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Abstract

Benefiting from advances in the automobile industry and wireless communication technolo-
gies, the vehicular network has been emerged as a key enabler of intelligent transportation
services. Allowing real-time information exchanging between vehicle and everything, traffic
safety and efficiency are significantly enhanced, and ubiquitous Internet access is enabled
to support new data services and applications. However, with more and more services and
applications, mobile data traffic generated by vehicles has been increasing and the issue on
the overloaded computing task has been getting worse. Because of the limitation of spectrum
and vehicles’ on-board computing and caching resources, it is challenging to promote vehicular
networking technologies to support the emerging services and applications, especially those
requiring sensitive delay and diverse resources. To overcome these challenges, in this thesis,
we propose a new vehicular network architecture and design efficient resource management
schemes to support the emerging applications and services with different levels of quality-of-
service (QoS) guarantee.

Firstly, we propose a multi-access edge computing (MEC)-assisted vehicular network
(MVNET) architecture that integrates the concepts of software-defined networking (SDN) and
network function virtualization (NFV). With MEC, the interworking of multiple wireless access
technologies can be realized to exploit the diversity gain over a wide range of radio spectrum,
and at the same time, vehicle’s computing/caching tasks can be offloaded to and processed by the
MEC servers. By enabling NFV in MEC, different functions can be programmed on the server
to support diversified vehicular applications, thus enhancing the server’s flexibility. Moreover,
by using SDN concepts in MEC, a unified control plane interface and global information can
be provided, and by subsequently using this information, intelligent traffic steering and efficient
resource management can be achieved.

Secondly, under the proposed MVNET architecture, we propose a dynamic spectrum
management framework to improve spectrum resource utilization while guaranteeing QoS
requirements for different applications, in which, spectrum slicing, spectrum allocating, and
transmit power controlling are jointly considered. Accordingly, three non-convex network utility
maximization problems are formulated to slice spectrum among base stations (BSs), allocate
spectrum among vehicles associated with the same BS, and control transmit powers of BSs,
respectively. Via linear programming relaxation and first-order Taylor series approximation,
these problems are transformed into tractable forms and then are jointly solved by a proposed
alternate concave search algorithm. As a result, optimal spectrum slicing ratios among BSs,
optimal BS-vehicle association patterns, optimal fractions of spectrum resources allocated to
vehicles, and optimal transmit powers of BSs are obtained. Based on our simulation, a high
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aggregate network utility is achieved by the proposed spectrum management scheme compared
with two existing schemes.

Thirdly, we study the joint allocation of the spectrum, computing, and caching resources
in MVNETs. To support different vehicular applications, we consider two typical MVNET
architectures and formulate multi-dimensional resource optimization problems accordingly,
which are usually with high computation complexity and overlong problem-solving time. Thus,
we exploit reinforcement learning to transform the two formulated problems and solve them by
leveraging the deep deterministic policy gradient (DDPG) and hierarchical learning architectures.
Via off-line training, the network dynamics can be automatically learned and appropriate
resource allocation decisions can be rapidly obtained to satisfy the QoS requirements of vehicular
applications. From simulation results, the proposed resource management schemes can achieve
high delay/QoS satisfaction ratios.

Fourthly, we extend the proposed MVNET architecture to an unmanned aerial vehicle (UAV)-
assisted MVNET and investigate multi-dimensional resource management for it. To efficiently
provide on-demand resource access, the macro eNodeB and UAV, both mounted with MEC
servers, cooperatively make association decisions and allocate proper amounts of resources
to vehicles. Since there is no central controller, we formulate the resource allocation at the
MEC servers as a distributive optimization problem to maximize the number of offloaded tasks
while satisfying their heterogeneous QoS requirements, and then solve it with a multi-agent
DDPG (MADDPG)-based method. Through centrally training the MADDPG model offline,
the MEC servers, acting as learning agents, then can rapidly make vehicle association and
resource allocation decisions during the online execution stage. From our simulation results,
the MADDPG-based method can achieve a comparable convergence rate and higher delay/QoS
satisfaction ratios than the benchmarks.

In summary, we have proposed an MEC-assisted vehicular network architecture and
investigated the spectrum slicing and allocation, and multi-dimensional resource allocation in
the MEC- and/or UAV-assisted vehicular networks in this thesis. The proposed architecture
and schemes should provide useful guidelines for future research in multi-dimensional resource
management scheme designing and resource utilization enhancement in highly dynamic wireless
networks with diversified data services and applications.
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Chapter 1

Introduction

In the last decade, vehicular communication networks have attracted tremendous interest
not only from academia and industry but also from governments. Via enabling vehicles
to exchange information with everything, i.e., vehicle-to-everything (V2X) communications,
including vehicle-to-vehicle (V2V), vehicle-to-person (V2P), vehicle-to-infrastructure (V2I),
infrastructure-to-infrastructure (I2I), and vehicle-to-cloud (V2C), a variety of applications and
data services can be supported, such as intelligent transportation and safety management [1, 2].
However, due to high vehicle mobility and the complicated communication environment, it
is very challenging to provide efficient and reliable vehicular communications to satisfy the
heterogeneous quality of service (QoS) requirements of different applications, especially, the
sensitive and lower latency requirements. In this chapter, we first give out an overview
of vehicular networks, including applications, characteristics, classifications, and available
communication technologies of vehicular networks. Then, challenges faced by vehicular
networks in communication and computing perspectives are discussed. Finally, we summarize
the motivation and main contribution of this thesis.

1.1 Overview of Vehicular Networks

In this section, we will first introduce the applications of vehicular networks and describe
the unique characteristics of vehicular networks. Then, different types of vehicular networks
are outlined according to the driving patterns and communication technologies available for
vehicular communications are summarized. Note that in-vehicle communications, which refer
to wired or wireless communications between an on-board unit (OBU) and one or multiple
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application units (AUs) in a vehicle [3], are not considered here. Moreover, the mentioned
autonomous vehicles (AVs) should be distinguished from autonomous robots, unmanned aerial
vehicles (UAVs), and unmanned underwater vehicles.

1.1.1 Vehicular Network Applications

For moving vehicles, communication networks are usually designed for sharing information and
supporting a large number of cooperative applications, which can be categorized into safety and
non-safety applications.

Safety applications: Through sharing safety-related information, safety services can be
provided, the number of traffic accidents can be significantly reduced, and commuters’ life,
health, and property can be effectively protected. Once obtaining safety-related information
from other vehicles, drivers can take actions in advance to enhance driving safety or be informed
about unexpected dangerous situations to avoid traffic accidents [4]. One type of safety-
related information is the vehicle’s driving state information, such as real-time position, speed,
acceleration, and direction. This type of information is not only important to assist drivers or
automated driving systems in passing and changing lanes and avoiding collision, but also a
necessary condition for cooperative driving among vehicles to maintain the string stability of
platoons/convoys [5]. Another type of safety information is event-driven safety information, e.g.,
emergency vehicle warning, traffic condition warning, work zone warning, lane change warning,
rear-end collision warning, and so on. Event-driven safety information, generated by certain
vehicles involved in or discovering a dangerous situation (such as an emergency brake or sudden
lane change), should be shared to help other vehicles obtain real-time situational awareness and
detect possible dangers. As shown in Figure 1.1, sharing cooperation collision and rear-end
collision warning information among vehicles can help to avoid accidents in several scenarios.

B C D

A B C D

A

Rear-end collision happens between  
A and B, and vehicle B  broadcasts 
this event to all vehicles behind it

Vehicle B, C, and D are warned 
of vehicle A's braking event

Fast vehicle C overtakes 
vehicle B in a high speed

Vehicle A broadcasts its braking 
event to all vehicles behind it

Fast vehicle D is warned 
of the collision ahead

Figure 1.1: Examples for sharing event-driven safety information.
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Non-safety applications: By sharing information among moving vehicles, value-added
services, such as traffic management and infotainment support, can be provided to enhance the
comfort of commuters. Similar to some safety applications, most of the traffic management
applications are designed for reducing traffic jams to improve traffic flow and save travel time for
commuters. For example, via sharing information about traffic monitoring and road conditions
among moving vehicles, traffic management applications can be applied to help drivers to reroute
to their destinations and to improve the efficiency of traffic light schedules, and consequently
reduce traffic jams [6]. Also, enabling “platooning” or “convoying” with automated driving [7],
can not only reduce energy consumption and exhaust emission by minimizing air drag due
to the streamlining of the vehicle but also increase the driving safety by cooperative driving
among vehicles [8]. Different from traffic management, infotainment-support applications are
mainly focusing on providing traveler location-based services and entertainments. For instance,
infotainment-support applications can provide location information, such as location information
about fuel station, parking, restaurant, and hotel, to moving vehicles when the related services
are required by drivers or passengers. Furthermore, infotainment-support applications can also
provide Internet access for moving vehicles to download multimedia entertainment information
or to experience virtual reality.

Despite the benefits of the above applications, the implementation of safety/non-safety
applications faces challenges. In a vehicular network with certain communication technology,
all available spectrum resources can be used for either safety or non-safety applications. For
safety applications, their related information is with high priority in terms of transmission delay
and reliability so that drivers can receive them and take the corresponding actions in time [9].
Moreover, due to high mobility, time-varying vehicle density, and unstable network topology in
vehicular networks, meeting these requirements is sometimes very challenging [10, 11]. Thus,
safety applications are usually given higher priority over non-safety applications. Different from
safety applications, even though most of the basic non-safety applications do not have stringent
real-time requirements. However, some new emerging applications, such as automated driving
and virtual reality, are also with sensitive delay requirements [7]. How to reduce the delay
and packet loss for non-safety information without impacting safety applications is important to
improve the service quality of the non-safety applications, especially for some infotainment and
delay-sensitive applications.

1.1.2 Vehicular Network Characteristics

In vehicular networks, V2V communications are basically executed by applying the principles
of mobile ad hoc networks (MANETs), namely, wireless communications are spontaneously
created for data exchange. In addition to some characteristics similar to MANETs [12], such

3



as self-organization and management, short to medium transmission range, omnidirectional
broadcast, and low bandwidth, a vehicular network has its own unique characteristics due to
high vehicle mobility. According to whether they are beneficial to information exchange or not,
these characteristics are classified into detrimental and beneficial ones.

