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ive a stochastic representation for the probability distribution on the positive orthant (0,∞)d whose assoc
n components is minimal among all probability laws with `p-norm symmetric survival functions. It is
ansformation of a uniform distribution on the standard unit simplex that is multiplied with an indepe
ixture of certain beta distributions and an additional atom at unity. On the one hand, this implies an effi

tion algorithm for arbitrary probability laws with `p-norm symmetric survival function. On the other han
s leveraged to construct an exact simulation algorithm for max-infinitely divisible probability distributio
itive orthant whose exponent measure has `p-norm symmetric survival function. Both applications gene
g results for the case p = 1 to the case of arbitrary p ≥ 1.

rds: Archimedean copula, max-infinitely divisible, d-monotone function, simulation algorithm
SC: 60E05, 65C10, 60E07

oduction

fix p ≥ 1 and write θ := 1/p throughout to simplify notation. Let µ be a measure on [0,∞]d with the pr
survival function takes the specific form

µ
(
(x,∞]

)
= ϕ

( ‖x‖p
)
, x > 0,

e function ϕ : [0,∞) → [0,∞) of one variable. Since the survival function of µ is invariant with resp
s in the `p-norm of its argument x, it is called `p-norm symmetric. Probability measures µ of the kind
in [2], widely appear in many areas of applications including finance, risk management, and environm

s; we refer to [3] for background, examples, and statistical inference. Non-exchangeable extensions of (
ed in [9, 10].
en integrating with respect to a measure in Rd, it is sometimes convenient to perform this integration i
first integrate with respect to a “direction” specified by some measure on the (bounded) unit ball of
second integrate with respect to a one-dimensional “radial” measure. The representation (1) for the su
n of µ suggests that such a decomposition is possible with a “directional” measure on the unit ball

and ϕ accounting for the “radial” part. If µ is a probability measure, intuitively this means that in
late a random vector Z ∼ µ one may first simulate a bounded random vector taking values within th
the `p-norm, and subsequently multiply this random vector with an independent radius. We also consid

f non-finite Radon measures µ on [0,∞] \ {0}, meaning that µ is non-finite but assigns finite measure
sets that are bounded away from the origin 0. These play an important role in the context of max-infi
le probability distributions, which are parameterized in terms of such a Radon measure, called the exp
e, see [17] for a textbook account. A random vector is max-infinitely divisible if for arbitrary n ∈ N
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esented in distribution as the component-wise maximum of n independent and identically distributed ra
. Canonical stochastic representations for such random vectors rely on the notion of Poisson random m
ean measure µ. If one accomplishes a decomposition into directional and radial parts for the mean meas
n be leveraged to construct an exact simulation algorithm of the associated max-infinitely divisible prob
we will demonstrate for µ satisfying (1).

order to prepare the reader for the technical tools involved in the present article, it is instructive to notic
ction ϕ in (1) is necessarily d-monotone. We recall that a function ϕ : (0,∞) → [0,∞) is d-monotone
ives ϕ(k) exist for k ∈ {0, . . . , d − 2}, and (−1)k ϕ(k) is non-negative, non-increasing and convex. Such fun

important role not only in the context of `p-norm symmetric multivariate survival functions, but also
t of `p-symmetric multivariate characteristic functions, see [7]. A result of R.E. Williamson in [21] prov
ntation for d-monotone functions as integrals over certain simple functions with respect to a uniquely a
obability distribution on [0,∞). Thus, they arise as analytical transforms of probability measures, genera
ion of a Laplace transform in a certain sense. In general, this transform can be inverted to obtain the asso
ility distribution, but in concrete cases this inversion is not simple to figure out in a feasible form. Key
is the inversion of the d-monotone function x 7→ (1− xθ)d−1

+ , whose associated probability distribution is s
lated to a finite mixture of certain beta distributions.
with survival function (1) is a probability measure on (0,∞)d, it follows from results in [2, 13] (this

ecalled in (11) below) that ϕ is d-monotone with ϕ(0) = 1 and µ is the distribution of

Z ∼ R Vp
(
U(1))θ,

R is a random variable on (0,∞) whose distribution Fϕ depends solely on ϕ, the vector U(1) is unif
ted over the standard unit simplex S d,1 := {x ∈ [0, 1]d : ‖x‖1 = 1}, Vp is a random variable on [0, 1]
tion Fp solely depends on p, and R, Vp and U(1) are independent. Here and throughout, raising a vecto
θ, as well as applying other functions of one variable to a vector, should always be understood component
lently, µ can be factored as

µ(A) =

∫

(0,∞)

∫

[0,1]

∫

S d,1

1{r v uθ∈A} du dFp(v) dFϕ(r), A ⊂ (0,∞)d a Borel set.

stribution function Fp of Vp has not been explicitly found to date. We derive an exact representation fo
ility distribution, finding that a random variable Vp ∼ Fp satisfies the distributional equality

Vp ∼ W(d+1−Dθ), Pr(Dθ = i) = a(d)
i , i ∈ {1, . . . , d},

independently of Dθ, we denote by W(1) ≤ . . . ≤ W(d−1) the order statistics of independent standard un
variables W1, . . . ,Wd−1 and W(d) = 1, and the mixture probabilities (a(d)

1 , . . . , a(d)
d ) ∈ S d,1 can convenien

ted by the recursive relationship

a(k)
i = a(k−1)

i θ
k − i
k − 1

+ a(k−1)
i−1

(
1 − θ k − i + 1

k − 1

)
, i ∈ {1, . . . , k}, k ∈ {2, . . . , d},

itial value a(1)
1 = 1 and auxiliary notation a(k−1)

