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Abstract 

This thesis presents Bolt, a novel scheduler design for large-scale real-time data analytics. Bolt 

achieves the scheduling accuracy of modern centralized schedulers while supporting clusters 

with hundreds of thousands of nodes. At Bolt’s core is a scheduler design that leverages 

modern programmable switches. Bolt supports a FIFO scheduling policy, as well as task 

priority-based and task resource constraint-based scheduling policies.  

Evaluation of a Bolt prototype on our cluster with a Barefoot Tofino switch shows that the 

proposed approach can reduce scheduling overhead by 40x and increase the scheduling 

throughput by 50x compared to state-of-the-art centralized and decentralized schedulers. 
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Chapter 1– Introduction 

Online Data-Intensive (OLDI) services [2, 3, 4] are one of the fundamental building blocks of 

today’s internet infrastructure. These are workloads which perform computations over massive 

datasets but still aim to provide fast response times in the order of milliseconds. Numerous 

applications such as low latency web-services [5], real-time analytics [6, 7, 8], algorithmic 

smart trading [7, 9, 10] and rapid object detection [11] fall under this banner as they require 

real-time responses ranging from tens to hundreds of milliseconds. The service times for tasks 

comprising these workloads are proportionally tiny [12] and we expect these to go even lower 

given the benefits. For instance, it is reported that lowering trade latency by a millisecond can 

boost a firm’s earnings by upwards of a hundred million dollars each year [13]. 

The traditional bottlenecks for sub-second tasks within data processing frameworks have 

been CPU and I/O related [14] and various systems such as MemCache [15] and RAMCloud 

[16] have already attempted to address these. However, this no longer holds true when we 

move an order of magnitude lower into the millisecond range. Chen et al. [17] have recently 

demonstrated that task scheduling delays are the major component of end-to-end response 

times for low-latency analytics. In their research, they have observed that scheduling delay can 

account for nearly 60% of total job execution time when jobs primarily consist of low-latency 

tasks. 

Schedulers for clusters running tasks which take tens of milliseconds must be able to perform 

a huge number of scheduling decisions per second. These decisions must also be made with 

extremely low overheads, as scheduling delays beyond 1 ms are intolerable when handling 

these tasks. 

Centralized Schedulers. Traditional data-processing frameworks use centralized scheduler 

designs [18, 19, 20]. Although such a centralized scheduler can make accurate scheduling 

decisions with accurate cluster information, they cannot scale to handle large cluster sizes. For 

instance, Firmament [18], a state-of-the-art centralized scheduler can only support of a cluster 

of 100 nodes when running real-time tasks and the centralized Spark [19] scheduler cannot 

support any sub-second tasks. 
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Distributed Schedulers. To overcome the scalability limitations associated with centralized 

schedulers, distributed scheduling designs [21, 22, 23] were adopted by many frameworks. 

This approach utilizes multiple schedulers operating autonomously on a cluster with virtually 

zero intercommunication. As a result, they either operate on stale cluster information [21] or 

rely on probing a subset of nodes in the cluster to launch their tasks [22, 23]. These scheduling 

decisions are suboptimal due to their reliance on approximate cluster information, and probing 

can add onto the scheduling overhead, violating the tight bounds needed for real-time tasks. 

Furthermore, a large percentage of additional nodes need to be dedicated to running these 

schedulers. For instance, a single Sparrow [23] scheduler can handle only a few tens of nodes 

running real-time tasks while also possessing a scheduling overhead of 2-10 ms, thus requiring 

a large number of machines reserved for running it while servicing even medium-sized clusters 

of hundreds of nodes. 

Bolt. This thesis presents Bolt,  a scheduler that can make rapid real-time scheduling 

decisions based on global cluster information. To make these scheduling decisions precise, 

Bolt follows a centralized scheduling paradigm.  It can also scale to support hundreds of 

thousands of nodes when running real-time tasks as it possesses an extremely high scheduling 

throughput. Bolt possesses the ability to prioritize critical tasks as well as handle tasks 

requiring specific resources such as GPUs in a fashion similar to the Hadoop MapReduce [20] 

and Spark [19] schedulers. Additionally, Bolt provides these features at a finer task granularity 

vis a vis the job granularity  in the aforementioned schedulers. 

To improve the scheduling performance and support large clusters, Bolt accelerates 

scheduling decisions by leveraging modern programmable switches [24, 25, 26]. Modern 

programmable switches can forward more than 4 billion packets per second, making them ideal 

candidates for implementing a centralized scheduler for large scale clusters. However, 

leveraging their capabilities is challenging due to their restrictive programming and memory 

models. In particular, the restrictive memory model allows for performing a single operation 

on a memory location once per packet. Consequently, even implementing a simple task queue 

is complicated because standard queue operations access the queue size variable twice: once 

to check whether the queue is empty or full, and once to increment or decrement its size. 
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The key to Bolt’s design is a novel P4-compatible circular task queue that enables task 

retrieval at line-rate while also supporting the addition of large lists of tasks (Section 3.2). 

Furthermore, despite the limitations of current switches, Bolt’s design supports common 

scheduling policies, including priority and resource constraints (i.e., schedule a task on nodes 

with certain resources).  

The rest of this thesis is organized as follows. Chapter 2 provides the motivation and relevant 

background for this thesis. Chapter 3 provides an overview of the Bolt end-to-end system 

design. In Section 3.2, the design details needed to support a FIFO scheduling policy with an 

in-network scheduling paradigm are discussed. Section 3.3 and Section 3.4 then go ahead and 

discuss how this design can be extended to support task priority-based and task resource 

constraint-based scheduling policies. Chapter 4 describes our Bolt prototype implementation 

as well as provides an outline of the other state-of-the-art schedulers we have compared Bolt 

against. In Chapter 5, we compare our Bolt prototype against other schedulers to demonstrate 

its scheduling latency and throughput improvements. Lastly, in Chapter 6, we present other 

work related to Bolt, and outline how Bolt differs from them. 
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Chapter 2 – Background 

This section aims to provide the background information required for the topics discussed in 

this thesis. 

2.1 Real-Time Workloads 

Real-Time Workloads are those that require end-to-end response times ranging from the tens 

to hundreds of milliseconds. Online Data Intensive (OLDI) workloads are workloads which 

meet this constraint while performing parallel computations on massive data sets. Web services 

which require response times in the sub 100ms and sub 10 ms range have been studied 

extensively before [2, 3, 4, 5] and are widely used as the representatives for this class of 

workloads. For instance, the Google Web-Search system [27] updates query results 

interactively, displaying search results within a few tens of milliseconds of a user typing search 

queries . Dean et al [5] also envision that upcoming augmented-reality applications will require 

web services with even lower response times.  

Real-time analytics are a fast-growing area of interest and are being applied in various areas 

such as traffic analysis [6], financial analytics [7] and smart-grid monitoring [28, 29]. With 

growing trends towards leveraging the Internet-of-Things (IoT) and analytics in areas such as 

defense [30] and agriculture [31], we expect an explosive growth of real-time analytics in the 

future. Financial analytics in particular benefits the most from latency improvements, as the 

lowering of trade delays by even a millisecond can boost firm earnings by upwards of a 

hundred million dollars a year [13] . 