Detrimental characteristics: These characteristics, including high mobility, stringent
delay constraints, complicated communication environments, and connected and/or autonomous
vehicles, pose obstacles or challenges to vehicular networks.

1) High mobility: High moving speed of vehicles often results in frequently disconnected
wireless communication links and then reduces the amount of effective communication time
among vehicles. Furthermore, it also causes the network topology to change dynamically and
further adds challenges to information exchange among vehicles.

2) Heterogeneous QoS requirements [13]: In some vehicular network applications, such as
safety applications and some infotainment applications, information exchange is required to be
successfully finished within a particular time to avoid traffic accidents and ensure the quality
of infotainment services. Stringent delay is required for information exchanging to support
such kinds of applications. Note that the delay mentioned here is the maximum delay from the
source to the destination, not the average delay in vehicular networks. In addition to delay, high
transmission rate is another important QoS requirement to some vehicular applications, such as
video streaming related services and online games.

3) Complicated communication environment: Vehicular networks are usually applied in
three kinds of communication environments. The first one is a one-dimensional communication
environment, such as highway traffic scenarios. Even though vehicles on highways always move
faster than in other types of environments, the one-dimensional environment is relatively simple
due to the straightforward moving direction and relatively fixed driving speed. The second one is
a two-dimensional communication environment. A typical example is the urban traffic scenario,
which is more complex compared with the highway scenario [14]. Streets in most urban areas
are often divided into many segments due to intersections. Therefore, for two moving vehicles
in different road segments, a direct communication link may not exist due to obstacles around
the intersections, such as buildings and trees. Moreover, the vehicle density is relatively high
in urban areas, which implies more communication links within the communication range and
significantly impacts the spectrum resource occupation probability. The last one is a three-
dimensional communication environment, such as viaducts [15]. For vehicles in a viaduct,
communication links in different physical space layers make this type of environment the most
complex.

4) Connected and/or autonomous vehicles: With the development of sensing capability and
automobile industry, AVs are emerging in our real life and would show up on the road with
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manually driving vehicles. In addition to some traditional safety and non-safety applications,
there are some new applications are emerging to support automated driving, such as the
processing of sensing data and video streaming.

Beneficial characteristics: These characteristics are beneficial to the wireless communica-
tions in vehicular networks, such as weak energy constraints and driving route prediction.

1) Weak energy constraints: Since vehicles always have sufficient energy, vehicular networks
do not suffer from power constraints as in regular mobile communication networks. Moreover,
vehicles can afford significant sensing and computing demanding (including data storage and
processing) since the sensing and communication devices can power themselves while providing
continuous communications with other vehicles.

2) Driving route prediction: A vehicle is limited to moving on the road in usual circum-
stances, which makes it possible to predict the driving route for itself or even for other vehicles
when the road map and speed information are available. Driving route prediction plays an
important role in routing protocol design for vehicular networks, especially when addressing
the challenges presented by high vehicle mobility.

1.1.3 Vehicular Network Classifications

Owing to the advances in sensor technologies, wireless communications, computational power,
and intelligent control, a new driving pattern, named automated driving, has been gradually
applied in vehicles. According to the society of automotive engineers (SAE) International’s
standard J3016 [16], vehicles can be classified into six distinct levels of autonomy, as shown
in Table 1.1. In this thesis, vehicles with level 0 and 1 autonomy are referred to as manually
driving vehicles, and those with level 4 and 5 autonomy are referred to as AVs. Accordingly,
vehicular networks are classified into three categories, manually driving vehicular networks
(MDVNETs), automated driving vehicular networks (ADVNETs), and heterogeneous driving
vehicular networks (HDVNETs).

Manually driving vehicular networks: An MDVNET is defined as a wireless network
to enable communications among manually driving vehicles. Almost all current vehicles are
manually driving and always move individually on the roads. For example, some drivers
may accelerate suddenly to pass other vehicles and some may get used to low speeds. Thus,
the impacts of high and heterogeneous mobility on the MDVNETs are significant. How to
address the challenges caused by high and heterogeneous mobility and enable communications
in different types of communication environments has attracted more and more attention and
has also been widely considered in the existing works. MDVNETs can help manually driving

5



Table 1.1: Six distinct autonomy levels of on-road vehicles.

Autonomy levels Narrative definition

0 - No Driving
Automation

The entire dynamic driving task (DDT) is performed by the driver, even
when the DDT is enhanced by active safety systems.

1 - Driver Assis-
tance

The driving automation system executes the sustained and specific
operational design domain (ODD) of either the lateral or longitudinal
vehicle motion control sub-task, while the driver is expected to perform
the remainder of the DDT.

2 - Partial Driving
Automation

The automated driving system (ADS) executes the sustained and specific
ODD of both the lateral or longitudinal vehicle motion control sub-task,
and the driver completes the object and event detection/response sub-task
and supervises the driving automation system.

3 - Conditional
Driving Automa-
tion

The sustained and specific ODD is performed by the ADS, while the
DDT fallback-ready user is receptive to intervene requests from ADS and
responds appropriately to DDT performance-relevant system failures in
other vehicle systems.

4 - High Driving
Automation

The sustained and specific ODD is performed by ADS of the entire
DDT and DDT fallback, and a user has no need to respond to intervene
requests.

5 - Full Driving
Automation

The sustained and unconditional ODD is performed by an ADS of the
entire DDT and DDT fallback, and a user has no need to respond to
intervene requests.
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vehicles to improve traffic safety and provide infotainment services to drivers and passengers
[10, 17].

Automated driving vehicular networks: It is expected that no human actions or interven-
tions are required for an AV that can automatically navigate a variety of environments, other
than setting the destination and starting the system. In other words, people can be relieved from
driving stress [7, 18]. Moreover, AVs are considered as a good solution for increased safety,
velocity, convenience, and comfort with reduced energy consumption [19, 20]. Despite the
attractive advantages of AVs, how to ensure the automated driving system to be safe enough
to completely leave humans’ actions and interventions presents significant challenges. Being
“safe” means at least the AV can correctly execute vehicle-level behaviors, such as obeying
traffic regulations and dealing with road and roadside hazards [18, 20]. On the other hand,
several works indicate that inter-vehicle information plays an important role for AVs’ “safe”, in
which, helpful information, either via on-board sensors or vehicular communications, is needed
for collision avoidance and cooperative driving among AVs [21]. Therefore, it enables advanced
features, such as “platooning”, and alerts AVs of real-time mapping information and surrounding
environments, such as other AVs and potential hazards [22]. Thus, ADVNETs, used for wireless
communications among AVs, have been regarded as another important application of vehicular
networks.

Heterogeneous driving vehicular networks: In addition to MDVNETs and ADVNETs,
another important category of vehicular networks is HDVNETs. Recently, vehicles with level 2
and 3 autonomy have been generated and begun to be test-driven on the roads. Table 1.1 shows
that vehicles with level 2 and 3 autonomy may be completely controlled either by the ADS
or the driver in different road environments. Moreover, with AVs gradually prevailing on roads,
scenarios, where AVs and manually driving vehicles move on roads simultaneously, will be more
common. To achieve information sharing between manually driving vehicles and AVs or among
vehicles with level 2 and 3 autonomy, HDVNETs are essential. In this thesis, unless specifically
stated, a “vehicular network” can be either an MDVNET, an ADVNET, or an HDVNET. Namely,
vehicles considered in the vehicular network can be any vehicles with level 0 to 5 autonomy.

1.1.4 Communication Technologies

To support the wireless communications in vehicular networks, several communication tech-
nologies have been considered, including dedicated short range communications (DSRC),
cellular [23], Wi-Fi [24], and White-Fi [25], and other short-range communication technologies,
such as infrared and visible light communication (VLC). Among them, most of the vehicular
communications are usually supported by the DSRC and cellular technologies, such as in
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[23]. In what follows, we summarize the advantages, disadvantages, and challenges of these
technologies.

DSRC: It is a dedicated wireless communication technology used for exchanging infor-
mation between vehicle and everything over short to the medium range [11]. DSRC is based
on the IEEE 802.11p, which is amended from the IEEE 802.11 Wi-Fi standard. As the only
communication technology specifically designed for vehicular users, DSRC can provide

1) Designated licensed bandwidth: 75 MHz radio spectrum in the 5.9 GHz band was allocated
to support the DSRC-based communications in intelligent transportation system (ITS)
applications by the Federal Communications Commission (FCC) of the United States;

2) High reliability: DSRC-based wireless links can work in high mobility and harsh weather
conditions, such as rain, fog, and snow;

3) Priority for safety applications: The total 75 MHz bandwidth is divided into one control
channel (CCH) and six service channels (SCHs). Among these seven channels, safety
applications are given priority over non-safety applications [26];

4) Security and privacy: Message authentication and privacy are provided [27].

Thanks to the above benefits, DSRC is regarded as a promising technology applied to support
ITS applications, especially the safety-related ones [28]. However, DSRC also exposes some
drawbacks. First, due to the limited spectrum resource, a broadcast storm may occur when
disseminating safety information over a large area, especially in situations with high vehicle
density. With the increase in the number of vehicles attempting to transmit in the same channel
simultaneously, the packet delay and transmission collision probability will increase and the
performance of DSRC will degrade. Another obvious drawback in DSRC communications is
poor and short-lived V2V and V2I connectivity. Short-lived V2V connectivity always occurs
in an environment with low vehicle density, where the number of vehicles is too sparse to
disseminate the information to all destination vehicles. Furthermore, due to the short radio
transmission distance, i.e., around 300 m, DSRC can only provide short-lived V2I connectivity
[29] if there is no pervasive roadside communication infrastructure. In order to improve the
performance of vehicular networks, some medium and long-range communication technologies
[23] can be commonly used.

