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Abstract

Computational fluid dynamics (CFD) is concerned with numerically solving and visu-
alizing complex problems involving fluids with numerous engineering applications. Mathe-
matical models are derived from basic governing equations using assumptions of the initial
conditions and physical properties. CFD is less costly than experimental procedures while
still providing an accurate depiction of the phenomenon. Models permit to test different
parameters and sensitivity quickly, which is highly adaptable to solving similar conditions;
however, these problems are often computationally costly, which necessitates sophisticated
numerical methods.

Modeling multiphase flow problems involving two or more fluids of different states,
phases, or physical properties. Boilers are an example of bubbly flows where accurate
models are relevant for operation safety or contain turbulence, resulting in reduced effi-
ciency. Bubbly flows are an example of continuous-dispersed phase flow, modeled using
the Eulerian multiphase flow model. The dispersed phase is considered an interpenetrating
continuum with the continuous phase.

In the two-fluid model, a phase fraction parameter varying from zero to one is used
to describe the fraction of fluid occupying each point in space. This model is ill-posed,
non-linear, non-conservative, and non-hyperbolic, which affects the stability and accuracy
of the solution. There have been methods allowing the model to be well-posed to obtain
stability and uniqueness, but this raises questions regarding the physicality of the solution.
Approaches to increasing the well-posedness of the model include additional momentum
transfer terms, virtual mass contributions, dispersion terms, or inclusion of momentum
flux. There is division among which methods are valid for an accurate description of the
phenomena, and more research is required to examine these effects.

While finite difference schemes are often simple to implement, they do not scale well to
problems with complicated geometries or difficult boundary conditions. Numerical meth-
ods may also add ad-hoc terms that compromise the physicality of the solution. The
choice of numerical method results from a time versus accuracy trade-off. In industry, effi-
cient performing schemes have become standard; however, this might sacrifice the physical
properties of the natural phenomenon.

H (div)-conforming finite element spaces contain vector functions where both the func-
tion and its divergence are continuous on each element. Examples of H(div)-conforming
spaces include Raviart—-Thomas and Brezzi-Marini—Douglas spaces. These spaces allow
for the velocity vector function to be pointwise divergence-free with machine precision and
being pressure-robust.
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This thesis presents a discontinuous Galerkin H (div)-conforming method for the two-
fluid model. Instead of solving the dispersed and continuous phase velocities, the dispersed
and mixture velocities are solved, allowing us to easily apply our pressure-robust scheme to
the divergence constraint of the two-fluid model. The viscous term numerical flux is derived
from a standard interior penalty discontinuous Galerkin method flux, and the convective
flux is calculated using the local Lax—Friedrichs flux.

Simulations of two-dimensional channel flow are performed using the H (div)-conforming
method. While we can qualitatively assess the approximate velocity, pressure, and phase
fraction solutions, there still needs to be work done to use this method for actual applica-
tions. The mixture velocity is calculated to be divergence-free within machine-precision.
Limitations of the numerical scheme are discussed, and possible areas for further research.
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Chapter 1

Introduction

1.1 Research Motivation

A multiphase fluid is two or more distinct components or phases composed of either fluids
or solids but exhibits properties of a fluid. Proper averaging techniques [39] can be used to
derive a set of equations describing multiphase flow, which in principle correctly describes
the dynamics of any multiphase system, subject to very general assumptions. Constitutive
equations are needed to close this set of equations. Many multiphase flow forms exist, such
as flow in a fluidized bed [25], bubbly flow in boilers [30, 10, 53, 58], and gas-particle flow
in combustion reactors. Constitutive laws describing interactions and material properties
of the various phases involved differ for particular cases.

Poor mass conservation in numerical methods is the culprit for non-physical behavior
shown in mixed methods for incompressible flows. Lack of pressure robustness is due to the
relaxation of the divergence constraint for incompressible flows, found in classical mixed
methods to construct discretely inf-sup stable discretization schemes [3]. Pressure robust
schemes have the advantage of being numerically stable regarding large pressure gradients.

Discontinuous Galerkin (DG) methods are one way to implement pressure-robust nu-
merical schemes. The differences between the degrees-of-freedom (DOFs) in the continuous
Galerkin (CG) and DG methods are illustrated in Figure 1.1. In the CG finite element
method, the facet DOFs are shared between elements, as shown. For most DG meth-
ods, the DOFs do not live on the facets and instead live on the interior of each element.
There are no DOFs shared between elements. While there are differences regarding the
type of DOF's in both methods, the total number of DOFs is higher in the DG method,



which results in a linear system that is computationally more expensive to solve. One of
the primary benefits of DG methods is their local conservation properties, as shown in

[12, 13, 23].

Figure 1.1: CG and DG DOFs for polynomials of total degree 2 on triangular elements.
The red squares denote the element DOFs, and the dash lines indicate the communication
between elements for the DG elements.

By allowing the polynomial approximation to be discontinuous across facets such as in
Figure 1.2, the approximation at element boundaries is undefined. A flux across element
boundaries is defined to solve this problem. FEach element is only able to communicate
through neighboring elements via the boundary data provided. The numerical flux is nec-
essary to propagating information across the domain. By carefully choosing our numerical
flux, we can encode invariants of the system we are modeling, such as the wave propaga-
tion speed or other information depending on the partial differential equation (PDE). An
incorrect choice of numerical flux can lead to spurious oscillations or numerical instability.

One of the simplest numerical fluxes averages the values at the facets of two neighboring
elements, known as central flux [12]. While central flux is undoubtedly easy to implement,
it is rarely used because it can create instabilities for nonlinear problems. A more real-
istic numerical flux exploits the wave-like behavior of the solution. Upwinding flux uses
information biased in the direction of the sign of the characteristic speeds, propagating
information in the direction of motion [10].

Multiphase flow also presents a set of conservation equations which is the main moti-
vation for using a locally conservative DG method. DG methods can support high order
local approximations [22, 28, 19, 52]. Since each element can be viewed as a separate entity
while only requiring boundary data from its neighbors, the degree of approximation can
vary over each element and in time over the simulation while still providing mathematical

rigor [2].



Figure 1.2: Discontinuous approximation of a continuous function. Here the piecewise
approximation is undefined at the element boundaries.

Vortex-dominated flows exhibit large pressure gradients [78, 48], which require pressure-
robustness to enforce the divergence constraint. They also outperform non-pressure-robust
schemes such as classical Taylor-Hood element schemes at high Reynolds numbers. While
there do exist continuous finite element pressure-robust schemes, H(div)-conforming DG
methods allow us to incorporate a flux that can correspond to the wave speed of the
solution and be particularly robust to shocks in the solution [17]. Pressure-robust schemes
offer higher convergence rates while preserving the velocity of the solution under changes
in viscosity. H(div)-conforming DG methods allow for numerical precision, mainly when
the pressure errors are significant, as shown in Section 3.

1.2 Objectives

The overall objective of this research is to demonstrate the advantages of H-div conform-
ing discontinuous Galerkin methods applied to two-phase flow problems. The following
objectives are included to support this:

e To investigate the well-posedness of the two-fluid model for two-phase flow problems.

e To investigate the advantages of H(div)-conforming discontinuous Galerkin finite
element methods such as pressure-robustness and stability with higher-order approx-
imation polynomials.



e Development of an H(div)-conforming discontinuous Galerkin method to solve the
two-fluid model.

1.3 Structure of Thesis

The thesis is organized into six chapters: Chapter 2 — the discontinuous Galerkin Method,
Chapter 3 — H(div)-conforming finite element method for incompressible Navier-Stokes
flow, Chapter 4 — multiphase flow, Chapter 5 — H (div)-conforming finite element method
for two-fluid incompressible flow systems and Chapter 6 — conclusions and reccommenda-
tions for future work.

Chapter 2 describes the discontinuous Galerkin method required for the thesis. Basic
notation for the thesis is introduced, and a fully discretized discontinuous Galerkin weak
formulation is derived.

Chapter 3 elaborates on the ideas from Chapter 2, presenting the idea of an H(div)-
conforming discontinuous Galerkin method and the concept of pressure-robustness. The
method mentioned above is applied to the incompressible Navier-Stokes problem with
results from numerical simulations.

Chapter 4 provides an overview of the Euler-Euler two-fluid model and addresses the
numerical complexities of the model and the well-posedness.

Chapter 5 derives an H (div)-conforming weak formulation of the two-fluid model. Sim-
ulation results are presented with a discussion of improvements for the numerical method.

Chapter 6 summarizes the conclusions from this work and provides recommendations
for future work.



Chapter 2

The Discontinuous Galerkin Method

This chapter will introduce the DG finite element method for a vector advection-diffusion
problem. We start by introducing relevant notation, after which we derive the DG dis-
cretization.

DG methods were first introduced in [60] and later developed in [1] as a robust finite
element method allowing for a practical framework for the development of high-order ac-
curate methods using unstructured grids. They are based on nonconforming finite element
spaces consisting of piecewise polynomials that are discontinuous across elements. The
governing equations are reformulated into their weak formulations, where the condition
that the solution must satisfy the differential equation at every point in the domain is re-
laxed. Instead, the PDE will be weakly satisfied. The main reasons for us to consider the
DG method is that it is well suited for large-scale time-dependent computations in which
high accuracy is required, it is well suited for parallel computing [1, 9, (8] and, unlike, for
example, the CG method, the DG method is locally conservative [12, 13, 23]. Because of
this, DG is often used to solve hyperbolic conservation equations [11, 28, 29, 32 47, 50].

2.1 Notation and Operators

Some notation is required before presenting the DG method. Consider a domain £ C R,
with d = 2,3 and let  be a partition of the domain €2 into non-overlapping elements.
Interior facets of I are denoted by F;, whereas boundary facets of 7 are denoted Fg. Let
hx = diam(K) € T be the diameter of each element. On the boundary of a cell, K, the
outward unit normal vector is denoted by n. In this thesis, all vectors r will be bolded,
and all tensors s will be underlined.



On the interior facets, two important operators need to be defined for the DG method.
The average {-}} and jump [-] operators are defined as follows: for a scalar g,

faf = % (¢ +q¢7), [gm]:=¢'n"+¢n, (2.1)

where n™ = —n~. On boundary facets we set

e} :==¢q¢, [gn] :=m. (2.2)

The average and jump operators for a vector r on interior facets are defined as

(r*+r7), [r-n]:=r"-n*+r -n", (2.3)

N | —

e} =

[r@n]:=r"@n" +r @n, (2.4)
while on boundary facets they are defined as
{rf:=r, [r'n]:=r-n, [r®n]:=r®n, (2.5)

where r ® n denotes the outer product of two vectors. Finally the average and jump
operators for a tensor s on interior facets are defined as

1
fshi=5("+s7), [s-n]=s"-n"+s -n7, (2.6)
while on boundary facets they are defined as
{s}:=s, [s-n]:=s-n, (2.7)

where s - n denotes the non-symmetric dot product of a tensor with a vector.

To define the DG method we define also the following finite element spaces:

Vi ={v, € [L*(Q)]?: VK € T(Q), v |x€ [P* (K)]"}, (2.8a)
Wy = {7, € [L(Q)]™: VK € T(Q), T |x€ [P* (K)]™}, (2.8b)

where P* (K) is the set of polynomials of total degree less than or equal to k. Note that
these are spaces of piecewise polynomials that are discontinuous across element boundaries.



2.2 Discontinous Galerkin Method for the advection-
diffusion problem

We will now introduce the discontinuous Galerkin method for an advection-diffusion prob-
lem. This problem is as follows: Consider the domain 2 C R? d = 2,3, and let the time
interval of interest be given by I = (0,¢,]. Let € € R be a scalar diffusion coefficient. The
advection-diffusion problem for the vector velocity field u :  x I — R? is given by

du+V-fu) —eVu=0 inQxI, (2.9a)
u=g onlpxI, (2.9b)

(f(u) —€eVu) -n= h™  on % x I. (2.9¢)
—(eVu) -n=h""  on T x I, (2.9d)

where the boundary of €2 has been partitioned into a Dirichlet (I'p), Neumann inflow (I'J),
and Neumann outflow (I'3¥) boundary: 9Q = T'p UT® UT and Tp N T NI = 0.
Throughout we assume I'p # (. On I'p, g : I'p x I — R? is the given Dirichlet boundary
data, on I'?, h™ : ' x I — R? is the given Neumann inflow boundary data, on I'¢¥,
hout : T x [ — R? is the given Neumann outflow boundary data and where f(u), a
tensor, is the flux function dependent on the velocity u. Here we have both the advection
term represented by V - f(u) and the diffusion term eV*u, where the operator V?(:) =
V - (V(+)) = A() is the Laplacian operator.

2.2.1 Weak Formulation

We will now describe the weak formulation for the advection-diffusion problem. Let o :
Q) — R¥? be an auxiliary variable, then we may write equation (2.9a) as

og=Vu inQxI, (2.10a)
ou+V-flu)—eV-a=0 inQxI, (2.10b)

which has reduced the PDE to a first order system. Mixed methods can be found in
[38, 55, 64]. We will denote approximation variables with a subscript h. We will use the
finite element spaces introduced in section 2.1. The auxiliary variable o is introduced



here purely to derive a discretization for (2.9). In what follows below, we will eliminate
o to find a discretization for (2.9) for the unknown u only. Multiplying (2.10a) by a test
function 7, € W§ and (2.10b) by a test function v, € V}, as well as integrating and
summing over all elements of the triangulation yields the equations for the approximate
solution (o, up) € W) x VJ

Z / o Trdr = Z/ Vuy : Tpde,  (2.11a)
K K

Keg KeT

Z/th-atuhda:JrZ/KVh'(V'M)dIB— Z/Kevh-(v-ﬁ)dxzo. (2.11b)

Keg Keg KeT

Integration by parts can be applied to both equations in (2.11) yielding

Z/ﬁ:ﬁdx:—Z/uh~(V-ﬂ)dx+2/ U, ®n: Thds, (2.12a)
K K oK

KeT Keg Keg
Z / <Vh -0y, —f(uy) : Vv +eoy, Vvh) dx + Z H-v,ds
K I oK
KeT KeT (2.12D)
_Z/ €ay : (v, ®n)ds =0,
Keg Y OK

where uy,, H and & are approximations to, respectively, uy, f(uy) - n, and g on element
boundaries. These approximations are necessary because uy, f(uy,) - n, and o) are not
uniquely defined on element boundaries.

For H, we use the well-known local Lax—Friedrichs flux (LLF). Consider two adjacent
elements Kt and K~ and let F be a facet shared by both elements. Let u,{ﬁ be the
restriction of u;, to KT and let uff~ be the restriction of uy, to K. Further, let u;” be the
restriction of uff" to the facet F and u, be the restriction of uX  to the facet F. The
LLF numerical flux [57, 62] is then defined as:

H (e n ) =2 (F (uf) £ () ) 0+ 0 () — ) (2.13)

where n' is the unit normal vector on F' pointing outwards from K, and where A is the
largest eigenvalue (in absolute value) of the Jacobian of f (uy) - n. We remark that the
LLF introduces upwinding in our discretization and is therefore well-suited for advection
dominated problems. Indeed, %)\(u; —u,, ) is a diffusive term that stabilizes the numerical
method. Furthermore, note that LLF is consistent, i.e., H(u,u,n) = f(u) - n for any
smooth function u.




We will now define w, and o, and explain how we eliminate o). We first remark that
u;, and o, will be defined to be single-valued on element boundaries. We can then write
the element boundary integrals in (2.12) in terms of facet integrals:

Z/ U, ®n:T1,ds = Z/u_h-[[ﬁ-n]]ds—i— Z U, ®@n: Tyds, (2.14a)
oK F

KeT FeF; Fegg’F
Z H.v,ds = Z /ﬂ (vii — v, )ds + Z /ﬂ-vhds, (2.14b)
Keg /0K Fex Feop ' F
Z/ VL, ®@n:eopds = Z/[[Vh®n]]:e@ds+ Z /Vh®n:eﬁds. (2.14¢)
Keg VOK Fes Fegp

Consider now the first integral on the right-hand side of (2.12a). Integration by parts and
writing element boundary integrals in terms of facet integrals results in

=5 [ (@ mar= Y [ Ve 3 [ o nlas

KeTg KeT FeF

=Y [wenl: grupds— 3 [ weninds

Fegy FeFg

(2.15)

Choosing our test function 75, = Vv;, € W} and combining equations (2.12a), (2.14a) and
(2.15) we have

> /K on: Vvpde = /K Vu, : Vvpde — /F [w, ®n] : {Vv,Rds,

KeJg KeT Fegy

(2.16)
+ Z / (@, — {u,}}) - [Vvy -n]ds + Z / (U, —up) ®@n: Vvgds.
Feg 7 F Fegp’ ¥
We will now define the numerical flux wj, as follows:
{u,}} on F e,
u, =14 g on F'e Fp, (2.17)

up, OHFEGN,

where F; are the interior boundaries and Fg = Fp U Fy is the union of the Dirichlet and
Neumann boundaries. Introducing (2.17) into (2.16) yields,

Z /Kﬁ P Vvpde = Z /Kvuh : Vvpde — z; F[[uh @n]: {Vv,} ds

Keg KeT

- Z /F(uh—g)®n:Vvhds.