Platforms for emerging AI applications [32, 33] powered by techniques such as reinforcement 

learning must support fine-grained computations in the order of milliseconds  (such as 

rendering actions when interacting with the real world). As noted by the authors of Ray [32], 

such frameworks handle millions of tasks per second but require millisecond-level latency 

constraints. 



 

 5 

User facing services demand tight latency bounds, which can severely impact user experience 

when breached. A previous study on the impact of response times [34] has shown that anything 

over an end-to-end response time of 150 ms degrades the quality of such services noticeably. 

Finally, real-time applications such as rapid object detection [11, 35] and augmented reality 

applications [5] consist of short latency dependent tasks and would benefit immensely from 

response-time improvements. 

To run these applications even on moderate sized clusters with a few hundreds of nodes, the 

data analytics framework needs to make hundreds of thousands of precise scheduling decisions 

per second while keeping scheduling latencies below a single millisecond.  

  

(a) Centralized Scheduler Design (b) Decentralized Scheduler Design 

Figure 1. Scheduling Paradigms 

2.2 Scheduling Paradigms 

Modern data-processing frameworks adopt the micro-batch scheduling model [19, 20]. Jobs 

are submitted that consist of m independent tasks (m is typically a small number between 8 and 

128). Tasks are run in parallel by executors running on cluster nodes. A job is considered 

complete only when all the tasks within have completed their execution. 

Clients 

Centralized 

Scheduler 

Executors 

Decentralized 

Schedulers Clients 
Executors 
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2.2.1 Centralized Scheduler Design 

Centralized scheduler architecture is illustrated in Figure 1a. Having a single centralized 

scheduler that maintains accurate cluster status information can result in high-quality 

scheduling decisions. However, this approach cannot support real-time analytics even on 

moderately sized clusters. For instance, Firmament [18], a state-of-the-art centralized 

scheduler, models the scheduling problem as a graph with edges extended from tasks to 

executors that can run them. Firmament uses a min-cost max-flow solver to find the best 

mapping from tasks to executors. Each time a new job is submitted, the task graph is updated, 

and the graph solver is executed on the new graph (Figure 2). Despite optimizing their solver 

implementation, the Firmament authors report that it cannot scale beyond a cluster with 1200 

CPU cores (100 12-core nodes in their paper) when running real-time workloads. 

Apache Spark [19] also uses a centralized scheduler design. Our evaluation (Chapter 5) and 

the authors of Sparrow [23] show that the Spark scheduler breaks down and suffers infinite 

queuing when task execution time falls below 1.5 seconds.  

2.2.2 Decentralized Scheduler Design 

Modern distributed schedulers [21, 22, 23] aim to support large-scale clusters by employing 

tens of schedulers. Decentralized scheduler architecture is illustrated in Figure 1b. To avoid 

the high overhead of coordinating the scheduling decisions between multiple schedulers, 

 

 

Figure 2. Firmament’s Scheduling Timeline Figure 3. Sparrow’s Scheduling 

Timeline 
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distributed schedulers base their scheduling decisions on partial or stale cluster status 

information. For instance, in Sparrow [23], a state-of-the-art distributed scheduler, to schedule 

a job with m tasks, the scheduler submits probes to 2m randomly selected executors (Figure 3). 

If the job has 32 tasks, the scheduler probes just 64 out of potentially hundreds of nodes in the 

cluster. The executors queue the probes. When an executor completes its current task, it 

dequeues a probe, retrieves the task from the scheduler, and executes it. This probing technique 

is necessary, because the scheduler does not have complete knowledge of the cluster 

utilization. Hopper [22] adopts a similar approach. This approach leads to suboptimal 

scheduling decisions because the scheduler only probes a fraction of the cluster nodes, and the 

probing step increases the scheduling delay. 

Apollo [21]  is a distributed scheduler that uses a central resource monitoring service to 

monitor the nodes. Each scheduler queries the resource-monitoring service to identify vacant 

nodes. The resource-monitoring service loosely coordinates between schedulers. 

Consequently, it is likely that multiple schedulers will schedule tasks on the same set of nodes, 

leading to less efficient scheduling decisions. 

2.2.3 Programmable Switches 

Programmable switches facilitate the implementation of an application-specific packet-

processing pipeline that is deployed on network devices and executed at line speed. A number 

of vendors produce network-programmable ASICs, including Barefoot’s Tofino [24, 25] and 

Broadcom’s Trident 3 [26]. 

Figure 4.a illustrates the basic data plane architecture of modern programmable switches. 

The data plane consists of three main components: ingress pipelines, a traffic manager, and 

egress pipelines. A packet is first processed by an ingress pipeline before it is forwarded by 

the traffic manager to the egress pipeline, which finally emits the packet. 
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Each pipeline is composed of multiple stages. At each stage, one or more tables match fields 

in the packet header or metadata; if a packet matches, then the corresponding action is 

executed. Each stage has dedicated resources, including tables and register arrays (a memory 

buffer). Stages can share data through the packet headers and small per-packet metadata (a few 

hundred bytes in size) that is propagated between the stages as the packet is processed 

throughout the pipeline. Packet processing can be viewed as a graph of match-action stages.  

Programmers use domain-specific languages such as P4 [36, 37] to define their packet 

headers, define tables, implement custom actions, and configure the processing pipeline. 

Challenges. The need to execute custom actions at line speed restricts what modern ASICs 

can do. Modern ASICs limit (1) the number of stages per pipeline, (2) the number of tables 

and registers per stage, (3) the number of times any register can be accessed per packet, (4) the 

amount of data that can be read or written per packet per register, and (5) the size of the per-

packet metadata passed between stages. In addition, modern ASICs lack support for loops or 

recursion. 

The restrictive memory model constitutes a particular challenge to building an in-network 

scheduler. A memory register (the only memory that can preserve variables across packets) 

can only be accessed in a single stage and using a single operation. The operation can be either 

 
 

(a) Switch data plane (b) Pipeline for implementing in-network 

scheduling 

 

Egress
pipelines

Ingress 
pipelines

pkt

Traffic 
Manager

L2
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IPV4
Table
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Task
Scheduling

Table

Packet header and metadata

Figure 4. Programmable Switch Architecture 
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a simple read or write or perform a single arithmetic operation (e.g., read and increment or read 

and set). 
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Chapter 3 – Bolt’s Design 

3.1 Design Overview 

Bolt is an in-network centralized scheduler that precisely assigns tasks to free executors with 

minimal overhead. An executor is a process running on a worker node and receives tasks from 

the scheduler to execute. Multiple executors run on a single worker node. Typically, a worker 

node runs a number of executors equal to the number of the available logical cores (i.e., 

hardware threads). Figure 5.a shows Bolt’s architecture, which consists of clients, executors, 

and a centralized programmable switch. 

