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Abstract

Despite many studies in human gait analysis, human gait predictive simulation is still
challenging researchers to increase the accuracy and computational efficiency for evaluative
studies, including the design of wearable robotic systems, athletic training, rehabilitation,
orthosis design, and orthosis tuning. Moreover, the majority of recent predictive gait
simulations focused on adult and older people. In contrast, clinical centers working on
child rehabilitation and treatments of child gait disorders prefer to rely more on findings
from pediatric gait predictive simulations than from adult gait predictive simulations.

This thesis developed a 2-dimensional (2D) 11-degree-of-freedom (11-DOF) child model
actuated by muscle torque generators and in contact with the ground through a 3-dimensional
(3D) ellipsoidal volumetric foot-ground contact model. We took advantage of muscle torque
generators to propose simplified but accurate and computationally-efficient musculoskele-
tal and neuromusculoskeletal models for children. These models predict physiologically-
realistic torques, motions, ground reaction forces, muscle excitations, and metabolic energy
consumption for natural, slow and fast gaits using direct collocation optimal control.

First, we highlighted the features of current skeletal, musculoskeletal, and neuromus-
culoskeletal human gait models. We found that symbolic programming, a fast optimal
control method, an accurate volumetric foot-ground contact model, and a two-segment
foot model are required to develop a computationally-efficient and accurate predictive sim-
ulation of gait. Then, to investigate the importance of these requirements, we studied a
more straightforward task (vertical jump) than gait. We showed that a toe-included hu-
man model with 3D ellipsoidal volumetric foot-ground contact model would simulate this
lower-extremity task more accurately than a toeless human model with a kinematically-
constrained foot-ground contact model. According to the findings from the vertical jump
model, we decided to develop a 2D human model for our child gait, including metatarsal
joints with a 3D ellipsoidal volumetric contact model, and we identified the contact pa-
rameters using three approaches: (1) GlobalSearch trajectory optimization, (2) Direct
collocation optimal control, and (3) Direct collocation optimal control along with mass-
&-joint-property identification. We showed that the third approach is more accurate than
the other two approaches and concluded that the contact parameters should be identified
along with the mass and joint properties to have a more realistic gait simulation. For all
child gait simulations in the remainder of the thesis, we decided to use direct collocation
optimal control in which the contact parameters and mass and joint properties are set to
the identified values.

To develop the muscle model, we adapted a recently-developed muscle-torque-generator
(MTG) model to our child model, and identified the MTG parameters using experimental
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child gait data. We used the identified muscle torque generators to generate simplified but
accurate musculoskeletal and neuromusculoskeletal models that best fit child gait. The con-
trol inputs of the musculoskeletal and neuromusculoskeletal models are MTG activations
and muscle excitations, respectively. Our proposed neuromusculoskeletal model enabled
us to predict muscle excitations comparable with EMG data, and estimate the metabolic
energy rate, metatarsal angles, and metatarsal torques consistent with the literature. We
also developed 16 optimizations (8 optimizations for each musculoskeletal and neuromus-
culoskeletal model), ranging from fully-data-tracking to fully-predictive optimizations, to
simulate a child natural-speed (1.26 m/s) gait and compare the models in terms of pre-
diction accuracy and computational time. We illustrated that the neuromusculoskeletal
model was more computationally-efficient than the musculoskeletal model, since the con-
trol inputs of the neuromusculoskeletal model are muscle excitations with a reasonable
initial guess (i.e., EMG data were used as the initial guess for the muscle excitations). We
also showed that the fully-predictive neuromusculoskeletal model could predict more accu-
rate results with less computational time than the fully-predictive musculoskeletal model.
Furthermore, the muscle excitations predicted by the fully-predictive neuromusculoskeletal
model were more accurate than those predicted by the data-tracking gait models.

Finally, we used our proposed musculoskeletal and neuromusculoskeletal models to
generate semi-predictive simulations of four different-speed gaits for children: very slow
walking at 0.9 m/s, slow walking at 1.09 m/s, fast walking at 1.29 m/s, and very fast walk-
ing at 1.58 m/s. In the different-speed gait simulations, we did not track the experimental
data of the slow or fast gaits since we wanted to evaluate whether our proposed muscu-
loskeletal and neuromusculoskeletal models are able to minimze the reliance of simulations
on experiments and predict dynamically-consistent and physically-realistic slow and fast
gaits, without tracking the experimental data of the corresponding slow and fast gaits.
We showed that the neuromusculoskeletal model was more computationally-efficient and
accurate than the musculoskeletal model in simulating slow and fast gaits. We also plotted
the cost of transport (COT) values with respect to the gait speeds; The plot follows the
expected ‘U’-shaped curve, where the minimum (the most efficient COT) occurs at the
natural speed (preferred speed), in agreement with experimental observations.
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Chapter 1

Introduction

Human gait analysis is very complex because of highly nonlinear human motion equations,
muscle dynamics, and foot-ground contact. This analysis gets more complicated if the
researchers want to predict human gait for evaluative studies, including the design of wear-
able robotic systems, athletic training, rehabilitation, orthosis design, and orthosis tuning.
Human gait predictive simulation is still challenging researchers to increase the predic-
tion accuracy and computational efficiency for evaluative studies. The majority of recent
predictive gait simulations focused on adult and elderly subjects, but pediatric clinician-
scientists prefer to rely more on the findings from pediatric gait predictive simulations than
from adult gait predictive simulations.

The main goal of this thesis is to develop an accurate and computationally-efficient pre-
dictive dynamic simulation for child gait. In the following chapter, we clarified the primary
motivations for this thesis and indicated our significant adaptations and contributions to
child gait predictive simulation. Finally, we gave a brief outline of our research towards
the contributions.

1.1 Motivations

1. Regarding the recent literature, there are few research studies on fully-predictive gait
simulations [45, 90, 109, 121], and there is a need to decrease the computational time
of the fully-predictive simulations and simultaneously increase the accuracy of the
predicted results. Recent fully-predictive studies are limited by numerical program-
ming, which requires a finite difference method to evaluate the gradients and Hessians
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in the optimization problem. Finite differencing is an error-prone methodology and
may result in unreliable results for higher-order derivatives.

2. In recent predictive gait simulations, a finite number of contact points, moving rela-
tive to the foot, have been used to model the foot-ground contact. These foot-ground
contact models can be assumed as multiple-point contact models, in which the nor-
mal contact force is evaluated by the depth of penetration using the Hunt-Crossley
method [67]. Since the Hunt-Crossley method is restricted to contact points (not
contact surfaces), an unnatural foot shape is obtained. In a recent study, Brown and
McPhee [21] have developed an ellipsoidal foot-ground contact model that may have
better accuracy and higher calculation speed than its comparable foot-ground contact
models. However, there are some gaps in Brown and McPhee’s approach; not only
did they not include both feet in the contact parameter identification process, but
they did not also consider the dynamics of the lower extremities. Furthermore, when
they included friction in their model, the contact parameter identification yielded
inaccurate parameters and results.

3. To the best of the author’s knowledge, the metatarsal joints have not been included or
their angles and torques have not been reported in the recent predictive simulations
even though metatarsal joints have an important role in gait analyses [40].

4. The majority of recent predictive gait simulations focused on adult and older people
[45, 90, 109]. In contrast, the clinical centers working on child rehabilitation and
treatments of child gait disorders prefer to rely more on pediatric gait simulations
than adult gait simulations [149]. Children not only are different from adults in body
size, but they also have younger muscles, less stiffness and damping in their joints
that play an important role in gait simulations.

5. The majority of the recent predictive gait simulations used an anatomically-detailed
muscle model (i.e., Hill-type muscle model) to simulate the muscles. However, it
is challenging to fit an anatomically-detailed muscle model to specific subjects due
to computational and modeling challenges [51]. Muscle torque generators (MTGs)
allow researchers to develop simplified but accurate muscle models that fit specific
subjects more easily than the anatomically-detailed muscle models [114]. Despite
this fact, there are a limited number of child gait predictive simulations developed
using MTG models [166]. Furthermore, to the best of the author’s knowledge, the
current MTG models have not been used to predict muscle excitations comparable
with EMG data.
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6. The majority of the recent predictive gait simulations used an anatomically-detailed
neuromuscular model to calculate metabolic energy consumption [45, 90]. However,
an MTG-based neuromuscular model, which is simpler than an anatomically-detailed
neuromuscular model, would estimate metabolic energy consumption more easily. To
the best of the author’s knowledge, the MTG models have not been employed to
estimate metabolic energy consumption.

According to the above-mentioned motivations, to develop a computationally-efficient
and accurate predictive gait simulation, a fast optimal control method, symbolic program-
ming, an accurate volumetric foot-ground contact model, and a two-segment foot model
may be required. In addition, since there are very few predictive simulations studying
pediatric gait [46, 166], developing a child gait high-fidelity predictive simulation is of vital
importance to model physiologically-realistic natural, slow and fast gaits.

1.2 Adaptations and Contributions

The above-mentioned motivations inspired us to develop substantial contributions and
adaptations to the recent human gait predictive simulations and make some significant
adaptations specifically to the recent child gait predictive simulations. To distinguish
between the contributions and the adaptations, we itemized adaptations by “A” and con-
tributions by “C” in this section.

(A) Some recent predictive gait simulations were developed using direct collocation opti-
mal control [45, 90, 109]. The direct collocation method is computationally-efficient
compared to the equivalent methods (e.g. direct shooting [130] and trajectory op-
timization [43]) since this optimal control method considers the dynamic equations
as algebraic constraints and solves them implicitly without explicit integrations [42].
In this thesis, we used GPOPS-II, a direct collocation optimal control toolbox in
MATLAB [128] to develop the foot-ground contact parameter identification, MTG
parameter identification, data-tracking gait simulations, and also predictive gait sim-
ulations.

(A) Motivation #1 inspired us to use symbolic programming (to generate optimized sim-
ulation code and exact derivatives) for our gait simulations with the aim of increasing
computational efficiency and prediction accuracy. Studies such as [14, 57, 72, 73, 105]
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have shown that the use of symbolic equations can enhance the computational effi-
ciency and accuracy of optimal control methods. Thus, we used MapleSim to extract
symbolic motion dynamics equations.

(A) Motivation #2 encouraged us to fill in the gaps of Brown and McPhee’s contact model
(i.e., the 3D ellipsoidal volumetric foot-ground contact model [21]). We developed a
computationally-efficient symbolic ellipsoidal volumetric foot-ground contact model
that better captures the foot geometry and simulates more accurate normal and
tangential reaction forces than [21].

(C) Motivation #3 caused us to include metatarsal joints (in addition to hip, knee, and
ankle joints) for the feet of our human model. We believe that the prediction accuracy
of predictive gait simulations may be improved by including metatarsal joints. In this
thesis, we predicted and showed physiologically-meaningful angles and torques for the
metatarsal joints that are in agreement with the literature.

(C) Motivation #4 inspired us to develop accurate, computationally-efficient, and simpli-
fied musculoskeletal (MSK) and neuromusculoskeletal (NMSK) models for children
that predict physiologically-realistic torques, motions, ground reaction forces, muscle
excitations, and metabolic energy consumption for natural, slow and fast gaits.

(A) Motivations #5 and #6 prompted us to use MTGs and generate simplified but accu-
rate MSK and NMSK models that best fit child gait. We adapted the MTG model,
recently proposed by [114], to our child gait model.

(C) We used our proposed MTG-based MSK and NMSK models to develop a wide range
of child natural-gait simulations ranging from fully-data-tracking to fully-predictive
simulations. We evaluated the effect of different cost terms on the realism of the
predicted results and compared the MSK-model and NMSK-model optimizations in
terms of computational efficiency and prediction accuracy. Our proposed MTG-based
NMSK model enabled us to predict muscle excitations comparable with EMG data
and estimate the metabolic energy rate consistent with the rates reported in the
literature.

(C) We evaluated whether the proposed MSK-model and NMSK-model optimizations
could minimize the reliance of simulations on experiments and predict dynamically-
consistent and physically-realistic slow and fast gaits of children, without tracking
the experimental data of the corresponding slow and fast gaits. The NMSK-model
optimization also enabled us to estimate muscle excitations and cost of transport
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(COT: metabolic energy consumed per unit body mass per unit distance traveled)
for the slow and fast gaits of children. We plotted the estimated COT values with
respect to the gait speeds; the plot follows the expected ‘U’-shaped curve, where the
minimum (the most efficient COT) occurs at the natural speed (preferred speed) [82].

1.3 Thesis Outline

To assist researchers in gait simulation, Chapter 2 classifies recent gait simulation methods
according to three categories: (1) “human model” where we categorized human dynamic
models into skeletal, musculoskeletal, and neuromusculoskeletal models; (2) “problem for-
mulation” where we showed that the dynamic equations were either integrated or differen-
tiated or implicitly solved to formulate a gait problem; (3) “simulation solvers” where we
discussed and compared fully-data-tracking, semi-tracking/predictive, and fully-predictive
methods. Furthermore, we presented the commonly-used biomechanics approaches to solve
the muscle redundancy problem.

Although this thesis aims to develop a predictive gait simulation, first, a simpler task
(vertical jump) is studied in Chapter 3 to investigate: (1) What type of foot-ground con-
tact model can properly model ground reaction forces. (2) Whether the toe segments
(metatarsal joints) play an important role in lower-extremity tasks.

In Chapter 4, we developed A 2D torque-driven 11-DOF human model considering the
findings of the previous two chapters. The multibody dynamic equations and the con-
tact equations were developed symbolically, and the experimental data, used to identify
the contact parameters and validate the simulated results, were presented. Two different
approaches (i.e., GlobalSearch trajectory optimization and direct collocation optimal con-
trol) were taken to identify the contact parameters. Then, as a third approach, the optimal
control approach was modified by adding mass-&-joint-property identification and some
constraints to estimate more realistic values for the contact parameters. Finally, the three
approaches were compared in terms of simulation accuracy and computational efficiency.

Chapter 5 introduced the MTG model used for our child model. The MTG parameters
were fitted to the child model considering the experimental child gait motion data. We then
developed an MSK model in which the fitted MTG model replaced the musculoskeletal
geometry and muscle contraction dynamics. The MSK model was used to investigate
whether the fitted MTGs can generate realistic motion, torques, and GRFs. Next, an
NMSK model was developed by adding the muscle activation dynamics to the developed
MSK model and identifying the remaining muscle parameters for the child model. Our
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proposed NMSK model also enabled us to predict muscle excitations and estimate COT
with a good approximation.

We used the MTG-based MSK and NMSK child models, proposed in Chapter 5, to
predict a child natural-speed (1.26 m/s) gait in Chapter 6. We developed two separate
direct collocation optimal controls: MSK-model optimization and NMSK-model optimiza-
tion. For each model’s optimization, we investigated eight multi-objective cost functions
composed of a wide range of cost terms, including dynamic-based, stability-based, human-
criteria-based, and data-based cost terms. We evaluated the effect of these cost terms
on the realism of the predicted results, and compared the MSK-model and NMSK-model
optimizations in terms of computational efficiency and prediction accuracy.

Chapter 7 evaluated whether the MSK-model and NMSK-model optimizations, devel-
oped in Chapter 6, could minimize the reliance of simulations on experiments and predict
dynamically-consistent and physically-realistic slow and fast gaits, without tracking the
experimental data of the corresponding slow and fast gaits. We used the MSK-model and
NMSK-model optimizations to predict four different-speed gaits, including very slow walk-
ing at 0.9 m/s (XS), slow walking at 1.09 m/s (S), fast walking at 1.29 m/s (M), and very
fast walking at 1.58 m/s (L). In the slow-gait and fast-gait optimizations, the experimental
data of the slow and fast gaits were not tracked at all, and instead, the experimental data
of the natural-speed gait (i.e., natural walking at 1.26 m/s) were scaled with respect to
the cycle times of the slow and fast gaits, and then the scaled data were used in the initial
guess, the data-based cost term and the stability-based cost term of the cost function.

Chapter 8 summarized the main achievements of this research and recommended some
possible open areas and directions to advance this research.
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Chapter 2

Literature Review

Human motion and joint moment/muscle force prediction/estimation are two of the most
challenging research topics in biomechanics. Human motion prediction can be very helpful
in different areas such as surgical intervention planning, prosthesis and orthosis design, and
athletic training. We will motivate this literature review through the following examples.

Example 1: in total hip replacement surgeries, the prevalence of dislocations following
surgery has motivated researchers to implement pre-surgical planning for positioning of the
acetabular cup in a safe zone to decrease the likelihood of dislocation [1, 102, 164]. This
can be done using available safe zone studies [1, 37, 38], which have been found lacking or
implementing computer models and predictive dynamic simulations [2, 102, 147] to predict
the hip joint reaction force, and then find the optimal position for the acetabular cup by
minimizing this force.

Example 2: an effective design for a prosthesis or orthosis is a human-centered design,
which considers human movement [48, 65, 92, 141, 190]. Without human motion prediction,
the human-centered device design can only be verified by performing experimental trials
on manufactured prototypes. However, the final iterative design will be expensive and
inefficient. Therefore, there is a great need for human movement prediction in prosthesis
and orthosis design.

Example 3: clinical biomechanists are interested in joint moment and reaction force
analyses [54]. Joint reaction forces, which directly affect joint functions, should be min-
imized for the elderly and injured walkers to reduce pain in their joints [77, 120, 188].
These forces should also be minimized for athletes to improve their performance in doing
a specific task optimally [26, 85].
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The main goal of this chapter is to shed light on the features of the recent analysis
methods of human gait and to compare these methods in terms of control methodologies.
To find relevant publications for this chapter, a specific search algorithm has been used.
The search algorithm was limited to the recent decade and included the keywords “human
motion/gait prediction, predictive simulation method, forward/inverse dynamics of human
movement” and excluded certain areas (i.e., balance control and machine learning). 70%
of the references in this article were found using this search algorithm. The remaining 30%
were published prior to 2010 and are included in this article since they represent seminal
contributions to human motion analysis.

In this review, a few of the cited papers do not target human gait specifically; however,
their methodologies can be extended to human gait studies. Furthermore, balance control
in human motion is not reviewed in this review, the main focus of which is on optimization-
based predictive simulation methods. In these methods, stability is usually provided by
stabilization constraints and not by balance control techniques. For more information
about human balance and posture control during gait, the readers are directed to two
review articles: [111, 185]. Moreover, machine learning techniques are not covered in this
review since they are mainly used for tracking purposes and not for predictive simulation
studies, which are the focus of this thesis. Available machine learning techniques in human
gait have been reviewed in [131].

This chapter is organized as follows.1 In Section 2.1, first, essential terms in human
task analyses are defined, followed by an explanation of problem formulation (which use
explicit or implicit dynamic formulations), human model types, and simulation solvers (i.e.,
data-tracking, semi-tracking/predictive, and fully-predictive methods).

Based on the workflow of the biomechanics analysis, human model types are divided into
skeletal (SK), musculoskeletal (MSK) and neuromusculoskeletal (NMSK) models. Different
problem formulation and simulation solvers developed for SK and MSK/NMSK models
are discussed in Sections 2.2 and 2.3, respectively. Furthermore, in the latter section, the
muscle redundancy problem and the routines to solve it are presented.

Next, in Section 2.4, recent methods for analyzing human gait models are summa-
rized and various limitations are discussed. Furthermore, future prospects of improving
predictive simulation methods are presented.

1The majority of this chapter has been extracted from [42].
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2.1 Basic Concepts

In this section, the main technical terms in human task analyses are briefly discussed in or-
der to categorize reviewed studies. First, some author-defined terminologies are discussed.
Next, based on our human task analysis classification, a comprehensive workflow, illustrat-
ing all parts of the human task analysis is presented. Finally, the human model types and
simulation solvers are introduced.

2.1.1 Terminologies

Approach vs. Method

Approach refers specifically to problem formulation, while method indicates a general
framework used to solve the human motion analysis problem.

Routine vs. Formulation

Routine is used for any optimization methodology, while formulation indicates any calcu-
lation procedure.

Estimation vs. Prediction

Estimation refers to the condition that the experimental data is available and corresponding
simulation data is estimated using a method with data-tracking error evaluation. On the
other hand, the prediction is used to find simulation data independent of the data-tracking
error.

2.1.2 Problem Formulation

A human body can perform a task by receiving neural commands from the central nervous
system (CNS). In biomechanics analyses, a dynamic formulation is developed from the
workflow shown in Figure 2.1. This workflow shows the path from the neural commands
to a specific posture and vice versa. The dynamic formulation can be represented either
explicitly or implicitly. In the explicit dynamic formulation, the system dynamics are
directly integrated or differentiated while in the implicit dynamic formulation, the system
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Figure 2.1: Dynamic formulation workflow

dynamics are considered as constraint equations that are implicitly satisfied inside an
optimization-based simulation.

An explicit dynamic formulation can be categorized according to forward, inverse and
mixed approaches. However, since there is no need to use integration/differentiation meth-
ods to solve dynamics equations in implicit approaches, they cannot be categorized like the
explicit approaches. We refer to the implicit dynamic formulation as the implicit approach,
which is discussed in Section 2.3.6 in more detail.

In explicit dynamic formulation, the solid arrows show the path of the forward (e.g.,
forward dynamics) approaches and the dashed arrows specify the path of the inverse (e.g.,
inverse dynamics) approaches.

In forward approaches, neural commands are received to produce muscle excitations,
which are the inputs to muscle activation dynamics. Muscle activation dynamics can be
modeled by first-order differential equations [139]. Muscle contraction dynamics are often
modeled using a Hill-type muscle model to convert muscle activations to muscle forces
[140]. Musculoskeletal geometry includes muscle attachment sites, muscle lines of actions,
wrapping points and surfaces, and moment arms [6]. This geometry and muscle contraction
dynamics are used to calculate joint moments (i.e., the input of skeletal motion dynam-
ics). Note that in this thesis, joint moment and joint torque are used interchangeably.
Skeletal motion dynamics are ordinary differential equations, which are solved by numer-
ical integration to determine the motion/posture. Inverse approaches are the reverse of
the forward approaches. In other words, posture/motion is used to determine the neural
commands. It should be noted that to estimate physiologically-meaningful values for the
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neural commands, muscle activation dynamics, and muscle contraction dynamics must be
included in the analysis; an example of this is presented in the fully inverse approach of
[148].

In addition to forward and inverse approaches, there are other approaches that are called
mixed approaches in this review. In explicit dynamic formulations, a mixed approach may
exploit the best features of forward and inverse dynamics approaches.

2.1.3 Human Models

Based on Figure 2.1, biomechanics models can fall into three categories: SK, MSK, and
NMSK models. NMSK models are the most complex models since they include all the
blocks shown in Figure 2.1. In MSK models, muscle activation dynamics is excluded and in
SK models, muscle activation dynamics, muscle contraction dynamics and musculoskeletal
geometry are excluded. These definitions of human models are introduced to avoid any
misconceptions while referring to them throughout this thesis.

2.1.4 Simulation Solvers

Once a dynamic formulation for a human model is selected, a solver is required to simulate
the model for a specific task. Simulation solvers use predictive simulation methods includ-
ing non-optimization- or optimization-based methods. Non-optimization-based methods
benefit from straight-line programming and/or non-optimal controllers to solve the simu-
lation problem of a specific task. With experimental motion data and using data-tracking
errors, these methods can compute the joint torques or muscle forces. Since experimental
data is needed, these methods can be considered as data-tracking or semi-data-tracking
methods.

In these methods, a data-tracking error is used. The main feature of these methods is
their intrinsic realism because of tracking motion data [174]. However, a comprehensive
database of human motions is needed to get meaningful results. Furthermore, we cannot
study the effects of changes in the task conditions, since the previously-prescribed data
does not contain the new changes (e.g., we cannot determine the outcome of a new surgical
procedure for which no measurement data is available).

Optimization-based methods use optimization routines and/or optimal controllers for
task analysis. Optimization-based methods predict the optimal motion of human tasks
[79] and fall into two different categories: semi-predictive and fully-predictive methods
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[127]. In contrast to semi-predictive methods, fully-predictive methods are knowledge-
based methods that do not track measured data at all.

Fully-predictive methods do not require a motion database so they can be used to study
how the changes in task conditions affect the results. For example, Chung et al. [27] have
used only a knowledge-based cost function to predict joint motions and joint torques for
both normal human running and slow jogging along curved paths without data-tracking.
The multi-objective function of this optimization includes dynamic effort, impulse and
upper-body yawing moment. The upper-body yawing moment should be minimized to
avoid slipping on the ground [76]. The effects of foot location and orientation on the
predicted results of running have been studied as well.

For fully-predictive methods, it is necessary and also challenging to define physiologically-
meaningful objective functions [5] to satisfy human criteria. A physiologically meaningful
cost function is an objective function that includes all the essential human criteria re-
quired for converging to a physiologically meaningful solution [148]. The essential human
criteria are different for various human subjects and tasks. For example, the criterion for
healthy walkers and walkers with orthoses or prostheses may be to walk with the minimum
metabolic energy (i.e., the consumed energy per unit walking distance) [93, 167]. On the
other hand, for disabled walkers, a healthy gait pattern might be an additional criterion.

There is a belief that the prediction of human motion would be more realistic if a semi-
predictive method is exploited [127]. Pasciuto et al. [127] have developed a constrained
nonlinear optimization problem, in which the objective function is a weighted combination
of data-based and knowledge-based contributions. To validate their proposed method,
they have predicted human motion and joint torques during clutch pedal depression using
semi-predictive and fully-predictive methods separately and then compared the results.
The comparison confirmed that the semi-predictive method predicts more realistic human
motion and joint torques.

2.1.5 Human Task Analysis Classification

Using the technical terms described in this section, a general human task analysis classifica-
tion is introduced in Figure 2.2. In this classification, all recent methods of human motion
analysis can be categorized according to problem formulation and simulation solver.
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Figure 2.2: The flowchart of human task analysis classification

Figure 2.3: The workflow of forward and inverse approaches for SK models

2.2 Skeletal Models

In this section, problem formulations for SK models are presented for different explicit
dynamic formulations (Inverse Approaches, Forward Approaches, and Mixed Approaches
sections). Figure 2.3 shows the workflow of forward and inverse approaches. Different
simulation solvers corresponding to each formulation are discussed within each section.
The implicit approach will be discussed in the latter section.
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2.2.1 Inverse Approaches

There are different methods to determine human joint moments. An invasive method is
an instrumented prosthesis, which is not always practical. Another method is the inverse
dynamics method, in which given captured motion data and measured external force and
moment data, the inverse SK motion dynamics is solved for the joint torques [49, 137]. This
method is a non-optimization-based method, in which motion data and ground-foot contact
force data are required to be measured using a motion capture system and a force plate,
respectively. Uncertainty in body segment parameters and errors in the experimental mea-
surements and data-processing may result in unrealistic joint torques and inconsistencies
between kinematics and ground reaction forces [124, 138, 162].

Although this method is non-invasive and relatively fast, unrealistic joint torques may
be predicted due to numerical differentiation errors and inaccurate model parameters.
Optimization-based methods may be used to improve the results of the inverse approaches.
For example, in [44], inverse dynamics is used within a constrained optimization to reduce
the inconsistency in the results of the inverse dynamics. In this paper, the optimization
algorithm has applied minor changes to the measured kinematics to make the kinematic
mechanically consistent with measured external forces. In other words, Kinematics are
adjusted until simulated forces match experiments.

2.2.2 Forward Approaches

The joint torques obtained from the inverse dynamics can be used as the inputs to the for-
ward SK motion dynamics in order to estimate the motion. Ideally, the motion estimated
from the forward dynamics should perfectly match captured motion data. However, there
may be discrepancies between the estimated motion and the captured motion data depend-
ing on the integration algorithm of the forward motion dynamics, the kinematic constraint
stabilization algorithm and the differential-algebraic equation solver. Thus, to fulfill sta-
bility and robustness in the forward SK motion dynamics for human gait, three different
control methodologies have been recently proposed: under-actuated, fully-actuated and
kinematically-constrained methodologies.

The first methodology is needed when the human gait is under-actuated and the number
of joint actuators is less than the degrees of freedom (DOFs) of the human model that
freely moves in the plane/space. Therefore, there is no direct control over the three/six
DOFs of the base body with respect to the global coordinate system. Hence, researchers
are required to consider a foot-ground contact model to implicitly control those three/six
DOFs [90, 130].
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In the second methodology, all DOFs are considered to be actuated. Then, a set of
non-physical forces and moments, accounting for the inconsistency between calculated and
captured motions, are assumed as a residual wrench. This wrench is composed of linear
and rotational actuators to control the absolute DOFs of the base body (pelvis or trunk
in most cases). This methodology is used to obtain dynamically-consistent equations. The
residual reduction algorithm (RRA) has been proposed [34] to reduce the residual wrench
in order to closely track the captured motion. For example, Millard et al. [112] considered
proportional-derivative (PD) controllers for controlling body joints and a balance controller
for externally manipulating the pitch of the head-arms-trunk (HAT) segment.

In the third methodology, a kinematically-constrained foot-ground contact model is
imposed to provide a stable gait. During the single-support phase of the gait cycle, one
foot is constrained to be fixed to the ground, yielding a fully-actuated open-chain model
[175]. During the double-support phase, both feet are fixed to the ground, yielding an over-
actuated closed-chain model [95]. To provide stability, kinematic stabilization constraints
are applied for each phase separately [12, 75, 148].

2.2.3 Mixed Approaches

Some of the mixed approaches use the forward dynamics model and a controller with/without
an inverse dynamics model to update the joint torques based on the data-tracking error
obtained from the forward dynamics simulations. Since these approaches have a feedback
controller, they are also called feedback-control approaches. The hybrid zero dynamics-
based control method (HZD) uses a feedback-control approach. Martin and Schmiedeler
[100] have used HZD to estimate the gait motion over the full ranges of speeds by tracking
experimental walking data. They have compared two planar models of the lower extrem-
ities (one of which in contrast to the other one does not have ankle joints) to study the
critical role of the ankle joints in the human gait. HZD parameterizes joint angles as func-
tions of a gait variable (i.e., step progression), which is an explicit function of time. HZD
has been developed based on prior work suggesting that humans control their gait motion
using phase variables [61]. Initially, HZD was used for point-foot robots. Later, Martin
and Schmiedeler used HZD by considering rigid circular feet, since the center of pressure
between the foot and ground tends to trace circular arc patterns during walking [100].

Computed torque control method (CTC) also uses a feedback-control approach to esti-
mate the gait motion in SK models. This method was initially used in robotics. In CTC,
the controller contains an inverse dynamics model. Mouzo et al. [118] have developed a
2D human model to analyze human gait using this method. CTC is a control method
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that uses motion tracking error to update predicted joint torques, evaluated by an inverse
dynamics model, and then solves motion dynamics by the forward integration. To find the
best estimation for joint torques, Mouzo et al. [118] have considered different sets of the
forward dynamic outputs (i.e., motions of DOFs and ground reaction forces) as control
inputs for CTC. Foot-ground contact, which was modeled based on [158], is a volumetric
contact model. They have concluded that the weighted trajectories of all the DOFs can
be the best control input to get satisfactory results.

Another method is the proportional-integral-derivative control (PID), which is a classi-
cal feedback control method for controlling the plant model by feeding back the past error.
Proportional-derivative control (PD) is a special case of PID. Pàmies-Vilà et al. [125] have
compared the capabilities of PD and CTC in solving the forward dynamics of SK models.
A kinematic perturbation was used for tuning the PD gains and pole placement techniques
were used to determine control parameters in CTC. First, using experimental motion data,
inverse dynamics was solved to determine joint torques. Then the calculated joint torques
were used as the input of the forward motion dynamics to estimate the motion and ground
reaction forces using PD and CTC separately. They showed that CTC outperforms PD
for a balanced forward dynamics analysis.

To deal with the challenges of the inverse approach, one cannot use the aforementioned
non-optimization-based feedback controllers for prediction. Thus, some studies have re-
cently applied optimization-based methods so that they can predict/estimate joint torques
with motion prediction/estimation.

A practical optimization-based method is the model predictive control (MPC). MPC
uses an internal model to estimate/predict the output, compare it with the reference data,
and finally predict control inputs of the plant model by minimizing a cost function that can
contain a data-tracking error (i.e., semi-predictive). Not only does MPC provide stability
for the model but it also has predictive features. MPC is a fast near-optimal controller
that seems very well-suited to real-time biomechatronic applications [106].