FeFp

(2.18)



Combining (2.18) now with (2.12b), (2.14b) and (2.14c) we find

O:Z/K(Vh-(?tuh—M:Vvh—i-eVuh:Vvh)dx

KeT
+ > /E~(v7{—vh)ds+ > /E-vhds
Fedr F FeFp F
(2.19)
- Z /[[uh @n] : {Vv,}ds — Z (up, —g) ®@n: Vvyds
res 7 F Fesp ¥
_ Z /[[vh®n]] :€opds — Z /Vh®n:e@ds.
Feg I F Fegp /¥
For @}, we now choose the standard interior penalty (IP) flux [1, 26, 35]:
{Vu,}} — %[[uh ® 1] on F € 9,
o, =4 Vu, — %[[(uh —g)®n] on F € 9, (2.20)

Vuh OI]..FWE(G’J]\[7

where [ is a penalty parameter to ensure stability, which in this thesis is chosen to be
B = 10p?, with p being the degree of the approximating polynomials. Now considering the
diffusive term on interior facets as well as the gradient flux defined in (2.20), we have

- Z /[[Vh®n]] c€opds = — Z /[[Vh®n]] ; <e{{Vuh} _b (uf —uy) ®n) ds,
Fe5r F o FeSr F h
(2.21)
while on Dirichlet boundary facet integrals,

> /F"h Qmn: (Gvuh - % (u, —g) ® n) ds, (2.22)

FeSp

— Z/vh@)n:ea_hds:—
. Oh

FeSp

and on Neumann boundary facet integrals,

— Z / vV, ®n:eopds = — Z v, @n: (eVuy,)ds. (2.23)
F

FeFn Fegy ?F

Combining these expressions with (2.19) and using the definition of the LLF flux (2.13)

10



we find:

O:Z/}((Vh-atuh—M:VVh+eVuh:Vvh>d:v

Keg

-3 /F efw, @] : {Vvyds — > /F e[ve@n] : {Vu,}ds

Fedy Fegy
_ Z /e(uh—g)@)n:Vvhds— Z /evh®n:Vuhds
Fesp ' F Fesp ’F
es ' e
+ Z /F%[[uh@)n]] . [[Vh®n]]d8+ Z /Ff(uh_g).‘,hds (224)
Fedr FeSp

(v = vi) ()l + A (u = w) ) s

FeF /F
P> /FV"'(%(M+@)'n+%k(uh—g))ds
+ Z /Vh®n2 (M—evuh>d3_

Fegy T

Substituting the Neumann boundary conditions (2.9¢) and (2.9d) for the last integral of
equation (2.24), we obtain the following discontinuous Galerkin weak formulation for the
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advection-diffusion problem (2.9):

O:ZL(Vh-atuh—M:Vvh—i-eVuh:Vvh>dx

KeT

- /F cfus@n] : {Vvalids — > /F e[vi, ®n] : {Vu,}ds

Fedr Fegy

- (up, —g)®@n: Vvyds — v, @n: Vu,ds
F;D/FG h h FgD/FE h h
1363 ¢
+ —[u, ®@n] : [v, ® n]ds + “(upy—g)vid
FX;/F’”‘ LR Fzg:/Fh » ) vads
(1 1 - (2.25)
#30 [ —vi) (GHER 0 +  (af —w) ) as
Feq /F
1 1
T Vi | 5 (f(u) +1(g) ) -n+ A (u —g))ds
FED/F " (2(—h —> 2 h
+ vy, - h"ds
+ vy - (f(up) -n+h™") ds.
z/ - (o )

We have now obtained the semi-discrete form of (2.9). To obtain a fully discrete formulation
of (2.9) we still need to discretize in time. For this, we can use any time-stepping method,
for example, Euler’s method or the trapezoidal rule. In the case of Euler’s method, the

12



fully discrete problem is finding u}™" € V¥ such that:

> /K (—f(up) - Vi + eVug s O, ) da

FZ [ i onl- (vwyds - 3 [ e nl gvuyas
—FEZ;Le(uZ—g")®n:Vvhds—Fg /Fevh®n:Vust
+F:Z£/F%ﬂu2®nﬂ:uvh®nﬂds+F;ZA%<uzgn>-vhds
3 ) (G s (- ) ) o
> /ﬂ'(% (M+@)-n+§wuz—g“>)ds
X [

+F§m /F Vi - (f(uz>.n+(hwt)") ds.

13
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Chapter 3

H(div)-conforming Finite Element
Method for Incompressible
Navier—Stokes Flow

In this chapter, we consider finite element methods for the incompressible Navier—Stokes
equations. Let v € R* be the kinematic viscosity and let f : Q x I — R? be a given
forcing term. All other notation is defined similarly in section 2.2. The incompressible
Navier-Stokes problem for the velocity field u : Q x I — R? and kinematic pressure field
p:Qx I — R are given by

ou+V-:-(u®u)—vAu+Vp=f in Qx1I, (3.1a)
Vou=0 in Q x I, (3.1b)

u=g onI'p x 1, (3.1c)

(u@u—vVu+pl) -n—max(u-n,0)u=h on 'y x I. (3.1d)

The nonlinear term V- (u®u) and the term vAu in (3.1a) represent convective and viscous
forces of the fluid respectively. The forcing function f, represents forces such as gravity,
buoyancy, and centrifugal forces. The incompressibility constraint is V -u = 0, also known
as the conservation of the mass. If I'y = (), i.e., 9Q = I'p, then the Dirichlet boundary
data g must satisfy the compatibility condition

/(mg -ndz =0, (3.2)

and the pressure mean is set to zero.
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3.1 H(div)-conforming Finite Element Spaces

The Navier—Stokes equation contains the constraint V -u = 0, where u is the flow velocity
of the system. This constraint is not enforced exactly in all numerical schemes, for example,
Taylor-Hood elements [8]. One of the main motivations of this thesis is to investigate a
numerical scheme that satisfies this constraint exactly. We will first consider an H(div)
finite element space defined on a domain . The H(div) space is defined as:

H(div,Q) := {u e L*(Q)* | V-ue L*Q)}, (3.3)

which is the space of square integrable vector functions with square integrable divergence
[17]. Examples of H(div)-conforming finite element spaces include Raviart—Thomas (RT)
[63] and Brezzi-Douglas—Marini (BDM) [7]. The H(div,€2) conforming BDM space of
the lowest order is defined in [6]. BDM spaces of order k are denoted by BDM} with
approximating polynomials of total degree less than or equal to k. By choosing our test
and trial functions to belong to an H(div) conforming finite element space and choosing
our pressure test and trial functions to belong to an L? function space, we enforce the
constraint of u being divergence free in our weak formulation as shown in Section 3.3,
and as a consequence H (div)-conforming numerical methods are pointwise divergence free
within numerical precision. Without this constraint, laws beyond mass conservation could
be violated in the numerical approximation, such as energy conservation [(1].

As shown in [7], when using an H(div) conforming finite element space, piecewise vector
functions are continuous with respect to the vector normal component across adjacent
facets. That is, if u € V}, C H(div, ), with V}, the BDM or RT space, then u,-n, = u,-n,
on facets, where the subscripts a and b denote adjacent elements. Since n, = —ny, more
formally, we can say that [u-n] = 0 on facets which means that the dot product of u
with the normal vector n is continuous across facets. Examples of H(div) methods can be
found in [16, 34].

3.2 Pressure-Robustness

When using mixed finite elements such as Taylor-Hood elements for the incompressible
Stokes equations to solve for a velocity field u and a pressure p, the velocity error between
the exact velocity u and the discrete velocity uy, is pressure-dependent [11]:

Cy
— < inf — — inf — A4
IV (= w)le < Crinf [V (= wi)lat 2 inf =il (34)
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where V(7)) and Q(7) denote the discrete velocity and discrete pressure trial spaces, [|-|| ;-
denotes the L? norm, v is the kinematic viscosity and C; and Cy are constants. One of the
immediate concerns which is typical of classical mixed methods that are not divergence-free
is that the error in the approximate velocity field is dependent on the pressure field and
the inverse of the viscosity.

An alternative class of numerical methods are pressure-robust methods. These meth-
ods have the advantage of behaving robustly regarding strong pressure gradients when
the kinematic viscosity is large. Notable methods to construct such schemes include H*
conforming and divergence-free mixed methods [31] and inf-sup stable H (div)-conforming
DG methods [13]. In this chapter, we consider this latter class of DG methods.

3.3 H(div)-conforming Discontinuous Galerkin
Method

For the velocity approximation, uy,, we consider BDM function spaces defined in [7]. Let
uy,, v, € BDMF, and for the pressure approximation, let py, g € Qﬁ_l, where

= {g € L*() : VK € T(Q),q1 k€ P (K)}. (3.5)

The weak formulation for the divergence equation can be obtained by multiplying (3.1b)
by a test function ¢, € Qﬁ_l and integrating over all elements of the domain,

> | @V wdr=0. (3.6)

Keg /K

The pair, BDM,’f\Qi_l forms an inf-sup stable finite element pair that furthermore has
the property that V- BDM} = QF~'. Since w, € BDM}, we have that V -u, € QF .
Since our weak formulation must be satisfied for all ¢, € be’l choosing ¢, = V - u;, we
have
> [ (Vo) dz=0 = V-u,=0. (3.7)
Keg VK
Thus our numerical approximation uy is divergence-free. Following similar steps in section
2.2.1 where we found the DG weak formulation for the advection-diffusion equation, the
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DG weak formulation for (3.1a) is given by:

Z/f-vhdx:Z/ (v - Ouy, — (up, @ uy,) : Vv +vVuy, 0 Vv — ppV - vy) do
K K

Keg KeT

+ 3 [@owrm v —vids+ 3 [ (@rsa m)-vids

Fed, FeFp
_ Z /[[uh @n]: {Vv,}ds — Z / (u, —g) ®n: Vvuds
Feg v F Fegp
_ Z /[[vh®n]] vopds — Z /vh®n:y§ds
Feg 7 F resp ' F
—Z/ﬂvhg)n]]:Mds—Z vy, @1 : pplds,
Feg 7 F Fesp

(3.8)
where (u, ® u,) - n, o) and pul are approximations to, respectively, (u, ® uy) - n, o;, and
prl and uy, vy, € H(div). We will now choose our numerical fluxes and simplify (3.8).
First we will consider the integrals involving the flux of the pressure:

2:/[[vh@)n]]:;rﬁdsjL Z/vh@)n:Mds—l— Z/vh@)n:]ﬂds
F F F

FeSr FeSp FeFn

=) / (Vi =vy) -0 prds + > / vy - nprds + Y /Vh - np,ds (3.9)
Feg VT Fegp Y F Fegy Y F

=3 [ i npds
Fegy Y F

where we set p, = p,, on F' € Fy and where the last equality is due to the single valuedness
of p, and v, - n on interior facets, and since vy, - n = 0 on Dirichlet boundary facets. For
&, we will again choose the IP flux as in equation (2.20). For (u;, ® u) - n we will choose
the usual upwind flux which is given by:

e ————— 1
(up, @uy) -n=f{(u,®@uy)  -n}} + §|u -n|(u) —uy). (3.10)
Using the above defined fluxes for (u, ® u,) - n, o, and prl as well as the Neumann
boundary condition (3.1d), we obtain the following discontinuous Galerkin weak formula-

tion for the momentum equation (3.1a):
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Z/Kf-vhdx:

KeT
Z / (Vi - Opup —up @y Vv +vVuy, 0 Vv, — pp V- vy) de
Keg VK

— Z / viu, @n] : {Vv,}ds — Z vivp @ n] : {Vu,fds
FeSr F FeSr F

- Z /y(uh—g)@)n:Vvhds— Z /uvh®n:Vuhds
Fegp Y F Fegp Y F (3.11)

+ Z / %[[uh@)n]] : [vi @ n]ds + Z /%(uh—g)-vhds
reg 7 F Fegp T

+ - 1 + -
+Z (Vi =) {{(uh®uh)-n}}+§|uh-n| (wy —uy) ) ds
Fedr F
1
+ Z /Vh- ((uh®uh+g®g)~n+§\uh-n] (uh—g)) ds
F
FeSp
+ Z / vy, - (h + max(uy - n, 0)uy,) ds.
Fegy /T

The semi-discrete H(div) discretization is given by (3.6) and (3.11). To obtain a fully-
discrete discretization we use the unconditionally stable, second-order accurate in time,
trapezoidal rule to discretize the equations in time and in which the convective velocity is

3.n _ 1o.n—1

approximated by a linear combination of u at the previous time step: u* = su Zu

Let y”+% = %y” + %y”“. Then, the fully discrete discontinuous Galerkin weak formulation
is given by: Find (up,ps) € BDMF x Q¥ such that for all (v, q,) € BDMSF x Q™! the
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following holds:

1
0= Z /KE (upt! — ) - vide

Keg

1 1 L
+ Z / (—uh+2 ®@uy : Vv, + VVuh+2 : Vv, —ph+2V . Vh> dx
K

Keg
ntl nad
_ Z / y[[uh+2 @n] : {Vv,}ds — Z / v[v, ®n]: {{Vuh+2}}ds
Fes ' F Feg Ot
— Z /y(u;ﬁ; —g) ®n: Vvyds — Z /yvh®n:VuZ+$ds
Fegp ' F Fegp '
vB . ntl VB [ n+l
+ Z /FT[[uh >®@n] : [v, @n]ds + Z /FT (uh 2 —g> - vpds
Feg; Fedp

(v = vi) - (10w m o+ gl () @) Y

FeSr F
ntd 1 1 1, a4l 1
+ > /vh- ((u,f? @u;—g"t @g" ) 0t + Sfu nl () - g”+%)) ds
Fegp ¥
1
+ Z / vy, - (h + max(uj, - n, O)uZ+2> ds — Z 73 . vyde,
Fegy /T Keg 7K
3.12)
S [
@V -u, *dz =0. (3.13)
Keg VK

3.4 Numerical Examples

We will now present some numerical examples to demonstrate some of the H(div) dis-
cretization properties. All examples in this section have been implemented in NGSolve

[66].
3.4.1 Example 1: Unit Square

For the first test case, we consider our domain € := [0, 1]* to be the unit square. Dirichlet
boundary conditions are prescribed along the left and top edges, while Neumann boundary
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conditions are prescribed along the right and bottom edges. As exact solutions we choose
u = (uy,u,) and p where
u, = sin(wx — t) sin(ry — t),
u, = cos(mx — t) cos(my — t), (3.14)
p = sin(mz) cos(my).
In this test problem, we set the Dirichlet boundary data g equal to the exact solution u in
(3.1c). Likewise the Neumann boundary data h in (3.1d) and source term f in (3.1a) are

calculated from the exact solution of u and p. The NGSolve code is provide in Appendix
Al

The computational order of convergence [15] of each of these quantities is calculated
as follows. Suppose that e(N7) and e(Ny) is any quantity for two consecutive triangula-
tions with respectively N; and N, number of triangles. Then the computational rate of

convergence is given by
_ Hlog(e(N1)/e(N2))

log (N, /Ny) (3.15)

In Table 3.1, we present the numerical results for the smooth solution. For this test
case we choose v = 107°. A visualization of the initial pressure and velocity field is shown
in Figure 3.1. A time step of At = 107% is chosen sufficiently small to not affect the
convergence rates with respect to the mesh size. Table 3.1 also shows that approximation
polynomials of order k£ and k — 1 for the velocity and pressure respectively produce a
convergence rate of k + 1 for the velocity error and a rate of convergence of k£ for the
pressure error. As for our approximation velocity divergence, we see that the magnitude is
slightly increasing as mesh size NV increases with a magnitude of machine precision. Thus,
we can conclude that our discrete formulation produces an approximate divergence-free
velocity field with optimal convergence rates for the velocity and pressure.

In Table 3.2, we display the behaviour of the error for the smooth solution when v = 105.
We once again observe that for all meshes and £ > 1, similar convergence rates for the
velocity field and pressure. The approximate velocity field is pointwise divergence-free. By
comparing Tables 3.1 and 3.2 we observe that an increase in viscosity increases the error in
the pressure but not the velocity field, concluding the BDM finite element numerical scheme
is pressure-robust with respect to mesh size and polynomial degree. Similar simulations
have been done using Taylor—-Hood elements in Tables 3.3 and 3.4, where the convergence of
the pressure as well as the error in the divergence of the velocity is worse. Furthermore, we
see that the velocity error is 100 — 1000 times larger when v = 107> compared to v = 10°.
The results in Tables 3.1 - 3.4 clearly demonstrate the superiority of the pressure-robust
BDM/DG scheme over the non-pressure-robust Taylor-Hood scheme.
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Figure 3.1: The horizontal (top left) and vertical (top right) components of the approxi-
mate velocity, velocity magnitude (bottom left) and pressure (bottom right) obtained using
BDM\Q@3 on a mesh with N = 2048 at ¢ = 0.
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Table 3.1: BDM elements history of convergence using of the error ||up, — ul| 2, ||pn — Pl| 12

and ||V - up| ;2. Uniform mesh refinement, smooth solution, v = 107°.

BDMAQ,
N Jun—ulp order [pn—pla order [V -upllpe
8 1.3E - 01 — 1.9E — 01 — 1.6E — 12
32 9.1E — 02 0.5 1.4E — 01 0.5 3.4E — 12
128 2.5E — 02 1.9 6.6E — 02 1.0 6.1E — 12
512 6.5E — 03 1.9 3.3E — 02 1.0 1.2E — 11
2048 1.7E —03 2.0 1.6E — 02 1.0 24E — 11
BDMP\Q}
N Jun—ullpe order flpn—plgz order [V -unllz
8 9.6E — 02 — 1.1E — 01 — 2.0E — 12
32 9.7E — 03 3.3 2.0E — 02 2.5 3.6E — 12
128 1.3E — 03 2.9 5.0E — 03 2.0 77E—12
512 1.7E — 04 3.0 1.2E — 03 2.0 1.5E — 11
2048 2.2E — 05 3.0 3.1E — 04 2.0 3.1E — 11
BDM)\Q}
N Jun—ulz order [pn—ply: order [[V-upl
8 3.2E — 03 — 5.1E — 03 — 2.7TE — 12
32 7.7E — 04 2.0 2.2E — 03 1.2 5.0E — 12
128 4.6E — 05 4.0 2.7E — 04 3.0 9.2E — 12
512 2.8E — 06 4.0 3.4E — 05 3.0 1.9E — 11
2048 1.8E — 07 4.0 4.3E — 06 3.0 3.8E —11
BDMAG
N Jun—ulp order [pn—plz order [V -upllpe
8 2.6E — 03 — 7.9E — 04 — 3.2E — 12
32 6.1E — 05 5.4 2.7E — 05 4.9 5.7E — 12
128 2.0E — 06 4.9 1.4E — 06 4.3 1.1E — 12
512 6.5E — 08 5.0 8.1E — 08 4.1 23E—11
2048  2.0E —09 5.0 5.4E — 09 3.9 4.4FE — 11
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Table 3.2: BDM elements history of convergence of the error ||up — ul| 2, ||pn — Pl ;2 and

|V - up|| ;2. Uniform mesh refinement, smooth solution, v = 10°.

