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Abstract

Atomic force microscope (AFM) is widely used for topographical structure characterization. However, one
serious issue with AFM imaging is the intrinsic artifact in the AFM image when mapping-dlaioneface

(e.g.a deep and narrow hole/trenclihere the tip cannot fully follow the sample surface. The natural
solution to overcome this issue is by using thin and high aspect ratio (HAR) tips that can follow the sample
surface more precisely. This thesis focuses on the fabrication of HAR AFMsprébe HAR tips are
obtained by modifying regular AFM tips having a pyramid shape. The high aspect ratio structure in silicon,
sitting on top of a pyramid base, is created by a dry plasma etching process, so the key is to form a hard
metal dot right on topf the pyramid tip apex to act as the mask for silicon etching.

Three approaches were developed to form the hard mask metadotamo the tip apex. The first method
(Chapter3) employed metal deposition steps with the regular tip mounted on a tilfadeswand & etching

back to leave behind metal only at the tip apex (the metal on the sidewall of the pyramid was etched away).
Since both metal film deposition and its etching, as well as the subsequent dry plasma etching of silicon
using the metal as ask to form the HAR structure, can be carried out on an entire wafer of regular AFM
tips, this process is a lewost and high throughput batch process. The second method ((3)apthkzed

focused ion beam (FIB). FIB has been extensively used to fabktZsR tips by milling away the silicon
surrounding the tip axis, leaving behind a thin pillar or sharp cone of silicon at the pyramid axis. However,
the FIB milling time for each tip is long, leading to high cost. Our method used FIB to mill away only a
very thin layer of metal film to leave behind a metal dot at tip apex, thus the expensive FIB machine time
is greatly reduced. The third method (Chajealso utilized Gdon FIB, but instead of milling a metal

dot mask pattern, the Ga ions were implamdetthe tip apex area to act as a mask since Ga metal is resistant
to fluorine-based plasma etching.

For the above three approaches, silicon etching is very critical, so Chaptars our effort in developing

silicon etching recipes using a newitching pseudeBosch process with £s-Sk gas, with a goal of
obtaining vertical sidewall profile needed for HAR, high selectivity to mask, and high etching rate. As well,
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the etched silicon structures must be further sharpened to reduce its apex radius 10feloBoChapter

4 covers the process optimization of the oxidation sharpening process that involves thermal oxidation and
subsequent oxide etching by HF. It was found that’@58 a suitable oxidation temperature, and the
oxidation sharpening can bergad out more than once to improve tip sharpness

Lastly, inspired by the first approach descri bed
p r o fChapter 3)for which the tip apex sits right at the end of the cantilemed thusthe tip location

can be precisely determined in the view of the integrated optical microscope in an AFM €ystemethod

involves angle evaporation of a hard mask layer onto the AFM probe, follmyalicon dry etching that

etchesawaythe area not ca@red by the metal layer, i.e., the shadea of the pyramighaped tip.
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Chapter 1

Overview of micro-nano fabrication techniques

This chapter gives a brief introduction to the nanofabrication techniques employed in this research as well
as the propad thesisstructure. The technigues cover evaporation, wet etch, dry etchresictiyeion

etching (RIE),atomiclayerdeposition (ALD),focusion beam (FIB), andtomicforcemicroscope (AFM).

1.1. Nanofabricationoverview

Nanofabricatiort 22 is the new generation of microfabrication. It is the fabrication of nanoscale features
with sub100 nm size. "Tomlown" and bottomup" are the two processes of nanofabrication as shown in
Fig 1.1 Top-down nanofabrication relies on three core technigwelsich are lithography, thifilm
deposition, and etching. This process is used in the industry to fabricate raccksa memory, integrated
circuits, storage device, microfluidics, solar cells, etc. Bbomup approach is done by saltsembly
nanolithography followed by pattern transfer, such a®fitt It is the seHassembly of nanoscale blocks
into an orderé array of nanostructures and nanoparticles. This process includessatibly of block