 

 

(a) Design Architecture (b) Scheduling Timeline 

Figure 5. Bolt’s Design 

3.1.1 Bolt Client 

Similar to Spark [19] and Sparrow [23], a data-processing framework groups independent tasks 

into jobs and submits these jobs to the scheduler. The data-processing framework is a client of 

the scheduler. In the rest of the paper, we use the terms client and data-processing framework 

interchangeably. As in current data-processing frameworks, jobs consist of independent tasks 

that can run in parallel, and clients are responsible for tracking data dependency between tasks 

of different jobs [19, 20, 23]. If a task fails, then clients resubmit failed tasks [19, 23]. 

Workers
Programmable 

Switch

1. Submit Job

Job Info
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Task 2

Task m
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2. Store Tasks

3. Retrieve Task

4. Schedule a Task

…

Task Arrival
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Delay
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3.1.2 Executors 

Figure 5.b shows the scheduling steps in Bolt. When an executor becomes free, it sends a 

message to the scheduler to request a new task. Thus, the scheduler only assigns tasks to free 

executors, effectively avoiding head-of-line blocking. This is essential to meet the latency 

requirements of low-latency tasks. The executor then completes its task and sends a completion 

response back to the client via the scheduler.   

If the scheduler has no tasks, then it sends a no-op task to the executor. The executor waits 

for a configurable period of time before requesting a task again. 

3.1.3 Programmable Switch 

Bolt hosts the centralized in-network scheduler on a programmable switch [24, 25]. The 

scheduler receives job descriptions that include a list of tasks (Figure 5.a). These tasks reside 

in memory until an executor is available to run them. The scheduler adds these tasks to a 

circular queue along with the information needed to identify the client that submitted them. 

When an executor asks for a task, the scheduler assigns a task to it based on various parameters 

such as task priority and resource requirements.  

Despite its simplicity, implementing this design on modern programmable switches is 

challenging due to their restrictive programming and memory model. 

3.1.4 Deployment Approach 

Similar to previous projects that leverage switch capabilities [38, 39, 40, 41], the network 

controller installs forwarding rules to forward all job-submission requests through a single 

switch; that switch will run the Bolt scheduler. The controller typically selects a common 

ancestor switch of all worker nodes. While this approach may create a longer path than 

traditional forwarding does, the effect of this change is minimal. Li et al. [39] report that for 

88% of cases, this approach does not increase the request latency, and the 99th percentile had 

fewer than 5 µs of added latency. 
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3.1.5 Fault Tolerance 

Bolt follows the failure semantics of modern data analytics engines such as Spark [19]. The 

Spark application driver handles executor monitoring and, upon detecting executor failure, 

requests new executors from the cluster manager such as YARN [42] or Mesos [43]. Timeouts 

and resubmissions are used to handle other issues such as messages lost in transit between 

different components of the system. 

The scheduler maintains a soft state. On switch failure, a new switch is selected to run the 

scheduling pipeline. The clients will time out on all previous submitted tasks and will resubmit 

those tasks. Similar to other current frameworks [19, 20, 23],  if a task fails due to executor or 

communication failure, the client times out for this task and resubmits the task. 

Similarly, if a job-submission packet or a task-completion packet is lost, the sender will 

resubmit the packet. This may lead to the double execution of tasks. Because tasks are 

idempotent [20], this does not affect correctness but may lead to a small loss of efficiency. 

3.2 A FIFO Scheduling Design for Bolt 

We first present the base design for Bolt’s scheduler with a FIFO scheduling policy, then 

extend this design with priority (Section 3.3) and resource constraint scheduling (Section 3.4). 

 

 

 

Figure 6. Bolt’s job submission packet structure 

FN ID

L2/L3 Headers

reserved 
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Submit Job
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3.2.1 Network Protocol 

Bolt introduces an application-layer protocol embedded in packets’ L4 payload. Similar to 

other systems that use programmable switches [38, 39, 40] , Bolt uses UDP to reduce operation 

latency and simplify the scheduler design. 

Bolt introduces two new packet headers: job_submission, which is used to submit a new job 

to the scheduler, and a task_assignment packet used to send a task to an executor. A single job 

may span multiple job_submission packets. We briefly discuss these headers in this section. 

The next subsections detail our design. 

Figure 6 shows the main fields of the job_submission packet: 

• OP: The request type indicating this is a job submission. 

• UID: The user ID.  

• JID: The job ID. The <UID, JID> combination represents a unique job identifier. 

• #TASKS: The number of tasks in the job. The scheduler uses this field to parse the 

job_submission packet properly. 

• A list of TASK_INFO metadata for all the tasks in the job. 

The task information (TASK_INFO) includes the following: 

• TID: A task identifier within a job. The tuple <UID, JID, TID> is a unique identifier for 

any task in the system. 

• TDESC: The task description that determines the task to be executed and its 

parameters. 

• TPRIO: The priority of the task. 

• TRSRC: The resource constraints for the task 

To assign a task to an executor, the scheduler sends it a task_assignment packet. The 

task_assignment header contains the TASK_INFO of a task, as well as the client IP address and 

port number. 
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3.2.2 Scheduler Design 

Bolt stores tasks (i.e., TASK_INFO) in a switch register as a circular queue. Each queue entry 

has the following fields: TASK_INFO, client_IP, and client_port, as well as an is_valid flag that 

indicates whether the entry has been scheduled. The circular queue has two 32-bit pointers: 

add_ptr and retrieve_ptr. The add_ptr points to the next empty queue entry in which a new 

task can be inserted. The retrieve_ptr points to the next task to be scheduled. 

Each pointer comprises two parts: <round_num, index>. The index part points to an entry in 

the queue. The round_num counts the number of rounds the pointer traversed the entire queue. 

This round_num field helps to resolve special cases when the queue is full or empty.  

To detect whether the queue is full or empty, we subtract retrieve_ptr from add_ptr. If the 

difference is zero, then the queue is empty. If the difference is equal to or larger than the queue 

size, then the queue is full. In some cases, the difference is negative, meaning retrieve_ptr is 

larger than add_ptr, in which case the pointers need an adjustment. We discuss this below. 

In the traditional circular queue implementation, to enqueue a new task, one typically checks 

whether the queue is full by computing the difference between the pointers. If the queue is not 

full, then the new task is added to the queue and add_ptr is incremented. However, this design 

cannot be implemented on current switches because it accesses add_ptr twice; it first checks 

the pointer, then possibly increments it. The dequeue operation faces a similar challenge. 

Because it can access a pointer only once per packet, Bolt uses an atomic 

read_and_increment(add_ptr) operation to read add_ptr and increment it in one access. It then 

checks whether the queue is full. If the queue is not full, then Bolt uses the add_ptr value to 

add a task to the queue. This approach increments add_ptr even when the queue is full. 

Similarly, to dequeue a task, Bolt calls read_and_increment(retrieve_ptr) and increments 

retrieve_ptr even when the queue is empty. In these cases, the pointers must be corrected, but 

because the pointer can only be accessed once per packet, the correction must be made in a 

future packet. We discuss how to detect and correct incorrect pointers later in this section 

(§3.2.5).  
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3.2.3 Handling Job Submissions 

The client submits a job by populating the header of a job_submission packet (Figure 6) and 

sending the packet to the scheduler. The scheduler then enqueues the job’s tasks. 