BDMAQ,
N Jun—ulp order [pn—pla order [V -upllpe
8 9.6E — 02 — 4.3E + 05 — 1.8E — 12
32 9.1E — 02 0.1 1.7E + 06 -2.0 3.0E — 12
128 2.5E — 02 1.9 7.2E + 05 1.2 6.1E — 12
512 6.5E — 03 2.0 3.3E + 05 1.1 1.2E — 11
2048 1.6E — 03 2.0 1.6E 4 05 1.1 24FE — 11
BDMP\Q}
N Jun—ullpe order flpn—plgz order [V -unllz
8 9.5E — 02 — 2.6E + 06 — 2.2E — 12
32 9.7E — 03 3.3 4.8E + 05 2.4 4.0E — 12
128 1.3E — 03 2.9 1.1E + 05 2.1 7.6E — 12
512 1.7E — 04 3.0 2.7E + 04 2.1 1.5E — 11
2048 2.2E — 05 3.0 6.4E + 03 2.1 3.1E-11
BDM)\Q
N Jun—ulz order [pn—ply: order [[V-upl
8 3.2E — 03 — 1.0E 4 05 — 24E — 12
32 7.7E — 04 2.0 6.1E + 04 0.8 4.9E — 12
128 4.6E — 05 4.0 7.0E + 03 3.1 94E — 12
512 2.8E — 06 4.0 8.3E + 02 3.1 1.8E — 11
2048 1.8E — 07 4.0 1.0E + 02 3.0 3.8E —11
BDMAG
N Jun—ulp order [pn—plz order [V -upllpe
8 2.6E — 03 — 7.9E — 04 — 3.2E — 12
32 6.1E — 05 5.4 2.7E — 05 4.9 5.7E — 12
128 2.0E — 06 4.9 1.4E — 06 4.3 1.1E — 12
512 6.5E — 08 5.0 8.1E — 08 4.1 23E—11
2048  2.0E —09 5.0 5.4E — 09 3.9 4.4FE — 11
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Table 3.3: Taylor-Hood elements history of convergence using of the error ||up — ul| 2,
lpn — pll 2 and ||V - upl 2. Uniform mesh refinement, smooth solution, v = 107°.

PQ\PI
N Jun—ulp: order [pn—plpz order V- upl
8 9.5E + 01 — 1.5E — 01 — 9.3E + 02

32 1.4E + 01 2.8 3.7E — 02 2.1 2.3E 4 02
128  1.6E+00 3.1 9.1E — 03 2.0 5.5E 401
512 18E—-01 3.1 2.2E - 03 2.0 1.3E+01
2048 2.3E —02 3.0 5.6E — 04 2.0 3.4E + 00

P3\P?
N fun—ule order [pn—plz order [IV-unls
8 3.8E + 00 — 1.0E — 02 — 6.6E + 01

32 7.0E - 01 2.5 3.4E — 03 1.6 22E +01
128  6.0E — 02 3.5 4.8E — 04 2.8 3.5E + 00
512 44E - 03 3.8 6.3E — 05 2.9 4.8E - 01
2048 29E —-04 3.9 8.1E — 06 3.0 6.3E — 02

P4\P3
N Jun—ulp order fpn—plz order [V -unll,z
8 9.2E — 01 — 2.8E — 03 — 2.7TE + 01

32 2.5E - 02 5.2 1.7E - 04 4.1 1.4E + 00
128 7.3E - 04 5.1 1.1E — 05 4.0 7.9E — 02
512 2.2E - 05 5.0 6.5E — 07 4.0 4.8E-03
2048  6.8E — 07 5.0 4.1E — 08 4.0 3.0E - 04
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Table 3.4: Taylor-Hood elements history of convergence using of the error ||up — ul| -,
lpn — pll 2 and ||V - upl| 2. Uniform mesh refinement, smooth solution, v = 10°.

P2\ P!
N Jlun—ulls order [pn—pl2 order |V -l
8 5.0E — 02 - 29E—-01 - 6.1E — 01
32 6.3E — 03 3.0 4.8E — 02 2.6 1.1E - 01
128 8.7TE — 04 2.8 1.1E — 02 2.1 2.9E — 02
512 1.1E - 04 2.9 2.5FE — 03 2.1 71E - 03
2048 1.4E—-05 3.0 6.0E — 04 2.0 1.8E — 03

P3\ p2
N Jun—ul order [lpn—plpz order [V -unl
8 2.5E - 03 — 2.4FE — 02 — 3.0E — 02
32 4.1E - 04 2.6 4.3E — 03 24 1.2E — 02
128 2.5E—05 4.0 5.6E — 04 3.0 1.4E — 03
512 1.6E — 06 4.0 7.0E — 05 3.0 1.7E - 04
2048 9.7TE — 08 4.0 8.6E — 06 3.0 2.0E — 05

P4\P3
N Jun—ul. order [pn—plz order [V -unl
8 1.9E — 03 — 8.2E — 03 — 2.1E — 02
32 4.6E — 05 5.4 3.1E - 04 4.7 9.7E — 04
128 1.5E — 06 4.9 1.8E — 05 4.1 6.2E — 05
512 4.7E - 08 5.0 1.1E — 06 4.1 3.8E — 06
2048 1.7TE—-09 4.8 6.4E — 08 4.0 3.0E — 07
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3.4.2 Example 2: Flow Past a Cylinder

In this test case we consider laminar flow past a circular cylinder, see [59, 69]. As com-
putational domain we take 2 = [0, 2] x [0,0.41] and mesh size of N = 5856 triangles. We
compute the solution over the time interval I = [0,2.2] for which we set the time step to
At = 0.001. Here, the obstacle chosen is a circle with radius » = 0.05 with a center located
at (0.2,0.2), which can be seen in Figure 3.2. The Dirichlet inflow BC on the left edge
is given by a parabolic inlet condition u = (u,,u,) = (6y(0.41 — y)/(0.41)%,0). Here, the
mean inflow velocity @ = 1, the viscosity in (3.1a) is set to v = 1073, and with a char-
acteristic length which is the diameter of the obstruction L = 0.1, results in a Reynolds
number Re = uL/v = 100. No-slip boundaries are prescribed on the edge of the circle as
well as the top and bottom walls, and on the right edge we impose a Neumann BC with
h = 0. We consider a cubic polynomial approximation for the velocity and a quadratic

polynomial approximation for the pressure. The NGSolve code is provided in Appendix
A2

To save computation time, we first solve the Stokes flow equations, also using an H (div)-
conforming method, which is used as an initial condition for the Navier—Stokes simulation.
In Figure 3.3 we have the solution to Stokes equation for laminar flow. At ¢t = 0.5, we
begin to see the wake structure form behind the cylinder in Figure 3.4. At t = 2, such a
flow can be seen at a time instance where the characteristic vortex shedding of a periodic
Kéarméan vortex street has formed, see Figure 3.5.

0.
<
l

4
Ao
'E:u

0.41

¢ g
A

N
A

»
< >

2.2

Figure 3.2: Simulation domain for single-phase flow inside a channel around a cylinder.
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Table 3.5: Numerical quantities.

f maxcp mincp maxer mincy, St
297 3.122 3.094 1.019 —1.006 0.297

3.4.3 Drag, Lift, and the Strouhal Number

In order to quantify the validity of the model for this example, the maximal and minimal
drag and lift coefficients, cp, c;, that act on the cylinder were calculated, defined as

1 1
cp = (ya—u — pn) cegds, cp = (ya—u — pu) - eyds. (3.16)

u’r Jr, \ On u’r Jr, \ On

Here, e,, e, are the unit vectors in the x and y direction, r = 0.005 is the radius of the
cylinder, u is the mean inflow velocity and I', denotes the surface of the cylinder. Addi-
tionally, the Strouhal number St, which is a dimensionless number describing oscillating
flow mechanisms, was also measured, which is defined as

_rf
Coa

St , (3.17)
where f is the frequency and 1/f is the length of a cycle, from when ¢, is smallest at time
to and ends at time instance t; = ¢y + 1/f when ¢y, is smallest again. Table 3.5 contains
the frequency of a cycle, the maximum and minimum drag and lift coefficients, and the
Strouhal number. The drag and lift coefficients are compared to [37, 46], and the frequency
and Strouhal number are compared in [05] which are found to be in agreement.
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Figure 3.3: The horizontal (top) and vertical (middle) components of the approximate
velocity field and pressure (bottom) at t = 0.
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Figure 3.4: The horizontal (top) and vertical (middle) components of the approximate
velocity field and pressure (bottom) at t = 0.5.
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Figure 3.5: The horizontal (top) and vertical (middle) components of the approximate
velocity field and pressure (bottom) at t = 2.



Chapter 4

Multiphase Flow

4.1 Background

Multiphase flow is the study of the interactions of two or more fluids of different phases or
densities, often requiring the coupling of multiple equations, dramatically increasing com-
putational costs. While the momentum and continuity equations are used as a foundation
of the system, there are still questions over how to properly couple these equations using
momentum exchange terms while accurately modeling the physical phenomena.

There are two basic ideas behind modeling multiphase flows. One example is trajectory
models [5], where the motion of the disperse phase is modeled as individual particles or a
small collection is modeled as a singular entity. These models are beneficial when modeling
granular flows; however, computational costs rise as the number of individual particles
increases.

Another way of modeling multiphase flows is using the Eulerian two-fluid approach,
where all phases are treated formally as fluids that obey standard single-phase equations of
motion, with appropriate boundary conditions specified at phase boundaries. The macro-
scopic flow equations are derived from these mesoscopic equations using an averaging pro-
cedure of some kind. There are several averaging methods such as time averaging, volume
averaging, and ensemble averaging.

Two-fluid models assume each fluid as a continuous phase, coupling the basic momen-
tum, energy, and continuity conservation equations using terms such as mass transfer or
dispersion. In terms of bubbly flows, the bubbles represent a dispersed phase approximated
as a continuous phase. They can be modeled using the momentum and continuity equa-
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tions, but the model is ill-posed without coupling the two fluids. A solution is well-posed
if a unique solution depends continuously on the initial and boundary conditions. [21]

A parameter varying from zero to one is used to describe the fluid phase fraction for
all points in space, known as the phase fraction of the fluid. There have been numerous
methods to change the well-posedness of the model to obtain stability, but this raises
questions regarding the physical fidelity, such as boundedness of the phase fractions [75].
Some methods to ensure well-posedness over some or all ranges of volume fraction include:

Inclusion of the interfacial pressure in the governing equations [33, 45, 77].

Addition of a momentum flux [70].

Including Virtual mass contribution [33, 44].

Additional momentum transfer terms [76, 77].

Dispersion terms dependent on the gradient of the dispersed phase fraction [54].

There is division among which methods are valid for an accurate description of the phe-
nomena, and further research is needed to examine these effects.

The advantage of the two-fluid model is its generality. In theory, it can be applied to any
multiphase system, regardless of the number and properties of the phases. A drawback of
the two-fluid model approach is that it often leads to a highly complex set of flow equations
and closure relations, proving difficult to solve numerically.

We will denote each phase variable F' as Fy, ¢ € {c, d} where ¢ and d are the continuous
and dispersed phase for some variable F. In modeling gas-liquid flows using the two-
fluid model, each phase is considered a continuous fluid requiring two sets of conservation
equations coupled together through interphase momentum transfer terms.

The two-fluid model can account for either dispersed-continuous or continuous-continuous
phase interactions. For a dispersed-continuous phase interaction, the phase fraction may
take any value between 0 and 1. Examples are when the dispersed phase is a particle
(solids), droplets (liquids), or bubbles (gas) dissolved in a continuous fluid. When the
dispersed phase fraction ay = 0, that implies that none of the dispersed phase is occupy-
ing those cells, as shown in Figure 4.1, and as the phase fraction gradually increases, the
concentration of the dispersed phase in those cells gradually increases. For a continuous-
continuous phase interaction, where we have a sharp interface between phases, we expect
on one side of the interface the phase fraction to be a, = 0 where none of the phase is
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present, and on the other side of the interface the phase fraction to be a. = 1 where the
phase is completely present. A gradient in the phase fraction is restricted only to the
interface. We will only consider dispersed-continuous phase interactions in this thesis.

Xg = 0.25

/

a, = 1

Figure 4.1: Mesh cell phase fraction values for dispersed-continuous (left) and continuous-
continuous (right) phase interactions.

4.1.1 Averaging notation

To solve for the macroscopic flow behavior of the two-fluid equation, we will introduce

the following averaging notation. The Eulerian time-averaged quantities, denoted by (-) is
defined [39]:

E(Xo,t(]) = hm—/ Fq (Xo,t) dt, (41)
[Atlq

for some general function F,. Here we have a At a fixed time interval, ¢ the interfacial
thickness, (xo, o) a reference point and time respectively, and [At], = [At]. + [At]4 is the
sum of the time intervals of the continuous and dispersed phase. Eulerian averaging is
often most common, where dependent variables change with respect to the independent
variables of time and space. The integral operator smooths spatially local or temporally
instantaneous variations within the domain of integration.

The phasic average () is defined as

=
I
2|
~
2
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which represents the average in time of the phase.

Quantities such as volume, momentum and energy can be written in terms of the
variable per unit mass 1, i.e. Fj, = p,1,, where p, is the local instant fluid density for the
phase ¢, and v, is some quantity per unit mass. Thus, the mean value of v, should be
weighted by its density:

—~

F,
F, .=l (4.3)
Pq

which is the mass weighted mean value (-).

4.1.2 Mass Conservation

The general expression for the conservation of mass for a phase ¢ is given as follows from
applying the averaging techniques from 4.1.1 applied to the functions associated with a
particular phase [39]:
9 (4Pq)
ot

where «, is the time-averaged local phase fraction of a phase g, p, is the time-averaged
phasic average density and v, is the time-averaged mass-weighted mean phase velocity.
We have also assumed there is no interphase mass transfer. In the case where each phase
is incompressible, the mean density p, is constant and we obtain from (4.4),

TV (0g2y%) =0, (4.4)

0 (O‘q) ~\
5 + V- (ogvy) =0, (4.5)

which is the mass conservation equation used in Chapter 5 for the H(div)-conforming
method.

4.1.3 Momentum Equation

The general expression for the conservation of momentum for a phase ¢ is given as follows

[39]:

O (v pgv == oo P, Ty P8
% + V- (gpgVy ®Vy) = =V <aqu1> V- (aqﬁ) T aPaa + M, (4.6)

+ FpiVag — Vag - Te,
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where P, is the time-averaged phasic pressure, T, is the time averaged viscous stress tensor,

g, is the time-averaged mass weighted mean phase gravitational acceleration, P, ;Va, and
Va, - T,; are the interfacial stresses, and M, is the interphase momentum source term.

This work focuses on dispersed flow, where the interfacial shear stress term is assumed
to be negligible. Additionally, the interfacial pressure and shear stress of the continuous

and dispered phases can be assume to be equal, i.e., P.; ~ ?ﬂ' = P and To; ~ 74, [39].
We can also approximate the pressure of the dispersed phase by the interfacial pressure,

P, ~ P, [39]. The conservation of momentum for a dispersed flow system becomes:

U V(079090 = o TEAV () HoTRE M

+ <Ijint - ?c) VOZC,

0 (Oédﬁif\@
ot
We omit the time-averaged, time-averaged phasic average and the time-average mass-
weighted notation for all subsequent equations.

+ V- (adﬁ_ﬁd (%9 {/\d) = —odeﬁ + V- (O&di) + &dﬁg + Md. (47b)

4.1.4 Interphase Momentum Transfer

The interphase momentum transfer terms Mg, is the sum of multiple contributions of mo-
mentum transfer such as drag, lift, virtual mass, wall lubrication force, interfacial pressure,
etc. For the continuous phase we have

Mc = Mc,drag- (48)

Between the continuous and dispersed phases, the momentum exchange should sum to
zero, thus

M, = —M,. (4.9)

The drag force term acts in the opposite direction of the relative motion of the of the
bubbles and is the sum of the form and skin drag forces on the fluid. This is caused
from pressure imbalances and shear forces at the interface [39]. For spherical bubbles, The
interphase momentum transfer of phase ¢ becomes [39]:

3 C
Mc,drag = lecadd_f HVT'H Vo, (410)
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where d, is the bubble diameter, C'p the drag coefficient, and v, is the relative velocity
between the dispersed and continuous phases, i.e, v, = v4 — v.. The drag coefficient Cp
can be approximated using the Schiller-Naumann drag expression [(7]:

24
Cp = max (R—(1 + 0.15Re%%57), 0.44) , (4.11)
e
where Re = pi||v,||dp/p; is the Reynolds number. Using equation (4.9), the drag force

contribution of the dispersed phase is

3 Cho

Md,drag = _chadd_d HVTH V. (412)

Lift is a result of shear forces and asymmetric pressure distribution around the dispersed
phase, which is perpendicular to the direction of flow [19]. The expression for the momen-
tum transfer to the continuous fluid ¢ due to lift is

Mc,lift - Ccha/dVr X (v X Vc)> (413)

where C', is the lift coefficient. Drag and lift forces are depicted in Figure 4.2.