Cellular: Nowadays, cellular networks are distributed over land areas, where each cell is
served by a base station (BS), e.g., the evolved nodeBs (eNBs) in the long term evolution
(LTE) system. The key enabler of cellular-based vehicular networks is the LTE standard
developed by the 3rd generation partnership project (3GPP), which provides efficient information
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dissemination to user equipment [23]. Lots of academic research and field tests have indicated
that cellular technologies, such as LTE technologies, possess great advantages in vehicular
networks [29, 30]. Specifically, benefited from the large coverage area of the eNB and
high penetration rate, cellular technologies can provide relatively long-lived V2I connectivity
[29]. Compared with other communication technologies, cellular technologies can potentially
support several vehicles within a small region simultaneously due to their relatively high
capacity. Furthermore, the channel and transport modes in cellular technologies, i.e., the
dedicated/common modes and the unicast/broadcast/multicast downlink transport modes, can
help to reduce the transmission delay and improve the capacity for a communication environment
with high vehicle density. Device-to-device (D2D) communications can provide short range
direct links between two vehicles to reuse the spectrum, and therefore mitigate the problems
caused by the limited radio spectrum resources [31].

Recently, cellular-based vehicular networks have been widely investigated [29, 31, 32]. Due
to the above mentioned advantages, cellular technology is regarded as a promising alternative
to DSRC for vehicular networks. However, due to the current cellular data pricing model, the
corresponding cost for data transmission in cellular-based vehicular networks is much higher
than other communication technologies [33]. On the other hand, in dense traffic areas, the
heavy data traffic-load generated by vehicles may significantly challenge the cellular capacity
and potentially affect the delivery of traditional cellular data. To address this challenge,
millimeter-wave (mmWave) communications with advantages of multi-gigabit transmit ability
and beamforming technique have been considered for the 5th generation (5G) or beyond
networks. For example, millimeter-wave communications are applied for sharing vehicles’
massive sensing data in [34], where the beam alignment overhead has been reduced by
configuring the mmWave communication links based on sensed or DSRC-based information.

Wi-Fi: It is a technology for wireless local area networks (WLANs) based on the IEEE
802.11 standards. It has been shown in [33, 35] that Wi-Fi technology is an attractive and
complimentary Internet access method for moving vehicles. Equipped with a Wi-Fi radio or
Wi-Fi-enabled mobile devices, such as mobile phones, vehicles can access the Internet when
they drive through the coverage of Wi-Fi access points (APs). The obvious advantages of
Wi-Fi technology include low per-bit cost, extremely widespread global deployments, and
higher peak throughput, which are beneficial to some vehicular applications requiring high data
transmission rates, such as infotainment applications. However, due to the limited coverage
of each Wi-Fi AP and high vehicle mobility, the Wi-Fi technology suffers from intermittent
connectivity in vehicular networks. Thus, handoff schemes become particularly important to
Wi-Fi technology in such scenarios. Furthermore, instead of establishing Wi-Fi-based inter-
vehicle communications, Wi-Fi technology is considered as a complementary access method to
offload delay tolerant data traffic [33].
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White-Fi: It is a term coined by the FCC of the United States to describe communications
that allow unlicensed users to access the TV white space spectrum in the VHF/UHF bands
between 54 and 790 MHz. Note that even though White-Fi is also referred to as super Wi-Fi, it
is not endorsed by the Wi-Fi Alliance or based on Wi-Fi technology. The progress of White-
Fi technology has yielded many new insights into vehicular networks, which has motivated
researchers to explore unlicensed spectrum to solve the spectrum-scarcity issue for vehicular
networks. It has been shown in [25] and [36] that the White-Fi enabled vehicular networks
can improve the dissemination capacity by offloading a portion of data traffic from the DSRC
band or cellular band to the TV band. Furthermore, different from the 2.4 GHz radio frequency
used by Wi-Fi, TV white space spectrum is at a lower frequency range and allows the signal
to penetrate walls better and travel farther than the higher frequency range. Thus, White-Fi
technology can provide relatively long range communications to improve transmission efficiency.
For example, applying White-Fi for long-distance dissemination to avoid multi-hop transmission
can reduce the transmission delay of some safety-related information [37]. However, White-
Fi enabled vehicular communications generate potential interference to incumbent TV band
users, which may bring challenges to protect the incumbent services. Moreover, due to the
unlicensed characteristic of TV bands, vehicular networks and other existing wireless networks
are all allowed to co-exist. Vehicle users may experience interference caused by other networks,
and therefore impacting the service quality of some vehicular applications [38].

Multiple technologies interworking: It has been shown that single technology applied in
vehicular networks always has its own limitations as discussed before. The aforementioned
advantages and disadvantages of DSRC, cellular, Wi-Fi, and White-Fi have motivated the works
on establishing heterogeneous vehicular networks [39, 40]. In which, vehicular communications
are supported by at least two types of communication technologies, an example of a heteroge-
neous vehicular network in an urban area is illustrated in Figure 1.2. A typical heterogeneous
vehicular network is the interworking of the DSRC and cellular technologies, where cellular-
based communications can act as 1) a backup for traffic data when DSRC-based multihop links
are disconnected in sparse vehicles situations, 2) a long-range Internet access method, and 3)
a powerful backbone network for control message dissemination [39]. Even though multiple
technologies interworking can make the best use of the advantages and bypass the disadvantages
of every single technology, how to select the applicable technology for each communication link
and achieve seamless handoff among different technologies is still challenging.
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Figure 1.2: Illustration of a heterogeneous vehicular network in an urban area.

1.2 Challenges in Vehicular Networks

As we discussed in Section 1.1, the vehicular network has been emerged as a key enabler of ITS
and can significantly enhance traffic safety and efficiency and enable ubiquitous Internet access
to support new data services and applications. However, how to guarantee the performance of the
vehicular network to achieve its important role as expected by industry and academic still faces
challenges. In this section, we will investigate the major challenges faced by vehicular networks
from both communication and computing perspectives.

1.2.1 Challenges in Communication

In vehicular networks, demanding for wireless communications is mainly from two respects,
i.e., sharing safety-related and non-safety related information between vehicle and everything.
One type of safety-related information is vehicle’s driving state information, including real-time
position, speed, acceleration, and moving direction information, which is not only required to
assist drivers or automated driving systems in passing and changing lane and avoiding collision
but also a necessary condition for cooperative driving among AVs [40]. For example, a beacon,
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including the vehicle’s kinematics information, is broadcasted periodically from each vehicle to
avoid an upcoming collision or potential danger [17]. To enable the cooperative adaptive cruise
control for string stability, the speed and acceleration information of the leader vehicle and its
preceding vehicle is required for each member vehicle in a platoon [41]. In some communication-
assisted platoon control schemes [42], a member vehicle is required to share its braking or leaving
information with the leader vehicle, and then the leader vehicle makes accelerating or braking
decision for and sends the decision to that member vehicle. Another type of safety information
is event-driven safety information, e.g., emergency vehicle warning, traffic condition warning,
cooperation collision warning, and rear-end collision warning. For instance, to avoid rear-end
collision, a forward collision warning (FCW) system has been proposed in [43]. By sharing the
front vehicle’s driving intention and other driving parameters with the following vehicles, the
FCW module then can determine the potential collision risk for each vehicle.

To provide value-added services, such as traffic management and infotainment support,
for enhancing the comfort of commuters, sharing some non-safety related information among
vehicles is required. For example, via sharing information about traffic monitoring and road
conditions among moving vehicles, traffic management applications can be applied to help
drivers to reroute to their destinations and to improve the efficiency of traffic light schedules,
and consequently reduce traffic jams [44]. On the other hand, sharing static high definition (HD)
maps (which illustrate the static road environment, such as the lane lines and the surrounded
buildings and trees) and dynamical HD maps (i.e., dynamic environment information, such as
driving state information about the adjacent AVs) to AVs to show the road environment to AVs
can timely compensate the inaccurate sensing information to improve AV safe navigation [40].
Moreover, information sharing is also required by some new emerging artificial intelligence (AI)-
powered applications and services. For instance, to support an AI-powered application designed
to reduce the number of accidents that involve some road users, like children, the vehicle needs
to keep sending the video stream from its front-facing camera to a multi-access edge computing
(MEC) server carried by a base station [45]. And the AI model deployed onto the MEC server
then will analyze these video streams to judge whether a dangerous situation is happening or
likely to happen, and notify the vehicle of its judgment if needed.

However, with the increase of the number of vehicles and the emerging applications, sharing
both safety and non-safety related information among moving vehicles substantially increases
the data traffic volume of the vehicular networks. Also, building/updating the HD maps of
a road environment, which are then shared with vehicles, leads to a large amount of data
traffic, and therefore resulting in increasing demand on spectrum resources. Even though the
wireless communication technologies summarized in Subsection 1.1.4 can be applied to support
vehicular communications, a single wireless access technology cannot fulfill the communication
requirements. Thus, it is critical to enable more communication technologies and improve
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the available spectrum resource utilization to guarantee the heterogeneous application QoS
requirements in vehicular networks.

1.2.2 Challenges in Computing

From the computing perspective, a huge body of heavy computations needs to be executed
on board for various driving tasks in real time, such as video recognitions for detecting the
surrounding traffic environment and AI model training to make the immediate driving decisions
[46]. For example, high computing and storing capabilities are required by leader vehicles
of platoons/convoys to process the aggregated information to make accelerating or braking
decisions for all the member vehicles [47]. Also, efficiently handling dynamic driving state
information and traffic flow is necessary for timely updating dynamic HD maps at vehicles.
Moreover, to judge dangerous situations which may result in accidents, a vehicle can analyze the
video streaming obtained from its front-facing camera with an AI model [45]. And a large
amount of computing and storage resources is required to support the operation of such AI
models and notify the vehicle of the AI model’s judgment if needed.

To support the computing tasks generated by vehicles, we can either choose to process such
tasks with local computing or cloud computing. Namely, a vehicle can process its tasks with the
on-board resources or offload the tasks to the remote cloud computing server or other AVs with
spare computing and storage resources. However, there is no on-board resource in most of the
manually driving vehicles and the amount of computing and storage resources carried by each AV
is limited [46], processing all the computing tasks by vehicles’ local computing power requires an
external powerful and expensive on-board computing device or physically increasing the amount
of computing/storage resources carried by each AV. On the other hand, offloading vehicles’ tasks
to the cloud computing server can cause a significant data traffic burden on the core network and
a high response delay to the offloaded task [48], whereas performing collaborative computing
only among vehicles with guaranteed QoS requirements is difficult and with high task migration
cost due to high vehicle mobility. How to address these challenges in computing to perform the
real-time computing tasks for vehicles in a low-cost, QoS-guaranteed, and efficient approach is
the key for vehicular networks.