Two switch limitations complicate adding a set of tasks to the queue: modern switches do 

not permit loops or recursion, and the scheduler can access a register (the queue) only once per 

packet. To work around these limitations, Bolt checks the #TASKS field in the packet. If it is 

larger than zero, then it removes the first task from the packet’s list of tasks, calls 

read_and_increment(add_ptr), then adds the task to the queue.  

Adding Multiple Tasks. The job_submission packet (Figure 6) contains a list of tasks. To 

add multiple tasks to the queue, Bolt leverages packet recirculation (i.e., the ability to resubmit 

a packet from the egress pipeline to the ingress pipeline and process it again like a new packet). 

The scheduler removes the first task from the task list (TASK INFO1 in Figure 5) in the 

job_submission packet, decrements the #TASKS field, and recirculates the packet. Bolt 

continues to recirculate the packet until #TASKS is zero.  

Handling a Full Queue. When enqueueing a new task, the scheduler calls 

read_and_increment(add_ptr), then compares add_ptr and retrieve_ptr to determine whether 

the queue is full. If the queue is not full, then the scheduler adds the task to the queue. If the 

queue is full, the scheduler does not add the task and sends an error packet to the client. The 

error packet contains the list of tasks that are not added to the queue. The client then retries 

submitting a new job after a while. 

3.2.4 Handling Task Retrieval 

To avoid head-of-line blocking, executors retrieve tasks only when they become free. To 

retrieve a task, an executor sends a request to the scheduler. The scheduler calls 

read_and_increment(retrieve_ptr) and reads one task from the queue. If the task’s is_valid flag 

is True, then the task is sent to the executor, and the is_valid flag is set to False (this is done in 

one access with read_and_set(is_valid, False)). Otherwise, if the is_valid flag is False; then this 

indicates that the queue is empty. In this case, a no-op task is sent back to the executor, which 
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repeats the request after waiting a configurable length of time. We are exploring a mechanism 

to keep track of vacant nodes in order to reduce the number of task retrieval requests. 

3.2.5 Pointer Correction 

 

Figure 7. Packet Recirculation 

When the scheduler receives a job submission packet, it executes 

read_and_increment(add_ptr) first, then checks whether the queue is full.  If the queue is full, 

incrementing add_ptr was a mistake. To correct this mistake, the scheduler recirculates a repair 

packet to reset add_ptr to its original value. To avoid a case in which multiple job_submission 

packets try to reset add_ptr, we add a Boolean flag (is_repairing_add_ptr) to ensure the 

scheduler only recirculates one repair packet. 

Similarly, task retrieval operations call read_and_increment(retrieve_ptr), then check 

whether the retrieved task is valid. If the retrieved task is invalid (which indicates that the 

queue is empty), then incrementing the pointer was a mistake. We leave this pointer until the 

next job_submission packet is received. When the next job_submission request is received, the 

scheduler adds the first task in the queue. The scheduler then checks whether retrieve_ptr 

needs adjusting (i.e., whether retrieve_ptr is larger than add_ptr). If retrieve_ptr needs 

adjusting, the scheduler recirculates a packet and sets retrieve_ptr to equal the index of the 

newly added task. A Boolean flag (is_repairing_retrieve_ptr) is set to ensure the scheduler 

only recirculates one repair packet. 

It is important to note that incrementing the retrieve_ptr will never cause queue overflows 

as each pointer is a combination of a round number and an index, as noted in §3.2.2. The round 

number is used to prevent queue overflows from occurring. 
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3.3 Priority Based Scheduling 

Priority-based scheduling is a common scheduling approach in modern schedulers [18, 19, 21, 

23]. For higher flexibility, unlike current frameworks (Hadoop [20] and Spark [19]) that 

support priority-based scheduling at the job level, Bolt offers priority-based scheduling at the 

task level, meaning tasks within the same job may have different priorities. Tasks within the 

same priority level are executed in FIFO order. 

Figure 8 shows the logical view of Bolt’s data plane with priority scheduling. To support 

multiple priority levels, we use a separate FIFO queue (described in the previous section) for 

each priority level. Higher priority levels have lower priority numbers, with priority 1 being 

the highest priority. 

3.3.1 Job Submission 

A client indicates a task’s priority level in the TPRIO field in the TASK_INFO field of the job 

submission packet (Figure 6). When the scheduler receives a job_submission packet, it 

forwards it to the queue that matches the priority level in the TPRIO field (Step 4 in Figure 8). 

The scheduler adds the task to the queue as detailed in §3.2.3. 

 

Figure 8. Logical view of the Bolt switch data plane for priority-based scheduling.  

Note that the dashed lines represent task_retrieval flow and solid lines represent 

job_submission flow. 
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3.3.2 Task Retrieval 

When a scheduler receives a retrieve_task packet from an executor, it returns the first available 

task of the highest priority level. To do so, each retrieve_task packet has a retrieve priority 

field (RTRV_PRIO). When an executor submits a retrieve_task packet, it sets RTRV_PRIO to 1, 

the highest priority level supported in the system. 

The scheduler will retrieve a task from the FIFO queue corresponding to the priority level 

specified in the RTRV_PRIO field (Step 8 in Figure 8). If the retrieved task is a valid task, the 

scheduler forwards the task to the executor. If the retrieved task is an invalid task, indicating 

that the selected queue is empty, the scheduler will increment the RTRV_PRIO field and 

recirculate the packet (Steps 7 and 10 in Figure 8). Incrementing RTRV_PRIO makes the 

scheduler retrieve a task from a lower priority queue. If RTRV_PRIO becomes larger than the 

number of priority levels in the system, indicating that there are no tasks at any priority level, 

the scheduler sends a no-op packet to the executor. The executor retries after a configurable 

time period. Adjusting retrieve_ptr and add_ptr follows the same logic presented in Section 

3.2.5.  

Recirculation Overheads. In the worst case, Bolt may recirculate a retrieve_task packet up 

to the number of priority levels supported in the system. In Chapter 5, we show that this adds 

negligible overhead, because a single packet recirculation takes less than a microsecond. 

3.4 Scheduling with Task Resource Constraints 

 

Figure 9. Bolt queue design with resource constraint and task priority support 

         
        

    

             

        

        

      

         
        

    

        

             

         

      

         
        

    

         

         

              

      

                                                  



 

 19 

Tasks may require specific resources, such as a GPU or large memory. In this section, we 

extend Bolt’s design to handle resource constraints. Similar to MapReduce [20] and Spark 

[19], Bolt supports binary task constraints, i.e., the task either needs a resource or not. Tasks 

may have multiple constraints. To simplify the discussion, we present a design with a single 

priority level. 

In our current implementation, Bolt supports eight different kinds of resources. Each 

submitted task has a TRSRC field that specifies the resources the task needs. TRSRC is a byte 

representing an 8-bit resource bitmap.  

 

 

Figure 10. Usage of packet recirculation for resource-constraint scheduling 

3.4.1 Job Submission 

A client sets the appropriate flags in a task’s TRSRC field to specify the required resources. The 

scheduler uses the same logic described in Section 3.2.3 to process the job_submission packet.  