\Y Py

Vd - - - = Md,drag
< Phase d >

Phase ¢

Figure 4.2: The drag Mg grqg and lift Mg, ¢+ forces for a spherical bubble of phase d moving
with velocity v4 in phase c.
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4.1.5 Phase Fraction Boundedness

We will consider a volume fraction for each phase, also known as a phase fraction, denoted
by o, where the subscript will denote each phase. While in continuous-continuous phase
interactions are restricted a phase fraction of either 0 or 1, except in the interface region,
in the case of continuous-dispersed phase interactions, the phase fraction requires the
inequality constraint

0<a,<1, (4.14)

We also have an equality constraint: the sum of the phase fractions must equal one at
every point in the domain §2:
» a,=1 (4.15)
q=1

It is crucial to enforce the boundedness of the phase fraction to preserve the physical
fidelity of the model. Since the phase fraction of the continuous phase is a. = 1 — oy, only
one of the conservation of mass equation needs to be solved (typically the disperse phase),
which satisfies (4.15). For (4.14), boundedness is not inherently satisfied. One approach
to maintaining phase fraction boundedness consists of thresholding [51, 36]. Depending on
the formulation of the momentum equation used, thresholding can be necessary to avoid
issues with division by zero and increase stability, where values below the threshold are set
to a relatively small value, with the disadvantage that it can alter the profile of the phase
fraction [73].

4.2 Hyperbolicity and Well-posedness

The well-posedness of the model can affect the stability and accuracy of the solution. For
a model to be well-posed, three criteria must be met[50]:

e A solution exists.
e The solution is unique.

e The solution depends continuously on boundary data and parameters.

Let us consider hyperbolic partial differential equations. The most common hyperbolic
general model is as follows: for n spatial dimensions (z’,1 < i < n) we have

U; + J'U; = S(U), (4.16)
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for time ¢ > 0 with initial data
U(t=0,z) =f(x), (4.17)

where U, f are real vectors with m components, U; = U /92", and J* is an m X m matrix.
Examples include equations for shallow water, Burgers’ equation, and the Euler’s equations
of gas dynamics. If the characteristic matrix of (4.16) has all real eigenvalues, the system
is said to be weakly hyperbolic. 1f the eigenvalues are all real and distinct, then the system
has strong hyperbolicity [18]. Strong hyperbolicity is equivalent to well-posedness [43, 71].

The single-pressure two-fluid model lacks hyperbolicity, and hence the equations of
the model are ill-posed. Shown in [20], the system exhibits complex eigenvalues. In the
following section, we will show that the eigenvalues of a simplified two-fluid model are only
real when the dispersed and continuous phase velocities are equal.

4.2.1 Ill-posed Two-fluid Model Eigenvalue Example

Consider the following two-fluid model, neglecting viscous stress terms:

0 (pCQC) i 0 (peueac}

4 ) o, (4.18a)

a(,:;tad) N G(pdal;d%) _o, (4.18D)
0 (pg;cac) 49 (pcg;ucac) _ _ac% + pecieg + M, (4.18¢)
a<pdal;d&d) n 8(pd1;iudad) _ _ad% + paaag + M. (4.18d)

For this model, the governing equations cannot be written in fully conservative form and
instead can be written as quasi-linear in terms of primitive variables W = (a., u., ug, P)T

such that W W
W"‘B(W)_‘i‘S(W) =0, (4.19)

A(W) pe
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with matrices

1 0 0 0 u, Qe 0 0
. —1 0 0 0 o —Uy 0 aq 0
A= 0 awp. 0 0| B = 0  apou, 0 a. |’
0 0 « 0 0 0 agpquly o
dPd dpdlq Qg (4'20)
0
0
S B _pcacg - Mc
—pacag — My

Here matrices A and B have been simplified by divided by their respective phase

fractions, as well as the substitution % = —%. The eigenvalues of this system are found

from the generalized eigenvalue problem
det(B — AA) = 0. (4.21)

The number of eigenvalues is lower than the dimension of the matrix, due to A being
rank deficient (rank(A) = 3). The characteristic polynomial of the generalized eigenvalue
problem is given by:

Pclq (11C - /\)2 + Pdlc (lld - /\)2 = 0, (422)

with two roots given by

Qapetic + Qepatia £ \/—acapapa(tc — ug)?

o 4.23

b2 QgpPe + QcpPd ( )
4

Mg — LU EE “)p* 3 (4.24)

simplified with the use of an averaging operator (.)*:

()= G | @, (4.25)

(8% Qg

and

§= \/— Pife (wy —u,)?. (4.26)

Qg

The two eigenvalues \; o are real provided that u. = ug4. If the relative velocity is non-zero,
the eigenvalues are complex-valued. So for values when the continuous velocity is not equal

39



to the dispersed velocity, the model is ill-posed. To find the third and fourth eigenvalues
requires the inverse eigenvalue problem, Av = uBv, with determinant equation

det(uB — A) =0, (4.27)
and characteristic polynomial

2 (pcad (pu, — 1)2 + pacee (pug — 1)2) = 0. (4.28)

Since pi12 = 1/A1 2, then ps4 = 0 implies A3 4 are infinite.

An ill-posed two-fluid model can contain nonphysical instabilities as well as exces-
sive numerical diffusion. Structured numerical methods are then required to preserve the
integrity of the solution. Cockburn and Shu [11] demonstrated the effectiveness of the
discontinuous Galerkin method on hyperbolic problems, thus possibly being a favorable
scheme to be applied to the two-fluid model.
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Chapter 5

H(div)-conforming Finite Element
Method for Two-Fluid
Incompressible Flow Systems

From section 4, the governing equations for the two-fluid model are as follows:

9 (aq)

Ot + V. (O‘qvq) = 07 (51&)
8(Ochcvc) +V(aﬂV ®V):—Oé VP +v(047')+0ng+1\/[
ot cPcVe c c c cTe cPec c (51b)
+ (Pint - Pc) VO[C7
0
(Oédaptdvd) + V- (OédpdVd & Vd) = —agVFPu+V- (&dﬂ) + agpag + M,, (51C)

once again, noting that the averaged notation has been omitted. In this work, only the
interphase momentum transfer due to drag is considered. For simplifying this work, we will
assume that the bulk and interfacial pressures are equal, i.e., P. = P; = P,,;. Omitting
this assumption can improve the approximation’s numerical accuracy and increase the
time interval where the dispersed phase fraction is well-posed [72]. The fluid-fluid system
of interest is a gas-liquid system where liquid, [/, is the continuous phase and gas, ¢ is the
dispersed phase, which will be replaced in the subscripts of the equations from now on.
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Substituting equations (4.10) and (4.12) into (5.1) yields:

0 (agpyv
% TV (gpgVvy @ vg) = — agVP + V- (2ug04€(vy)) + agpeg
(5.2a)
+ 20,02 v v,
4797 d, 7
dapvi) | — —WVP+V-(2
— + V- (upvi®v)) == VP + V- 2uae(vy)) + aupig
(5.2b)
+ 20,02 v v
4797 d,

Where €(-) = 3(V(:) + V(-)7) is the symmetric gradient and p, pg, pu, 1y are assumed
constant. The pressure quantity has dropped its subscript as it is a shared quantity be-
tween the two momentum equations. For compactness, €(+) is retained in the subsequent
equations. Using the fact that % = —% and that both phase densities are constant in

equations (5.1a), the liquid and gas phase mass conservation equations can be combined:
V- (agvi+ ayvy) = 0. (5.3)

This equation is analagous to the incompressibility constraint in section 3.1.

5.1 Mixture Velocity

The mixture velocity is the sum of the continuous and dispersed phase weighted velocities,
namely V = ayv; + a,v,. Since v; = (V — ,V,)/q;, equations (5.2b), (5.2a) and (5.3) can
be rewritten as the following system of partial differential equations:

0 (agpyvy)
ot
3

CD « A%
Z 1+ == -
* 4@910[ db ‘ ( + Oél) Vg (87}

9 (pV — agpivg)
l ot it 2 Ei(v_o‘gvng_agvg)

A%
=—-qqVP+V- (Q,uloq (e <—) —€ <%)>) + apg (5.4b)
o Q
v

; o (1+%)Vg—X
(87 (87

+ V- (agpyvy @ vy) = —agVP + V- (2ugaye(vg)) + aypeg

. %> o X) | (5.4a)

+ Zagm =2




V-V =0. (5.4c)

Equations (5.4) make up the two-fluid Eulerian-Eulerian model using the mixture velocity.
By including the mixture velocity, this allows us to satisfy equation V -V = ( exactly
using an H (div)-conforming method.

5.2 Weak Formulation for the Momentum Equations

Derivation of the momentum equations is similar to the H(div)-conforming weak formula-
tion of the incompressible Navier—Stokes equations (see Section 3). Our function space for
the velocity will be BDMF, and our pressure space is chosen as Qfl_l, see (3.5). Our weak
formulation for V - V becomes

> | ¢v-Vdz=0. (5.5)

Keg K
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Using the LLF flux from (B.9) and the fact that e(u) : V(v) = e(u) : €(v) (see 4.9), we
can derive the momentum equation weak formulation for the gas phase:

Z/ gpe8 - udx

Keg

= Z / u- Oi(agpgvy) — (Agpgve) ® vy : V4 2p504e(vy) : €(u) — PV - (agu)) d

KeT
Vv VvV

1+ 22 Vg — — 1+ 20 vy — — | -udz
Qg 87/ 87/ o

—Z/ ozgm
—Z/v (ag) ® v, : e(u)dz

KeT

Kg; / 2y vy 0] s~ 3 / 24y [u @] : faye(vy) Pds
_Ez/zug (V) — &) ® 10 age(u) ds—EZ/Qﬂgu®n 1y€(vy)ds
+:§€§/ “”B[[uean]] [[vg®n]]ds+Fé7 298 (v, — ) ds
+F:27/ (py(u ({{%vg@vg}}e %yvg-n\ ((vg>*—<vg>)) ds

+ Z / pgu - ( (agvy @ Vy+ g @ @g) -1 %|Vg n| (v, — ¢g)> ds

Fedp

+ Z / (g + agmax(v, - n,0)vy)ds.
F67N

(5.6a)
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Lastly, using the LLF flux for the continuous phase in (B.8), we have the mixture velocity
weak formulation:

Z/ g - wdz
K

KeT
= Z /K (W - O(cuprvi) — (uprvi) @ vi : VW + 2pae(vy) - e(w) — PV - (qqw)) da
KeT
3 Cho Qg \'% Qg \'%
_KEE;T/KZagpld_b <1+El> Vg_Oé_l (<1+El) Vg_Jl) -wdz
— Z /KV (ay) @ vy @ e(w)dx
Keg
- 2u [vi@n] : {oye(w) fds — 2u [w @ n] : {oue(vy) Rds
P%;I/F V1 l %I/F l 1€(vy
— F;}J /F 2u (vi — @) ®@n : qge(w)ds — F;D /F 2w @1 : ae(vy)ds
2#16 2#15
: d . —
+F;,/F h [w@n]:[v;®n] 8+F§D/F nY (vi—¢y)ds
£y / (p(w —w) - ({{am @vil} ot 4+ %|v, nf (v)* — (vl)—)> ds
Fegy F
+ ) /FPlW' (% (uvi@vi+ iy @ ¢i) -n+ %|Vl ‘0| (v, — ¢l)) ds
Fep

+ Z / w - (¢ + max(v; - n,0)v;)ds,
FeSn F

(5.6b)

where v; = (V — a,vy)/ay.
5.3 Weak formulation for the Phasic Mass Conserva-

tion Equations

The two-fluid flow momentum equations (5.4) will be coupled to the dispersed phase mass
conservation equation; thus, we will discuss its discontinuous Galerkin weak form next.
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The dispersed phase mass conservation equation is given by

O (ag) + V- (agvy) =0 inQxI, (5.7a)
ay =1 onT'p x I, (5.7b)
vy, —max(vy-n,0)a, = ¢ onI'y x I, (5.7¢)

where ay @ 2 x I — R is the gas (dispersed) phase fraction and 1 and ¢ given boundary
data. Consider the following finite element space for the phase fraction:

Zy = {2 € L*(T7), 2, € P(K)VK € T}. (5.8)

The DG weak formulation of (5.7) is a scalar version of the DG weak formulation for
the Navier-Stokes problem (with p, = 0,v = 0). Starting with (3.11), the DG weak
formulation of (5.7) is given by

O—Z/ 9,(a

KeT

— Z/ -Vzhdx
) (vhenfal) 5 Mm@ i) )as (g
2" (; }g‘ (oz + ) + ‘VZ-H! (o/g‘—w)) ds

+ Z/ ¢ + max(v h n,O)aZ)-nds,

FeFy

where a , zn € Zy. The liquid phase fraction can be solved by

al =1-—ah (5.10)

5.4 Coupling of Two-Fluid Flow Momentum and
Phase Fraction Equations: Time Stepping

In this section, we consider the time-stepping algorithm when coupling the two-fluid flow
problem (5.4) to the phasic mass conservation equation (5.7). In particular, consider the
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problem:

0 (agp,v
% +V. (@gpgvg & Vg) =—-oqqVP+V- <2Mg@g€(vg)) + gy

+34 ¢ 1+%)y VI ((14%)y VY (5.11a)
4 gPl d, o 97 o o o)

ot

=—qyVP+V. <2M1041 (e (X> —¢€ (ozg_vg))> + apg (5.11b)
Q 67)
C A%

D (mV — agpivg) LV (,01

() (o)
V- (V)=0, (5.11c)
O (ag) + V- (agvy) =0, (5.11d)
a=1—ay. (5.11e)
Following [24], we consider the following time stepping approach. Let V"' = oz;}V;”l +
vt V= alvifapvy, vt = vt — vt and v = v — 7, then the time discrete
formulation becomes:
QPTG LG (appyvit @ v) = —af TP
+V - (2ugoge(ve")) + af pog (5.12a)
n n n n+1

(V™ —appivg™) — (p V" — appivg")

At
FT - (2 g (V- v
l
5.12b)
Vit avitl (
= —aVP" 4+ V. (Q,an? (e ( — ) - S ))) +o'pig
R R
3 Cp ay \'A ay A\
ot =11+ E ) vr— — 14 -2 |yt
T, ( ! a?) YT g (( ' a?) YT e )
V- (VM =0, (5.12¢)



n+l _ . n

a a
n+1,,n
thg + V- (aptvi) =0, (5.12d)
aftt =1—ap* (5.12¢)
Note that by having linearized the non-linear term in (5.12b), (5.12a) and (5.12d) we have

uncoupled the problem: we first compute af" and "' from (5.12d) and (5.12¢), after

which we compute vg"t vi"*t and P"*! by solving (5.12b)-(5.12¢c). To fully discretize
(5.12), we use the weak formulations given by (5.6a), (5.6b) and (5.9).

5.5 Simulation Conditions

As a simple first case example to demonstrate the validity of the code, we will consider
simple channel flow through a two-dimensional pipe. The simulation domain is a two-
dimensional channel with both the gas and liquid phase injected from the left. Momentum
transfer due to lift and virtual mass is generally used as fine-tuning parameters and are
thus neglected in this work. As a computational domain we take Q = [0,2] x [0,0.41] and
mesh size N = 2048 triangles. We compute the solution over the time interval I = [0, 2] for
which we set the time step to At = 0.01. The computational domain can be seen in Figure
5.1. No-slip boundaries are prescribed on the top and bottom wall, and on the right edge,
we impose a Neumann BC with 14, 1, = 0. We consider a cubic polynomial approximation
for the velocities and phase fractions and a quadratic polynomial approximation for the
pressure.

0.41

< >
2

Figure 5.1: Simulation domain for two-phase flow. A dashed line indicates a Neumann
boundary.

In this simulation, both the continuous and dispersed phase velocity are equal, as are
the fundamental properties of each fluid, to demonstrate the basic validity of the numerical
scheme. For this test case the gravitational force is g = (0, 0).
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Property Value

Gas density (kg/m?) 10

Liquid density (kg/m?) 1000

Gas viscosity ( Pa s) 2x 1075

Liquid viscosity (Pas) 5x 1073

Bubble diameter (m) 1073

Drag constant max [ 2t (1 + 0.15Re%%87)  0.44] , Re = W

Table 5.1: Physical properties.

Initial Condition
ay(x,0) = 0.025
v,(x,0) = vi(x,0) = 1.5(4y)(0.41 — y)/(0.41)*
P(x,0) =0

Table 5.2: Initial and boundary conditions.

For this numerical test the number of elements N = 2048, with At = 0.01. All other
physical properties of the system are given in Table 5.1, with initial and boundary condi-
tions given in Table 5.2. The NGSolve code is provided in Appendix A.3. As shown in
Figure 5.2, although the horizontal and vertical velocity of the gas phase is what we would
expect, we start to see small instabilities in the gas phase fraction along the walls. This
effect increases at time ¢ = 1 in Figure 5.3. The divergence constraint, V -V = 0, was
approximated with machine precision for this numerical test, i.e., V-V ~ 1071,

We can conclude that while this method is stable and accurate for rudimentary test
cases, further work needs to be done to validate this method. In general, for cases when v;
is not equal to v, or when the inlet velocity is much faster, the method is unstable, which
could be caused by limiting the dispersed phase via thresholding [74].
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Figure 5.2: In order: the horizontal gas phase velocity, vertical gas phase velocity, gas-phase

fraction, and pressure at t = 0.1.
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Figure 5.3: In order: the horizontal gas phase velocity, vertical gas phase velocity, gas

phase fraction and pressure at t = 1.



Chapter 6

Conclusions and Recommendations
for Future Work

6.1 Conclusions

An H (div)-conforming discontinuous Galerkin method for the incompressible Navier—Stokes
equations is introduced. Simulations of an H (div)-conforming method for the incompress-
ible Navier—Stokes equations to display the pressure-robustness of the model and stability
with high degree approximation polynomials for the velocity and pressure. An H(div)-
conforming discontinuous Galerkin method for two-phase bubbly flow using mixture ve-
locity for the two-fluid Euler-Euler model has been developed. Simulations for two-phase
channel flow are presented to verify the H(div)-conforming method.

6.2 Recommendations for Future Work

The recommendations for future work focuses on improvements to the H(div)-conforming
method physical fidelity of the model, which include:

e One of the drawbacks of the discontinuous Galerkin method is that it introduces
considerably more unknowns than standard continuous Galerkin or finite volume
methods. Discretizations using discontinuous Galerkin finite element methods are less
sparse and introduce many couplings between unknowns. One approach to resolve
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this problem is using hybrid discontinuous Galerkin finite element methods, which
results in a smaller linear system resulting from the discretization.