copolymers antemplatebasednethods that utilize selbrmed nangorous membranes.
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Fig 1.1 Examples of togown andbottomup fabrication sequencés
Lithograply 5678910 s the transfer of the pattern to a sensitive material called resist either by mechanical
force or by exposure to photons, ions, or electrons. Lithography techniques can be classified into two types.
The first type uses a mask or moldhich includes xray lithography (XRL), deep ultreiolet lithography
(DUVL), extreme ultraviolet lithography (EUVI_and nanoimprint lithography (NIL). It is good for high
volume production and hashigh throughput. The second type is digeatterning, which includes electron
beam lithography (EBL), ion beam lithography (IBajhd scanning probe lithography (SPL). It is suitable
for R&D and mask/mold production since it is tho@nsuming and has low throughput.
The thinfilm deposition is doa by either physical vapor deposition (P\D)? 13141516 or chemical vapor
deposition (CVD). PVDncludes sputtering,-beam or thermal evaporation. CVD includes metadjanic
CVD, plasmaenhanced CVD, and loywressure CVD.
The etching’81°2js the technique for selectively removing material. Wet and dry etching are the two
types of etching techniques. Wet etch is cheab sample, but difficult to control and repeatability is an
issue of concern On the other hand, dry etching is the process of using phgag plasma etch in both
chemical etching and/or physical sputtering. Etching may elihésotropic or anisotropgi Chemical

etching is generally isotropic, whereas physical etching is anisotropic.
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1.2. Evaporation

Evaporatiorft 2223242526 j5 g physical vapor deposition technique utilizing two types of heating sources:

thermal or ebeam heating. Botmvolve the heating of the source material to a high temperature, which

results in the vaporization, travelirend condensing of the atoms onto the substrate as a thin film. A quick

difference is shown in Table 1.1.

Table 1.12"Comparisorbetweerthermaland electron beam evaporation

Deposition Material Typical Cost Temperature | Impurity
Category evaporant Range

Metal, Au, Ag, Al,

Thermal organic Cu, Cr, Sn, Low < 1600°C High

materials Polystyrene...

Everything

Electron- Metal and above plus: High = 3000°C Low
beam dielectrics Ni, Pt, W,

Ta...

1.2.1. Thermalevaporation

In thermal evaporatiort® 2° 3031 heating is conducted by filament or RF coils passing an electrical current
to heat the crucible to vaporize the material inside it. Since the heat provided in this method is limited by

met hod i s f organiemaater@als. iThe mast comimtorn | o w

1600 t his good

materials that are handled by thermal evaporation include Au, Ag, Al, Sn, Cr, Sb, Ge, In, Mg, Ga, CdS,
PbS, CdSe, NaCl, KCI, AgCl, Mgk CaP, PbCb. It is performedin a high vacuum chamber (P <90

Torr) to minimize cdisions of source atoms. Theajoradvantage of thermal evaporation is its {oust.
However thedrawback is the heating of the crucible and the filament.eaqaose contamination. Fig 1.2

shows a schematic of thermal evaporation.
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1.2.2. Electronbeamevaporation

The source of heat for this technigiié* 3°3¢ %7 s the focused high energy electron beam bombardment,
which is generated by an electron gun and accelerated by a high electric field using high potential, as high
as 10kV. The beam is directed by a strong magnet, as shown in&igHe crucible is noheated since

there is a watecooling system and the beam is localized at the source material surface. Together these
ensure lower contamination from the crucible materials. Temperatures mawveaghighlevel. This is

the reasoffior using ebeam evaprationon materials with high melting points.
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- . Wi
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Target | Tungsten
I] Material \_Irl; - | filam ent
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gl’ld acuum pump

Fig 13 Schematic of dveam generation andb@am evaporatiof?



1.3. Atomiclayer deposition (ALD)

The ALD history®*® goes back to the 1970s in Finland when the pioneer Tuomo Suntola demonstrated some
of the first processes. Today, AI®* has become an important process for depositing thin films in a wide
range of applications. It consists of a sequentiatisrifing reaction, which can control the deposition
thickness one layer at a time. Fig $hows the schemataf ALD process. It$ based on a binary reaction
sequence where two reactions occur sequentially. The process can be repéatedesired number of
layers. Some benefits of the ALD include Angstrom thickness precision controlled by monolayer and good

conformal coverage dhe surface with the help of sdiniting characteristics.

A v A

VVVVVVVYV _‘m_f_Products
S
k M s

VRRAARARD - M .