3.4.2 Task Retrieval 

The scheduler aims to assign a task to the first executor that has the requested resources. When 

an executor sends a retrieve_task packet (Figure 10. Step 1) it specifies the resources that it 

has in an 8-bit bitmap called EXEC_RSRC. 

When the scheduler receives a retrieve_task packet from an executor, it retrieves a task from 

the queue following the process described in Section 3.2.4. The retrieve process increments 

retrieve_ptr and fetches a task from the queue (Figure 10. Step 2). If the queue is empty, a no-
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op task is sent to the executor. If a valid task is retrieved, the scheduler will compare the task’s 

TRSRC field to the executor’s EXEC_RSRC field. If the executor has the resources required to run 

the task, the scheduler sends the task to the executor. 

If the retrieved task cannot be executed by this executor, we need to reinsert the task into the 

task queue and retrieve another one. We achieve this by swapping the retrieved task with the 

next task in the queue. To do so, the scheduler creates a special swap_task packet (Figure 10. 

Step 3). The swap_task packet has the following fields: TASK_INFO of the retrieved task; 

SWAP_IDX, the index of the next entry in the queue; the EXEC_RSRC; the executor’s IP address; 

and the current value of retrieve_ptr stored in pkt_retrieve_ptr. The scheduler then populates 

and recirculates the swap_task packet (Figure 10. Step 4).  

3.4.3 Swapping a Task 

When the scheduler receives a swap_task packet, it typically swaps TASK_INFO in the packet 

with TASK_INFO in the queue at the index specified in the SWAP_IDX field. The swap_task 

packet does not increment retrieve_ptr. If the swapped task can run using the resources 

specified in EXEC_RSRC, the task is sent to the executor. Otherwise, the scheduler repeats the 

swap logic by incrementing SWAP_IDX and then populates and recirculates the swap_task 

packet.  

The scheduler keeps recirculating a swap packet until it either finds a task that can run on 

this executor or it reaches the end of the queue. If the SWAP_IDX in the packet is larger than 

add_ptr, indicating that no task in the queue can run on this executor, the scheduler treats the 

swap_task packet as a job_submission packet, inserts the task following the logic in Section 

3.2.3, and sends a no-op task to the executor.  

To avoid complex concurrency scenarios in which the scheduler receives multiple 

retrieve_task packets, the swap_task packet contains the current retrieve_ptr. If the scheduler 

receives a swap_task packet with a value of a pkt_retrieve_ptr that does not match the current 

retrieve_ptr, then the scheduler will ignore the SWAP_IDX value and will swap the original task 

with the task at the head of the queue. This effectively resets the search to the beginning of the 

queue.  
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Chapter 4 – Implementation  

We have implemented a Bolt prototype using C++. We have implemented the Bolt scheduling 

logic on a Barefoot Tofino [25] switch using the P4 [36, 37] programming language in 1500 

lines of code. The prototype uses executors developed in C++ and follows the job submission 

model adopted by Sparrow [23]. A C++ client acts as a stub for modern data-analytics 

frameworks, submitting jobs with configurable sizes, task durations, and interarrival times. 

The switch available to us is one of the earliest models of P4 programmable switches and 

has limited resources. Recent Barefoot Tofino switches have a significantly larger memory and 

number of stages [24]. Due to the limitations of our switch, our prototype has a queue size of 

128K tasks. Hence, we use a 17-bit index and 15-bit round_num within each queue pointer 

(add_ptr and retrieve_ptr). The prototype can currently support four priority levels. Our back 

of the envelope calculations show that the newer switches can support one-million-entry queue 

sizes with larger number of priorities.  

The majority of the control logic is currently located in the Ingress pipeline on the switch 

while the Egress pipeline is used to hold the registers representing the actual task queues 

themselves. However, there is one exception to this. To handle task constraints, the TRSRC 

fields are stored in the Ingress pipeline. This is done because if we want to recirculate a packet, 

it needs to be forwarded to a specific output port, which can only be performed in the Ingress 

pipeline. 

The switch possesses a Linux-based controller which can be used to insert entries into any 

of the Match-Action tables. We use this controller to plug in the rules to manage packet flow 

through the switch when Bolt is deployed on it. More importantly, the table entries for Layer 

3 and Layer 4 packet switching are also deployed during this phase by the controller. Both of 

these are one-time setup operations which need to be repeated only upon Bolt re-deployment. 

We have performed a few optimizations in our prototype implementation. As noted in 

Section 3.2.5, two flags are needed to indicate that the add_ptr and retrieve_ptr are being fixed 

by a recirculating packet. In our prototype, we would need two such flags per priority level, 



 

 22 

resulting in a total of 8 flags for the 4 priority levels provided. These flags have been combined 

into an 8-bit bitmask, with one bit for each flag, to save pipeline stages. 
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Chapter 5– Evaluation 

We compare the performance of Bolt against that of state-of-the art centralized and 

decentralized schedulers using a combination of synthetic and real-world workloads. Our 

evaluation aims to address the following questions: 

a) How does Bolt’s scheduling overhead compare to state-of-the-art centralized and 

decentralized schedulers? 

b) Can Bolt scale to handle large cluster sizes while maintaining the stringent latency 

requirements required by real-time tasks? 

c) What are the benefits achieved by moving the scheduling decisions to programmable 

switches viz a viz using a software-based scheduler? 

5.1 Evaluation Setup 

5.1.1 Testbed 

We perform all our experiments on a 13-node cluster. Each node has 48GB of RAM, an Intel 

Xeon Silver 10-core CPU, and a 100 Gbps Mellanox NIC. The nodes are connected by an 

Edgecore Wedge switch with a Barefoot Tofino ASIC [25]. We use 11 nodes as worker 

nodes and up to two nodes as schedulers (if required) in our experiments. 

5.1.2 Alternative Schedulers 

We compare the throughput and latency of the following scheduling approaches.  

• Sparrow. Sparrow [23] is a state-of-the-art distributed scheduler that uses probing to 

find a vacant node for the next task. Our evaluation of the open-source Sparrow 

implementation [44] shows that its implementation is not efficient due to using Java 

and RPCs. We re-implemented Sparrow in C++ using raw UDP sockets. Our C++ 

implementation achieves up to 25 times higher throughput and 2 times lower latency 

than the original Java implementation. For the rest of our evaluation, we use our C++ 

implementation of Sparrow. 

• Bolt. We use our Bolt prototype implementation. 
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• Bolt-Server. We implemented a highly tuned centralized scheduler following the Bolt 

scheduling protocol using C++. This alternative represents an optimized and low 

overhead implementation of a centralized scheduling approach. 

We have evaluated Spark’s [19] scheduling delay in our experiments. Unfortunately, Spark 

could not handle sub-second tasks; this confirms a similar observation made by the authors of 

Sparrow [23]. The scheduling delay at 50% cluster utilization was 3 seconds. Above 50% 

utilization, the scheduler could not keep up and experienced infinite queueing. Hence, we did 

not include Spark in our figures for clarity. Additionally, we experimented with Firmament 

[18]. Unfortunately, the Firmament open-source implementation could not run workloads 

consisting of tasks with execution times less than one second. Nevertheless,  Gog et al. [18] 

report that Firmament cannot scale to more than 100 nodes with 6 physical cores each (1200 

executors total), when running 5-ms tasks. This roughly equates to a peak throughput of 240K 

scheduling decisions per second.  