In this work, only the momentum exchange due to the drag force is considered.
The addition of momentum exchange terms can affect the numerical simulation and
impact the physical fidelity of the solution.

Panicker and Passalacqua [51] proved the inclusion of a dispersion term dependent on
the coefficient and the gradient of the gas volume fraction can ensure the hyperbolicity
of the equations preventing non-physical instabilities.

Shown in [73], a diffuse-interface method can impose a solid-fluid boundary with
the structure of the interface impacting the boundary conditions, which could be
accommodated for discontinuous Galerkin methods.
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Appendix A

NGSolve Code

A.1 H(div)-conforming Discontinuous Galerkin Method
for Navier-Stokes: Unit Square

Wi

This code tests the validity of a Discontinuous Galerkin BDM elements
Incompressible Navier-Stokes solution by solving the following equation:

u_t + div(u x u) - nu*div(grad(u)) + grad(p) = f
div(u) = 0

u-=g on Dirichlet Boundaries
(u x u - nu*grad(u) + p*I)*n - max(u*n,0)u = h on Neumann Boundaries

This file was created by Kyle Booker and James Lowman under the supervision of
Sander Rhebergen and Nasser Abukhdeir at the University of Waterloo in 2019.

This program is designed and operated using the NGSolve Finite Element Package.
WWww.ngsolve.org

Wi

from ngsolve import *

from netgen.geom2d import unit_square
from netgen.geom2d import SplineGeometry
from math import pi

import time

start_time = time.time ()

B e i il #

# User Settings

R T T T #
Verbose_Mode 1 # 0/1 == Yes/No -- Outputs solution information to terminal
Polynomial_Order =3 # Int -- Order of approximation polynomials
Initial_Mesh_Size = i # Float -- Initial mesh Size

No_Refinments =6 # Int -- Number of times to refine the mesh
Time_Step = 1le-10 # Float -- Size of the time step to take
No_Time_Solutions =1 # Int -- Number of transient solutions

nu =1 # Float -- Kinematic viscosity

I e e e e e e e e e e e #

# Mesh Generation:

T e e e e e e e L e e LR e S e e e e R e L L LB S Ll ES s #



43

44 mesh = Mesh(unit_square.GenerateMesh(maxh=Initial_Mesh_Size))

45

46 if Verbose_Mode == 1

47 print ("\n\t Boundary Labels: ", mesh.GetBoundaries(),"\n") # Check boundary labels
48

49 B i #
50 # Define Function Space

LIl i=—=—c==so=cccossoososcossossosossoososcoss oS sss s oS os s oS oS cossosoos oSS oo o=s #
52

53 mun

54

55 A BDM finite element space (HDiv) is defined on the mesh for the velocity while
56 an L2 space is defined for the pressure.

8 BDM elements have that property that u * n is continuous across

59 elements (i.e. u_1 * n_1 = u_2 * n_1 on element boundaries).

60

61 nwnn

62

63 # Velocity Space - HDiv BDM space

64V = HDiv(mesh, order = Polynomial_Order, dgjumps = True, dirichlet="bottom|left")
65 # Pressure Space - one polynomial degree less than V

66 Q = L2(mesh, order = Polynomial_Order-1, dgjumps = True)

67 # Mixed Finite Element space

68 X = FESpace ([V, Q], dgjumps = True) # Mixed finite element space (u,p)

69

0 e e o #

71 # Define trial and test functions, and solution storage sunctions:

72 R e i R #

73

74 (u, p), (v, q) = X.TaTQ) # Define Trial functions (u,p) and Test functions (v,q)
75

76 # NGSolve utilizes grid functions as mutable scalar/vector/tensor variables
77 UN = GridFunction (X) # Grid Function for the solution space
78 UOld = GridFunction (X) # Grid Function for the solution space at previous time step

80 # Temporary storage variables for previous time step data

81 UO = CoefficientFunction (UO0ld.components[0]) # Previous velocity

82 PO = CoefficientFunction (UOld.components([1]) # Previous pressure

83

84 ettt #
85 # Special variable definitions:

86 #—— - m oo oo #
87

88 # Definition of the outward facing normal for every facet in the domain

89 n = specialcf.normal (mesh.dim) # Normal vector on an interface

91 # Definition of the individual cell sizes

92 h = specialcf.mesh_size

93

94 # A Nitsche penalty parameter is defined in the weak forumation for all facets
95 alpha = 10.0*xPolynomial _Order**2/h

96

07 I e e e el S el #
98 # Helper Functions:

00 R e e e e e e e e e e e e e e e e e e e e e S b e e e #
100

101 # NGSolve has no native "Max" function, therefore Max is defined explicitly
102 def Max(A,B):

103 return IfPos(A-B,A,B) # If A-B>0 return A; else return B

104

105 # A custom function to calculate the L2 Norm error for a given solution

106 def CalcL2Error(sol):

107 err_u = sqrt(Integrate((sol.components[0]-u_exact)**2, mesh))

108 p_mean = sqrt(Integrate(sol.components[1]**2, mesh))

109 p-exact_mean = sqrt(Integrate(p_exact**2, mesh))

110 err_p = sqrt(Integrate((sol.components[1]-p_mean-p_exact+p_exact_mean)**2, mesh))
111 #err_p = sqrt(Integrate((sol.components[1]-p_exact)**2, mesh))

112 err_div = sqrt(Integrate(Trace(Grad(sol.components[0]))*%2, mesh))

113 return (err_u, err_p, err_div)

114

115

116 e ettt et e i #
117 # NGSolve -Mutable Variables:

IRl =——cc=csoco=cossossossosoososs oo ossses oo s os oo oo oo SeSoosSoooSSoooosssooos=c #



120 # A special coefficient function class, Parameter, is required to update time.

121 # This is required as the exact solution is dependent on time, and as such
122 # requires the Dirichlet boundary conditions to be dependent on time

123 var_time = Parameter (0.0)

124

125 e #
126 # Exact Solution:

127 i e #
128

129 u_x = CoefficientFunction(sin(pi*x-var_time)*sin(pi*y-var_time))

130 u_y = CoefficientFunction(cos (pi*x-var_time)*cos(pi*y-var_time))

131 u_exact = CoefficientFunction((u_x, u_y))

132

133 p_exact = sin(pi*x)*cos(pixy)

134

135 e e s e e e e e e e e L L Et S L LB L EELE L #
136 # Generation of forcing function, f, that enables exact solution:

137 R e e e e e e e #
138

139 # Helper variables, vector calculus

140 grad_u = CoefficientFunction (( u_x.Diff (x), u_x.Diff (y), \
141 u_y.Diff (x), u_y.Diff (y)), \
142 dims=(2,2))

143 outerUU = OuterProduct (u_exact ,u_exact)

144 div_outerUU = CoefficientFunction((outerUU[0,0].Diff(x) + outerUU[0,1].Diff(y),outerUU[1,0].Diff(x) + outerUU

[1,11.Diff (y)))

# Forcing function for the Stokes initial condition solution

f_xstokes = -nu * (u_exact[0].Diff(x).Diff(x) + u_exact[0].Diff(y).Diff(y))+ p_exact.Diff (x)
f_ystokes = -nu * (u_exact[1].Diff(x).Diff(x) + u_exact[1].Diff(y).Diff(y))+ p_exact.Diff (y)
f_st = CoefficientFunction ((f_xstokes,f_ystokes))

# Multiplying pressure by the identity tensor
p_I = CoefficientFunction (( p_exact, 0,
0, p_exact), \
dims=(2,2))

# In the weak formulation of Stokes, the Neumann condition requires

# -nu grad(u) + pI projected onto the outward facing normal on the boundary.
# Generated here as h for Stokes.

h_stokes = (- nu * grad_u + p_I) * n

# Forcing function for Stokes

f_x = u_exact [0].Diff (var_time) - nu * (u_exact[0].Diff(x).Diff(x) \
+ u_exact [0].Diff (y).Diff(y)) + div_outerUU[0] + p_exact.Diff (x)
f_y = u_exact [1].Diff (var_time) - nu * (u_exact[1].Diff(x).Diff(x) \
+ u_exact [1].Diff (y).Diff (y)) + div_outerUU[1] + p_exact.Diff (y)
force_navier_stokes = CoefficientFunction((f_x,f_y))

# Neumann boundary condition for INS

h_ins = (outerUU - nu*grad_u + p_I)*n - Max(u_exact#*n, 0)*u_exact
I e e e e e s e B E LU S B e LS #
# Setting up the time stepping variables:
IR e e e o i e e e e e L #
dt = Time_Step # Time step
176 t = 0.0 # Initial time
177 t_final = No_Time_Solutions*Time_Step # Final time
178
170 e ————— #
180 # Mutable helper functions:
18] e e i #
182
183 avg_u = 0.5%(u + u.0ther()) # Average of Velocity {{u}}
184 jump_u = u-u.0ther () # Jump of Velocity [[ul]
185 jump_v = v-v.0ther () # Jump of Basis Functions [[v]]
186 avggrad_u = 0.5%(Grad(u) + Grad(u.Other())) # Average of Vel Grad {{Grad (u) }}
187 avggrad_v = 0.5*%(Grad(v) + Grad(v.Other())) # Average of BFs {{Grad (v)}}
188
189 u_time_bl = ux*xv/dt # Blinear du/dt (U"N+1) *v/dt
190 u_time_1 = UOx*v/dt # Linear du/dt (U"N)*v/dt
191
102 e et #
193 # Setup the steady-state Stokes problem, to find initial condition:
IR o =—cc=osoososcoososcsss oS oos oo oo oSS s s S oSS oo oo s oo oS oSS oSS ossosSos oSS Sososss #



216
217
218
219

220

265

Wi

A solution to the steady-state Stokes problem is utilized as the initial
condition for the Incompressible Navier-Stokes.

-nu*div(grad(u)) + grad(p) = f_stokes

win

# Bilinear form for Stokes

bl_st = BilinearForm(X)
bl_st += nu * InnerProduct(Grad(u), Grad(v)) * dx \
nu * alpha * InnerProduct(jump_u, jump_v) * dx(skeleton=True) \
= nu * InnerProduct(avggrad_u, OuterProduct (jump_v, n)) * dx(skeleton=True) \
- nu * InnerProduct(avggrad_v, OuterProduct (jump_u, n)) * dx(skeleton=True) \
+ nu * alpha * u * v * ds(skeleton=True, definedon=mesh.Boundaries ("
bottom|left")) \
- nu * InnerProduct(Grad(u), OuterProduct(v, n)) * ds(skeleton=True, definedon=mesh.Boundaries ("
bottom|left")) \
- nu * InnerProduct(Grad(v), OuterProduct(u, n)) * ds(skeleton=True, definedon=mesh.Boundaries ("
bottom|left")) \
= div (v) *p * dx \
= div(u)*q * dx \
# Linear form for Stokes
1_st = LinearForm (X)
1_st += f_st * v * dx \
+ nu * alpha * u_exact * v * ds(skeleton=True, definedon=mesh.Boundaries ("
bottom|left")) \
- nu * InnerProduct(Grad(v), OuterProduct(u_exact, n)) * ds(skeleton=True, definedon=mesh.Boundaries ("
bottom|left")) \
= v * (h_stokes) * ds(skeleton=True, definedon=mesh.Boundaries ("top|
right"))
I e e e e e e e e L e e e e e S e L S L LS L EESs #
# Solution function for the steady-state Stokes problem:
IR S e e e e e e e e e e L S e L Ll #

# Set verbose mode for the solver:
ngsglobals.msg_level=0#Verbose_Mode

# Function that handles solution of the Stokes problem

def SolveBVP_Stokes():
var_time.Set (0.0)
# Begin Task Manager function to handle automatic updating of mutable variables
with TaskManager ():

# Print degrees of freedom
if Verbose_Mode
print ("\n\t Number of Degrees of Freedom: ", X.ndof)

# Update the solution gridfunction
UN.Update ()

# Interpolate the exact solution onto the boundary facets
UN.components [0].Set ((u_exact*n)*n, definedon=mesh.Boundaries("bottom|left"))

# Assemble the linear and bilinear matrices
bl_st.Assemble ()
1_st.Assemble ()

# Create a residual vector

res = 1l_st.vec.CreateVector ()

res.data = 1l_st.vec - bl_st.mat * UN.vec

# Iteratively solve for UN

UN.vec.data += bl_st.mat.Inverse(freedofs=X.FreeDofs(), inverse=’umfpack’) * res

# Save the Stokes solution as initial condition for INS
UOld.vec.data = UN.vec.data

# Plotting
Draw (UOld.components[0], mesh, "velocity")

Draw (UOld.components[1], mesh, "pressure")
Draw (Norm(UOld.components[0]), mesh, "[velocity|")

# Solve the steady-state Stokes problem and print the error:
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# SolveBVP_Stokes ()

if Verbose_Mode == 1:
err_u, err_p, err_div = CalcL2Error (UN)
print ("\n")
print ("\t Error in Stokes Velocity: %1.2e" %err_u)
print ("\t Error in Stokes Pressure: %1.2e" %err_p)
print ("\t Error in Stokes Divergence: %1.2e" %err_div)
print ("\n")

# Navier-Stokes Bilinear Form

bl_ns = BilinearForm (X)

bl_ns += u_time_bl
+ nu * InnerProduct(Grad(u), Grad(v))
+ nu * alpha * InnerProduct(jump_u, jump_v)
= nu * InnerProduct (avggrad_u, OuterProduct (jump_v, n))
= nu * InnerProduct (avggrad_v, OuterProduct (jump_u, n))
& nu * alpha * u * v

bottom|left")) \

- nu * InnerProduct(Grad(u), OuterProduct(v, n))
bottom|left")) \

- nu * InnerProduct(Grad(v), OuterProduct(u, n))
bottom|left")) \

= div (v)*p

= div (u) *q

- InnerProduct (QuterProduct (u,U0), Grad(v))

+ jump_v * (UO * n * avg_u + 0.5 * Norm(UO * n) * jump_u)

+ v * (0.5 * (UO * n) * u + 0.5 * Norm(UO * n) * u )

bottom|left")) \
+ v *x( Max(UO*n, 0.0) * u)
right"))

# Navier-Stokes Linear Form

1_ns = LinearForm (X)
1l_ns += force_navier_stokes * v * dx + u_time_1l
& nu * alpha * u_exact * v

bottom|left")) \

PR L

* %

dx \
dx \

dx (skeleton=True)
dx (skeleton=True)
dx (skeleton=True)

ds (skeleton=True
ds (skeleton=True
ds (skeleton=True
dx \

dx \
dx \

dx (skeleton=True)

ds (skeleton=True

ds (skeleton=True

dx \
ds (skeleton=True

- nu * InnerProduct(Grad(v), OuterProduct(u_exact, n)) * ds(skeleton=True
bottom|left")) \
= v ¥ (0.5%U0 * n * u_exact - 0.5*Norm(UO * n) * u_exact) * ds(skeleton=True
bottom|left")) \
= v * h_ins * ds(skeleton=True
right"))
e T e T #
# Setup the Incompressible Navier-Stokes Preconditioner:
B m = = = e o #
¢ = Preconditioner (type="direct", bf=bl_ns, flags = {"inverse" "umfpack" } )
R e #
# Solution function for the Incompressible Navier-Stokes problem:
e e e e e LT T e e #

# Function that handles transient solution of the Navier-Stokes problem

store = []
def SolveBVP_NavierStokes():

# Resolve Stokes with new mesh
SolveBVP_Stokes ()
Redraw (blocking=False)

t =0

# Solve transient INS
step = 0 # Iteration step counter
with TaskManager ():
while t < t_final:
step += 1
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# Increase time by time step
t += float(dt)

# Set the parameter time to update mutable variables
var_time.Set (t)

if Verbose_Mode == 1:
print (’\t Time step: %d \t\t Time: %1.1e’ %(step,t))

# Update the boundary condition interpoloation with respect to time
UN.components [0].Set(u_exact, definedon=mesh.Boundaries("bottom|left"))

# Assemble the linear and bi-linear matrices, and preconditioner
bl_ns.Assemble ()

1_ns.Assemble ()

c.Update ()

# solve system
BVP (bf=bl_ns,1f=1_ns,gf=UN,pre=c,maxsteps=3,prec=1e-10) .Do ()

U0ld.vec.data = UN.vec.data
Redraw (blocking=False)

err_u, err_p, err_div = CalcL2Error (UN)
store.append ( (X.ndof, mesh.ne, err_u, err_p, err_div) )

= VTKOutput (ma=mesh,coefs=[UN.components [0] [0], UN.components[0][1], UN.components[0], UN.components[1]],names=["
HorizontalVelocity", "VerticalVelocity", "VelocityMagnitude", "Pressure"],filename="square",subdivision=3)

i in range(No_Refinments):

# Refine the mesh
if i != 1:
mesh.Refine ()

# Update the mixed function space and grid functions if mesh has changed
X.Update ()

UN.Update ()

U01ld.Update ()

# Solve the Navier-Stoke system with the new mesh
SolveBVP_NavierStokes ()
vtk .Do ()

# Final print routine to output convergence rates for velocity, pressure, divergence

i=1
print ("\n\n\n\n\n\n")
print
print
print
while i < len(store) :
rate_u = log(storel[i-1]1[2]/store[i][2])/1log(2.0000)
rate_p = log(store[i-1]1[3]/store[i][3])/1log(2.0000)
rate_div = log(store[i-1]1[4]/store[i][4])/10g(2.0000)
print ("%6d || %1i.1e | %1.1f || %i.1e | %1.1f || %1.1e" % \
(store[i][1], store[i][2], rate_u, store[i][3], rate_p, store[il[4]))
i = i+t
pring (7=sssccsosccccssssssssssssssssssssssss oSS ssssssssooooossssSsosssoaes ")

print ("\n\n\n")

Wi

End of Unit Test.