0 = a(k−1)
k = 0. This finding implies an efficient simu

hm for random vectors Z ∼ µ. Existing simulation algorithms to date are either restricted by the assum
is completely monotone (which is a special case of d-monotone in which ϕ is a Laplace transform), or r
tations of partial derivatives as in [2, Proposition 5.3], which is infeasible for large d.
e case p = 1, in which Vp ≡ 1, is well-established, see [13]. It is convenient to study the dependence str
n components of Z in terms of the survival copula of Z in that case. The latter equals the distribution fu
random vector ϕ(Z) and which is called an Archimedean copula with Archimedean generator ϕ, see [1
ound. The particular choice ϕ(x) = (1 − x)d−1

+ corresponds to the random vector Z = U(1), i.e. R ≡
oice minimizes the association between components of Z. In other words, randomness of the radial vari
es the strength of association between components of Z when compared to a non-random radius. In the g
≥ 1 the situation is analogous and Z = Vp (U(1))θ is a stochastic representation for the random vector
tion between its components is minimal among all random vectors with `p-norm symmetric survival func
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act representation for the law of Vp thus implies a stochastic model for the `p-norm symmetric survival fu
inimal association between components. Interestingly, the survival copula of Z in the general case p
Archimedean copula, but with Archimedean generator given by x 7→ ϕ(xθ).

urther application of our findings concerns the case when µ in (1) is a non-finite Radon measure on [0,∞
sults in [6] imply that the function ϕ is d-monotone and a bijection on (0,∞). The same factorization (2)
nly with the probability distribution Fϕ being replaced by a non-finite “radial” Radon measure νϕ on (0,∞

depends on ϕ. As already mentioned, our explicit derivation of the probability distribution Fp can be leve
ve an exact simulation algorithm for max-infinitely divisible random vectors with exponent measure µ.
our knowledge, such algorithm is unknown to date.

e remainder of this article is organized as follows. Section 2 provides background on different conce
symmetry in the context of multivariate probability distributions. Section 3 derives the explicit form

entioned distribution Fp. Section 4 presents an efficient simulation algorithm for Fp and thus for arb
vectors with `p-norm symmetric survival functions. Section 5 proves a stochastic representation for

ly divisible random vectors Y on (0,∞)d whose exponent measure has `p-norm symmetric survival fun
plains how to simulate Y exactly from it.

kground on `p-norm symmetry

ncerning analytical characterizations of multivariate probability distributions, one can find three promine
f `p-norm symmetry in the literature: `p-norm symmetric densities, `p-norm symmetric characteristic func
-norm symmetric survival functions. In order to classify the contributions of the present article, we pro

survey of what is known about stochastic representations related to these concepts.
st of all, an absolutely continuous random vector X has an `p-norm symmetric density f (x) = g(‖x‖p)

X ∼ R U(p),

R is a positive (absolutely continuous) random variable and U(p) is an independent random vector t
ly distributed on the `p-sphere, see Lemma 8 in the Appendix. Since ‖.‖p is orthant-monotonic, this stat

ither for X taking values in Rd or only (0,∞)d, in which case U(p) is uniform on the restriction of the `p-s
positive orthant (the `p-simplex). A stochastic representation for U(p) restricted to the positive ortha
nd in [16] and is given by U(p) ∼ ξ(p)/

∥∥∥ξ(p)
∥∥∥

p, where ξ(p) = (ξ(p)
1 , . . . , ξ

(p)
d )T is a vector with iid compo

ing (ξ(p)
1 )p ∼ Γ(θ, θ), where we denote by Γ(β, η) the Gamma distribution with density proportional to e−η

en considering analytical characterizations other than multivariate densities, the stochastic model (4)
by a more complicated stochastic representation, except for the following two well-known special
2}:
he characteristic function of X is `2-norm symmetric if and only if X ∼ R U(2) for arbitrary R > 0 indepe
f the random vector U(2).

he survival function of X is `1-norm symmetric if and only if X ∼ R U(1) for arbitrary R > 0 independ
he random vector U(1).

generalizing these statements to the case of more general p , 1, the stochastic representations become
d than (4), or are even unknown. In the present article we are concerned with a generalization of stat
he general case p ≥ 1, whereas generalizations of statement (i) are beyond the scope of the present wor
ound on (i) we refer the interested readers to the references in Remark 1 below, which provides a short s
topic.
ncerning the generalization of statement (ii), it follows from results in [2, 13], this logic being explained i
that a random vector Z taking values in (0,∞)d has `p-norm symmetric survival function Pr(Z > z) = ϕ
nly if

Z ∼ R Vp
(
U(1))θ,

3
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R is a positive random variable uniquely determined in law by its so-called Williamson-d-transform (see

E
[(

1 − x
R

)d−1

+

]
= ϕ(x), x ≥ 0,

uniform on S d,1, and Vp is a random variable taking values in [0, 1] whose probability law is not exp
to date, all three objects mutually independent. Provided absolute continuity of the radial variable R, th
ntations (4) and (5) imply that the notions of `p-norm symmetric densities and `p-norm symmetric su
ns are equivalent if and only if p = 1, and V1 ≡ 1 in that case. The survival copula of X, respectively Z,
= 1, which equals the distribution function of the random vector ϕ(X), is an Archimedean copula, and is

Cϕ(u) = ϕ[ϕ−1(u1) + . . . + ϕ−1(ud)], u ∈ [0, 1],

function ϕ is called Archimedean generator, see [11, Chapter 2] for background on the matter. In the g
≥ 1, we see that Zp ∼ Rp V p

p U(1) is a particular instance of an `1-norm symmetric distribution (in
ered meanings). The survival copula of the vector Z in (5) is an Archimedean copula with Archim
tor of the form x 7→ ϕ(xθ), and these are sometimes referred to as outer power Archimedean copulas.
ter-enhancement technique, introducing the power θ inside the argument of ϕ, has originally been intro
. The nomenclature “outer power” might appear surprising, since the power θ is taken “inside” ϕ,
ed from traditional notation in the context of Archimedean copulas, where the roles of ϕ and ϕ−1 are
anged.
w let us briefly discuss the strength of association between components of X in (4), respectively Z i
ering X in (4), for non-random R the association between the components of X is minimal and negative; in
case, Xp is a joint mix [20] and hence it represents a form of extreme negative dependence [15]. Further
plained in [16] that if the radial variable satisfies R ∼ M