5.1.3 Workload 

We evaluate our Bolt prototype with a combination of workloads, consisting of the Google 

Cluster Traces [45] as well as two synthetic workloads (SW1 and SW2).  

The synthetic workload (SW1) is similar to the one used by the authors of Sparrow [23].  In 

the synthetic workload (SW1), we use 2 independent clients to submit jobs. Each client submits 

a job at an interval of 10 ms, and each job consists of tasks with 10-ms durations. To vary the 

cluster utilization, we vary the number of tasks per job. For evaluating Bolt’s task-constraint 

scheduling capabilities, we use another synthetic workload (SW2) which has been described in 

further detail in Section 5.7. 

Otherwise, unless specified, we use the Google cluster traces [45] in our evaluation. The 

Google traces include information for tasks running on a 12,500-node cluster at Google over a 

month. To generate a trace that we can run on our 12-node cluster in a manageable time, we 

followed a similar approach to that of Firmament [18] and Hawk [46]. We took a uniform 

sample of the trace and accelerated the sample to create a trace that completes execution on 

our cluster in 3 mins. We change the sampling rate depending on the number of executors in 
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the experiment. The resulting trace had a median task duration of 5 ms. Google’s trace includes 

12 levels of priority, while our implementation supports only four. We condensed the 12 

priority levels in the trace into four levels. In all our experiments, we report the average of 10 

runs. The standard deviation in all our experiments was under 5%. 

In the rest of this chapter, we evaluate the throughput and latency of all the scheduling 

alternatives under a variety of conditions.  

5.2 Scheduling Throughput and Scalability 

 

Figure 11. Scheduling Throughput Comparison 

Figure 11 shows the scheduling throughput of the different alternatives. For Sparrow, we 

evaluate its performance with 1 and 4 Sparrow schedulers.  To increase the load on the 

schedulers, we use a synthetic benchmark composed of no-op tasks. We vary the number of 

executors to increase the load (x-axis in Figure 11). For Sparrow, we avoid the probing step in 

the protocol. This is a favorable configuration to Sparrow as the scheduler does not need to 

handle additional probing logic. Consequently, Sparrow’s results show the upper bound for 

Sparrow’s performance. For no-op tasks, an executor retrieves the task, immediately drops it, 

and requests a new task.  
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Figure 11 shows that Sparrow and Bolt-Server are not able to support large clusters. Bolt-

Server and a single Sparrow scheduler achieve their highest throughput of 500 K decisions per 

second with 150 no-op executors. Using four Sparrow schedulers achieves up to 1.9 million 

scheduling decisions per second. Bolt’s performance improves linearly with additional 

executors. With 720 executors Bolt performs 23 million scheduling operations, equivalent to 

over 45 Sparrow schedulers. Unfortunately, we could not deploy more executors on our cluster 

to stress Bolt.  

When considering real-time workloads, the task execution times are higher than the no-op 

tasks used in this experiment. For example, in order to handle a cluster of 1000 executors 

executing 5 ms tasks at 100% utilization, Bolt would need to perform 200,000 scheduling 

operations per second. With 23 million scheduling operations per second, Bolt can already 

expect to handle  a very large cluster of 115,000 executors. The switch data sheet indicates that 

the switch can handle up to 4.7 billion packets per second, indicating that Bolt’s peak 

performance is significantly higher than the workload our no-op executors can generate, and 

represents millions of executors running 5 ms tasks. 

5.3 Performance with a Synthetic Workload (SW1) 

For this experiment, we use the synthetic workload SW1 described in Section 5.1.3. Jobs 

consist of tasks with 10-ms execution times. We deploy a total of 60 executors across a cluster 

of 10 machines, carrying out CPU-intensive integer arithmetic operations. This experiment 

tries to examine Bolt’s performance in a hypothetical scenario with uniform job submission 

rates and task execution times. 
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Figure 12. Job completion times for various cluster utilization levels with SW1 

Figure 12 shows the job completion time variations with increasing cluster utilization. We 

observe that as the cluster utilization increases, Sparrow’s scheduling delays proportionally 

increase drastically. This is partly because higher cluster utilization means a larger number of 

tasks per job with 60 tasks per job at 100% utilization. At the 95% utilization rate, Bolt has a 

median scheduling delay 18x better than that of Sparrow (0.09 ms for Bolt vs 1.76 ms for 

Sparrow). Even at 50% cluster utilization, Bolt still performs 7x better than Sparrow. Unlike 

Sparrow, Bolt has a tighter range for the scheduling overheads as well. At the 95% utilization 

rate, we see that the error bars for Sparrow are quite large, indicating that the worst-case 

scheduling overhead is significantly larger than the median. 

5.4 Performance with a Real Heterogenous Workload 

Real-world workloads usually consist of bursty non-uniform job submissions with 

heterogenous task execution times. In order to examine such a realistic scenario, we evaluate 

the scheduling performance of Bolt, Bolt-Server and Sparrow using the Google Cluster Traces 

[45]. Figure 13.a shows the total scheduling delay of the different alternatives when we use the 

Google trace to run CPU-intensive tasks. Each task continually performs integer arithmetic 
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operations for the duration of the task. With this workload, each of the 11 worker nodes can 

run 16 executors (176 executors total). Figure 13.a shows that Bolt can reduce the scheduling 

delay by 40 times. While the median scheduling delay of a single Sparrow scheduler is 1.6 ms, 

Bolt’s median delay is 0.04 ms. The main reasons for this performance difference are 

Sparrow’s protocol and implementation overheads (detailed later in this section). Interestingly, 

our Bolt-Server implementation achieves comparable performance to Bolt. This is because the 

Bolt-Server implementation is lightweight and highly optimized. For Bolt and Bolt-Server, the 

scheduling delay is dominated by the network round trip time for the get_task() operation. We 

note that the latency increases to over 5 ms at the 95th percentile. This is due to the workload 

burstiness in which hundreds of tasks are submitted at the same time, leading to long tails in 

the queueing delay. We present a breakdown of this scheduling overhead in the following 

section. 

To generate a higher load, we change our executors to sleep for the duration of a task rather 

than performing arithmetic operations. With this change, we can run 200 executors per worker 

node. This configuration increases the scheduling workload by 12.5 times (2200 executors 

compared to 176 executors in Figure 13.a). Figure 13.b shows the total scheduling delay under 

this workload. Bolt reduces the scheduling delay by at least 100 times. While Bolt achieves a 

 

  

(a) CPU-intensive workload (b) Sleep workload 

Figure 13. Scheduling latency CDF. X-axes are in log-scale. 
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median scheduling delay of 0.14 ms, all other alternatives achieve scheduling delays over 14 

ms even when using 2 Sparrow schedulers (2 Sparrow in Figure 13.b).  