Fig 14 ALD deposition step#’

A good model of ALD is the deposition of Ak. This was done using trimethylaluminum (TMA) /
(Alx(CHs)s) and HO dating back to the late 1980s and early 1990s, though recently TMA and ozone are
more commonly used. Fig8L(left) shows the binary steps for the ALD of the@d while Fig 15 (right)

shows A}Os film with a thickness of 300 nm on a Si wafer with trench strusteraploying ALD

deposition
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Fig 15 (left) Steps for the ALD of the ADs*, (right) AlOs film on a Si wafer withtrencresstructure

1.4. Etching

The dching is the process that selectively removes the targeted materials while having little or no effect on
the masking material on the same substrate. The etching process includes two types: wet etch and dry etch.
A wet etch involves liquid chemicals, wieas a dry etch involves a gas phase to remove materials and is
commonly conducted through the plasraactiveion etchant (RIE) technique. The main parameters used

in the etching process are etching profile, ratel selectivity. The etching rate is theted thickness per

unit time and selectivity is the ratio of the etching rate between different materials.

1.4.1. Wetetch

1.4.1.1. Introduction

A wet etcht4 454647484950 51 i narformedthrough immersion of the wafers into the solution of the etchant
and can involve higher temperatures. Isotropic and anisotropic are the two types of wet etch profiles. As
shown in Fig 16 (a)isotropic etching has an equal etching rate in all directighereas anisotropic etching

has different rates in different directioasin Fig 16 (b). Silicon etching rate using KOH is slower in <111>
crystal plane than <110> and <100> planes. The crystal plane of silicon is shown in Faple 12 lists

the pgular etchants for important materials.
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Table 12 53%Etching table (material and etchant)

Material to be etched | Wet etchants

80% phosphoric acid (H3POy4) + 5% acetic acid

Aluminium (Al
(A + 5% nitric acid (HNQOg) + 10% water (H,O) at 35—-45 °Cl¥

Indium tin oxide [ITO] (In03:83n03)  Hydrochloric acid (HCI) + nitric acid (HNO3) + water (H>O) (1:0.1:1) at 40 °clél

»"Chrome etch": ceric ammonium nitrate ((NH4)2Ce(NO3)g) + nitric acid (HNOg)m

Chromium (Cr)
« Hydrochloric acid (HCHI7]

Gallium Arsenide (GaAs) » Citric Acid diluted (CgHgO7 : H2O, 1 : 1 ) + Hydrogen Peroxide (H205)+ Water (H,0)

Gold (Au) Aqua regia, lodine and Potassium lodide solution

Molybdenum (Mo)

Organic residues and photoresist Piranha etch: sulfuric acid (H>S04) + hydrogen peroxide (H>O3)

Platinum (Pt) Aqua regia

« Nitric acid (HNO3) + hydrofluoric acid (HF)4!
Silicon (Si) » Potassium hydroxide (KOH)
» Ethylenediamine pyrocatechol (EDP)

» Tetramethylammonium hydroxide (TMAH)

» Hydrofluoric acid (HF)“]

Silicon dioxide (SiO2)
2 « Buffered oxide etch [BOE]: ammonium fluoride (NH4F) and hydrofluoric acid (HF )[4

Silicon nitride (SizN4) * 85% Phosphoric acid (H3PO4) at 180 *Cl*] (Requires SiO; etch mask)

Tantalum (Ta)

Titanium (Ti) Hydrofluoric acid (HF)4!

« Nitric acid (HNO3) + hydrofluoric acid (HF)
Titanium nitride (TiN) +SC1

« Buffered HF (bHF)

» Nitric acid (HNO3) + hydrofluoric acid (HF)

Tungsten (W)
+ Hydrogen Peroxide (H>O3)




1.4.1.2. Silicon wet etchnts

The main Si wet etchants are potassium hydroxide (KOH), tetramethylammonium hydroxide (TMAH), and

themixture of nitric and hydrofluoric acid (HN§ HF).

1.4.1.2.1. Potassium Hydroxide (KOH)

For KOH etching of Si, the etching rate fibre (111) plane is much slower than that ofl() and (D0)

planes, becauske(111) plane has three of its bonds betbesurface and only one dangling bond to react
with the etchant. The etalate anisotropy becomes a valuable property, as it offersedsty pecise, and

3D shapes with smooth, shiny facets, leading to complex structures with multiple functionalities. The facets

are controlled by the fastest etched orientations for convex shapes such as the square islaffPt8rners

KOH etching of silicoremploysSigNg, SiOp, Cr, or Au as a mask. The selectivity is good between Si and
SiOy, the order of ~100, but it is much higher forg8iy, the order of ~10000. Besides its advantage of

providing excellent etching profiles, KOH is safe and easy to use. Howbe presence of an alkali metal
(potassium) makes it completely incompatible with MOS and CMOS processing. The etching rate ratio for
KOH anisotropic etch are 160:80:1 forGb:<110>:<111> orientations, which are done at a concentration

of 35% by weight at 70°C, but the ratio changes dramatically for other conditions. The orientation
dependent etch rate of silicon in KOH has besiedat different concentrations and temperatures by many

researchers. Typical concentrations and temperatures-&@80y weight at 6@0°C.