∥∥∥ξ(p)
∥∥∥

p with a positive random variable M indepe

then X ∼ M ξ(p) with M and ξ(p) independent. Intuitively, the denominator in U(p) ∼ ξ(p)/
∥∥∥ξ(p)

∥∥∥
p “cance

ibution” in this case, relying on the Lukacs theorem, and the components exhibit positive association
)
, . . . , ξ

(p)
d are iid) whose strength depends on M. Regarding the strength of dependence between compo

(5), a convenient measurement is Kendall’s tau between a pair of two components of Z, see [11, p. 2
otivation. We recall that Kendall’s tau for the bivariate random vector (Z1,Z2) is given by the probabi

dance minus the probability of discordance, that is

Pr[(Z1 − Z̃1) (Z2 − Z̃2) > 0] − Pr[(Z1 − Z̃1) (Z2 − Z̃2) < 0],

(Z̃1, Z̃2) is an independent copy of (Z1,Z2). It follows from the results in [2] that Kendall’s tau betwee
nents of Z, without loss of generality (Z1,Z2) by exchangeability of Z, is given by 1−θ+θ τϕ, where τϕ d
ll’s tau between two components of a random vector with Archimedean copula Cϕ as distribution functi

n from results in [13] that Kendall’s tau τϕ is minimized with the choice ϕ(x) = (1 − x)d−1
+ correspond

with τϕ = −1/(2 d − 3). For p < (2 d − 2)/(2 d − 3) this implies negative association between the compo
d we obtain a similar intuition as in the case of an `p-norm symmetric density. In particular, two compo

random vector Z = Vp (U(1))θ have minimal Kendall’s tau 1 − θ (2 d − 2)/(2 d − 3) among all d-dimen
vectors with `p-norm symmetric survival function. Furthermore, it is known that if R ∼ M

( ∥∥∥ξ(1)
∥∥∥

1

)θ for
e random variable M independent of ξ(1) as defined above, then Z ∼ M

(
ξ(1))θ and the components of Z e

e association whose strength is governed by the choice of M.
r main contribution is an explicit representation for the random variable Vp. It can be inferred from the r
that the random variable Vp is uniquely determined by the identity

E
[(

1 − x
V p

p

)d−1

+

]
=

(
1 − xθ

)d−1
+ , x ≥ 0.

unately, this Williamson-d-transform is not easy to invert to obtain the explicit law of V p
p , hence Vp. We

equals a finite mixture of certain beta distributions and an atom at unity and derive an efficient simu
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hm. This not only implies an efficient simulation algorithm for the random vector Z in (5), but also we sh
5 how it can be leveraged to obtain an exact simulation algorithm for max-infinitely divisible random v
,∞)d whose exponent measure µ has `p-norm symmetric survival function given by (1). An excellent tex
t on max-infinite divisibility is [17]. Such Y is shown in Lemma 7 below to have the stochastic represen

Y ∼
(

max
k≥1

{
ηk Z(k)

1
}
, . . . ,max

k≥1

{
ηk Z(k)

d
})
,

{Z(k)}k≥1 is a sequence of iid copies of Z in (5) with R ≡ 1 and, independently, {ηk}k≥1 denoting the decr
ration of the points of a Poisson random measure, whose mean measure ν = νϕ is Radon on (0,∞] sati
) = 0 and νϕ((0,∞]) = ∞. Since our main result implies an exact simulation algorithm for the involved
chastic representation serves as basis to derive an exact simulation algorithm for Y. Its idea enhances an
iable for the case p = 1 that was presented in [12]. The copula of Y is called a reciprocal Archimedean c

enerator x 7→ ϕ(xθ) in [6]. This nomenclature is justified by some “reciprocal” analogies with Archim
s, e.g., like Archimedean copulas also reciprocal Archimedean copulas can be written in terms of their
unction ϕ. Our algorithm shows how to simulate reciprocal Archimedan copulas whose generator is giv
yθ). In analogy to the aforementioned Archimedean case, we refer to the copula of Y as outer power reci
edean copula.
k 1 (`p-norm symmetric characteristic functions)
teristic functions that are `2-norm symmetric are popular in geostatistics. For instance, it is pointed out
en the density of R in (4) with p = 2 is proportional to J2

d/2, the square of a Bessel function, the res
symmetric characteristic function (or density) is called Euclid’s hat, and scale mixtures thereof constit

ant model in geostatistics. It is known that `p-norm symmetric characteristic functions require the restr
but an explicit stochastic representation for p , 2 is only known for p = 1 due to [1], we refer the inte
to [7] for open questions in this regard and further background on the matter.

licit representation for the law of Vp

ncerning notation, we denote by βm,n for m, n ≥ 1 the cdf of a beta distribution with density proportio
− x)n−1. For the sake of a convenient notation, we further denote by βm,0(x) = 1{x≥1} the cdf of a ra

e that is identically constant equal to one, for m ≥ 1 arbitrary.
r goal is to find the random variable Vp satisfying (6). The solution will be given in Theorem 4 below, whe
that Vp is a (convex) mixture of certain beta distributions. Before presenting it, some auxiliary steps are c
rst of all, for the sake of completeness, we formally prove that Vp satisfying (6) exists and is unique in l
f [21], lying at the heart of the results in [13], shows that functions ϕ : [0,∞) → [0, 1] which are d-mon
) and satisfy ϕ(0) = 1 form a simplex with extremal boundary given by the functions ϕv(x) := (1 − x/
In intuitive terms, this means that these functions form a compact convex set, and each element in th

nique representation as an “integral average” over functions in the boundary of the set. In probabilistic
s that for any such function ϕ there is a random variable Vϕ, uniquely determined in distribution, suc
E[ϕVϕ (x)], x ≥ 0. Applied to our situation, in order to formally prove that Vp exists and its law is uniqu
nt to verify that x 7→ (1 − xθ)d−1

+ is d-monotone.

a 1 (x 7→ (1 − xθ)d−1
+

is d-monotone)
nction x 7→ (1 − xθ)d−1

+ is d-monotone on (0,∞).