Interestingly, Bolt-Server has a lower performance than a single Sparrow scheduler (370 

ms vs 40 ms). This is because executors in Sparrow only send a get task request when they 

have a probe, but in Bolt-Server, executors continuously poll the scheduler for tasks. In our 

implementation, if a Bolt executor receives a no-op task, it waits for 50 s before re-sending 

the get task request. While this configuration works well for Bolt, it generates high overhead 

for Bolt-Server. 
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5.5 Scheduling Overhead Breakdown 

To understand the performance difference between the different designs, we measure the time 

spent on each step of the protocol. Figure 14 shows that CDF for each step of the protocol. The 

protocol steps are detailed in Figure 3 and Figure 5.b. Figure 14 shows the breakdown of the 

scheduling overhead for the experiment in Figure 13.a. The experiments use the Google trace 

with each task performing arithmetic operations for the duration of the task. The system uses 

176 executors in total. 

Figure 13.a shows that Bolt achieves 40 times lower median latency and 13 times lower 

latency at the 90th percentile. The two systems have a similar latency at the 95th percentile, 

because of the high queueing delay. The Google trace is bursty, with hundreds of tasks being 

submitted at certain times. These bursts of tasks are queued to wait for the next available 

executor. 

Bolt’s scheduling delay is dominated by the queueing delay (Figure 14.a). The get_task() 

delay equals the network round trip time for 90% of requests. For Sparrow, the scheduling 

delay is affected by two main factors. Figure 14.b shows that probing (the reservation step in 

Figure 3) is the reason for 37% of the total scheduling delay. The rest are get_task() and 

queueing delays. We dissected Sparrow’s implementation to understand the source of the high 

 

  
(a) Bolt breakdown (b) Sparrow breakdown 

Figure 14. Scheduling overhead breakdown. Note that the x-axis is in a different scale in (a) 

and (b). 
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delay. We found that Sparrow uses separate threads for receiving requests and scheduling 

tasks. These threads communicate over a queue that is protected by a global lock. Similarly, a 

worker node running multiple executors has separate threads for processing packets and 

running tasks. These threads communicate over a queue that is protected by a global lock. The 

overhead of this implementation and thread contentions on the queues contributes to Sparrow’s 

get task and reservation delays.  

5.6 Priority-Based Scheduling 

To demonstrate Bolt’s priority-based scheduling, we run the CPU-intensive workload with 176 

executors. The Google traces [45] have 12 levels of priority, while our implementation has 

four. We map every three levels of Google priorities to one priority level in Bolt. The resulting 

workload has 1.2%, 1.7%, 64.6%, and 32.2% of tasks at priority levels 1, 2, 3, and 4, 

respectively. Tasks at different priority levels experience different queueing delays, with 

higher priority tasks experiencing shorter queueing delays. To evaluate this effect, we increase 

the sampling rate to introduce longer queueing delays. Figure 15 shows the queueing delays of 

tasks at different priority levels. Tasks with priority levels 1, 2, 3 and 4 have median queueing 

 

Figure 15. Queuing delays across different priority levels. The x-axis is in log-scale. 
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delays of 1.4 ms, 2.9 ms, 13.3 ms, and 53.5 ms, respectively. The same workload, without 

assigning priorities to tasks, (FIFO in Figure 15) has a median queuing delay of 39.5 ms.  

Priority level 1 (highest priority) tasks are only queued when there are no free executors to run 

them, which leads to the lowest queueing delay.  

 
Recirculation overhead. Bolt’s priority-based scheduling relies on packet recirculation to 

check the task queues at different priority levels. Packet recirculation typically takes less than 

a microsecond. Figure 16 shows the latency of the get_task() step. The median latency of 

priority levels 1, 2, and 3 is statistically equivalent. The median latency of the get_task() 

operation for priority 4 is 2 s higher than the other queues. The figure also shows the 90th 

percentile of the get_task() latency. The 90th percentile latency increases by 1-2 s from one 

priority level to the next. These results show that the recirculation overhead imposed by Bolt’s 

approach to supporting multiple priorities is negligible.  

 

Figure 16. The delay of the get_task() operation at different priority levels. 
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5.7 Scheduling with Resource Constraints 

 

To demonstrate the effectiveness of scheduling with resource constraints, we design the 

following experiment. We assume that the cluster has three types of resources—A, B, and C—

which represent different resources (e.g., GPU, large memory, hardware accelerators). We 

divide the cluster nodes into three groups: G1 has resource A, G2 has resources A and B, and 

G3 has resources A, B, and C. Tasks can specify the resources they need. For simplicity, we 

design a synthetic benchmark (SW2) that has 20-ms tasks. Each task requests one of the three 

resources A, B, or C. Jobs have 90 tasks each and are submitted at 20-ms intervals. 

The experiment runs for 90 seconds. In the first 30 seconds, all submitted tasks require 

resource A, which is available on all the nodes. In the next 30 seconds, all tasks require resource 

B, which is available on G2 and G3 nodes. In the last 30 seconds, all tasks require resource C, 

which is only available on G3 nodes. 

Figure 17 shows the average throughput of a node from each one of the three node groups. 

In the first 30 seconds, all nodes in all groups are busy, as all nodes have the requested resource 

A. In the next 30 seconds, only the nodes in G2 and G3 are running tasks. In the last 30 seconds, 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. System throughput on a workload with node constraints (SW2).  
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only G3 nodes are running tasks. We note that G3 nodes are overloaded. Thus, although the 

last task is submitted at the 90-s mark, the execution only finishes at the 110-s mark. 
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Chapter 6 – Related Work 

6.1 Hybrid Scheduling 

Hybrid Scheduling paradigms involve using a combination of centralized and decentralized 

scheduling techniques. The centralized and decentralized components usually work 

independently and on separate subsets of the submitted jobs. Jobs which require accurate task 

placement and tolerate higher scheduling delays are handled by the centralized scheduler 

component, while jobs requiring low latency scheduling are handled by the decentralized 

scheduler components. Unfortunately, these hybrid schedulers suffer the same drawbacks as 

their centralized and decentralized counterparts when handling real-time workloads. We will 

examine two examples of hybrid scheduling paradigms, Hawk [46]  and Mercury [47] in this 

section. 

6.1.1 Hybrid Scheduling with Hawk 

Hawk [46] utilizes a hybrid scheduling model where long-running jobs are scheduled by the 

centralized scheduler, while short jobs are scheduled via a distributed approach, similar to that 

of Sparrow [23]. Hawk’s [46] decentralized schedulers operate autonomously on the cluster 

while scheduling these jobs, with zero intercommunication between them. They rely on 

probing a subset of the nodes in the cluster to locate a node on which the short jobs can be 

scheduled. The drawbacks of such probing approaches have been discussed earlier in       

Chapter 2.  

Hawk [46] differs from Sparrow [23] however, by additionally implementing random task 

stealing to compensate for the poor task placement by its decentralized schedulers. If a server 

is idle, it contacts a random set of other servers and selects one among them to steal tasks from. 