Sun et al. [170, 171] have simulated the human CNS using MPC in conjunction with
PID. To validate their method, human gait has been modeled using the simulated CNS.
The plant model is a 2D 9-DOF SK human model and the controller of the plant model is
a combination of an MPC and PID. The methodology of the simulated CNS is as follows.
First, either single support phase (SSP) or double support phase (DSP) is selected using
the ground contact feedback of both feet. Next, joint torques, which are predicted using
the MPC and PID, enter the plant model as inputs to predict motions. If SSP is selected,
the PID and MPC are used to keep the HAT upward and reach a reference step length,
respectively. If DSP is selected, the PID and MPC are used to keep the HAT upward and
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reach a reference center of mass velocity at the end of DSP, respectively.

2.3 Musculoskeletal/Neuromusculoskeletal Models

MSK/NMSK modeling is used to study how neural commands are converted to mechanical
motion by means of musculotendon units spanning joints [145]. Muscle-driven models are
developed to study the role of muscles in human motions because muscles affect the energy
flow between body segments. Muscle forces can be predicted using muscle-driven models.
Prediction of muscle forces is advantageous since by having muscle forces during healthy
and impaired movements, we can improve treatments for walking disorders as well as
training programs for athlete performance. Recently, muscle-driven models have also been
used to determine muscle synergies and coordination.

To evaluate the muscle forces in an MSK/NMSK model, the muscle force-sharing prob-
lem should be solved. This muscle redundancy problem requires an optimization rou-
tine with a dynamic formulation. Since the muscle redundancy problem is solved using
optimization-based methods, all the dynamic analysis approaches for the MSK/NMSK
models are optimization-based methods (i.e., semi-predictive optimization methods or
fully-predictive methods).

In this section, the muscle redundancy problem and the routines to solve it are pre-
sented. Then, problem formulations for MSK/NMSK models are presented by dividing
them into explicit dynamic formulation (Forward Approaches, Inverse Approaches, and
Mixed Approaches sections) and implicit dynamic formulation (Implicit Approaches sec-
tion). Different simulation solvers corresponding to each formulation are discussed within
each section.

2.3.1 Muscle Redundancy Problem

In the human body, since the number of muscles is more than the number of actuating
joints (i.e., there are many different muscle coordinations to generate a specific human
movement), a muscle redundancy problem should be solved for motion analysis. To solve
the muscle redundancy problem, it seems a logical interpretation to assume that the CNS
adjusts muscle forces in an optimized manner [4, 29]. Zajac et al. [193, 194] have presented
a thorough review of concepts and routines, proposed up to 2003, to address this challenge.
In general, different variations of two optimization routines are used to calculate muscle
forces during human tasks: static optimization and dynamic optimization.
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Static Optimization

Static optimization (SO) is an inverse approach (e.g., experimental motion and externally
applied forces are considered as the inputs to the MSK model). In SO, muscle forces
are optimized and the cost function is calculated using time-marching; in other words,
time frames are solved sequentially. On the other hand, some researchers have used the
concept of static optimization in combination with either a forward approach [161] or
a mixed approach [145, 189]. In these approaches, the inputs are neural controls (i.e.,
muscle activations or excitations), which are taken as optimization variables to estimate
muscle forces through static optimization. In the meantime, the outputs (i.e., torques
or kinematics of the model) are calculated through the mixed or forward approaches and
compared with the experimental data to adjust the cost function for the static optimization.

In static optimization routine, different expressions can be used as the cost functions
which can be found in [28, 177]. Static optimization solves a different optimization at each
time instance and then considers coupling between time instances to simulate dynamic
equations. The instantaneous cost function results in low computation time and makes
SO suitable for real-time simulations. Although SO is appropriate for semi-predictive
optimization-based methods, it is not suitable for minimizing a cost function during a
whole task (e.g., metabolic energy) because it may lead to sharp fluctuations in control
inputs. In addition, since SO does not account for contraction and activation dynamics, it
may cause unphysiological results.

Dynamic Optimization

Dynamic optimization (DO) solves a two-point boundary-value problem in the optimal
control of the MSK/NMSK models [31]. To solve this problem, there are some studies that
have used parameterized optimization to solve the optimal control problem, and they have
reported satisfactory results [30, 50, 126, 151].

DO is suitable for the motions affected by the dominant muscle activation dynamics
and co-contraction [117]. Since DO, unlike SO, uses the time history of the simulation
along with the muscle contraction and activation dynamics, unphysiological results are not
obtained, and it is possible to define time-integral cost functions. However, it has high
computation time compared to SO.

Other than DO and SO, different variations of them can be utilized to model muscle
dynamics by minimizing a cost function that includes a data-tracking term, and mus-
cle activation and contraction dynamics. These variations are discussed in the following
paragraphs.
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Different Variations of Static Optimization

Modified static optimization (MSO) was proposed to overcome the deficiencies of SO [3,
184]. MSO is similar to SO, with the difference in having modified cost functions and
nonlinear constraints, which are related to the contraction and activation dynamics. Wen
et al. [184] proposed a novel cost function combining the kinematic and EMG data to
estimate the muscle forces that are more coherent with EMG data than the muscle forces
estimated by SO.

Another variation of SO has been proposed by Thelen and Anderson [174] to predict
muscle activations. This optimization routine is a variant of CTC on the muscle level (not
on the joint level), which is why it is called computed muscle control (CMC). CMC is a
feedback-control approach and it is a combination of a PID controller, SO and forward
dynamics models. It improves the results of the SO model, by simulating the forward
dynamics model and feeding back the error to the SO model using the PID controller.
CMC is able to track experimental motion data by feeding predicted muscle forces as the
inputs to the forward dynamics model of studied movements (e.g., walking [91] and running
[64]). Although CMC is more accurate than SO, it has the following drawbacks. First,
since foot-ground contact forces are directly applied in CMC, inconsistencies may appear
between estimated motion and experimental motion data. Second, because of explicit
integration techniques, CMC may have a poor convergence.

For data-tracking using forward simulations, CMC is accurate enough. However, Shouri-
jeh et al. [161] have proposed a type of static optimization that is less complicated and
as accurate as CMC, and it is more appropriate for the implementation of the forward
approaches. They have solved the muscle redundancy problem using forward static opti-
mization (FSO) and compared it with CMC in terms of computation time and prediction
accuracy. The muscle activations have been predicted and motion has been estimated by
tracking the movement of an arm model to validate the proposed optimization routine.
FSO is similar to MSO, where instead of inverse dynamics, the forward dynamics problem
is solved with activations or excitations as inputs. Looking closely, FSO is a special case of
nonlinear MPC (NMPC), which optimizes the current time step while considering a single
future time step. Another variation of FSO has been utilized in [23, 182]; these studies use
different numerical algorithms for the implicit solution of the dynamic equation.

Different Variations of Dynamic Optimization

Typically, in DO, neural excitations are optimization variables that drive the NMSK model
through the forward dynamics [117]; this optimization routine is also called forward dy-
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namic optimization (FDO). FSO is like an FDO in which the objective function is optimized
at each time step while satisfying kinematic constraint equations of the forward dynamics
integration [161]. Anderson and Pandy [8] have utilized FDO to determine the muscle
coordination in human gait. They have reported a CPU time of 10,000 hours to solve the
optimization for half a walking cycle. FDO is considerably time-consuming since many
numerical integrations are required to be computed for motion dynamics equations.

In another study [9], Anderson and Pandy have also claimed that it is not necessary
to model muscle activation and contraction dynamics for walking analysis because they
have little effect on the computed muscle forces. By disregarding muscle activation and
contraction dynamics in the optimization problem, the consistency with muscle physiology
was reduced but the numerical calculation became faster [28]. Although FDO without
muscle dynamics is faster, to better assess individual muscle function, muscle activation
and contraction dynamic models are essential.

Sometimes in DO, muscle forces can also be the optimization variables to produce
desired joint torques obtained from the inverse dynamics problem of an MSK model [107],
so-called inverse dynamic optimization (IDO). Some researchers use the concept of dynamic
optimization, in a forward/inverse approach and consider different inputs as optimization
variables to solve the time-integral cost function [152].

To increase the computation speed, IDO with the inverse dynamics approach is used
instead of FDO. In IDO, muscle dynamics can be considered as differential constraints
[107]; satisfying muscle dynamics as constraints is faster than directly solving the muscle
dynamics. To further increase the computation speed, the muscle constraints can also
be neglected in IDO. However, the prediction accuracy may decrease and unphysiological
results may be obtained.

To increase the prediction accuracy of IDO (when muscle constraints are not included),
IDO can be combined with a forward approach that includes the muscle contraction/activation
dynamics (i.e., paths from 0 to 1/2 in Figure 2.1) [122]. This optimization routine, which
is called inverse-forward dynamic optimization (IFDO), can also be combined with the
forward dynamic model of the MSK model to generate a correction control input to the
optimization problem (i.e., feedback-control approach); this gives the so-called inverse-
forward dynamic optimization control (IFDOC) [122].

Ackermann [3] has used another variation of IDO, so-called extended inverse dynamics
(EID), to solve the muscle redundancy problem by inverse dynamics equations. In EID,
the inputs to the optimizer are the muscle forces along the corresponding tendons (path
from 6 to 2 in Figure 2.1). Once the optimization problem was solved, the activations
and neural excitations are evaluated by inverting contraction (i.e., following the path from
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2 to 1 in Figure 2.1) and activation dynamics (i.e., following the path from 1 to 0 in
Figure 2.1), respectively. EID is analogous to MSO, but in MSO the optimal problem is
solved instantaneously and the results of a time step are only dependent on the results
of the previous time step. The computational load of EID is also less than FDO, and in
contrast to SO, it considers contraction and activation dynamics together with a time-
integral cost function [4]. However, the feasibility of EID is restricted by the size of the
optimization problem.

To overcome some limitations of EID, Quental et al. [132] have proposed window mov-
ing inverse dynamics optimization (WMIDO). In WMIDO, a window is considered to be
moving across a number of instants of time until the muscle redundancy problem is solved.
Using this routine, the researchers are able to fully simulate the muscle dynamics.

Another type of dynamic optimization is the neuromusculoskeletal tracking (NMST)
which has been developed by Seth and Pandy [152] to predict muscle forces by minimizing
the torque-tracking error and muscular effort. NMST has two stages; in stage 1, the inverse
SK model (path from 6 to 3) with sliding-mode tracking is used to predict joint torques. In
stage 2, the forward neuromuscular dynamics (path from 0 to 2) is used to obtain optimal
muscle forces such that the muscular model (path from 2 to 3) gives a torque close to the
predicted torque in stage 1.

In addition to the unknown muscle force prediction, if some model parameters should
be identified in an IDO problem, single inverse dynamic optimization cannot solve the
problem. Rasmussen et al. [136] have proposed an optimization routine called inverse-
inverse dynamic optimization (IIDO) that solves this issue by introducing an outer inverse
dynamic parameter identification [30]. In this routine, both the inputs and outputs of
the inverse dynamics are optimized through an outer optimization loop around the inverse
dynamics in order to identify model parameters by maximizing the metabolic efficiency of
the human task.

Other Routines

There are some other routines for solving muscle redundancy problem. But, since they
cannot be easily classified according to SO or DO, they are discussed in this section.

In another approach, an analytical optimization technique has been used by Challis
and Kerwin [24] to predict muscle forces. However, the evaluated forces are not bounded.
Hence, this optimization routine may result in negative values for muscle forces, which is
unphysiological. Terrier et al. [172] have used the pseudo-inverse to evaluate the inverse
of the muscle moment arm matrix, then the muscle force constraints were imposed with
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the aid of the null space definition in quadratic programming. This optimization routine
required some simplifications such as considering muscles as string elements. There are
also other studies that have used specific tools such as stochastic modeling and muscle
fatigue criterion to deal with muscle force sharing problem [99, 153].

Researchers have also used a neural strategy, so-called muscle synergy, for simplifying
the control of multiple degrees of freedom. Muscle synergy theory (MST) deals with the
muscle force sharing problem with a biologically-plausible aspect [176]. Based on MST,
during a task, muscles are activated in a group called synergies. Thus, instead of hav-
ing multiple muscular actuators, each joint will move by a small number of actuators
(synergies). Although MST is computationally-efficient [139], mostly it has been used
in the inverse dynamics analysis [157, 165, 168, 195]. Yoshikawa et al. [192] have used
equilibrium-point-based synergies to translate human movement to a robot. Sharif Raza-
vian et al. [154] have considered muscle synergies based on the task space in the forward
dynamic simulations.

Recent studies in the human movement analysis have focused on the optimization-based
predictive methods for obtaining novel movements [32, 110, 130]. However, in most of the
aforementioned routines, experimental motion data is explicitly tracked; thus, novel move-
ments cannot be predicted. To solve the muscle redundancy problem for novel movements,
the optimization problem should be stated in terms of an optimal control problem. In the
next section, we will discuss different optimal control methods and the possibility of their
use for solving this problem.

2.3.2 Optimal Control Methods

Optimal control methods are divided into two categories: indirect and direct methods (see
Figure 2.4) [135]. Indirect methods use the calculus of variations to obtain analytical ex-
pressions of optimal control that are adjoint differential equations. Thus, boundary-value
problems should be solved to obtain the optimal solution. However, finding an initial guess
for adjoint variables is challenging since most of the variables are not physically meaning-
ful. Furthermore, adjoint differential equations are highly nonlinear; hence, backward
integration of those differential equations can be numerically unstable.

In direct methods, it is not required to solve boundary-value problems. Instead, the
control and/or state are parameterized and the optimal control problem is solved as a non-
linear programming problem (NLP). Systems with large-scale NLP (e.g., optimal control
of human movement) can be solved using different software packages such as interior point
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Figure 2.4: Different methods in optimal control theory

Figure 2.5: The workflow of the forward approaches for MSK/NMSK models

optimizer (IPOPT) and sparse nonlinear optimizer (SNOPT). Direct methods are divided
into two methodologies: direct shooting [116] and direct collocation [182].

In the direct shooting method, only the control inputs are parameterized and its compu-
tation time is much more than the direct collocation method in which both control inputs
and states are parameterized. The direct shooting method computes numerical integration
of dynamic differential equations during the optimization process, while the direct colloca-
tion method considers the dynamic equations as algebraic constraints, thereby not needing
to compute explicit integration. However, convergence in direct collocation method heavily
relies on a good initial guess, which can be challenging to define.

2.3.3 Forward Approaches

In forward approaches, all dynamic equations are solved by forward integration and the
muscle redundancy problem is addressed using one of the optimization routines with the
forward approach discussed in Section 2.3.1. Figure 2.5 illustrates the order of the different
stages to generate forward approaches for MSK/NMSK models.

Any simulation solver that uses SO [9, 117], FDO [30, 50, 117, 126, 151], or FSO
[23, 156, 182] to solve the muscle redundancy problem in an MSK/NMSK model is an
optimization-based predictive method for a forward approach.
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Since experimental data are not always available, and also data-tracking or semi-data-
tracking optimization-based methods are not good for the prediction of novel motions,
some researchers have focused on the forward approaches without data-tracking [115, 130]
using either the simulated annealing algorithm or direct shooting method.

Using the simulated annealing algorithm, Miller [115] has developed a 3D NMSK model
to fully predict human gait by minimizing metabolic energy expenditure without data-
tracking. To determine metabolic energy expenditure, he has considered five methods that
differ in their treatment of muscle activity, muscle lengthening, and eccentric work. Then,
he has compared the methods in terms of their predictive abilities. In this research, muscle
activation and contraction dynamics have been developed based on the Hill-type muscle
models. All five models have predicted similar speeds, step lengths, and stance phase
duration.

Porsa et al. [130] have compared two direct optimal control methods (i.e., direct shoot-
ing and collocation methods) in terms of computation time. Note that direct colloca-
tion method is an implicit approach and its corresponding methods are discussed in Sec-
tion 2.3.6. These two control methods have been implemented on a planar MSK model to
predict joint motions and muscle activations for the highest vertical jump without tracking
experimental data. The foot-ground contact has been modeled using eight contact spheres
per foot. The results showed that both methods converged to the same solution when their
initial guesses are the same, but direct collocation converged up to 249 times faster than
direct shooting.

2.3.4 Inverse Approaches

In inverse approaches, as shown in Figure 2.6, all dynamic equations are solved inversely to
avoid forward integration problems. For inverse approaches, semi-predictive optimization-
based [32] or fully-predictive [148] methods can be used to solve the simulation problem.
The methods using IDO [107], EID and MSO [3] to solve muscle redundancy problem are
types of optimization-based predictive methods for inverse approaches.

Schiehlen [148] has introduced an optimization-based method to simultaneously pre-
dict muscle forces and body motion. In this method, generalized coordinates have been
considered as parameterized functions (spline polynomials) [3]. Furthermore, since muscle
activations and excitations were required for defining an energy cost function and opti-
mization constraints, those have been obtained by feeding muscle forces in inverse muscle
contraction and activation dynamics. Finally, muscle forces and motion polynomials for an

24



Figure 2.6: The workflow of the inverse approaches for MSK/NMSK models

Figure 2.7: The workflow of the inverse skeletal-forward neuromuscular approaches

unsymmetrical walking have been evaluated by minimizing the energy cost and deviation
from normal walking.

2.3.5 Mixed Approaches

Inverse Skeletal-Forward Neuromuscular Approaches

For human gait analysis, inverse skeletal-forward muscular models, unlike the forward sim-
ulations, do not require two complex and time-consuming elements: the balance controller
[129] and foot-ground contact model [159]. As illustrated in Figure 2.7, in such approaches,
muscle activation dynamics, muscle contraction dynamics, and musculoskeletal geometry
are generated forwardly and only SK motion dynamics is solved inversely. Then, the joint
moments, obtained from the forward and inverse parts, are compared or the predicted
results may be updated by a feedback controller (i.e., feedback-control approach). For
example, NMST uses the feedback-control approach with inverse skeletal and forward neu-
romuscular models. Semi-predictive optimization-based methods for these approaches are
generally used to evaluate joint moments [133] and predict muscle activations [189].

Rajagopal et al. [133] have created an open-source high-fidelity 3D MSK model for
human lower extremity to study human gait. The model includes an SK upper body and
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an MSK lower body. The musculotendon parameters are obtained from both cadavers and
young healthy subjects. First, they have solved forward muscle activation and contraction
dynamics to predict muscle activations and joint moments using CMC through tracking
experimental motion data. To verify their model, they have compared the predicted muscle
activations and joint torques with EMG data and inversely obtained joint torques, respec-
tively. They could generate muscle-driven simulations in less than 10 minutes; hence,
their model is computationally fast. The model and experimental data are available on
https://simtk.org/projects/full_body/.

Yamasaki et al. [189] have proposed a general semi-predictive optimization-based method
for predicting muscle activations with a low computational cost. Their method has been
validated for a single-joint NMSK model. First, a forward neuromuscular model and an
inverse skeletal model have been developed for a general model with N joints and M mus-
culotendon units. Then, the muscle redundancy problem has been solved using static
optimization and compared with experimental joint torques in order to predict muscle
activations. The main difference between the proposed method and similar methods is
the use of static optimization as a feedback controller (i.e., optimization-based method for
feedback-control approach). Furthermore, in addition to the motion data, first to fourth
derivatives of the motion data have been applied as the input to the model and they have
been used in defining constraints for the static optimization.

Since EMG-driven models are used in inverse skeletal-forward neuromuscular simula-
tions, their results are highly dependent on EMG data. The shortcoming of such sim-
ulations is that the EMG data may be adversely affected by cross-talk [47], movement
artifacts [33] and preprocessing such as choice of filter type and cut-off frequencies [186].
Furthermore, activities of the deeply located muscles cannot be recorded by surface EMGs.
Thus, researchers decided to predict muscle excitations in addition to joint moments to
overcome the shortcomings of measured EMG data [146, 160].

Sartori et al. [146] have presented a 3D NMSK model to predict muscle excitations and
joint torques using motion data from five healthy subjects during walking and running.
Their model could also predict the excitations of some deeply-located muscles, which were
missed during EMG data recording by surface EMGs. First, using experimental EMG
data and motion data, they have forwardly solved muscle activation dynamics, muscle
contraction dynamics and musculoskeletal geometry to determine joint torques. Then,
they have compared obtained joint torques with experimental joint torques, determined
by inversely solving motion dynamics given the experimental motion data, to obtain joint
torque errors. Finally, static optimization has been utilized to predict muscle excitations
by tracking experimental joint torques and EMG signals. This is done by minimizing the
sum of squared joint torque and EMG errors.

26

https://simtk.org/projects/full_body/


Shourijeh et al. [160] have developed a forward neuromuscular model and inverse skeletal
model to predict muscle excitations, muscle forces and joint moments by tracking the
joint moments inversely obtained from experimental motion data. They used a genetic
algorithm (GA), sequential quadratic programming (SQP) and nonlinear simplex optimizer
in the aforementioned sequence to achieve convergence for their optimization problem. The
predicted muscle excitations were in a good correlation with the experimental EMG data
for human gait.

In another study, Meyer et al. [110] have predicted joint torques using patient-specific
musculoskeletal geometry. To reduce the errors stemming from scaled geometry, this study
presents a method to automatically adjust the EMG-driven NMSK model based on the
patient’s musculoskeletal geometry including muscle-tendon lengths, velocities and moment
arms. The model parameters are calibrated by comparing the calculated joint moments
with the obtained joint moments from the inverse motion dynamics. The results have
shown that with geometric adjustment, the predicted joint moments are more accurate
than the models without those adjustments. All the data and model of this study are
available on https://simtk.org/projects/emgdrivenmodel.

Unlike most EMG-driven NMSK models, which predict the joint moments using scaled
generic musculoskeletal geometry, subject-specific models can predict joint torques using
subject-specific musculoskeletal geometry. In each subject, the neural excitation patterns
can be obtained by EMG data. Thus, NMSK models can be developed as subject-specific
models. Such models can be used to assist patients with neurological disorders since EMG
signals can identify the error in neurological control [63].

Ma et al. [96] have modified the calculation efficiency and prediction accuracy of the
current EMG-driven models. They have developed a patient-specific EMG-driven NMSK
model including four parts: (1) MSK model that is developed based on patient’s motion and
external load data to evaluate muscle kinematics (i.e., moment arms and musculotendon
lengths). (2) EMG-driven model in which forward dynamics of muscle activation and
contraction are solved using the muscle geometry obtained from (1) and raw EMG data to
predict joint moments. (3) Inverse motion dynamics that has been applied to determine
reference joint moments from patient’s motion data. (4) Parameter optimization in which
parameters of muscle activation and contraction dynamics are optimized through joint
moment error tracking. This method can accurately predict joint moments in real-time
simulations.
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Figure 2.8: The workflow of the forward skeletal-inverse neuromuscular approaches

Forward Skeletal-Inverse Neuromuscular Approaches

Unlike inverse approaches, in the forward skeletal-inverse neuromuscular approach, instead
of motion inputs, muscle forces are parameterized [156] as shown in Figure 2.8. Shourijeh
and McPhee [156] have developed a 2D NMSK model considering a volumetric foot-ground
contact. They have parameterized muscle forces using Fourier series. Human motion and
muscle activations have been predicted using global parameterization within an optimal
control problem. The predicted results were quite in a good agreement with the experi-
mental data. The method of this paper is somehow similar to the method presented in
[148], while in this paper muscle forces are parameterized and motion dynamics are solved
forwardly.

Feedback-control Approaches

Any simulation solver that uses CMC [174] or IFDOC [122] to solve the muscle redundancy
problem in an MSK/NMSK model is a type of optimization-based method for feedback-
control approach.

Ehsani et al. [35] have developed a general MSK model to predict muscle activations
and muscle force patterns for an arbitrary human task. To this end, first, motion dynamics
of the skeletal model have been developed and then musculoskeletal geometry and muscle
contraction dynamics have been added to the skeletal model. Finally, CMC has been
exploited to predict muscle activations to drive the MSK model by tracking experimental
motion data. To validate the proposed model, a biceps curl has been simulated using this
algorithm. The predicted muscle activations were quite close to EMG data captured for a
biceps curl.
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2.3.6 Implicit Approaches

By parameterizing the control inputs and states, direct collocation methods convert the
system dynamics to an algebraic equation. Thus, since these methods do not explicitly
use the forward/inverse dynamics approaches, they are types of implicit approaches. As
it was discussed in the forward approaches, experimental data are not always available;
thus, some biomechanics researchers have focused on the mixed approaches without data-
tracking [83, 87, 90, 109, 130] using direct collocation methods to predict novel movements.

Lee and Umberger [83] have created a framework to predict motion and muscle activa-
tions for MSK models using the direct collocation method. Motion and muscle activations
(which have been considered as states and control inputs of the optimization problem,
respectively) have been predicted simultaneously during the optimization process. Muscle
activation and motion dynamics have been extracted using the biomechanical modeling
software: OpenSim. The authors have used the IPOPT solver in MATLAB to apply di-
rect collocation method for their optimization. Their model and method are available on
http://simtk.org/home/directcolloc.

Lin and Pandy [87] improved the capabilities of CMC by using the combination of CMC
and direct collocation. They have proposed a semi-predictive optimization-based method
to predict muscle excitations of walking and running tasks using both CMC and direct
collocation methods. CMC has been exploited to determine a feasible initial guess for
the state and control variables of direct collocation. Their method consists of three steps;
in the first step, CMC used the measured motion and contact forces to calculate muscle
excitations (control variables) and reproduce the motion (state variables). In the second
step, the calculated state and control variables from the previous step were discretized and
a foot-ground contact model, simulated using six contact spheres under each foot, was used
to generate an initial guess for the next step by minimizing the defect errors to satisfy the
defect constraints. Defect constraints associated with the generalized speeds were generally
larger than those corresponding to the other state variables due to inconsistencies between
kinematics and ground reaction forces. In the last step, a direct collocation method was
used to estimate the motion and predict muscle excitations by minimizing a multi-objective
cost function including a data-tracking term and a physiological term.

Recently, Lin et al. [90] have exploited the direct collocation method to propose a fully-
predictive method for the prediction of motion, muscle excitations, foot-ground contact
forces and also joint contact forces. They have developed an NMSK model to study human
gait at different speeds, including a 3D model of articular contact for the knee joint and a
foot-ground contact model. First, a data-tracking collocation optimization has been solved
to estimate a feasible initial guess. Then, independent of experimental data, a predictive
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collocation optimization has been developed to predict novel patterns for human gait.

Meyer et al. [109] have also developed a patient-specific EMG-driven NMSK model
that is synergy-controlled and able to predict walking motions for post-stroke individuals.
In this method, muscle synergy is used to solve muscle redundancy problem. In this
study, the developed method has been compared with muscle activation-controlled and
torque-controlled methods in terms of the accuracy of walking motion prediction using the
direct collocation method. Since direct collocation method is sensitive to the initial guess,
this study has presented a practical procedure to estimate a meaningful initial guess and
predict the motion. First, a “calibration optimization” was applied to determine contact
parameters by tracking walking at 0.5 m/s. Then, the “tracking optimization” was used
to determine the initial guess for the walking speed of 0.5 m/s by tracking walking at
the same speed. Finally, the “prediction optimization” was applied for different walking
speeds. The accuracy of the method is checked by applying the prediction optimization
for the 0.5 m/s walking. Motion prediction is done for the 0.8 m/s speed by tracking
walking at 0.5 m/s, and a challenge-based study is done for the speed of 1.1 m/s. All
three control methods (i.e., synergy-controlled, muscle activation-controlled and torque-
controlled methods) predict the motion well for 0.5 m/s walking by tracking the same
speed. Only the synergy-controlled and muscle activation-controlled methods could predict
0.8 m/s (fast) walking by tracking 0.5 m/s (slow) walking. Only the synergy-controlled
model has predicted 1.1 m/s (very fast) walking without any data-tracking.

Sometimes experimental data is also used in the direct collocation methods. De Groote
et al. [32] have used the direct collocation method to solve the muscle redundancy problem
and predict muscle activations given experimental motion data. First, the experimental
motion data has been applied to an MSK model in OpenSim to inversely generate joint
moments. Muscle geometry has been also obtained from the MSK model in OpenSim.
Then, the joint moments and muscle geometry have been used in the optimization process
to solve muscle contraction dynamics for predicting muscle activations. Their method has
been implemented on both 2D and 3D MSK models. In this research, two different for-
mulations have been considered for muscle contraction dynamics. In the first formulation,
tendon force has been considered as a state to describe contraction dynamics as algebraic
constraints. In the second formulation, muscle length has been assumed as a state. The
results proved that the first formulation, in contrast to the second one, could converge to
an optimal solution in all cases for all initial guesses.
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2.4 Summary

The main goal of this chapter was to highlight the features of the recent analysis methods of
human motion (mainly for gait) and to draw a detailed comparison between these methods
in terms of problem formulation and simulation solver. To this end, the recently-developed
problem formulations and simulation solvers were classified and separately discussed for
SK, MSK, and NMSK models to assist researchers to select an appropriate analysis method
depending on their research purpose.

Dynamic formulation approaches are either explicit or implicit. Explicit approaches
were divided into forward, inverse and mixed approaches. A mixed approach may exploit
the best features of forward and inverse dynamic approaches. In the explicit dynamic
formulation, the system dynamics are directly integrated or differentiated while in the
implicit dynamic formulation, the system dynamics are considered as constraint equations
that are implicitly satisfied inside an optimization-based simulation.

Once a dynamic formulation is selected for a human model, a solver is required to
simulate the model for a specific task. Simulation solvers are either non-optimization- or
optimization-based. They are categorized according to data-tracking, semi-data-tracking,
semi-predictive, and fully-predictive methods, depending on whether a data-tracking term
exists in the solver or not. Data-tracking methods are pervasive because of their intrinsic
realism. However, they require a comprehensive database of human motion and we cannot
study the effects of changes in the task condition since the motion data are previously
prescribed for the model. In contrast, predictive methods do not require a motion database
so they can be used to study how the changes in task conditions affect the results. The
prediction may be more accurate if semi-predictive are exploited.

A brief overview of the most significant methods (since 2014) for human task analysis
has been categorized according to SK, MSK, and NMSK models in Tables 2.1, 2.2, and 2.3,
respectively. The tables include the problem formulations and simulation solvers recently
exploited for human task analysis and since the main focus of this thesis is on gait task, the
aim was to primarily cover the references on gait analysis in these tables. A few non-gait
applications are included because of the significance of the analysis methods.