1.4.1.2.2. Tetramethylammonium Hydroxide (TMAH)
The TMAH water solutions are nontoxic, easy to use, and MOSFET/CMOS compatible. However, TMA+

can cause breathing difficids and may damage the nerves and muscles, SiNg4, Cr, and Au can be
usedas masks. TMAH has an etch rates anisotropy of 70:35:1 for orientation8®f: <1110>:<111> at

20% by weightand80°C. The etch profile depends on concentration and temperathich is between

10% and 25% by weight and temperature between 60°C and 80°C. Though the TMAH etching rate



anisotropy is lower than KOH etching, TMAH has a high selectivity between Si apchBdthereareno

harmful ions for the electrical integrateidcuits. Also, TMAH etching is more sensitive to diffusion effects,
especially at low concentrations (e.g., 10 % by weight), so the repeatability of the etch rate is lower than

KOH.

1.4.1.2.3. Nitric and Hydrofluoric acid (HNOg1 HF) etch

TheombinatidaandofHFRHNDan etch sil i°t%%° i nThevof isreqqtues
oxidation fogl HNWed by the oxide dissolution by HF.
for etching. The ettcthe nfgolclamwibreg relpe misealt eagbat i or
Si+ HNO3 + 6H FZSiP?6+ H+N02+ HZO +H2

The resul tingyo(priotdrucuSigidied AMNIOH or opsainfdpOcH ¢ aci d) |, I
The oxidati olni miteipngsf dghtson aweevianHiN@ heh oldF de r emo
raftiemi ting factor wheng HFni g hl ewl wiwt HFr irelgi sMBO c

orientation, and catalysis by reduced nitrnotgsen oXxi
has a high concentration due to dilution by water
Fi g8shows the etching rate as a function of the e
etching rate for acetic acid dilution, whiidheeas t
addi tion of a smal |l ametumeé mwdt esoadfi umeadcttiron.e Rutha

reduces the reaction rate by the formation of a p

There are three regions of interest: the high nit
rate regionmi.trlinc tahcei dhirgehgi on, the curves run par al
indicating that hydrofluoric acid plays an i mport

I n the high hydrofluoric &wwcitth rcegsoantthetcucvaeaes

i mportance of nitric acid. I n the maxi mum etch ra
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1.4.2. Dryetch

1.42.1. Introduction

The main three dry etching methods %rieigh pressure plasma etching, reactive ion etching (RIR

ion milling. lon milling employs accelerated ions like Ahatstrike the surface to remove the material. It

has a low etch rate (few nm/min) and poor selectivity and is used to etch thin layers that cannot be etched
by RIE. High pressure plasma etching is the use of highly reactive species to react/etch the material.
Howe\er, the most widely used etching technique is the RIEa@sisted chemical etching), which involves

a combination of physical and chemical etching.

Dry plasmaetches’ 626465 €6 67 \yereintroduced to nanofabrication in the 1970s. Plasma is the fsiatid

of matter; it is an ionic state of the gas. Strong electric fields can ionize the gas, usually a noble gas like
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argon or a halogen, to free electrons from the gas atoms. DC electric fields produce DC plasma, while

radiofrequency (RF) electric fielggoduce RF plasma. Figllshows the schematic of the plasma structure.