Wi

print ("--- %s seconds ---\n\n" % (time.time() - start_time))

A.2 H(div)-conforming Discontinuous Galerkin Method
for Navier-Stokes: Vortex Shedding
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Wi

This code tests the validity of a Discontinuous Galerkin BDM elements
Incompressible Navier-Stokes solution by solving the following equation:

u_t + div(u x u) - nu*div(grad(u)) + grad(p) = £

div(u) = 0
u-=g on Dirichlet Boundaries
(u x u - nuxgrad(u) + p*I)*n - max(u*n,0)u = h on Neumann Boundaries

This file was created by Kyle Booker and James Lowman under the supervision of
Sander Rhebergen and Nasser Abukhdeir at the University of Waterloo in 2019.

This program is designed and operated using the NGSolve Finite Element Package.
WWw.ngsolve.org

Wi

from ngsolve import *

from netgen.geom2d import unit_square
from netgen.geom2d import SplineGeometry
from math import pi

import time

start_time = time.time ()

import matplotlib
import numpy as np
import matplotlib.pyplot as plt

R RS S e e e e e e e e e e el e e e e e e e e e e e e e #

# User Settings

R S e e e e S e e e e S e e e e B e S e e L e s S L L LRSS i e e e e e e e e e #
Verbose_Mode =1 # 0/1 == Yes/No -- Outputs solution information to terminal
Polynomial_Order =2 # Int -- Order of approximation polynomials
Initial_Mesh_Size = 1/4 # Float -- Initial mesh Size

No_Refinments =3 # Int -- Number of times to refine the mesh
Time_Step = 0.001 # Float -- Size of the time step to take
No_Time_Solutions = 1000 # Int -- Number of transient solutions

nu = 0.001 # Float -- Kinematic viscosity

t_final = 30 # Final time

i e Rt e #

# Mesh Generation:

e e e e e e e e e e e e e e e e e e e e e e I #

geo = SplineGeometry ()

geo.AddRectangle( (0, 0), (2.2, 0.41), becs = ("wall", "outlet", "wall", "inlet"))
geo.AddCircle ( (0.2, 0.2), r=0.05, leftdomain=0, rightdomain=1, bc="cyl")

mesh = Mesh( geo.GenerateMesh(maxh=0.1))

mesh.Curve(Polynomial_Drder)
Draw (mesh)

if Verbose_Mode == 1
print ("\n\t Boundary Labels: ", mesh.GetBoundaries(),"\n") # Check boundary labels
e T e e #
# Define Function Spaces:
B - #

Wi

A BDM finite element space (HDiv) is defined on the mesh for the velocity while
an L2 space is defined for the pressure.

BDM elements have that property that u * n is continuous across
elements (i.e. u_1 * n_1 = u_2 * n_1 on element boundaries).

Wi

# Velocity Space - HDiv BDM space

v = HDiv(mesh, order = Polynomial_Order, dgjumps = True, dirichlet="inlet|walllcyl")
# Pressure Space - one polynomial degree less than V

Q = L2(mesh, order = Polynomial_Order-1, dgjumps = True)

# Mixed Finite Element space
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78 X = FESpace ([V, Q], dgjumps = True) # Mixed finite element space (u,p)
79 print("DOF: ", X.ndof)

80 drag = []

81 1lift = []

82

83 e e e #
84 # Define trial and test functions, and solution storage sunctions:

G0 e e e e #
86

87 (u, p), (v, @ = X.TnT(Q) # Define Trial functions (u,p) and Test functions (v,q)
88

89 # NGSolve utilizes grid functions as mutable scalar/vector/tensor variables

90 UN = GridFunction (X) # Grid Function for the solution space

91 U0ld = GridFunction(X) # Grid Function for the solution space at previous time step
92 Pressure = GridFunction(Q)

93

94 # Temporary storage variables for previous time step data

95 U0 = CoefficientFunction (UO0ld.components[0]) # Previous velocity

96 PO = CoefficientFunction (UO0ld.components[1]) # Previous pressure

97

98

99

100

101

102 # Definition of the outward facing normal for every facet in the domain

103 n = specialcf.normal (mesh.dim) # Normal vector on an interface

104

105 # Definition of the individual cell sizes

106 h = specialcf.mesh_size

108 # A Nitsche penalty parameter is defined in the weak forumation for all facets

109 alpha = 10.0*Polynomial _Order**2/h

110

11 A e et #
112 # Helper Functions:

113 F e ittt #
114

115 # NGSolve has no native "Max" function, therefore Max is defined explicitly
116 def Max(A,B):
117 return IfPos(A-B,A,B) # If A-B>0 return A; else return B

119 # A custom function to calculate the L2 Norm error for a given solution
120 def CalcL2Error(sol):

121 err_u = sqrt(Integrate ((sol.components [0]-u_exact)**2, mesh))

122 p_mean = sqrt(Integrate(sol.components[1]**2, mesh))

123 p_exact_mean = sqrt(Integrate(p_exact**2, mesh))

124 err_p = sqrt(Integrate((sol.components[1]-p_mean-p_exact+p_exact_mean)**2, mesh))
125 #err_p = sqrt(Integrate((sol.components[1]-p_exact)**2, mesh))

126 err_div = sqrt(Integrate(Trace(Grad(sol.components[0]))**2, mesh))

127 return (err_u, err_p, err_div)

128

129

130 R e e #
131 # NGSolve-Mutable Variables:

132 R e it e e #
133

134 # A special coefficient function class, Parameter, is required to update time.
135 # This is required as the exact solution is dependent on time, and as such
136 # requires the Dirichlet boundary conditions to be dependent on time

137 var_time = Parameter (0.0)

138

130 I ————— #
140 # Exact Solution:

141 #
142

143 u_x = CoefficientFunction (1.5x4%y*(0.41-y)/(0.41%0.41))

144 u_y = CoefficientFunction (0.0)

145 u_exact = CoefficientFunction((u_x, u_y))

146

147 p_exact = 0 #sin(pi*x)*cos(pi*y)

148

149 e e E e B e #
150 # Generation of forcing function, f, that enables exact solution

150

152

153 f_st = CoefficientFunction((0.0,0.0))

154
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175
176

rd

h_stokes = CoefficientFunction ((0.0,0.0))

force_navier_stokes = CoefficientFunction((0.0,0.0))

# Neumann boundary condition for INS
h_ins = CoefficientFunction((0.0,0.0))

i =e—oe s ooe s eSS s e s oo s s e s S S o s e S S o eSS s o e s S o oSS s oSSoos oS SoossSoosSooses #

# Setting up the time stepping variables:

e e e e e e e e e e e e e e e e e e e e #

dt = Time_Step # Time step

it = 0.0 # Initial time

T e e e e e e e e e e e e e e e e e e e e e b e e e e e S B e E S #

# Mutable helper functions:

I e SRS e e e e e e L L e e e L C LRSS L L LU EEs #

avg_u = 0.5%(u + u.0ther()) # Average of Velocity {{u}}
jump_u = u-u.0Other () # Jump of Velocity [[ul]
jump_v = v-v.0ther () # Jump of Basis Functions [[v]]
avggrad_u = 0.5%(Grad(u) + Grad(u.Other())) # Average of Vel Grad {{Grad (u)}}
avggrad_v = 0.5%(Grad(v) + Grad(v.Other())) # Average of BFs {{Grad(v)}}
u_time_bl = u*v/dt # Blinear du/dt (U°N+1) xv/dt
u_time_1 = UO*v/dt # Linear du/dt (U"N) *xv/dt
e e e e e e e e e e e e e e e e e e e #

# Setup the steady-state Stokes problem, to find initial condition:

R RS S e e e e e e e e e e el e e e e e e e e e e e e e #

Wi

A solution to the steady-state Stokes problem is utilized as the initial
condition for the Incompressible Navier-Stokes.

-nu*div(grad(u)) + grad(p) = f_stokes

win

# Bilinear form for Stokes

bl_st = BilinearForm (X)
bl_st += nu * InnerProduct(Grad(u), Grad(v)) * dx \
+ nu * alpha * InnerProduct(jump_u, jump_v) * dx(skeleton=True) \
= nu * InnerProduct (avggrad_u, OuterProduct (jump_v, n)) * dx(skeleton=True) \
= nu * InnerProduct(avggrad_v, OuterProduct (jump_u, n)) * dx(skeleton=True) \
+ nu * alpha * u * v * ds(skeleton=True, definedon=mesh.Boundaries("inlet
lwalllcyl")) \
- nu * InnerProduct(Grad(u), OuterProduct(v, n)) * ds(skeleton=True, definedon=mesh.Boundaries("inlet
lwalllcyl")) \
- nu * InnerProduct(Grad(v), OuterProduct(u, n)) * ds(skeleton=True, definedon=mesh.Boundaries("inlet
lwalllcyl")) \
= div (v)*p * dx \
= div (u) *xq * dx \

# Linear form for Stokes

1_st = LinearForm (X)
1_st += f_st * v * dx \
+ nu * alpha * u_exact * v * ds(skeleton=True, definedon=mesh.Boundaries("inlet
"))\
- nu * InnerProduct(Grad(v), OuterProduct(u_exact, n)) * ds(skeleton=True, definedon=mesh.Boundaries("inlet
"))\
= v * (h_stokes) * ds(skeleton=True, definedon=mesh.Boundaries ("
outlet"))
e et e e L LT #
s Solution function for the steady-state Stokes problem:
e et e T #

# Set verbose mode for the solver:
ngsglobals.msg_level=0#Verbose_Mode

# Function that handles solution of the Stokes problem

def SolveBVP_Stokes():
var_time.Set (0.0)
# Begin Task Manager function to handle automatic updating of mutable variables
with TaskManager ():
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of freedom
1
Number of Degrees of Freedom: ",

# Print degrees
if Verbose_Mode
print ("\n\t

X.ndof)

# Update the solution gridfunction
UN.Update ()

# Interpolate the exact solution onto the boundary facets
UN.components [0].Set ((u_exact#*n)*n, definedon=mesh.Boundaries("inlet"))

# Assemble the linear and bilinear matrices
bl_st.Assemble ()
1_st.Assemble ()

# Create a residual vector

1_st.vec.CreateVector ()

res.data = 1l_st.vec - bl_st.mat * UN.vec

# Iteratively solve for UN

UN.vec.data += bl_st.mat.Inverse(freedofs=X.FreeDofs(),

res =

# Save the Stokes solution as initial condition for INS
UO0ld.vec.data = UN.vec

# Plotting

Draw (UOld.components[0], mesh, "velocity")

Draw (UOld.components[1], mesh, "pressure")

Draw (Norm(UOld.components[0]), mesh, "|velocityl|")

# Navier-Stokes Bilinear Form

inverse=’umfpack’) * res

bl_ns = BilinearForm (X)

bl_ns += u_time_bl * dx \
+ nu * InnerProduct(Grad(u), Grad(v)) * dx \
i nu alpha * InnerProduct (jump_u, jump_v) * dx(skeleton=True)
= nu InnerProduct (avggrad_u, OuterProduct (jump_v, n)) * dx(skeleton=True)
= nu InnerProduct (avggrad_v, OuterProduct (jump_u, n)) * dx(skeleton=True)
+ nu alpha * u * v * ds(skeleton=True,

lwalllcyl")) \

- nu * InnerProduct(Grad(u), OuterProduct(v, n)) * ds(skeleton=True,
lwalllcyl")) \

- nu * InnerProduct(Grad(v), OuterProduct(u, n)) * ds(skeleton=True,
lwalllcyl")) \

= div (v)*p * dx \

= div (u) *q * dx \

- InnerProduct (OuterProduct (u,U0), Grad(v)) * dx \

+ jump_v * (UO * n * avg_u + 0.5 * Norm(UO * n) * jump_u) * dx(skeleton=True)

+ v * (0.5 * (UO * n) * u + 0.5 * Norm(UO * n) * u ) * ds(skeleton=True,
lwalllcyl")) \

+ v *( Max (UO*n, 0.0) * u) * ds(skeleton=True,
outlet"))

# Navier-Stokes Linear Form

1_ns = LinearForm (X)
1_ns += force_navier_stokes * v * dx + u_time_1l * dx \
& nu * alpha * u_exact * v * ds(skeleton=True
"))\
- nu * InnerProduct(Grad(v), OuterProduct(u_exact, n)) * ds(skeleton=True
"))\
= v * (0.5%¥U0 * n * u_exact - 0.5*xNorm(UO0 * n) * u_exact) * ds(skeleton=True
EDDERN
= v * h_ins * ds(skeleton=True
outlet"))
et e et #
# Setup the Incompressible Navier-Stokes Preconditioner:
et ettt #
¢ = Preconditioner (type="direct", bf=bl_ns, flags = {"inverse" "umfpack" 1})
e T et TR #
# Solution function for the Incompressible Navier-Stokes problem:
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f = LinearForm(X)
f.Assemble ()

time_vals = []
drag_x_vals = []
drag_y_vals = []

res = f.vec.CreateVector ()

store = []

def SolveBVP_NavierStokes ():

# Resolve Stokes with new mesh
SolveBVP_Stokes ()
Redraw (blocking=False)

t =0
# Solve transient INS
step = O # Iteration step counter

with TaskManager ():
while t < t_final:
step += 1
# Increase time by time step

t += float(dt)
# Set the parameter time to update mutable variables

if Verbose_Mode == 1:
print (’\t Time step: %d \t\t Time: %1.1le’ %(step,t))

# Assemble the linear and bi-linear matrices, and preconditioner
bl_ns.Assemble ()

1_ns.Assemble ()

c.Update ()

# solve system
BVP (bf=bl_ns,1lf=1_ns,gf=UN,pre=c,maxsteps=300,prec=1.e-12 ) .Do ()

U0ld.vec.data = UN.vec
Redraw (blocking=False)

#print (drag)

VH1= H1(mesh, order=Polynomial_Order, dirichlet="wall|inlet|outlet")
et = GridFunction (VH1)

et.Set (CoefficientFunction(1.0), definedon=mesh.Boundaries("cyl"))
gradu00 = GridFunction (VH1)

gradu0l = GridFunction (VH1)

gradul0 = GridFunction (VH1)

gradull = GridFunction (VH1)

ppp = GridFunction (VH1)

gradu00.Set (grad (U0ld.components [0]) [0,0])

gradu01.Set (grad(U0ld.components [0]) [0,1])

gradul0.Set (grad(U0ld.components [0]) [1,0])

gradull.Set (grad(U0ld.components [0]) [1,1])

ppp .- Set (U0ld. components [1])

c_drag = Integrate(et*(nux(gradu0O*n[0] + graduOi*n[1]) - ppp*n[0]), mesh, BND)
c_drag = c_drag/(1.0%0.05)

c_lift = Integrate(et*(nu*(gradul0*n[0] + graduli*n[1]) - ppp*n[1]), mesh, BND)
c_lift = c_1lift/(1.0%0.05)

print ("c_drag:", c_drag)

print ("c_lift:", c_lift)

drag.append(c_drag)

lift.append(c_lift)

# Solve the Navier-Stoke system with the new mesh
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SolveBVP_NavierStokes ()

# Write drag data to file
file_drag = open("drag.dat", "w")
for i in drag:
file_drag.write("%2.2e\n" % i)
file_drag.close ()

# Write 1lift data to file
file_1lift = open("lift.dat", "w")
for i in 1lift:
file_lift.write("%2.2e\n" % i)
file_lift.close()

A.3 H(div)-conforming Discontinuous Galerkin Method
for Two-Fluid Flow

L H#HHHHH AR R R BB RRH R R BB BRHHHBBRBRHH BB HHAB BB BBRHA BB BB R R BB RBR AR BB R H BB RS
2 #The DG BDM Euler-Euler weak formulation using BDM elements.