Among the problem formulation approaches classified in this chapter, mixed and im-
plicit approaches have been the most popular in the recent literature on predicting human
gait. Since SK models are simpler than MSK/NMSK models, they enable researchers to
focus on more complex control methods by disregarding muscle dynamics. However, for
most biomechanics applications, muscle dynamics should be considered to predict more
realistic motions and joint contact forces.
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Table 2.1: Recent methods to analyze SK models

Ref. DOF Application
Problem
Formulation

Simulation Solver

[100]
Lower extremities: 9-DOF
model and 7-DOF model
(without ankles)

Joint torque prediction and motion
estimation over the full range of gait
speeds

Feedback-control
mixed approach

HZD

[118] Full-body: 14 DOF
Joint torque prediction and motion
estimation for human gait

Feedback-control
mixed approach

CTC

[125] Full-body: 14 DOF
Comparison between PD and CTC in
motion estimation for walking

Feedback-control
mixed approach

PD, CTC

[127] Lower extremity: 13 DOF
Clutch pedal depression motion and
joint torques prediction

Forward approach
Hybrid predictive
method

[27] Full-body: 55 DOF
Joint torque and motion prediction for
running and a slow jog along curved
paths

Forward approach
Sequential quadratic
programming (SQP)

[170, 171] Lower extremities: 9 DOF

Joint torque prediction and motion
estimation for human gait (to design
prosthesis and orthosis before
manufacturing)

Feedback-control
mixed approach

A combination of
MPC and PID

[13] Full-body: 55 DOF
Joint torque prediction and motion
estimation for walking and jumping on
a box

Machine learning,
training: inverse
approach

General regression
neural network

Table 2.2: Recent methods to analyze MSK models

Ref. DOF Application
Problem
Formulation

Simulation Solver

[161]
An arm:1 DOF with 7
muscles and 2 DOF with 6
muscles

Muscle activation prediction and
motion estimation for an arm
movement

Forward approach FSO

[130]
Lower extremities: 10
DOF, 48 muscles

Motion prediction/estimation and
muscle activation prediction for
vertical jump

Forward approach
and implicit
approach

Direct shooting and
collocation methods

[133]
Full-body: 37 DOF, 80
muscles

Muscle forces and joint moments
prediction for walking and running

Feedback-control
mixed approach

CMC

[35] General model
Muscle activation/force prediction and
motion estimation (tested for biceps
curl)

Feedback-control
mixed approach

CMC

[83] 1 DOF with 2 muscles
Motion and muscle activation
prediction; scaled it for a 2D lower
extremity model

Fully-predictive
implicit mixed
approach

Direct collocation
method

32



Table 2.3: Recent methods to analyze NMSK models

Ref. DOF Application
Problem
Formulation

Simulation Solver

[115]
Lower extremities: 23 DOF
with 40 muscles

Fully-predictive human gait motion by
minimizing metabolic energy

Forward approach
Simulated annealing
algorithm

[148]
Lower extremities: 16 DOF
with 28 muscles

Muscle force prediction and motion
estimation for an unsymmetrical
walking

Inverse approach
Parameter
optimization

[146]
Full-body: 19 DOF with 34
muscles

Muscle excitation and joint moment
predictions for human walking and
running

Inverse
skeletal-forward
neuromuscular
mixed approach

Static optimization

[160]
Lower extremities: 16 DOF
with 46 muscles

Muscle excitation/force and joint
moment predictions for human gait

Inverse
skeletal-forward
neuromuscular
mixed approach

Genetic algorithm
(GA), SQP, Nonlinear
simplex optimizer

[189]
Single joint with a pair of
antagonistic muscles

Muscle activation prediction (which is
applicable to any NMSK model)

Inverse
skeletal-forward
neuromuscular
mixed approach

Static optimization

[96] Knee joint with 8 muscles
Joint moment prediction in real time
for gait rehabilitation

Inverse
skeletal-forward
neuromuscular
mixed approach

Simulated annealing
algorithm

[110]
Lower extremities: 29 DOF
with 35 muscles

Patient-specific joint moment
prediction for gait rehabilitation

Inverse
skeletal-forward
neuromuscular
mixed approach

SQP

[156]
Lower extremities: 11
DOF, 16 muscles

Muscle activation prediction and
motion estimation for human gait

Forward
skeletal-inverse
neuromuscular
mixed approach

Global
parameterization

[87]
Full-body: 21 DOF with 66
muscles

Muscle excitation and motion
prediction for walking and running

Implicit approach
CMC, Direct
collocation method

[90]
Full-body: 25 DOF with 80
muscles

Motion, muscle excitation,
foot-ground contact force, and joint
contact force prediction for human
gait at different speeds

Implicit approach
Direct collocation
method

[109]
Full-body: 31 DOF with 70
muscles

Prescribing walking motion for an
individual post-stroke using motion
prediction in rehabilitation

Implicit approach
Direct collocation
method

[32]

Lower extremities: a
9-DOF 2D model with 18
muscles and a 16-DOF 3D
model with 86 muscles

Muscle activation prediction for
human gait

Implicit approach
Direct collocation
method
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Regarding the recent literature on MSK/NMSK models, there are very few research
studies on fully-predictive simulations of novel gait motions independent of motion data-
tracking [90, 109], and there is still a need to decrease the computation time of the fully
predictive simulations and increase the accuracy of the predicted results. Promising future
avenues to increase the speed of predictive gait simulations include the use of symbolic
programming (to generate optimized simulation code and exact derivatives) and the use
of fast near-optimal model-predictive controllers.

Recent fully-predictive studies are limited by numerical programming, which requires
a finite difference method to evaluate the gradients and Hessians in the optimization prob-
lem. However, finite differencing is an error-prone methodology and may result in unre-
liable results for higher-order derivatives. Studies such as [57, 72, 105, 123] have shown
that symbolic dynamic equations can resolve this issue. Furthermore, the use of symbolic
equations can enhance the accuracy and speed of optimal control methods [14].

To model the foot-ground contact in these fully-predictive simulations, a finite number
of contact points, moving relative to the foot, has been used. Hence, these foot-ground
contact models can be assumed as multiple point contact models, in which the normal
contact force is evaluated by the depth of penetration using the Hunt-Crossley method
[67]. However, since the Hunt-Crossley method is restricted to the contact points (not
the contact surfaces), an unnatural foot shape is obtained. In a recent study, Brown and
McPhee [21] have developed an ellipsoidal foot-ground contact model that may have better
accuracy and higher calculation speed than its comparable foot-ground contact models.

To the best of the author’s knowledge, the metatarsal joints have not been included
or their angles and torques have not been reported in the recent predictive simulations
even though metatarsal joints have an important role in gait analyses [40]. Thus, the
accuracy of predictive gait simulations may be improved by including toe joints, and by
replacing multiple point contact foot ground models with volumetric or other distributed
methodologies that better capture the foot geometry.

In conclusion, to develop a computationally-efficient and accurate predictive simula-
tion of gait, we believe that symbolic programming, a fast optimal control method, an
accurate volumetric foot-ground contact model, and two-segment foot model are required.
Although the aim of this thesis is to develop a predictive gait simulation including all of
these requirements, first, a simpler task (vertical jump) is studied in the next chapter to
investigate the importance of these requirements.
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Chapter 3

Human Vertical Jump Simulation

To develop a high-fidelity human gait model, it is necessary to have an accurate foot-ground
contact and include all the body segments that play an important role in lower-extremity
tasks. Thus, in this chapter, a simpler task (i.e., human vertical jump) was developed to
investigate: (1) What type of foot-ground contact model can properly model GRFs. (2)
Whether the toe segments (metatarsal joints) play an important role in lower-extremity
tasks.

To investigate the importance of the toe segments in lower-extremity tasks, two human
models (i.e., one with the toe segments and the other one without the toe segments) were
developed to simulate vertical jump and then the simulated results were compared.

To select a proper foot-ground contact model, two different foot-ground contact models
were developed for the vertical jump: 2D kinematically-constrained contact model and 3D
ellipsoidal volumetric contact model. In the 2D kinematically-constrained contact, the foot
is constrained to be fixed to the ground when the foot is in contact with the ground. In
the 3D ellipsoidal volumetric contact, the foot is modeled by three ellipsoids and the foot
can freely move with respect to the ground even during contact. The simulated results of
the contact models were compared for the vertical jump.

In the following chapter, first the model properties and the skeletal motion dynamics
are presented. Then the optimization method is fully described, and finally, the results are
illustrated and discussed.
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(a) (b)

Figure 3.1: Model structure: (a) Toeless (b) Toe-included

3.1 Kinematically-Constrained Contact

The human vertical jump model with kinematically-constrained contact model consists of
two phases: the preflight phase (PP) and the flight phase (FP). In PP, the human model
first crouches and then thrusts the upper extremities while the foot is constrained to be
fixed to the ground. In FP, the human model leaves the ground.

3.1.1 Model Properties

To shed light on the important role of the toe segment in the tasks done by lower extrem-
ities, two skeletal models were developed in this section: toeless and toe-included models
(Figure 3.1).

The toeless model is composed of four bodies, foot, shank, thigh and head-trunk (HT),
and driven by three 1-DOF joints: ankle, knee, and hip. During the jump in the sagittal
plane, the DOF of this model is three and six in preflight and flight phases, respectively.
The toe-included model has an extra body, which is the toe body, and consequently an
extra 1-DOF joint which is the metatarsal joint. The DOF of this model is four and seven
in preflight and flight phases, respectively. Table 3.1 shows the anthropometric parameters
of the model extracted from [186]. Since the motions of left and right lower extremities
are exactly the same during the vertical jump, both toes, feet, shanks and thighs were
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Table 3.1: Body segment properties

Body Mass (kg) Length (m) Center of Mass Moment of Inertia (kg.m2)
Toe 0.59 0.080 0.040 1.867e-3
Foot 1.78 0.116 0.077 9.626e-3
Shank 7.63 0.503 0.285 1.760e-1
Thigh 16.40 0.440 0.250 3.313e-1
Head-Trunk 47.40 0.660 0.404 3.361

Table 3.2: The variables in the toeless model

Phase n q m τ
PP 3 {θankle, θknee, θhip} 3 {τankle, τknee, τhip}FP 6 {x, y, θz, θankle, θknee, θhip}

considered in modeling. In other words, the values of masses and moments of inertia
indicated for toe, foot, shank and thigh in Table 3.1 have been already doubled.

3.1.2 Dynamic Modeling

The model was developed in MapleSim (2016.2 Maplesoft, Waterloo, ON, Canada) to
extract SK motion dynamics using “Multibody Analysis” module. Since the DOF of PP
is different from the DOF of FP, these phases were modeled separately for extracting their
motion dynamics. “Multibody Analysis” determines the motion dynamics based on the
general form of multibody dynamic equations for a time step:

Mn×nq̈n×1 = F(qn×1, q̇n×1, τm×1)n×1 (3.1)

where M is the generalized mass matrix, q is the vector of the generalized coordinates
and F is a vector which groups the Coriolis, centrifugal, and gravitational effects. The
vector τ represents actuating joint torques. Also, n and m specify the numbers of the
generalized coordinates and actuating joints, respectively. Table 3.2 and Table 3.3 show n,
q, m and τ in toeless and toe-included models, respectively. There is also a damper across
each joint. The damper can model viscous friction effects when the joint moves, thereby
improving the results of numerical integration [81].

Using the multibody analysis module of MapleSim, matrix M and vector F were ob-
tained and therefore the second derivative of generalized coordinates were determined us-
ing:
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Table 3.3: The variables in the toe-included model

Phase n q m τ
PP 4 {θmetatarsal, θankle, θknee, θhip} 4 {τmetatarsal, τankle, τknee, τhip}FP 7 {x, y, θz, θmetatarsal, θankle, θknee, θhip}

q̈n×1 = M−1
n×nFn×1 (3.2)

where M−1 is the inverse of matrix M . The generalized coordinates were obtained by
integrating q̈ two times.

3.2 3D Ellipsoidal Volumetric Foot-Ground Contact

Since the 3D ellipsoidal volumetric contact model is more complex than the kinematically-
constrained contact model, the human vertical jump model with this contact model was
divided into three phases to more accurately simulate the motion. The phases are called the
crouching phase (CP), the thrust phase (TP) and the flight phase (FP). The human model
first crouches in CP and then thrusts the lower extremities in TP and finally leaves the
ground and vertically jumps in FP. Unlike the kinematically-constrained contact model,
the foot can freely move with respect to the ground during all three phases thanks to the
compliant contact model, so the DOF of the model in all three phases is identical.

Since the ellipsoidal contact model has been developed based on the volumetric contact
model which considers pressure across the whole contact surface, this contact can model
conforming geometries e.g. foot-ground contact [16]. Besides, using volumetric contact,
rolling resistance, tangential friction and spinning friction can be modeled by some equa-
tions in addition to the normal force. These equations result in a contact model which is
more accurate than discrete elastic foundation models, and not significantly more complex
than point contact models [20]. The practical types of contact models in biomechanics are
fully explained in the next chapter in Section 4.1.2.

In this study, the most recent volumetric contact model [21], in which contact surface
is modeled by ellipsoids, was used. Ellipsoids can approximate the complex geometry of
foot more closely than spheres can. The contact equations for an ellipsoid contacting a
plane were extracted from [20].
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Figure 3.2: Model structure with the 3D ellipsoidal volumetric contact

Table 3.4: Ellipsoidal contact model parameters

Parameter Description
kV Volumetric stiffness
aV Volumetric damping coefficient
µd Coefficient of friction
a, b, c Dimensions
rx, ry, rz Position
α ,β, γ Body-fixed Euler angles

3.2.1 Model Properties

The 7-DOF toe-included model generated in Section 3.1 was used in this section and
the ellipsoidal contact model was applied to the two-segment foot using three ellipsoids
contacting the ground. Two ellipsoids, i.e. ball and heel, were used to represent the foot
segment and one ellipsoid to represent the toe segment. Figure 3.2 shows the SK model
and foot-ground contact geometry.

The parameters of ellipsoidal contact model are listed in Table 3.4. Three dimension
parameters determine the ellipsoid radii in the local x-, y- and z-axes, respectively. The
position parameters specify the locations of the ellipsoid centroids with respect to the foot
or toe frames. The orientation parameters determine the rotations of the ellipsoid frames.

For the gait task, Brown and McPhee [21] identified all the contact parameters except
for µd. To model the vertical jump, we used the same values for the contact parameters.
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However, we manually adjusted aV and µd values for the vertical jump simulation which
is explained in Section 3.3.

3.2.2 Dynamic Modeling

Using the contact equations for an ellipsoid contacting a plane, the foot-contact model
of an ellipsoid were created as a “Custom Component” with variable contact parameters
in MapleSim. Then three duplicates of that custom component were added to the toe-
included model to model toe, ball, and heel ellipsoids. The main advantage of using a
custom component is that not only we can easily add it to any multibody model generated
in MapleSim, but we can also add as many “Custom Components” as we need to the
contact model, depending on the accuracy of the analysis.

Since the multibody analysis module does not have access to the equations inside the
custom component, this module cannot generate the motion dynamics of the model. Thus,
the “C-code Extraction” module of MapleSim was used to obtain the motion dynamics
of the model with ellipsoidal contact. Although the C-code extraction module also uses
Eq. 3.1 to generate the motion dynamics, matrix M and vector F cannot be extracted
separately. In other words, C-code extraction would be a black box and we have only
access to its inputs and outputs.

3.3 Predictive Vertical Jump Simulation

To simulate the highest vertical jump, the direct collocation optimal control method was
used not only to predict the human motion but also to estimate joint torques and foot-
ground contact forces.

To solve the optimization problem, GPOPS-II, a direct collocation optimal control
toolbox for MATLAB [128] was used. The dynamic constraints, path constraints, event
constraints, boundary conditions and the cost function of the optimization were specified
in a way to generate the highest possible vertical jump for human. These constraints and
conditions are described in the following section.

States and Control Inputs

In this optimization, the states, x, were set to the generalized coordinates and their time
derivatives.The control inputs, u, were set to the joint torques:
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Table 3.5: Maximum possible ranges of human joint angles, angular velocities and torques

Joint Angle (degree) Angular Velocity (degree/s) Torque (N.m)
Toe -45 80 -1200 1500 -4000 2000

Ankle 50 110 -1200 1500 -4000 2000
Knee -150 0 -1200 1500 -2000 1500
Hip -30 100 -1200 1500 -2000 1500

x = {q, q̇}
u = τ

(3.3)

In GPOPS-II, in each jumping phase, three different ranges must be defined for the
states as initial, final and total ranges, while only a single range must be assumed for the
control inputs as the total range. However, to define some constraints on initial and final
points of phases, the initial and final ranges of control inputs are also required. To resolve
this, joint torques were also considered as states to enable ourselves to define initial and
final ranges for them:

x = {q, q̇, τ} (3.4)

Since the new state vector includes joint torques, the derivative of joint torques can be
assumed as control inputs (Eq. 3.5). This assumption can also reduce noise in the torque
values predicted by the optimization.

u = τ̇ (3.5)

Boundary Conditions

In GPOPS-II, the lower and upper boundaries of states (generalized coordinates, their
time derivatives and joint torques) and control inputs (time derivatives of joint torques)
should be specified. The maximum possible ranges of the states (Table 3.5) were extracted
from [25, 104], and the ranges of control inputs were assumed to be considerably greater
than joint torque ranges. The initial, final, and total ranges of each jumping phase were
defined based on the considered maximum ranges and the posture of the human at each
phase.
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Table 3.6: Guess points

Model Phases

Kinematically-
Constrained

Contact

Toeless
Preflight Flight

Toe-included
Preflight Flight

Ellipsoidal
Volumtric
Contact

Toe-included
Crouching Thrust Flight

Guess Points for States and Control Inputs

Guess points were defined for states and control inputs in a way to effectively lead the
optimization process towards the optimal solution. To this end, the guess points were
defined for joint angles and torques based on the experimental data reported for human
jump in [104], and the guess points for angular velocities were obtained by differentiating
the guessed joint angles. Table 3.6 shows the posture of a human at each guess point for
the three under-study models.

Dynamic Constraints

Since the optimization problem is solved in MATLAB, the motion dynamics, generated in
MapleSim, should be exported to MATLAB.

The motion dynamic equations of the models with kinematically-constrained contact,
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Table 3.7: Event constraints

Model Phase Constraints

Kinematically-
Constrained

Contact

Toeless
Preflight (aix,y)COM = 0, (Ff y)c = 0

Flight (vf y)COM = 0

Toe-included
Preflight (aix,y)COM = 0, (Ff y)c = 0

Flight (vf y)COM = 0

Ellipsoidal
Volumtric
Contact

Toe-included
Crouching (aix,y)COM = 0

Thrust (Ff y)c = 0

Flight (vf y)COM = 0

generated by the multibody analysis module, were exported to MATLAB using the “Code
Generation” command in Maple symbolic computing software (2016.2 Maplesoft, Water-
loo, ON, Canada). The motion dynamic equations of the model with compliant contact,
generated by C-code extraction module, were exported to MATLAB by compiling the C-
code file in MATLAB. The exported equations were directly used in GPOPS-II as dynamic
constraints.

Event Constraints

Event constraints are imposed to the model either at the initial or at the final time instants
of the phases. The event constraints in different phases of the models are indicated in
Table 3.7. The indices i and f denote initial and final points, respectively. The indices
COM and c represent the center of mass of the model and foot-ground contact, respectively.

At the beginning of the preflight phase and crouching phase, the acceleration of COM
would be zero since the model is in static equilibrium. The normal contact force would
be zero just before leaving the ground (at the end of the preflight phase for kinematically-
constrained contact and at the end of the thrust phase for compliant contact). The last
event constraint was imposed to the end of flight phase to make the vertical velocity of the
model equal zero since it would be zero when the model reaches the highest position.

In addition to above-mentioned event constraints, in order to provide continuity be-
tween the subsequent phases, it was assumed that the time and states at the end of one
phase should be equal to the time and states at the beginning of the subsequent phase.
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Table 3.8: Path constraints

Model Constraint (imposed to each phase separately)

Kinematically-Constrained
Contact

Toeless ∆xCOM = 1 cm

Toe-included ∆xCOM = 6 cm

Ellipsoidal Volumtric Contact Toe-included ∆xCOM = 0.2 cm

Table 3.9: Cost functions

Model Cost Function

Kinematically-Constrained
Contact

w1

(
vy,maxdesired

vy,f

)2

COM

∣∣∣∣
PP

+ w2

(
ymaxdesired

yf

)2

COM

∣∣∣∣
FP

Compliant Contact

w1 (θknee − θdesired)2 + w2

(
θ̇knee

)2∣∣∣∣
CP

+

w3

(
vy,maxdesired

vy,f

)2

COM

∣∣∣∣
TP

+ w4

(
ymaxdesired

yf

)2

COM

∣∣∣∣
FP

Path Constraints

Path constraints are the constraints that must be satisfied during the path of phases. Since
the task is vertical jump, a path constraint was imposed to restrict the horizontal motion
of COM during the jump as much as possible. Table 3.8 shows the least possible variation
of COM position in the horizontal direction for each model. These values were obtained
by trial and error to lead the optimization to the optimal results.

Cost Function

To achieve the highest vertical jump, a physiologically-meaningful cost function was min-
imized for each model (Table 3.9). The weights of cost terms, wi, were tuned manually
with the aim of simulating a natural vertical jump. The weight values are indicated in
Table 3.10.

To have the highest position for COM at the end of flight phase, the COM vertical
velocity at the beginning of the flight phase should be as large as possible. Therefore,
the cost function for kinematically-constrained contact aims to not only maximize the
height of the COM (yf ) in the end of flight phase but also to maximize the COM vertical
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Table 3.10: The values of weights in each model

Model wi

Kinematically-Constrained
Contact

Toeless w1 = 1, w2 = 12

Toe-included w1 = 1, w2 = 1

Ellipsoidal Volumtric Contact Toe-included w1 = 2, w2 = 1, w3 = 1, w4 = 5

Table 3.11: Solver properties

Solver IPOPT Number of meshes 30
Derivation supplier SparseCD Number of iterations 5000
Tolerance 1e− 6 Number of collocation points (n) 4 < n < 20

velocity (vy,f ) in the end of the preflight phase. The values vy,maxdesired and ymaxdesired
have been assumed as 10 (m/s) and 1 (m), respectively. In the cost function for compliant
contact, the crouching term [11] was imposed to bend the knee to reach the desired angle
(−110 degree) and the two other terms were exactly the same as the cost terms for the
kinematically-constrained contact.

Optimization Solver Properties

The properties of the optimization solver are mentioned in Table 3.11.

3.4 Results and Discussion

In this section, the resultant joint angles, torques, GRFs and foot position and orientation,
that were predicted for the three models, are shown and discussed.

3.4.1 Joint Angles

Figure 3.3 shows the predicted joint angles using the three models. The first and second
columns present the results for the toeless and toe-included models with the kinematically-
constrained contact, and the last column shows the results of the toe-included model with
the compliant contact.
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Figure 3.3: Resultant joint angles of the vertical jump simulation

As shown in Figure 3.3, the joint angle ranges of the all three models are approximately
equal except for the knee angle; the knee joint in compliant contact model (−150 degree)
bent more than those in kinematically-constrained contact models (−94 and −122 degree)
due to the extra term defined in the cost function of compliant contact to make knee bend
in the crouching phase.

Once the foot is in contact with the ground, the foot was set to be fixed to the ground in
kinematically-constrained contact models while in compliant contact model, the foot was
not fixed to the ground and there were extra three DOF and also extra stiffness between
the foot and ground. That is why time histories of joint angles in the crouching and thrust
phases are not as smooth as those in the preflight phases of kinematically-constrained
models.

3.4.2 Joint Torques

Figure 3.4 shows the predicted joint torques using the three models. The torque ranges
of the toeless model are considerably less than the torque ranges of the two other models.
Because the toeless model is not able to produce high torques and cannot jump as high as
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Figure 3.4: Resultant joint torques of the vertical jump simulation

the toe-included models. However, the toeless model is more stable than the toe-included
model when the contact is kinematically-constrained.

There is a sharp fluctuation in the torque values of the second model just before the
transition to the fight phase since the contact has been modeled kinematically and the toe
transits suddenly from a fixed posture to a free posture. Although the contact has also
been modeled kinematically in the toeless model, there is not such a fluctuation before the
transition to the flight phase. The reason is that in the toeless model, the foot has greater
mass and length than the toe. Thus the toeless model is more stable than the toe-included
model once the contact is kinematically modeled. On the other hand, since in compliant
contact model, the contact has been realistically modeled and the foot can freely move in
all phases, there is no sharp fluctuation in torque values.

3.4.3 Foot-Ground Contact Forces

Figure 3.5 shows the predicted ground reaction forces using the three models. Since the
task is a vertical jump, it is desirable to reduce the tangential reaction force as much as
possible. The range of tangential reaction force in compliant contact model is considerably
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Figure 3.5: Resultant ground reaction forces of the vertical jump simulation

less than those in the kinematically-constrained contact models. Thus, compliant contact
can be more realistic than the kinematically-constrained model.

The sharp fluctuation in the tangential reaction force of the second model, just be-
fore the transition to the flight phase, can be justified by the same reason mentioned in
Section 3.4.2.

Regarding the plots of normal reaction forces, once the model goes downward, the
normal force is less than the weight of the model (720 N) and when the model goes upward,
the normal reaction force would be more than the model weight (Figure 3.6).

The maximum feasible static friction coefficient for each of the three models can be
estimated approximately using the predicted reaction tangential and normal forces:

µs ≥
∣∣∣∣FxFy

∣∣∣∣ (3.6)

where µs is the static friction coefficient and it must be always equal to or greater than
the proportion of the reaction tangential force to the reaction normal force. Figure 3.7
illustrates that the static frictions should be greater than 1.4, and 1 for the toeless and
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Figure 3.6: Comparison of normal force and model weight

toe-included models with kinematically-constrained contact, respectively while it is only
0.12 for the compliant contact model.

For the kinematically-constrained contact models, since the foot is rigidly fixed to the
ground in the preflight phase, 1.4 and 1 are satisfactory values for the static friction.
However, for the compliant contact model, 0.12 is much lower than expected. This issue
can be considered as a limitation of using a velocity-based friction model since this friction
model assumes that sticking occurs at very small relative velocities (0.01 m/s), while the
true sticking would have a velocity of zero. Jackson et al. [70] also used a velocity-based
friction model and obtained a static coefficient of friction of only 0.1. This is particularly
surprising since the subject was wearing sports shoes, which should have a higher coefficient
of friction.

3.4.4 Foot Position and Orientation

Since the task is a vertical jump, it is desirable to minimize the COM displacement in
the horizontal direction as much as possible to predict a more stable task. This goal is
better achieved using compliant contact compared to kinematical contact (Figure 3.8). In
addition, the model with compliant contact is able to jump 89 cm which is considerably
higher than toeless and toe-included models with kinematically-constrained contact (14
and 66 cm, respectively).
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Figure 3.7: The proportion of the reaction tangential force to the reaction normal force
when the foot is in contact with the ground

Figure 3.8: Resultant foot position and orientation in the vertical jump simulation
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3.5 Conclusion

In this chapter, the time histories of the joint angles, joint torques, foot-ground contact
forces and foot position and orientation, predicted for the three models during jumping,
were shown and discussed. The general trends and ranges of predicted joint angles and nor-
mal reaction forces are in a good agreement with the experimental results reported in [104]
since the initial guess for the predictive optimization in this study has been extracted from
that paper.

It was concluded that the toeless model is not able to generate high torques and jump
as high as the toe-included models. However, the toeless model is more stable than the
toe-included model when the contact is kinematically-constrained. In the third case with
detailed contact model, there are negligible horizontal deflection and no sharp torque fluc-
tuations when compared to the previous two models. In conclusion, the most natural
prediction of human jumping has been obtained using a model that includes the toe and
a volumetric model of foot-ground contact. The main features and achievements of this
study have been confirmed in [39, 41]. However, there are some weaknesses which should
be addressed in the future work.

Firstly, the same contact parameters, estimated in [21] for a subject-specific gait motion,
were used in this study for jumping task. This assumption seems reasonable since the
height, mass and foot size of the model in this study are roughly close to the subject’s
in [21]. However, the foot-ground interaction in jumping and gait tasks are intrinsically
different and it is required to identify the contact parameters specifically for the jumping
task to get more accurate results.

Secondly, according to the recent literature [90, 109], to enable the optimization to con-
verge to a more realistic and optimal solution, not only the number of guess points should
be large enough but also they should be generated based on experimental data. However,
in this study, only seven and nine guess points have been considered for kinematically-
constrained and compliant contact models, respectively.

Thirdly, since the different joint torque ranges and trends have been reported in the
literature for human vertical jump [84, 104], to verify the predicted joint torques in this
study it is better to solve inverse dynamics using the predicted motion and reaction foot-
ground forces and moments and then compare the obtained joint torques with the predicted
ones. In addition, an experimental test can be done to verify the predicted results.

Lastly, the free motion of the model with respect to the ground has been determined
with three generalized coordinates of the foot with respect to the ground. However, to
reduce noise in the results and get more stable motion, it may be better to assign those
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three DOF to the HAT, which has a high proportion of the total mass. This results in
better conditioning of the mass matrix.

In the next chapter, we will develop a 2D human gait model including metatarsal
joints with a 3D ellipsoidal volumetric contact model to identify the contact parameters
for children. The next chapter will fill in the gaps of this chapter; we will define the free
motion of the model using three DOF of HAT with respect to the ground, consider strong
initial guess, and employ experimental-data-tracking cost terms.
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Chapter 4

Foot-Ground Contact Model
Development For Child Gait

The results of Chapter 3 illustrated that a toe-included human model with 3D ellipsoidal
volumetric foot-ground contact would simulate a lower-extremity task more accurately than
a toeless human model with a kinematically-constrained foot-ground contact. Moreover,
it was shown that the contact model has a significant effect on the simulated results. Con-
sequently, to develop a realistic simulation, contact parameters must be tuned regarding
the experimental data of the task which is simulated.

The findings from Chapter 3 led us to develop a 2D human model, including metatarsal
joints, with a 3D ellipsoidal volumetric contact model and identify the contact parameters
regarding child gait experimental data.

This chapter is organized as follows1. The human model is described in Section 4.1 and
the experimental data, used to identify the contact parameters and validate the simulated
results, is presented in Section 4.2. In Section 4.3, two different approaches (i.e., Trajectory
Optimization and Optimal Control) were taken to identify the contact parameters. Then,
in Section 4.4, the optimal control approach was modified by adding mass-property identi-
fication and it was taken as a third approach to estimate values for the contact parameters.
Finally, the results are concluded in Section 4.5.

1The majority of this chapter was extracted from [43].
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4.1 Model Description

In this section, first, the human model is described. Then, a thorough review of the major
types of contact model is provided and the 3D ellipsoidal volumetric foot-ground contact
model is explained and compared with the other contact models. Finally, the method
to extract the symbolic dynamic equations of the human model with the 3D ellipsoidal
contact is defined.

4.1.1 Human Model

The human model is a 2D torque-driven model that moves in the sagittal plane. It includes
9 bodies and 11 degrees of freedom (DOFs). The bodies are head-arms-trunk (HAT),
thighs, shanks, hind-fore-feet, and toes. The DOFs are 3-DOF HAT-to-ground joint, 1-
DOF hip joints, 1-DOF knee joints, 1-DOF ankle joints, and 1-DOF metatarsal joints.
The schematic of the human model is shown in Figure 4.1. The global coordinate system
(GCS) is assumed to be fixed to the ground exactly under the center of mass of HAT at
the start of simulation. Axes X, Y and Z are in the longitudinal, vertical, and lateral
directions, respectively (as shown in Figure 4.1).

It is a common approach to assume head, arms and trunk as a single body (HAT) in
human gait analyses [115, 156, 170, 171], since the effects of suppressing the arm swing on
the kinematics, kinetics, and energetics of human gait are less than 10% [180].

The anthropometric data of the HAT, thighs and shanks were extracted from [186]
and given in Table 4.1. In this table, BM and BH are the mass and height of the human,
respectively. We set BM and BH to 41.4 kg and 1.47 m, respectively. These values represent
the average mass and height of 20 healthy child subjects with an age of 10.8 ± 3.2 years.
For more information about our subjects and their gait experimental data, the readers
are directed to Section 4.2. SM and SL represent the segment mass and segment length,
expressed as a fraction of BM and BH, respectively. COM, expressed as a fraction of SL, is
the center of mass position of the segment, measured from proximal head of the segment.
ROG, expressed as a fraction of SL, is the radius of gyration around the COM, used to
calculate the moment of inertia (MOI) of the segment.

At each joint, a rotational spring and a damper were employed. The values of the
spring stiffness (K) and damping coefficient (B) of the joints were extracted from [169]
and expressed in Table 4.2. The damper models the viscous friction effect and the spring
functions like a passive feedback system. Although K cannot exactly model the inherent
joint stiffness, it provides numerical stability for the dynamics of human gait which is an
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Figure 4.1: 2D human model with nine bodies and eleven DOFs

Table 4.1: Anthropometric data of all segments except for the feet

segment SM SL ROG COM
HAT 0.678 BM 0.288 BH 0.496 SL 0.626 SL
thigh 0.100 BM 0.245 BH 0.323 SL 0.433 SL
shank 0.047 BM 0.246 BH 0.302 SL 0.433 SL

SM and SL are the segment mass and segment length, respec-
tively. COM is the center of mass position of the segment,
measured from proximal head of the segment. ROG is the ra-
dius of gyration around the COM. BM and BH are the mass
and height of human.
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Table 4.2: Joint stiffness and damping coefficient

hip knee ankle
K (Nm/Rad) 2.8762 1.5928 6.0390
B (Nm/Rad/s) 0.0003 2.9794 3.6841

Table 4.3: Anthropometric data of the feet

segment SM SL ROG COM

MT 2.1e-3 BM 4.3e-2 BH 1.32e-2 SL 0.5 SL
AM 6.2e-3 BM 6.5e-2 BH 2.74e-2 SL 0.5 SL
HA 6.2e-3 BM 4.4e-2 BH 2.74e-2 SL 0.5 SL

The segments are specified in Figure 4.1.

inherently unstable task. In this study, the spring stiffness and damping coefficient of
the metatarsal joint were considered to equal the ankle’s values since no values for the
metatarsal joint’s stiffness and damping coefficient are reported in the literature to the
best of our knowledge.

For the feet, reference [186] has only reported the mass and length of the whole foot
which are 0.0145BM and 0.152BH, respectively. There is no conventional anthropometric
data for each foot segment in the literature. The weights, COMs, and ROGs of foot
segments were estimated, consistent with the foot properties in [36, 143] and the foot
segment lengths were calculated based on the optimized foot geometry presented in [155].
The foot segment properties were shown in Table 4.3. Angle β shown in the foot picture
of Figure 4.1 is the fixed angle between the fore-foot (AM) and the hind-foot (HA) and it
was set to 106 degree similar to the angle employed in [155].

