and the succeeded effect se is put into the executing
process’ private variable with o being returned. Axiom 6.2 shows that when the old value
does not match tv, the failed effect fe is put into the executing process’ private variable
with tv being returned. Axiom 6.3 shows the CASWithEffectRead operation returns the
value in the target variable.

{o = tv}
[CASWithEffect(o, n, se, fe)/res(o)]

{tv′ = n ∧ pv′[p] = se}
(Axiom 6.1)

{o 6= tv}
[CASWithEffect(o, n, se, fe)/res(tv)]

{pv′[p] = fe}
(Axiom 6.2)

{true}
[CASWithEffectRead()/res(tv)]

{}
(Axiom 6.3)

Figure 6.1: Axioms for CASWithEffect

Although the effect of CAS is stored in a private variable, the difficulty of storing the
effect atomically is that the system may crash after the target variable being updated and
before the effect being stored. After restarting, the private variable can not be updated
based on the value of the target variable, because the target variable, as a shared vari-
able, may have already been updated by others before or after the crash. The Persistent
Multi-Word Compare-And-Swap (PMwCAS) algorithm can modify arbitrary words in the
persistent memory atomically and recover pending operations [36]. Based on the PMwCAS
algorithm, I design an algorithm which can atomically update a shared variable (target
variable) and a private variable, and recover pending operations.
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6.1 PMwCAS Algorithm

Wang et al.’s lock-free PMwCAS algorithm [36], by extending Harris et al.’s MwCAS al-
gorithm [19] to persistent memory, provides a mechanism to atomically modify multiple
words and recover any pending operation after a crash. As in MwCAS, PMwCAS uses
descriptors to perform atomic CAS operations on arbitrary combinations of words. There
are two types of descriptor: the word descriptor and the PMwCAS descriptor. A word
descriptor consists of one target address, the old value, and new value of that address. A
PMwCAS descriptor represents one PMwCAS operation, holding a list of word descrip-
tors. To indicate the progress of a PMwCAS operation, there is a field called status in
a PMwCAS descriptor. When a PMwCAS operation begins, the value of status becomes
“Undecided”, showing that an operation is in progress. Then the operation is divided into
two phases. The first phase is to install the PMwCAS descriptor into each target address
if the current value of the address equals the old value in the descriptor. Since PMwCAS is
lock-free, if one thread visits a memory location holding a descriptor of another thread, it
will help to complete that operation first and then execute its own operation. This ensures
that no thread is blocked. If PMwCAS uses CAS to compare the current value with the
old value and set the PMwCAS descriptor to the target address if they are equal, an ABA
problem may appear. For example, thread t1 is executing a PMwCAS operation to update
the target addresses X1 and X2 using a PMwCAS descriptor d and successfully installs d
on X1. Before t1 executes CAS to install d on X2 whose value is A, t1 is delayed. Then
other threads, reading d from X1, help to finish d’s operation by updating both X1 and
X2 to new values of d. After this, some thread performs another PMwCAS operation on
X2 and changes the value back to A. When t1 wakes up, it executes CAS successfully and
changes the value of X2 to descriptor d whose operation has already been completed. In
this situation, the new value of d may be set to X2 again. To avoid this problem, the
word descriptor of a PMwCAS descriptor is installed on a target address first. Then the
PMwCAS descriptor is installed by using CAS to check whether the target address holds
the word descriptor. In this way, even if a word descriptor w1 of a PMwCAS descriptor d is
installed incorrectly due to the ABA problem, the thread can check d’s status and change
the value back if d’s operation has already been finished.

To distinguish descriptor pointers from ordinary pointers, some of the most significant
bits of pointers are repurposed as the PMwCAS descriptor flag and word descriptor flag.
If the PMwCAS descriptor has been installed to every target address, the status becomes
“Succeeded”. Otherwise, the status becomes “Failed”, denoting that the operation fails.
After the status is determined, the second phase begins. When the status equals to “Suc-
ceeded”, the operation will use CAS to put new values into all the target addresses which
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currently store the descriptor pointer; when the status equals to “Failed”, the operation
will roll back the target addresses which hold the descriptor pointer to their old values.

A reading operation is also provided for memory locations affected by PMwCAS. If the
location stores a descriptor, the reading operation needs to help PMwCAS complete first
and then retries until the stored value is no longer a descriptor.

The recovery of PMwCAS depends on the status field of a descriptor. When a target
address holds a PMwCAS descriptor, the recovery rolls the value forward to the new value
when the status of the descriptor is “Succeeded”. When a target address holds a PMwCAS
descriptor or a word descriptor, the recovery rolls the value back to the old value when the
status is “Failed” or “Undecided”.

6.2 General CASWithEffect Algorithm

Based on the two phase updates of PMwCAS, I develop a new algorithm (General CASWith-
Effect), which atomically modifies a shared variable and private variable. Since the con-
tention is only on a shared address, General CASWithEffect only applies a descriptor
pointer to a shared address for atomicity and modifies the private address directly. In the
helping procedure, one thread helps another one only with the shared address. In this
way, compared to using PMwCAS to update two shared variables, General CASWithEf-
fect can improve performance by reducing nearly half of the overhead caused by installing
descriptors.

6.2.1 The CASWithEffect Descriptor

Now I discuss how to implement General CASWithEffect algorithm. First, I define the
CASWithEffect descriptor as shown in Figure 6.2. Since CASWithEffect only modifies one
shared variable, there is no need to define two descriptors to handle the ABA problem as
in PMwCAS. The CASWithEffect descriptor includes the shared and private addresses,
new and old values, succeeded and failed effects. As in PMwCAS, the status field, whose
initial value is Undecided, shows the result of the CAS operation. The isFEffectNeeded
field shows whether the failed effect is needed. The isPrivateValueSet field, with an initial
value of false, indicates whether the effect has been written to the private address. When
isPrivateValueSet is false, the recovery procedure will update the private variable with
the effect value for a complete CAS operation. As in PMwCAS, I use the highest bit of a
pointer to indicate whether the pointer points to a CASWithEffect descriptor, and denote
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it DESCRIPTOR FLG. In the beginning, a descriptor pool is allocated with a certain
number of descriptors. The descriptor size is calculated based on the number of working
threads. In my experiment, each thread is assigned 2000 descriptors. When executing a
CASWithEffect operation, a thread needs to get a descriptor from the descriptor pool using
the allocNewDescriptor function. After the operation being completed, the descriptor is
released by the thread. I use an epoch-based memory reclamation approach, which can
safely recycle descriptors. The memory management of this will be discussed in details in
Chapter 7.

224 c l a s s CASWithEffectDescriptor {
225 u in t 64 t ∗ shareAddr ; // the shared address
226 u in t 64 t ∗ pr ivateAddr ; // the p r i va t e address
227 u in t 64 t oValue ; // o ld value o f the shared address
228 u in t 64 t nValue ; //new value o f the shared address
229 u in t 64 t sE f f e c t ; // the e f f e c t va lue f o r a succeeded CAS
230 u in t 64 t f E f f e c t ; // the e f f e c t va lue f o r a f a i l e d CAS
231 bool i sFEf f ec tNeeded = f a l s e ;
232 u in t 64 t s t a t u s = Undecided ;
233 bool i sP r i va t eVa lueSe t = f a l s e ;}

Figure 6.2: The CASWithEffectDescriptor class.

6.2.2 The CASWithEffect Procedure

The pseudo code of the CASWithEffect function is shown in Figure 6.3 with all the needed
information as arguments including the failed effect value. I also provide another CASWith-

234 u in t 64 t CASWithEffect ( u i n t 64 t ∗ shareAddr , u i n t 64 t ∗ privateAddr ,
235 u in t 64 t oValue , u i n t 64 t nValue ,
236 u in t 64 t sE f f e c t , u i n t 64 t f E f f e c t )
237 {
238 CASWithEffectDescriptor ∗ fd = genDescr iptor ( shareAddr ,

privateAddr , oValue , nValue , sE f f e c t , f E f f e c t ) ;
239 re turn exeCASWithEffect ( fd ) ;
240 }

Figure 6.3: The CASWithEffect function for General CASWithEffect.

Effect function without the fEffect argument for callers who do not need the failed effect.
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The CASWithEffect function calls two support functions: genDescriptor and exeCASWith-
Effect. The genDescriptor function allocates a new descriptor from the descriptor pool and
sets values to its members as shown in Figure 6.4. The genDescriptor function returns the
allocated descriptor and the exeCASWithEffect function receives this descriptor to execute
a CAS operation and store its effect.

241 CASWithEffectDescriptor ∗ genDescr iptor (
242 u in t 64 t ∗ shareAddr , u i n t 64 t ∗ privateAddr ,
243 u in t 64 t oValue , u i n t 64 t nValue ,
244 u in t 64 t sE f f e c t , u i n t 64 t f E f f e c t )
245 {
246 CASWithEffectDescriptor ∗ fd = al locNewDescr iptor ( ) ;
247 fd−>shareAddr = shareAddr ;
248 fd−>pr ivateAddr = privateAddr ;
249 fd−>oValue = oValue ;
250 fd−>nValue = nValue ;
251 fd−>s E f f e c t = sE f f e c t ;
252 fd −>i sFEf f ec tNeeded = true ;
253 fd −>f E f f e c t = fE f f e c t ;
254

255 re turn fd ;
256 }

Figure 6.4: The genDescriptor function for General CASWithEffect.

The exeCASWithEffect function begins with flushing the CASWithEffect descriptor fd
to the persistent memory as shown in Figure 6.5. The operation first tries to install the
descriptor into the shared variable by using CAS to compare the old value to the current
value in that address. If the returned value is another descriptor pointer, the thread helps
to finish that descriptor’s operation by calling the persistStatusAndShareAddr function to
update and persist the operation’s status and shared variable. In the persistStatusAnd-
ShareAddr function (lines 283 - 287), the shared address with the descriptor is persisted
first so that if a crash happens, the descriptor in that address is not lost. Then, the status
is changed to Succeeded and persisted. After that, the new value is set to the shared vari-
able. The new value does not need to be persisted, because with the descriptor and status
being in the persistent memory, the recovery can guarantee the new value will be set back
to the shared variable if it is lost in the crash. After helping, the thread retries CAS until
the returned value is a regular value. If the returned regular value does not equal to the
old value, which means a lost race on the shared variable, the operation sets the status
field of fd to Failed and puts the failed effect value to the private variable of fd if needed.
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257 u in t 64 t exeCASWithEffect ( CASWithEffectDescriptor ∗ fd ) {
258 f l u s h ( fd ) ;
259 u in t 64 t i n s t a l l V a l = insta l lDescr iptorToSharedAddr ( fd ) ;
260 i f ( i n s t a l l V a l != fd−>oValue ) {
261 i f ( fd−>i sFEf f ec tNeeded ) {
262 fd−>s t a t u s = Fa i l ed ;
263 f l u s h (&fd−>s t a t u s ) ;
264 setEf fectToPr ivateAddr ( fd , fd−>f E f f e c t ) ;
265 }
266 re turn i n s t a l l V a l ;
267 }
268 pers istStatusAndShareAddr ( fd ) ;
269 setEf fectToPr ivateAddr ( fd , fd−>s E f f e c t ) ;
270 re turn fd−>oValue ;
271 }
272

273 u in t 64 t ins ta l lDescr iptorToSharedAddr ( CASWithEffectDescriptor ∗ fd ) {
274 r e t r y :
275 u in t 64 t r e t = CAS( fd−>shareAddr , fd−>oValue , fd |DESCRIPTOR FLG) ;
276 i f ( r e t & DESCRIPTOR FLG != 0) {
277 pers istStatusAndShareAddr ( r e t&(˜DESCRIPTOR FLG) ) ;
278 goto r e t r y ;
279 }
280 re turn r e t ;
281 }
282

283 void pers istStatusAndShareAddr ( CASWithEffectDescriptor ∗ fd ) {
284 f l u s h ( fd−>shareAddr ) ;
285 fd−>s t a t u s = Succeeded ;
286 f l u s h (&fd−>s t a t u s ) ;
287 CAS( fd−>shareAddr , fd , fd−>nValue ) ;
288 }
289

290 void setEf fectToPr ivateAddr ( CASWithEffectDescriptor ∗ fd , u i n t 64 t
e f f e c t ) {

291 ∗( fd−>pr ivateAddr ) = e f f e c t ;
292 f l u s h ( fd−>pr ivateAddr ) ;
293 fd−>i sP r i va t eVa lueSe t = true ;
294 f l u s h (&fd−>i sP r i va t eVa lueSe t ) ;
295 }

Figure 6.5: The exeCASWithEffect function and its dependent functions for General
CASWithEffect
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If the returned value equals to the old value, which means the descriptor is successfully
installed, the persistStatusAndShareAddr function is executed to set the new value to the
shared variable. Then the succeeded effect is set to the private variable. When updating
the private variable, the isPrivateValueSet flag needs to be set true and persisted in the
end so that the recovery procedure knows it does not need to update the private variable.

To read values from the affected shared addresses, I provide a read function as shown
in Figure 6.6. The CASWithEffectRead function checks whether the value in that address
is a descriptor. If the value is not a descriptor, the function returns this value. If it
is, the persistStatusAndShareAddr function is called for the help mechanism. Then, the
CASWithEffectRead function returns the new value in the descriptor. Normally, to avoid
inconsistency, a read operation from persistent memory is always followed by a cache
line flush to ensure that the value being read is persisted. This flush-on-read principle
[36] causes extra overhead compared to a read operation from volatile memory. In my
implementation, there is no need to flush a regular value in a read operation, because
the recovery mechanism ensures that the value of the shared variable cannot be lost in a
crash. For a private variable, the value is always in the persistent memory before being
read because there is only one thread reading and writing that address.