1.3 Motivation and Contribution

As we mentioned above, benefiting from advances in the automobile industry and wireless
communication technologies, the vehicular network has been emerged as a key enabler of
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intelligent transportation services [49–51]. Allowing real-time information exchanging between
vehicle and everything, traffic safety and efficiency are significantly enhanced, and ubiquitous
Internet access is enabled to support new vehicular data services and applications [40, 52].
However, with more and more services and applications, mobile data traffic generated by
vehicles has been increasing and the issue on the overloaded computing task has been getting
worse [53]. Because of the limitation of spectrum resources and vehicles’ on-board computing
and storage resources [54], it is challenging to promote vehicular networking technologies to
support the emerged services and applications, especially those requiring sensitive delay and
diverse resources. To effectively address these challenges, two potential technologies, MEC and
UAV [55, 56], have been widely exploited in vehicular networks [57–59].

Considering the stringent delay requirements of some applications and the huge latency
on wireless and wired communications between a vehicle and the cloud computing server,
offloading vehicles’ tasks to the cloud computing server is sometimes inapplicable [59, 60].
Meanwhile, physically increasing the amount of on-board resources would result in a serious
increase in the manufacturing cost of vehicles. The MEC server, as an extension of the cloud
computing server, shifts computing and caching capabilities close to user devices [61–64], and
allows vehicles to offload tasks to it via multiple wireless communication technologies. By
saving the time consumption on communications between the MEC and the cloud computing
server, the sensitive delay requirement of the task offloaded to an MEC server can be satisfied.

Even though MEC technology can help to provide real-time computing support to vehicular
applications, underused or wasted resource issues would happen in scenarios with only terrestrial
MEC servers (i.e., MEC servers placed at ground BSs), especially when there exists bursty traffic
caused by some social activities or events. The reason is, the amount of resources carried by each
MEC-mounted BS is fixed and pre-allocated according to the average resource demanding from
vehicles under its service area, yet the resource demanding from vehicles is time-varying due to
the high vehicle mobility and dynamic application requirements. Taking the flexibility advantage
of UAVs, mounting MEC servers in UAVs can help to address the above issues by dispatching
the MEC-mounted UAVs to assist the designated BSs [57, 65]. Related applications have been
also considered in different projects launched by many leading companies [66].

To implement MEC- and/or UAV-assisted vehicular networks, many research works have
been performed recently, including design of architecture, task offloading scheme, resource
management scheme, and so on. Among that, efficient resource management for computing, stor-
age, and spectrum is of paramount importance for such vehicular network scenarios. However,
most of the existing schemes proposed for MEC-assisted vehicular networks (MVNETs) only
consider one or two dimensions of resources, which cannot be directly adopted to support some
vehicular applications where high dimensional resources are involved, such as the computing
tasks generated by the leading vehicle for platoon/convoy control [1]. And existing works
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focusing on multi-dimensional resources management are usually targeted for the scenarios
with low mobility users [67, 68]. For MVNETs, the computational complexity of the multi-
dimensional resource management problem increases due to the high vehicle mobility and time-
varying demand on resources, and therefore increasing the time consumption on the resource
management scheme itself. Therefore, it is infeasible to adopt the pure optimization approach-
based schemes to achieve multi-dimensional resource management in MVNETs, especially
for the scenarios with delay-sensitive applications. Furthermore, how to design practical and
QoS guaranteed multi-dimensional resource management schemes for the MVNETs and UAV-
assisted MVNETs still needs effort.

This thesis focuses on addressing the challenges in communication and computing faced by
vehicular networks to provide QoS guaranteed services to vehicle users. Specifically, the main
contributions of this thesis are summarized as follows,

1. A novel vehicular network architecture by integrating the software-defined networking
(SDN) and network function virtualization (NFV) concepts into MEC is proposed [13].
Via MEC, multiple wireless access networks can interwork to support the increased
data traffic volume, and quick computing responses can be provided by uploading the
computing/storing tasks (e.g., cooperative driving) to the network edge to avoid extra
delay for data transmission between MEC servers and the cloud-computing server, and hot
content can be cached in and processed by the MEC servers; And, by integrating SDN and
NFV concepts with the cloud-computing/MEC servers, unified control plane interfaces
are provided by decoupling the control plane from the data plane without placing new
infrastructures, and different network functions supporting vehicular applications can be
programmed on servers flexibly with reduced provisioning cost;

2. To improve the spectrum resource utilization under the MVNET architecture, we propose a
dynamic two-tier spectrum management framework by considering the trade-off between
spectrum resource utilization and inter-cell interference [59]. By leveraging logarithmic
and linear utility functions, three aggregate network-wide utility maximization problems
are formulated to fairly slice spectrum resources among BSs connected to the same MEC
server, optimize BS-vehicle association patterns and spectrum allocation, and control the
transmit power of BS. And then the optimization technique is used to transform and solve
the formulated problems;

3. For service requests demanding multiple types of resources, allocation results for comput-
ing, caching, and spectrum resources can impact the service QoS satisfaction. Efficient
management for the three types of resources is of paramount importance. Thus,
we leverage the deep deterministic policy gradient (DDPG) and hierarchical learning
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architecture to achieve the joint optimal allocation of spectrum, computing, and caching
resources for the MVNET [54]. Via off-line training, the network dynamics can
be automatically learned and appropriate resource allocation decisions can be rapidly
obtained to satisfy the QoS requirements of vehicular applications;

4. To address the inefficient resource management issue caused by the pre-placed MEC
servers and high vehicle mobility (spatial dynamics of resource demand), in addition to
MEC-mounted BSs, aerial computing is also taken into account to enable a UAV-assisted
MVNET. In order to avoid time and spectrum cost on wireless communication between
the MEC server and the central controller, instead of centralized resource scheduling, we
let each MEC server act as an agent and propose a multi-agent DDPG (MADDPG) based
solution to enable distributed multi-dimensional resource scheduling for the considered
UAV-assisted MVNET [69].

1.4 Thesis Outline

The remainder of this thesis is organized as follows: In Chapter 2, we investigate the background
and literature survey related to resource management schemes in vehicular networks. Then, an
MEC-assisted architecture is proposed to support vehicular applications in Chapter 3. In Chapter
4, a dynamic spectrum resource management scheme based on optimization method is presented
for the MEC-assisted architecture. By adopting deep reinforcement learning (DRL) algorithms,
Chapter 5 and Chapter 6 investigate the multi-dimensional resource management issues in the
MVNETs with and without aerial computing, respectively. Finally, Chapter 7 concludes the
thesis and presents future works.
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Chapter 2

Background and Literature Survey

In this chapter, existing works related to resource management in vehicular networks are
presented. We first survey the spectrum resource management schemes, computing resource
management schemes, and multi-resource management schemes proposed for the vehicular
networks, and then, approaches applied for integratedly managing the spectrum, computing, and
storage resources are summarized.

2.1 Resource Management in Vehicular Networks

Vehicular networks are expected to accommodate a large number of data-heavy mobile devices
and services, whereas they are facing challenges in both communications capacity and computing
capability because the mobile data traffic has explosively increased. Investigating spectrum al-
location, computation offloading, and content caching to improve the overall resource utilization
to address these challenges is essential to the vehicular networks. In this section, we survey
existing spectrum resource management schemes, computing resource management schemes,
and multi-resource management schemes in vehicular networks.

2.1.1 Spectrum Resource Management

To address the issues caused by the increasing demand for vehicular data transmission and the
limited spectrum resources, plenty of existing works have investigated the spectrum resource
management problem in vehicular networks. In MVNETs, the spectrum resources available to
different types of communication technologies are aggregated, and then sliced among BSs and
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allocated among vehicles. The process of spectrum management can be summarized as follows
from different time granularities:

1. Long-term spectrum slicing: That is slicing the aggregated spectrum resources among
different BSs. Time is partitioned into different slicing windows, where each slicing
window is composed of a fixed number of time slots. The spectrum slicing is controlled
by the radio resource management (RRM) unit at a central controller and is executed
at the beginning of each slicing window. Define the communication workload of a BS
as the number of data transmission requests generated by vehicles within its coverage.
Based on the communication workloads of different BSs in each slicing window, the
controller makes spectrum slicing and communication workload division decisions for the
BSs. The amount of available aggregated spectrum resources are sliced with different
ratios and allocated to the BSs within the service area of the controller. Furthermore, the
communication workload under the overlapping area of two or more BSs is divided into
several parts with the partitioning ratios and then assigned to each BS.

2. Short-term spectrum allocation: This is operated at the beginning of each time slot within
a slicing window. Once the spectrum slicing is done in a target slicing window, the amount
of spectrum resources available to each BS then is fixed and depends on the corresponding
slicing ratio. At a time slot within the target slicing window, vehicles send their data
transmission requests to the accessible BSs. According to the received data transmission
requests, the BSs then cooperatively determine the vehicle-BS association patterns for
vehicles under the overlapping area and allocate proper amounts of spectrum resources to
the associated vehicles.

In what follows, we summarize the existing spectrum management schemes from spectrum
slicing, spectrum allocation, and joint spectrum management perspectives.

Spectrum slicing schemes: The use of spectrum slicing involves the assignment of spectrum
resources to each slice in accordance with the expected requirements. Aiming at constructing
multiple logically isolated slices on different BSs to support the diversified services with different
QoS requirements, the spectrum slicing approaches have emerged for vehicular networks. For
example, to support the V2X services that involve vehicles exchanging data with other vehicles,
the infrastructure, and any communicating entity for improved transport safety, fluidity, and
comfort on the road, 5G network slicing has been designed in [70, 71]. [72] and [73] have
investigated the radio access network (RAN) slicing problem for V2X services. In which, the
RAN slicing scheme proposed by [72] allocates radio resources to different slices to maximize
the resource utilization while guaranteeing the traffic requirements of each RAN slice, and the
one proposed by [73] is to dynamically allocate radio spectrum and computing resource and
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distribute computation workloads for the slices to minimize the long-term system cost. In [74],
the MEC and network slicing technologies are used to optimize the allocation of the network
resources and guarantee the diverse requirements of vehicular applications, and a model-free
approach based on DRL has been proposed to solve the resource allocation problem in MEC-
enabled vehicular network based on network slicing.