4.1.2 Foot-Ground Contact Model

Among human tasks, gait is one of the most complicated and as a consequence, its pre-
dictive simulation is challenging due to its highly nonlinear motion equations, nonlinear
muscle dynamics, and nonlinear foot-ground contact model.

The foot-ground contact can be modeled as kinematic constraints that restrict the
motion of discrete points along the bottom of the foot [10, 86, 89]. In these studies, the
complex geometry of foot is not required to be explicitly modeled since a number of dis-
crete points can approximately represent the complexity of the foot geometry. However,
to achieve a useful predictive human gait simulation, it is important to have an accurate
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foot-ground contact model that is consistent with the complex geometry of foot and com-
putationally efficient. The main types of contact models commonly used in biomechanics
studies include point contact, finite element contact, elastic foundation contact, surrogate
contact, and volumetric contact:

� Point contact models are relatively simple and assume that contact between two
surfaces occurs at a point. Two different methods for point contact, Kelvin-Voigt
and Hunt-Crossley [67], are illustrated in Table 4.4 (No. 1 and 2). In the first method,
the transition between the contact and non-contact conditions is not continuous due
to the linear damper. The second method does not suffer from this discontinuity [55].
However, these two point contact models may not be accurate enough for conforming
contacts (e.g. foot-ground contact).

� Finite element contact models [196] can provide a more detailed contact model for
complex shapes (No. 3 in Table 4.4). However, this is not suitable for biomechan-
ics optimizations or real-time analysis due to the high computational time of finite
element analyses.

� In elastic foundation contact models [52], the contact surface is discretized into a
finite number of springs. In other words, the bottom of the foot is modeled using a
set of discrete viscoelastic elements with Coulomb friction [119, 129]. These contact
models can be assumed as multiple point contact models, in which the normal contact
force is evaluated by the depth of penetration using the Hunt-Crossley method [67].
No. 4 in Table 4.4 shows the schematic of the elastic foundation contact model.

� Surrogate contact models [88] are computationally efficient in comparison to finite
element models and elastic foundation models since they are developed based on
lookup tables rather than physical models. Surrogate models are trained to match
results from a high-fidelity model. However, they are only appropriate over the
conditions for which they have been trained.

� Volumetric contact model [60] is based on the concept of an elastic foundation model,
but the contact surface is modeled using a continuous distribution of springs. Thus,
it would be more realistic than the elastic foundation model to model complex con-
forming surfaces (e.g., foot). No. 5 in Table 4.4 shows the schematic of the model
and the equation for the normal contact force.

The application of these five contact models to biomechanical modeling has been com-
pared in detail in two review papers [58, 163] to which readers are directed for more infor-
mation.

57



Table 4.4: Contact models

No. method model formula

1 Kelvin-Voigt Fn = kδ + dδ̇

2 Hunt-Crossley Fn = aδn + (bδn)δ̇

3 finite element partial differential equations for each element

4 elastic foundation discrete force equation at each spring element

5 volumetric contact Fn = kV V (1 + aV vcn)

Fn is the normal contact force. δ is the penetration of deformation depth. k and d are the spring and
damping constants, respectively. a and n are constants dependent on material properties and b is the
damping coefficient. kV and aV are the volumetric stiffness and damping constants, respectively. Also, V
is the volume of penetration and vcn is the relative velocity of the two surfaces at the volumetric centroid.
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Some recent gait studies, instead of using volumetric contact equations, modeled the
complex geometry of the foot by a large number of spheres or ellipsoids to estimate the pene-
tration depth for Hunt-Crossley equations. This method can be called Hunt-Crossley spher-
ical/ellipsoidal contact model. Lin and Pandy [87], Lin et al. [90], and Porsa et al. [130]
utilized this method by modeling the foot-ground contact via six, six and eight spheres,
respectively. Lopes et al. [94] have also used six ellipsoids on the sole to model the foot-
ground contact. For a conforming surface like a foot, Hunt-Crossley spherical/ellipsoidal
contact models are more accurate than the point contact models since the penetration
depth is estimated using spheres or ellipsoids. However, the volumetric contact models, in
which a volume of penetration is used in the contact equations, can provide a better geo-
metric representation of a conforming surface than Hunt-Crossley spherical contact models.
Hunt-Crossley equations are most accurate for point contacts, but there are likely errors
when applied to a conforming surface.

Meyer et al. [109] employed the elastic foundation contact using a large number of
springs to approximate a continuous load distribution. Thus, the model approaches the
accuracy of volumetric contact with the computational efficiency of the elastic foundation
method.

In the contact models of [87, 90, 94, 109, 130], a finite number of contact points on the
foot have been used. These foot-ground contact models can be assumed as multiple-point
contact models, in which the normal contact force is evaluated using the Hunt-Crossley
method. Since the Hunt-Crossley method is restricted to the contact points (not the
contact surfaces), an unnatural foot shape may be obtained. However, a Hunt-Crossley
ellipsoidal contact model [94] is geometrically more natural than the other multiple-point
contact models.

Since the volumetric contact model provides a better representation of conforming ge-
ometry in comparison to the point contact and elastic foundation models, some human
gait studies employed it to simulate the foot-ground contact. The common type of volu-
metric contact model, generally used for foot-ground contact, is the spherical volumetric
contact model. Millard et al. [112] used a 2D two-segment foot model with three volu-
metric sphere-plane contact pairs. Shourijeh et al. [156, 159] developed that model into
a hyper-volumetric model. Mouzo et al. [118] also employed volumetric contact with a
polynomial representing the contact surface.

Brown and McPhee [21] have developed an ellipsoidal volumetric foot-ground contact
model that takes advantage of the features of ellipsoidal models and volumetric models. In
their approach, the foot is modeled by three ellipsoids and the volumetric contact equations
for an ellipsoid contacting a plane were employed. Since ellipsoids can match the complex
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geometry of the foot surface better than spheres, they used only three ellipsoids to model
the foot-ground contact. However, there still exist two gaps in Brown and McPhee’s
approach that should be filled before being used in high fidelity human gait analyses.

The first gap is that the contact parameters have been identified by tracking the ex-
perimental foot-ground reactions (i.e., the normal force, center of pressure and pressure at
the foot surface) measured for one foot during gait. They did not include both feet in the
identification process, nor did they consider the dynamics of the lower extremities.

The second gap is that once they included friction in their model, the contact param-
eter identification yielded inaccurate parameters and results. This gap is due to using a
continuous velocity-based friction model in an inverse dynamic identification.

The main contribution of this chapter is to fill in these gaps of the ellipsoidal volumetric
contact model, so that it can be used as a computational-efficient and accurate foot-ground
contact model in our predictive gait simulation.

In Brown and McPhee’s ellipsodial volumetric contact model, the contact surface is
modeled by ellipsoids and the friction is generated by a continuous velocity-based friction
model. In a velocity-based friction model, it is assumed that sticking occurs at a very
small transition velocity. In this study [21], the transition velocity was set to 0.1 m/s,
which is quite small in comparison to the experimental gait speed (1.26 m/s). Each foot
is composed of two bodies: hind-fore-foot and toe. The hind-fore-foot was represented by
two ellipsoids (i.e., ball and heel ellipsoids) and the toe was represented by one ellipsoid
(i.e., toe ellipsoid). Figure 4.2 shows an approximate schematic for the ellipsoidal contact
model of the right foot. Using volumetric contact, the rolling resistance, tangential friction
and spinning friction are modeled in addition to the normal force. For further information
on the contact equations, readers are directed to [20, 59].

In this study, the global coordinate system is different from that in [21]. To address this,
several transformation matrices were employed to locate the ellipsoids in a correct position
and orientation with respect to the GCS of this study. Additionally, in reference [21],
the ellipsoidal contact model was developed only for the left foot. We reflected the three
ellipsoids of the left foot with respect to the sagittal plane to develop the contact model
for the right foot. Thus, six ellipsoids (three ellipsoids on each foot) were used to model
the contact.

Each ellipsoid contacting a plane has 13 parameters shown in Table 4.5. These param-
eters were expressed with respect to the segment-fixed local coordinate systems. When the
human model is in standing posture, the segment-fixed local coordinate systems have the
same position and orientation as the GCS.
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Figure 4.2: Side and top views of the ellipsoidal contact model for the right foot (This
figure is only for visualization purpose. The positions, orientations and dimensions of the
ellipsoids are not to scale.)

Table 4.5: Volumetric contact model parameters

parameter description

kv volumetric stiffness
av volumetric damping coefficient
µs static friction coefficient
µd dynamic friction coefficient
a, b, c dimensions
rx, ry, rz position
γ, β, α 3-2-1 body-fixed Euler angles

Parameters rx, ry and rz specify the locations of the ellipsoid centroids with
respect to segment-fixed local coordinate systems; parameters γ, β and α rep-
resent 3-2-1 segment-fixed Euler angles with respect to local coordinate systems
and parameters a, b and c specify the ellipsoid radii in the local x, y and z axes,
respectively.
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Since we have three different ellipsoids (ball, heel, and toe), there are 39 parameters in
total which will be identified in Section 4.3. It should be noted that the human model is
bilaterally symmetric and in gait, the right and left legs perform similar motions but with
a time shift. Thus, we only identified the contact parameters of ball, heel and toe ellipsoids
on the left foot and then employed the identified parameters for the ellipsoids on the right
foot considering the bilateral symmetry of the human model.

4.1.3 Dynamics Modeling

The human with foot-ground contact model was developed in MapleSim (2018. Maple-
soft, Waterloo, ON, Canada), as shown in Figure 4.3. An advantage of using MapleSim
is that the motion dynamic equations are generated in a symbolic form; also, the velocity
and acceleration equations can be directly determined by symbolically differentiating the
kinematic expressions with respect to time. The resultant equations are more computa-
tionally efficient than a numerical equivalent [103]. If the dynamic equations are evaluated
numerically during the optimization, the motion equations have to be differentiated in
each iteration of optimization, which leads to a more time-consuming procedure and less
accurate results than the optimization in which the symbolic equations are used.

The final symbolic equations, extracted from the MapleSim model, were modified in
Maple (2018 Maplesoft, Waterloo, ON, Canada) to reduce the size of the simulation code
and get optimal symbolic equations for exporting to MATLAB for use in the optimization
process.

4.2 Experimental Data

Experimental gait data is required for parameterizing the contact model and validating the
results. To generate an accurate data-tracking optimization for this study, the motion data
for all 11 DOF of the model, joint torque data for all 8 joints of the model, and normal
and tangential ground reaction forces (GRFs) for both feet are used.

The experimental data processing is categorized into three subsections: (4.2.1) HAT
and right leg without metatarsal, (4.2.2) Right metatarsal and (4.2.3) Left leg. In each
subsection, it is explained in detail how the data corresponding to those specific segments
is extracted, estimated or generated.
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Figure 4.3: Developed human model with the ellipsoidal foot-ground contact in MapleSim

4.2.1 HAT and Right Leg Without Metatarsal Joint

The experimental position of the HAT with respect to the ground, the experimental angles
and torques of right hip, knee and ankle joints and the GRFs of the right foot were extracted
from [18] for one gait cycle. A gait cycle is composed of two steps and in this study assumed
to start and end with the heel-strike of the right foot on the ground.

The orientation of the HAT with respect to the ground was set to zero as the initial
guess for the optimization because the variation of this orientation during natural-speed
gait is negligible (−1◦ ≤ θz ≤ 1◦ [186]). This angle will be predicted when the other known
experimental data are tracked in the optimization.

In reference [18], 20 healthy child subjects (9 males and 11 females with an age of
10.8± 3.2 years, a mass of 41.4± 15.5 kg and a height of 1.47± 0.2 m) have participated.
The experimental motions of the HAT, right hip, knee, and ankle have been collected for
natural-speed walking using the 9-camera SMART-E motion capture system (BTS, Milano,
Italy) and LAMB market set including 29 retroreflective markers. The experimental GRFs
of the right foot were measured using two force plates (Kistler, Winterthur, Switzerland).
The experimental torques of right hip, knee and ankle were calculated by solving the inverse
dynamics problem given the experimental motion and GRFs of the right leg.
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Figure 4.4: Phases of right and left leg during one gait cycle starting and ending with the
right heel-strike

4.2.2 Right Metatarsal Joint

To the best of our knowledge, there is no human gait simulation study using experimentally-
measured metatarsal joint data or reporting the resultant metatarsal joint motion and
torque from their simulation. There are only a few clinical and laboratory studies measuring
motion and pressure data for the different segments of foot (i.e. toe, fore-foot and hind-
foot) during the stance phase of gait [78, 80]. However, it would be unreliable to use
experimentally-measured toe motion in the gait simulation studies because the rigid body
assumption for the foot and marker placement during the measurement makes the toe
motion data physiologically impossible for gait simulation studies. Internal movement of
the foot causes this inaccuracy in the measurement [21]. Thus, for the angle of right
metatarsal, we planed a meaningful trajectory using the method in [40] and considering
the measured angle for the metatarsal joint in [80].

The right metatarsal motion during one gait cycle was divided into six known postures:
heel-strike, toe-strike, heel-off, toe-off, toe-free and again heel-strike. Between every two
subsequent postures, a 5th-order polynomial was fitted given the six known boundary
conditions listed in Table 4.6. In this table, ∆θa is the range for the ankle angle and
tSSP and tDSP represent the duration of single-support phase (SSP) and double-support
phase (DSP), respectively. During the SSP only one foot is in contact with the ground
and in DSP both feet are on the ground. One gait cycle is composed of two SSPs and two
DSPs. For our experimental data, each SSP and DSP are 10% and 40% of the gait cycle,
respectively [18]. Figure 4.4 shows these phases for both feet which are either in swing or
stance phase during the gait cycle. The planned trajectory for the right metatarsal angle
is shown in Figure 4.5.
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Table 4.6: Known postures for the metatarsal trajectory

heel-strike toe-strike heel-off toe-off toe-free heel-strike

t = 0 t = tDSP t = tDSP + tSSP t = 1.9tDSP + tSSP t = 2tDSP + tSSP t = 2tDSP + 2tSSP
θ = θ0 θ = θ0 θ = 0.12∆θa θ = 0.4∆θa θ = θ0 θ = θ0
θ̇ = 0 θ̇ = 0 θ̇ = 0 θ̇ = 0 θ̇ = 0 θ̇ = 0

θ̈ = 0 θ̈ = 0 θ̈ = 0 θ̈ = 0 θ̈ = 0 θ̈ = 0

θ, θ̇ and θ̈ are the angle, angular velocity and angular acceleration of the right metatarsal, respectively. θ0 is the
metatarsal angle when the toe is free. ∆θa is the variation of the ankle angle (i.e., the difference between the max and
min values of ankle angle). tDSP and tSSP are the duration of DSP and SSP, respectively.

Figure 4.5: The planned trajectory for the right metatarsal joint angle
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4.2.3 Left leg

The motions of legs were assumed to be bilaterally symmetric with a time shift during a
gait cycle. The time shift (Tsh) is equal to tDSP + tSSP based on Figure 4.4. The data of
the left leg can be easily generated through the data of the right leg extracted/estimated
in Section 4.2.1 and Section 4.2.2.

Since human gait is a periodic task, a Fourier series can be used to generate data for
the left leg [101]. A Fourier series was fitted to the data of the right leg, with the Fourier
basis signal matrix and the coefficient vector defined as:

[xj]rn×1 =
[
1 cos(iωtj) sin(iωtj)

]
n×(1+2m)

×

a0ai
bi


(1+2m)×1

(4.1)

where, n and m are the number of data points and the order of the Fourier series with
values of 101 and 5, respectively. Indices i and j are i = [1, · · · ,m] and j = [1, · · · , n],
respectively. Index r refers to the right leg and xj is the data (e.g., joint angle, joint torque,
and GRF) of right leg at time instant tj. The Fourier coefficients are a0, ai and bi. ω equals
2π/Tc in which Tc is the duration of the gait cycle.

In Eq. 4.1, the data and the signal matrix of the right leg are known. So, the vector
of coefficients can be easily obtained. Then, a new Fourier basis signal matrix was created
for the left leg:

Ml =
[
1 cos(iω(tj + Tsh)) sin(iω(tj + Tsh))

]
n×(1+2m)

(4.2)

where, index l refers to the left leg. Finally, the data of the left leg can be calculated
through:

[xj]ln×1 = Ml ×
[
1 cos(iωtj) sin(iωtj)

]†
(1+2m)×n × [xj]rn×1 (4.3)

where []† is pseudoinverse of the matrix. This approach was used to generate joint angles,
torques, and GRFs for left leg given the joint angles, torques, and GRFs of the right leg,
respectively.

4.3 Foot-Ground Contact Parameter Identification

We used two approaches to identify the contact parameters by tracking not only the experi-
mental foot-ground reactions but also the kinematics and dynamics of the lower extremities:
trajectory optimization and optimal control.
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Trajectory optimization and optimal control are often confused and used interchange-
ably [135]. In trajectory optimization, static parameter values are identified to optimize a
given performance index. In contrast, in optimal control, time-variant inputs to a system
and, optionally, static parameters are estimated to optimize a given performance index.

Since the human model is 2D and the natural walking task is mainly done in the sagittal
plane, we could have considered a 2D ellipsis foot-ground contact model to simplify the
contact modelling and identification process. However, we considered a 3D ellipsoidal
volumetric foot-ground contact model to: (1) Fill in the gaps of Brown and McPhee’s
ellipsoidal volumetric contact model [21], and (2) Identify the contact parameters for a
general 3D ellipsoidal volumetric contact model during child gait.

In this section, the solvers, methodologies, constraints, cost functions and results of
the optimization approaches, developed in MATLAB (R2019b. MathWorks, Natick, MA,
USA), are explained and compared.

4.3.1 Trajectory Optimization

Solver

To implement the trajectory optimization, the GlobalSearch algorithm [179], a global op-
timization toolbox for MATLAB, was used. The GlobalSearch uses a scatter-search mech-
anism to generate multiple start points for sampling multiple basins of interest. Then,
GlobalSearch starts a local solver (i.e., fmincon) repeatedly to analyze the start points and
remove those points that can not find the global minimum. Finally, the best parameter set
that satisfies all constraints and has the lowest cost function value is selected as the global
optimization solution. In this approach, the differential equations are solved by explicitly
integrating. The flowchart of this optimization method is illustrated in Figure 4.6. This
optimization was done on a desktop computer with an Intel® Core� i7-6700 CPU @ 3.40
GHz with 16.0 GB RAM.

Methodology

In trajectory optimization, the inverse dynamic equations of the model were explicitly
solved for the joint torques and ground reaction forces and moments (GRFMs) from the
generalized coordinates (i.e., q(t)) and their derivatives (i.e., q̇(t) and q̈(t)). Meanwhile, the
static parameters were optimized to minimize the cost function and meet the constraints.
In this optimization, the generalized coordinates and their derivatives were set to the
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Figure 4.6: The flowchart of GlobalSearch
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experimental coordinate positions, velocities, and accelerations. The static parameters,
which will be identified, are the 39 contact parameters mentioned in Table 4.5.

Constraints

The dynamic friction coefficient was enforced to be less than the static friction coefficient
(Eq. 4.4): (

µd
µs

)
min

≤ µd
µs
≤
(
µd
µs

)
max

(4.4)

To obtain proper bounds for the µd/µs of ellipsoids, we tuned the bounds of Eq. 4.4
manually with the aim of avoiding slippage during walking. The best lower and upper
bounds, preventing the model from slipping, were 0.55 and 0.99, respectively.

Cost function

Experimental joint torques and GRFs were tracked over time using the following cost
function:

J =
1

tf

∫
tf

t0

[
w1

6∑
i=1

(
τsim. − τexp.
τmax − τmin

)2

i

+ w2

4∑
j=1

(
GRFsim. −GRFexp.
GRFmax −GRFmin

)2

j

]
dt (4.5)

where t0 and tf are the initial time and final time of a gait cycle and equal to 0(s) and
0.98(s), respectively, and w1 and w2 are the weighting factors. Indices sim. and exp. refer
to the simulation results and experimental data, respectively. τ is the torque and GRF
includes the tangential and normal ground reaction forces. i is from 1 to 6 referring to
the torques of left and right hip, knee and ankle joints. The metatarsal torques were not
tracked since no experimental data for them was available. j is from 1 to 4 referring to
tangential and normal forces of the right and left feet. The minimum and maximum values
of τ and GRF were obtained from the experimental data.

Bounds

We constrained the contact parameters to be within specified bounds shown in Table 4.7.
These bounds were physically-meaningful and manually tuned using the reported contact
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Table 4.7: Bounds for contact parameters of the ellipsoids on the left leg

ellipsoid bound kv(N/m
3) av(s/m) µs µd

dimension (mm) orientation (degree) position (mm)

a b c γ β α rx ry rz

toe
lower 1e5 0 0.01 0.01 11.3 10.0 10.0 -50.8 -54.0 143.9 115.4 6.7 21.1
upper 1e8 3 1.3 1.3 17.7 50.0 16.5 -39.8 -14.5 154.3 153.5 20.0 25.8

ball
lower 1e5 0 0.01 0.01 30.0 14.6 3.0 -75.2 -18.0 -97.5 62.9 4.0 -6.6
upper 1e8 3 1.3 1.3 140.0 23.0 18.0 -41.1 -3.2 -83.6 99.0 11.4 -5.4

heel
lower 1e5 0 0.01 0.01 23.0 25.0 12.0 -91.8 -28.5 -99.3 -24.2 -3.0 -0.2
upper 1e8 3 1.3 1.3 40.0 40.0 22.0 -59.7 -16.9 -84.2 -4.4 12.6 0.3

parameters in [21], the friction coefficients reported in [109] for the foot-ground contact,
and the shape and dimensions of the human foot segments mentioned in Table 4.3.

After each optimization run, we inspected the cost function value to see whether the
manually-tuned bounds bring about a lower value for the cost function than the previously-
tuned bounds. From these inspections, we determined that the contact model is more
sensitive to the geometrical parameters (i.e., position, orientation, and dimensions of the
ellipsoids) than other parameters (i.e., friction, stiffness and damping). Thus, for the
geometrical parameters, the bounds were considered large enough to allow the optimization
to find the best parameters regarding the optimization constraints.

Initial guess

To help the optimization identify physically-meaningful values for the contact parameters,
we used initial guesses for the 39 contact parameters defined in Table 4.5. For the volu-
metric stiffness, volumetric damping coefficient, the dimensions, positions and orientations
of the ellipsoids, the optimal values reported in [21] were used as the initial guess. For the
static and dynamic friction coefficients, 0.40 and 0.35 were assumed as the initial guess,
respectively, since the required friction coefficient for walking is 0.3 [62].

4.3.2 Optimal Control

Solver

To implement the optimal control algorithm, GPOPS-II [128], a direct orthogonal collo-
cation optimal control toolbox for MATLAB, was used. In this approach, the states and
control inputs are parameterized as orthogonal polynomials (in the case of a parameter
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Figure 4.7: The flowchart of direct orthogonal collocation

identification problem, static parameters are added to the set of unknowns). The roots
of those polynomials are considered as the collocation points and a local optimizer (i.e.,
IPOPT) updates the polynomials by increasing the number of the collocation points or
displacing the collocation points until the constraints are met and the cost function is
minimized regarding a prescribed error threshold. IPOPT is an interior-point optimizer
where the constraints are satisfied by a barrier function. In this approach, the differential
equations are considered as algebraic constraints that are satisfied during the optimization.
The flowchart of this optimization method is illustrated in Figure 4.7. To implement this
optimization, we used IPOPT solver in first derivative mode with the tolerance of 1e-5.
Although GPOPS-II contains an adaptive mesh refinement algorithm, we considered a
fixed mesh of 100 collocation points, divided into 20 intervals, over the whole gait cycle to
reduce the computational time. This optimization was done on a desktop computer with
an Intel® Core� i7-6700 CPU @ 3.40 GHz with 16.0 GB RAM.
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Methodology

In our optimal control optimization, the states and control inputs were:

x(t) = [q(t), q̇(t), q̈(t)] (4.6)

u(t) = [
...
q(t), τ (t)] (4.7)

where the states (x(t)) are the generalized coordinates, velocities, and accelerations. The
control inputs (u(t)) are the joint jerks (u1(t) =

...
q(t)) and joint torques (u2(t) = τ (t)).

Considering joint jerks in addition to the joint torques as the control inputs improves
convergence and solution smoothness [182]. In this optimization, the states, control inputs,
and the 39 contact parameters were parameterized and then optimized to minimize a cost
function subject to constraints. The dynamic equations were solved implicitly as algebraic
constraints during the optimization. Implicit dynamic modeling is different from explicit
forward and inverse dynamics modeling approaches [42].

For a human model with a foot-ground contact model, in the inverse approach, dynamic
equations must be explicitly differentiated to estimate the joint torques and GRFMs given
the motion and in the forward approach, dynamic equations must be explicitly integrated
to predict the motion and GRFMs given the joint torques. Although the inverse approach is
relatively fast, unrealistic joint torques may be predicted due to numerical differentiation
errors and inaccurate model parameters [42]. On the other hand, the drawback of the
forward approach is that explicit integration methods are time-consuming. To avoid the
deficiencies of explicit inverse and forward methods, the dynamic equations are implicitly
solved as an algebraic constraint; thus, this is neither a forward nor inverse dynamic
modeling approach.

Constraints

In addition to the constraint described for the trajectory optimization in Section 4.3.1,
three extra constraints were defined for the optimal control optimization:

Rmin ≤ Rpelvis ≤ Rmax (4.8)

ẋ(t) = [q̇(t), q̈(t),u1(t)] (4.9)

Cmin ≤ (τinv.(t)− u2(t))
2 ≤ Cmax (4.10)
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In Eq. 4.8, the residual loads on the pelvis were minimized to ensure dynamic consis-
tency [109]. R represents the two residual forces and one residual moment acting on the
pelvis and the bounds for the residual forces were set to -1 and 1 (N) and for the residual
moment was set to -0.1 and 0.1 (N.m). Eq. 4.9 is the dynamic constraint which repre-
sents the first derivative of states. Eq. 4.10 is the algebraic constraint, in which u2(t) is
the torque control inputs and τinv. is the joint torques inversely obtained by solving the
dynamic equations given the states. Cmin and Cmax were set to 0 and 10−12 to implicitly
satisfy the motion dynamic equations.

Cost Function

In addition to the torque-tracking and GRF-tracking cost terms, considered for the trajec-
tory optimization in Section 4.3.1, two additional terms were included in the cost function
of the optimal control optimization: a motion-tracking term and minimization of the joint
jerk. These two terms cannot be used in the trajectory optimization’s cost function. The
reason is that, in the trajectory optimization, the kinematic inputs are constant and con-
sequently these terms, which are kinematic-based, are always constant and cannot be
minimized. The cost function of the optimal control optimization is as follows:

J =
1

tf

∫
tf

t0

[
w1

6∑
i=1

(
τsim. − τexp.
τmax − τmin

)2

i

+w2

4∑
i=1

(
GRFsim. −GRFexp.
GRFmax −GRFmin

)2

i

+w3

11∑
i=1

(
qsim. − qexp.
qmax − qmin

)2

i

+w4t
6
f

11∑
i=1

(
u1

u1max − u1min

)2

i

]
dt

(4.11)

It should be noted that the magnitude of jerk (around 1e5 Rad/s3) is considerably greater
than the other cost terms; the jerk penalty was scaled by t6f [109]. Minimizing the joint jerks
results in a feasible solution even with a poor initial guess. The minimum and maximum
values of motions and jerks, in the denominators, were obtained from the experimental
data.

Bounds

In trajectory optimization, we can only define bounds for the contact parameters. In the
optimal control optimization, we can define boundaries not only for the contact parameters
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but also for the initial and final times, states at the initial and final times, states and control
inputs during the gait cycle time, and also the integrals of the cost terms. The bounds
for the initial and final times were considered to be fixed and equal to 0 (s) and 0.98 (s),
respectively to match the experimental gait cycle time. The bounds for the generalized
coordinates at initial and final times, and the generalized coordinates and torques during
the gait cycle time, were determined based on the prescribed standard deviation reported
by [18]. The bounds for the contact parameters were set to the bounds used for the
trajectory optimization (Table 4.7). The remainder of the bounds (i.e., on the integrals,
generalized velocities and accelerations at initial and final times and during the gait cycle
time) were tuned regarding the gait experimental data used in this thesis.

Initial guess

The initial guess for time, states, control inputs and the integrals of the cost terms were
set to the data described in Section 4.2 and the initial guess for the contact parameters
were set to the contact parameters reported in [21].

4.3.3 Results and Discussion

Since the number of constraints, variables and cost terms in the optimal control opti-
mization was higher than those in the trajectory optimization, the computation time of
optimal control (11 minutes) was longer than that of the trajectory optimization (6 min-
utes). However, both of our optimizations, in which symbolic dynamic equations are used,
are still more computationally efficient than the equivalent optimizations in which numer-
ical dynamic equations are used [103]. The reason is that in our optimizations, differential
equations were symbolically calculated only once and then called in the optimization pro-
cedure many times while in the numerical optimization equivalent, differential equations
are re-formulated each time they are called, leading to higher computation time.

The values of weighting factors in the cost functions of both optimizations are shown
in Table 4.8. The weights of motion, torque and GRF tracking terms were set to 1/4 to
have the same effects on the results. The weight of the jerk cost term was set to a lower
value (w4 = 1/40) to affect the results less since the jerk term is only for convergence and
solution smoothness. It should be noted that in Eq. 4.5 and Eq. 4.11, the tracking terms
were divided by the range of each quantity (i.e., maximum value - minimum value) to be
dimensionless and comparable.
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Table 4.8: Weighting factor values

Optimization Cost function Weights
trajectory optimization Eq. 4.5 w1 = 1/4 , w2 = 1/4
optimal control Eq. 4.11 w1 = 1/4 , w2 = 1/4 , w3 = 1/4 , w4 = 1/40

Table 4.9: Root-mean-square errors for the trajectory optimization and optimal control

Optimization τhip (N.m) τknee (N.m) τankle (N.m) GRFx (N) GRFy (N) Rx (N) Ry (N) Rz (N.m)
trajectory

optimization
R: 16.46 R: 11.06 R: 17.29 R: 36.42 R: 234.67

94.35 349.03 18.12
L: 18.07 L: 11.18 L: 17.09 L: 36.60 L: 232.46

optimal
control

R: 0.42 R: 0.35 R: 0.66 R: 19.81 R: 26.49
0 0 0

L: 0.42 L: 0.35 L: 0.66 L: 8.33 L: 26.38

Rx, Ry and Rz represent the residual forces and torque on the pelvis. R and L refer to right and left legs.

The resultant joint torques and GRFs from the trajectory and optimal control opti-
mizations are shown in Figure 4.8 and Figure 4.9, respectively. The simulated results from
the optimal control optimization (second columns in Figure 4.8 and Figure 4.9) were mostly
within ± 1 standard deviation of the experimental data. The simulated results from the
trajectory optimization (first columns in Figure 4.8 and Figure 4.9) were not as accurate
as the results from the optimal control. The root-mean-square errors (RMSEs) of joint
torques and GRFs are shown for trajectory optimization and optimal control in Table 4.9.

The geometries of the ellipsoids obtained from the trajectory optimization and optimal
control are shown in Figure 4.10 and Figure 4.11, respectively. The geometry information
of the left foot, in these two figures, are listed in Tables 4.10 and 4.11, respectively. The
ellipsoids of the left and right feet have the same dimensions but are bilaterally symmetric.
The optimized ellipsoids from the optimal control matched the geometry of the foot better
than those from the trajectory optimization.