Denote ϕ(x) = (1− xθ)d−1
+ within this proof. We apply [18, Theorem 12], which states that f ◦g is d-↑ if b

re. Applying this statement with f (x) = (1 + x)d−1
+ and g(x) = −(−x)θ on (−1, 0), which are both easily s

then implies that ϕ = f ◦ g(−.) is d-monotone on (0, 1). Since ϕ(k) is identically zero on [1,∞) and ϕ(k)(
{0, . . . , d − 2}, we obtain that ϕ(k) is actually convex on all of (0,∞), hence ϕ is d-monotone on (0,∞).

nition of d-monotonicity we also know that x 7→ (1 − xθ)d−1
+ is k-monotone on (0,∞) for each k = 1,

uently, for each k = 1, . . . , d there exists a positive random variable V (k)
d , which is unique in law, such th

(
1 − xθ

)d−1
+ = E

[(
1 − x

(
V (k)

d
)p

)k−1

+

]
, x > 0.
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al is to determine the probability law of Vp = V (d)
d , in fact we even determine the law of all V (k)

d for k = 1,
following. We denote the cdf of V (k)

d by Fk
d and, as a first step, we derive a recursion for Fk

d. To this en
at for k = 1, . . . , d, Fk

d is the unique distribution which satisfies the equation

∫ 1

cθ

(
1 − c

xp

)k−1
dFk

d(x) = (1 − cθ)d−1, for c ∈ [0, 1].

a 2 (A recursion for Fk
d
)

finite variation functions Fk
d be given by the following recursive formulas: F1

d = β1,d−1, and for k ∈ {2, 3, .

Fk
d =

d − 1
k − 1

θ Fk−1
d−1 +

(
1 − d − 1

k − 1
θ

)
Fk−1

d .

Fk
d satisfies (8).

We know β1,d−1(x) = 1 − (1 − x)d−1, which implies that

∫ 1

cθ

(
1 − c

xp

)0
dβ1,d−1(x) =

∫ 1

cθ
dβ1,d−1(x) = (1 − cθ)d−1,

ed for k = 1. Regarding the induction step, for k ≥ 2 define two functions F(c) :=
∫ 1

0

(
1 − c

xp

)k−1

+
dFk

d(
(1 − cθ)d−1 for c ∈ [0, 1]. Note that

F
′
(c) =

d
dc

∫ 1

cθ

(
1 − c

xp

)k−1
dFk

d(x) = −(k − 1)
∫ 1

cθ

1
xp

(
1 − c

xp

)k−2
dFk

d(x).

ver, using (9),

c F
′
(c) = −(k − 1)

∫ 1

cθ

c
xp

(
1 − c

xp

)k−2
dFk

d(x) = −(k − 1)
[∫ 1

cθ

(
1 − c

xp

)k−2

+
dFk

d(x) − F(c)
]

= −
∫ 1

cθ

(
1 − c

xp

)k−2 (
(d − 1) θdFk−1

d−1(x) + [k − 1 − (d − 1) θ] dFk−1
d (x)

)
+ (k − 1)F(c)

= −(d − 1) θ (1 − cθ)d−2 − [k − 1 − (d − 1)θ] (1 − cθ)d−1 + (k − 1)F(c)

= −(d − 1) θ (1 − cθ)d−2 cθ + (k − 1) [F(c) −G(c)].

w F(0) = G(0). If c > 0, we divide both sides of the above equality by c, and get

F′(c) = G′(c) +
k − 1

c
[F(c) −G(c)].

(1) = G(1) = 0, we know that F ≡ G on [0, 1]. Thus, (8) holds.

e term θ (d − 1)/(k − 1) in (9) may be greater than one, so that we do not obtain convex combinations o
tions directly. Indeed, if this term is no larger than one (i.e., p ≥ d − 1), then applying (9) repeatedly giv
s a mixture of β1,k for k ∈ {1, . . . , d − 1}. In general, this is not the case: we will see that Fd

d is a mixture o
tions, but not all of the form β1,k for k ∈ {1, . . . , d − 1}. The following auxiliary lemma is helpful to sol

on in (9).

a 3 (Auxiliary identities on the beta distribution)
llowing two identities hold for the beta distribution, for integers m, n ≥ 1:

βm+1,n−1(x) − βm,n(x) = −
(
m + n − 1

m

)
xm (1 − x)n−1, βm,n−1(x) − βm,n(x) = −

(
m + n − 2

m − 1

)
xm (1 − x)n−1.
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The straightforward proof is sketched in the Appendix.

em 4 (Solving the recursion)
h k ∈ {1, . . . , d}, there exists (a(k)

1 , . . . , a(k)
k ) ∈ S k,1 such that

Fk
d =

k∑

i=1

a(k)
i βk+1−i,d−k−1+i.

rmore, the a(k)
i satisfy the recursive relationship (3).