Cathode dark spaces Negative glow Anode glow
& ol \
\ [©) ®
./. ) A
-+ @7 lons
. 2 A
= o-»q'. © LA S -
s ./ \ ® é O (=
AP =+ i<
. @ '@ :
() 2 Electrons
‘l‘-.\ Heat /Radlatlon Light
1
Shielding (grounded) Insulatlng substrates

Fig 19 Schematic of the plasma structéte

The sputtering etching is a plrephysical and highly directional etch, which occurs when no reactive
chemical is added to the plasmdneTaccelerated ions move toward the wafer surface and knock off the
materials. Selectivity is poor in sputtering etch and the process is inefficient andais@ming. To
improve it, an assisted chemiatthegreactiveion etchegRIE)) is added RIE process can be roughly
divided into four steps, as shown in Fig Q. First, neutral radicals and ions are generated in the plasma,
and then they are transported and get absorb#tesnrface to chemically react with the wafer. Finally, a

by product isproduced and the etch is complete. The ion bombardment can help the etching by damaging
the surface to render it more reactive or removingrésédueformed inhibitors such auorocarbon

polymer that may otherwise block the chemical etching.
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Fig 1.10RIE etch step® 7°

Compared to the conventionparallel plate(capacitively coupled plasmanductivdy couplal plasma

(ICP) greatly enhances the plasma den3ity "* 7* 7> 76, As shown in Fig 1.1, ICP utilizesa coil to
generate the plasma. High frequency RF power is applied to the coil, generating an AC magnetic field that
inducesa circular electric field to accelerate the electrons. As the electrons move in a circular path, they
will not get quickly lostinto the chamber wallsinstead,they are more efficient to collide with gas
moleculesandionizethem In a typical ICRRIE setup, the ICP source controls the number of ions and free

radicals whereas the lower bias RF power controls the ion energy.

Analysis Port
Gas Inlet

il '
i e Il ICP

Pl Generator

iDark—- NN M '

Space ]+ —fTWafer Clamping
Cryo Stage Pumping i
(—150°C to 400°C) 1 1 1 | =

]‘ CCP

Helium Backing Generator

Fig 111 Crosssectional of Oxford Instruments ICP RIE
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1.4.2.2. Deep RIE (DRIE) ofilicon processes

DRIE has two basic technigues which are Bosch andmycesses. Bosch process is known as "switched
process" or "timedomain multiplexed process." Both pessors use fluoriAeased plasma chemistry
because of superior etch rates and high mask selectivity. The most popular hard mask used in the process

is shown inTable 1378,

Table 13 Hard mask materials and their deposition and patterning techniques

Material Deposition Patterning Application

sio (PEOC):(\i/dz)tighnermal HF (wet), CHlasma (dry) Deep etchlr:agt;:;l;%emperature
Al Sputtering evaporation| HsPQ (wet) C}, plasma (dry)| Extremely high selectivity proces
ALQO; Sputtering ALD HF (wet), Sfplasma (dry) | Extremely high selectivity proces
Cr Sputtering HCIQ/ICe(NH)(NG)s (wet) | Extremely high selectivity proces
Ni Plating Patterned plating Quartz etching

1.4.2.2.1. Bosclprocess

Bosch process is an anisotropic deep silicon etching process that enables trench, hole, and pillar fabrication
on various device applications. The Bogwmbcess is a higlaspectratio plasma etching process. This
process consists of cyclisotropic etching (etching half cycle) and fluorocart@sed protection film
deposition (passivation half cycle). Passivation and etching gases are separately and alternately introduced
to the chamber to form a higlensity plasma, which is repeatedly dan a loop until the required depth

is achieved.

13
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Fig 112 (left) (a) Ideal profile p) real profile employindosch procesgright) SEM image of a pillar

etched by Bosch procé8s

In atypical Bosch process, the §plasma cycle etches silicon, and thgFg plasma creates a protaci

layer during the passivation half cycle. To achieve deep silicon etching with a high aspect ratio, both the
SFg plasma cycle and the4Eg plasma cycle must be optimized. The protection film must be thick enough

to protect the sidewall from the §Blasmacycle whichdeliversa highly isotropic silicon etching. Since

the Bosch process consists of cyclic isotropic etching and protection film deposition by quick gas switching,
the sidewall is wavy and not smooth as shown in Fig, and for some applicationthe rough sidewall is

very undesirable. Tabledlshows typical etching parameters fbe "Bosch process" using different ICP

configurations.

There is another version of the Bosch process cpiieddeBoschor nonswitching Bosch, where the two
gases e introduced together into the chamber without switching. Bosch process (switching between the
two cycles) leads to a rough and wavy sidewall profile while switching gives a smooth sidewall, but

the tradeoff is the lower etching rate and lower seidty than regular Bosch.

For deep trench/hole etching, J. Yeom ef’glroves that the maximum achievable aspect ratio (critical

aspect ratio) depends on the mitwading effect, which is the total exposed area during the RIE etching.