Table 4.10: The optimized geometry parameters for the left foot from trajectory optimiza-
tion

ellipsoid
dimensions

(mm)
orientations

(degree)
positions

(mm)
a b c γ β α rx ry rz

toe 11.4 46.4 14.8 -46.3 -21.4 151.3 153.5 10.0 23.5
ball 137.7 22.6 3.9 -74.6 -3.9 -89.2 88.2 4.2 -6.0
heel 37.4 35.8 21.3 -79.1 -28.3 -91.7 -4.7 -3.7 0
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Figure 4.8: The lower extremity joint torques from trajectory optimization (first column)
and optimal control (second column) (The dotted lines represent the mean experimental
torques and the gray areas show ± 1 standard deviations of the mean experimental torques
reported by [18])
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Figure 4.9: The tangential and normal ground reaction forces from trajectory optimiza-
tion (first column) and optimal control (second column) (The dotted lines represent the
mean experimental GRFs and the gray areas show ± 1 standard deviations of the mean
experimental GRFs reported by [18])
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Figure 4.10: The optimized contact model geometry from trajectory optimization

Figure 4.11: The optimized contact model geometry from optimal control
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Table 4.11: The optimized geometry parameters for the left foot from optimal control

ellipsoid
dimensions

(mm)
orientations

(degree)
positions

(mm)
a b c γ β α rx ry rz

toe 11.8 20.0 11.0 -47.3 -29.5 152.5 145.4 18.3 23.5
ball 80.0 21.8 17.9 -57.0 -18.0 -95.5 67.5 8.9 -6.0
heel 24.5 30.0 13.5 -68.9 -17.2 -91.6 -21.2 11.6 0.0

Table 4.12: The optimized contact parameters from trajectory optimization

toe ball heel
kv (N/m3) 1.67e7 1.04e7 0.07e7
av (s/m) 0.9161 0.6881 1.4732
µs 0.0200 0.6256 0.2207
µd 0.0139 0.4245 0.1592

The remainder of the contact parameters optimized through the trajectory optimization
and the optimal control are in Table 4.12 and Table 4.13, respectively. Each parameter
has different values for the three different ellipsoids due to the complex structure of foot.
In particular, the human foot consists of 33 joints, 26 bones, 19 muscles and 107 ligaments
surrounded by tissue and the different sections of this tissue have different mechanical
properties (e.g., roughness and thickness).

Since the center of pressure is much closer to the fore-foot than the toe and heel (i.e.,
the ball ellipsoid is more in contact with the ground than the heel and toe ellipsoid) during
gait, the ball ellipsoids play a more important role in generating the normal GRF, and
also avoiding slippage, than the toe and heel ellipsoids. The optimal control optimization
identified the largest values for the penetration volume and the dynamic friction coefficient
of the ball ellipsoids among the three ellipsoids (see Figure 4.11 and Table 4.13). Further-
more, the optimal control optimization identified the lowest and greatest values for the

Table 4.13: The optimized contact parameters from optimal control

toe ball heel
kv (N/m3) 4.60e7 0.12e7 0.95e7
av (s/m) 0.0654 3.0000 2.1490
µs 0.0102 1.2000 0.1765
µd 0.0100 1.1871 0.1121
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volumetric stiffness and damping of the ball ellipsoids, respectively, that proves that the
ball ellipsoids also have a larger effect on the smoothness of the normal GRFs than the toe
and heel ellipsoids.

However, the geometry of the ball ellipsoids, identified in the trajectory optimization,
was not as expected. As shown in Figure 4.10, the ball ellipsoids did not have an adequate
penetration volume to create the normal GRFs. To compensate, the heel and toe ellip-
soids had unnatural geometries and large penetration volumes, which did not succeed in
generating accurate GRFs.

Another reason behind the inaccurate tangential GRFs from the trajectory optimiza-
tion would be the methodology used (explicit inverse dynamics simulation). The friction
in our foot-ground contact was generated by a continuous velocity-based friction model. It
is difficult for a velocity-based friction model to stay in the sticking regime in an inverse
simulation, because any small errors in the experimental velocities (measurement or cal-
culation errors) may lead to large errors in the friction force due to the high sensitivity
of friction force to velocity [20]. However, our optimal control optimization, which used
implicit dynamics simulation, resulted in a small level of error in the velocity and conse-
quently more accurate tangential GRFs. In the implicit dynamic simulation, the error of
the velocity can be controlled better than the explicit inverse dynamics simulation since
the joint jerks were considered as a control input and minimized as a cost term and joint
torques were also assumed as control inputs driving the model.

Optimal control is more suitable than trajectory optimization to identify a large num-
ber of parameters because if some experimental data are not available for being tracked,
they can be predicted through the optimal control approach. This optimization provides
this possibility for us to track not only the torques, but also the motions for which no
experimental data were available.

In the optimal control optimization, the states (i.e., motion and its first and second
derivatives) and control inputs (i.e., torques and the third derivative of motion) were
parameterized and then estimated through the optimization. Therefore, the absence of
the experimental angle and torque for the metatarsal joints and experimental GRMs and
center of pressure for the feet were compensated by the predictability feature of the direct
collocation method. Figure 4.12 shows the simulated joint angles obtained by the optimal
control optimization. Since the simulated joint angles and joint torques, for which the
experimental data were available, tracked the corresponding experimental data very well,
the optimal control optimization could predict physiologically meaningful values for the
angles and torques of the metatarsal joints, for which no experimental data were available.

Predicted metatarsal torques and angles are shown in Figure 4.8 and Figure 4.12,
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respectively. Unlike the resultant torques and angles for the hip, knee and ankle joints,
the resultant torques and angles for the right and left metatarsals are less symmetric. One
reason for this is that the metatarsal torques and angles were fully predicted; we did not
have any experimental data of them to track in the optimization. The other reason is that
we did not have a strong (i.e., experimental-data-based) initial guess for the metatarsal
angles and torques of our subjects.

In the trajectory optimization, the inputs (i.e., motion and its first and second deriva-
tives) were the fixed data measured or calculated from experimental results. Thus, since
the third derivatives of motion were always fixed, they could not be minimized unlike the
optimal control optimization, in which joint jerks were minimized. Moreover, in the trajec-
tory optimization, unlike the optimal control optimization, no boundaries could be defined
for the torques and GRFs to lead them to have meaningful values, and also there was no
control on the torques that were constrained to satisfy the inverse dynamics.

Another shortcoming of the trajectory optimization is that no path constraints on the
outputs could be applied. Therefore, the residual loads on the pelvis could not be reduced
to zero thereby causing inaccurate joint torques to be estimated by the optimization.
Figure 4.13 shows the residual forces and moments obtained by the trajectory optimization
and the optimal control optimization; The corresponding RMSEs are shown in Table 4.9.

4.4 Contact, Segment, and Joint Parameter Identifi-

cation Using Optimal Control

The results presented in Section 4.3.3 illustrate that optimal control is more efficient than
trajectory optimization in identifying the large number of parameters of the 3D ellipsoidal
volumetric contact model. However, in the optimal control approach, there are still a few
gaps that should be filled to get more accurate GRF results.

In this section, we fill in the gaps of the optimal control approach by adding some
constraints along with identifying some of the segment and joint properties. Using these
modifications, we estimate more accurate GRFs and a more natural motion than those
estimated by the approaches discussed in Section 4.3.
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Figure 4.12: The lower extremity joint angles from optimal control (The gray areas in
the plots of hip, knee and ankle joint angles represent the mean experimental angle data
with the specified standard deviations reported by [18] and the gray lines in the plots of
metatarsal angles represent the trajectory we planned and considered as the initial guess
for the optimization)
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Figure 4.13: The residual forces and moment acting on the pelvis obtained from trajectory
optimization (first column) and optimal control optimization (second column)
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Table 4.14: Bounds on body and joint parameters

parameter lower bound upper bound parameter lower bound upper bound
mass (kg) 0.5SMi 1.5SMi stiffness (Nm/Rad) 0 3Ki

moment of inertia (kgm2) 0.5MOIi 1.5MOIi damping (Nm/Rad/s) 0 3Bi

center of mass (m) 0.5COMi 1.5COMi

The index i denotes the initial values that were determined in Section 4.1.1.

4.4.1 Modifications

Body and Joint Property Identification

In the new approach, in addition to 39 contact parameters, 25 more parameters were con-
sidered as optimization parameters and identified through the optimal control identification
optimization: 12 of these 25 parameters include the masses and moments of inertia of the
HAT, thigh, shank, hind-foot, fore-foot and toe segments; 5 of them are the mass centers of
the thigh, shank, hind-foot, fore-foot and toe segments; And the 8 remaining parameters
are the spring stiffness and damping coefficient of the hip, knee, ankle, and metatarsal
joints. To identify these 25 optimization parameters for our child model, we considered
relatively large and physically-meaningful bounds. Table 4.14 shows the lower and upper
bounds for the segment parameters (mass (SM), moment of inertia (MOI), center of mass
(COM)), and joint parameters (spring stiffness (K) and damping coefficient (B)).

The mass properties of the body segments, including mass, moment of inertia, and
center of mass, were extracted from [186] and scaled for the model using the average mass
and height of the 20 healthy child subjects, as described in Section 4.1.1. Since the mass
properties are roughly approximated by scaling, the motion prediction would be more
accurate if the mass properties are tuned/identified in addition to the contact parameters
through the optimal control identification optimization.

The joint properties, including spring stiffness and damping coefficient, were extracted
from [171], as described in Section 4.1.1. The values reported for the spring stiffness and
damping coefficient in [171] have been estimated given the experimental gait data for the
four healthy adult subjects. However, the focus of our study is on child subjects. Thus, the
results would be more natural if joint properties are also identified for the child subjects
through the optimal control identification optimization.
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Constraint on Normal Reaction Force of Each Ellipsoid

In Section 4.3, no constraint was defined on the simulated GRFs. They were only imposed
to track the experimental GRFs through the cost function.

The net normal GRF of a foot is calculated by summing the normal GRFs produced
by the three ellipsoids of that foot. Since the contact between the foot and the ground is
unilateral (i.e., normal GRF is always positive), the normal GRF of each ellipsoid must
be constrained to be positive during the walking in order to have a physically-meaningful
contact model. Thus, in the new approach, six additional path constraints were applied
to the optimal-control optimization to constrain the six normal GRFs which are produced
by the six ellipsoids, to be always positive.

Implicit Dynamics Error Reduction

In the optimal control optimization, implicit dynamic equations are satisfied as the path
constraints expressed in Equation 4.10. However, at some iterations of the optimization,
this constraint was not satisfied, which violates the predefined bounds (i.e., [0,10−12]). To
resolve this issue, we added an extra cost term to the cost function to minimize the implicit
dynamics for the 8 DOFs of the legs:

J =
1

tf

∫
tf

t0

[
w5

8∑
i=1

(
τinv. − u2
τmax − τmin

)2

i

]
dt (4.12)

Residual Load Reduction

In addition to the violation of the implicit dynamics path constraint, we saw a similar
violation in the path constraint on residual forces and torque (Equation 4.8). Thus, in
the new approach, another cost term was added to enforce the three residual loads to be
minimized:

J =
1

tf

∫
tf

t0

[
w6

3∑
i=1

(
Rpelvis

Rmax −Rmin

)2

i

]
dt (4.13)
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Table 4.15: The body properties tuned through the new approach

HAT thigh shank toe forefoot hindfoot

mass (kg)
initial 28.1 4.14 1.93 0.0858 0.257 0.257
tuned 26.2 6.21 1.21 0.0429 0.224 0.129

moment of inertia (kgm2)
initial 1.24 0.0494 0.0230 0.32e-4 4e-4 4e-4
tuned 1.24 0.0247 0.0184 0.32e-4 4e-4 4e-4

center of mass (mm)
initial - 155.9 156.6 31.6 47.7 32.0
tuned - 133.8 91.6 18.8 66.9 21.7

Although Eq. 4.12 and Eq. 4.13 seem equivalent, we need both to help the optimiza-
tion solver to find the optimal solution faster and more accurately. Furthermore, our
optimization, tracking the mean experimental data of 20 children, may generate higher
residual forces and torques than the optimizations tracking subject-specific experimental
data. Thus we need Eq. 4.13 to minimize the residual loads.

4.4.2 Results and Discussion

This optimization was done on a desktop computer with an Intel® Core� i7-6700 CPU @
3.40 GHz with 16.0 GB RAM. To find the optimal solution subject to the constraints, the
new approach took 5 hours, which is considerably longer than the computation time of the
previous optimal control approach (11 minutes). The main reason is that the modifications
of the new approach made the optimization more constrained than the optimal control
approach described in Section 4.3.2. The new approach has six extra path constraints and
two extra cost terms. Furthermore, the new approach required the identification of 25
more parameters, for a total of 64 parameters to be identified.

The weighting factors of the two new cost terms were set to 1/4 (i.e, w5 = 1/4 and
w6 = 1/4) and the remaining weighting factors were kept unchanged. Table 4.15 and
Table 4.16 show the identified values for the 17 body parameters and 8 joint parameters,
respectively.

The identified body parameters did not vary significantly compared to the initial val-
ues, and the identified values are still within the physiologically-meaningful ranges. For
instance, the sum of the identified mass values (41.80 kg) is close to the average mass of the
subjects (41.40 kg), and it is within ± 1 standard deviation (i.e., 41.40± 15.5 kg) reported
for the child subjects by [18].

Regarding the stiffness, the identified values for hip, knee, and ankle did not vary signif-
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Table 4.16: The joint properties tuned through the new approach

hip knee ankle metatarsal

stiffness (Nm/Rad)
initial 2.89 1.59 6.039 6.039
tuned 2.96 1.77 6.596 9.031

damping (Nm/Rad/s)
initial 3e-4 2.98 3.68 3.68
tuned 4e-4 0.189 0 5.51

icantly compared to the initial values. The initial values were set to the minimum stiffness
values reported for adults in [169]. To provide stability, adults have higher stiffness at joints
than children during challenging balance tasks like gait [22]. Thus, it is physiologically-
meaningful that the tuned values for our child subjects are close to the minimum stiffness
values for adults. On the other hand, for the stiffness of the metatarsal joints, a higher
value was identified than its initial value. To the best of our knowledge, there is no stiffness
value reported for the metatarsal joint in the literature, and thus no basis to validate the
tuned values. However, the high stiffness value can be justified as the metatarsal joint
should be stiffer than the other joints to stabilize its motion.

Regarding the damping coefficient, the identified values for hip, knee, and ankle are
equal to or less than the initial values. The initial values were set to the minimum damping
coefficients reported for adults in [169]. Since adults’ joints have higher damping than
children [22], the identified values would be physiologically-meaningful. On the other
hand, a high value was identified for the damping coefficient of the metatarsal joint, which
is necessary for reducing oscillations in response to external perturbations.

The geometries of the ellipsoids, identified through the new approach, are shown in
Table 4.17 and Figure 4.14, and the remainder of the identified contact parameters are
shown in Table 4.18. The dimensions, positions, and orientations of the ellipsoids did not
vary significantly, except for the toe ellipsoid dimensions (i.e., the toe ellipsoid volume).
On the other hand, the friction coefficient of the toe ellipsoid, identified through the new
approach, has a higher value than the value identified through the optimal control approach.
These two modifications on the toe ellipsoid seem necessary for the GRFs to better match
the experimental data.

Regarding the friction coefficients in the previous optimal control approach, the friction
of the ball ellipsoid was considerably larger than the other ellipsoids to compensate for the
low friction values identified for the toe and heel ellipsoids. However, in the new approach,
heel and toe ellipsoids even have higher friction coefficients than the ball ellipsoid. When
the heel of one foot and the toe of the other foot are in contact with the ground (i.e., at
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Table 4.17: The optimized geometry parameters for the left foot from the new approach

ellipsoid
dimensions

(m)
orientations

(degree)
positions

(m)
a b c γ β α rx ry rz

toe 0.0177 0.0300 0.0165 -33.38 -28.89 155.39 0.1632 0.0041 0.0235
ball 0.0800 0.0206 0.0179 -58.49 -12.45 -89.10 0.0675 0.0089 -0.0060
heel 0.0309 0.0400 0.0135 -83.00 -20.36 -91.08 -0.0256 0.0035 0.0003

Figure 4.14: The optimized contact model geometry from the new approach

Table 4.18: The optimized contact parameters from the new approach

toe ball heel
kv (N/m3) 0.75e7 2.40e7 1.54e7
av (s/m) 1.1355 1.89e-5 2.4271
µs 0.3404 0.0101 0.1703
µd 0.2819 0.0100 0.1686
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Figure 4.15: The tangential and normal ground reaction forces from the new approach
(The gray areas show ± 1 standard deviations of the mean experimental GRFs reported
by [18])

the end of the stance phase), more friction is required for toe and heel ellipsoids than the
ball ellipsoid to provide a stable motion since the contact area is small at that time.

Figure 4.15 shows the resultant GRFs obtained using the new approach. As previously
shown in Figure 4.9, the tangential force of the right foot obtained from the optimal control
approach does not match the experimental GRF at the end of the stance phase. However,
in the new approach, since the size and friction coefficient of the toe ellipsoid were modified,
the obtained tangential force for the right foot is in good agreement with the experimental
data. The RMSE for the tangential force of right and leg feet are 3.37 N and 2.71 N,
respectively, which are about 75% less than the RMSE of the optimal control approach.
The RMSE for the normal force of right and left feet are 9.94 N and 10.72 N, respectively,
which are 60% less than the RMSE of the previous optimal control approach.

4.5 Conclusion

In this chapter, a 2D human model was developed, and the 3D ellipsoidal volumetric con-
tact was applied on both feet. The dynamic equations of the multibody model and the
contact equations were developed symbolically. We employed two different approaches
to identify the contact parameters: GlobalSearch trajectory optimization and direct col-
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location optimal control. Finally, a third approach was introduced in which the second
approach (i.e., optimal control) was modified by adding some constraints and identifying
some of the mass and joint properties.

We presented a computationally efficient symbolic ellipsoidal volumetric foot-ground
contact model that simulates more accurate normal and tangential reaction forces than
previous volumetric models [21]. The results showed that for parameter identification,
especially when not all the experimental data are available, optimal control with implicit
dynamics is more accurate than the trajectory optimization with inverse dynamics.

We showed that in addition to the contact parameters, the mass and joint properties of
the subjects should be identified through the optimization. Since the experimental data of
those subjects are tracked in the optimization, the identified values for the mass and joint
properties would be more realistic than the initial values estimated from the literature.

For the trajectory optimization, the root-mean-square errors of the resultant tangential
and normal ground reaction forces were 36.51 (N) and 234.57 (N). For the optimal control,
these errors were 14.07 (N) and 26.44 (N), respectively, and for the third approach, they are
3.04 (N) and 10.33 (N). Although the optimal control approach’s errors are considerably
lower than those from the trajectory optimization, the errors of the tangential and normal
forces from the third approach are 75% and 60% less than the errors from the optimal
control approach, respectively. Therefore, the third approach could estimate the most
realistic contact parameters among the three approaches. For all child gait simulations
in the remainder of the thesis, we will use direct collocation optimal control in which the
contact parameters, mass and joint properties are assumed constant and set to the values
identified using the third approach in this chapter.
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Chapter 5

Muscle-Torque-Generator Model
Development For Child Gait

To obtain a physiologically-meaningful prediction for human gait, it is necessary to have a
more accurate model than the SK model described in Chapter 4. Although the SK model
can be upgraded to a more detailed MSK/NMSK model, some details are not required
for this study since joint contact forces (or, muscle forces) do not play an important role.
Furthermore, it is challenging to fit a detailed MSK/NMSK to specific subjects. Thus, we
upgraded our SK model by adding a reduced muscle model that can more easily fit specific
subjects than the detailed muscle models do. In our upgraded model, joints are actuated
by groups of agonist and antagonist muscle torque generators (MTGs) [69, 114].

The following chapter is divided into three main sections: (5.1) Muscle-Torque-Generator
Model, (5.2) Musculoskeletal Model and (5.3) Neuromusculoskeletal Model. In the Muscle-
Torque-Generator Model section, the MTG model used for our child model was introduced.
The MTG parameters were fitted to the child model considering the experimental child
gait motion data. In the Musculoskeletal Model section, an activation-to-torque model was
developed to actuate the joints. The musculoskeletal geometry and muscle contraction dy-
namics of the MSK model were represented by an MTG model. The MTG parameters
were set to the identified values from Section 5.1. The MSK model was used to investigate
whether the fitted MTGs can generate motion, torques, and GRFs consistent with the
experimental child data. In the Neuromusculoskeletal Model section, an EMG-to-torque
model was developed to actuate the joints. The muscle activation dynamics were added to
the MSK model of Section 5.2 and the parameters associated with the muscle activation
dynamics were identified for the child model. Our proposed NMSK model enabled us to
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predict the muscle excitations and estimate the cost of transport (i.e., metabolic energy
consumed per unit body mass per unit distance traveled) with a good approximation.

Child gait analyses are required for paediatric rehabilitation and design of wearable
robotic systems for children [142] in the future. The main contribution of this chapter is to
generate simplified but accurate MSK and NMSK models that best fit children and would
support the design of wearable robotic systems for children. The parameters identified in
this chapter will be used in the next chapters to predict physiologically-meaningful motion,
torque, ground reaction forces (GRFs), and muscle excitations for child gait.

5.1 Muscle-Torque-Generator Model

To generate an anatomically-simplified muscle model, we used the MTG model recently
developed by Millard et al. [114]. In their model, each joint is actuated by agonist and
antagonist pairs of MTGs that have no co-contractions. A single MTG torque (τM) is the
sum of active torque (τMactive) and passive torque (τMpassive):

τM(a, θ, θ̇) = τMactive(a, θ, θ̇) + τMpassive(θ, θ̇) (5.1)

where a, θ and θ̇ are muscle activation, joint angle and angular velocity, respectively. The
τM obtained from Eq. 5.1 is always positive. Passive torque is produced by muscle tissue,
tendons and ligaments when they are stretched. Active torque is produced by groups of
agonist and antagonist muscles acting about a specific moment arm [7]. The active and
passive torques are modelled as:

τMactive(a, θ, θ̇) = τM0

(
a tA(θ) tV (θ̇)

)
(5.2)

τMpassive(θ, θ̇) = τM0

(
tP (θ)

(
1− βP θ̇

ωMmax

))
(5.3)

where τM0 is the maximum isometric torque of the subject. tA, tV and tP are the normalized
active-torque-angle, active-torque-angular-velocity and passive-torque-angle curves of the
muscle, respectively, that are reported in [7, 71, 114]. These curves are called “characteristic
curves” since they are dependent on geometric properties of muscles and they vary from
muscle to muscle. βP and ωMmax are the damping term and maximum angular velocity

of MTG, respectively. The nonlinear damping term (i.e., 1 − βP θ̇

ωMmax
) is included in the

passive torque to suppress vibration.
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By substituting Eq. 5.2 and Eq. 5.3 for τMactive and τMpassive in Eq. 5.1, τM(a, θ, θ̇) can be
written as:

τM(a, θ, θ̇) = τM0

(
a tA(θ) tV (θ̇) + tP (θ)

(
1− βP θ̇

ωMmax

))
(5.4)

In this MTG model, characteristic curves are defined as 5th-order Bézier curves that
are continuous to the second derivative. Thus, this MTG model can be consistent with
gradient-based optimization that is used in our study. The characteristic curves can be fit-
ted to a specific subject by changing the control points of Bézier curves. However, Millard
et al. [114] modified the curves’ equations with additional parameters that transform the
curves. Thus, to fit the MTG model to a specific subject, they have identified the param-
eters through an optimization rather than directly changing the control points of Bézier
curves. The characteristic curves, modified by transformation parameters, are considered
as:

tA(θ, sA, λA) = λA + (1− λA)tA
(

(θ − θ0)/sA + θ0

)
(5.5)

tV (θ̇, sV , λV ) = λV + (1− λV )tV (θ̇/sV ) (5.6)

tP (θ,∆P , λP ) = (1− λP )tP (θ −∆P ) (5.7)

where sA, λA, sV , λV ,∆P , λP are the transformation parameters that are called “fitting pa-
rameters”. By substituting the modified curves in Eq. 5.4,

τM(a, θ, θ̇,Γ) = sτ τM0

(
a tA(θ, sA, λA) tV (θ̇, sV , λV ) + tP (θ,∆P , λP )

(
1− βP θ̇

sV ωMmax

))
(5.8)

can be obtained. In addition to the six fitting parameters above-mentioned, an extra fitting
parameter (i.e., sτ ) is also used in Eq. 5.8 to scale the maximum isometric torque of the
subject. Thus, there exists a total of seven parameters in the MTG model:

Γ = {sτ , sA, λA, sV , λV ,∆P , λP} (5.9)

These parameters are physically-meaningful, and they can be perceived as muscle proper-
ties since altering them alters the muscle properties directly. If the value of sτ increases,
the cross-sectional area of the muscle or the moment arm of the joint may increase. In-
creasing parameters sA and sV is equivalent to increasing the optimal fiber length of the
muscle, or equivalently, decreasing the moment arm of the muscle. Parameters ∆P and λP
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adjust the muscle flexibility. The remaining parameters (i.e.,λA and λV ) have been defined
to ensure that tA and tV always have non-zero values and consequently, a will never be
omitted from the MTG model.

Millard et al. [114] have verified their approach by fitting these parameters to a 35-
year-old male subject stooping to pick up a box. They have extracted the preliminary
characteristic curves from [7, 71, 74] including some elite athletes’ dynamometry data.
They have fitted the curves to the 35-year-old male subject by identifying the fitting
parameters through an optimization. In this optimization, Π = [sτ , sA, sV ,∆P , λP ] were
included as the optimization variables. Vector Π0 = [1, 1, 1, 0, 0] was considered as the
initial guess for the optimization variables. The optimization variables were enforced to be
as close as possible to the initial guess using the cost function:

(Π−Π0)W (Π−Π0)
T (5.10)

where W is the weighting matrix for which the diagonal elements are 1. The remaining
fitting parameters (i.e., λA and λV ), were excluded from the identification process and they
were set to a constant value (i.e., 4

√
ε) where ε = 2.22× 10−16.

Our aim is to modify Millard’s MTG model to fit our child model. We found Mil-
lard’s MTG model well suited for our aim since their MTG model is compatible with
gradient-based optimization that is used in our research. Furthermore, Millard’s MTG
model includes fitting parameters that can be more easily adapted to a child model than
the control points of the Bézier curves.

5.1.1 Muscle-Torque-Generator Parameter Identification

To adapt Millard’s MTG model to our child model, we developed a direct orthogonal
collocation optimal control. We identified all the fitting parameters for the child model
regarding the child subjects’ experimental gait data. To implement this optimization,
we used the IPOPT solver in first derivative mode with the tolerance of 1e-5. Although
GPOPS-II contains an adaptive mesh refinement algorithm, we considered a fixed mesh
of 100 collocation points, divided into 20 intervals, over the whole gait cycle to reduce the
computation time. This optimization was done on a desktop computer with an Intel®

Core� i7-6700 CPU @ 3.40 GHz with 16.0 GB RAM.

For the metatarsal joint, dynamometry data is not easily measurable, and there is no
characteristic curve reported for the metatarsal joint in the literature. Thus, in this study,
the metatarsal joints were kept torque-driven and MTGs were employed only for the hip,
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knee, and ankle joints, and the fitting parameters were identified for them. To decrease
the computational time of the identification process, we identified the fitting parameters
only for the MTGs of the right leg since our human model is bilaterally symmetric. Then,
the same identified parameters for the right leg were used to generate MTGs for the left
leg.

Methodology

In this optimal control approach, states and control inputs are set as:

x(t) = [θ(t), θ̇(t)] (5.11)

u(t) = [θ̈(t)] (5.12)

where x(t) includes angles and angular velocities of right hip, knee and ankle joints. u(t)
includes angular accelerations of right hip, knee and ankle joints. There are 6 MTGs in this
model. Each joint is activated by a pair of an agonsit (i.e., flexor) MTG and an antagonist
(i.e., extensor) MTG that have no co-contraction.

Each MTG was modeled using Eq. 5.8, which includes 7 fitting parameters (Γ =
{sτ , sA, λA, sV , λV ,∆P , λP}). In total, there are 42 parameters (6 MTGs × 7 fitting pa-
rameters) that we identified for the child model.

The remaining parameters of Eq. 5.8 (i.e., βP and ωMmax) were set to constant values;
Parameter βP was set to 0.1 for all MTGs [113] and parameter ωMmax was set to the values
reported for adults in [114]:

ωMmax = {9.0234, 9.1804, 19.2161, 16.6330, 11.7646, 17.2746} (rad/s2) (5.13)

that are for hip extensor, hip flexor, knee extensor, knee flexor, ankle extensor, and ankle
flexor, respectively. Although these values are for adults, ωMmax is implicitly tuned for the
child model by identifying sV .

Constraints

Four constraints are required to be satisfied at each time step of this optimization. To
constrain the dynamic of the optimization,

ẋ(t) = [θ̇(t),u(t)] (5.14)
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was imposed. This constraint generates the first derivatives of the states. To make the
MTGs physiologically-meaningful,

τM(amax, θ, θ̇,Γ)− τMexp.(t) ≥ 0 (5.15)

τMexp.(t)− τM(amin, θ, θ̇,Γ) ≥ 0 (5.16)

tPmax − tP (θ,∆P , λP ) ≥ 0 (5.17)

were imposed to each MTG, separately. Eq. 5.15 constrains the MTGs generated with the
maximum activation to be not less than the experimental torques. Eq. 5.16 constrains the
MTGs generated with the minimum activation to be not greater than the experimental
torques. Eq. 5.17 constrains the normalized passive-torque-angle curve to be not greater
than its feasible upper-bound (i.e., 1.4 [191]).

τMexp. in Eq. 5.15 and Eq. 5.16 is not the τexp. but the flexor and extensor components of
τexp.. When the constraint is imposed to a flexor MTG, τMexp. in the constraint is the flexor
component of the τexp.:

τMexp.(t) = τ flx.exp.(t) =

{
τexp.(t) τexp.(t) ≥ 0

0 τexp.(t) < 0
(5.18)

and when the constraint is imposed to an extensor MTG, τMexp. in the constraint is the
extensor component of the τexp.:

τMexp.(t) = τ ext.exp.(t) =

{
−τexp.(t) τexp.(t) ≤ 0

0 τexp.(t) > 0
(5.19)

In this way, we can split up the experimental torque into a flexor component and an
extensor component assuming that there is no co-contraction between them:

τexp.(t) = τ flx.exp.(t) +
(
− τ ext.exp.(t)

)
(5.20)

It should be noted that Eq. 5.18 and Eq. 5.19 can be used to split up τexp. into flexor/extensor
components if the joint flexes about the positive axis of the joint coordinate system re-
garding the right-hand-rule convention. If the joint flexes about the negative axis, Eq. 5.18
will give the extensor components and Eq. 5.19 will give the flexor components.

96



Table 5.1: Bounds on the fitting parameters

parameter bound parameter bound
sτ [1e− 4 2] λV [1e− 6 0.99]
sA [0.1 10] ∆P [−1 1]
λA [1e− 6 0.99] λP [0 0.99]
sV [0.1 10]

Bounds

The bounds for the states and control inputs were defined considering the experimental
data. The bounds for the fitting parameters, shown in Table 5.1, were defined to include
all the possible values for the parameters which make Eqs. 5.5-5.7 feasible. The bounds of
each MTG were assumed to be identical.

Although sτ is the coefficient of τM0 and its main role is to scale τM0 , this parameter also
affects scaling the characteristic curves. Considering a large bound for sτ may cause the
optimization to find a value for sτ that unrealistically scales both τM0 and the characteristic
curves. To avoid this issue, we scaled τM0 of adults given the body mass and body height
of our child model and the adult subject:

τM0ch =
BMch BHch

BMa BHa

τM0a (5.21)

where τM0a , BMa, and BHa are the τM0 , the body mass, and height of an adult, respectively,
extracted from [7]. BMch and BHch are the mass and height of our child model. We
substituted τM0ch for τM0 in the MTG equations of our child model. Using this approach, we
can assume a small bound for sτ scaling only τM0 without largely affecting the characteristic
curves.

Initial Guess

The initial guess for time, states, and control inputs were defined regarding the child
experimental data, and the initial guesses for the fitting parameters were set to

Γinitial = {1, 1, 4
√
ε, 1, 4
√
ε, 0, 0} (5.22)

that allow Eqs. 5.5-5.7 to give the initial adult curves. In other words, if Γinitial is substi-
tuted for the paramters in Eqs. 5.5-5.7, the right-hand-side of the equations will give tA(θ),
tV (θ̇) and tP (θ), respectively.
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Table 5.2: The identified MTG fitting parameters

MTG
sτ

(1)∗
sA

(1)

λA

( 4
√
ε)

sV

(1)

λV

( 4
√
ε)

∆P

(0◦)

λP

(0)

hip ext. 0.9995 0.9801 0.0042 1.0915 0.0078 0 0.0032
hip flx. 1.0067 1.0013 0.0037 1.3149 0.0118 0.2292 0.0032
knee ext. 1.0012 0.9159 0.0045 1.1222 0.0111 0 0.0032
knee flx. 1.0026 0.9765 0.0036 1.0505 0.0049 0 0.0032
ankle ext. 0.9999 1.0032 0.0036 1.0301 0.0034 4.2571 0.0030
ankle flx. 1.0015 1.0127 0.0034 1.0246 0.0044 0 0.0032

∗ The values inside () are the initial values.