If we fix i ∈ {1, . . . , k − 1}, then the second identity in Lemma 3 gives

1
1
(
βk−i,d−k+i−1(x) − βk−i,d−k+i(x)

)
= −d − 1

k − 1

(
d − 2

k − i − 1

)
xk−i (1 − x)d−k+i−1 = −

(
d − 1
k − i

)
xk−i (1 − x)d−k+i−1 k −

k −︸︷
≤

uently, we observe with the help of the first identity in Lemma 3 that

d − 1
k − 1

(
βk−i,d−k+i−1 − βk−i,d−k+i

)
+ βk−i,d−k+i =

k − i
k − 1

βk−i+1,d−k+i−1 +
(
1 − k − i

k − 1

)
βk−i,d−k+i.

nductively, we proceed as follows to compute Fk
d via the recursion of Lemma 2:

Fk
d =

d − 1
k − 1

θ Fk−1
d−1 +

(
1 − d − 1

k − 1
θ
)
Fk−1

d = θ
[d − 1
k − 1

(
Fk−1

d−1 − Fk−1
d

)
+ Fk−1

d

]
+ (1 − θ) Fk−1

d .

w by induction that there exist a(k−1)
1 ≥ 0, . . . , a(k−1)

k−1 ≥ 0 that sum up to one and

Fk−1
d =

k−1∑

i=1

a(k−1)
i βk−i,d−k+i, Fk−1

d−1 =

k−1∑

i=1

a(k−1)
i βk−i,d−1−k+i.

that we have used here that the a(k−1)
i are independent of d, which is important. We thus obtain

k
d = θ

k−1∑

i=1

a(k−1)
i

[d − 1
k − 1

(
βk−i,d−1−k+i − βk−i,d−k+i

)
+ βk−i,d−k+i

]
+ (1 − θ) Fk−1

d

(10)
= θ

k−1∑

i=1

a(k−1)
i

[ k − i
k − 1

βk−i+1,d−k+i−1 +
(
1 − k − i

k − 1

)
βk−i,d−k+i

]
+ (1 − θ) Fk−1

d

=

k−1∑

i=1

a(k−1)
i

{
θ
[ k − i
k − 1

βk−i+1,d−k+i−1 +
(
1 − k − i

k − 1

)
βk−i,d−k+i

]
+ (1 − θ) βk−i,d−k+i

}

=

k−1∑

i=1

a(k−1)
i θ

k − i
k − 1

βk−i+1,d−k+i−1 +

k−1∑

i=1

a(k−1)
i

(
1 − θ k − i

k − 1

)
βk−i,d−k+i

=

k−2∑

i=0

a(k−1)
i+1 θ

k − i − 1
k − 1

βk−i,d−k+i +

k−1∑

i=1

a(k−1)
i

(
1 − θ k − i

k − 1

)
βk−i,d−k+i

=

k−1∑

i=2

[
a(k−1)

i θ
k − i
k − 1

+ a(k−1)
i−1

(
1 − θ k − i + 1

k − 1

)]
βk−i+1,d−k+i−1 + a(k−1)

1 θ βk,d−k + a(k−1)
k−1

(
1 − θ 1

k − 1

)
β1,d−1

plies the claim.

parently, a(d)
1 = p−(d−1). Since βd,0 = δ1 by our convenient notation, this implies that Vp = V (d)

d is equal
obability a(d)

1 and with complementary probability 1 − a(d)
1 follows an absolutely continuous distributio

t [0, 1].
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Journal Pre-proof
ulation of `p-norm symmetric survival functions

sed on Theorem 4, we first derive a convenient method to simulate Vp exactly.

a 5 (Simulating Vp)
, . . . ,Wd−1 be iid fromU[0, 1], and W(i) be the i-th order statistics, from the smallest to the largest, and W
ne a counting process (Nk)d

k=1 independent of (W1, . . . ,Wd−1) via Nk =
∑k

j=1 B j, where B1 = 1 and f
d},

Pr(B j = 1 |N j−1) = 1 − Pr(B j = 0 |N j−1) =
N j−1

j − 1
θ.

(Nk) ∼ Fk
d.

Let Tk = k + 1 − Nk = 1 +
∑k

j=1(1 − B j), k ∈ {1, . . . , d}. Note that T1 = 1. For k ∈ {2, . . . , d} and i ∈ {1, .

Pr(Tk = i) = Pr(Nk = k − i + 1) = Pr(Nk−1 = k − i, Bk = 1) + Pr(Nk−1 = k − i + 1, Bk = 0)

= Pr(Nk−1 = k − i)
k − i
k − 1

θ + Pr(Nk−1 = k − i + 1)
(
1 − k − i + 1

k − 1
θ

)

= Pr(Tk−1 = i)
k − i
k − 1

θ + Pr(Tk−1 = i − 1)
(
1 − k − i + 1

k − 1
θ

)
.

the sequence (Pr(Tk = i) : 1 ≤ i ≤ k ≤ d) satisfies the recursive relation (3) and has the same initial el
: 1 ≤ i ≤ k ≤ d). As a consequence, a(k)

i = Pr(Tk = i) for each i and k. Note that W(k+1−i) ∼ βk+1−i,d−k−
. . , k. The law of total probability implies

W(k+1−Tk) ∼
k∑

i=1

Pr(Tk = i)βk+1−i,d−k−1+i =

k∑

i=1

a(k)
i βk+1−i,d−k−1+i = Fk

d.