Spectrum allocation schemes: Differ from slicing spectrum among BSs, spectrum allo-
cation is mainly among vehicles, namely, each BS allocates its available spectrum resources
among the vehicles associated with it. According to the types of spectrum resources allocated to
the vehicular users, we summarize the existing spectrum allocation schemes from the following
two respects.

Designated licensed spectrum resources: As mentioned in Subsection 1.1.4, 75 MHz radio
spectrum resources in the 5.9 GHz band were allocated to support the DSRC-based vehicular
communications. For a DSRC-based vehicular network, since the total number of available
channels is fixed and carrier-sense multiple access with collision avoidance is applied, existing
works related to spectrum management usually focused on analyzing the performance and
reliability of the network [75]. Existing theoretical analysis and simulation results demonstrate
that the 75 MHz DSRC band is insufficient to provide reliable safety message transmissions.
Moreover, due to the relatively low priority, non-safety related users of the DSRC band have to
be severely restricted during peak hours of traffic to guarantee the reliable transmission of safety
messages [76]. More importantly, the spectrum scarcity problem is becoming severer due to the
growing number of vehicles as well as the emerging vehicular applications. A potential method
to alleviate the spectrum scarcity problem is to enable other access technologies on vehicles to
allow them to communicate over other bands.

Other licensed/unlicensed spectrum resources: As mentioned in Subsection 1.1.4, in addition
to DSRC, other wireless communication technologies have also been considered to support
vehicular networks. That is, other licensed/unlicensed spectrum resources can be also occupied
by vehicle users in conditions permitting (such as enabling the corresponding on-board access
equipment) [77]. For scenarios where V2X communications are over licensed or unlicensed band
beyond DSRC, vehicle users usually share the spectrum with other types of users or the primary
users, how to design efficient spectrum allocation mechanisms to simultaneously guarantee the
service quality of different users is critical.

Cognitive radio (CR), an effective technique to improve the efficiency of spectrum utilization
by allowing cognitive users to share the wireless channel with primary users in an opportunistic
manner, has been applied to allocate licensed/unlicensed spectrum resources beyond DSRC band
among vehicular users [78, 79]. Such as, a novel CR assisted vehicular network framework
has been proposed in [78], where vehicle users (i.e., secondary users) are empowered to make
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opportunistic usage of the licensed spectrum on the highways. To improve fairness in spectrum
allocation among vehicle users, the authors have proposed a light-weight cooperative three-
state spectrum sensing model under this framework. And to support vehicular communication
over unlicensed spectrum, a mixed-integer nonlinear programming (MINLP) problem has been
formulated in [79] to address the coexistence problem between a cognitive vehicular network
and an IEEE 802.22 network via resource allocation.

Another technique that has been considered to address the spectrum scarcity faced by
vehicular networks is the cellular network and D2D communication. In a D2D underlaying
cellular infrastructure, two physically close user devices can directly communicate with each
other by sharing the same resources used by the regular cellular user, with the benefits of
proximity gain, reuse gain, and hop gain. Moreover, direct local packet dissemination via cellular
network can also substantially reduce latency and power consumption, thus it is suitable for
delay-sensitive V2V communications. Some existing spectrum resource management schemes
have been proposed for cellular-based vehicular networks [30, 80, 81]. For example, the authors
of [80] have performed the spectrum sharing and power allocation for the D2D-assisted vehicular
networks based only on slowly varying large-scale fading information of wireless channels.

Joint spectrum management schemes: In addition to separately investigating spectrum
slicing or spectrum allocation issues, jointly considering these two issues would significantly
enhance the spectrum utilization for vehicular networks and has been studied by some existing
works [54, 59, 82]. For example, to support the increasing communication data traffic with
guaranteed QoS, we have jointly studied the spectrum slicing and spectrum allocating based
on optimization method in [59] and based on DRL method in [54]. In [82], the authors have
developed an online network slicing scheduling strategy for joint resource block allocation and
power control. The developed strategy can maximize the long-term time-averaged total system
capacity while guaranteeing strict ultra-reliable and low-latency requirements of vehicular
communication links.

2.1.2 Computing Resource Management

With the rapid increase of the vehicle density on the road, the gap between the computation
service requirements and the computing capacity of vehicles becomes a serious problem.
To address that, how to optimally manage the available computing resources have been
studied by some existing works. Different from spectrum resources, managing the overall
computing resources among vehicles is always achieved via adjusting the computation offloading
association patterns between the vehicles and the resource providers, as the amount of computing
resources is fixed and always mounted at different edge servers and autonomous vehicles. With
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any known spectrum management strategies, the computing resource management problem is
identified with a computation offloading decision making problem. In the following, we will
summarize the existing computation offloading schemes based on their application scenarios.

Computation offloading among vehicles: To support automated driving and a vast variety
of on-board entertainment services, AVs are equipped with substantial computing and storage
resources. It is forecast that each AV will have the computing power of 106 dhrystone million
instructions executed per second (DMIPS) in the near future [83], which is tens of times
that of the current laptops. However, task overload or underload happens frequently on each
individual AV due to the fluctuated demand for computing/storage resources from different AV
applications, and there is always no on-board resources in some traditional manually driving
vehicles, therefore resulting in low overall resource utilization and affecting the QoS satisfaction
of vehicular applications.

To explore more computing power and support the emerging applications and services,
some computation offloading schemes have been proposed recently to share idle computing
power among neighboring vehicles, where the driving systems or passengers of some vehicles
generate computing tasks while some other surrounding vehicles provide computing services.
For example, an SDN based collaborative task computing scheme has been proposed in [46] to
support automated driving with distributed computing task allocation, in which, a centered AV is
the service requester that offloads the computing tasks, and its neighboring AVs are the service
providers and dynamically form the automated driving group to execute task collaboratively
based on an SDN-based market mechanism. In [84], the authors have designed a distributed
task offloading algorithm based on the multi-armed bandit theory to minimize the average
offloading delay, such that the service requester vehicle is able to learn the delay performance
when offloading its tasks. To motivate vehicles to share their idle computing resources while
simultaneously evaluating the service availability of vehicles in terms of vehicle mobility and
on-board computing resources in heterogeneous vehicular networks, the authors have proposed a
task offloading scheme in [85]. In which, vehicles are incentivized to share their idle computing
resources by dynamic pricing with comprehensively considering the mobility of vehicles, the
task priority, and the service availability of vehicles.

Computation offloading in edge server based vehicular networks: To address the
challenges faced by vehicles to satisfy the increase of the demanded computation capabilities,
updating hardware to physically increase the amount of on-board computing resources as
expected for vehicles is the easiest way, but it introduces high monetary cost. Accessing the
remote cloud computing server is another option, but it suffers from long latency and unstable
connections in vehicular environments. Therefore, as discussed before, edge computing (or fog
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computing1), enabling computing and caching capabilities at the edge of the core network to
close to end devices, has been considered as a promising technology to provide low latency and
high-reliability computing support for vehicle users.

To efficiently perform edge computing in highly dynamic vehicular environments, some
computation offloading schemes have been proposed to perform optimal task offloading in edge-
based vehicular networks [86–88]. For example, to select edge server (placed at the road side
unit (RSU)) for offloading vehicle’s task to and determine optimal offloading fraction, a system
utility maximization problem has been formulated under the permissible latency constraint to
joint consider load balancing and task offloading in [86]. In [87], the authors have investigated
efficient task offloading schemes for two scenarios, independent mobile edge computing server
(placed at the AP) scenario and cooperative mobile edge servers scenario, to minimize the task
processing cost while satisfying the task completed maximum latency. For the independent
server scenario, the offloading decisions, offloading time, and computation resource allocation
in MEC servers have been jointly optimized, while for the cooperative scenario, the computation
offloading among MEC servers has been also considered.

2.1.3 Multi-Resource Management

Although outstanding works mentioned in the above two subsections have been dedicated to
studying spectrum allocation and computation offloading in vehicular networks, these important
aspects are generally considered separately. However, similar to most wireless networks, it is
necessary to jointly manage communication, computing, and storage resources to improve the
performance of vehicular networks due to the following reasons,

1. Spectrum allocation, computation offloading, and content caching are all parts of the
server-assisted vehicular network system, and they may all contribute to guaranteeing
the heterogeneous QoS requirements of different vehicular applications, which is hardly
achieved by the optimization of one single type of resource in the whole system;

2. In edge server based vehicular networks, if multiple vehicles choose to offload their
computing tasks to the edge servers via RSUs or small BSs of the cellular network

1Generally, the key difference between fog computing and edge computing lies in where the location of
intelligence and computing power is placed, where the computing power is placed at the local area network (e.g.,
processors connected to the local area network or installed into the local area network hardware itself) in fog
environment while placed at a device that is physically “close” to the end users (e.g., the devices to which the
end users are attached or a gateway device) for edge computing. However, fog computing and edge computing
considered in most of the existing works that surveyed in this thesis are not specified the location of the fog/edge
server, edge computing and edge computing server will be used throughout the thesis.
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simultaneously, severe interference can be caused from the communication perspective,
which decreases the data transmission rate significantly. From the computing perspective,
the edge server could be overloaded. In such a case, it is not beneficial for all the vehicles
to offload their tasks to the edge server. Instead, parts of the vehicle users should be
selected to offload their tasks, while others should process their tasks either by themselves
or cooperatively by the neighboring vehicles;

3. Different amounts of spectrum and computing resources should be allocated to different
vehicles to fulfill the heterogeneous QoS requirements of their time-varying applications
and services;

4. Due to the limited storage resources of each edge server, different caching strategies should
be applied upon different contents, in order to maximize the revenue obtained by content
caching.