S O HAHHRABBARBERRARBHBRA R BRAREH BB REH BB BEH BB R R BB R RBE BB R BB RBRBRR BB R BRA R RS
4 from ngsolve import *

5 from netgen.geom2d import SplineGeometry

6 ngsglobals.msg_level=1 # Set to 1 for more detailed Output/debugging

7 import numpy as np

8 import time

10 def Max(A,B):

11 return IfPos(A-B,A,B) # If A-B>0 return A; else return B
12

13 def Min(A,B):

14 return IfPos(A-B,B,A) # If A-B>0 return B; else return A

16 def CalcL2Error (approx, exact, mesh):

17 return sqrt(Integrate((approx - exact)**2, mesh))
18

19 def CalcChange(A, B, mesh):

20 return sqrt(Integrate ((A - B)**2, mesh))

21

22 HHHHHHHRHBHAHERABHBBAH AR BRBHER BB H BB AR BB BB R BB B R AR B R R A BB BH AR R RS BB BB H SRR B RS
23 # Parameters
24 HHHHHHHRHBHEHEHSBHBB AR BB R R LB LR AR R BB AR BB B AR R BB R AR B RSB R BB R RS RSB BB R H SRR RS S

25 dt = le-2 # Time step

26 final_time = 1000.0 # Final Time

27 param_t = Parameter (0.0)

28 t_0 = 0.625 # Maximum Inlet time

29

30 mesh_size =2

31 k = 3 # Order of approximation polynomials
32

33 HHHHABHABBHABAH A B R AR ARGV R ARG RSB AR AR H BB AR A BB B R A RSB EBR ARG BB R RS REH A RSB R AR SRS B R BHS
34 # Constants
35 HHHHABARBBHAHEH AV R BB AR B BB R B H A B R R AR R BB ARV R BB A RSB G BR BB G HE BB BB H B A B BB R A B SRS B R BHS

36 rho_c = 1000.0 # Density of Continuous Phase [kg/m"3]

37 rho_d = 10.0 # Density of Disperse Phase [kg/m~3]

38 mu_c = be-3 # Dynamic Viscosity of Continuous [Pa s]

39 mu_d = 2e-5 # Dynamic Viscosity of Disperse Phase [Pa s]

40

41 x_s 0.41 # Characteristic Length scale

42 v_s = 1.5 # Characteristic Velocity scale

43 g_s = 9.81 # Characteristic Gravity scale

44 h_s = 2 # Characteristic Height scale

45 P_s = rho_c * g_s * h_s # Characteristic Pressure scale

46 t_s = x_s / v_s

47

48 bubble_d = 1e-3/x_s # Bubble Size diameter [m]

49

50 e = np.finfo(float).eps # Machine epsilon

51

52 Eu_c = P_s/(rho_c * v_s * v_s) # Continuous Phase Euler Number
53 Eu_d = P_s/(rho_d * v_s * v_s) # Continuous Phase Euler Number
54
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55 Re_c = 0.001#rho_c * v_s * x_s / mu_c # Continuous Phase Reynolds number

56 Re_d = 0.001 #rho_d * v_s * x_s / mu_d # Disperse Phase Reynolds number
57

58 Fr = v_s / (sqrt(g_s#*x_s)) # Froude number

59

60 grav = CoefficientFunction((0.0, 0.0))

61

62 HHHBHBAHRLHBHAR LR BHA R LR BRB BB B R BB RBH BB BB BB BB BB BB BB AR R BB B R RS R B RS S
63 # Mesh Creation

O4 HHBBHBHAREHBHAR LR BHA BB BEH BB BH R BB BB BB BB BB BB H BB R BB BB B AR B SRS B RS S
65 geo = SplineGeometry ()

66 geo.AddRectangle ((0, 0), (2, 0.41), bcs = ("wall", "outlet", "wall", "inlet"))
mesh = Mesh(geo.GenerateMesh(maxh=mesh_size))

68 mesh.Curve (k)

69 mesh.Refine ()

70 mesh.Refine ()

71 mesh.Refine()

72 # mesh.Refine ()

73

74

75 # Mesh related functions

76 h = specialcf.mesh_size # Mesh size

77 n = specialcf.normal (mesh.dim) # Outward normal vector on element facets
78

79 beta = 10.0%(kx**2)/h # Penalty Parameter

80

S1 HHHBHBHHR BB R DR R R BH AR R B R R BB DR BB R BH BB BB BB R BB R BB B SRR RS R B R RSB SHH
82 # Function Spaces
B3 HHHHHHHRHBHAH AR AR RB AR AR BB H AR AR AR R BH AR AR BB H BB BB BB B R BB BB R AR AR BB R BB R RSB RRH S

84

85V = HDiv(mesh, order = k, dirichlet="wall|inlet")

86 Q = L2(mesh, order = k-1) # Must be k-1 for stability

87 X = FESpace ([V, V, Q], dgjumps = True) # Mixed finite element space

88 A = L2(mesh, order = k, dgjumps = True) # Gas Phase Fraction Finite Element Space
89

0 #HHHHHHAAHBHAHAHABHBHAH BB HAHEH AR AR R BB AR A BB R AR AR AR R AR A RSB AR BB R A B AR SRR AR SRS B R R RS
91 # Trial and Test Functions
02 #HHHABARFHHAHAHABHBHAH B AR R A RSB AR AR R B H AR A B AR R A RSB E B AR B SRS B AR BB R AR AR SRR AR SRS B R RHS

93

94 # u_m: Mixture Velocity Trial Function; v_m: Mixture Velocity Test Function

95 # u_d: Disperse Phase Velocity Trial Function; v_d: Disperse Phase Velocity Test Function
96 # p: Pressure Trial Function; q: Pressure Test Function

97 (u_m, u.d, p), (v_m, v_d, q) = X.TnT(Q)

98

99 # a_d: Disperse Phase Trial Function; z_d: Disperse Phase Test Function
100 a_d, z = A.TnT()

102 ##HH#GHAHHBEHB AR AR BHH B SR BB BB B BB BB BB B E BB R BB BH BB BB BB R BB BB B SR RRY
103 # Gridfunctions
104 #H#HBHAHAHAB AR BB HEH AR R BB A B RSB R BB RSB B R AR BB AR AR R BB AR A B R B R AR AR BB BB RSB R SRR RHHH

105 UN = GridFunction(X) # Gridfuction for Velocities and Pressure

106 U0ld = GridFunction(X) # Gridfunction for the solution at previous time step
107

108 A_D GridFunction(A) # Gridfunction for Disperse Phase Fraction

109 A_D_01d = GridFunction(A) # Gridfunction for the Disperse Phase Fraction at previous time step
110

111 # Solution at PREVIOUS time step

112 U_M_O0 = CoefficientFunction (UOld.components[0]) # Mixture Velocity

113 U_D_O = CoefficientFunction(UOld.components[1]) # Disperse Phase Velocity

114 P_0O = CoefficientFunction (UOld.components[2]) # Pressure

115 U_C_0 = (U_M_O0 - A_D_01d * U_D_0)/(1.0 - A_D_01d) # Continuous Phase Velocity
116

L17 ####4#H##HBHAREHBHR BB BHHBERBHH BB B ARG HBBH BB H BB BB H BB R B R B R B R BB R SRS RH R
118 # Boundary Conditions
11O ##H#GHARHBEH BB B BB BB B R BB BB BB BB BBH BB BB BB BB RBHB R BB B SRR

121 #vel_inlet = Min(param_t/t_0, 1.0)*0.0616xexp(-((x/0.025)**2) /(2*((0.1)*x2))) # Inlet Velocity: Gaussian Distribution

123 #ad_inlet = Min(param_t/t_0, 1.0)*0.026xexp(-((x/0.025)*%2)/(2%((0.1)*%2))) # Disperse Phase
124 ad_inlet = 0.025

125

126 # Phase Fraction Boundary Conditions

127 ad_bnd = CoefficientFunction(ad_inlet) # Dispersed Phase Dirichlet Inlet condition

128 ad_wall_bnd = CoefficientFunction(0.00) # Dispersed Phase Dirichlet Wall condition

129 force_ad = CoefficientFunction (0.0)

130

131 # Dispersed Phase Velocity field
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182

vel_inlet = 1.5x4%y*(0.41-y)/(0.41%0.41)
ud_bnd = CoefficientFunction((vel_inlet, 0.0)) # Dispersed Phase Velocity at Inlet
ud_wall_bnd = CoefficientFunction((0.0, 0.0)) # Dispersed Phase Velocity at Walls

# Mixture Velocity field
um_bnd = CoefficientFunction((vel_inlet, 0.0)) # Mixture Velocity at Inlet
um_wall_bnd = CoefficientFunction((0.0, 0.0)) # Mixture Velocity at Walls

# Neumann boundary condition
neumann_bnd = CoefficientFunction((0.0, 0.0)) # Neumann boundary condition for velocity
disperse_phase_neumannn_bnd = CoefficientFunction((0.0,0.0)) # Neumann boundary condition disperse phase fraction

HAHBHARARHHRARHRS R BB RBHARABHF AR BB AR BB AR B R RA B R R R BB BB R B R BB BH AR AR R RSB B RSB HAR RS
# Initial Conditions

HAHBHAHARHHRA BB RSB B RS HBH AR AR R BB R BB RH BB RS R B R B R B R B R BB R G BH R R B R B R AR R RSB B R AR B R RS S
UN.components [0].Set (CoefficientFunction((0.0,0.0)))

UN.components [1].Set (CoefficientFunction((0.0,0.0)))
A_D.Set(CoefficientFunction (0.025))

HAFBHARARARARRARARARBRRARARRRRARRRARARBRRARARARRRRRRARRRARRARABBRRRRABARRRHRHARAR
# Intermediary Viscous Stress Functions
HARBHARARARARHARABBRRRHARABRBRRRRRABHBBRRARABARRRRARARRBARBABABBRBRHARARRBH SRR RS

S_ud = CoefficientFunction(grad(u_d))

Stress_ud = CoefficientFunction (0.5*%(S_ud + S_ud.trans))

S_ud_0 = CoefficientFunction(grad(u_d.0Other()))

Stress_ud_Other = CoefficientFunction(0.5*x(S_ud_0 + S_ud_0.trans))

S_vd = CoefficientFunction(grad(v_d))

Stress_vd = CoefficientFunction(0.5%(S_vd + S_vd.trans))

S_vd_0 = CoefficientFunction(grad(v_d.0Other()))

Stress_vd_Other = CoefficientFunction(0.5*(S_vd_0 + S_vd_0.trans))

S_vm = CoefficientFunction(grad(v_m))

Stress_vm = CoefficientFunction(0.5*(S_vm + S_vm.trans))

S_vm_0 = CoefficientFunction(grad(v_m.Other ()))

Stress_vm_Other = CoefficientFunction(0.5*(S_vm_0 + S_vm_0.trans))

S_um = CoefficientFunction(grad(u_m))

Stress_um = CoefficientFunction(0.5*(S_um + S_um.trans))

S_um_0 = CoefficientFunction(grad(u_m.Other ()))

Stress_um_Other = CoefficientFunction(0.5*x(S_um_0 + S_um_0.trans))

S_um_ac = CoefficientFunction (((1.0-A_D_01d)*grad(u_m) + OuterProduct(u_m,grad(A_D_01d)))*(1.0/(1.0-A_D_01d)
*%2) )

Stress_um_ac = CoefficientFunction(0.5%(S_um_ac + S_um_ac.trans))

S_um_ac_0 = CoefficientFunction((1.0-A_D_01d.0ther ())*grad(u_m.Other()) + OuterProduct(u_m.Other(),grad(A_D_01d
).0ther ())*(1.0/(1.0-A_D_01d.0ther ())**2))

Stress_um_ac_Other = CoefficientFunction(0.5*(S_um_ac_0 + S_um_ac_0.trans))

s_ud_ad_ac = CoefficientFunction(((1.0-A_D_01d)*(A_D_0ld*grad(u_d) + OuterProduct(grad(A_D_01d),u_d)) + OuterProduct(
grad (A_D_01d) ,A_D_01ld*u_d))*(1.0/(1.0-A_D_01d) **2))

Stress_ud_ad_ac = CoefficientFunction(0.5*(s_ud_ad_ac + s_ud_ad_ac.trans))

s_ud_ad_ac_0 = CoefficientFunction(((1.0-A_D_01d.0Other ())*(A_D_01d.Other ()*grad(u_d.0Other()) + OuterProduct (grad(

A_D_01d) .0ther () ,u_d.0Other())) + OuterProduct(grad(A_D_01d).0ther(),A_D_01d.Other()*u_d.Other()))*(1.0/(1.0-A_D_01d
.Other () **2))
Stress_ud_ad_ac_Other = CoefficientFunction(0.5*(s_ud_ad_ac_0 + s_ud_ad_ac_0.trans))

HARBHARARBRARHARABBRRRHARABRBHARRRABRRABRRARABARRRHRRARRBARAABABBRRRH SRR RRBH SRS
# Jumps and Averages for DG numerical Fluxes
HARBHAHRARRBAAHARBBBRRBH BB RBHA BB A BRRBRHABRBBBRBHARABRBARBABRBRABRH B BB B SRR S

jump_um = u_m - u_m.Other() # [[u_m]]
jump_ud = u_d - u_d.Other() # [[u_d]]
jump_vm = v_m - v_m.Other() # [[v_m]]
jump_vd = v_d - v_d.Other() # [[v_d]]

jump_ud_ad = u_d*A_D_01d - u_d.Other ()*A_D_01d.0ther() # [[u_d*a_d]]
jump_um_ac = u_m*(1.0/(1.0-A_D_01d)) - u_m.Other()*(1.0/(1.0-A_D_01d.0Other())) # [[u_m*a_c]]
jump_ud_ad_ac = u_d*(A_D_01d/(1.0-A_D_01d)) - u_d.Other ()*(A_D_01d.Other()/(1.0-A_D_01d.Other())) # [[u_d*a_d/a_c]]

avg_u_m = 0.5%(u_m + u_m.Other()) # {{u_m}}

avg_ud_ad = 0.5%(A_D_0ld*u_d + A_D_01d.Other ()*u_d.Other()) # {{u_d*a_d}}

avg_ud_ud_ad = 0.5%(A_D_0ld*0OuterProduct(U_D_0, u_d) + A_D_01d.Other () *OuterProduct (U_D_0.0ther(),u_d.0ther())) # {{u_dx
a_d}}

avg_um_ac = 0.5%(u_m*(1.0/(1.0-A_D_01d)) + u_m.Other()*(1.0/(1.0-A_D_01d.0ther()))) # {{u_m*a_cl}}

avg_ud_ad_ac = 0.5 * (A_D_0ld*u_d*(1.0/(1.0-A_D_01d)) + A_D_01d.Other ()*u_d.Other ()*(1.0/(1.0-A_D_01d.0ther()))) # {{u_d
*a_d/a_cl}}

avg_um_um_ac = 0.5%((1.0 -A_D_01d)*0OuterProduct(U_M_0, u_m) + (1.0 -A_D_01d.0ther ())*0OuterProduct(U_M_0.0ther(),u_m.
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Other ())) # {{u_d*a_d}}
202

203
204 avg_Stress_vd = 0.5%x(Stress_vd + Stress_vd_Other) # {{e(v_d)}}
205 avg_Stress_vm = 0.5x(Stress_vm + Stress_vm_Other) # {{e(v_m)}}

206 avg_ad_Stress_ud = 0.5*%(A_D_0ld*Stress_ud + A_D_0ld.Other ()*Stress_ud_Other) # {{a_d* e(u_d)}}

207 avg_ac_Stress_um = 0.5%((1.0 - A_D_0ld)*Stress_um + (1.0 - A_D_01d.0Other())*Stress_um_Other) # {{a_dx e(u_d)}}

208

209 avg_Stress_um_ac = 0.5%((1.0 - A_D_0ld)*Stress_um_ac + (1.0 - A_D_01d.0ther())*Stress_um_ac_Other) # {{a_c* e(u_m/a_c)}}

210 avg_Stress_ud_ad_ac = 0.5%((1.0 - A_D_0ld)*Stress_ud_ad_ac + (1.0 - A_D_01d.0Other())*Stress_ud_ad_ac_Other) # {{a_c* e(
u_d*a_d/a_c)}}

grad_a_d = CoefficientFunction(grad(a_d))
# epsilon_a_d = CoefficientFunction (0.5%(grad_a_d + grad_a_d.trans))
grad_a_c = CoefficientFunction(-grad(a_d))
# epsilon_a_c = CoefficientFunction(0.5%(grad_a_c + grad_a_c.trans))

HARBHARARARARRRRARARRRARRARRRBRRRRABARBRRARABBRRRARRRARARARBRRABARBRRABARRR AR HR RS
# Helper Functions
HARBHARARARARAARARARRRRARARRRAARRRABARBRRARARARRRARRRARRRARBARABARBRHABARRRHR AR

v_r_0 = (U_D_O0 - U_M_0) # Relative velocity: v_d - v_c

Re_var = rho_c*Norm(v_r_0)*bubble_d/mu_d # Reynolds Variable

#C_D = Max ((24/(Re_var + e))*(1.0 + 0.15*%(Re_var**0.687)), CoefficientFunction(0.44)) # Drag Coefficient
C_D = 0.44

Div_a_d_v_d = CoefficientFunction((grad(A_D_01d)*v_d + A_D_0ldx*div(v_d))) # Div(a_d*v_d)
Div_a_c_v_m = CoefficientFunction((-grad(A_D_0ld)*v_m + (1.0 - A_D_01d)*div(v_m))) # Div(a_c*v_m)
Div_a_d_u_d = CoefficientFunction((grad(A_D_01d)*u_d + A_D_0ld*div(u_d))) # Div(a_d*v_d)
Div_a_c_u_m = CoefficientFunction((-grad(A_D_0ld)*u_m + (1.0 - A_D_01ld)*div(u_m))) # Div(a_c*v_m)

HAHBHAHARHBRA BB RSB BR AR B RBRA B R B AR B RH BB BB RBRBRA B R B R BB RH B R R A B R B AR B R BB BB RSB HBREH
# Bilinear form
HAHBHBHARARRARHRH BB RAHBRBRARHBRARRRHBBRAR B R B AR B R B A BB RH B AR R BRBRA R AR R RA AR B RARSH

win

dx : evaluates integral over elements
dx (skeleteon=True) : evaluates integral over interior element boundaries (facets)
ds (skeleteon=True) : evaluates integral over domain boundaries

Wi

a_INS = BilinearForm(X)
HABBHARABHARARARRRBAARBHARARHRRRRAARBBAARBHARABHB R BB BAR B R AR B R AR A RHR SR BHARBHAR RS
# Bilinear Form Disperse Phase Momentum Equation

HARBHBHARARARHRRABABRRARBHA BB B A RHRRA B RARHR BB A BB RA AR R A RARHR BB A BRI AR BR BB RS R R RS

# Change in Momentum
a_INS += A_D_01d * u_d * v_d * dx

# Pressure
a_INS += - dt * Div_a_d_v_d * p * dx

# Advection

a_INS += - dt * InnerProduct(OuterProduct(U_D_0,A_D_0ld*u_d), grad(v_d)) * dx
a_INS += dt * jump_vd * (avg_ud_ud_ad * n + 0.5 * Norm(U_D_O * n) * jump_ud_ad) * dx(skeleton=True)
a_INS += dt * v_d * (0.5 * A_D_01d * u_d * (U_D_O * n) + 0.5 * Norm(U_D_O * n) * A_D_01d * u_d ) * ds(skeleton=True,
definedon=mesh.Boundaries ("wall|inlet"))
259 a_INS += dt * v_d * (Max(U_D_O*n, 0.0) * A_D_01d * u_d) * ds(skeleton=True, definedon=mesh.Boundaries("outlet"))
260
261 # Viscous Stress
262 a_INS += dt * (2.0 * mu_d) * InnerProduct(A_D_01d * Stress_ud, Stress_vd) * dx
263 a_INS += - dt * (2.0 * mu_d) * InnerProduct(avg_Stress_vd, OuterProduct(jump_ud_ad, n)) * dx(skeleton=True)
264 a_INS += - dt * (2.0 * mu_d) * InnerProduct(avg_ad_Stress_ud, OuterProduct(jump_vd, n)) * dx(skeleton=True)
265 a_INS += - dt * (2.0 * mu_d) * InnerProduct(OuterProduct(u_d*A_D_01d, n), Stress_vd) * ds(skeleton=True, definedon=mesh.
Boundaries ("walllinlet"))
266 a_INS += - dt * (2.0 * mu_d) * InnerProduct(OuterProduct(v_d, n), A_D_01d * Stress_ud) * ds(skeleton=True, definedon=
mesh.Boundaries ("wall|inlet"))
a_INS += dt * (2.0 * mu_d) * beta * InnerProduct(jump_ud_ad, jump_vd) * dx(skeleton=True)
a_INS += dt * (2.0 * mu_d) * beta * u_d * A_D_01d * v_d * ds(skeleton=True, definedon=mesh.Boundaries("wall|inlet"))