While this reduces head-of-the-line blocking compared to Sparrow [23], this approach still 

involves additional overhead compared to Bolt. The authors of Hawk [46] themselves note that 

the improvement gained by implementing random task stealing over Sparrow [23] is quite 

small for short jobs when running an accelerated version of the Google Cluster Traces [45]. 
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Thus, Hawk [46] suffers the same drawbacks as Sparrow [23] and other traditional 

decentralized schedulers when running low-latency jobs. 

6.1.2 Hybrid Scheduling with Mercury 

Mercury [47] utilizes a hybrid paradigm as well. The Mercury-Runtime handles all job 

scheduling decisions and consists of both centralized and decentralized scheduling 

components. They also use pre-emptive cancellation of tasks in progress, to free up resources 

for other jobs depending on cluster conditions. 

Mercury [47] utilizes a container-based model for task execution. Resources are allocated to 

jobs in the form of containers, and task execution happens via these containers as well. A job 

can choose between 2 kinds of containers upon submission; Guaranteed or Queueable 

containers. A Guaranteed container incurs no queuing delays and is guaranteed to run to 

completion i.e., without pre-emption. A Queueable container on the other hand, enables 

Mercury [47] to queue a task for execution on any node, without specific guarantees about task 

completion time or pre-emption mid-execution. Guaranteed containers, when allocated on a 

node already running a task from a Queueable container can cause the Queueable task to be 

pre-empted. 

At first glance, it appears that scheduling short jobs without any head-of-line blocking can 

be accomplished simply by scheduling them via Guaranteed containers. However, Guaranteed 

containers can only be allocated by the centralized scheduling component within Mercury [47], 

As we have discussed in Chapter 2, traditional centralized schedulers do not have the high 

scheduling throughput needed to handle a large amount of low-latency jobs. This is reaffirmed 

by the authors of Mercury [47], acknowledging that performing all their scheduling decisions 

through their centralized scheduler would inadvertently cause it to be a performance 

bottleneck. Thus, Mercury’s [47] hybrid scheduling paradigm suffers the same scalability 

concerns as traditional centralized schedulers when handling low-latency workloads. 
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6.2 Streaming Systems 

The task-streaming model consists of (typically infinite) streams of tasks submitted to the 

system by clients. Stream processing can be handled by the continuous operator model, such 

as the one employed by Apache Flink [48], Naiad [49] and MapReduce Online [50], or a bulk-

synchronous-parallel (BSP) model, used by Spark Streaming [51] and Drizzle [52]. 

In the continuous operator model [48, 49, 50] , the program is mapped into a sequence of 

long-running operators which are then deployed on nodes in the cluster. These operators only 

move between nodes upon node failures (via fault-tolerance mechanisms) but are otherwise 

statically tied to the node they are mapped to. Input records are sent sequentially to different 

nodes in a pre-constructed fashion based on the program dataflow. These systems have large 

fault-recovery times due to the fault-tolerance mechanisms they use. Although scheduling 

decisions need to be made with low overheads in such an environment, they are largely static, 

and do not change rapidly with differing cluster and workload conditions.  

In order to improve fault-recovery times, Spark Streaming [51] and Drizzle [52] have 

resorted to using the bulk-synchronous-parallel (BSP) model, which is similar to the traditional 

Map-Reduce model. Here, records arrive at varying rates, and processing usually occurs by 

grouping them together at regular time intervals into mini-batches [51]. These tasks are then 

processed by a traditional system such as Spark [19] using in-memory Resilient-Distributed-

Datasets (RDDs). However, due to the overheads associated with Spark described in Chapter 

5, such systems typically have higher end-to-end latencies compared to continuous operator 

models. For instance, the authors of Spark Streaming [51] note that their system using D-

Streams has an end-to-end latency of 500 ms – 2 seconds, compared to the 100-ms latency of 

their continuous operator counterparts. Drizzle [52] improves upon this to achieve an end-to-

end latency of 350 ms. However, these latencies are still far higher than the average task 

execution times targeted by Bolt. 

Additionally, the primary focus within all such streaming environments is to reduce the per-

record latency experienced across a long sequence of streaming operators, as described by Li 

et al [33]. This is orthogonal to the focus of schedulers such as Bolt and Sparrow [23], which 
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target real-time jobs in a parallel compute environment, similar to the requirements of OLDI 

workloads [2, 3, 4, 5].  

6.3 Network-Accelerated Systems 

Numerous recent projects have used programmable switches in a wide range of applications 

including accelerating consensus protocols [38, 39, 53, 54], implementing in-network caching 

[55], for DNN training and inferencing [56], and for in-network aggregation operations [57]. 

However, none of these explore the usage of network-acceleration for scheduling decisions in 

parallel compute environments.   

JumpGate [58] proposes a compilation and orchestration mechanism for in-network 

acceleration of data analytics functions by exposing an interface of primitives for usage by 

frameworks. The data-analytics framework submits the logical plan of operations (such as 

Filter and Shuffle) to JumpGate [58], which then proceeds to map these to stages of physical 

operators present on devices in the cluster. JumpGate [58] primarily focuses on providing 

aggregation-operation offloading capabilities as a service, and does not discuss the challenges 

associated with scheduling low-latency tasks. 

R2P2 [59] proposes a scheduling approach for RPCs that leverages programmable switches. 

However, they do not maintain any tasks in-memory and simply recirculate an RPC call packet 

until a server is available to service the request. Thus, R2P2 [51] cannot be used to make the 

complex decisions associated with scheduling tasks in parallel-compute environments. Bolt 

stores tasks on switch memory until they are ready to be executed while supporting FIFO as 

well as complex task-priority based and resource-constraint based scheduling policies, thus 

making it a true scheduling system. 

6.4 Low-Latency Efforts 

Several projects over the years have explored operating system and network stack 

optimizations for low latency workloads. These efforts range from kernel-bypass techniques 

[60, 61, 62] to avoid the overheads of traversing the operating system’s network stack to 

efficient CPU core reallocation mechanisms [63]. However, these efforts are orthogonal to this 
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thesis as they focus on intra-machine delays while Bolt tackles the challenges associated with 

scheduling real-time workloads at cluster scale.  
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Chapter 7 – Conclusion and Future Work 

Bolt is a novel in-network scheduling paradigm that overcomes the shortcomings of modern 

scheduling systems. It utilizes in-network acceleration via a programmable switch to ensure 

that it has the low scheduling overheads and high scheduling throughput needed to handle real-

time applications on large clusters. Bolt can also support various scheduling policies such as 

FIFO, task priority aware and  task resource constraint aware scheduling. Bolt offers these 

functionalities at a task granularity while most modern scheduling systems do so at a coarser 

job granularity. Most importantly, Bolt can handle these policies without sacrificing 

performance. 

In the future, we plan to evaluate Bolt against scheduling protocols implemented using kernel 

bypass mechanisms such as the Intel Data Plane Development Kit (DPDK) [64]. We would 

also like to compare Bolt against network-accelerated systems such as R2P2 [59]. We are 

exploring other frontiers to evaluate the pros and cons of push-based vs pull-based scheduler 

designs on programmable switches as well. 
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