296 u in t 64 t CASWithEffectRead ( u in t 64 t ∗ shareAddr ) {
297 u in t 64 t r e t = ( u in t 64 t ) (∗ shareAddr ) ;
298 i f ( r e t & DESCRIPTOR FLG != 0) {
299 pers istStatusAndShareAddr ( r e t&(˜DESCRIPTOR FLG) ) ;
300 r e t = ( r e t&(˜DESCRIPTOR FLG) )−>nValue ;
301 }
302 re turn r e t ;}

Figure 6.6: The CASWithEffectRead function for General CASWithEffect

6.2.3 The Recovery Procedure

A crash can occur anytime during a CASWithEffect operation. After restarting from such
a crash, a recovery thread is started by the application to regain consistency for all pending
operations. Similar to the recovery of PMwCAS, the recovery of CASWithEffect inspects
all descriptors from the descriptor pool, and completes or aborts every in-flight operation.
After recovery is finished, other threads can begin regular CASWithEffect operations.

The recovery thread first goes through every descriptor in the descriptor pool and
processes the descriptor whose isPrivateValueSet is not true, which indicates the last
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operation is not complete. For a descriptor with Succeeded status, if the shared address
of this descriptor holds the descriptor’s pointer, the new value of this descriptor will be
assigned to the variable and flushed. Then, recovery will update and flush the private ad-
dress with the succeeded effect value. For a descriptor with the Undecided status, recovery
will check whether the shared variable holds this descriptor’s pointer. If the descriptor
pointer has already been installed in the shared address, recovery will change the status of
this descriptor to Succeeded first and recover it as a succeeded descriptor. For a descriptor
with the Failed status, recovery will put the failed effect value to the private variable and
flush it when the failed effect is needed. After updating the shared and private variables,
recovery changes the isPrivateValueSet field in the descriptor to true and flushes it. After
all descriptors are recovered, a thread can get the effect of the CAS operation based on the
value of its private variable, which may be updated by the recovery procedure to complete
a pending operation.

6.3 Fast CASWithEffect Algorithm

The General CASWithEffect algorithm manages to store the effect of one CAS operation
to a private variable and keep the effect from being lost in a crash through its recovery
mechanism. Although it only installs a descriptor on the shared variable, the procedure
of installing the descriptor first and then replacing it with the actual value causes more
overhead than using a single CAS to set the actual value. Additionally, the epoch-based
memory reclamation algorithm for recycling descriptors, which will be explained in Chap-
ter 7, incurs overhead when putting finished descriptors back to the memory pool. In
Ben-David et al.’s Recoverable CAS algorithm [6], the bookkeeping information, including
a thread ID ti and sequence number si, is stored directly in the target variable of CAS
alongside the actual value, which avoids the procedure of putting the bookkeeping data into
the variable first and then changing it to the actual value. The sequence number si belongs
to the thread ti and increases every time when ti executes a CAS operation successfully.
The bookkeeping data of ti and si indicate one specific successful CAS operation. Before
executing CAS on a target address, each thread reads the thread ID and sequence num-
ber from the target variable first. Then, it updates the status of the operation indicated
by the thread ID and sequence number in the target variable, to Succeeded. Regarding
the descriptor reclamation algorithm, Arbel-Raviv and Brown provide a descriptor reuse
algorithm in [3], which does not need recycling descriptors. In the descriptor reuse algo-
rithm, every thread is assigned its own descriptor in the beginning by the application and
uses its own descriptor to execute multiple operations on different variables. Similarly to
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the recoverable CAS algorithm, the descriptor reuse algorithm uses a sequence number
to indicate one specific operation executed by a certain thread. Inspired by the two al-
gorithms, I design an algorithm – Fast CASWithEffect, which has the same function as
General CASWithEffect but with better performance. In Chapter 9, I will compare the
performance of General CASWithEffect and Fast CASWithEffect as shown in Figure 9.1.

6.3.1 The General Idea of Fast CASWithEffect

To distinguish the CASWithEffect operation in the Fast CASWithEffect algorithm from
the operation in the General CASWithEffect algorithm, I call it FCASWithEffect. In the
Fast CASWithEffect algorithm, every thread, which is assigned a distinct descriptor in
the beginning from the descriptor pool for each shared variable, uses its own descriptor
to execute multiple FCASWithEffect operations on one particular shared variable. In the
Recoverable CAS algorithm [6], a sequence number and a thread ID are stored in the target
address alongside the actual value to allow helping threads identify a certain operation.
For most lock-free data structures, the value in the target address of a CAS operation
is a memory address, such as a queue node pointer in the MS queue. Since modern 64-
bit x86 processors implement 48 address bits [36], the higher 16 bits become vacant to
store the thread ID and sequence number. If the number of running threads is limited
to 64, the maximum number for the sequence number is 1023 (10 bits). The sequence
number will wrap around after 1024 operations, which can cause ABA problems explained
in Section 3.5.3. For some algorithms, the new values of successful CAS operations on a
certain shared variable are different. For example, a thread executes a FCASWithEffect to
insert a new queue node to a MS queue. The new value of every successful FCASWithEffect
operation executed by a thread is a newly allocated queue node. The memory management
algorithm, which will be explained in Chapter 7, makes sure the ABA problem will not
happen. Fast CASWithEffect only applies to these algorithms, in which the new value in a
CASWithEffect descriptor can indicate one particular operation for helping threads. The
lower 54 bits of the shared variable are used to store the actual value and the higher 10
bits are used to store the thread ID.

Suppose a thread T1 tries to execute a FCASWithEffect operation on a shared variable
X. Thread T1 reads a thread ID T0 and actual value v0 from X, which shows T0 successfully
updated X with value v0. Then T1 helps T0 by updating the status field of T0’s descriptor
to Succeeded using CAS. From the thread ID and shared variable address, T1 can get T0’s
descriptor because every thread has only one descriptor for one shared variable. To make
sure T1 updates the correct operation of T0, v0 is stored in the the status field of the T0’s
descriptor alongside the status value. Since the status value only needs 2 bits, the higher 62
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bits the status field become vacant to store v. Since Fast CASWithEffect only applies to
algorithms in which v0 can distinguish one particular operation of T0 for helping threads,
if the new value in the status field of T0 is not equal to v0, which means T0 has completed
the operation of v0 and started another operation, the update will fail. In this way, the
helping thread can avoid the possibility of updating a wrong operation to Succeeded for
another thread.

6.3.2 The Algorithm Details of Fast CASWithEffect

Fast CASWithEffect uses the same descriptor class as in General CASWithEffect, except
that the status field includes two pieces of information: the new value and the status
value. The pseudo-code of the FCASWithEffect function is shown in Figure 6.7, which
calls the genDescriptorForFCAS function to get the descriptor and the exeFCASWithEffect
function to execute CAS and store the effect.

303 u in t 64 t FCASWithEffect ( u i n t 64 t ∗ shareAddr , u i n t 64 t ∗ privateAddr
304 u in t 64 t oValue , u i n t 64 t nValue ,
305 u in t 64 t sE f f e c t , u i n t 64 t f E f f e c t )
306 {
307 CASWithEffectDescriptor ∗ fd = genDescriptorForFCAS ( shareAddr ,

privateAddr , oValue , nValue , sE f f e c t , f E f f e c t ) ;
308 re turn exeFCASWithEffect ( fd ) ;
309 }

Figure 6.7: The FCASWithEffect function for Fast CASWithEffect

In the genDescriptorForFCAS function(Figure 6.8), the operation descriptor is ob-
tained from the descriptor pool through the caller thread’s ID and the shared variable
address. The status field is assigned to a value combining the new value of this operation
and Undecided. Besides, the isPrivateValuesSet field, which was updated to true when
the last operation of the caller thread completed, needs to be set to false.

The pseudo-code of the exeFCASWithEffect function is shown in Figure 6.9, which
starts by persisting the descriptor pointer and reading the thread ID and actual value from
the shared variable. The executing thread first checks whether the thread ID obtained
from the shared variable is itself. If not, another thread’s descriptor is obtained and a help
procedure is called (lines 356 - 362). If another thread’s descriptor is NULL, which means
no FCASWithEffect operation has been executed on this shared variable, the helping thread
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310 CASWithEffectDescriptor ∗ genDescriptorForFCAS (
311 u in t 64 t ∗ shareAddr , u i n t 64 t ∗ privateAddr ,
312 u in t 64 t oValue , u i n t 64 t nValue ,
313 u in t 64 t sE f f e c t , u i n t 64 t f E f f e c t )
314 {
315 CASWithEffectDescriptor ∗ fd = ge tDes c r i p to r ( s e l fThreadId ( ) ,

shareAddr ) ;
316 fd−>shareAddr = shareAddr ;
317 fd−>pr ivateAddr = privateAddr ;
318 fd−>oValue = oValue ;
319 fd−>nValue = nValue ;
320 fd−>s E f f e c t = sE f f e c t ;
321 fd −>i sFEf f ec tNeeded = true ;
322 fd −>f E f f e c t = fE f f e c t ;
323 fd −>s t a t u s = <fd −>nValue , Undecided>;
324 fd −>i sP r i va t eVa lueSe t = f a l s e ;
325

326 re turn fd ;
327 }

Figure 6.8: The genDescriptorForFCAS function for Fast CASWithEffect

returns from the help procedure. In General CASWithEffect, a thread only helps when
there is a descriptor in the shared variable. In Fast DetectableCAS, to avoid unnecessary
help, the helping thread first checks whether the descriptor’s isPrivateValueSet field is
true, which means the helped operation has already been finished. If the value is not true,
the helping thread flushes the shared variable first. Then, if the old value of the help
thread’s operation equals to the actual value in the shared variable, the helping thread
will try to update the status value to Succeeded by comparing the actual value to the
corresponding values in the status field. After the help procedure completes, the executing
thread checks whether the actual value in the shared address matches the old value in the
thread’s descriptor. If not, it sets the status value of the status field to Failed, puts the
failed effect to the private variable (if needed) and returns (lines 336 - 338). If the values
match, the executing thread continues by executing a CAS, which tries to put a value
combining its thread ID and the new value to the shared variable (line 340). According
to the result of the CAS operation, the status value in the status field becomes Succeeded
or Failed. Also, a succeeded or failed effect is set to the private variable and flushed using
the same function setEffectToPrivateAddr as in General DetectableCAS.

The read operation of Fast CASWithEffect reads the thread ID T1 and actual value from
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328 u in t 64 t exeFCASWithEffect ( CASWithEffectDescriptor ∗ fd ) {
329 f l u s h ( fd ) ;
330 <oThreadId , actualValue> = ∗( fd−>shareAddr ) ;
331

332 i f ( oThreadId != se l fThreadId ( ) ) {
333 CASWithEffectDescriptor ∗ ofd = ge tDes c r i p to r ( oThreadId , fd−>

shareAddr ) ;
334 helpFastDetectableCAS ( ofd , fd , actua lValue ) ;}
335

336 i f ( actua lValue != fd−>oValue ) {
337 changeFai lStatusAndSetFEffect ( fd ) ;
338 re turn actua lValue ;}
339

340 <rThreadId , rActualValue> = CAS( fd−>shareAddr , <oThreadId ,
actualValue >, <s e l fThreadId ( ) , fd−>nValue >) ;

341 i f (<rThreadId , rActualValue> != <oThreadId , actualValue>) {
342 changeFai lStatusAndSetFEffect ( fd ) ;
343 re turn rActualValue ;}
344

345 f l u s h ( fd−>shareAddr ) ;
346 fd−>s t a t u s = <fd−>nValue , Suceeded>;
347 f l u s h (&fd−>s t a t u s ) ;
348 setEf fectToPr ivateAddr ( fd , fd−>s E f f e c t ) ;
349 re turn fd−>oValue ;}
350

351 void changeFai lStatusAndSetFEf fect ( CASWithEffectDescriptor ∗ fd ) {
352 fd−>s t a t u s = <fd−>nValue , Fai led >;
353 f l u s h (&fd−>s t a t u s ) ;
354 i f ( fd−>i sFEf f ec tNeeded ) setEf fectToPr ivateAddr ( fd , fd−>f E f f e c t ) ;}
355

356 void helpFastDetectableCAS ( DetectableCASDescr iptor ∗ ofd ,
DetectableCASDescr iptor ∗ fd , u i n t 64 t actua lVal )

357 {
358 i f ( o fd == NULL | | ofd−>i sP r i va t eVa lueSe t ) re turn ;
359 f l u s h ( ofd−>shareAddr ) ;
360 i f ( actua lVal != fd−>nValue ) re turn ;
361 CAS(&ofd−>s t a tu s , <actualVal , Undecided>, <actualVal , Suceeded>) ;
362 f l u s h (&ofd−>s t a t u s ) ;}

Figure 6.9: The exeFCASWithEffect function and its dependent functions for Fast
CASWithEffect
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a shared variable as shown in Figure 6.10. To ensure consistency, the operation persists the
shared variable after reading its value. To avoid unnecessary persists, the executing thread
checks whether T1’s operation is complete by looking up the isPrivateValueSet field int
T1’s descriptor. Since the read operation will not change the value in the shared variable,
there is no need to help T1 update its status to Succeeded. At last, the read operation
returns the actual value in the shared variable.