(Nk) ∼ Fk
d.

orithm 1 summarizes our simulation algorithm for Vp. The sub-routine SimulateU[0, 1](n) denotes a si
orithm for a list of n iid uniform variates on [0, 1].

thm 1 Simulation of Vp

ocedure SimulateVp(p, d)
W = (W1, . . . ,Wd−1)←SimulateU[0, 1](d − 1)
W ←Sort(W)
W ← (W, 1)
N ← 1
for j = 2, . . . , d do

B← 0
U ←SimulateU[0, 1](1)
if U < θ N

j−1 then
B← 1

N ← N + B
return Vp ← WN

w denote by Vp a random variable satisfying V p
p ∼ Fd

d , for instance simulated via Algorithm 1, and den
independent random vector that is uniformly distributed on the standard unit simplex in [0, 1]d, for in

ted using the stochastic representation U(1) ∼ ξ(1)/
∥∥∥ξ(1)

∥∥∥
1 relying on a simulation of d iid unit exponentia
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Right: p

Journal Pre-proof
er the random vector Z = Vp
(
U(1))θ, and observe that by construction

Pr(Z > z) = Pr
(
U(1) >

zp

V p
p

)
= E

[(
1 − ‖z

p‖1
V p

p

)d−1

+

]
= E

[(
1 − ‖z‖

p
p

V p
p

)d−1

+

]

=

∫ 1

0

(
1 − ‖z‖

p
p

vp

)d−1

+
dFd

d (v)
(8)
=

(
1 − ‖z‖p

)d−1
+ .

enerally, let now ϕ be an arbitrary, non-negative d-monotone function with ϕ(0) = 1, and denote by
variable, unique in law, satisfying

E
[(

1 − x
Rϕ

)d−1

+

]
= ϕ(x), x ≥ 0,

ndent of Vp and U(1). Then the random vector Z = Rϕ Vp
(
U(1))θ satisfies

Pr(Z > z) = Pr
(
Vp

(
U(1))θ > z

Rϕ

)
= E

[(
1 − ‖z‖p

Rϕ

)d−1

+

]
= ϕ

( ‖z‖p
)
,

red.

le 1 (Simulation of strict outer power Clayton copulas)
er the Archimedean generator ϕ(x) = (1 − x/a)a

+ for a parameter a ≥ d − 1, which is known as a strict C
tor. In [13, Example 3.3] this is shown to be d-monotone and it is also shown that the distribution funct
iven by

Pr(Rϕ ≤ x) = 1 −
d−1∑

k=0

a (a − 1) · · · (a − k + 1)
k!

( x
a

)k (
1 − x

a

)a−k
, x ∈ [0, a].

the derivative, it is not difficult to compute from this expression that for a > d − 1 the random variab
s the distributional equality Rϕ/a ∼ βd,a−d+1. Our results imply that the random vector Z ∼ Rϕ Vp

(
U(1)

l function (1 − ‖.‖p /a)a. Consequently, the distribution function of the random vector
(
ϕ(Z1), . . . , ϕ(Zd)

)

edean copula with x 7→ ϕ(xθ) = (1 − xθ/a)a as Archimedean generator. This is a strict outer power C
. Fig. 1 shows scatter plots for this copula in the case d = 2 (because larger d are difficult to visualize),
een produced making use of Algorithm 1.

1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0
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catter plot of 2, 500 samples from the strict outer power Clayton copula in Example 1. Left: p = 1 (so proper Clayton) and a
= 2.5 and a = 1.75.
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k 2 (Relation to positive stable distribution)
= exp(−x), it is well-known and easy to verify that Z with survival function exp(− ‖.‖p) satisfies

(1))θ, where Mθ is a positive stable random variable with Laplace transform x 7→ exp(−xθ). Since ϕ
lliamson-d-transform of an Erlang distributed random variable E with d degrees of freedom, our result
the distributional identity

M−θθ
(
ξ(1))θ ∼ E Vp

( ξ(1)
∥∥∥ξ(1)

∥∥∥
1

)θ
.

p is a finite mixture of beta distributions, this resembles a distributional equality found in [19, Theore
nting the positive stable distribution with rational θ in terms of beta distributions.

x-infinitely divisible laws with `p-norm symmetric exponent measures

andom vector Y taking values in (0,∞)d is called max-infinitely divisible if for arbitrary n ≥ 1 there ex
vectors Y(1,n), . . . ,Y(n,n) such that

Y ∼
(

max
i=1,...,n

{
Y (i,n)

1
}
, . . . , max

i=1,...,n

{
Y (i,n)

d
})
.

rge extent, a theory for max-infinitely divisible probability distributions can be obtained analogous to the
nitely divisible probability distributions, when replacing the group operation “addition” in the latter wi
roup operation “maximum”. General stochastic representations in these theories rely on the notion of P

measures and a textbook account on the topic is [17]. An analytical treatment for a Poisson random mea
n terms of a Radon measure, and this carries over to a parameterization of the associated max-infinitely div
ility distribution. Indeed, it is well known that Y is max-infinitely divisible if and only if its distribution fu
n by

Pr(Y ≤ y) = exp
[
− µ

(
E \ [0, y]

)]
,

µ is a measure on E := [0,∞] \ {0} subject to the properties

µ
(
E \ [0, y]

)
< ∞ ∀y > 0, lim

y→∞ µ
(
E \ [0, y]

)
= 0.

asure µ is called the exponent measure of Y and exponent measures µwith `1-norm symmetric survival fu
estigated in [6]. We generalize this investigation to `p-norm symmetric survival functions in the followin
e say that µ has an `p-norm symmetric survival function if there is a function ϕ : (0,∞) → [0,∞) i
e, called generator, such that

µ
(
(y,∞]

)
= ϕ(‖y‖p), y ∈ E.

explained in [6], with Poincaré’s inclusion exclusion identity we may write

µ
(
E \ [0, y]

)
=

d∑

∅,I⊂{1,...,d}
(−1)|I|+1 µ

(
(yI ,∞]

)
,

yI ∈ [0,∞) denotes a point whose j-th coordinate equals y j 1{ j∈I}. If now µ has `p-norm symmetric su
n, then we obtain

µ
(
E \ [0, y]