Therefore, it is important to design multi-resource management schemes for jointly allocating
communication, computing, and storage resources, which has the potential to significantly
improve the resource utilization of each edge server, and therefore maximizing the commercial
return of the placement of edge servers in vehicular networks.

Some works, focusing on designing resource management schemes for joint addressing
computation offloading, resource allocation, and content caching in edge-based wireless net-
works [62, 67, 89–95], have emerged in the past years. For instances, in order to jointly tackle
computation offloading and content caching issues in wireless cellular networks with mobile
edge computing, in [89], the authors have formulated the computation offloading decision,
resource allocation, and content caching strategy as an optimization problem with maximizing
the total revenue of the network, where the net revenue is defined with considering the net revenue
of system for assigning radio resources to, allocating computation resources to, and caching the
internet content first requested by each user’s equipment. And for vehicular networks, the joint
caching and computing design problem has been investigated in [90]. To tackle the challenges in
managing multiple resources caused by vehicle mobility and the hard service deadline constraint,
a DRL framework has been developed. And in [95], the authors have applied AI to inspire
computing, caching, and communication resources to the proximity of smart vehicles in the
vehicular network. In which, an MINLP problem is formulated to minimize total network delay
and solved by an AI algorithm.
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2.2 Multi-Resource Management Approaches

As we mentioned in Subsection 2.1.3, it is important to design multi-resource management
schemes in vehicular networks. However, there are only a few existing works dedicated to
investigating this issue for vehicular networks due to the challenges caused by high vehicle
mobility and vehicles’ time-varying resource demand. Therefore, instead of focusing on existing
works dedicated to vehicular networks, we summarize the approaches that have been considered
in multi-resource management schemes proposed either for vehicular networks or other general
wireless networks, and review some existing works as examples for each type of approaches in
this section.

2.2.1 Optimization Approaches

Similar to managing a single type of resources, such as communication or computing resources,
designing a multi-resource management scheme for a wireless network can be regarded
as a decision-making process, and the key is how to simultaneously allocate the overall
communication, computing, and storage resources among end users to improve the network
efficiency while satisfying the resource demanding from end users. To achieve that, optimization
theory and techniques have been applied in some existing multi-resource management schemes
[89, 92, 96, 97].

In [89], an integrated problem of computation offloading, resource allocation, and content
caching was formulated to find out the maximum value of the total revenue of mobile edge
computing system operations. In which, impacts of the limited available spectrum, computing,
and storage resources on the net revenue achieved by each user are considered in the constraints.
In [97], the authors have established the joint problem of caching, computing, and bandwidth
resource allocation, and the objective is to minimize the combined cost of network usage
and energy consumption. And in [92], an integrated model jointly considering computation
offloading, content caching, and communication resource allocation has been investigated.
Different from the above two works, the objective of this work is to minimize the total latency
consumption of the computing tasks by considering the user’s QoS requirements rather than the
net revenue.

Via formulating the multi-resource management problem as an optimization problem with
some necessary constraints, we can always get the optimal or sub-optimal decisions for
computation offloading, spectrum allocation, and content caching to maximize or minimize
the corresponding objective functions. However, the formulated optimization problems would
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become extremely complex, especially for scenarios with heterogeneous application require-
ments, diversified resource demanding, and highly dynamic network topology (such as vehicular
networks), and therefore resulting in a long time cost for solving such optimization problems via
the purely traditional optimization methods.

2.2.2 Learning-based Approaches

With the ability to learn to approximate various functional relations in a complex and dynamic
network environment, AI and machine learning can be exploited to accomplish the objective of
network resource management automatically and efficiently. The Q-learning is the most widely
used model-free reinforcement learning (RL) algorithm for caching problems, computation
offloading strategies [91], and resource allocation policies. Since the computational complexity
and storage cost increase exponentially with the number of states and actions, the biggest
challenge for Q-learning is to handle applications with extremely large size of states and
actions. As deep learning becomes a hot research topic recently, exploiting the deep neural
network (DNN) to estimate the value functions in RL can provide more accurate regression or
approximation. Enhancing traditional RL with DNN creates a promising approach, named DRL,
which is good at handling complicated control applications, such as game play or even automated
driving. Due to the advantages of machine learning methods, some works make efforts to apply
learning-based approaches for jointly managing the spectrum, computing, and storage resources
in general wireless networks and vehicular networks [67, 84, 90, 93–95, 98].

In [94], a DRL based joint mode selection and resource management approach has been
proposed for fog RANs. The core idea of this approach is that the network controller (installed
at edge server) makes intelligent decisions on user equipment communication modes and
processors’ on-off states. In [67], joint optimization solution has proposed to simultaneously
tackle the issues of content caching strategy, computation offloading policy, and radio resource
allocation in the fog-enabled wireless network with the objective of minimizing the average
end-to-end delay for all service requests. Considering the unknown environment’s dynamic in
wireless networks, the model-free RL is used to learn the best policy through a large number
of training steps for the current state, where the RL agent is implemented by the edge server.
Also, an actor-critic DRL algorithm is proposed to learn the optimal stochastic policy for content
caching, computation offloading, and radio resources allocation. Learning-based approaches
have been also applied to manage multiple resources for vehicular networks. For example, a joint
optimal caching and computing allocation problem has been formulated in [90] to minimize the
system cost under the constraints of limited and dynamic storage capacities and computation
resources at the vehicles and the RSUs, as well as the constraints of the vehicle’s mobility
and the hard deadline delay. In which, to configure the parameters of caching placement and
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computing resource allocation as well as to determine the sets of possible connecting RSUs and
neighboring vehicles, a deep Q-learning based algorithm was developed with a multi-timescale
framework. Also, to reduce the complexity caused by the large action space, a mobility-aware
reward estimation was proposed for the large timescale model. Moreover, in [95], AI has
been applied to study the computing, caching, and communication resource management in
the vehicular network. In which, an MINLP problem is formulated to minimize total network
delay, and an efficient imitation learning based branch-and-bound algorithm has been proposed
to rapidly solve the formulated problem.

As the works reviewed above indicated, compared with optimization approaches, learning-
based approaches can be used in wireless networks with more complicated scenarios. However,
some hardware requirements such as devices with strong computing and caching power have to
be enabled in such scenarios to support the learning-based approaches. Therefore, most learning-
based approaches have been used in edge server or cloud server based network scenarios.

2.3 Summary

In this chapter, related works are surveyed, including spectrum resource allocation, computing
resource management, and multi-resource management in vehicular networks. Also, approaches
applied for multi-resource management schemes that are either for vehicular networks or other
general wireless networks are summarized. Even though plenty of schemes have been proposed
for managing resources in wireless networks, none of them studied how to address the challenges
in communication and computing faced by vehicular networks and manage the three types
of resources to support different applications with guaranteed QoS requirements. Targeted at
addressing these challenges faced by vehicular networks, in the next chapter, we will introduce
the proposed MEC-assisted vehicular network architecture.
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Chapter 3

An MEC-Assisted Vehicular Network
Architecture

In this chapter, an MVNET architecture is proposed to support vehicular applications. As
the applications related to AVs are usually with stringent delay and intensive computing
requirements, which can be regarded as typical emerging vehicular applications. Thus, in this
chapter, designing the MVNET architecture is mainly motivated from the AVs perspectives
yet can be easily extended to general vehicular networks. Improving the navigation safety
by enabling HD-map-assisted cooperative driving among AVs is of great importance to the
market perspective of AVs as we mentioned in Chapter 1, however, faces technical challenges
due to increased communication traffic volume for data dissemination and increased number
of computing/caching tasks on AVs. To address these challenges, an MEC-assisted ADVNET
architecture is proposed in this chapter. Specifically, an MEC-assisted ADVNET architecture
that incorporates both SDN and NFV technologies is proposed in Section 3.1. Then, a joint
multi-resource management scheme is presented in Section 3.2, and some future research issues
are discussed in Section 3.3. Finally, we draw concluding remarks in Section 3.4. The complete
research results of this chapter can be seen in [13].

3.1 An MEC-Assisted ADVNET Architecture

In the following, we first present the problem statement to consider MEC, SDN, and NFV in
ADVNETs, and then propose an MEC-assisted ADVNET architecture.
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3.1.1 Problem Statement

Existing studies have indicated that enabling cooperative driving among AVs and providing real-
time HD maps to AVs are important to improve AV safe navigation [99]. In cooperative driving,
such as platooning, neighboring AVs on one lane move at a steady speed and keep a small steady
inter-vehicle space [100]. A leader vehicle is chosen to lead all the other AVs (referred to as
member vehicles) within a platoon to maintain the string stability [40]. To do so, some delay-
sensitive information (e.g., speed and acceleration, braking, joining/leaving [42]) needs to be
shared among cooperative driving AVs. Although providing static HD maps to show the road
environment to AVs can timely compensate the inaccurate sensing information to improve AV
safe navigation, the large amount of traffic volume is generated due to data exchanges among
AVs, which results in increasing demand on bandwidth resources.

Moreover, new computing-intensive vehicular applications have sprung up with increasing
demands for multiple types of resources. For example, large amounts of computing, storage,
and bandwidth resources are demanded by virtual reality (VR). However, the increasing amount
of computing/storage resources at each AV can be cost-ineffective, and uploading tasks with
high computing/caching requirements to the cloud-computing server increases task response
delay due to extra data transmission, and also results in high traffic load onto the core network.
Therefore, we leverage the MEC technology to form an MEC-assisted ADVNET architecture.
By enabling computing and caching capabilities at the edge of the core network, AVs’ tasks
with high computing/caching requirements can be offloaded to MEC servers when a short
response delay is demanded by delay-sensitive applications. At the same time, AVs are
allowed to access the computing/storage resources at MEC servers via different wireless access
technologies to accommodate an increasing communication demand. To further improve the
resource management efficiency, we integrate SDN control into the MEC-assisted ADVNET
architecture, to enable programmable network configuration for flexible resource orchestration.