363 u in t 64 t FCASWithEffectRead ( u in t 64 t ∗ shareAddr ) {
364 <oThreadId , actualValue> = ∗ shareAddr ;
365 CASWithEffectDescriptor ∗ ofd = ge tDes c r i p to r ( oThreadId , shareAddr

) ;
366 i f ( o fd != NULL && ! ofd−>i sP r i va t eVa lueSe t ) {
367 f l u s h ( ofd−>shareAddr ) ;
368 }
369 re turn actua lValue ;
370 }

Figure 6.10: The FCASWithEffectRead function for Fast CASWithEffect

6.3.3 The Recovery Procedure

Similar to General CASWithEffect, after restarting, a recovery thread is started by the
application to recover every pending operation in Fast CASWithEffect. Recovery inspects
every descriptor, which was assigned to an executing thread, and processes the descriptor
whose isPrivateValueSet is not true, which indicates the last operation is not complete.
If the status of the descriptor is Succeeded, recovery will put the succeeded effect value
to the descriptor’s private variable and flush it. If the status is Undecided, recovery will
check whether the thread ID in the shared variable is the descriptor’s owner thread and
the actual value in the shared variable is the new value in the descriptor. If the values are
equal, which means the last operation successfully updated the shared variable, recovery
will put the succeeded effect value to the descriptor’s private variable and flush it. If the
status is Failed, recovery will set the failed effect to the private variable and flush it when
needed. After updating the private variable, recover changes the isPrivateValueSet field
in the descriptor to true and flush it.
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6.4 Case Studies

In this section, I provide some cases in which the CASWithEffect (FCASWithEffect) prim-
itive can be used to build some persistent data structures.

6.4.1 Recoverable CAS

A thread can tell whether its last CAS operation before a crash succeeded in updating the
target variable through the Recoverable CAS algorithm (RCAS) in [6]. As mentioned in
the beginning of Section 6.3, RCAS uses a sequence number and thread ID to indicate a
specific CAS operation. As explained in Section 6.3.1, for 64 threads, the sequence number
will wrap around after 1024 operations. If the sequence number wraps around, an ABA
problem may happen when a thread modifies the status of another thread’s operation. To
avoid using the sequence number, the General CASWithEffect algorithm can be applied
to implement RCAS. The procedure of the implementation is as follows. A thread sets an
initial value into its private variable and persists it. Then the thread calls the CASWithEf-
fect function to perform a CAS operation with a true value as the succeeded effect value.
When a crash happens during the execution, after recovery, the same thread reads the
value from its private variable. If the value equals to true, the thread’s last CAS operation
successfully updated the target address.

6.4.2 Fetch-And-Store-And-Store

Golab and Hendler’s recoverable mutex [14] uses the Fetch-And-Store-And-Store (FASAS)
[32] primitive, which atomically stores the returned value of FAS into a private variable so
that the returned value will not be lost when a crash happens. The FASAS primitive can

371 u in t 64 t FASAS( u in t 64 t ∗ sAddr , u i n t 64 t nVal , u i n t 64 t ∗ pAddr ) {
372 whi le ( t rue ) {
373 u in t 64 t oVal = CASWithEffectRead ( sAddr ) ;
374 i f ( CASWithEffect ( sAddr , pAddr , oVal , nVal , ova l ) == oval ) {
375 re turn oVal ;
376 }}}

Figure 6.11: Implementation of FAS using CASWithEffect

be implemented using CASWithEffect as shown in Figure 6.11. The FASAS begins with
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reading the current value from the shared address through CASWithEffectRead. Then it
executes CASWithEffect using the current value both as the old value and the succeeded
effect value. If the returned value of CASWithEffect equals to the current value, which
means the CAS operation successfully puts the new value into the shared variable and
the current value is set to the private variable, the FASAS returns with the current value.
If the returned value does not equal to the current value, the FASAS retries the whole
procedure by first reading another current value from the shared variable.

6.4.3 CASWithEffect Queue

In Section 5.3, I described Detectable Queue, which stores the effects of queue operations
to a thread’s private variables. In this section, I present how to simplify the algorithm of
Detectable Queue by using the CASWithEffect primitive. The queue using CASWithEf-
fect, called CASWithEffect Queue, provides the same detectability as Detectable Queue.
However, CASWithEffect Queue does not provide undetectable operations: enqueue and
dequeue. The reason is that the node pointers are processed by CASWithEffect with de-
scriptors being installed on them. A regular CAS operation cannot deal with an address
holding a descriptor pointer.

377 c l a s s CASWithEffectQNode {
378 u in t 64 t ∗ pData ;
379 CASWithEffectQNode ∗ next = NULL; } ;
380

381 c l a s s CASWithEffectQueue {
382 CASWithEffectQNode ∗ phead ;
383 CASWithEffectQNode ∗ p t a i l ;
384 bool i s S t r o n gDe t e c t a b i l i t y ;
385

386 void prepareEnqueue (CASWithEffectQNode ∗ enqNode ) ;
387 void detectableEnqueue ( ) ;
388 void retr i eveEnqueue ( u i n t 64 t ∗ e0 , u i n t 64 t ∗ e1 , u i n t 64 t ∗ a ) ;
389 void prepareDequeue ( ) ;
390 CASWithEffectQNode ∗ detectableDequeue ( ) ;
391 void ret r i eveDequeue ( u in t 64 t ∗ e0 , u i n t 64 t ∗ e1 ) ; } ;

Figure 6.12: CASWithEffect Queue classes

The classes of CASWithEffectQueue are defined as shown in in Figure 6.12. The
CASWithEffectQNode class has a data pointer and a next pointer. The CASWithEffec-
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392 void CASWithEffectQueue : : prepareEnqueue (CASWithEffectQNode ∗ node ) {
393 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (ENQUEUE) ;
394 f l u s h ( node ) ;
395 ∗pAddr = ( u in t 64 t ) node ;
396 f l u s h (pAddr ) ;}
397

398 void CASWithEffectQueue : : re t r i eveEnqueue ( u in t 64 t ∗ e0 , u i n t 64 t ∗ e1 ,
u i n t 64 t ∗ a ) {

399 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (ENQUEUE) ;
400 i f (∗pAddr == MEM INIT VAL) {
401 ∗ e0 = NoExecutedOp ;}
402 e l s e i f (∗pAddr & OPCOMPLETEFLG != 0) {
403 ∗ e0 = HasEf fect ;
404 ∗ e1 = AckResponse ;
405 i f ( i s S t r o n gDe t e c t a b i l i t y ) ∗a = ∗pAddr | ˜OPCOMPLETEFLG;}
406 e l s e {
407 ∗ e0 = NoEffect ;
408 i f ( i s S t r o n gDe t e c t a b i l i t y ) ∗a = ∗pAddr ;}
409 }

Figure 6.13: The prepareEnqueue function and retrieveEnqueue function of CASWithEf-
fect Queue

410 void CASWithEffectQueue : : detectableEnqueue ( ) {
411 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (ENQUEUE) ;
412 CASWithEffectQNode ∗ node = (CASWithEffectQNode ∗) (∗pAddr ) ;
413 whi le ( t rue ) {
414 CASWithEffectQNode ∗ l a s t = ∗ p t a i l ;
415 CASWithEffectQNode ∗ next = CASWithEffectRead(&( l a s t−>next ) ) ;

416 i f ( l a s t == ( p t a i l ) ) {
417 i f ( next == NULL) {
418 i f ( CASWithEffect(& l a s t−>next , pAddr ,NULL, node , node |

OPCOMPLETEFLG) == NULL) {
419 CAS(&p t a i l , l a s t , newNode) ;
420 re turn ;}}
421 e l s e {
422 f l u s h (& la s t−>next ) ;
423 CAS(&p t a i l , l a s t , next ) ;}}}}

Figure 6.14: The detectableEnqueue function of CASWithEffect Queue
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424 void CASWithEffectQueue : : prepareDequeue ( ) {
425 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (DEQUEUE) ;
426 ∗pAddr = OP INIT VAL ;
427 f l u s h (pAddr ) ;
428 }
429 void CASWithEffectQueue : : r e t r i eveDequeue ( u i n t 64 t ∗ e0 , u i n t 64 t ∗ e1 ) {
430 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (DEQUEUE) ;
431 i f (∗pAddr == MEM INIT VAL) {
432 ∗ e0 = NoExecutedOp ;}
433 e l s e i f (∗pAddr == OP INIT VAL) {
434 ∗ e0 = NoEffect ;
435 e l s e {
436 ∗ e0 = HasEf fect ;
437 ∗ e1 = ∗ pAddr ; }}

Figure 6.15: The prepareDequeue function and retrieveDequeue function of CASWithEffect
Queue

438 CASWithEffectQNode ∗ CASWithEffectQueue : : detectableDequeue ( ) {
439 u in t 64 t ∗ pAddr = getPrivateAddrByOpName (DEQUEUE) ;
440 whi le ( t rue ) {
441 CASWithEffectQNode ∗ f i r s t = CASWithEffectRead(&phead ) ;
442 CASWithEffectQNode ∗ next=CASWithEffectRead(&( f i r s t −>next ) ) ;
443 CASWithEffectQNode ∗ l a s t = p t a i l ;
444 i f ( f i r s t == ∗phead ) {
445 i f ( f i r s t == l a s t ) {
446 i f ( next == NULL) {
447 i f ( i s S t r o n gDe t e c t a b i l i t y ) {
448 ∗pAddr = NULL;
449 f l u s h (pAddr ) ;
450 }
451 re turn NULL;}
452 f l u s h (& la s t−>next ) ;
453 CAS(&p t a i l , l a s t , next ) ;}
454 e l s e {
455 i f ( CASWithEffect(&phead , pAddr , f i r s t , next , f i r s t ) =

= f i r s t ) re turn f i r s t ;
456 }}}}

Figure 6.16: The detectableDequeue function of CASWithEffect Queue
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tQueue class has a head pointer, a tail pointer and isStrongDetectability as in the De-
tectableQueue class. Besides, it provides six auxiliary functions required by the sequential
specification of D{queue}. However, it cannot provide enqueue and dequeue functions.

The pseudo code of the prepareEnqueue function and retrieveEnqueue function are
shown in Figure 6.13. They are the same as the two functions in the Detectable Queue
(Section 5.3). In the prepareEnqueue function, a new queue node is put into the caller
thread’s private variable and persisted. In the retrieveEnqueue function, the caller thread
reads the value from its private variable and gets the enqueue operation’s effect according
to the value.

The detectableEnqueue function uses CASWithEffect to update the next pointer of the
queue’s last node as shown in Figure 6.14. In the beginning, a new queue node is fetched
from the caller thread’s private variable to be enqueued. The operation first reads the
last node from the tail pointer and the next pointer of the last node. Because another
thread may be updating the next field of the last node using CASWithEffect, the next
field must be read through CASWithEffectRead (line 415). If the next pointer is NULL,
the operation executes CASWithEffect to update the next pointer to the new queue node
and save the succeeded effect value to the private variable (line 418). As in the Detectable
Queue, the succeeded effect value is a combined value of the data pointer in the new queue
node and the OPCOMPLETE FLG flag. If the CASWithEffect operation succeeds, the
tail pointer is moved to the new node and the operation returns. If the CASWithEffect
fails, the operation will retry the procedure from reading the last node of the queue.

The pseudo code of prepareDequeue function and retrieveDequeue function are shown
in Figure 6.15. They are the same as the two functions in the Detectable Queue (Section
5.3). In the prepareDequeue function, OP INIT VAL is set to the private variable and
persisted. In the retrieveDequeue function, the effect is based on the value in the private
variable.

The detectableDequeue function starts by getting the caller thread’s private variable
as shown in Figure 6.16. The operation reads the first node from the head pointer and
the next pointer of the first node using CASWithEffectRead because both addresses are
accessed by CASWithEffect. It also reads the last node from the tail pointer. The operation
first checks whether the queue is empty by comparing the first node to the last. If the
queue is empty, the operation returns a NULL pointer and set the NULL pointer to the
private variable for strong detectability (line 446 - 451). If the queue is not empty, a
CASWithEffect operation is executed with the head pointer as the shared variable, next
node as the new value, and first node as both the old value and the succeeded effect (line
455). If the CASWithEffect operation succeeds, the first node is returned and put into the
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caller thread’s private variable as in Detectable Queue. If it fails, the operation will retry
the procedure from reading the first node of the queue.

The CASWithEffect Queue does not need a recovery procedure because the recovery of
CASWithEffect guarantees the consistency of the queue and correct values in the private
variables. After the recovery of CASWithEffect, working threads can call retrieveEnqueue
and retrieveDequeue functions to get the effects of their previous enqueue and dequeue
operations.

In the Detectable Queue algorithm, the effects are manually stored into the private
variables and flushed to the persistent memory. The algorithm also depends on a specific
recovery procedure to recover the queue and restore effect values when a crash happens.
In the CASWithEfect Queue algorithm, the effect value is automatically written to the
private variable and persisted when the operation takes effect by using the CASWithEffect
primitive. Also, there is no need of a specific recovery for the queue. Comparing the code
lines of the two algorithms, the CASWithEffect Queue is much simpler, especially for the
detectableDequeue function. The detectableDequeue function in the Detectable Queue needs
an additional field (deqThreadID ) to mark the returned node. The detectableDequeue
function in the CasWithEffect Queue is similar to the dequeue function in MS Queue.
It replaces CAS with CASWithEffect and reading with CASWithEffectRead. To obtain
strong detectability, the detectableDequeue function also adds one flush line. Overall, it
is much easier to turn a MS queue to a persistent and detectable queue by using the
CASWithEffect primitive than using the CAS operation.
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Chapter 7

Memory Management

In this chapter, I will describe the memory management for the Detectable Queue algorithm
presented in Chapter 5 and the CASWithEffect algorithms presented in Chapter 6.