14



The loading effet is the variation of the etch rate depending on pattern density due to reactant depletion;

the etch rate decreases when the surrounding load (etched area) increases. If the loading affeattand

ratio dependenetch (ARDE) occur together, the invegtion becomes more difficult.

Table 1.4 Typical setti

ngs donfiguratioBso sch processao

Standard HighRate HighRate Configuration
Parameters Configuration Configuration and .
"Ultrafast Switching"
ICP power 800 W 2700W 2700W
CCP power 8w 10w 10w
Sk flow 130sccm 500sccm 500sccm
Etch cycle time 7s 10s 1.6s
Etch cycle pressure 5Pa 9Pa 9Pa
GFs flow 100 sccm 200sccm 25sccm
Dep. Cycle presure 2.5Pa 4Pa -
Dep. Cycle time 5s 5s 0.2s
Net et_ching rate 3um/min 9um/min 8um/min
(for wide trenches)
Selectivity PR:Si 40:1 140:1 120:1
Selectivity Si@Si 100:1 300:1 300:1
Open Si areaon 6 in. 15% 15% 15%

1.4.2.2.2. Cryogenic DRIE

Cryogenic RIE utilizes a mimum temperature of arounr80 °C. It is discovered in 1988 when it was

observed that the cooling of the silicon wafer during the RIE resulted in dramatically reduced etch rate on

the sidewalls which improved the anisotrdPy Besides, selectivity betweesilicon and masking is

improved at cryogenic temperatuf@&®. Liquid nitrogen is used to cool down the chuck and the chuck

temperaturevhichis controlled by a proportionahtegratderivative (PID) controller. Fig 13** shows the

schematic chemical drphysical mechanisms for silicon crgtching. Reduced chemical reactiontba

sidewall is due to the silicon oxyfluoride (SJE%,) layer formed during the cryogengtching process in

SFs/O2 plasma. Cold temperature also reduces the reaction of frealsadue to the Arrhenius rate law
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which improves anisotropy and/or etching selectivity. Si©theelectedmask because of its very high

selectivity (selectivity of 750 can be achieved) and low contamination. In thepmpgessthe sidewall is

smooth, but the etatate of silicon is lower than that in the Bosch process.

Passivation
layer
(SiOF,)

Silicon (100) cooled down at -100°C
and negatively biased

Fig 113 Cryo-etching physical and chemical mechanisms

A high concentration of fluorine radicals provides a high edt in Sig/O2 plasma. Oxygen controls the

quality of the sidewall passivation layer, and it is the most important parameter when optimizing the
sidewall slope. If oxygen flow is too low, an undercut profile wiltur,whereas too high oxygen results

in high passivatin and silicon grass (known as black silicon).

Fig1.148 demonstrates that when the temperatuiedeased, the silicoetchegate increases whildne
photoresisetches at e decreases. Temperature below 190 AC r
as lateral etch is reduced by sidewall passivation. The etch profile is mainly controlled by the temperature

and oxygen flow rate. Low oxygen flow results in reducedipation and enhances isotropic etch, whereas

high oxygen fl owofmfay o featdhe ot mem@ph naemh hthdtrenchwhen t |

bottom causes a narrowing of the trench. Temperature reduction introduces more passivation and may

improve the profileAn increase in bias power or decrease in pressure can make the sidewall profile more
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vertical. Increasing the oxygen flow rate will decrease the etch rate and the fluorine/oxygen ratio can modify

the etch profile from a positive to a negattaper.

Fig 114 Cryogenic processes etch characteristics

As an example of the cryogenic etching process, P. Doll &eahployed an Oxford Plasmalab 100/ICP

380 system with the recipe €ff10 °C temperature, gasixture of 20 sccm S 10 sccm @ and 10 sccm

Ar, 750W ICP and 100W RF power to achieve an etch rai6fnm $1 They fabricated 100, 50, and
20 nm pillar arrays using electron beam lithography and HSQ (a negativeebihtion ebeam resist) as

amask andbtained silicon nanopillars with an aspect ratio of 5 to 10.

Another three different processes are presented in T&blgllithese processes utilize temperatures around
-100 °C and have similar process pressures, but the gas flows and RF gredifserent ICP power and

Sk flow determine the etchate, whereas the oxygen flow rate controls the passivation layer quality that
affects the sidewall angle and undercuts, which is clos8@bin all three processes.
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