In addition to installing computing/storage resources and enabling multiple access technolo-
gies via MEC, another promising way to address the increasing demand for multiple types
of resources is to improve resource management efficiency. Thus, we integrate SDN, a key
technology to enable programmable network configuration, into the MEC-assisted ADVNETs
for flexible resource orchestration. By activating SDN control functions on the edge servers,
a hierarchical SDN control is deployed to realize radio resource pooling and resource slicing
[101] among the wireless access infrastructures to improve the overall resource utilization
and achieve differentiated QoS guarantees. Note that MEC runs on top of the virtualisation
infrastructure [102] to support application programmability with reduced provisioning cost. With
the decoupling of applications from its underlying hardware in NFV, each MEC server can host
functions based on flexible application/service demands.
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Figure 3.1: An MEC-assisted ADVNET architecture.

3.1.2 Proposed MEC-Assisted ADVNET Architecture

An MEC-assisted architecture: The proposed MEC-assisted ADVNET architecture is illustrated
in Figure 3.1, which is a two-tier server structure [103, 104], i.e., a cloud-computing server in
the first tier and some MEC servers in the second tier. AVs are enabled to access the internet
via different BSs, such as Wi-Fi APs, RSUs, White-Fi infostations, and eNBs. Based on the
resource availability (including computing, storage, and bandwidth resources) and application
QoS, computing tasks can be processed on AVs, or be uploaded to and processed by MEC
servers or the cloud-computing server. For example, delay-sensitive applications, such as
platooning management, dynamic HD map management, and other safety-related applications,
are prioritized to be processed on MEC servers for less processing latency.

To improve both resource utilization and network scalability, the MEC servers are placed
at the edge of the core network to close to and maintain very few communication hops with
vehicles. Thus, an MEC server can control the computing task offloading for a large number
of vehicles under the coverages of several BSs, and the enhanced service area of each MEC
server can better support the fluctuate service demand caused by high vehicle mobility, where
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the service area of an MEC server is defined as the coverage areas of all BSs connected to the
server. Via integrating the NFV concept into each MEC server, computing and storage resources
on each MEC server are virtualized to host functions for different applications and services.
Thus, different MEC applications, represented by virtual network functions (VNFs), can share
the same set of virtualized resources that are under the NFV infrastructure and can be jointly
orchestrated for different multi-access edge hosts for heterogeneous QoS guarantee. Moreover,
an SDN control module is also running on the NFV-enabled MEC server. With the assistance
of the edge SDN controller’s partial-global information, the local computing/storage resources,
including computing/storage resources placed in AVs and in the MEC server, can be efficiently
allocated among different AV tasks with heterogeneous QoS guarantee. Bandwidth resources
on different access networks are orchestrated through resource pooling and resource slicing to
improve the overall radio resource utilization.

On the cloud server placed at the core network, computing and storage resources are also
virtualized, and the processing of integrating the NFV concept into the cloud computing server is
similar to that of MEC servers. SDN control functions are programmed in cloud virtual machines
(VMs) to decouple the control plane from the data plane, and to manage global traffic steering
among the cloud servers, upon which the resource availability and usage can be significantly
enhanced. On the other hand, each MEC server forwards its state information, including the
amount of idle computing/storage resources and QoS demands from different AV applications,
to the cloud SDN controller after pre-analysis and pre-processing (e.g, quantization), and the
controller then make decisions for task migration among MEC servers based on the received
information.

A Logically-Layered Structure: To better illustrate the internal information exchange
among different network components (functionalities), the proposed network architecture can be
explained by using a logically-layered presentation from both the edge and cloud perspectives.
Since a logically-layered structure for an MEC server shares some common components with a
cloud-computing server, we describe both structures separately and emphasize their differences.
Each logically-layered structure is composed of an infrastructure layer, a virtualization layer, an
application layer, and a separate control functionality, as shown in Figure 3.2 for an MEC server.

The infrastructure layer represents the underlying hardware, including computing hardware
and memory hardware placed at AVs and at cloud-computing/MEC servers, and network
hardware such as physical remote radio heads (RRHs) in BSs and baseband units (BBUs)
deployed at MEC servers. Even though the computing hardware, memory hardware, and network
hardware can be managed by the cloud or edge SDN controllers, how to improve their utilization
to support the ever-increasing AV applications is challenging due to the regional distribution of
hardware resources and the changing density of AVs. To address that, the resource virtualization
technique is utilized in the proposed architecture to achieve resource programmability and
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Figure 3.2: Logically-layered structure for an MEC server.

enhance global resource utilization.

Underlying hardware resources are virtualized at the virtualization layer to make computing
or caching environments independent of physical components. By doing that, virtual resources
can be sliced and reallocated to different applications based on their QoS requirements by the
cloud/edge SDN controllers, and each application or service function is decoupled from the
physical components and run as software instances on the virtual resources. Therefore, one
or more application services can be supported by one MEC server, and an application can be
flexibly added in or removed from the cloud-computing/MEC server without impacts on other
applications. The decoupled applications or service functions are represented at the application
layer. Considering heterogeneous QoS requirements and available resources in MEC servers,
delay-sensitive AV applications are prioritized for registration in the MEC servers, while delay-
tolerant computing tasks (e.g., hot information caching, entertainment services, and static HD
map management) are registered in the cloud-computing server.

The control functionality implemented in cloud/edge SDN controllers is composed of two
modules, i.e., the NFV control module and the SDN control module. For both the cloud and
edge controllers, the NFV control module is responsible for resource virtualization, service
function virtualization, and function placement. For example, to better utilize the computing
and storage resources of the ADVNET, the NFV control module in the cloud SDN controller
globally orchestrates the virtual computing/storage resources at the cloud-computing servers and
the idle virtual computing/storage resources at each MEC server. In an edge SDN controller,
the NFV control module locally orchestrates the virtual computing/storage resources at the MEC
server and at each AV. Different from the NFV control module, the SDN control module in each
controller is responsible for centralized routing and forwarding management through abstracting
the control functions from the data plane. The interaction between the control plane and the data
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plane is realized through the data-controller interface enabled by the OpenFlow protocol. Data
flows going through the core network are under the control of the SDN control module in the
cloud SDN controller, and data flows among AVs and BSs are controlled by the SDN control
module in the edge SDN controller. Combining the control functions provided by the SDN and
NFV control modules, the cloud/edge SDN controller allocates virtual resources to each virtual
service function, and abstracts bandwidth resources and reallocates them to each connected BS,
known as bandwidth slicing [105].

3.2 SDN-Enabled Resource Management

Based on the proposed MEC-assisted ADVNET architecture, the increased amount of data
traffic and computing/caching tasks can be supported with guaranteed QoS. In this section,
we investigate how to optimize the management of computing/storage resources among MEC
servers and the slicing of bandwidth resources among BSs.

For MEC servers with pre-allocated computing and storage resources, inter-MEC resource
sharing is of paramount importance. Through migrating computing/caching tasks, the distribu-
tion of task requests can be balanced among MEC servers according to their resource usages,
thus enhancing the computing/storage resource utilization. Processing results of the migrated
tasks will be returned to the original MEC server to respond to the request. In addition, the
task migration decision can also be made based on its requester’s moving direction, and the task
processing results can be directly delivered to the requester once the requester moves into the
service area of the new MEC server, to reduce the response delay. Consider a scenario with one
cloud-computing server, M MEC servers denoted by Mi, i = 1, . . . ,M , and N AVs distributed
over the entire ADVNET. Each BS is connected to one of theM MEC servers, and Wi-Fi/DSRC,
White-Fi, and cellular technologies are applied to support AV applications. In the following,
resource management schemes for computing, storage, and bandwidth are investigated for the
considered scenario.

3.2.1 Computing and Storage Resource Management

Let Ck
i (t) and Ski (t) denote the amounts of computing and storage resources that MEC Mi

allocates to AV k at time slot t. Due to the fixed amount of computing/storage resources
at each MEC server and the varying amount of computing/caching tasks generated by the
regionally distributed moving AVs, each MEC only processing the computing/caching tasks of
AVs within its service area can lead to overloaded or underloaded task processing. To mitigate
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the imbalanced task requests, computing/caching tasks can be migrated among MEC servers to
increase the computing/storage resource utilization, which, on the other hand, incurs migration
cost in terms of extra bandwidth consumption and extra response delay.

In order to obtain optimal computing and storage resource allocation while balancing the
tradeoff between increasing the computing/storage resource utilization and reducing the task
migration cost, an optimization problem is described as shown in Figure 3.3. The objective is
to maximize the network utility which is defined as the summation of utilities of each individual
MEC server. The utility of an MEC server allocating computing/storage resources to AVs is
defined with the consideration of computing/storage resource utilization and task migration
cost, where the computing (or storage) resource utilization of MEC server Mi is defined as
the ratio of the amount of occupied resources over its total amount of computing (or storage)
resources. The input of the formulated problem includes: 1) the computing, storage, and
bandwidth resources placed at MEC server Mi, denoted as Cmax

i , Smax
i , and Bmax

i , respectively,
where Bmax

i is the total available bandwidth resources of the multiple radio access technologies
for ADVNETs; 2) the total amount of resources required by AV k at time slot t, denoted as
Dk(t) = {Ck(t), Sk(t), Bk(t)}, including the required amounts of computing resources Ck(t)
and storage resources Sk(t) for processing its application requests, and bandwidth resources
Bk(t) for downlink transmissions, where we have Ck(t) ≥ 0, Sk(t) ≥ 0, and Bk(t) > 0;
3) a downlink response delay threshold, T kth, used to guarantee that AV k (either generating
delay-sensitive requests or delay-tolerate requests) receives the response before it moves out of
the service area of the MEC server, and a latency threshold, Lkth, used to guarantee the delay
requirement of AV k generating a delay-sensitive request. In the problem formulation, the
following constraints are considered: 1) for AVs that either generate delay-sensitive requests
or delay-tolerate requests, the total time cost, i.e., the time interval from the time that AV k’s
computing/caching task is received by MEC server Mi until the time instant the corresponding
response packet generated by MEC server Mi is received by AV k through a BS, should be
less than the downlink response delay threshold, T kth. Moreover, for AVs that generate delay-
sensitive requests, the total time cost should be also less than the latency threshold, Lkth; 2)
computing/storage resource constraints, i.e., the total computing (or storage) resources allocated
by all the M MEC servers to AV k should satisfy the computing (or storage) resources required
by AV k, i.e., Ck(t) (Sk(t)). By solving the formulated maximization problem, the optimal
computing and storage resource allocation Ck

i (t) and Ski (t) can be obtained.