7.1 Memory Allocation

The memory manage mechanism I use to recycle the queue nodes of the Detectable Queue
and the descriptors of the General CASWithEffect algorithm is the same epoch-based
memory management algorithm explained in [36]. Both a queue node and a descriptor are
considered a memory object. All memory objects of each data type are pre-calculated and
pre-allocated as a memory pool (queue node pool or descriptor pool) from the persistent
memory by the application during initialization. Then, every memory object in the memory
pool is assigned to a thread. Each thread maintains its own free memory object list of each
data type, such as a queue node free list or a descriptor free list, and a newly allocated
object is appended to the free list of its type of a thread. Each thread only obtains the
memory objects from its own free lists to execute operations. If a thread cannot get a
memory object because there are no memory objects left in its free list, the thread will
try to reclaim the memory objects it released before. The release and reclaim of memory
objects will be explained in the next paragraphs and section 7.2.

Regarding the General CASWithEffect algorithm, all the descriptors are allocated from
the persistent memory, as a descriptor pool, at one time before any CASWithEffect opera-
tion starts based on the descriptor pool size which is passed to the application as a program
argument. Then, the allocated descriptors from the descriptor pool are assigned to each
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thread. Every thread obtains one descriptor from its own free descriptor list to execute a
CASWithEffect operation and releases the descriptor when the operation is finished. The
released descriptor will be reclaimed and reused based on the epoch-based memory recla-
mation algorithm, which will be discussed in the next session. In the Detectable Queue
algorithm, similarly to General CASWithEffect, all the queue nodes are allocated during
initialization from the persistent memory as a queue node pool based on the node size and
the nodes from this node pool are assigned to each thread. For the enqueue operation,
a thread obtains one queue node from its free queue node list and appends this node to
the queue. For the dequeue operation, a thread gets the first node from the queue-node
linked list of a non-empty queue and releases this queue node, which will be reclaimed
and appended into the dequeue thread’s free queue node list using the same epoch-based
memory reclamation algorithm.

The memory management of Fast CASWithEffect is different from Detectable Queue
or General CASWithEffect. A CASWithEffect descriptor is allocated from the persistent
memory for every thread and every shared variable. Each thread will use its own descriptor
to execute multiple Fast CASWithEffect operations on one particular shared variable. For
example, for thread t and shared variable s, a descriptor, denoted desc[t][s], is allocated
to t during the initialization of the application. Then, thread t will keep using desc[t][s] to
execute operations of Fast CASWithEffect on s. Therefore, there is no need for memory
reclamation for descriptors in the Fast CASWithEffect algorithm.

7.2 Memory Reclamation

For the Detectable Queue or General CASWithEffect algorithm, a thread will release a
memory object, such as a queue node or a descriptor, when an operation (dequeue or
CASWithEffect) finishes. However, the released object cannot be appended to the releasing
thread’s free memory object list because other threads may dereference a pointer to the
released object. Therefore, every thread maintains a garbage memory object list of each
data type and puts a released memory object to its own garbage list, such as a garbage
descriptor list or a garbage queue node list. A thread will remove a released memory object
from its garbage list and append this object to its free list when there is no other thread
dereferencing this object’s pointer. I use an epoch-based memory reclamation algorithm
[36] to safely reclaim released memory objects. In the epoch-based algorithm, there is a
global epoch value for each data type (the queue node or descriptor), called the current
epoch value. The current epoch value of a certain data type has an initial value, which is
1, and will be incremented by a thread which has fewer free memory objects of this type
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than some threshold value. For example, after some enqueue and dequeue operations, if a
thread finds the size of its free queue node list is less than 10000 (the threshold value), it will
increment this current epoch value to 2. The current epoch value is a shared variable which
can be modified by multiple threads. Each thread uses an atomic operation to increment
the current value. Besides the global current epoch value, every thread maintains its own
epoch value for each data type. When a thread T begins to execute some operations which
will use a memory object of type D, this thread sets the current global epoch value E of
D to its own epoch value of ET . When T finishes these operations, it sets ET to ⊥. A
released object r of type D also has its own epoch value, called the removal epoch value Er.
When r is released by some thread, the releasing thread sets the current global epoch value
of D to r’s removal epoch Er. A released memory object r can only be reclaimed when
each thread’s epoch value is either ⊥ or greater then Er, which means that no thread can
dereference a pointer to this object. For example, suppose that the current epoch value of
the queue node type is 1. Both thread T1 and T2 begin a dequeue operation and set their
epoch values to the current epoch value 1. Then, T1 dequeues a node N1 and releases this
node, whose removal epoch value is set to 1. T1 finishes its dequeue operation and sets its
epoch value to ⊥. N1 cannot be released because its removal epoch value is equal to T2’s
epoch value, which means that T2 may dereference the pointer to N1. When T2 finishes its
dequeue operation, T2 sets its epoch value to ⊥. Now N1 can be safely reclaimed by T1
because T2 and T1’s epoch values are ⊥, which means it is impossible for either thread to
dereference N1’s pointer.

7.3 Memory Recovery

As explained in Chapter 6, the recovery of CASWithEffect goes through every descriptor
from the descriptor pool, and may roll back or roll forward a CASWithEffect operation
based on the status of each descriptor as explained in Section 7.1. After the recovery of
CASWithEffect, the old descriptor pool can be cleared. Then a new descriptor pool is
generated from the persistent memory and initialized to replace the current one. Also, the
global current epoch value of the descriptor is set 1.

In the Detectable Queue algorithm, as shown in Section 5.3, the recovery of the queue,
which is started after a crash by a single recovery thread Tr, makes sure the queue is in a
consistent status and the values in the private variables correctly represent the status of
each thread’s last operation. After the recovery of the queue, Tr will start the recovery
of queue node memory. Tr will go through every queue node in the node memory pool
from the persistent memory. If a queue node n is the linked list of the queue, n cannot
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be appended to any thread’s free node list. If n is in one thread’s private variable or n is
the next pointer of the queue node in one thread’s dequeuing private variable, n cannot
be appended to any thread’s free node list. Otherwise, n can be appended to a thread’s
free node list with its original data being cleared. Besides, if n is not in the queue or in
any thread’s private variables, and n is the next pointer of the node in a dequeuing private
variable belonging to thread Td, n will be put to Td’s garbage list with its removal epoch
value being set to 1. The reason for this is that n is the actual dequeued node for Td, which
cannot be put to any thread’s free node list. Then, Tr will set 1 to the global current epoch
value and each working thread’s epoch value to make sure that any node which is possible
to be dereferened by a working thread will not be recycled. Then, working threads can get
the effects of their last invoked enqueue or dequeue operations and begin their operations.
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Chapter 8

Correctness

In this chapter, I will present the analysis of safety and liveness for the Detectable Queue
algorithm (Section 5.3).

8.1 Correctness Properties of Detectable Queue

8.1.1 Proof of Safety

In this section, I will prove that Detectable Queue satisfies strict linearizability (Definition
3.2).

First, I define linearization points for each operation in Detectable Queue (Figure
5.1): prepareEnqueue, detectableEnqueue, enqueue, retrieveEnqueue, prepareDequeue, de-
tectableDequeue, dequeue and retrieveDequeue.

Definition 8.1. The linearization point of the prepareEnqueue operation is at line 81.

Definition 8.2. The linearization points of the detectableEnqueue operation and the
enqueue operation are defined as follows:

1. If the CAS operation (line 91 and 130) succeeds and the new value of the next pointer
of the last node has been flushed to the persistent memory at line 92, 98, 131, 135, 181
and 210, the linearization points of the detectableEnqueue and enqueue operations
are at line 91 and 130 respectively. Otherwise, there are no linearization points.
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Definition 8.3. The linearization point of the retrieveEnqueue operation is at line 121
where the operation returns.

Definition 8.4. The linearization point of the prepareDequeue operation is at line 140.

Definition 8.5. The linearization points of the detectableDequeue and dequeue operation
are defined as follows:

1. If the CAS operation (line 188 and 213) succeeds and the value of the deqThreadID
field has been flushed into the persistent memory at line 189, 195, 214 or 220, the
linearization points of the detectableDequeue operation and dequeue operation are
at line 188 and 213 respectively.

2. If the detectableDequeue operation flushes the value in the private variable at line
177 (strong detectability) or returns NULL at line 179 (weak detectability), the
linearization point of the detectableDequeue operation is at line 171.

3. If the dequeue operation return NULL at line 209, the linearization point of the
dequeue operation is at line 205.

4. Otherwise, there is no linearization point of detectableDequeue or dequeue.

Definition 8.6. The linearization point of the retrieveDequeue operation is at line 164
where the operation returns.

To prove linearizability of Detectable Queue, for each history H of Detectable Queue,
which is composed of enqueuing operations, dequeuing operations and crash events, I define
a candidate linearization history L(H) which is constructed as follows.

1. For every pending operation in H, if the linearization point exists according to Defi-
nition 8.1 to 8.6, add the matching response before the next crash event (if any) or
in the end if no such crash event exists. The definitions of the linearization points
show that every operation takes effect before a crash.

The matching response is added as follows.

(a) For the detectableEnqueue, enqueue, prepareEnqueue and prepareDequeue oper-
ations, since the returned type is void, the matching response is an acknowl-
edgement response.

68



(b) For the retrieveEnqueue and retrieveDequeue operations, since the linearization
point is where the operation returns, the response is already known when the
linearization point is reached, and that exact response is used in the construction
of L.

(c) For the detectableDequeue operation, if the operation reaches line 177 (strong
detectability) or line 179 (weak detectability), the matching response event re-
turns NULL, which is the only possible returned value.

(d) For the dequeue operation, if the operation reaches line 209, the matching re-
sponse event returns NULL, which is the value returned at this line.

(e) For the detectableDequeue operation, if the operation linearizes at line 188, the
matching response returns the next pointer of the first node, which is the only
possible returned value computed earlier at line 170.

(f) For the dequeue operation, if the operation linearizes at line 213, the matching
response returns the next pointer of the first node, which is the only possible
returned value computed earlier at line 204.

2. Remove pending operations which do not have linearization points and crash events
in H.

3. Arrange the remaining operations in H in the chronological order based on the times-
tamp of the linearization point of each operation, which makes a sequential history
L.

According to the definitions of linearization points, all linearization points happen be-
tween an operation’s invocation and response. Furthermore, the linearization points
of an operation executed by process p is an instruction taken by p inside that oper-
ation. These two observations imply that all linearization points are distinct.

Now, I will prove that Detectable Queue implements D{FIFO Queue} (Section 4.3)
based on the model explained in Section 3.5.2.

The representation value r of Detectable Queue contains the cache and persistent value
of a linked node list, a head pointer and a tail pointer of the linked node list (Figure 5.1).
Besides these values, r also includes the cache and persistent values of private variables
for every executing process. For process p executing enqueuing, the value of the private
variable is denoted r.pAddr[p][enq] and for p executing dequeuing is denoted r.pAddr[p][deq]
in this proof.
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The rep invariant I(r) is shown in Figure 8.1. I define the function getHeadPointer and
getTailPointer to get the head and tail pointer of the linked list respectively. Both the
head and tail pointers must not be NULL pointers. I define the function isTailReachable-
FromHead to return true if the node referenced by the tail pointer is reachable from the
node referenced by the head pointer through the next pointer of each node and return false
otherwise. The getLastNode function is defined to get the last node whose next pointer is
a NULL pointer by iterating over the linked list from the head pointer through the next
pointer of each node. If there is no such node, the getLastNode function returns a NULL
pointer. In the dequeuing operation of Detectable Queue (Section 5.3.2), a queue node is
marked as removed when a dequeuing process set its process identifier to the deqThreadID
field of the queue node. I define the areMarkedRemovedNodesConsecutive function to re-
turn true if the marked removed nodes, whose deqThreadID field is not -1, are consecutive
nodes from the head pointer and false otherwise. Also, the node referenced by the tail
pointer cannot be a marked removed node.

I(r) = getHeadPointer(r) 6= NULL

∧getTailPointer(r) 6= NULL

∧isTailReachableFromHead(r)

∧getLastNode(r) 6= NULL

∧areMarkedRemovedNodesConsecutive(r)

∧getPointedNode(r.ptail ).deqThreadID = −1

Figure 8.1: The rep invariant I(r) of Detectable Queue.

The abstract value of D{FIFO Queue} is denoted d{q}. According to the sequential
specification of D{FIFO Queue} defined in Section 4.3, d{q} contains the value of FIFO
Queue, denoted q. Also, for an enqueuing operation executed by process p, d{q} contains a
status value S[p][enq] and an argument value ARG[p][enq] while for a dequeuing operation
executed by p, d{q} contains a status value S[p][deq] and a returned value R[p][deq].

The abstraction function A(r), which maps r to d{q}, is shown in Figure 8.2. There are
two functions in A(r): the seq(q) function and the queueNodeSeq(r) function. The seq(q)
function is defined to return the sequence of queue elements of q. The queueNodeSeq(r)
function for r is defined as follows.

1. The function traverses the linked list from the head pointer until finding a node n
such that n has not been flushed at line 189, 195, 214 or 220, or the deqThreadID
field of n is -1. The next pointer of n is the beginning node, denoted n1.
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2. If n1 is not a NULL pointer, the function continues traversing the linked list and
ends at the node which has not been flushed at line 92, 98, 131, 135, 181 or 210, or
the node whose next pointer is NULL. This ending node is denoted n2.

3. If n1 is a NULL pointer, queueNodeSeq(r) will return an empty set.

4. If n1 is not a NULL pointer, queueNodeSeq(r) will return the sequence of nodes
discovered from n1 to n2 (inclusive). The order of the nodes in the linked list of r is
preserved in queueNodeSeq(r).

To map r to S[p][enq] and ARG[p][enq], the getEnqStatusFromPAddr function and
getEnqArgFromPAddr function are defined for r as follows.