)
=

d∑

∅,I⊂{1,...,d}
(−1)|I|+1 ϕ(‖yI‖p),

the distribution function of Y is given in terms of the univariate function ϕ. Furthermore, it is immediately
is computation that Y is max-infinitely divisible with `p-norm symmetric survival function and generat

ly if the random vector Yp is max-infinitely divisible with `1-norm symmetric survival function and gen
(xθ). The following lemma gives a concise recap of the results in [6].
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a 6 (Genest et al., 2018 [6])
1. The following are equivalent for a function ϕ : (0,∞)→ [0,∞):

here exists a non-finite Radon measure ν on (0,∞] with ν({∞}) = 0 such that

ϕ(t) = ϕν(t) :=
∫ ∞

t

(
1 − t

r

)d−1

+
ν(dr).

is d-monotone and satisfies limt→∞ ϕ(t) = 0, limt↘0 ϕ(t) = ∞.

is the generator of a max-infinitely divisible law on (0,∞)d whose exponent measure has `1-norm sym
urvival function.

is the generator of a max-infinitely divisible law on (0,∞)d whose exponent measure has `p-norm sym
urvival function.

The equivalences of (a) - (c) have been established in [6], and that (d) is equivalent as well has been exp
ext preceding this lemma.

king use of Theorem 4, we are able to derive an exact simulation algorithm for max-infinitely divisible Y
nt measure satisfies (1). The basis for this algorithm is the following lemma.

a 7 (Stochastic representation for Y)
of the conditions in Lemma 6 is satisfied, a max-infinitely divisible random vector Y whose exponent m
en by (1) satisfies the distributional equality

Y ∼
(

max
k≥1

{
G−1
ν (ξ1 + · · · + ξk) Z(k)

1
}
, . . . ,max

k≥1

{
G−1
ν (ξ1 + · · · + ξk) Z(k)

d
})
,

Gν(x) := ν
(
(x,∞]

)
denotes the survival function of the Radon measure ν in Lemma 6(a) and G−1

ν its gener
, ξ1, ξ2, . . . is a sequence of iid standard exponential random variables and, independently, Z(1), Z(2), .
ce of iid copies of Z ∼ Vp

(
U(1))θ.

Notice that P :=
∑

k≥1 δ(ξ1+···+ξk ,Z(k)) is Poisson random measure on [0,∞) × [0, 1] with mean measure
dz). We denote by Ỹ the random vector on the right-hand side of (12), and we compute with the expon

nal formula for the Poisson random measure, see [17], and with the help of inclusion exclusion that

− log
[
Pr(Ỹ ≤ y)

]
= − log

(
E
[

exp
{
−

∫
− log

( d∏

i=1

1{G−1
ν (x) zi≤yi}

)
P(dx, dz)

}])

=

∫

(0,∞)

∫

[0,1]

(
1 −

d∏

i=1

1{G−1
ν (x) zi≤yi}

)
dx Pr(Z ≤ dz) = E

[
max

i=1,...,d

{
Gν

( yi

Zi

)}]

=

∫ ∞

0
Pr

(
max

i=1,...,d

{
Gν

( yi

Zi

)}
> x

)
dx =

∫ ∞

0
Pr

( d⋃

i=1

{
Zi >

yi

G−1
ν (x)

})
dx

=
∑

∅,I⊂{1,...,d}
(−1)|I|+1

∫ ∞

0
Pr

(
Z >

yI

G−1
ν (x)

)
dx =

∑

∅,I⊂{1,...,d}
(−1)|I|+1

∫ ∞

0

(
1 − ‖yI‖p

G−1
ν (x)

)d−1

+
dx

=
∑

∅,I⊂{1,...,d}
(−1)|I|+1

∫ ∞

0

(
1 − ‖yI‖p

x

)d−1

+
ν(dx) =

∑

∅,I⊂{1,...,d}
(−1)|I|+1ϕ

( ‖yI‖p
)
,

shing the claim.

e important aspects of the stochastic representation (12) are that the random variables ηk := G−1
ν (ξ1 + · ·

ependent of the random vectors Z(k), and that the latter are bounded in the unit ball of the `p-norm. Thu

11

Jo
ur

na
l P

re
-p

ro
of



stochas radial
part an re, the
random

is a sto ), and
the poi mean
measur lmost
surely, axima
in the s ize.

Fin actly,
becaus (k) are
bounde rithm
of [12]

the j-th

and the rithm
2 is an ndard
expone

Algori
1: pr
2:
3:
4:
5:
6:
7:

8:
9:

10:

11:
12:

13:

Examp
We con

Journal Pre-proof
tic representation reflects the sequential integration (2) in stochastic terms, with the ηk accounting for the
d the Z(k) for the directional (and in particular bounded) part. In the language of Poisson random measu

point measure

P :=
∑

k≥1

δ(ηk ,Z(k))

chastic representation of a Poisson random measure on (0,∞]× [0, 1]d with mean measure ν× Pr(Z ∈ dz
nts {ηk}k≥1 denote a decreasing enumeration of the points of a Poisson random measure on (0,∞] with
e ν. The fact that ν is non-finite implies that for arbitrary ε > 0 almost all ηk lie within the interval (0, ε] a
i.e. the ηk tend to zero. Together with the boundedness of the Z(k) this implies that the component-wise m
tochastic representation (12) are well-defined, since intuitively only the first few k have non-negligible s
ally, it remains to be explained how to simulate random vectors Y with stochastic representation (7) ex
e it involves a maximum over infinitely many numbers. To this end, the decisive aspect is that the Z
d in [0, 1], due to our decomposition into directional and radial part. This allows to generalize the algo
for the case p = 1 to the general case p ≥ 1, as we now explain. If we denote