Cost Function

The cost function to identify the fitting parameters for the child model consists of two cost
terms:

J = w1

42∑
i=1

(
Γ− Γinitial

Γmax − Γmin

)2

i

+ w2

∫
tf

t0

6∑
i=1

(
xsim. − xexp.
xmax − xmin

)2

i

dt (5.23)

where Γmax and Γmin were set to the upper and lower values of the feasible bounds assumed
for the fitting parameters; xexp., xmax and xmin were extracted from the experimental
motion data. The first cost term enforces the fitting parameters to be as close as possible
to the initial guess to avoid underlying changes in the equations of the characteristic curves.
The second cost term allows the simulated motion to track the experimental motion and
ensure that the identified parameters (and consequently the fitted MTGs) can be used for
our child gait simulation. The weights w1 and w2 were set to 0.001 and 1, respectively. w1

was considered to be significantly less than w2 to let the optimization identify parameters
depending more on the child experimental motion than the adults’ characteristic curves.

5.1.2 Results and Discussion

The optimization tracked the experimental hip, knee, and ankle angles with very low RM-
SEs (i.e., 0.46, 0.81, and 0.45 degrees, respectively), and identified the 42 fitting parameters
of the right-leg MTGs. The identified values are shown in Table 5.2. To verify the identified
values, we did two assessments.

For the first assessment, we plotted τMexp. with respect to θ to ensure that it falls inside
the isometric envelope. If τMexp.(θ) falls inside the isometric envelope, it means that the
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demanded torque is within the feasible area, and the fitted MTGs can generate it. The
isometric envelope is composed of an upper limit and a lower limit. The upper limit is the
fitted active-torque-angle characteristic curve:

τMA = sτ τM0 tA(θ, sA, λA) (5.24)

and the lower limit is the fitted passive-torque-angle characteristic curve:

τMP = sτ τM0 tP (θ,∆P , λP )
(

1− βP θ̇

sV ωMmax

)
(5.25)

Figure 5.1 shows that the torques demanded by the child gait have fallen inside the
isometric envelopes.

For the second assessment, we plotted the demanded active torque with respect to θ̇
to examine if it is greater than zero and if it is limited by the fitted active-torque-angular-
velocity characteristic curve. The demanded active torque was calculated using:

τMAct. = τMexp. − sτ τM0 tP (θ,∆P , λP )
(

1− βP θ̇

sV ωMmax

)
(5.26)

and the fitted active-torque-angular-velocity characteristic curve is:

τMV = sτ τM0 tV (θ̇, sV , λV ) (5.27)

Figure 5.2 shows that the active torques demanded by the child gait have been limited by
the fitted active-torque-angular-velocity curves. Since the two assessments were satisfied,
we can claim that the identified fitting parameters are feasible, and consequently, they can
be used in child gait modeling.

5.2 Musculoskeletal Model

An MSK model includes two main parts: a muscular model and an SK model. The muscu-
lar model is an activation-to-torque model that can be developed as either an anatomically-
detailed or anatomically-simplified model based on the purpose of the research. In the
anatomically-detailed muscular model, muscle contraction dynamics and musculoskeletal
geometry are developed in detail, and there are many subject-specific parameters that
should be identified. In the anatomically-simplified muscular model, muscle torque gen-
erators (MTGs) are used to actuate joints. As shown in Figure 5.3, muscle contraction
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Figure 5.1: The feasible areas for the demanded torques. (The black curves are the de-
manded torques and the light gray areas are infeasible. The upper and lower dark gray
curves are the fitted active-torque-angle and passive-torque-angle curves, respectively)
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Figure 5.2: The feasible areas for the demanded active torques. (The black curves are
the demanded active torques and the light gray areas are infeasible. The upper dark gray
curves are the fitted active-torque-angular-velocities)
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Figure 5.3: The workflow of the MSK model

dynamics and musculoskeletal geometry blocks can be replaced by MTGs. In this way, the
MTG parameters, that should be identified subject-specifically, are considerably fewer in
number than parameters in the anatomically-detailed muscular model.

In this section, we developed a simplified MSK model in which the MTGs, identified
in Section 5.1, were used. Then, through a direct collocation optimal control, we used the
MSK model to simulate child gait to investigate whether the fitted MTGs can generate a
gait motion consistent with the experimental data.

5.2.1 Natural Child Gait Simulation

For the human model of the MSK model, we considered the same 11-DOF human model and
3D ellipsoidal volumetric foot-ground contact model used for the SK model in Chapter 4.
However, in the MSK model, in contrast to the SK model, the hip, knee, and ankle joints
are actuated by the MTGs identified in Section 5.1. There are 12 MTGs in the MSK
model: each of the hip, knee, and ankle joints of the two legs was assumed to be actuated
by a pair of agonist and antagonist MTGs.

We used GPOPS-II to implement the optimal control algorithm. We used the IPOPT
solver in first derivative mode with the tolerance of 1e-5. Although GPOPS-II contains an
adaptive mesh refinement algorithm, we considered a fixed mesh of 100 collocation points,
divided into 20 intervals, over the whole gait cycle to reduce the computation time. This
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simulation was done on a desktop computer with an Intel® Core� i7-6700 CPU @ 3.40
GHz with 16.0 GB RAM.

Methodology

In this optimal control, the states and control inputs are as:

x(t) = [q(t), q̇(t), q̈(t)] (5.28)

u(t) = [
...
q(t),Rpelvis(t), τtoe(t), a(t)] (5.29)

where the states include the 11 generalized coordinates, 11 velocities, and 11 accelerations.
The control inputs include the 11 joint jerks (u1(t) =

...
q(t)), the 3 residual loads on the

pelvis (u2(t) = Rpelvis(t)), the 2 torques of the metatarsal joints (u3(t) = τtoe(t)), and the
12 MTG activations (u4(t) = a(t)).

In this optimal control, the states and control inputs were parametrized to minimize a
cost function including data-tracking cost terms subject to some constraints with the aim
of simulating a natural child gait. No parameter was identified in this optimization, and
the contact parameters and MTG parameters were set to the values identified in previous
sections for the child.

Constraints

The constraints of this optimization are the same as the constraints defined for the contact
parameter identification in Chapter 4:

� The dynamic friction was enforced to be less than static friction coefficient (Eq. 4.4).

� The residual loads on the pelvis were imposed to be minimized (Eq. 4.8).

� A dynamic constraint, in which the first derivatives of the states are calculated, was
imposed to be satisfied (Eq. 4.9).

� An algebraic constraint, in which the motion dynamics are solved implicitly, was
imposed (Eq. 4.10). However, in this optimization, this constraint is slightly different
from Eq. 4.10 since MTG activations, instead of the joint torques, are considered as
the control inputs. Thus the constraint was modified as:

Cmin ≤ (τinv.(t)− τinput(t))
2 ≤ Cmax (5.30)
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where τinput(t) was defined as:

τinput(t) = [u2(t), τ
M
J (t),u3(t)] (5.31)

where τMJ (t) includes the 6 joint torques (i.e., torques of hips, knees and ankles)
generated by the 12 MTGs (i.e., 6 pairs of agonist and antagonist MTGs). For
instance, the right hip torque is generated by the right hip flexor MTG and extensor
MTG:

τMhipr(t) = τMflx.hipr
(t)− τMext.hipr(t) (5.32)

� The normal GRF, created by each ellipsoid, was constrained to be positive during
walking.

Bounds

The bounds for the states and the u1(t), u2(t) and u3(t) were set to the same bounds con-
sidered for the contact parameter identification in Chapter 4. The bound for the u4(t) was
set to [0, 1] since we assumed the minimum and maximum values are 0 and 1, respectively.

Initial Guess

The initial guess for the states and the u1(t), u2(t) and u3(t) were set to the initial guess
considered for the contact parameter identification in Chapter 4. To determine the initial
guess for the u4(t), we set τMexp.(t) (Eq. 5.18 or Eq. 5.19) equal to the fitted τM(a, θ, θ̇,Γ)
(Eq. 5.8) and solved the equation for the a(t) given the experimental motion data. The
obtained a(t) was considered as the initial guess for the u4(t).
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Cost Function

The cost function consists of 7 cost terms:

J =
1

tf

∫
tf

t0

[
w1

6∑
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(
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)2

i

+ w2

4∑
i=1

(
GRFsim. −GRFexp.
GRFmax −GRFmin

)2

i
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)2

i

]
dt

(5.33)

where the first three cost terms are the data-tracking terms helping the optimization to
simulate a child-like motion. The fourth and fifth cost terms minimize the joint jerk
squared and the MTG activation squared. Minimizing the joint jerk squared results in a
feasible solution even with a poor initial guess. Minimizing the MTG activation squared
is equivalent to minimizing muscle efforts [5]. The last two cost terms help with better
dynamic consistency. The maximum and minimum values in the denominators of all cost
terms, except for the fourth cost term (i.e., the MTG activation squared), were set to the
same values considered for the cost function in Chapter 4. For the fourth cost term, the
maximum and minimum values of MTG activations were set to 1 and 0, respectively.

5.2.2 Results and Discussion

Our optimal control methodology simulated the child gait within 2 hours of computation
time, which is considerably less than the computation time of the modified approach de-
veloped for the contact parameter identification (5 hours). The MSK model including
MTGs is more complicated than the torque-driven model used for the contact parameter
identification. In the MSK model, each joint torque was modeled by two MTGs, each
consisting of three 5th-order Bézier curves. However, the MSK-model simulation is faster
than the contact parameter identification since no parameter is identified in the MSK-
model simulation. In contrast, in the contact parameter identification, 64 parameters were
identified.

The weighting factor values and RMSEs are shown in Tables 5.3 and 5.4, respectively.
The cost function’s weighting factors were tuned manually to achieve the minimum possible
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Table 5.3: Weighting factor values for the gait simulation using the MSK model

Model Cost Function Weights

MSK Eq. 5.33
w1 = 1/4 , w2 = 1/4 , w3 = 1/4 , w4 = 1/40
w5 = 1/100 , w6 = 1/4 , w7 = 1/40

Table 5.4: Root-mean-square errors for the gait simulation using the MSK model

Model Leg
Angle (degree) Torque (N.m) GRF (N)

hip knee ankle hip knee ankle tangentiol normal

MSK
Right 0.6 1.1 1.0 3.1 1.8 3.9 7.2 24.2
Left 0.6 1.2 0.9 2.3 1.1 3.8 4.6 19.7

values of RMSE. The weights of the data-tracking terms were set to larger values than the
other cost terms’ weights. The reason is that the tracking terms may lead the optimization
to simulate a natural gait while the other cost terms only affect convergence, solution
smoothness, and dynamic consistency.

Figure 5.4 shows the simulated hip, knee, and ankle angles and the predicted metatarsal
angles of the right and left legs. The simulated hip, knee, and ankle angles are within ±1
standard deviation of the experimental data. The variation range of predicted metatarsal
angles is roughly 25 degrees during gait, which is consistent with the angle ranges measured
by [70, 97] for the mid-foot joint (10 degrees) and metatarsal joint (30-35 degrees) during
child gait.

Jackson et al. [70] measured the right and left metatarsal joint angles for one healthy
adult during a gait cycle. Although the metatarsal angles predicted for our child model
are in agreement with the metatarsal angles measured for an adult, they do not match
exactly for four reasons: (1) Our study is on children and it is not subject-specific; we used
the mean experimental data of 20 healthy children for whom metatarsal angles were not
measured. (2) We assumed that the time shift between the right and left leg motions equals
the sum of the single-support and double-support phase times, which may not be equal to
the real time shift. (3) We estimated foot anthropometric data from the literature [36, 143]
which may not represent the real foot of the subjects studied in this thesis. (4) We did not
have a strong initial guess for the metatarsal joints at the start of the gait cycle.

Figure 5.5 shows the simulated hip, knee, and ankle torques and the predicted metatarsal
torques of the right and left legs. The simulated hip, knee, and ankle torques are in good
agreement with the experimental torques. According to [97], the maximum total torques
(in N.m) of the mid-foot and metatarsal joints are equivalent to 0.9 of the child’s mass (in
kg). In our simulation, the maximum values predicted for the metatarsal torques (40 N.m
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Figure 5.4: The joint angles simulated by the MSK model (The dotted lines represent the
mean experimental data and the gray areas show ± 1 standard deviations of the mean
experimental data)

for the right joint and 32 N.m for the left joint) are equivalent to 0.97 and 0.77 of our child
subjects’ average mass (41.4 kg), which is comparable with [97].

The simulated GRFs are also in good agreement with the experimental data, as shown
in Figure 5.6. However, the average RMSEs (5.9 N for the tangential force and 22 N for the
normal force) are slightly higher than the average RMSEs reported for the torque-driven
model in the modified contact parameter identification (3 N for the tangential force and
20.7 N for the normal force). In the modified contact parameter identification section, the
body and joint properties, along with the contact parameters, were tuned consistently with
the constraints and the cost function during the optimization. However in this section, no
parameter is tuned during the optimization in order to reduce the computational time.

5.3 Neuromusculoskeletal Model

In the MSK model, the MTGs were used to generate an activation-to-torque muscular
model. To make the MSK model more physiologically-meaningful, we replaced the mus-
cular model with a neuromuscular model and called it the NMSK model. As shown in
Figure 5.7, our neuromuscular model is an EMG-to-torque model composed of muscle ac-
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Figure 5.5: The joint torques simulated by the MSK model (The dotted lines represent
the mean experimental data and the gray areas show ± 1 standard deviation of the mean
experimental data)

Figure 5.6: The ground reaction forces simulated by the MSK model (The dotted lines
represent the mean experimental data and the gray areas show ± 1 standard deviation of
the mean experimental data)
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Figure 5.7: The workflow of the NMSK model

tivation dynamics and MTGs. This NMSK model enabled us to predict muscle excitations
comparable with EMG data and estimate the metabolic energy rate for the child gait.

In this section, first, we introduced the muscles for which we have the experimental
EMG data. Then we modeled the muscle activation dynamics and explained how we
calculated the metabolic energy rate using our MTG-based NMSK model. Finally, through
a direct collocation optimal control, we used the NMSK model to simulate a child gait and
predict the muscle excitations while identifying the remaining parameters corresponding
to the muscle activation dynamics.

5.3.1 Experimental EMG Data

Reference [18], from which we extracted experimental motion, torque, and GRF data for
our child model, also includes EMG data for eight muscles of the right leg. These muscles
are Gluteus Maximus (GM), Rectus Femoris (RF), Vastus Medialis (VM), Bicep Femoris
(BF), Soleus (SOL), Peroneus Longus (PL), Gastrocnemius Medialis (GAM), and Tibialis
Anterior (TA). Bovi et al. [18] have measured surface EMG signals using an 8-channel
wireless electromyograph, ZeroWire (Aurion, Milano, Italy) and 10-mm-diameter adhesive
electrodes. They have processed the measured EMG signals by rectifying and low-pass
filtering (Butterworth 5th order, 3 Hz cutoff frequency) and normalizing to the maximum
of the root mean square values of 2% intervals across all the subjects’ trials.

Considering the assumption that gait is bilaterally symmetric and periodic, we used
Fourier series to generate EMG data for the left leg given the EMG data of the right leg.
The details of this approach were explained in Section 4.2.3. Thus, we totally considered
16 muscles (i.e., eight muscles per leg) in our NMSK model.

Assuming that the muscles are mono-articular with no co-contraction, we categorized
them into agonist-antagonist pairs considering their main functions. In this way, we could
compare the EMG data of muscles with the agonist-antagonist pairs of MTGs to investigate
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Table 5.5: Agonist-antagonist pairs of muscles actuating joints

muscle type hip knee ankle
extensor Gluteus Maximus Vastus Medialis Soleus, Peroneus Longus, Gastrocnemius Medialis

flexor Rectus Femoris Bicep Femoris Tibialis Anterior

whether MTGs can simulate a physiologically-meaningful gait. Table 5.5 shows the agonist-
antagonist pairs of the muscles actuating the hip, knee, and ankle joints.

5.3.2 Muscle Activation Dynamics

As shown in Figure 5.7, we modeled the muscle activation dynamics using a linear first
order differential equation and a nonlinear function proposed by [108]. The first order
differential equation converts e(t) (i.e., muscle excitations or processed EMG data) to u(t)
(i.e., neural activations):

u̇(t) =
(
c1e(t− d) + c2

)(
e(t− d)− u(t)

)
(5.34)

where d is an electromechanical time delay set to 50 ms and c1 and c2 are:

c1 =
1

τact.
− 1

τdeact.
(5.35)

c2 =
1

τdeact.
(5.36)

where τact. and τdeact. are muscle activation and deactivation time constants, respectively.
τact. can have a value from 5 to 35 ms and we assumed that τdeact. = 4τact.. Eq. 5.34
was solved recursively over all time steps, assuming u(t) at the first two time steps equals
e(t−d) at these time steps. The nonlinear function transforms u(t) (i.e., neural activations)
to a(t) (i.e., muscle activations) using:

a(t) = c3
√
u(t) + (1− c3)u(t) (5.37)

where c3 is a nonlinearity constant that can have a value from 0 (linear) to 0.75 (highly
nonlinear). This muscle activation dynamics model was implemented for all 16 muscles to
transform muscle excitations to muscle activations.
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5.3.3 Calculation of Metabolic Energy Consumption Rate

Experimental studies have shown that humans prefer to continuously optimize the metabolic
energy consumption during walking [150]. In recent predictive gait studies, the metabolic
energy consumption was minimized as an energy-based cost term with the aim of simu-
lating a natural motion [45, 90]. To accurately calculate metabolic energy consumption,
it is necessary to have an anatomically-detailed neuromuscular model [15, 181], which is
computationally-expensive for the predictive simulations in this thesis.

To reduce the computational time for the predictive simulations in which energy-based
cost terms are used, we took advantage of our MTG-based neuromuscular model to develop
a simpler model for estimating the metabolic energy rate. We used our neuromuscular
model features to add some simplifications to the metabolic energy model proposed by
Bhargava et al. [15]. To investigate the accuracy of our energy metabolic consumption
model, we used it as a cost-term in the child gait simulation in Section 5.3.4.

The total rate of metabolic energy consumption, Ė in W (Watt), is described as the
sum of five terms [15]:

Ė = Ȧ+ Ṁ + Ṡ + Ḃ + Ẇ (5.38)

where Ȧ is the activation heat rate, Ṁ is the maintenance heat rate, Ṡ is the shortening
heat rate, Ḃ is the basal metabolic rate, and Ẇ is the work rate.

Activation Heat Rate

The activation heat rate represents the tension-independent heat released by the stimula-
tion of muscles. It is described as the sum of two terms:

Ȧ = φ m ffast Ȧfast efast(t) + φ m fslow Ȧslow eslow(t) (5.39)

where φ is a decay function, m is the total mass of the muscle, ffast and fslow are the mass
fractions of fast and slow twitch fibers in the muscle, respectively. Ȧfast and Ȧslow are the
activation heat rate constants for fast and slow twitch fibers, respectively, and equal to 133
and 40 W/kg for humans [15]. efast(t) and eslow(t) are the excitation levels of the fast and
slow twitch fibers.

The dimensionless decay function (i.e., φ) is represented by:

φ = 0.06 + exp(−tstime(t)/τφ) (5.40)

where τφ is the decay time constant (i.e., 45 ms), e(t) is the muscle excitation, and tstim
is the amount of time the muscle has been excited above 10%. For our gait simulation,
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Table 5.6: The optimal fiber lengths of the muscles scaled for the child model

Muscle GM RF VM BF SOL PL GAM TA
lopt (cm) 12.39 10.32 8.14 12.66 4.16 3.92 5.03 7.99

Table 5.7: The physiological cross-sectional area of the muscles scaled for the child model

Muscle GM RF VM BF SOL PL GAM TA
PCSA (cm2) 9.53 20.68 32.02 8.51 89.28 24.20 11.79 8.09

we constantly estimated tstim during our optimal-control by obtaining the amount of time
that e(t) of the muscles have values higher than 10% of the maximum value of e(t).

The total mass of a muscle (i.e., m) can be calculated using [178]:

m = ρ . PCSA . lopt (5.41)

where ρ is the muscle density of mammalians (i.e., 1060 kg/m3), lopt is the optimal fiber
length of the muscle, and PCSA is the physiological cross-sectional area of the muscle.

To determine the optimal fiber lengths for the muscles of our child model, we recruited
a generic MSK model (i.e., Gait2392) developed in OpenSim [34]. We scaled the generic
model using the OpenSim “Scale Model” tool, given the body-segment lengths and BH of
our child model. Then, we extracted the scaled lopt values from OpenSim. Table 5.6 shows
the optimal fiber lengths of the muscles scaled for the child model.

To estimate PCSA for the child model, we extracted the PCSA values (i.e., PCSAa)
reported for a 37-year-old subject (mass: 91 kg and height: 183 cm) in [53] and scaled
them for our child model (i.e., PCSAch) using:

PCSAch =
BMch BHch

BMa BHa

sτ PCSAa (5.42)

As mentioned in Section 5.1, increasing the scaling factor of τM0 (i.e.,
BMch BHch

BMa BHa

sτ ) is

equivalent to increasing the PCSA of the muscle. So, we scaled PCSAa using the same
ratio to estimate PCSAch for the child model. Table 5.7 shows the PCSA values estimated
for the child model.

The mass fractions of fast and slow twitch fibers (i.e., ffast and fslow) were reported
for human muscles in [181] and for rat muscles in [134]. We extracted the ffast values of
all muscles of the child model from [181] except for Peroneus Longus. The ffast value of
the Peroneus Longus muscle was extracted from [134]. To make ffast of Peroneus Longus,
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Table 5.8: The ffast values considered for the child muscles

Muscle GM RF VM BF SOL PL GAM TA
ffast(%) 45 65 50 35 20 50 19 25

extracted from [134], consistent with the rest of the muscles, we scaled it by the ratio of
the ffast of Soleus reported in [181] to the ffast of Soleus reported in [134]. Table 5.8 shows
the ffast values considered for the child muscles. Subtraction of the ffast value from 1 gives
the fslow for each muscle.

The excitation levels of the fast and slow twitch fibers (i.e., efast(t) and eslow(t)) are
defined as:

efast(t) = 1− cos(π/2 e(t)) (5.43)

eslow(t) = sin(π/2 e(t)) (5.44)

To represent the recruitment of both fast and slow twitch fibers, cosine and sine functions
were used to convert e(t) into separate levels for efast(t) and eslow(t).

Maintenance Heat Rate

The maintenance heat rate is the stable heat rate generated during isometric contraction.
The maintenance heat rate is dependent on muscle length [15]. However, we ignored this
dependence, because it makes the maintenance heat rate function physiologically-infeasible
and computationally-expensive. We approximated it as:

Ṁ = m ffast Ṁfast efast(t) +m fslow Ṁslow eslow(t) (5.45)

where Ṁfast and Ṁslow are the maintenance heat rate constants for fast and slow twitch
fibers, respectively and equal to 111 and 74 W/kg for humans [15].

Shortening Heat Rate

The shortening heat rate is the heat rate produced during a concentric or eccentric con-
traction. This heat rate was modeled in [15] as:

Ṡ =

−
(

0.16FM
0 + 0.18FM(t)

)
vCE(t) vCE(t) ≤ 0

−
(

0.157FM(t)
)
vCE(t) vCE(t) > 0

(5.46)
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where vCE(t) is the velocity of the contractile element. For eccentric and concentric con-
tractions, vCE(t) is positive and negative, respectively. FM

0 is the maximum isometric
muscle force, and FM(t) is the muscle force.

Our NMSK model is MTG-based and it is not able to generate FM(t) and vCE(t), but
rather generates τM(t) and θ̇(t). Thus, we approximated the shortening heat rate using:

Ṡ =

−
(

0.16τM0 + 0.18τM(t)
)
θ̇(t) τM(t)θ̇(t) ≥ 0

−
(

0.157τM(t)
)
θ̇(t) τM(t)θ̇(t) < 0

(5.47)

where the first case (τM(t)θ̇(t) ≥ 0) gives the shortening heat rate of the concentric con-
traction. This case was assumed to be equivalent to the first case in Eq. 5.46 (vCE(t) ≤ 0).
The reason behind this assumption is that muscle force vector and shortening motion
are always in the same direction; consequently, when vCE(t) is negative (i.e., shortening
motion), FM(t)vCE(t) would be positive, which can be estimated by τM(t)θ̇(t) ≥ 0 with
a good approximation. With the same logic, the second case (τM(t)θ̇(t) < 0) gives the
shortening heat rate of the eccentric contraction.

Basal Heat Rate

For our child model, the basal heat rate of each muscle was estimated using the formula
in [15]:

Ḃ = 0.0225 m (5.48)

where 0.0225 (W/kg) is the basal metabolic rate reported for resting frog skeletal muscle
at 0◦C.

Work Rate

The work rate is computed in [15] using:

Ẇ = FCE(t) vCE(t) (5.49)

where FCE is the force of the contractile element. For our gait simulation, we described
the work rate as:

Ẇ =

{
τM(t) θ̇(t) MTG-driven joint

τ(t) θ̇(t) torque-driven joint
(5.50)
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where we assumed that if the joint is actuated by torque (like metatarsal joints in our
model), the work rate of this joint can be estimated as τ(t)θ̇(t). Otherwise, if the joint
is actuated by a pair of MTGs (like hip, knee, and ankle joints in our model), the work
rate of this joint can be estimated as the product of its angular velocity (i.e., θ̇(t)) and the
resultant flexor/extensor MTG torques (i.e., τM(t)) actuating the joint.

5.3.4 Natural Child Gait Simulation

For the child gait simulation using the NMSK model, we considered the same human
model that was used for the MSK model in Section 5.2.1: an 11-DOF human model with
3D ellipsoidal volumetric foot-ground contact model, in which 12 MTGs actuate the hip,
knee, and ankle joints.

To implement the optimal control algorithm, GPOPS-II was used. We used the IPOPT
solver in first derivative mode with the tolerance of 1e-5. Although GPOPS-II contains an
adaptive mesh refinement algorithm, we considered a fixed mesh of 100 collocation points,
divided into 20 intervals, over the whole gait cycle to reduce the computational time. This
simulation was done on a desktop computer with an Intel® Core� i7-6700 CPU @ 3.40
GHz with 16.0 GB RAM.

Methodology

In this optimal control approach, the states and control inputs are:

x(t) = [q(t), q̇(t), q̈(t)] (5.51)

u(t) = [
...
q(t),Rpelvis(t), τtoe(t), e(t)] (5.52)

all the components of which are the same as those described for the MSK model in Sec-
tion 5.2.1, except for the forth component of the control inputs (i.e., u4(t)). For the MSK
model, we considered the 12 MTG activations (i.e., a(t)) as u4(t). However, for the NMSK
model, we considered the 16 muscle excitations as u4(t). In contrast to MTG activations,
muscle excitations are physiologically-meaningful and comparable with EMG data. By
considering 16 muscle excitations as control inputs, we could use EMG data of the 16
muscles, described in Section 5.3.1, as a strong initial guess for the control inputs, and also
validate the predicted muscle excitations by a comparison with the EMG data.

In NMSK-model gait simulation, the states, control inputs, and four parameters were
parametrized to minimize a data-tracking cost function subject to some constraints with

115



the aim of simulating a natural child gait. The contact parameters and MTG parameters
were set to the values identified for the child.

The four parameters, identified in this optimization, are:

γ = {τact., c3, s1, s2} (5.53)

where τact. and c3 are the muscle activation time constant and nonlinearity constant, used
in Eq. 5.35 and Eq. 5.37, respectively. Parameters s1 and s2 are the activation weights,
defined later.

τact. and c3 were used in the muscle activation dynamics equations. We assumed that
τact. and c3 for all 16 muscles are identical [56]. However, to achieve more accurate results,
we could have considered separate parameters for the muscles (i.e., 2 × 16 parameters
instead of 2 parameters) to be identified specifically.

Parameters s1 and s2 were defined to compose the activations of three muscles (SOL,
PL, and GAM), which are the extensor muscles actuating the ankle joint, in order to
achieve a single extensor activation for the ankle joint. By defining activation weights, we
generated a single extensor activation for the ankle joint and used it in the extensor MTG
equation of ankle joint as MTG activation. The idea behind this assumption was taken
from the synergy analysis approach [82], where an optimization is applied to decompose the
high dimensional set of processed EMG data into a lower dimensional set of time-varying
signals. The extensor activation of the ankle was defined as:

aankleext. = s1 aSOL + s2 aPL + (1− s1 − s2) aGAM (5.54)

where aSOL, aPL and aGAM are the activations of muscles SOL, PL, and GAM. We substi-
tuted aankleext. for a in Eq. 5.8 to create an extensor MTG for the ankle joint. This approach
was employed only for the ankle extensor, and we assumed that s1 and s2 for the right and
left ankle extensors are identical.

Among the muscles for which we have EMG data (shown in Table 5.5), only the SOL,
PL, and GAM muscles have the same function (i.e., extending ankle joint), and the rest of
the muscles have different functions. Thus, there was no need to apply the activation-weight
approach for the rest of the muscles. Their activations, generated by muscle activation
dynamics, were considered as extensor/flexor MTG activations with a good approximation
and substituted for a in Eq. 5.8 to create their equivalent MTGs.

Constraints

The constraints for the NMSK-model gait simulation were held the same as those imposed
for the MSK-model gait simulation. The constraints can be found in Section 5.2.1.
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Bounds

The bounds for the states and u1(t), u2(t) and u3(t) were set to the same bounds considered
for the MSK-model gait simulation in Section 5.2.1. The bound for the u4(t) (i.e., muscle
excitations) was set to [0, 0.8]. Although the bounds for the child processed EMG data
are around [0, 0.4], we allowed a larger bound for u4(t) to let the optimization find muscle
excitation values more focused on the constraints and cost function, than the bounds of
experimental EMG data.

The bounds for parameters τact. and c3 were set to [0.005, 0.035] (s) and [0, 0.75], respec-
tively [108]. The bounds for parameters s1 and s2 were set to [0, 0.5], based on Eq. 5.54.

Initial Guess

The initial guess for the states and u1(t), u2(t) and u3(t) were set to the same initial guess
considered for the MSK-model gait simulation in Section 5.2.1. The processed EMG data
was considered as the initial guess for u4(t). The initial guess for the parameters τact., c3,
s1, and s2 were set to 0.015, 0.3, 0.33, and 0.33, respectively.

Cost Function

The cost function consists of 8 cost terms:

J =
1

tf

∫
tf

t0

[
w1

6∑
i=1

(
τsim. − τexp.
τmax − τmin

)2

i

+ w2

4∑
i=1

(
GRFsim. −GRFexp.
GRFmax −GRFmin

)2

i

+w3

11∑
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(
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qmax − qmin

)2

i

+w4 t
6
f

11∑
i=1
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)2

i

+ w5

16∑
i=1

(
a

amax − amin

)2

i

+w6

3∑
i=1

(
Rpelvis

Rmax −Rmin

)2

i

+ w7

8∑
i=1

(
τinv. − τinput
τmax − τmin

)2

i

+ w8

t6f

BM2d4

(
Ė

Ėmax − Ėmin

)2
]
dt

(5.55)

where the first three cost terms are the data-tracking terms helping the optimization to
simulate a child-like motion. The fourth cost term minimizes the joint jerk squared. The
fifth term minimizes the muscle activation squared; the 16 muscle activations were obtained
by solving the muscle activation dynamics given the 16 muscle excitations as the control
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inputs (i.e., u4). The sixth and seventh cost terms help with better dynamic consistency.
The last term was defined to minimize metabolic energy consumption during gait since
humans prefer to continuously minimize the metabolic energy consumption while walking.

Except for the fifth and eighth cost terms, all the cost terms have the same denominators
considered for the cost function of the MSK-model gait simulation in Section 5.2.1. For
the fifth term (i.e., the muscle activation squared), the maximum and minimum muscle
activations in the denominators were set to 1 and 0, respectively. For the eighth term (i.e.,
the rate of metabolic energy consumption), the maximum and minimum Ė values were
estimated as:

Ėmax = (COTN × BMmax ×D) / tf

Ėmin = (COTN × BMmin ×D) / tf
(5.56)

where COTN (the cost of transport) is equal to 1.6 (Jkg−1m−1) that is reported in [45] for an
adult walking at the natural speed; BMmax and BMmin are 56.9 (kg) and 25.9 (kg) that are
the maximum and minimum masses of our child subjects; D is 1.24 (m) that is the distance
the child subject travelled. It should be noted that the metabolic energy rate penalty was
scaled by t6f BM−2d−4 since the magnitude of energy rate is considerably greater than the
other cost terms. In addition, we did not want the energy cost term to drive other cost
terms to become ineffective. To determine the rate of metabolic energy consumption (i.e.,
Ė), the approach we proposed for MTG-based NMSK models in Section 5.3.3 was used.