Let v denote the value of r.pAddr[p][enq] in the persistent memory.

1. If v is a node pointer with flag OPCOMPLETE FLG or if p’s program counter is be-
tween line 92 and 94 inclusive of a detectableEnqueue operation that has already taken
effect, getEnqStatusFromPAddr returns END DECT OP and getEnqArgFromPAddr
returns v without flag OPCOMPLETE FLG.

2. Else if v is MEM INIT VAL, both getEnqStatusFromPAddr and getEnqArgFromPAddr
return ⊥.

3. Otherwise, the function getEnqStatusFromPAddr returns BEGIN DECT OP and the
function getEnqArgFromPAddr returns v.

To map r to S[p][deq] andR[p][deq], getDeqStatusFromPAddr and getDeqRetValFromPAddr
are defined for r as follows.

Let v denote the value of r.pAddr[p][deq] in the persistent memory.

1. If v is MEM INIT VAL, both getDeqStatusFromPAddr and getDeqRetFromPAddr
return ⊥;

2. Else if v is a queue node (not a NULL pointer) whose deqThreadID in the persistent
memory is not equal to p, getDeqStatusFromPAddr returns BEGIN DECT OP and
getDeqRetValFromPAddr returns ⊥.

3. Else if v is a queue node (not a NULL pointer) whose deqThreadID in the persis-
tent memory is equal to p, getDeqStatusFromPAddr returns END DECT OP and
getDeqRetValFromPAddr returns the next pointer of the queue node.
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4. Else if v is a NULL pointer, getDeqStatusFromPAddr returns END DECT OP and
getDeqRetValFromPAddr return NULL.

5. Otherwise, getDeqStatusFromPAddr returns BEGIN DECT OP and getDeqRetVal-
FromPAddr returns ⊥.

A(r) = {d{q}|seq(q) = queueNodeSeq(r)

∧d{q}.S[p][enq] = getEnqStatusFromPAddr(r.pAddr[p][enq])

∧d{q}.ARG[p][enq] = getEnqArgFromPAddr(r.pAddr[p][enq])

∧d{q}.S[p][deq] = getDeqStatusFromPAddr(r.pAddr[p][deq])

∧d{q}.R[p][deq] = getDeqRetV alFromPAddr(r.pAddr[p][deq])}

Figure 8.2: The abstraction function A(r) of Detectable Queue to D{FIFO Queue}.

Lemma 8.1. For each finite history H of Detectable Queue, s(H) (Figure 3.5.3) holds; for
the candidate linearization history L constructed from H, L is legal and A(r) = SLin(L).

Proof. I proceed by induction on the length of the history H. IH is defined as a shorthand
for “induction hypothesis”.

Basis: |H| = 0. Since H is empty, L is the same as H. At initialization, the head
pointer and tail pointer of Detectable Queue r point to a sentinel node whose next
pointer is NULL. This sentinel node is also the last node of the linked list. The
initial value of deqThreadID of the sentinel node is −1. Therefore, I(r) holds. For
the queueNodeSet(r) function in A(r), since the next pointer of the sentinel node is
NULL, it returns an empty sequence, which is the initial value of a FIFO queue. All
the other four functions in A(r), which map r to the values of the status, argument
and returned-value variables of DetectableT, return ⊥ since the values in the private
variable are MEM INIT VAL. According to Section 4.3, the initial values for the
status, argument and returned values are ⊥. Therefore, the sole element of A(r) is a
strict linearized value of L. The statement s(H) holds and A(r) is equal to SLin(L).

Induction step: For any i ∈ N, suppose that s(H) holds when |H| = i, and consider
|H ′| = i+ 1. H ′ is a history including H and another event e as the i+ 1 event. The
representation value of H ′ is denoted r′. Accordingly, the candidate linearization
history of H ′ is denoted L′.
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The event e must be an event of Detectable Queue r, an event of D{FIFO Queue}
or a crash event.

If e is an event of Detectable Queue, according to the model (Section 3.5.2) for
representation operations, there is only one event for each operation. Then, the
event e must be generated by a certain line of the pseudo code of Detectable Queue.
The statement s(H ′) holds directly by IH if r = r′ and L = L′. Suppose e is executed
by process p. I perform the analysis by each code line which changes r including the
head pointer, tail pointer, linked list and private variables of the executing process
p.

If a crash event happens after an operation of Detectable Queue takes effect, I will
prove that s(H ′) holds after recovery.

Case A: e is an event of Detectable Queue.

Line 80: At line 80, a new queue node n is set into the enqueuing private variable of
p. Based on Definition 8.1, the prepareEnqueue operation does not take effect at
this line, which means there is no change of L′ from L or change of SLin(L′) from
SLin(L). Since the value in the private variable has not been flushed, there is no
change of A(r′) from A(r). Also, because this step does not affect the representation
invariant, I(r′) follows from I(r). Therefore, the statement s(H ′) follows directly
from s(H), which means that s(H ′) holds and A(r′) is equal to SLin(L′).

Line 81: At line 81, the new queue node n in the enqueuing private variable of p is flushed.
Based on Definition 8.1, the prepareEnqueue operation takes effect at this line. Then,
L′ is an extension of L by one prepareEnqueue operation with an argument n. Since
prepareEnqueue has a trivial response (void response), the linearizability of L′ follows
from the linearizability of L. According to Axiom 4.7 of D{FIFO Queue}, SLin(L′)
changes from SLin(L) with BEGIN DECT OP as the status value and n as the
argument value for p. Since the value in the enqueuing private variable is flushed,
A(r′) changes from A(r) with BEGIN DECT OP being returned as the status value
and n being returned as the argument value for p. The change of SLin(L′) is the same
as the change of A(r′). Therefore, A(r) being equal to SLin(L) implies that A(r′) is
equal to SLin(L′). Since this step does not affect the representation invariant, I(r′)
follows I(r) and holds. Then the statement s(H ′) holds.

Line 91 and 130: At line 91 and 130, p tries to use CAS to put a new node n to the next
pointer of the last node nl, which is read from the tail pointer at line 87 and 126, when
the next pointer of nl is NULL. According to Definition 8.2, the enqueuing operation
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takes effect at line 91 and 130 if the CAS operation at line 91 and 130 succeeds and
the new value of the next pointer of nl has been flushed to the persistent memory.
Even if the CAS operation at line 91 and 130 succeeds, the new value of the next
pointer of nl has not been flushed yet. Therefore, there is no change of L′ from L or
change of SLin(L′) from SLin(L).

If the CAS operation fails, the next pointer of nl has not been modified and the
statement s(H ′) follows directly from s(H). If the CAS operation succeeds, r′ changes
with n, whose next pointer is NULL, being appended to the linked list. Since the
value in the next pointer of nl has not been flushed, the function queueNodeSeq ends
at nl and n will not be returned in the node sequence. Since the node n is not
included in the returned node sequence, which means n has not been enqueued, the
returned value of queueNodeSeq for A(r) and A(r′) is the same.

The getEnqStatusFromPAddr of A(r′) returns BEG DECT OP as the status value
and getEnqArgFromPAddr of A(r′) returns n as the argument value. The two re-
turned values are the same as the status value and argument value after line 80 being
executed which was analyzed above. Therefore, there is no change of A(r′) from
A(r). From A(r) being equal to SLin(L), A(r′) is equal to SLin(L′). For I(r′), this
change of r only affects the getLastNode function, which will return n. Because n is
not NULL, I(r′) holds. Then the statement s(H ′) holds.

Line 92, 98, 131, 135, 181 and 210: At line 91 and 130, process p1 successfully puts a
new node n to the next pointer of the last node nl (defined at line 87, 126, 171 205)
by using CAS, and at line 92, 98, 131, 135, 181 or 210, process p flushes the value in
the next pointer of nl. For the execution of line 92 and 131, p is equal to p1.

Since this flush step does not affect the representation invariant, I(r′) follows from
I(r). Based on Definition 8.2, the enqueuing operation of p1 takes effect at line 91
and 130 if the CAS operation at line 91 and 130 succeeds, and the value in the next
pointer of nl is flushed at line 92, 98, 131, 135, 181 or 210. Then, L′ has one more
enqueuing operation (with the argument n), denoted op, executed by p1 than L,
which takes effect at line 91 or 130. The enqueuing operation has a trivial response
(void response).

After process p1 successfully puts the new node n to the next pointer of nl at line
91 and 130, the value of the next pointer is flushed by p1 and helping processes at
line 92, 98, 131, 135, 181 and 210. Then, the tail pointer is moved to n by p1 and
helping processes at line 95, 99, 132, 136, 182 and 211 using CAS. Other enqueuing
processes will read the last node from the tail pointer at line 87 and 126, then they
will try to put their nodes to the next pointer of the last node at line 91 and 130
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using CAS. Only after the tail pointer is moved to n, which means op has already
taken effect, it is possible for another enqueuing process to successfully put its queue
node to the next pointer of n. Therefore, for the history L′, op must be the last
enqueuing operation.

The node referenced by the head pointer is denoted nf . After process p1 successfully
put the new node n to the next pointer of nl at line 91 and 130, for a dequeuing
process pd, if nl and nf are the same node, since the next pointer of nl is not a NULL
pointer, pd will help op take effect first by flushing the value of the next pointer of
nl at line 181 and 210. Then pd will move the tail pointer to n at line 182 and 211
using CAS and try to get a dequeued node again by reading the value from the tail
pointer at line 171 and 205. Therefore, for the history L′, op does not precede any
dequeuing operation that returns a NULL pointer at line 176 and 209. If nf and nl
are different nodes, pd will try to get a dequeued node from nf , which can not be
n. Therefore, for the history L′, op does not precede any dequeuing operation that
returns n. The linearizability of L′ follows from the linearizability of L.

Since op with an argument n is the last enqueuing operation in L′ and n cannot be
dequeued within L′, according to Axiom 3.1, SLin(L′) changes from SLin(L) with
a queue element sequence including n as the last node. According to Axiom 4.8,
for detectableEnqueue, SLin(L′) also changes from SLin(L) with END DECT OP
as p1’s status value and n as p1’s argument.

The change of A(r′) from A(r) is as follows. Because the next pointer of nl has
been flushed at line 92, 98, 131, 135, 181 or 210, the traversal of the linked list in
the function queueNodeSeq of A(r′) passes nl. Since the next pointer of n has not
been flushed or is a NULL pointer, the traversal ends at n, which is the ending node.
Therefore, queueNodeSeq returns a sequence of nodes ending with n.

For detectableEnqueue, after p executing line 92, 98, 131, 135, 181 or 210, the pro-
gram counter of p1 is possibly at line 92 or 93. Since the detectableEnqueue operation
executed by p1 has already taken effect, getEnqStatusFromPAddr of A(r′) returns
END DECT OP as the status value for p1, and getEnqArgFromPAddr of A(r′) re-
turns n as the argument value for p1. Therefore, the change of SLin(L′) is the same
as the change of A(r′) and A(r) being equal to SLin(L) implies that A(r′) is equal
to SLin(L′). The statement s(H ′) holds.

Line 93 and 94: At line 93, p sets the OPCOMPLETE FLG flag to the value in its en-
queuing private variable. Since the detectableEnqueue operation executed by p has
already taken effect, there is no change of L′ from L or SLin(L′) from SLin(L).
Since the program counter of p is at line 94 after line 93 and 94 being executed,
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and detectableEnqueue has already taken effect, getEnqStatusFromPAddr returns
END DECT OP as p’s status value, and getEnqArgFromPAddr returning n as p’s
argument value. Therefore, there is no change of A(r′) from A(r). From A(r) being
equal to SLin(L), A(r′) is equal to SLin(L′). Since this step does not affect the
representation invariant, I(r′) follows from I(r). Then the statement s(H ′) holds.

At line 94, p flushes the value in the private variable, which has the OPCOM-
PLETE FLG flag. The analysis for this line is similar to line 93. After this line
being executed, the value in the private variable is in the persistent memory. Then
getEnqStatusFromPAddr returns END DECT OP as p’s status value, and getEn-
qArgFromPAddr returns n as p’s argument value. Therefore, there is no change of
A(r′) from A(r). Since this step does not affect the representation invariant, I(r′)
follows from I(r). Therefore, the statement s(H ′) follows directly from s(H).

Line 95, 99, 132, 136, 182 and 211: At these lines, p tries to use CAS to move the tail
pointer to the new queue node n (defined at line 85 and 123) which was appended to
the linked list. Since the enqueuing operation has taken effect before this line, there
is no change of L′ from L or SLin(L′) from SLin(L). If this CAS operation fails,
the tail pointer has not been modified and the statement s(H ′) follows directly from
s(H). If this CAS succeeds, the tail pointer points to n. There is no change of A(r′)
from A(r). From A(r) being equal to SLin(L), A(r′) is equal to SLin(L′). For I(r′),
because n is not NULL, getTailPointer does not point to a NULL pointer. Since n
has been appended to the linked list, n is reachable from the head pointer through
the next pointer of the node in the linked list. Then, I(r′) holds and the statement
s(H ′) holds.

Line 96 and 133: At line 96 and 133, the enqueueing operation returns without any
returned value. Since the enqueuing operation has a trivial response, the statement
s(H ′) follows directly from s(H).

Line 107 to 121: The retrieveEnqueue operation is invoked by process p to get the effect
of p’s last detectableEnqueue operation.