Mn := min
j∈{1,...,d}

{
max

k∈{1,...,n}
{
G−1
ν (ξ1 + · · · + ξk) Z(k)

j
}}
, n ≥ 1,

component of Y in (7) is actually equal to

Y j = max
k≥1

{
G−1
ν (ξ1 + · · · + ξk) Z(k)

j
}

= max
k∈{1,...,N}

{
G−1
ν (ξ1 + · · · + ξk) Z(k)

j
}
,

N = min{n ≥ 1 : G−1
ν (ξ1 + · · · + ξn+1) ≤ Mn},

random variable N is independent of j and almost surely finite, since Z is bounded. Summarizing, Algo
exact simulation algorithm for Y, with SimulateExp(n) denoting a sub-routine that generates n iid sta
ntials.

thm 2 Simulation of Y in (7) with radial measure ν
ocedure SimulateY(p, d, ν)

Y = (Y1, . . . ,Yd)← (0, . . . , 0)
T ←SimulateExp(1)
η← G−1

ν (T )
while η > min{Y1, . . . ,Yd} do

ξ = (ξ1, . . . , ξd)←SimulateExp(d)
Vp ←SimulateVp(p, d)

Z = (Z1, . . . ,Zd)← Vp

(
ξ

ξ1+···+ξd

)θ

for j = 1, . . . , d do
Y j ← max

{
Y j, η Z j

}

T ← T+SimulateExp(1)
η← G−1

ν (T )
return Y

le 2 (The negative logistic model)
sider Y with distribution function equal to y 7→ exp

( − fp(1/y1, . . . , 1/yd)
)
, where

fp(y) :=
d∑

j=1

(−1) j+1
∑

1≤i1<...<i j≤d

( d∑

k=1

y−p
k

)−θ
, y ∈ [0,∞)d.
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Journal Pre-proof
the so-called negative logistic model, the associated copula being termed Galambos copula, named aft
that the law of Yp equals a max-infinitely divisible distribution whose exponent measure has `1-norm
survival function generated by ϕ(x) = x−θ, as pointed out by Genest et al. [6]. Two different exact simu
hms for Y can be found in [4], and a third (truly different) one also in [12]. For the case p ≥ 1, Algorith
ct, original and exact simulation algorithm, which is based on the observation that the exponent measur
`p-norm symmetric survival function generated by ϕ(x) = 1/x.

le 3 (An example with singular component)
er the radial measure ν = νa = a

∑
k≥1 δ1/k for a parameter a > 0. As pointed out in [12, Example 2.

ted generator ϕν and required inverse G−1
ν are

ϕν(t) = a
b1/tc∑

k=1

(1 − k t)d−1, G−1
ν (t) = 1/

⌈ t
a

⌉
.

atter plots in Fig. 2 depict samples of exp(−ϕ(Y)) for d = 2, illustrating that Y is not absolutely continuou
strating the effect of introducing p in comparison to the known case p = 1.

1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

catter plots from the reciprocal Archimedean copula in Example 3. Left: p = 1 (so regular reciprocal Archimedean copula) and a =

= 4 and a = 1.125.
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dix A. Some technical details

a 8 (`p-norm symmetric density)
nsity f of an absolutely continuous random vector X on (0,∞)d is `p-norm symmetric if and only if X ∼ R
U(p) is uniform on the `p-sphere (restricted to the positive orthant w.l.o.g.), which we denote S d,p, and R
ndent positive and absolutely continuous random variable.

Clearly, if X ∼ R U(p) then the density is `p-norm symmetric. Now assume that f (x) = g(‖x‖p) for
n g of one variable. We slightly generalize the computation on page 78 in [11], considering the ma
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h : (0, e first
d−1 c plies

E[b( ds,

where �

Fin

Proof:

(A.1)

Using below
and ob

�

Refere

[1] S. .
[2] A. (2014)

11
[3] S.
[4] C.
[5] J. G 4–680.
[6] C. oulli 24

(20
[7] T.
[8] T.
[9] J. G mation,

Co
[10] M.
[11] J.-
[12] J.-
[13] A. f Statis-

tic
[14] D.
[15] G.
[16] S.T ility 19

(19
[17] S.I
[18] P.
[19] T.
[20] B.
[21] R.

Journal Pre-proof
∞)d → S d,p × (0,∞), x 7→ (x/ ‖x‖p , ‖x‖p). We observe that |(h−1)
′
(y, s)| = p sp+d−2 is independent of th

omponents of h−1. For an arbitrary bounded and continuous function b multivariate change of variables im

X)] =

∫
b(x) f (x) dx =

∫

(0,∞)

∫

S d,p

b(s y) dy g(s) p sp+d−2 ds = cp

∫

(0,∞)
E[b(R U(p)) |R = s] g(s) p sp+d−2

the positive constant cp denotes the volume of S d,p. This implies the claim.

ally, we sketch a proof for Lemma 3.

To verify the first identity, one may first prove via induction and integration by parts that

βm,n(x) = (m + n − 1)!
n−1∑

k=0

xm+k (1 − x)n−1−k

(m + k)! (n − 1 − k)!
.

(A.1), the first identity is readily established. To verify the second identity, we make use of the first in (∗)
serve

βm,n−1(x) − βm,n(x) =

∫ x

0

(m + n − 2)!
(m − 1)! (n − 2)!

ym−1 (1 − y)n−2 − (m + n − 1)!
(m − 1)! (n − 1)!

ym−1 (1 − y)n−1 dy

=

∫ x

0

(m + n − 2)!
(m − 1)! (n − 2)!

ym−1 (1 − y)n−2
(
y − m

n − 1
(1 − y)

)
dy

=
m

m + n − 1
(
βm+1,n−1(x) − βm,n(x)

) (∗)
= − m

m + n − 1

(
m + n − 1

m

)
xm (1 − x)n−1

= −
(
m + n − 2

m − 1

)
xm (1 − x)n−1.
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