5.3.5 Results and Discussion

In comparison to the MSK-model simulation, in the NMSK-model simulation, an additional
cost term (i.e., energy term) and muscle activation dynamics of 16 muscles were included.
Due to these extra computations, a higher computation time was expected for the NMSK-
model simulation. However, the NMSK model simulated the child gait within 2 hours
of computation time, which is similar to the MSK-model computation time. It can be
explained by two reasons: (1) In the NMSK-model simulation, the control inputs are
muscle excitations (not MTG activations), and we had a good initial guess (processed
EMG data) for them. (2) The muscle activation dynamics and energy cost term made the
NMSK-model simulation more complicated but more physiologically-meaningful. This led
the experimental-data-tracking cost terms to be met faster.

The weighting factor values are shown in Table 5.9. For the first seven cost terms, the
weighting factors were set to the same weight values considered for the cost function of
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Table 5.9: Weighting factor values for the gait simulation using the NMSK model

Model Cost Function Weights

NMSK Eq. 5.55
w1 = 1/4 , w2 = 1/4 , w3 = 1/4 , w4 = 1/40
w5 = 1/100 , w6 = 1/4 , w7 = 1/40 , w8 = 1/5

Table 5.10: The parameters identified by the NMSK model

parameter τact. (s) c3 s1 s2
initial 0.015 0.3 0.33 0.33
identified 0.006 0.0001 0.25 0.25

the MSK-model gait simulation and for the energy term, w8 was set to 1/5, which was
obtained by a manual tune to achieve the minimum possible values for the RMSE.

The identified values for the four parameters are shown in Table 5.10. The value
identified for τact. (activation time constant) is 0.006 (s) and consequently τdeact. must equal
0.024 (s) due to the constraint (i.e., τdeact. = 4τact.) assumed. According to [68], τdeact. of
young women with age of 18-32 years (0.050 s) is 17% less than τdeact. of old women with
age of 64-79 years (0.060 s), respectively. The reason is that the rate of muscle deactivation
(i.e., the rate of uptake of calcium ions by the sarcoplasmic reticulum) in young subjects
is faster than that in old subjects [68]. In our child model with an age of 10.8±3.2 years,
we obtained 0.024 (s) for the τdeact., which is 50% less than the τdeact. of young subjects; it
would be a logical value since child subjects have younger muscles than young subjects.

The value identified for c3 (nonlinearity constant) is 0.0001. This low value shows that it
is not required to complicate the activation dynamics by considering nonlinearity [173, 187].
The nonlinearity term can be omitted to reduce computation time.

The values identified for s1 and s2 (activation weights) are both equal to 0.25. Regarding
the identified weights and Eq. 5.54, the coefficient (i.e., weight) of Gastrocnemius Medialis
activation must be 0.5, which is greater than the activation weights of the Soleus and
Peroneus Longus muscles. The reason is that Gastrocnemius Medialis muscle is the main
muscle extending the ankle joint [183]. Furthermore, this muscle is a superficial muscle
with a longer moment arm with respect to ankle joint than the moment arms of Soleus
and Peroneus Longus, which are deep muscles. Thus, the Gastrocnemius Medialis muscle
should contribute a major part of the ankle MTG extensor, and it seems logical that its
activation weight has a greater value.

The RMSEs of the NMSK-model simulation are shown in Table 5.11. Comparison
of the MSK and NMSK models shows that the simulation accuracy of the NMSK model
is very close to the accuracy of the MSK model when all the experimental joint angles,
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Table 5.11: Root-mean-square errors for the gait simulation using the NMSK model

Model Leg
Angle (degree) Torque (N.m) GRF (N)

hip knee ankle hip knee ankle tangentiol normal

NMSK
Right 0.6 1.1 1.0 2.3 1.1 3.8 7.2 24.1
Left 0.6 1.2 0.9 2.3 1.1 3.8 4.6 19.8

Figure 5.8: The joint angles simulated by the NMSK model (The dotted lines represent
the mean experimental data and the gray areas show ± 1 standard deviations of the mean
experimental data)

torques, and GRFs are tracked through a cost function. The RMSEs of both models for
the joint angles and GRFs are almost the same, but the NMSK model could generate 6 %
and 3 % more accurate torques for the right hip and knee joints, respectively.

Figures 5.8 and 5.9 show the joint angles and torques of the right and left legs simulated
by the NMSK child model. The simulated hip, knee, and ankle angles and torques are
within ± 1 standard deviation of the experimental data. The predicted metatarsal angles
and torques are in good agreement with the results predicted by the MSK model. The
simulated GRFs are also in good agreement with the experimental data, as shown in
Figure 5.10. The mean value of the RMSE of the tangential forces (5.90 N) and normal
forces (21.95 N) are identical for the MSK and NMSK models.

Using the metabolic energy consumption rate (Ė) estimated by the NMSK-model sim-
ulation, we could calculate the cost of transport (COT) for the natural-speed child gait
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Figure 5.9: The joint torques simulated by the NMSK model (The dotted lines represent
the mean experimental data and the gray areas show ± 1 standard deviations of the mean
experimental data)

Figure 5.10: The ground reaction forces simulated by the NMSK model (The dotted lines
represent the mean experimental data and the gray areas show ± 1 standard deviations of
the mean experimental data)
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Figure 5.11: The muscle excitations simulated by the NMSK model (The dotted lines
represent the mean processed EMG data and the gray areas show ± 1 standard deviations
of the mean processed EMG data)

through:

COT =

∫
tf

t0
Ėdt

BM×D
(5.57)

and obtain 1.53 (Jkg−1m−1), which is in good agreement with the COT range reported for
natural-speed gait in [45].

Our NMSK model also enabled us to define muscle excitations as control inputs and
predict them for the child gait. The predicted muscle excitations and their corresponding
EMG data are shown in Figure 5.11. The majority of the predicted muscle excitations are
in reasonable agreement with the corresponding EMG data. However, the predicted hip
flexor, ankle flexor, and the third ankle extensor muscles did not match the corresponding
EMG data (i.e., RF, TA, and GAM, respectively) very well.

For the hip flexor muscle, we compared its predicted excitation with the EMG data of
Rectus Femoris. It is not a precise comparison since Rectus Femoris is not the main muscle
flexing the hip. The main muscles flexing the hip are Psoas Major and Iliacus, which are
deeply located, and surface EMGs cannot measure their neural commands. Thus, we did
not have appropriate EMG data to compare with our predicted hip flexor. Another reason
that Rectus Femoris is not appropriate for validation of hip flexor excitation is that Rectus
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Femoris contributes more to extending the knee than to flexing the hip during gait. Rectus
Femoris is a weak hip flexor when the knee extends, and the knee is in an extension state
during the majority of a gait cycle (55-60% of a gait cycle).

For the ankle flexor muscle, we compared its predicted excitation with the EMG data
of Tibialis Anterior. It is not a precise comparison since Tibialis Anterior performs not
only ankle flexion but also ankle inversion. The EMG data of Tibialis Anterior represents
the neural commands of both flexion and inversion functions. Due to this, its EMG data
has a range higher than the values we predicted for the ankle flexor excitation. Another
reason behind the inconsistency between the predicted ankle flexor excitation and Tibialis
Anterior EMG data is that we assumed that there is no co-contraction between the ankle
extensor and flexor muscles. However, appropriate levels of co-contraction are required to
stabilize loaded joints, regulate joint stiffness, and handle sudden changes in the direction
of joint motions [144]. Consequently, the absence of co-contraction would have an impact
on the realism of the predicted muscle excitations. As shown in Figure 5.11, the excitation
predicted for the third ankle extensor is larger than its corresponding EMG data (GAM)
and the excitation predicted for the ankle flexor is less than its corresponding EMG data
(TA). However, if we consider co-contraction between ankle flexor and extensor, we would
predict excitations that are more consistent with the EMG data.

For the third ankle extensor muscle, we compared its predicted excitation with the
EMG data of Gastrocnemius Medialis. It is not a precise comparison due to the same
reason mentioned above about the absence of co-contraction. Another reason behind the
inconsistency between Gastrocnemius Medialis EMG data and the third ankle extensor’s
excitation is that Gastrocnemius Medialis is not a very active muscle in walking. Thus,
Gastrocnemius Medialis may not be a proper muscle to be compared with the predicted
excitation for the ankle extensor.

5.4 Conclusion

The main contribution of this chapter was to generate simplified but accurate MSK and
NMSK models that best fit a child model and simulate gait.

We modified the MTG model proposed by [114] for our child model. We developed
a direct collocation optimal control to identify the MTG parameters for a child model
considering the experimental child gait data. We verified that the fitted MTGs are feasible
and can be used for child gait modeling.

We employed the fitted MTGs to develop a simplified MSK model. Through a direct
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collocation optimal control, we used the MSK model to simulate a child gait to investigate
whether the fitted MTGs can generate a gait motion consistent with the experimental
data. The results showed that although the MTG-based MSK model is simpler than an
anatomically-detailed MSK model, it can simulate child gait with reasonable accuracy.
The mean RMSEs for the joint angles, torques, tangential GRFs, and normal GRFs are
0.9 degree, 2.7 N.m, 5.9 N, and 21.95 N, respectively. Furthermore, we could predict
physiologically-meaningful angles and torques for the metatarsal joints that are in good
agreement with the ranges reported in the literature.

To make the MSK model more physiologically-meaningful, we replaced the muscular
model with a neuromuscular model called the NMSK model. This MTG-based NMSK
model enabled us to predict muscle excitations comparable with EMG data and estimate
the metabolic energy rate for the child gait through a direct collocation optimal control.
Muscle activations and metabolic energy consumption during walking are the most com-
monly used indices to evaluate wearable robotic systems [17]. Thus, our proposed MTG-
based NMSK model would be practical to develop energy-based predictive simulations for
wearable robotic system evaluations in the future.

In comparison to the MSK-model simulation, in the NMSK-model simulation, an ad-
ditional cost term (i.e., energy term) and muscle activation dynamics were included. The
results showed that most of the predicted muscle excitations and the estimated COT are in
good agreement with the literature. The simulation accuracy of the NMSK model is very
close to the accuracy of the MSK model when all the experimental joint angles, torques,
and GRFs are tracked in the cost function. The RMSEs of both models for the joint angles
and GRFs are almost the same, but the NMSK model could generate 6 % and 3 % more
accurate torques for the right hip and knee joints, respectively.

The MTG-based MSK and NMSK models proposed in this chapter will be used in the
next chapters to predict physiologically-meaningful motion, torque, ground reaction forces
(GRFs), and muscle excitations for child gait.
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Chapter 6

Natural-Speed Gait Prediction Using
the Musculoskeletal and
Neuromusculoskeletal Child Models:
Investigation of Different Cost
Functions

In this chapter, we used the MTG-based MSK and NMSK child models, proposed in
Chapter 5, to predict a natural-speed gait that matches the experimental data of children.
To this aim, we developed two separate direct collocation optimal controls: (1) “MSK-
model optimization” in which the MSK model was used, and the control inputs are MTG
activations; (2) “NMSK-model optimization” in which the NMSK model was used, and
the muscle excitations are the control inputs, and the metabolic energy consumption is
optimized.

For each model’s optimization, we investigated eight multi-objective cost functions
composed of a wide range of cost terms, including dynamic-based, stability-based, human-
criteria-based, and data-based cost terms. We evaluated the effect of these cost terms on
the realism of the predicted results. Defining different cost functions enabled us to compare
the MSK and NMSK models in terms of computational efficiency and prediction accuracy.
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6.1 Optimization Methodology

To develop the MSK-model optimization, we used the same approach as in Section 5.2.1.
The states are 11 generalized coordinates, 11 velocities, and 11 accelerations. The control
inputs are the 11 joint jerks, the 3 residual loads on the pelvis, the 2 torques of the
metatarsal joints, and the 12 MTG activations. The constraints, bounds on the states,
and control inputs were kept unchanged. Since we did not have a good initial guess (i.e.,
experimental-data-based initial guess) for the HAT-to-ground position and orientation,
the metatarsal joint angles and torques, and the 12 MTG activations, we considered the
corresponding results predicted in Section 5.2.1 as the initial guess for them. The initial
guess of the remaining states and control inputs were kept unchanged.

To develop the NMSK-model optimization, we used the same approach as in Sec-
tion 5.3.4. The states are 11 generalized coordinates, 11 velocities, and 11 accelerations.
The control inputs are the 11 joint jerks, the 3 residual loads on the pelvis, the 2 torques
of the metatarsal joints, and the 16 muscle excitations. The constraints, bounds on the
states, and control inputs were kept unchanged. The results predicted in Section 5.3.4
were used to define the initial guess for the HAT-to-ground position and orientation, and
for the metatarsal joint angles and torques. The initial guess of the remaining states and
control inputs were kept unchanged.

No parameter was identified in these two optimizations. The contact parameters, MTG
parameters, and muscle-activation-dynamics parameters were set to the values identified
for the child model in the previous chapters.

To compose the cost functions for these optimizations, we considered four categories of
the cost terms: (1) Dynamic-based cost terms, (2) Stability-based cost terms, (3) Human-
criteria-based cost terms, and (4) Data-based cost terms.

We described the dynamic-based cost terms as:

Jrk =

∫
tf

t0

t6f

11∑
i=1

(
u1

u1max − u1min

)2

i

dt (6.1)

Rsd =

∫
tf

t0

3∑
i=1

(
Rpelvis

Rmax −Rmin

)2

i

dt (6.2)
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Imp =

∫
tf

t0

8∑
i=1

(
τinv. − τinput
τmax − τmin

)2

i

dt (6.3)

Eq. 6.1 results in smooth walking by minimizing the joint jerks. Eq. 6.2 provides dynamic
consistency for human gait by minimizing the residual loads on the pelvis. Eq. 6.3 implicitly
solves the motion dynamics by minimizing the difference between the control-input torques
and inverse-dynamics torques for the leg joints. These three dynamic-based cost terms can
be employed in our MSK-model and NMSK-model optimizations.

We described the stability-based cost term as:

HAT =

∫
tf

t0

3∑
i=1

(
qsim. − qexp.
qmax − qmin

)2

i

dt (6.4)

where qsim. corresponds to HAT-to-ground position and orientation with respect to the
ground, and qexp. represents the experimental motion of HAT with respect to the ground.
In the previous optimizations, we approximated the experimental position of HAT using
the position data of a marker on the pelvis, and we set the experimental orientation of the
HAT to zero as its variation during gait is negligible. However, to generate a more accurate
simulation in this chapter, we set qexp. of the HAT to the resultant HAT motion obtained
from the optimizations in Chapter 5. This cost term does not track actual experimental
data. However, it tracks a good approximation of the HAT motion obtained from previous
optimizations to provide stability for the gait motion. This stability-based cost term can
be employed in our MSK-model and NMSK-model optimizations.

In the literature, predictive gait simulations have used relatively similar methods to
provide stability. Nguyen et al. [121] have provided stability using a cost term minimizing
the difference between the COM position of the whole body in the x direction and the center
of the extended base of support. The extended base of support is defined as the convex
area that contains the vertical projections of the two feet on the ground. Meyer et al. [109]
provided stability for the predictive gait simulation using a cost term tracking the joint
angles of the upper body. Their experimental data was also collected for a subject walking
on an instrumented treadmill that keeps the HAT’s motion fairly constant with respect
to the ground. Lin and Pandy [90] have also provided stability for their predictive gait
simulation using path constraints. They imposed the path constraints on the generalized
coordinates and velocities to keep them as close as possible to the values of the generalized
coordinates and velocities previously obtained from a gait data-tracking optimization.
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We described the human-criteria-based cost terms as:

ActMSK =

∫
tf

t0

12∑
i=1

(
u4

u4max − u4min

)2

i

dt (6.5)

ActNMSK =

∫
tf

t0

16∑
i=1

(
a

amax − amin

)2

i

dt (6.6)

Mtb =

∫
tf

t0

t6f

BM2d4

(
Ė

Ėmax − Ėmin

)2

dt (6.7)

Eq. 6.5 minimizes 12 MTG activations for the MSK-model optimization; Eq. 6.6 minimizes
16 muscle activations for the NMSK-model optimization. Humans prefer to walk with
minimum muscle efforts, and these two cost terms are equivalent to minimizing muscle
efforts [5]. Furthermore, previous simulation studies have shown that a cost function
including a muscle-activity cost term results in more accurate motion prediction than a
cost function without a muscle-activity cost term. Eq. 6.7 minimizes the metabolic energy
consumption during walking. Experimental studies have shown that humans prefer to
continuously optimize the metabolic energy consumption during walking [150]. This cost
term can only be used for the NMSK-model optimization.

We described the data-based cost terms as:

Trq =

∫
tf

t0

6∑
i=1

(
τsim. − τexp.
τmax − τmin

)2

i

dt (6.8)

Ang =

∫
tf

t0

6∑
i=1

(
qsim. − qexp.
qmax − qmin

)2

i

dt (6.9)

GRF =

∫
tf

t0

4∑
i=1

(
GRFsim. −GRFexp.
GRFmax −GRFmin

)2

i

dt (6.10)

In Eq. 6.8 and Eq. 6.9, the hip, knee, and ankle joint torques and angles track the cor-
responding experimental data. In Eq. 6.10, the differences between the simulated and
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experimental GRFs are minimized. The data-based studies have shown that to achieve
the most realistic simulation, it is necessary to track an actual motion in similar con-
ditions [127]. These three data-based cost terms can be used in our MSK-model and
NMSK-model optimizations.

Using the above-mentioned cost terms, we generated different multi-objective cost func-
tions for each of the MSK-model and NMSK-model optimizations. Table 6.1 shows the
configurations of the cost functions. We categorized the cost functions into eight groups
according to the cost terms used in them. The cost terms, specified by a checkmark in
each row of Table 6.1, were first multiplied by weighting factors (given in Table 6.2) and
then summed together to form the cost function named at the beginning of the row.

In all cost functions, dynamic-based, stability-based, and human-criteria-based cost
terms were used since these are the vital cost terms for generating a dynamically-consistent,
stable, and human-like gait prediction. It should be noted that for the MSK-model opti-
mization, there is one human-criteria-based cost term (i.e., ActMSK), and for the NMSK-
model optimization, there are two human-criteria-based cost terms (i.e., ActNMSK and
Mtb).

In the data-tracking (DT) cost function, all three data-based cost terms (i.e., Trq, Ang,
and GRF) were used. In the semi-data-tracking (SDT) cost functions, two of the data-
based cost terms were used; in the SDT1 cost function, Ang and GRF were used, and
in the SDT2 cost function, Trq and GRF were used, and in the SDT3 cost function, Trq
and Ang were used. In the semi-predictive (SP) cost functions, only one data-tracking
cost term was used. The data-tracking cost terms GRF, Ang, and Trq were used in SP1,
SP2, and SP3 cost functions, respectively. In the fully-predictive (FP) cost function, no
data-tracking cost term was used.

Regarding the defined cost functions, we developed a total of 16 optimizations (i.e., eight
optimizations for each of the MSK and NMSK models) using direct collocation optimal
control. We used GPOPS-II with the IPOPT solver in first derivative mode to implement
these optimizations with the tolerance of 1e-5. Similar to the optimizations in Chapter 5,
we considered a fixed mesh of 100 collocation points, divided into 20 intervals, over the
whole gait cycle. These optimizations were done on a desktop computer with an Intel®

Core� i7-6700 CPU @ 3.40 GHz with 16.0 GB RAM.
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Table 6.1: The configurations of the multi-objective cost functions for the MSK-model and
NMSK-model optimizations

# cost function model
cost terms

dynamic-based stability-based human-criteria-based data-based
Jrk Rsd Imp HAT ActMSK ActNMSK Mtb Trq Ang GRF

(1) data-tracking (DT)
MSK X X X X X - - X X X

NMSK X X X X - X X X X X

(2) semi-data-tracking (SDT1)
MSK X X X X X - - - X X

NMSK X X X X - X X - X X

(3) semi-data-tracking (SDT2)
MSK X X X X X - - X - X

NMSK X X X X - X X X - X

(4) semi-data-tracking (SDT3)
MSK X X X X X - - X X -

NMSK X X X X - X X X X -

(5) semi-predictive (SP1)
MSK X X X X X - - - - X

NMSK X X X X - X X - - X

(6) semi-predictive (SP2)
MSK X X X X X - - - X -

NMSK X X X X - X X - X -

(7) semi-predictive (SP3)
MSK X X X X X - - X - -

NMSK X X X X - X X X - -

(8) fully-predictive (FP)
MSK X X X X X - - - - -

NMSK X X X X - X X - - -
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Table 6.2: The weighting factors for the cost terms of the MSK-model and NMSK-model
optimizations

# cost function model
weghits of cost terms

dynamic-based stability-based human-criteria-based data-based
Jrk Rsd Imp HAT ActMSK ActNMSK Mtb Trq Ang GRF

(1) data-tracking (DT)
MSK 1/40 1/4 1/40 1/4 1/100 - - 1/4 1/4 1/4
NMSK 1/40 1/4 1/40 1/4 - 1/100 1/5 1/4 1/4 1/4

(2) semi-data-tracking (SDT1)
MSK 1/40 1/4 1/4 1/4 1/100 - - - 1/4 1/4
NMSK 1/40 1/4 1/10 1/4 - 1/100 1/5 - 1/4 1/4

(3) semi-data-tracking (SDT2)
MSK 1/40 1/4 1/4 1/4 1/100 - - 1/4 - 1/4
NMSK 1/40 1/4 1/10 1/4 - 1/100 1/5 1/4 - 1/4

(4) semi-data-tracking (SDT3)
MSK 1/40 1/4 1/4 1/4 1/100 - - 1/4 1/4 -
NMSK 1/40 1/4 1/20 1/4 - 1/100 1/5 1/4 1/4 -

(5) semi-predictive (SP1)
MSK 1/40 1/10 1/3 1/2 1/100 - - - - 1/4
NMSK 1/40 1/10 1/20 1/2 - 1/100 1/5 - - 1/4

(6) semi-predictive (SP2)
MSK 1/40 1/4 1/4 1/4 1/100 - - - 1/4 -
NMSK 1/40 1/4 1/10 1/4 - 1/100 1/5 - 1/4 -

(7) semi-predictive (SP3)
MSK 1/40 1/4 1/4 1/4 1/100 - - 1/4 - -
NMSK 1/40 1/4 1/10 1/4 - 1/100 1/5 1/4 - -

(8) fully-predictive (FP)
MSK 1/40 1/4 1/4 1/4 1/100 - - - - -
NMSK 1/40 1/10 1/4 1 - 1/100 1/5 - - -

6.2 Results and Discussion

In this section, the results of the 16 optimizations are shown and discussed to compare
the MSK and NMSK models in terms of prediction accuracy and computational time.
Comparison of these optimizations sheds light on the roles of the different cost terms in
the realism of the predicted results.

6.2.1 Weighting Factor Examination

The weighting factors of the cost terms used in each optimization are given in Table 6.2.
The weights were tuned manually to achieve the minimum possible values of RMSEs for
the optimization results. The weights of the data-based, human-criteria-based, and Jrk
cost terms are identical for the different cost functions, while the weights of the other cost
terms were changed based on the data-based cost terms used in the cost functions.

The stability-based cost term’s weight has a high value in the SP1 cost function of
both MSK-model and NMSK-model optimizations and in the FP cost function of the
NSMK-model optimization, in comparison to its weight values in the remainder of the
cost functions. On the other hand, the Rsd cost term got lower weights in the SP1 cost
function of both MSK-model and NMSK-model optimizations and in the FP cost function

131



Table 6.3: Computational times of the MSK-model and NMSK-model optimizations with
the different cost functions

model DT SDT1 SDT2 SDT3 SP1 SP2 SP3 FP
MSK 2 hrs 10 hrs 8 hrs 3 hrs 14 hrs 3 hrs 15 hrs 10 hrs
NMSK 2 hrs 3 hrs 3 hrs 1 hrs 2 hrs 2 hrs 2 hrs 6 hrs

of the NSMK-model optimization. The high weight of the stability-based cost term (i.e.,
enforcing more stability) and the low weight of the Rsd cost term (i.e., reducing dynamic
consistency) could compensate for the absence of torque-tracking and angle-tracking cost
terms in the SP1 and FP cost functions.

The Imp cost term’s weight has the lowest value in the DT cost functions, where all three
data-based cost terms were used. It shows that the three data-based cost terms can assist
the optimization in solving the implicit dynamic equations of the child gait. Consequently,
if the experimental data of either motions, torques, or GRFs are not available, we have
to consider a larger weight for the Imp cost term to have a dynamically-consistent gait
simulation.

6.2.2 Computational Time Examination

The computational times of the MSK-model and NSMK-model optimizations are shown in
Table 6.3. Although we expected high computational times for the NMSK-model optimiza-
tions due to the complexity of the equations of the NMSK model, MSK-model optimizations
took considerably longer to converge to an optimal solution.

When the DT cost function was used, the MSK-model and NMSK-model optimizations
had the same computational time (2 hrs). It demonstrates that when we have a fully-data-
tracking cost function, in which all the data of angles, torques, and GRFs are tracked, the
MSK and NMSK models behave similarly and converge with the same speed. However,
when the remainder of the cost functions, in which not all the data-based cost terms are
used, the convergence times of the MSK-model optimizations are considerably longer than
those of the NMSK-model optimizations.

The direct collocation optimal control is very sensitive to the initial guess. The poor
initial guess increases the convergence time of the optimization [109]. Since, for the MSK-
model optimization, we did not have a good initial guess (i.e., experimental-data-based
initial guess) for some states and control inputs, including the HAT-to-ground position
and orientation, the metatarsal joint angles and torques, and the 12 MTG activations,
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Figure 6.1: Root-mean-square errors of the joint angles from the MSK-model and NMSK-
model optimizations using the different cost functions

the convergence times of the MSK-model optimizations increased. On the contrary, the
NMSK-model optimizations had shorter computational times (considerably faster conver-
gences) since we had reasonable initial guess for the 16 control inputs of the NMSK-model
optimization (i.e., EMG data were used as the initial guess for the muscle excitations).

6.2.3 Prediction Accuracy Examination

The RMSEs of the joint angles, GRFs, and torques from the MSK-model and NMSK-
model optimizations with the different cost functions are shown in Figures 6.1, 6.2, and 6.3,
respectively. The RMSEs of the muscle excitations from the NMSK-model optimization
with the different cost functions are shown in Figure 6.4.

Disregarding the model types and the cost terms used, the simulated angles, GRFs,
torques, and muscle excitations of the right and left legs may not have the same RMSEs
due to three reasons: (1) Since we only had the experimental data of the right leg, we
had to generate data for the left leg from the experimental data of the right leg using
a Fourier series. Thus, the experimental data considered for the left leg in this thesis
were not accurate (experimentally-measured). (2) We assumed that the time shift between
the right and left leg motions equals the sum of the single-support and double-support
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Figure 6.2: Root-mean-square errors of the ground reaction forces from the MSK-model
and NMSK-model optimizations using the different cost functions

Figure 6.3: Root-mean-square errors of the joint torques from the MSK-model and NMSK-
model optimizations using the different cost functions
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Figure 6.4: Root-mean-square errors of the muscle excitations from the NMSK-model
optimization using the different cost functions

135



phase times which may not be equal to the real time shift. (3) The experimental data,
reported for both legs in the literature [109], show that the right and left legs do not
have completely symmetric motion during gait. Despite these reasons, we believe that
our proposed optimizations can result in very close RMSEs for the right and left legs if
experimental data are collected for both legs.

When MSK and NMSK Models Have Similar Performances

According to the RMSE plots, the MSK-model and NMSK-model optimizations had rel-
atively similar prediction accuracy when the cost function used was either DT, SDT3, or
SP1.

In the DT cost function, all the data-based cost terms are included. The MSK-model
and NMSK-model optimizations converge with the same speed using this cost function and
have similar prediction accuracy. The only difference is that the NMSK-model optimization
could predict muscle excitations and calculate COT, while the MSK-model optimization
could not. Thus, if all the data of motions, torques, and GRFs are available to compose the
DT cost function and the muscle excitations and COT are not required to be calculated,
it is efficient to use an MSK-model optimization, which has less complex equations than
the NMSK-model optimization. It should also be noted that, according to Figure 6.4, the
muscle excitations predicted by the NMSK-model optimization with the DT cost function
were not very accurate in comparison to those predicted by the other cost functions.

In the SDT3 cost function, only two of the three data-based cost terms (i.e., Ang and
Trq cost terms) are included. The MSK-model and NMSK-model optimizations with the
SDT3 cost function had very low convergence times (3 hrs and 1 hrs, respectively) and
very high prediction accuracy compared to the optimizations with other cost functions.
The results of the NMSK-model optimization with the SDT3 cost function show that to
develop a computationally-efficient and accurate gait simulation using the NMSK model,
it is sufficient to only use two of the three data-based cost terms (i.e., Ang and Trq cost
terms).

The Ang and Trq cost terms can provide a good estimation for both states and control
inputs of the optimization without the GRF cost term’s assistance. In other words, when
tracking the data of angles and torques at the same time, we do not need the force-tracking
cost term anymore. The reason is that the implicit dynamics equations, including GRF
equations, are already met as path constraints, and angle-tracking and torque-tracking cost
terms are sufficient to assist the optimization in solving the implicit dynamics. Thus, it
is not required to use a redundant cost term (GRF cost term) in the cost function since
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a redundant cost term confuses the cost function, increases the computational time, and
decreases prediction accuracy. According to Figure 6.4, among all NMSK-model optimiza-
tions, the NMSK-model optimization with the SDT3 cost function could predict the most
accurate muscle excitations. On the contrary, the NMSK-model optimization with the
DT cost function (including the three data-based cost terms) is among the least accurate
optimizations in muscle excitation prediction.

In the SP1 cost function, only one of the three data-based cost terms (i.e., GRF cost
term) is included. The MSK-model and NMSK-model optimizations with the SP1 cost
function have relatively similar low prediction accuracy. The force-tracking cost term can
assist the optimization in solving the foot-ground contact equations, and consequently,
estimating accurate GRFs. However, this cost term cannot assist the optimization in
estimating accurate values for the states and control inputs. Thus, it is required to use at
least one of the torque-tracking or angle-tracking cost terms along with the force-tracking
cost term to improve the prediction accuracy. According to Figure 6.4, among all NMSK-
model optimizations, the NMSK-model optimization with the SP1 cost function predicted
the least accurate muscle excitations.

When MSK Model Has Better Performance Than NMSK Model

According to the RMSE plots, when either the cost function SDT2 or SP3 was used, the
MSK-model optimization had better prediction accuracy than the NMSK-model optimiza-
tion. However, the NMSK-model optimization could predict relatively accurate muscle
excitations using these two cost functions. In the SDT2 cost function, only two of the
three data-based cost terms (i.e., Trq and GRF cost terms) are included, and in the SP3
cost function, only one of the three data-based cost terms (i.e., Trq cost term) exists. The
common feature of SDT2 and SP3 cost functions is that both have the torque-tracking cost
term but not the angle-tracking cost term.

In the NMSK-model optimizations, there is one further human-criteria-based cost term
(i.e., Mtb cost term) compared to the MSK-model optimizations. Most of the equations
of the Mtb cost term consist of joint torques. Thus, the torque-tracking cost term is more
effective in the NMSK-model optimizations than the MSK-model optimizations that do
not have the Mtb cost term. The torque-tracking cost term enforces the NMSK-model
optimization to focus more on estimating accurate control inputs (i.e., accurate muscle
excitations and joint torques) and less on predicting accurate states and GRFs. In conclu-
sion, to develop an accurate gait simulation using the NMSK model, the torque-tracking
cost term should be used along with the angle-tracking cost term.
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When NMSK Model Has Better Performance Than MSK Model

According to the RMSE plots, the NMSK-model optimization had better prediction accu-
racy than MSK-model optimization when either the cost function SDT1, SP2, or FP was
used.

In the SDT1 cost function, only two of the three data-based cost terms (i.e., Ang and
GRF cost terms) exist, and in the SP2 cost function, only one of the three data-based cost
terms (i.e., Ang cost term) exists. The common feature of SDT1 and SP2 cost functions
is that both have the motion-tracking cost term assisting the optimization in estimating
accurate values for the states.

As explained for the SDT2 and SP3 cost functions, when there is no motion-tracking
cost term, the prediction accuracy of the NMSK-model optimizations was less than that
of the MSK-model optimizations. However, when either the SDT1 or SP2 cost function,
having the motion-tracking cost term, was used, the NMSK-model optimizations had con-
siderably better prediction accuracy than the MSK-model optimizations. It should also be
noted that, according to Figure 6.4, the muscle excitations predicted by the NMSK-model
optimizations with the SDT1 and SP2 cost functions were not very accurate in comparison
to those predicted by the SDT2 and SP3 cost functions having torque-tracking cost term.