According to Definition 8.3, the retrieveEnqueue takes effect at line 121. Then,
L′ is an extension of L by one retrieveEnqueue operation with a response. The
MEM INIT VAL value used in Detectable Queue is mapped to ⊥ used in D{FIFO
Queue}. The value of r.pAddr[p][enq] is not modified during the execution of line
107 to 121. Based on the value of r.pAddr[p][enq], different values are returned at
line 121.
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When the value in r.pAddr[p][enq] is MEM INIT VAL, NoExecutedOp is returned
as the effect value, and the memory initial value is returned both as the returned
value and argument value at line 121. In this case, getEnqStatusFromPAddr of A(r′)
returns ⊥ as the status value. When the status value is ⊥, based on Axiom 4.11, the
response of retrieveEnqueue includes NoExecutedOp as the effect value, ⊥ as both
the returned value and argument value.

When the value in r.pAddr[p][enq] is a queue node with flag OPCOMPLETE FLG,
HasEffect, AckResponse and the enqueued node are returned as the effect value, re-
turned value and argument value at line 121. In this case, getEnqStatusFromPAddr
of A(r) returns END DECT OP as the status value. When the status value is
END DECT OP, based on Axiom 4.10, the response of retrieveEnqueue includes
HasEffect, AckResponse and the enqueued node as the effect value, returned value
and argument value.

When the value in r.pAddr[p][enq] is a queue node without flag OPCOMPLETE FLG,
NoEffect, the memory initial value and the enqueued node are returned as the effect
value, returned value and argument at line 121. In this case, getEnqStatusFromPAddr
of A(r) returns BEG DECT OP as the status value. When the status value is BE-
GIN DECT OP, based on Axiom 4.9, the response of retrieveEnqueue includes No-
Effect, ⊥ and the enqueued node are returned as the effect value, returned value and
argument value.

Therefore, the response at line 121 is the same as the response defined in the sequen-
tial specification of D{FIFO Queue}, which means the history L′ is legal. There is
no change from SLin(L′) from SLin(L). Also, there is no change of A(r′) from A(r)
or I(r′) from I(r). Therefore, s(H ′) follows directly from s(H).

Line 139: At line 139, OP INIT VAL is set into the dequeuing private variable of p.
Based on Definition 8.4, the prepareDequeue operation does not take effect at this
line, which means L′ is equal to L and SLin(L′) is equal to SLin(L). Since the value
in the private variable has not been flushed, there is no change of A(r′) from A(r).
Also, because this step does not affect the representation invariant, I(r′) follows from
I(r). Therefore, the statement s(H ′) follows directly from s(H), which means that
s(H ′) holds and A(r′) is equal to SLin(L′).

Line 140: At line 140, the value in the dequeuing private variable is flushed. Based on
Definition 8.4, the prepareDequeue operation takes effect at this line. Then, L′ is an
extension of L by one prepareDequeue operation. Since prepareDequeue has a trivial
response (void response), the linearizability of L′ follows from the linearizability of
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L. According to Axiom 4.19 of D{FIFO Queue}, SLin(L′) changes from SLin(L)
with BEGIN DECT OP as the status value and ⊥ as the returned value for p. Since
the value in the dequeuing private variable is flushed, A(r′) changes from A(r) with
BEGIN DECT OP as the status value and ⊥ as the returned value for p. The
change of SLin(L′) is the same as the change of A(r′). Therefore, A(r) being equal
to SLin(L) implies that A(r′) is equal to SLin(L′). Since this step does not affect
the representation invariant, I(r′) follows I(r) and holds. Then the statement s(H ′)
holds.

Line 171 and 205: At line 171, p reads the last node of the linked list, which is referenced
by the tail pointer, and puts it into a variable called last. According to Definition
8.5, the dequeuing operation takes effect at line 171 and 205 if for detectableDequeue,
p flushes the value in the private variable at line 177 (strong detectability) or returns
NULL at line 179 (weak detectability), and for dequeue, p returns NULL at line 209.
After the execution of line 171 and 205, neither of these conditions in the definition
of the linearization point is satisfied. Therefore, L′ is equal to L and SLin(L′) is
equal to SLin(L). There is no change of A(r′) from A(r) or I(r′) from I(r). The
statement s(H ′) follows directly from s(H).

Line 176: At line 176, a NULL pointer is set to the dequeuing private variable by process
p when the head and tail pointers point to the same node and the next pointer
of the node is NULL (checked at line 173 and 174). According to Definition 8.5,
detectableDequeue executed by p takes effect at line 171 if p flushes the value in the
private variable at line 177 (strong detectability) or returns NULL at line 179 (weak
detectability). After the execution of the current line, neither of these conditions in
the definition of the linearization point is satisfied. Therefore, there is no change of
L′ from L or SLin(L′) form SLin(L). Also, since the value in the private variable
has not been flushed to the persistent memory, A(r′) returns BEGIN DECT OP as
the status value and ⊥ as the returned value for p. There is no change of A(r′) from
A(r). From A(r) being equal to SLin(L), A(r′) is equal to SLin(L′). Since this
step does not affect the representation invariant, I(r′) follows from I(r). Then the
statement s(H ′) holds.

Line 177: At line 177, the NULL pointer in the dequeuing private variable is flushed to
the persistent memory by process p. Since this step does not affect the representa-
tion invariant, I(r′) follows I(r) and holds. From Definition 8.5, detectableDequeue
executed by p takes effect at line 171 if the value in the private variable is flushed at
the current line. Then, L′ has one more detectableDequeue operation with a match-
ing response executed by p than L, which takes effect at line 171. Based on the
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construction of the candidate linearization history, the matching response is a NULL
pointer.

After the execution of line 171 (the linearization point), p has read the first node f of
the linked list through the head pointer, the next pointer fn of f and the last node
l through the tail pointer. The representation value after line 171 being executed is
denoted r′′. The node f and l are the same node and fn is NULL (checked at line
173 and 174 respectively). From the I(r′′), the deqThreadID of the node referenced
by the tail pointer is -1. Therefore, the deqThreadID of f is -1. From the definition
of queueNodeSeq in the A(r′′), according to clause 1, queueNodeSeq(r′′) transverses
the linked list from f and stops at f since the deqThreadID of f is -1. Then,
fn becomes the beginning node. Since fn is a NULL pointer, according to clause
3, queueNodeSeq(r′′) will return an empty sequence, which indicates the queue is
empty. In this case, according to Axiom 3.3, the response is a NULL pointer. Since
this added dequeuing operation does not modify the state of queue, the linearizability
of L′ follows from the linearizability of L and L′ is a legal history. According to Axiom
4.20, when the queue is empty, SLin(L′) changes from SLin(L) with END DECT OP
as p’s status value and a NULL pointer as p’s returned value. Since the value in the
dequeuing private variable is flushed, A(r′) changes from A(r) with END DECT OP
as the status value and the NULL pointer as the returned value for p. The change of
SLin(L′) is the same as the change of A(r′). Therefore, A(r) being equal to SLin(L)
implies that A(r′) is equal to SLin(L′). Then the statement s(H ′) holds.

Line 179 (Strong Detectability): At line 179, detectableDequeue returns a NULL pointer.
From Definition 8.5, the dequeuing operation has already taken effect before this line
being executed. There is no change of L′ from L or change of SLin(L′) from SLin(L).
Also, there is no change of A(r′) from A(r) or I(r′) from I(r). The statement s(H ′)
follows directly from s(H). From the analysis of line 177, the matching response
added to L is a NULL pointer, which is the same response returned at this line.

Line 179 (Weak Detectability) and 209: After the execution of line 171 and 205, p
has read the first node f of the linked list through the head pointer, the next pointer
fn of f and the last node l through the tail pointer. When f and l are the same node,
and fn is NULL (checked at line 173, 174, 207 and 208), according to the analysis of
line 177, it indicates the queue is empty after line 171 and 205 being executed. The
representation variable after line 171 and 205 being executed is denoted r′′. Then, a
NULL pointer is returned at line 179 and 209.

From Definition 8.5, the dequeuing operation takes effect at line 171 and 205 if p
returns NULL at line 179 (weak detectability) and at line 209. Then, L′ has one more
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dequeuing operation with a NULL pointer as response executed by p than L, which
takes effect at line 171 and 205. When the queue is empty for r′′, according to Axiom
3.3, the response is a NULL pointer. Since this added dequeuing operation does not
modify the state of queue, the linearizability of L′ follows from the linearizability of
L and L′ is a legal history. According to Axiom 3.3 and Axiom 4.20, there is no
change of SLin(L′) from SLin(L). Also, there is no change of A(r′) from A(r) or
I(r′) from I(r). The statement s(H ′) follows directly from s(H).

Line 185 and 186: When the head and tail pointers of the linked list point to different
nodes, at line 185, the first node of the linked list, denoted f , is set to the dequeuing
private variable and at line 186, the value is flushed to the persistent memory. Ac-
cording to Definition 8.5, detectableDequeue has not taken effect yet. Therefore, for
line 185 and 186, there is no change of L′ from L or of SLin(L′) from SLin(L). For
line 185, since the value in the private variable has not been flushed, A(r′) does not
change from A(r). For line 186, since process p has not updated the deqThreadID
field of f to p at line 188, A(r′) does not change from A(r). Therefore, A(r) being
equal to SLin(L) implies that A(r′) is equal to SLin(L′). Since this step does not
affect the representation invariant, I(r′) follows I(r) and holds. Then the statement
s(H ′) holds.

Line 188 and 213: To mark the first node f (defined at line 169 and 203) of the linked
list a removed node, at line 188 and 213, process p tries to use CAS to put its process
identifier (p) to the deqThreadId field of f when the value of deqThreadId is -1.
The queue node referenced by f ’s next pointer is denoted fn. According to Definition
8.5, the dequeuing operation takes effect at line 188 and 213 if the CAS operation at
line 188 and 213 succeeds and the value of the deqThreadID field has been flushed.
After the execution of line 188 and 213, the value of the deqThreadID field has
not been flushed yet. Therefore, there is no change of L′ from L or SLin(L′) from
SLin(L). If the CAS operation fails, the deqThreadID field has not been modified
and the statement s(H ′) follows directly from s(H). If the CAS operation succeeds,
r′ changes with f being marked as a removed node from the linked list. Since the
new value of the deqThreadId field has not been flushed, A(r′) returns with a node
sequence starting from fn, BEGIN DECT OP as the status value and ⊥ as the
returned value for p. There is no change from A(r′) to A(r). Therefore, A(r) being
equal to SLin(L) implies that A(r′) is equal to SLin(L′). For I(r′), this change affects
functions reading the marked removed nodes. Because f is the first node of the linked
list read from the head pointer, the function areMarkedRemovedNodesConsecutive in
I(r′) returns true. Since f is not the node referenced by the tail pointer (checked at
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line 172 and 206), which is denoted nt, the execution of line 188 and 213 does not
modify the deqThreadID filed of nt. Since I(r) holds, which means the deqThreadID
filed of nt is -1, for I(r′), the deqThreadID filed of nt is also -1. Therefore, I(r′)
holds. Then the statement s(H ′) holds.

Line 189, 195, 214 and 220: At line 188 and 213, process p1 successfully uses CAS to
put its process identifier (p1) to the deqThreadId field of the first node f (referenced
by the head pointer at line 169 and 203) when the value of deqThreadId is -1. The
queue node referenced by f ’s next pointer is denoted fn. At line 189, 195, 214 and
220, process p executes a flush operation to persist the value of the deqThreadId field
of f . For the execution of line 189 and 214, p is equal to p1. Since this flush step
does not affect the representation invariant, I(r′) follows I(r) and holds.

Based on Definition 8.5, the dequeuing operation executed by p1 takes effect at line
188 and 213 if the CAS operation at line 188 and 213 succeeds, and the value of the
deqThreadID field has been flushed. Then, L′ has one more dequeuing operation,
denoted op, with a matching response executed by p1, which takes effect at line
188 and 213. Based on the construction of the candidate linearization history, the
matching response is fn.

At line 172 and 206, it is checked that the first node f and the last node l (referenced
by the tail pointer at line 171 and 205) are not the same queue node. At line 188 and
213, the CAS operation executed by p1 succeeds, which means the deqThreadID
field of f is -1. From the definition of queueNodeSeq(r) in A(r), according to clause
1, queueNodeSeq(r) transverses the linked list from f and stops at f since the de-
qThreadID of f is -1. Then, fn becomes the beginning node. From I(r), l referenced
by the head pointer is not a NULL pointer and l is reachable from f through the next
pointer of each node. Based on this, fn must be a queue node instead of a NULL
pointer. When fn is not a NULL pointer, according to clause 4, queueNodeSeq(r)
returns a node sequence starting with fn, which indicates the queue is not empty.
According to Axiom 3.2 for an non-empty queue, the correct response is the first
element of the queue node sequence, which is fn. The correct response is equal to
the matching response.

After process p1 successfully uses CAS to put its process identifier to the deqThreadId
field of f , the value of the deqThreadId field is flushed by p1 and other helping de-
queuing threads at line 189, 195, 214 and 220. Then, the head pointer is moved to fn
by p1 and other helping dequeuing threads at line 190, 196, 215 and 221 using CAS.
Only after the head pointer is moved to fn, which means op has already taken effect,
by reading fn from the head pointer at line 169 and 203, it is possible for another
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dequeuing process to successfully put its process identifier to the deqThreadId field
of fn using CAS at line 91 and 130 or to return a NULL pointer at line 176 and 209.
So, for the history L′, op must be the last dequeuing operation. Also, the matching
response of op is equal to the correct response fn. Therefore, L′ is a legal history and
the linearizability of L′ follows from the linearizability of L. According to Axiom 3.2
and Axiom 4.20, SLin(L′) changes from SLin(L) with the node sequence excluding
fn, END DECT OP as the status value and fn as the returned value for p1.