# Drag Force
a_INS += dt * (0.75) * (rho_c) * A_D_01d * (C_D/bubble_d) * Norm(v_r_0) * u_d * v_d * dx
a_INS += - dt * (0.75) * (rho_c) * A_D_01d * (C_D/bubble_d) * Norm(v_r_0) * (u_m) * v_d * dx
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312

328
329

330

a_INS += - dt * InnerProduct (OuterProduct(grad_a_d,u_d), Stress_vd) * dx #IS THIS CORRECT?
HAHBHBHARRBRARHRH BB RAHBRBRARHRAARRRH BB RARBRBRABH B A BB RH B AR AR R B RA BB R R BRAHBRBHAH

# Bilinear Form Continuous Phase Momentum Equation
HAHBHARARHRAARHRHRBRAHBRBRARHBRARBRH BB RAHBRBRABH R R R R AR B R R AR B R AR AR B RSB B R AR B RRRSH

a_INS += ((1.0 - A_D_01d ) * u_m * v_m) * dx

# Pressure
a_INS += - dt * Div_a_c_v_m * p * dx

# Advection

a_INS += - dt * InnerProduct(OuterProduct(U_M_0,(1.0 - A_D_0ld)*u_m), grad(v_m)) * dx

a_INS += dt * jump_vm * (avg_um_um_ac * n + 0.5 * Norm(U_M_O * n) * jump_um_ac) * dx(skeleton=True)

a_INS += dt * v_m * (0.5 * (1.0 -A_D_01d) * u_m * (U_M_O * n) + 0.5 * Norm(U_M_O0 * n) * (1.0 -A_D_01d) * u_m ) * ds(
skeleton=True, definedon=mesh.Boundaries("wall|inlet"))

a_INS += dt * v_m * (Max(U_M_O*n, 0.0) * (1.0 - A_D_01d) * u_m) * ds(skeleton=True, definedon=mesh.Boundaries("outlet"
))

# Viscous Stress

a_INS += dt * (2.0 * mu_c) * InnerProduct((1.0 - A_D_01d) * Stress_um, Stress_vm) * dx

a_INS += - dt * (2.0 * mu_c) * InnerProduct(avg_Stress_vm, OuterProduct(jump_um_ac, n)) * dx(skeleton=True)

a_INS += - dt * (2.0 * mu_c) * InnerProduct(avg_ac_Stress_um, OuterProduct(jump_vm, n)) * dx(skeleton=True)

a_INS += - dt * (2.0 * mu_c) * InnerProduct(OuterProduct(u_m*(1.0 - A_D_01d), n), Stress_vm) * ds(skeleton=True,
definedon=mesh.Boundaries ("wall|inlet"))

a_INS += - dt * (2.0 * mu_c) * InnerProduct(OuterProduct(v_m, n), (1.0 - A_D_01d) * Stress_um) * ds(skeleton=True,
definedon=mesh.Boundaries ("wall|inlet"))

a_INS += dt * (2.0 * mu_c) * beta * InnerProduct(jump_um_ac, jump_vm) * dx(skeleton=True)

a_INS += dt * (2.0 * mu_c) * beta * u_m * (1.0 - A_D_01d) * v_m * ds(skeleton=True, definedon=mesh.Boundaries("wall|
inlet"))

# Drag Force

a_INS += - dt * (0.75) * (rho_c) * A_D_01d * (C_D/bubble_d) * Norm(v_r_0) * u_d * v_m * dx

a_INS += dt * (0.75) * (rho_c) * A_D_01d * (C_D/bubble_d) * Norm(v_r_0) * (u_m) * v_m * dx

a_INS += - dt * InnerProduct (OuterProduct(grad_a_c, u_m), Stress_vm) * dx # FIX

# Mass Convservation

a_INS += - dt * q * Div_a_d_u_d * dx

a_INS += - dt * q * Div_a_c_u_m * dx

HHUBHBHARHHAARH BB BRAHBHBRA R BB AR RBR G BB R R B R AR AR BB AR R R RSB R AR B R B AR B RSB R RSB RRR RS
# Linear Form Disperse Phase Momentum Equation
HARBHARBBHARARARRRRBARBHARRRHBRRRARRRBRARBHABRABHRRBRAARBRARRBH AR A RAR SR BHARBHAR RS
f_INS = LinearForm(X)

# Change in Momentum
f_INS += A_D_01d * U_D_O*v_d * dx

# Advection

f_INS += - dt * v_d * ( 0.5 * U_D_O * n * (ad_bnd * ud_bnd) - 0.5 * Norm(U_D_O * n) * (ad_bnd * ud_bnd) ) * ds(skeleton
=True, definedon=mesh.Boundaries("inlet"))

f_INS += - dt * v_d * ( 0.5 * U_D_O * n * (ad_wall_bnd * ud_wall_bnd) - 0.5 * Norm(U_D_O * n) * (ad_wall_bnd *
ud_wall_bnd) ) * ds(skeleton=True, definedon=mesh.Boundaries("wall"))

f_INS += - dt * v_d * neumann_bnd * ds(skeleton=True, definedon=mesh.Boundaries("outlet"))

# Viscous Stress

f_INS += dt * (2.0 * mu_d) * beta * ad_bnd * ud_bnd * v_d * ds(skeleton=True, definedon=mesh.Boundaries("inlet"))

f_INS += dt * (2.0 * mu_d) * beta * ad_wall_bnd * ud_wall_bnd * v_d * ds(skeleton=True, definedon=mesh.Boundaries ("
wall"))

f_INS += - dt * (2.0 * mu_d) * InnerProduct(OuterProduct(ad_bnd * ud_bnd, n), Stress_vd) * ds(skeleton=True, definedon=
mesh.Boundaries ("inlet"))

f_INS += - dt * (2.0 * mu_d) * InnerProduct(OuterProduct(ad_wall_bnd * ud_wall_bnd, n), Stress_vd) * ds(skeleton=True,

definedon=mesh.Boundaries ("wall"))

# Gravity

a_INS += -dt * A_D_01ld * grav * v_d * dx

# Gravity

a_INS += -dt * (1.0 - A_D_01d) * grav * v_m * dx

HUEHHHRRARHHRBRBRHHRRRBRRRARRBBRRH R BB RHHHRRRBR BB RRRHH BB R BB B BB R R R BB RS A S
# Linear Form Continuous Phase Momentum Equation
HUEHHH BB BBRBRHHARRBBRRARRBBRRHHRBBBEH B BRBRHH BB HH BB RBBHRA BB BB R R R R BB RAH S
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# Change in Momentum
f_INS += (1.0 - A_D_01d) * U_M_O*v_m * dx

# Advection

f_INS += - dt * v.m * ( 0.5 * U_M_O * n * ((1.0 - ad_bnd) * um_bnd) - 0.5 * Norm(U_M_O0 * n) * ((1.0 - ad_bnd) * um_bnd)
) * ds(skeleton=True, definedon=mesh.Boundaries("inlet"))
f_INS += - dt * v_m * ( 0.5 * U_M_O * n * ((1.0 - ad_wall_bnd) * um_wall_bnd) - 0.5 * Norm(U_M_O * n) * ((1.0 -
ad_wall_bnd) * um_wall_bnd) ) * ds(skeleton=True, definedon=mesh.Boundaries ("wall"))
f_INS += - dt * v_m * neumann_bnd * ds(skeleton=True, definedon=mesh.Boundaries("outlet"))

# Viscous Stress

f_INS += dt * (2.0 * mu_c) * beta * (1.0 - ad_bnd) * um_bnd * v_m * ds(skeleton=True, definedon=mesh.Boundaries ("
inlet"))
f_INS += dt * (2.0 * mu_c) * beta * (1.0 - ad_wall_bnd) * um_wall_bnd * v_m * ds(skeleton=True, definedon=mesh.

Boundaries ("wall"))

f_INS += - dt * (2.0 * mu_c) * InnerProduct(OuterProduct((1.0 - ad_bnd) * um_bnd, n), Stress_vm) * ds(skeleton=True,
definedon=mesh.Boundaries ("inlet"))
f_INS += - dt * (2.0 * mu_c) * InnerProduct(OuterProduct((1.0 - ad_wall_bnd) * um_wall_bnd, n), Stress_vm) * ds(

skeleton=True, definedon=mesh.Boundaries("wall"))

HAHBHAHARHBRARHRH BB RAHBRBRA BB R AR R B RA BB RAR B R AR AR R R R R ARG B R R R B R B R AR B RSB B R RSB RRRS S
# DG Method for updating Disperse Phase Fraction
HHUBHBHARHBAARHRGBHRAHBHBRA R BB AR R B RSB BB R B R AR AR R BB R B RSB R RSB H B AR B RSB R RSB RRR RS
a_alpha_d = BilinearForm(A)

a_alpha_d += a_d*z * dx

a_alpha_d += -dt * (a_d * U_D_O*grad(z)) * dx

a_alpha_d += dt *(z-z.0ther ())*(U_D_O0*n*0.5x(a_d + a_d.Other()) + 0.5*Norm(U_D_O*n)*(a_d - a_d.Other()))* dx(skeleton=
True)

a_alpha_d += dt * z * ( 0.5%U_D_O*n*a_d + 0.5%Norm(U_D_O#*n)*a_d)* ds(skeleton=True, definedon=mesh.Boundaries("inlet|
wall"))

a_alpha_d += dt * z * a_d * Max(U_D_O*n, 0) * ds(skeleton=True, definedon=mesh.Boundaries("outlet"))

# a_alpha_d += dt * D * InnerProduct(grad(a_d), grad(z)) * dx

# a_alpha_d += - dt * D * InnerProduct (0.5%(grad(z) + grad(z).Other()), OuterProduct(a_d - a_d.Other(), n)) * dx(
skeleton=True)

# a_alpha_d += - dt * D * InnerProduct(0.5*%(grad(a_d) + grad(a_d).Other()), OuterProduct(z- z.0Other(), n)) * dx(skeleton
=True)

# a_alpha_d += - dt * D * InnerProduct(OuterProduct(a_d, n), grad(z)) * ds(skeleton=True, definedon=mesh.Boundaries ("
wall|inlet"))

# a_alpha_d += - dt * D * InnerProduct(OuterProduct(z, n), grad(a_d)) * ds(skeleton=True, definedon=mesh.Boundaries ("
wall|inlet"))

# a_alpha_d += dt * D * beta * InnerProduct(a_d - a_d.Other(), z - z.0ther()) * dx(skeleton=True)

# a_alpha_d += dt * D * beta * a_d * z * ds(skeleton=True, definedon=mesh.Boundaries("wall|inlet"))

f_alpha_d = LinearForm(A)
f_alpha_d += dt*force_ad*z * dx

f_alpha_d += A_D_0ld*z * dx

f_alpha_d += - dt * z * (0.5*xU_D_O*n*ad_bnd - 0.5*Norm(U_D_O*n)*ad_bnd)* ds(skeleton=True, definedon=mesh.Boundaries ("
inlet |wall"))

f_alpha_d += - dt * z * disperse_phase_neumannn_bnd * n * ds(skeleton=True, definedon=mesh.Boundaries("outlet"))

# f_alpha_d += dt * D * beta * ad_bnd * z * ds(skeleton=True, definedon=mesh.Boundaries("inlet"))

# f_alpha_d += dt * D * beta * ad_wall_bnd * z * ds(skeleton=True, definedon=mesh.Boundaries("wall"))

3

# f_alpha_d += - dt * D * InnerProduct(OuterProduct(ad_bnd, n), grad(z)) * ds(skeleton=True, definedon=mesh.Boundaries
("inlet"))

# f_alpha_d += - dt * D * InnerProduct(OuterProduct(ad_wall_bnd, n), grad(z)) * ds(skeleton=True, definedon=mesh.

Boundaries ("wall"))

HAHBHAHARHHRA BB RSB B RA R B R AR R BB R R BB RS BB RS RBHBRABH B R R R BB R BB R R B R B R AR R RSB B R AR R R AR S S

# Implicit Time-stepping

HAHBHAHARHBRARBRH BB BB R BRB AR B R BB AR B RH BB BB RBRBRABH B R BB RH BB R AR B R B AR B R BB BB AR R HAR S S

vtk = VTKOutput (ma=mesh,coefs=[UN.components [0][0], UN.components[0][1], UN.components[1][0], UN.components[1][1], UN.
components [0], UN.components[1], UN.components[2], A_D ],names=["vel_g_x", "vel_g_y", "vel_1_x", "vel_1l_y", "
vel_g_mag", "vel_l_mag" "pressure", "alpha_d"],filename="2FF",subdivision=3)

with TaskManager ():

Draw(U_C_0[0], mesh, "Continuous_Phase_Velocity_X")
Draw(U_C_O[1], mesh, "Continuous_Phase_Velocity_Y")
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Draw(U_D_O0[0], mesh, "Dispersed_Phase_Velocity_X")
Draw(U_D_O[1], mesh, "Dispersed_Phase_Velocity_Y")
Draw (Norm(P_0), mesh, "Pressure")

Draw(A_D_01d, mesh, "Dispersed_Phase_Fraction")

pre_INS = Preconditioner(type="direct", bf=a_INS, flags = {"inverse" : "umfpack" } )
pre_INS_disperse_phase = Preconditioner(type="direct", bf=a_alpha_d, flags = {"inverse"
U0ld.vec.data = UN.vec # U°N = U°N+1

A_D_0Old.vec.data = A_D.vec # a_d"N = a_d N+1

= 0.0 # Initial time
O # Iteration step counter

vtk.Do ()
while t <= final_time:

step += 1
t += float(dt)
param_t.Set (t)

print ( ’Time step: °’, step , ’ time: ’,t )

"umfpack" } )

UN.components [0].Set (um_bnd, definedon=mesh.Boundaries("inlet")) # Mixture Velocity Inlet Condition: May depend

on time

UN.components [1].Set (ud_bnd, definedon=mesh.Boundaries("inlet")) # Dispersed Velocity Inlet Condition: May

depend on time

#Solve for u_m, u_d, and p
a_INS.Assemble() # Build mass matrix
f_INS.Assemble() # Build vector
pre_INS.Update() # Update preconditioner

BVP (bf=a_INS,1f=f_INS,gf=UN,pre=pre_INS,maxsteps=5,prec=1e-30).Do() # Solve linear system

U0ld.vec.data = UN.vec # Update Velocity solution

#Solve for disperse phase fraction

a_alpha_d.Assemble () # Build mass matrix
f_alpha_d.Assemble () # Build vector
pre_INS_disperse_phase.Update() # Update preconditioner

BVP (bf=a_alpha_d,1f=f_alpha_d,gf=A_D,pre=pre_INS_disperse_phase ,maxsteps=5,prec=1e-30).Do() # Solve linear

system

A_D_0Old.vec.data = A_D.vec # Update vector solution

if step % 10 == 0:
vtk.Do () # Output Solution as .vtk file
Redraw () # Revisualize Solution
Redraw ()
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Appendix B

Supporting Information

B.1 Local Lax—Friedrichs Flux

We will use the LLF flux for the convective term of the two-fluid model, which is defined
in equation (2.13). First, we will need to find the eigenvalues of the system of PDEs, just
examining a simplified version of the continuous phase, we have

d (o)

T—FV'(@CVC):O ian], (B]-)
a(g;%) +V-(av.®v,) =01in Q x I, (B.2)

and v. = (vg,v,) is the continuous phase velocity. In this case, we are interested in the
problem

QU+ V -FU)=0 in Qx 1,

B.3
U(x,0) = Up(x) in £, (B3)
where
Qe Q Uy AUy
U= awv, |, FU)=| auv, vy, |. (B.4)
Qvy QLU QUyUy

We will need to compute the eigenvalues of the Jacobian of the flux in an arbitrary direction
n = (ny,n,). First, note that

QU Ny + AUy Ny
F(U) -n=| auv,n, + acvyugn, | . (B.5)
QU Uy Ny QLeUy Uy Ty
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Its Jacobian is given by

0 Ny Ny
OF -n/0U = | —vin, —v,oyn, 2v.n, +vyn, VN, ,
_n2 _
Uy Ty — Vg Uy My Uy 20yNy + VN,

which if we let ¢ = vyn, + vyn, then

OF -n/oU =

0 Ng Ny
—VUxq Qq+ Vg VgNy .
—Uy(q (e q + vyny

The eigenvalues of this Jacobian are A = ¢. Thus, our LLF flux becomes

H ((acvc)+, (aeve)™, n+) =

1
2

—((aeve @ Vo) + (aeve @ v,)7)

— Sl mml((aeve) — (ave) )

Similarly, the LLF flux for the dispersed phase is

H ((advd)+, (gva)™, n+)

1
2

~((aavg @ va) " + (agva @ v4)7)

_§|

B.2 Proof of Symmetric Gradient Identity

Lemma B.2.1. ¢(u) : V(v) = ¢(u) : €(v).

(va-n)n|((agva)™ — (aqva)”).

(B.8)

Proof. Using the fact that the symmetric gradient is e(u) = 1(V(u) + V(u)”), then

1

=5 (V(u) +V(u)") : V(v)

2
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