The MSK-model and NMSK-model optimizations with the FP cost function had less
prediction accuracy than the optimizations with cost functions having at least one data-
based cost term. The reason is that there is no data-based cost term in the FP cost function
to assist the optimization in estimating accurate values for the states, control inputs, and
GRFs.

When the fully-predictive cost function was used, the NMSK-model optimization had
considerably better prediction accuracy and shorter convergence time than the MSK-model
optimization. The reason is that in the NMSK-model optimization, we had one additional
human-criteria-based cost term (i.e., Mtb cost term) and good initial guess for the 16
control inputs (i.e., muscle excitations). Thus, for a fully-predictive gait simulation, the
NMSK model performs more efficiently than the MSK model in terms of prediction ac-
curacy and computational time. The RMSEs of the NMSK-model optimizations with the
fully-predictive cost function, although being higher than the RMSEs of the NMSK-model
optimization with the data-tracking cost functions, are reasonably low compared to the
ranges of the experimental angles, torques, GRFs, and muscle excitations. The results of
the NMSK-model optimization with the FP cost function are illustrated in detail in the
next section.
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6.2.4 Fully-Predictive Gait Simulation Using The Neuromuscu-
loskeletal Model

Our NMSK-model optimization with the fully-predictive cost function, done using direct
collocation optimal control, can be considered as a fully-predictive child gait simulation
since there is no data-based term in the constraints and the cost function. This optimization
simulates the child gait using only dynamic-based, stability-based, and human-criteria-
based cost terms.

The only two prerequisites for our fully-predictive simulation were as follows: (1) We
identified the contact parameters, MTG parameters, and the muscle-activation-dynamics
parameters through fully-data-tracking optimizations and then used the identified values
for the fully-predictive simulation; (2) Since the direct collocation optimal control is very
sensitive to the initial guess, we used either a data-based or data-consistent initial guess
for states and control inputs. The initial guess for hip, knee, and ankle angles and muscle
excitations were data-based (i.e., experimental angle and EMG data were used as initial
guess). The initial guess for the angles and torques of the metatarsals, and the position and
orientation of the whole-body COM were data-consistent (i.e., the corresponding results
from the fully-data-tracking cost terms were used as initial guess).

As shown in Table 6.2, for the NMSK-model optimization with the FP cost function, we
considered a relatively high weight for the stability-based cost term to increase stability, and
we considered a low weight for the Rsd cost term to reduce the dynamic consistency. These
modifications on the weights compensated for the absence of the data-based cost terms and
helped predict stable and human-like gait. As given in Table 6.3, the computational time
of the NMSK-model optimization with the FP cost function is 6 hours. This duration is
40% less than the computational time of the MSK-model optimization with the FP cost
function (i.e., 10 hours) since the NMSK-model optimization with the FP cost function
had reasonable initial guess for the control inputs, and this is important in increasing the
convergence speed.

To demonstrate the prediction accuracy of our fully-predictive child gait simulation, we
have included the predicted results in this section. Figures 6.5, 6.6, 6.7, and 6.8 show the
predicted angles, GRFs, torques, and muscle excitations, respectively.

The RMSEs of the hip, knee, and ankle angles, predicted by the NMSK-model fully-
predictive optimization, are 25%, 16%, and 19% less than those predicted by the MSK-
model fully-predictive optimization, respectively. The RMSEs of the hip, knee, and ankle
torques, predicted by the NMSK-model fully-predictive optimization, are 23%, 17%, and
9% less, and the RMSEs of the tangential and normal ground reaction forces are 9% and 7%
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Figure 6.5: The joint angles from the NMSK-model fully-predictive simulation (The dotted
lines represent the mean experimental data and the gray areas show± 1 standard deviations
of the mean experimental data)

Figure 6.6: The ground reaction forces from the NMSK-model fully-predictive simulation
(The dotted lines represent the mean experimental data and the gray areas show ± 1
standard deviations of the mean experimental data)
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Figure 6.7: The joint torques from the NMSK-model fully-predictive simulation (The dot-
ted lines represent the mean experimental data and the gray areas show ± 1 standard
deviations of the mean experimental data)

Figure 6.8: The muscle excitations from the NMSK-model fully-predictive simulation (The
dotted lines represent the mean experimental data and the gray areas show ± 1 standard
deviations of the mean experimental data)
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less than those predicted by the MSK-model fully-predictive optimization. The metatarsal
angles and torques predicted by the NMSK-model fully-predictive optimization are also
in good agreement with the results simulated by the fully-data-tracking optimizations of
Chapter 5.

The majority of the muscle excitations predicted by the NMSK-model fully-predictive
optimization are in good agreement with the corresponding EMG data. The comparison
between the muscle excitations shown in Figure 5.11 and Figure 6.8 concludes that the
muscle excitations predicted by the NMSK model with the fully-predictive cost function
are more consistent with the EMG data than the muscle excitations predicted by the fully-
data-tracking cost function. It shows that an optimization, that is over-constrained with
data-tracking cost terms, can not predict very natural muscle excitations. The RMSE
mean value of the muscle excitations from the fully-predictive cost function is 12% less
than that of the fully-data-tracking cost function.

6.3 Conclusion

In this chapter, we used the MTG-based MSK and NMSK models to simulate a natural-
speed child gait. We developed a total of 16 optimizations (8 optimizations for each model),
ranging from fully-data-tracking to fully-predictive optimizations, to compare the MSK and
NMSK models in terms of prediction accuracy and computational time. We investigated
the roles of a wide range of cost terms in achieving a realistic simulation. These cost terms
included dynamic-based, stability-based, human-criteria-based, and data-based cost terms.

From the manually-tuned weighting factors, we concluded that a relatively high weight
for the stability-based cost term and a low weight for the residual-load-squared cost term
are required when there is no data-tracking cost term in the cost function. Besides, when
the cost function includes all the data-tracking cost terms (i.e., torque-tracking, angle-
tracking, and GRF-tracking cost terms), implicit dynamic equations are solved faster,
and consequently, the implicit-dynamic-squared cost term does not need a large weight.
However, the absence of either of these data-tracking cost terms causes us to increase the
weight of the implicit-dynamic-squared cost term to ensure dynamic consistency.

From the computational times of the optimizations, we determined that the NMSK-
model optimizations are more computationally-efficient than MSK-model optimizations
since the control inputs of the NMSK-model optimizations are muscle excitations with
a reasonable initial guess (i.e., EMG data were used as the initial guess for the muscle
excitations).
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From the prediction accuracy investigation, we noted that if all the data of motions,
torques, and GRFs are available to compose the DT cost function and the muscle exci-
tations and COT are not required to be calculated, it is efficient to use an MSK-model
optimization, which has less complex equations than the NMSK-model optimization. Fur-
thermore, we showed that to develop a computationally-efficient and accurate gait sim-
ulation using the NMSK model, it is sufficient to only use two of the data-tracking cost
terms: angle-tracking and torque-tracking. This optimization could predict the most accu-
rate muscle excitations as well. On the other hand, when the GRF-tracking cost term was
used in the absence of the angle-tracking and torque-tracking cost terms, the MSK-model
optimization predicted absolutely inaccurate angles and torques, and the NMSK-model op-
timization predicted not only inaccurate angles, torques but also the least accurate muscle
excitations.

The other interesting outcome of the prediction accuracy investigation is that when
the torque-tracking cost term was used in the absence of the angle-tracking cost term, the
NMSK-model optimization had worse prediction accuracy than the MSK-model optimiza-
tion. However, the NMSK-model optimization could predict relatively accurate muscle
excitations. On the other hand, when the angle-tracking cost term was used in the absence
of the torque-tracking cost term, the NMSK-model optimization had better prediction
accuracy than the MSK-model optimization.

The main achievement of this chapter is that when the fully-predictive cost function
was used, the NMSK-model optimization could predict angles, torques, and GRFs 20%,
16%, and 8% more accurately than the MSK-model optimization. The computational
time of the NMSK-model optimization was also 40% less than the time of the MSK-
model optimization. Besides, the muscle excitations predicted by the NMSK-model fully-
predictive optimization were 12% more accurate than those predicted by the data-tracking
optimization.

There are two prerequisites for our proposed NMSK-model fully-predictive optimiza-
tion: (1) The contact parameters, MTG parameters, and the muscle-activation-dynamics
parameters should be identified through fully-data-tracking optimizations, and then the
identified values can be used for the fully-predictive simulation; (2) The initial guess for
the hip, knee, and ankle angles, muscle excitations, angles and torques of the metatarsals,
and also the position and orientation of the HAT should be experimental-data-consistent.

In the next chapter, we will use the MSK-model and NMSK-model optimizations to
predict dynamically-consistent slow and fast gaits for children without tracking the slow
and fast gait experimental data in the optimizations.
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Chapter 7

Slow-Speed and Fast-Speed Gait
Prediction Using the Musculoskeletal
and Neuromusculoskeletal Child
Models: A Semi-Predictive Approach

This chapter evaluated whether the MSK-model and NMSK-model optimizations, devel-
oped in Chapter 6, could minimize the reliance of simulations on experiments and predict
dynamically-consistent and physically-realistic slow and fast gaits, without tracking the
experimental data of the corresponding slow and fast gaits.

We considered four different-speed gaits, including very slow walking at 0.9 m/s (XS),
slow walking at 1.09 m/s (S), fast walking at 1.29 m/s (M), and very fast walking at 1.58
m/s (L), to generate the slow-gait and fast-gait simulations 1. To predict gaits at these four
speeds, we used the MSK-model and NMSK-model optimizations with the data-tracking
(DT) cost function developed for the natural-speed gait simulation in Chapter 6; however,
three modifications were applied: (1) The experimental data of the natural-speed gait (i.e.,
natural walking at 1.26 m/s (N)) were scaled with respect to the cycle times of the slow
and fast gaits, and then the scaled data were used as initial guess in the slow-gait and
fast-gait simulations; it should be noted that we scaled (stretched/shrank) the natural gait
experimental data only in time and kept the magnitude of them unchanged. (2) In the
slow-gait and fast-gait simulations, the final times (i.e., gait cycle times) and the bounds

1We selected the names of XS, S, M, and L for compatibility with [18] from which we extracted the
experimental data of the child different-speed gaits.
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on the states and control inputs were determined based on the experimental data of the
corresponding slow and fast gaits. (3) The scaled natural gait data were used to compose
the data-based and stability-based cost terms of the cost function.

Our slow-gait and fast-gait simulations can be considered “semi-predictive simulations”
since the experimental data of the corresponding slow and fast gaits were not tracked in
them.

7.1 Semi-Predictive Optimization Methodology

We simulated each of the XS, S, M, and L gaits using the MSK-model and NMSK-model
optimizations with the DT cost function. Thus, we developed a total of eight optimizations
to generate the slow-gait and fast-gait simulations. The details of each MSK-model and
NMSK-model optimization were explained in Section 6.1. The cost terms used in the DT
cost function of each model’s optimization were mentioned in Table 6.1. For the slow-gait
and fast-gait simulations, the states, control inputs, and constraints were kept unchanged,
and the only modifications are as follows:

� For the natural-speed gait simulation in Chapter 6, the lower and upper bounds on
the final time were considered to be equal (i.e., the final time was enforced to be fixed),
and the upper and lower bounds were set to 0.98 s, which was the experimental gait
cycle time of child natural-speed gait. For the slow-gait and fast-gait simulations, we
set the lower and upper bounds on the final time equal to the experimental gait cycle
times of child’s XS, S, M, and L gaits that were equal to 1.30 s, 1.12 s, 0.95 s, and 0.83
s, respectively. The bounds on the states and control inputs were also determined
based on the prescribed standard deviations of the experimental data for child’s XS,
S, M, and L gaits. We extracted the experimental data of the child different-speed
gaits from [18]; this paper is the same reference from which we extracted the child
natural-speed gait experimental data used in the previous chapters. For the HAT-
to-ground position and orientation, the metatarsal joint angles and torques, and the
12 MTG activations, the bounds were kept equal to the ones defined for the natural-
speed gait simulation.

� For the natural-speed gait simulation in Chapter 6, most of the initial guesses were
set to the natural-speed gait experimental data and the initial guess of the HAT-
to-ground position and orientation, the metatarsal joint angles and torques, and the
12 MTG activations were set to the corresponding results obtained from a fully-
data-tracking gait simulation. However, we wanted to minimize the reliance of our
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slow-gait and fast-gait simulations on experiments. To do so, first, we scaled the
initial guess used in the natural-speed gait simulation with respect to the XS, S, M,
and L gait cycle times, while keeping the magnitudes of them unchanged. Then, we
used the scaled values as the initial guess for all slow and fast gait simulations.

� The cost functions used for the slow-gait and fast-gait simulations are the same as the
DT cost functions used for the natural-speed gait simulation in Chapter 6. Row num-
ber 1 in Table 6.1 shows the cost terms of the DT cost functions for the MSK-model
and NMSK-model optimizations. The only difference between the cost functions
of natural-speed gait and different-speed gait simulations is in their stability-based
and data-based cost terms. In the stability-based and data-based cost terms of the
natural-speed gait simulation, the natural gait experimental data were used. How-
ever, in the stability-based and data-based cost terms of the slow-gait and fast-gait
simulations, we used the natural gait experimental data that were already scaled
with respect to the XS, S, M, and L gait cycle times. The DT cost functions of the
slow-gait and fast-gait simulations were defined as:
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where JMSK and JNMSK are the cost functions of the MSK-model and NMSK-model
optimizations, respectively. The index N denotes the natural gait experimental data
scaled in time with unchanged magnitudes.

We developed the eight different-speed gait simulations using direct collocation optimal
control. We used GPOPS-II with the IPOPT solver in first derivative mode to implement
these optimizations with the tolerance of 1e-5. Similar to the previous optimizations, we
considered a fixed mesh of 100 collocation points, divided into 20 intervals, over the whole
gait cycle. These optimizations were done on a desktop computer with an Intel® Core�

i7-6700 CPU @ 3.40 GHz with 16.0 GB RAM.

7.2 Results and Discussion

In this section, the results of the slow-gait and fast-gait simulations are shown and dis-
cussed. We also compared the MSK and NMSK models in terms of prediction accuracy
and computational time to evaluate whether they are effective for predicting slow and fast
gaits, without tracking the experimental data of the corresponding slow and fast gaits.

For the weighting factors of the cost functions, JMSK and JNMSK (Eq. 7.1 and Eq. 7.2,
respectively), we initially considered the same weight values used for the DT cost functions
in the natural-speed gait simulation in Chapter 6. We then tried to manually tune them
for each of the XS, S, M, and L gait simulations. After a great number of manual tunes,
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Table 7.1: Weighting factors for the slow-gait and fast-gait simulations

simulation model cost function weights

XS, S, M, L MSK JMSK (Eq. 7.1)
w1 = 1/40 , w2 = 1/4 , w3 = 1/40 , w4 = 1/4
w5 = 1/100 , w6 = 1/4 , w7 = 1/4 , w8 = 1/4

XS, S, M, L NMSK JNMSK (Eq. 7.2)
w1 = 1/40 , w2 = 1/4 , w3 = 1/40 , w4 = 1/4
w5 = 1/100 , w6 = 1/5 , w7 = 1/4 , w8 = 1/4 , w9 = 1/4

Table 7.2: Computational times of the slow-gait and fast-gait simulations

model XS S M L
MSK 18 hrs 12 hrs 10 hrs 12 hrs
NMSK 8 hrs 6 hrs 4 hrs 5 hrs

we concluded that the weight values of the DT cost functions in the natural-speed gait
simulation give the minimum RMSEs for the slow-gait and fast-gait stimulations as well.
Thus, we finally set the weights of cost functions JMSK and JNMSK equal to the weights
of the DT cost functions used for the natural-speed gait simulation. Table 7.1 shows the
weights of cost terms of JMSK and JNMSK .

The computational times of the slow-gait and fast-gait simulations are given in Ta-
ble 7.2. The slow-gait and fast-gait simulations are not as computationally-efficient as the
natural-speed gait simulation with the DT cost function that took only 2 hours for either
MSK-model and NMSK-model optimizations. In the slow-gait and fast-gait simulations,
we did not use the corresponding slow and fast gait data, and instead, we used the scaled
natural gait data that were not very strong initial guess for the slow-gait and fast-gait
simulations.

In the natural-speed gait simulations, we observed that when the corresponding experi-
mental data were not tracked, the MSK-model optimizations took longer than the NMSK-
model optimization to converge to an optimal solution. The reasons were explained in
Section 6.2.2. Due to the same reasons, for the slow-gait and fast-gait simulations, the
MSK-model optimizations took twice as long as the NMSK-model optimizations to con-
verge to an optimal solution as shown in Table 7.2.

According to the computational times in Table 7.2, XS and L gait simulations took
longer to converge than S and M gait simulations, respectively. Since the S and M gaits’
speeds are close to the natural gait’s speed, the ranges of joint angles, torques, GRFs,
and muscle excitations of the S and M gaits are similar to those of the natural gait. In
contrast, the XS and L gaits have ranges significantly different from the natural gait’s
ranges. The use of the scaled natural gait data as the initial guess and in the data-based
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Figure 7.1: Normalized root-mean-square errors of the joint angles from the slow-gait and
fast-gait simulations

cost terms led the S and M gait simulations to converge faster than the XS and L gait
simulations. In conclusion, the larger the gap there exists between the speed of slow or
fast gaits and the speed of natural gait, the longer the computational time for slow-gait or
fast-gait simulations.

In Chapter 6, we calculated the RMSEs to compare the different cost functions’ predic-
tion accuracy in simulating natural-speed gait. However, in this chapter, since the ranges
for the experimental data of the slow and fast gaits are not identical, the prediction accu-
racies of the slow-gait and fast-gait simulations cannot be compared fairly by comparing
the RMSEs. Thus, we calculated the normalized root-mean-square errors (NRMSEs) by
dividing RMSEs by the range of experimental data to make them dimensionless and conse-
quently comparable [66]. The range of experimental data is defined as the maximum value
minus the minimum value. The NRMSEs of the joint angles, GRFs, and torques from the
MSK-model and NMSK-model optimizations for slow-gait and fast-gait simulations are
shown in Figures 7.1, 7.2, and 7.3, respectively.

According to the NRMSE plots, the accuracies of the MSK-model and NMSK-model
optimizations were similar in predicting joint angles and ground reaction forces for the
slow-gait and fast-gait simulations. However, the NMSK-model optimization’s accuracy
is higher than the MSK-model optimization’s accuracy in predicting joint torques for the
different-speed gait simulations. The NMSK-model optimization could predict the joint
torques of the XS, S, M, and L gaits more accurately than the MSK-model optimization
by approximately 17%, 12%, 10%, and 2%, respectively. The good accuracy of the NMSK-

149



Figure 7.2: Normalized root-mean-square errors of the ground reaction forces from the
slow-gait and fast-gait simulations

Figure 7.3: Normalized root-mean-square errors of the joint torques from the slow-gait and
fast-gait simulations
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Figure 7.4: Normalized root-mean-square errors of the muscle excitations from the slow-
gait and fast-gait simulations

model optimization is a result of having one additional human-criteria-based cost term
(i.e., metabolic energy consumption). Besides, we had good initial guess for the 16 control
inputs (i.e., we used scaled EMG data of natural gait data as the initial guess for the
muscle excitations) that yield accurate joint torques.

Due to the same reason mentioned for the computational times, the use of the scaled
natural gait data as initial guess and in the data-based cost terms led the S and M gait
simulations to predict more accurate joint angles, torques, and ground reaction forces than
the XS and L gait simulations, respectively.

The NRMSEs of the muscle excitations from the NMSK-model optimization for slow-
gait and fast-gait simulations are shown in Figure 7.4. Although there is no EMG-data-
tracking cost term in the cost function, the NRMSE values of the muscle excitation are
relatively low compared to EMG data ranges. The slow-gait and fast-gait simulations
had almost similar accuracy in predicting muscle excitations since, similar NRMSEs were
obtained for most muscle excitations.

Using the NMSK-model optimization, we could estimate COT for the child natural
gait in Chapter 5 (1.53 Jkg−1m−1). In this chapter, we calculated the COT for the child
slow and fast gaits, which are 2.18, 1.99, 1.96, and 1.99 Jkg−1m−1 for the XS, S, M, and L
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Figure 7.5: Metabolic cost of transport for different gait speeds

gaits, respectively. Figure 7.5 shows the metabolic costs of transport with respect to the
gait speeds, which is in good agreement with the plots reported in the literature [19, 45].
According to the literature [19], the COT of human walking as a function of walking speed
is a ‘U’-shaped curve, and the minimum value of this curve (the most efficient COT) occurs
at the natural speed (preferred speed).

To demonstrate the accuracy of the NMSK-model optimization in predicting slow and
fast gaits, we showed the resultant joint angles, GRFs, torques, and muscle excitations
in Figures 7.6, 7.7, 7.8, and 7.9, respectively. The results show that the predicted hip,
knee, and ankle angles and torques, and the predicted GRFs are all within ± 1 standard
deviation of the corresponding slow-gait and fast-gait experimental data.

The resultant metatarsal angles and torques are within the reported ranges for the
metatarsal joint angles and torques of the child gait, respectively [97]. According to our
results, when the walking speed increases from XS (0.9 m/s) to L (1.58 m/s), the range
of metatarsal angles decreases from 40 degrees to 20 degrees, and the range of metatarsal
torques increases from 55 N.m to 65 N.m. Mager et al. [98] have also reported similar
changes in the metatarsal angle and torque ranges when they studied the role of foot
biomechanics in walking and jogging.

According to Figure 7.9, the XS gait muscle excitations fluctuate more (i.e., approxi-
mately have 1 decibel less signal-to-noise ratio) than the muscle excitations of the other
gaits. Consequently, the torques of the XS gait, generated from the muscle excitations, fluc-
tuate more (i.e., approximately have 3 decibels less signal-to-noise ratio) than the torques
of the other gaits, as shown in Figure 7.8. We set the initial guess of the XS-gait muscle
excitations to the scaled natural gait EMG data, which have larger values than the bounds
prescribed for the XS-gait muscle excitation based on the XS gait experimental EMG data.
This inconsistency between the initial guess and bounds of the muscle excitations increases
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Figure 7.6: The joint angles from the NMSK-model optimization for different gait speeds
(The dotted lines represent the mean experimental data and the gray areas show ± 1
standard deviations of the mean experimental data)
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Figure 7.7: The ground reaction forces from the NMSK-model optimization for different
gait speeds (The dotted lines represent the mean experimental data and the gray areas
show ± 1 standard deviations of the mean experimental data)
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Figure 7.8: The joint torques from the NMSK-model optimization for different gait speeds
(The dotted lines represent the mean experimental data and the gray areas show ± 1
standard deviations of the mean experimental data)
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Figure 7.9: The muscle excitations from the NMSK-model optimization for different gait
speeds (The dotted lines represent the mean experimental data and the gray areas show
± 1 standard deviations of the mean experimental data)
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the XS-gait simulation’s computational time and makes the resultant muscle excitations
noisy.

7.3 Conclusion

In this chapter, we used our proposed MSK-model and NMSK-model optimizations to gen-
erate semi-predictive simulations and predict four different-speed gaits: very slow walking
at 0.9 m/s (XS), slow walking at 1.09 m/s (S), fast walking at 1.29 m/s (M), and very fast
walking at 1.58 m/s (L). In the different-speed gait simulations, we did not use the exper-
imental data of the slow or fast gaits since we wanted to evaluate whether our proposed
MSK-model and NMSK-model optimizations are able to predict dynamically-consistent
and physically-realistic slow and fast gaits when no experimental data are available for
them. To determine the initial guess, the stability-based, and data-based cost terms of
the different-speed gait simulations, we used the experimental natural gait data that were
scaled with respect to the different-speed gaits’ cycle times.

The results of the different-speed gait simulations showed that the NMSK-model opti-
mization is more computationally-efficient and accurate than the MSK-model optimization
in simulating slow and fast gaits without tracking the experimental data of the corre-
sponding slow and fast gaits. The MSK-model optimization took twice as long as the
NMSK-model optimization to converge to an optimal solution. The NMSK-model opti-
mization predicted the joint torques of the XS, S, M, and L gaits more accurately than
the MSK-model optimization by approximately 17%, 12%, 10%, and 2%, respectively. We
also concluded that the larger the gap there exists between the speed of slow or fast gaits
and the speed of natural gait, the longer the computational time and the less accurate the
results for slow-gait or fast-gait simulations.

The NMSK-model optimization also enabled us to estimate muscle excitations and
COT for the different-speed gaits. The resultant muscle excitations and COT values were in
agreement with our experimental EMG data and the COT values reported in the literature,
respectively. We also plotted the COT values with respect to the gait speeds and confirmed
a ‘U’-shaped curve, where the minimum (the most efficient COT) occurs at the natural
speed (preferred speed).
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Chapter 8

Conclusion

This thesis developed a 2D 11-DOF child model actuated by muscle torque generators
and in contact with the ground through a 3D ellipsoidal volumetric foot-ground contact
model. We took advantage of muscle torque generators to obtain simplified but accurate
and computationally-efficient musculoskeletal and neuromusculoskeletal models for chil-
dren to predict physiologically-realistic torques, motions, ground reaction forces, muscle
excitations, and metabolic energy consumption for natural, slow, and fast gaits using direct
collocation optimal control.

In this chapter, we summarized the main achievements and suggested some possible
open areas of research.

8.1 Summary

In Chapter 2, the main goal was to highlight the features of recent analysis methods of
human gait. The recently-developed problem formulations and simulation solvers were clas-
sified and separately discussed for SK, MSK, and NMSK models to help researchers select
an appropriate analysis method depending on their research purpose. We concluded that
to develop a computationally-efficient and accurate predictive simulation of gait, symbolic
programming, a fast optimal control method, an accurate volumetric foot-ground contact
model, and a two-segment foot model are required.

To investigate the importance of these requirements, a simpler task (vertical jump) was
studied in Chapter 3. To develop a fully-predictive vertical jump simulation, we generated
two human models (i.e., one with the toe segments and the other one without the toe
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segments) and compared two different foot-ground contact models (i.e., 2D kinematically-
constrained contact model and 3D ellipsoidal volumetric contact model). We concluded
that: (1) A toe-included human model with 3D ellipsoidal volumetric foot-ground contact
would simulate a lower-extremity task more accurately than a toeless human model with
a kinematically-constrained foot-ground contact; (2) Contact parameters must be tuned
using a strong initial guess and experimental-data-tracking cost terms to develop a more
realistic simulation.

Using the findings from Chapter 3, we developed a 2D human model including metatarsal
joints with a 3D ellipsoidal volumetric contact model in Chapter 4, and identified the con-
tact parameters for child gait using three approaches: (1) GlobalSearch trajectory opti-
mization, (2) direct collocation optimal control, and (3) direct collocation optimal control
along with mass-&-joint-property identification. Although the second approach’s errors
were considerably lower than those from the first approach, the errors of the tangential
and normal forces from the third approach were 75% and 60% less than the errors from the
optimal control approach, respectively. We concluded that the mass and joint properties
should be identified along with the contact parameters to have a more realistic simulation.
For all child gait simulations in the remainder of the thesis, we used direct collocation
optimal control in which the contact parameters, mass and joint properties were set to the
identified values.

In Chapter 5, we used MTGs to develop simplified but accurate MSK and NMSK
models that best fit child gait. We adapted the MTG model proposed by [114] to our child
model and identified the MTG parameters considering the child gait experimental data.
We employed the fitted MTGs to develop a simplified MSK model and simulate a child
gait. Although the MTG-based MSK model is simpler than an anatomically-detailed MSK
model, it could simulate child gait with reasonable accuracy. To make the MSK model more
physiologically-meaningful, we replaced the muscular model with a neuromuscular model,
NMSK model, which had an additional cost term (i.e., energy term) and muscle activation
dynamics. This NMSK model enabled us to predict muscle excitations comparable with
EMG data and estimate the metabolic energy rate consistent with the literature. Using
the proposed MSK and NMSK models, we could predict physiologically-meaningful angles
and torques for the metatarsal joints in good agreement with the literature.

We used the MTG-based MSK and NMSK child models, proposed in Chapter 5, to
simulate a child natural-speed gait in Chapter 6. We developed 16 optimizations (8
optimizations for each model), ranging from fully-data-tracking to fully-predictive opti-
mizations, to compare the MSK and NMSK models in terms of prediction accuracy and
computational time. We investigated the roles of a wide range of cost terms, includ-
ing dynamic-based, stability-based, human-criteria-based, and data-based cost terms, in
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achieving a realistic simulation. We concluded that the NMSK-model optimizations were
more computationally-efficient than MSK-model optimizations since the control inputs of
the NMSK-model optimizations are muscle excitations with a reasonable initial guess (i.e.,
EMG data were used as the initial guess for the muscle excitations). We also showed
that a relatively high weight for the stability-based cost term and a low weight for the
residual-load-squared cost term are required when there is no data-tracking cost term in
the cost function. The absence of either of the data-tracking cost terms (i.e., torque-
tracking, angle-tracking, or GRF-tracking cost term) causes us to increase the weight of
the implicit-dynamic-squared cost term to ensure dynamic consistency.

According to the findings of Chapter 6, it is sufficient to only use two of the data-
tracking cost terms (i.e., angle-tracking and torque-tracking cost terms) to develop a
computationally-efficient and accurate NMSK gait model. This optimization could pre-
dict the most accurate muscle excitations as well. On the other hand, when the GRF-
tracking cost term was used in the absence of the angle-tracking and torque-tracking cost
terms, the NMSK-model optimization predicted inaccurate angles, torques, and the least
accurate muscle excitations. The main achievement of this chapter was that when the
fully-predictive cost function was used, the NMSK-model optimization could predict more
accurate results with less computational time than the MSK-model optimization. Further-
more, the muscle excitations predicted by the fully-predictive NMSK-model optimization
were more accurate than those predicted by the data-tracking optimization.

In Chapter 7, we used our proposed MSK-model and NMSK-model optimizations to
generate semi-predictive simulations and predict four different-speed gaits for children: very
slow walking at 0.9 m/s (XS), slow walking at 1.09 m/s (S), fast walking at 1.29 m/s (M),
and very fast walking at 1.58 m/s (L). In the different-speed gait simulations, we did not
track the experimental data of the slow or fast gaits since we wanted to evaluate whether our
proposed MSK-model and NMSK-model optimizations are able to minimize the reliance
of simulations on experiments and predict dynamically-consistent and physically-realistic
slow and fast gaits, without tracking the experimental data of the corresponding slow and
fast gaits. To determine the initial guess, the stability-based and data-based cost terms of
the different-speed gait simulations, we used the experimental natural gait data that were
scaled with respect to the different-speed gaits’ cycle times. We showed that the NMSK-
model optimization was more computationally-efficient and accurate than the MSK-model
optimization in simulating slow and fast gaits. We also plotted the COT values with respect
to the gait speeds. The plot follows the expected ‘U’-shaped curve, where the minimum
(the most efficient COT) occurs at the natural speed (preferred speed).
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8.2 Recommendations for Future Work

We suggest the following directions to advance this research and overcome its limitations:

� A more feasible and accurate gait model may be generated if experimental foot-
ground reaction moments and experimental center of pressure location are used for
contact parameter identification.

� If contact parameters, mass and joint properties, MTG parameters, and parameters
corresponding to the muscle activation dynamics are identified simultaneously us-
ing an experimental-data-tracking optimization, more realistic parameters may be
obtained that can lead to a more accurate predictive simulation.

� It may be possible to estimate muscle forces using the proposed MTG-based NMSK
gait model. Our NMSK gait model could predict physiologically-realistic muscle
excitations using the synergy analysis approach [154]. We may be able to take a
similar approach to decompose the MTGs into torque components corresponding to
muscles. In this way, the muscle forces can be estimated, given the moment arms.

� More accurate muscle excitations may be predicted if EMG data of more muscles
are available. To do so, we may need to take the synergy analysis approach to
find a physiologically-meaningful relation between the muscle activations and MTG
activations.

� A more accurate predictive simulation may be achieved if co-contractions between the
agonist and antagonist MTGs are taken into account. To do so, we may need a more
elaborate scheme to define physiologically-meaningful co-contractions between the
agonist and antagonist MTGs and tune them using an experimental-data-tracking
parameter identification optimization.

� The jerk penalty may be reduced by adding arms to our human model, and conse-
quently, a more stable gait may be predicted.

We believe that these directions would open the door for predicting new walking motions
in the future.
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