Since the value of the deqThreadId of fn, which is p1, has been flushed, the queueN-
odeSeq function of A(r′) returning a sequence of nodes from the next pointer of fn,
which exclude fn. Also, since the value in p1’s dequeuing private variable is f , whose
deqThreadId in the persistent memory is equal to p1, getDeqStatusFromPAddr re-
turning END DECT OP as p1’s status value and getDeqRetValFromPAddr returning
the dequeued node fn as p1’s returned value. The change of SLin(L′) is the same
as the change of A(r′). Therefore, A(r) being equal to SLin(L) implies that A(r′) is
equal to SLin(L′). Then the statement s(H ′) holds.

Line 190, 196, 215 and 221: At these lines, process p tries to use CAS to move the
head pointer to the next pointer of the first node (defined at 169 and 203) whose
deqThreadId is not -1. The first node is denoted f and its next pointer is denoted
fn. According to the analysis of line 189, 195, 214 and 220, fn is a dequeued node.
Since the dequeuing operation executed by p has already taken effect at line 188 and
213 after the value of the deqThreadID field has been flushed at line 177 and 214,
there is no change of L′ from L or SLin(L′) from SLin(L).

If this CAS operation fails, the head pointer has not been modified and the statement
s(H ′) follows directly from s(H). If the CAS succeeds, the head pointer is moved to
fn. For the function queueNodeSet in A(r), since the value of the deqThreadId of fn
has been flushed at line 189, 195, 214 and 220, the queueNodeSeq function returns a
sequence of nodes from the next pointer of fn, which excludes fn. For the function
queueNodeSet in A(r′), since the head pointer points to fn, the queueNodeSet
function returns a sequence of nodes from the next pointer of the head pointer without
fn, which is the same as the node sequence returned by A(r). There is no change of
A(r′) from A(r). From A(r) being equal to SLin(L), A(r′) is equal to SLin(L′). For
I(r′), since fn is not a NULL pointer (checked at line 174 and 208), the head pointer
does not point to a NULL pointer. Besides, the node pointer referenced by the tail
pointer is reachable from fn through the next pointer of each node. Therefore, I(r′)
holds and the statement s(H ′) holds.

Line 191 and 216: At line 191 and 216, the next pointer of the first node f (defined at
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169 and 203) is returned. The next pointer of f is denoted fn. Since the dequeuing
operation executed by p has already taken effect at line 188 and 213 after the value
of the deqThreadID field has been flushed at line 177 and 214, there is no change
of L′ from L or SLin(L′) from SLin(L). Also, there is no change of A(r′) from A(r)
or I(r′) from I(r). The statement s(H ′) follows directly from s(H). According to
the analysis of line 189, 195, 214 and 220, the matching response added to L is fn,
which is the same response returned at line 191 and 216.

Line 148 to 164: The retrieveDequeue operation is invoked by process p to get the effect
of p’s last detectableDequeue operation.

According to Definition 8.6, the retrieveDequeue takes effect at line 164. Then,
L′ is an extension of L by one retrieveDequeue operation with a response. The
value of r.pAddr[p][deq] is not modified during the execution of line 148 to 164.
Based on the value of r.pAddr[p][deq], different values are returned at line 164. The
MEM INIT VAL value used in Detectable Queue is mapped to ⊥ used in D{FIFO
Queue}.
When the value in r.pAddr[p][deq] is MEM INIT VAL, NoExecutedOp is returned as
the effect value, and the memory initial value is returned as the returned value at
line 164. In this case, getDeqStatusFromPAddr of A(r′) return ⊥ as the status value.
When the status value is ⊥, based on Axiom 4.23, NoExecutedOp is returned as the
effect value, and ⊥ is returned as the response value.

When the value in r.pAddr[p][deq] is OP INIT VAL, NoEffect and the memory initial
value are returned as the effect value and returned value at line 164. In this case,
getDeqStatusFromPAddr of A(r′) returns BEG DECT OP as the status value. When
the status value is BEGIN DECT OP, based on Axiom 4.21, NoEffect and ⊥ are
returned as the effect value and returned value.

Otherwise, the value in r.pAddr[p][deq], denoted v, is a queue node pointer or a
NULL pointer. At line 164, HasEffect is returned as the effect value. If v is a node
pointer, the next pointer of v is returned as the returned value at line 164. From
the analysis of line 188 to 191, the node referenced by the next pointer of v is the
dequeued node when the queue is not empty. If v is a NULL pointer, the NULL
pointer is returned as the returned value at line 164. From the analysis of line 176
to 179, a NULL pointer is put into r.pAddr[p][deq] only when the queue is empty.
In this case, getDeqStatusFromPAddr of A(r′) returns END DECT OP as the status
value. When the status value is END DECT OP, based on Axiom 4.22, HasEffect
is returned as the effect value. When the queue is not empty, the dequeued node is
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returned as the returned value, and when the queue is not empty, a NULL pointer
is returned as the returned value.

Therefore, the response at line 164 is the same as the response defined in the sequen-
tial specification of D{FIFO Queue}, which means the history L′ is legal. There is
no change of SLin(L′) from SLin(L). Also, there is no change of A(r′) from A(r) or
I(r′) from I(r). Therefore, s(H ′) follows directly from s(H).

Case B: e is an event of D{FIFO Queue}. The event e must be an invocation or response
of an operation of D{FIFO Queue}. If e is an invocation, since it is the last event
with no code lines in the Detectable Queue being executed, there is no state change.
If e is a response, e is added in the history after an enqueuing or dequeuing operation
completes at line 96, 133. 179, 191, 209 or 216. Therefore, there is no change of A(r′)
from A(r) or I(r′) from I(r). According to the construction of L, there is no change
of L′ from L or SLin(L′) from SLin(L). Then, s(H ′) follows directly from s(H).

Case C: e is a crash event. The recovery of Detectable Queue is started (Section 5.3.3)
to make sure A(r′) is equal to SLin(L′). Based on the definition of the linearization
points, none of them happens in the recovery procedure. Since no operation reaches
its linearization point during recovery, L′ is equal to L. Therefore, SLin(L′) is equal
to SLin(L), and L′ is legal because L is legal.

The recovery procedure first goes through the linked list from the head pointer and
checks whether the current visited node n is a marked removed node (the value in
the deqThreadID field of n is -1). If it is, the head pointer will be moved to the
next pointer of n, denoted nn, and flushed to the persistent memory. Since the
value of the deqThreadID field is in the persistent memory, it means the value has
already been flushed at line 189, 195, 214 or 220 before crash. From clause 1 of
the definition of the function queueNodeSet in A(r), queueNodeSet transverses the
linked list from the head pointer and stops at a node ns if ns has not been flushed or
the deqThreadID of ns is -1. The next pointer of ns becomes the start node of the
node sequence returned by queueNodeSet. Therefore, the function queueNodeSet
in A(r) returns a sequence of nodes without marked removed nodes, and moving the
head pointer to nn will not affect the returned value of queueNodeSet. There is no
change of the returned value of queueNodeSet in A(r′) from A(r). Since I(r) holds,
the node referenced by the tail pointer, denoted nt, of the linked list is reachable
from the node referenced by the head pointer, denoted nf , through the next pointer
of each node. Then, for each node ni before nt in the linked list (if there is any), nt
is also reachable from the next pointer of ni and the next pointer of ni cannot be a
NULL pointer. According to I(r), nt cannot be the marked removed node and the
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marked removed nodes must be consecutive nodes from nf , which means the marked
removed nodes must appear before nt in the linked list. Then, the next pointer of
each marked removed node must not be a NULL pointer. Therefore, after moving
the head pointer to nn, the returned value of the getHeadPointer function of I(r′)
must not be a NULL pointer and the returned value of the isTailReachableFromHead
function of I(r′) must be true. This step does not affect the returned values of the
other functions in I(r′) and I(r′) holds.

If the value in a process p’s enqueuing private variable (r.pAddr[p][enq]) does not have
flag OPCOMPLETE FLG and the value is equal to the current visited node n, the
flag OPCOMPLETE FLG will be added to the value in r.pAddr[p][enq] and the value
in r.pAddr[p][enq] will be flushed. Then, according to the definitions of the getEn-
qStatusFromPAddr and getEnqArgFromPAddr functions, getEnqStatusFromPAddr of
A(r′) returns END DECT OP as p’s status value, and getEnqArgFromPAddr of A(r′)
returns n as p’s argument value. Since n has been appended to the linked list in the
persistent memory, it means that the detectableEnqueue operation executed by p with
the argument n has already taken effect before crash at line 92, 98, 131, 135, 181 or
210. According to Axiom 4.8, for detectableEnqueue, SLin(L) has END DECT OP
as p’s status value and n as p’s argument, which are equal to the returned values
of getEnqStatusFromPAddr and getEnqArgFromPAddr of A(r′) for process p. Since
the modification of the values in private variables does not affect the representation
invariant, I(r′) follows I(r) and holds.

If the traversal of the linked list reaches the tail pointer and the current node n’s next
pointer, denoted nn, is not NULL, the tail pointer will be moved to nn and flushed
to the persistent memory. Since the value of n’s next pointer is in the persistent
memory, it means n has already been flushed before the crash at line 92, 98, 131,
135, 181 or 210. From clause 2 of the definition of the function queueNodeSet in A(r),
queueNodeSet goes through the linked list and ends at a node ne if ne has not been
flushed or the next pointer of ne is NULL. The node ne becomes the end node of the
returned node sequence by queueNodeSet. Therefore, the function queueNodeSet in
A(r) returns a sequence of nodes including nn, and moving the tail pointer to nn will
not affect the returned value of queueNodeSet. There is no change of the returned
value of queueNodeSet in A(r′) from A(r). Since nn is not NULL, the returned
value of the getTailPointer function of I(r′) will not be NULL. Since I(r) holds, the
node referenced by the tail pointer, denoted nt, is reachable from the node referenced
by the head pointer through the next pointer of each node in the linked list. Then,
nn, which is referenced by the next pointer of nt, is also reachable from the node
referenced by the head pointer. The returned value of the isTailReachableFromHead
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function of I(r′) must be true. This step does not affect the returned values of the
other functions in I(r′) and I(r′) holds.

After the traversal of the linked list, the recovery procedure will check the value
in each process p’s enqueuing private variable (r.pAddr[p][enq]). If the value in
r.pAddr[p][enq], denoted v, is a queue node without flag OPCOMPLETE FLG and
the deqThreadId field of v is a value, denoted p1, which is not -1, recovery will
add OPCOMPLETE FLG to the value in r.pAddr[p][enq] and flush the value to
the persistent memory. Then, the getEnqStatusFromPAddr function of A(r′) returns
END DECT OP as p’s status value, and getEnqArgFromPAddr of A(r′) returns v
as p’s argument value. Since the value of the deqThreadId field of v is p1 and the
recovery procedure never modifies the deqThreadId field, it means another process p1
executed a dequeuing operation, in which process p1 modified the deqThreadId field
of v to its process identifier at line 188 or 213 after p executed a detectableEnqueue
operation with v as the argument. Therefore, v has already been appended to the
linked list and the detectableEnqueue operation executed by p with v as the argument
must have taken effect at line 92, 98, 131, 135, 181 or 210 before the crash. Accord-
ing to Axiom 4.8, for detectableEnqueue, SLin(L) has END DECT OP as p’s status
value and v as p’s argument, which are equal to the returned values of getEnqStatus-
FromPAddr and getEnqArgFromPAddr of A(r′) for process p. Since the modification
of the values in private variables does not affect the representation invariant, I(r′)
follows I(r) and holds.

Recovery will also check the value in each process p’s dequeuing private variable
(r.pAddr[p][deq]). If the value in r.pAddr[p][deq], denoted v, is a node whose de-
qThreadID is not equal to the process identifier p, recovery will set OP INIT VAL
to r.pAddr[p][deq] and flush the value. According to clause 2 of the definitions of
the getDeqStatusFromPAddr and getDeqRetValFromPAddr functions, getDeqStatus-
FromPAddr of A(r) returns BEGIN DECT OP and getDeqRetValFromPAddr of A(r)
returns ⊥. According to clause 5 of the definitions, getDeqStatusFromPAddr of A(r′)
returns BEGIN DECT OP and getDeqRetValFromPAddr of A(r′) returns ⊥. There
is no change of the returned value of getDeqStatusFromPAddr and getDeqRetVal-
FromPAddr in A(r′) from A(r). Since the modification of the values in private
variables does not affect the representation invariant, I(r′) follows I(r) and holds.
After this check, the recovery procedure finishes.

From the above analysis, first I(r′) always holds in case C. Also, there is no change
of the returned value for queueNodeSeq, getDeqStatusFromPAddr and getDeqRetVal-
FromPAddr of A(r′) from A(r) in case C. Since the returned values of these functions
in A(r) are the strict linearized values of L, the returned values of these functions in
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A(r′) are also the strict linearized values of L.

For the getEnqStatusFromPAddr function and getEnqArgFromPAddr function of A(r)
in case A and B, according to their definitions, before crash, when a process p has
not executed a detectableEnqueue operation (clause 2), or p’s detectableEnqueue op-
eration has not taken effect (clause 3), or the value in p’s enqueuing private variable
has been updated with OPCOMPLETE FLG (the first condition of clause 1), the
returned values of the two functions are decided only by the values in p’s enqueuing
private variable in the persistent memory. From the analysis of recovery, the value
of p’s enqueuing private variable has not be changed during recovery in these situa-
tions. For these situations, there is no change of the returned values for the getEn-
qArgFromPAddr function and getEnqArgFromPAddr function in A(r′) from A(r) in
case C. Since for these situations, the returned values of these functions in A(r) are
the strict linearized values of L, the returned values of these functions in A(r′) are
also the strict linearized values of L.

Except the three situations described in the last paragraph, there is one situation left
(the second condition of clause 1): p’s detectableEnqueue operation has taken effect
but p’s enqueuing private variable has not been updated with OPCOMPLETE FLG
before crash. For this situation, from the analysis of recovery, p’s enqueueing pri-
vate variable will be updated with OPCOMPLETE FLG, and the returned values
of getEnqStatusFromPAddr and getEnqArgFromPAddr are the strict linearized val-
ues of L. Therefore, the returned values of getEnqStatusFromPAddr and getEn-
qArgFromPAddr of A(r′) in case C are the strict linearized values of L in all situa-
tions.

Above all, after recovery, A(r′) is equal to SLin(L). Since SLin(L) is equal to
SLin(L′), A(r′) is equal to SLin(L′).

Theorem 8.2. Detectable Queue is strict linearizable.

Proof. Implied by Lemma 8.1, Detectable Queue is strict linearizable.

8.1.2 Proof of Liveness

In this section, I prove the progress property of Detectable Queue.

Theorem 8.3. Detectable Queue is recoverable lock-free.

87



Proof. Suppose there are only finitely many failures in a history H.

For the detectableEnqueue and enqueue operations of Detectable Queue, enqueuing
processes read the last node from the tail pointer (line 87 and line 126) and try to put
a new node to the next pointer of the last node using CAS (line 91 and line 130). One
enqueuing process, denoted p, will succeed in executing this CAS operation and the other
enqueuing processes will fail due to contention. Process p and other failed processes try
to advance the tail pointer to the new node using CAS (line 99, line 136, line 95 and line
132) and one of them must succeed. Then process p returns and failed enqueuing processes
read the updated value from the tail pointer, trying to append a new node again. From
the above analysis, enqueuing processes will make progress and at least one process will
succeed in enqueuing a node unless infinitely many failures happen.

For the detectableDequeue and dequeue operations of Detectable Queue, dequeuing
processes read the first node, next pointer of the first node, and last node from the head
pointer and tail pointer (line 169 - 171 and line 203 - 205). Dequeuing processes first
check whether the first node and last node point to the same pointer. If they point to the
same node and the next pointer of the first node is NULL, a NULL pointer is returned
directly at line 179 and 209 after the checks. If the next pointer of the first node is not
NULL, which means a node n has already been appended to the linked list but the tail
pointer has not been advanced, dequeuing processes help to advance the tail pointer to n
using CAS (line 182 and line 211) and then retry from reading the values of the head and
tail pointers. When the head pointer and tail pointer point to different nodes, dequeuing
processes try to put their identifier to the deqThreadID field of the first node using CAS
(line 188 and line 213). One dequeuing process, denoted p, will succeed and the other
dequeuing processes will fail. Process p and failed dequeuing processes try to advance the
head pointer to its next pointer using CAS (line 196, line 221, line 190 and line 215) and
one process must succeed. Then process p returns the next pointer of the first node as the
dequeued node and failed dequeuing processes retry from reading the values of the head
and tail pointers. From the above analysis, dequeuing processes will make progress. For an
empty queue, processes with return with a NULL pointer and for a non-empty queue, at
least one process will succeed in dequeuing a node unless infinitely many failures happen.

Therefore, when there are finitely many failures, some executing process will always
finish its enqueuing/dequeuing operation as long as some process continues to take steps.

For the prepareEnqueue and prepareDequeue operation, a process sets values to its pri-
vate enqueuing and dequeuing variables and flushes the values. For the retrieveEnqueue
and retrieveDequeue operations, a process returns values based on the values in its en-
queuing and dequeuing variables. Since there is no loop in these operations, a process will
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always make progress and complete the operations unless infinitely many failures happen.

For the recovery of the Detectable Queue, it is executed by a single recovery process in
the absence of concurrency. The recovery traverses the linked list from the head pointer
to the last node, and modifies the head pointer, tail pointer and values in the private
variables if necessary. From the proof of safety of Detectable Queue (Section 8.1.1), the
last node of the linked list always exists and the traversal of the linked list will end once the
recovery reaches the last node. Therefore, the recovery process will always make progress
and complete the operation unless infinitely many failures happen.
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Chapter 9

Experimental Results

In this chapter, I evaluate the performance and scalability of the Detectable Queue algo-
rithm (Section 5.3), General CASWithEffect algorithm (Section 6.2) and Fast CASWith-
Effect algorithm (Section 6.3) with different testing threads.

9.1 Experimental Setup

I run the experiments on a server with four Intel(R) Xeon(R) Gold 6230 processors with
a clock speed of 2.10GHz and 20 hyperthreaded cores per processor. The machine has
768GB RAM and 3TB of Optane persistent memory. The turbo boost of the processor is
disabled to reduce random variation in running times. The operation system is Ubuntu
20.04. The experiments are executed on Optane persistent memory.

The source code of the algorithms and testing code are written in C++ and built
through g++ 9.3.0. I use Intel PMDK library [33] (version 1.8) to access Optane persistent
memory. The memory-mapped file containing data structures is in an XFS file system. The
size of the mapped file is pre-calculated by the data structures employed in the experiments.
I use the pmem persist function of PMDK to flush the entire cache line to the persistent
memory.

9.2 CasWithEffect Primitive

Inspired by Wang et al.’s PMwCAS algorithm [36], I presented two CASWithEffect al-
gorithms: General CASWithEffect and Fast CasWithEffect to hold the effect of a CAS
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operation in Chapter 6. To compare the performance of General CASWithEffect, Fast
CasWithEffect and PMwCAS, I set up a fixed-size array in the persistent memory. Each
testing thread used General CASWithEffect, Fast CASWithEffect or PMwCAS to mod-
ify one random word in that array and stored the effect into the private variable of the
thread when the CAS operation is successful. Every test with a different number of testing
threads is executed for 10 seconds and repeated for 5 times without failure injection. Then,
the average throughput of CAS operations is recorded and displayed in a plot. Since the
machine has 4 processors and 20 cores for each processor, I measure 1 to 80 threads. The
array size is 100 and 1000 in my experiments to provide different contention levels.
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Figure 9.1: Performance of CASWithEffect and PMwCAS with different numbers of
threads.

The result of the experiment is shown in Figure 9.1. Each throughput value in the plot
is an average throughput as explained above. The standard deviation for each through-
put value is also calculated based on the test results with the same thread number and
array size, which is less than 0.001. As expected, General CASWithEffect outperforms
PMwCAS in every round of testing. For both 100-size and 1000-size array, when there is
one thread running, CASWithEffect outperforms PMwCAS by 1.6X. With more threads
becoming running, the performance improvement becomes more than 2.5x. On average,
the throughput increase for both 100-size array and 1000-size array is 2.4x. The main
reason for this improvement is the reduced usage of flushes related to installing descrip-
tors. In General CASWithEffect, only the shared address is installed with the descriptor
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while in PMwCAS, each address needs to be installed with the descriptor. The test results
also show that Fast CASWithEffect improves the performance of General CASWithEffect
by 1.4x on average for both 100-size and 1000-size array tests since Fast CasWithEffect
avoids the descriptor installing phase. The trend in Figure 9.1 shows the throughput of
both General and Fast CASWithEffect modifying an array rises as the number of running
threads increases. Then the throughput declines slowly as more threads compete for up-
dating the testing array and the contention becomes high. In 1000-size array tests, for
General CASWithEffect, the throughput reaches 3.2 million/s when there are 64 threads
running, and for Fast CASWithEffect, the throughput reaches 4.4 million/s where there
are 72 threads running. The experiment shows that both General CASWithEffect and Fast
CASWithEffect are scalable algorithms.

9.3 Detectable Queue

In Chapter 5, I presented the algorithm of Detectable Queue which provides strong de-
tectability, weak detectability and non detectability of a lock-free queue. When detectableEn-
queue and detectableDequeue operations are invoked, their effects can be retrieved after re-
covery through retrieveEnqueue and retrieveDequeue respectively. Besides, the isStrongDe-
tectability flag is used to set which detectability (strong/weak) to provide during run time.
When enqueue and dequeue operations of Detectable Queue are invoked, the effects of these
operations have not been recorded and cannot be retrieved after recovery.

In the experiment, I compare the performance of different detectability using Detectable
Queue. Since the queue is not a scalable data structure, I test the performance with threads
varying from 1 to 20 on one processor. The queue is initialized with 16 queue nodes.
All executing threads execute a pair of enqueue and dequeue operations for 30 seconds
and repeat it for 10 times with the average throughput being recorded. As explained in
the memory management of queue nodes in Chapter 7, every thread gets a queue node
from its free queue node list and executes an enqueuing operation with this node. The
performance results are shown in Figure 9.2. As in the CASWithEffect experiments, the
standard deviation of each throughput value is computed based on the queue performance
with the same thread number, which is around 0.003. The plot shows that both the strong
detectable and weak detectable implementations have nearly the same throughput while the
non-detectable implementation has higher throughput. In the Detectable Queue algorithm,
the only difference between the weak detectable and strong detectable operations is that
the strong detectable needs to flush the returned value of a NULL pointer when the queue
is empty. Since the queue is initialized with 16 queue nodes, with a maximum of 20 threads
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Figure 9.2: Performance of Detectable Queue with different detectability.
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running, a thread will run a dequeuing operation with a returned queue node in most cases.
Therefore, the extra overhead caused by strong detectability to weak detectability seems
to be quite trivial. When there is one thread running without any contention, the non-
detectable operations outperform detectable operations by 2.8x. For the non-detectable
operations, neither the argument of the enqueuing operation nor the returned value of the
dequeuing operation needs to be persisted and this saves non-trivial overhead caused by
multiple flushes. With more threads running with higher contention, the performance of
non-detectable operations decreases. When the total amount of running threads reaches
20, the throughout of non-detectable and detectable are nearly the same of 2.16 million/s
and 2.13 million/s respectively. On average, the non-detectable operations outperform
detectable operations by 1.7x.

I further measure and compare the performance of several queue implementations with
strong detectability including Detectable Queue (Chapter 5), CASWithEffect Queue (Sec-
tion 6.4.3) and Log Queue [13]. Log Queue is a specially-designed queue for persistent
memory, which uses log variables to record the status of enqueuing and dequeuing oper-
ations. I choose Log Queue to compare against, because according to the definition of
Detectability (Section 4.4), Log Queue provides equivalent strong detectability with the
returned values and arguments being stored in its log variables. In the experiments, the
memory management algorithm explained in Chapter 7 is employed to manage queue nodes
and log variables for Log Queue. The performance results are shown in Figure 9.3. The
performance of Detectable Queue in Figure 9.3 is the same as the ”Strong Detectable”
series of Figure 9.2. From the plot, both the General CASWithEffect queue and Fast
CASWithEffect queues have lower performance because CASWithEffect, as a general al-
gorithm, requires more flushes to keep a consistent status. Fast CASWithEffect Queue
outperforms General CASWithEffect Queue by 1.5x on average since Fast CASWithEffect
is an optimised algorithm of General CASWithEffect. Although CASWithEffect Queues
perform lower than Detectable Queue and Log Queue, the implementation using CASWith-
Effect is much easier compared to other queues’ complex design. Detectable Queue has the
highest throughput, which performs better than Fast CASWithEffect Queue by 3.1x on
average. Compared to Log Queue, when only one thread running without any contention,
Detectable Queue outperforms Log Queue by 1.7x. When the running threads increas-
ing from 4 to 20, the performance improvement of Detectable Queue becomes larger from
1.1x to 1.8x. On average, Detectable outperforms Log Queue by 1.5x. The reason of this
performance improvement is that Detectable Queue uses private variables to record book-
keeping data which causes less overhead than maintaining log variables in Log Queue. The
private variable for each thread is pre-allocated from persistent memory. However, in the
Log Queue algorithm, each log variable is acquired and released dynamically in the begin-
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ning of an enqueuing/dequeuing operation. With more threads executing more operations,
this overhead will become larger accordingly. Also, in Log Queue, multiple threads try to
modify the same log variable by using CAS, which creates contention among threads. In
Detectable Queue, there is no such contention since private variables can only be accessed
by their owner threads. With less contention, the performance of Detectable Queue is
improved.

According to the queue experiments described above, in general, the detectable data
structures cause more overhead than non-detectable data structures with additional data
being persisted. In the Detectable Queue algorithm, this overhead is 70% on average. How-
ever, with the number of running threads increasing from 1 to 20, the overhead decreases
from 117% to 1%. This means the overhead brought by detectability can be minimized by
specific detectable algorithms in situations of certain contention.
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Chapter 10

Conclusion

The research work in this thesis focuses on building detectable data structures for per-
sistent memory. In this thesis, I provide the first definition of detectability through a
specific data type DetectableT , which is generic with few system assumptions. Based
on DetectableT , Detectable Queue, a detectable MS queue implemented using private
variables, is presented. To help implementing detectable data structures, I design a prim-
itive called CASWithEffect, which can execute a CAS opepratoin and store the effect
of this CAS operation into persistent memory atomically. By leveraging CASwithEffect,
CASWithEffect Queue provides the same detectability as Detectable Queue but with a
much simpler design. During experiments, Detectable Queue and CasWithEffect Queue
are compared with another queue algorithm – Log Queue. As expected, the experiment
results show that the detectable operations in Detectable Queue cost more overhead than
non-detectable operations with additional information being stored in persistent memory.
Also, CASWithEffect queue has lower performance because of the primitive’s generality.
Detectable Queue has the best performance. It outperforms Log Queue by 1.5x on aver-
age. One reason of the improvement is that Detectable Queue uses pre-allocated private
variables from persistent memory instead of dynamically allocated log variables. Another
reason is that using private variables avoids the contention caused by modifying the same
shared log variables among threads.
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