3.2.2 Bandwidth Management

Due to the large service area of each MEC server, bandwidth reuse is considered among the
BSs connected to the same MEC server. With the consideration of different BS coverages
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Tradeoff: cost (consuming wired bandwidth 
resources and causing extra delay) and 
computing/storing resource utilization

Output: optimal computing/ 
storing resource allocation 

parameters, i.e., 𝐶𝐶𝑖𝑖𝑘𝑘(𝑡𝑡) and 𝑆𝑆𝑖𝑖𝑘𝑘(𝑡𝑡)

Input: 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝑆𝑆𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝐶𝐶𝑘𝑘(𝑡𝑡), 
𝑆𝑆𝑘𝑘(𝑡𝑡), 𝑇𝑇𝑡𝑡𝑡𝑘𝑘 , 𝐿𝐿𝑡𝑡𝑡𝑘𝑘

Constraints: e.g., computing 
resource constraint

Maximizing: network utility

Figure 3.3: Diagramming for formulating optimization problem of computing/storage
resources.

(RSUs/Wi-Fi APs, White-Fi infostations, and eNBs) from different wireless access technologies,
AVs can choose to associate with BSs providing different levels of communication qualities
(e.g., transmission rates). To improve bandwidth resource utilization, BSs can reuse bandwidth
resources with acceptable inter-cell interference. Therefore, the goal of bandwidth slicing is to
determine the set of optimal slicing ratios for different BSs, such that the aggregate network
utility is maximized, and the heterogeneous application QoS requirements are satisfied.

Taking BS j and AV k under the service area of MEC server Mi as an example. Let γkj (t)
denote the achievable downlink transmission rate when AV k is associated with BS j at time slot
t. The utility of AV k associated with BS j is a concave function of γkj (t), e.g., a logarithmic
function, and the aggregate network utility is the summation of utilities of each individual AV.
Then, a network utility maximization problem is formulated, in which a two-level resource
allocation is considered: 1) slicing the total bandwidth resources Rmax

i into small resource slices,
where the set of slicing ratios are denoted by {βj|j = 1, 2, · · · , Ii(t)}, where

∑Ii(t)
j=1 βj = 1 and

Ii(t) is the number of BSs within the service area of MEC serverMi at time slot t; 2) partitioning
the sliced resources to AVs under the coverage of and associating with each BS. Constraints under
consideration include: i) Dk

i + Rk
i ≤ T kth and Dk

i + Rk
i ≤ Lkth, where Dk

i is the task processing
delay (i.e., the time interval from the time that AV k’s computing/storing task is received by
MEC server Mi until the MEC server finishes processing this task) and Rk

i is the downlink
transmission delay from MEC server Mi to AV k through a BS (i.e., the time interval from the
time that a packet reaches the transmission queue of MEC server Mi, until the time instant the
packet is received by AV k through a BS); ii) γkj (t) ≥ γ̂k, where γ̂k is defined as a transmission
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rate threshold for AVs that generate delay-tolerant requests; iii)
∑

k R
k
j (t) ≤ βjR

max
i , where

Rk
j (t) is the amount of bandwidth resources that BS j allocates to AV k at time slot t.

The latency constraints for AV k reflect the coupling relationship between the two formulated
problems for computing/storage resource and bandwidth resource management. Thus, these
two problems have to be jointly solved, and the obtained optimal computing/storage resource
allocation results and bandwidth resource allocation results maximize the network utility while
collaboratively satisfying the delay requirements for delay-sensitive applications.

3.3 Open Research Issues

Combining SDN and NFV with MEC architecture to support the increasing data traffic volume
while guaranteeing heterogeneous QoS requirements for different services in ADVNETs, is still
in its infancy. In this section, some open research issues are discussed.

Task offloading: Since computing/storage resources on each MEC server are limited and
task migration from one MEC server to another incurs an extra cost, the number of tasks allowed
to be registered and processed in MEC servers should be constrained. Designing a proper task
offloading criterion is necessary to maximize the computing/storage resource utilization under
the constraints of task migration costs. For the proposed architecture, we determine where to
register AV applications based on the application types, i.e., only safety-related applications are
registered in the MEC servers. However, other criteria, such as delay requirements for each type
of computing task, should also be taken into consideration to optimize the offloading decisions
among MEC servers. Given the amount of resources on each MEC server, how to design
appropriate criteria for task offloading among MEC servers to balance the tradeoff between QoS
satisfaction and minimizing the offloading cost needs more investigation. From the perspective
of AVs, each AV can process the computing task by itself, offload it to neighboring AVs when
cooperative computing is enabled, or upload it to the MEC server. Due to the limited available
computing/storage resources in each AV and the fluctuations of service demands and available
bandwidth resources, task offloading decisions made by any AV can affect the resource utilization
of the whole network and other tasks’ QoS satisfaction, and therefore, how to make the task
offloading decision for each AV with consideration of the distribution of service requests and
available bandwidth is important. However, making task offloading decisions for AVs requires
a central controller, and the interactions between the controller and AVs can increase the cost
for signaling exchange and time complexity. To address this issue, a decentralized RL-based
offloading decision making scheme can be designed for each individual AV.

QoS-guaranteed multiple resource management: Bandwidth and at least one type of the
computing and storage resources are required by most of the tasks in the ADVNETs, such as
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offloaded computing task and content caching task, and even all the three types of resources are
demanded by some tasks, such as virtual reality. However, due to the coupled relation among
them to guarantee QoS requirements for different tasks or balance the fairness among AVs, it is
challenging to simultaneously manage the three types of resources among different tasks from
both MEC servers and AVs perspectives. Moreover, task offloading among MEC servers and
AVs impacts the amount of resource demanding in each MEC server and AV, which makes the
multiple resource management in our proposed architecture more challenging. To address these
challenges, designing a DRL-based algorithm for each MEC server and AV to jointly make task
offloading decisions and manage the three types of resources is a potential solution.

MEC deployment: In our designed resource management scheme, we consider that MEC
servers are placed at the edge of the core network to maintain two-hop wireless transmissions
between an AV and an MEC server. Placing MEC servers close to BSs reduces the computing
task response delay, but increases the computing server deployment cost. Therefore, how to
place MEC servers and how much computing and storage resources should be placed on each
MEC server need to be investigated for the MEC deployment problem. A simple method to
deploy MEC servers is based on local service requirements to balance the placement cost with
AVs’ application QoS requirements. Moreover, considering service demand fluctuations due
to the high AV mobility, vehicular traffic variations, and increasingly diversified applications,
pre-placed MEC deployment results in inefficient resource utilization. UAV-assisted MEC
deployment, i.e., mounting MEC servers in UAVs, is a promising method to this problem. Via the
decentralized controlling by each edge SDN controller, moving paths for MEC-mounted UAVs
and multiple resources can be scheduled to satisfy the QoS requirements even in service demand
fluctuation.

Bandwidth management for uplinks: Different from downlink transmissions where BSs
are at fixed locations, bandwidth allocation for uplink transmissions is more complex due to
the following challenges: First, due to high AV mobility, the inter-cell interference changes
dynamically and is difficult to be characterized; Second, it is inefficient for each vehicle to
collect information from all neighboring vehicles to achieve local centralized control due to the
highly dynamic network topology. To overcome these challenges, vehicle trajectory prediction
schemes and distributed control methods can be applied when managing bandwidth for uplink
transmissions.

Fairness: With the SDN control module, multiple access networks can be integrated
to support AV applications. How to achieve fairness in selecting different wireless access
technologies from end devices is an important research issue, where a proper fairness metric is
required. Appropriate revenue models among network operators can be considered for designing
a fair network selection and resource allocation scheme in terms of maximizing the revenue for
each individual operator. From the end device perspective, an appropriate prioritization scheme
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is necessary among different AV applications, so that fairness among AVs can be well balanced
while guaranteeing QoS satisfaction.

Security and privacy: How to ensure secure communications among AVs is a key research
issue. Since the accelerating or braking decisions from communication-assisted AVs are
based on the collected information via V2V and V2I communications, security attacks on
communication channels and sensor tampering may result in driving safety issues. Due to
the MEC controllers, the privacy of applications registered in MEC servers can be improved
through local communications. However, the MEC servers or cloud-computing servers can
become the major targets of hackers, from which the attacks indirectly cause driving safety issues
and result in serious privacy invasion. Moreover, exchanging individual vehicle information
is required to support cooperative driving among AVs. How to ensure identity privacy, data
privacy, and location privacy is essential to stimulate cooperative driving among AVs. To deal
with these security and privacy issues, potential solutions include identity authentication for
communications, access control at MEC and cloud-computing servers, and trust management
from AVs and servers.

3.4 Summary

In this chapter, we have proposed a new MEC-assisted architecture considering both SDN
and NFV technologies to support the increasingly intensified computing and communication
requirements in ADVNETs. By applying MEC in ADVNETs, computing and storage resources
are moved to the edge of the core network and AVs access the network via different wireless
access technologies. Via integrating NFV into MEC, functions supporting different applications
can be host on servers flexibly with reduced function provisioning cost. To achieve intelligent
traffic steering and efficient multiple resource management, SDN control functionality is
applied in the proposed architecture. To further improve the overall resource utilization with
heterogeneous QoS guarantee, a joint multi-resource management scheme has been designed,
where computing/storage resource utilization is enhanced through task migration and bandwidth
resource slicing is conducted among heterogeneous BSs. Some important open research issues
related to the proposed architecture are also discussed. In the next chapter, a case study will
be conducted to demonstrate the effectiveness of the designed resource management framework
under the proposed ADVNET architecture.
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Chapter 4

Spectrum Resource Management in
MEC-Assisted ADVNETs

In this chapter, the spectrum resource management issue is investigated under the MEC-assisted
ADVNET architecture proposed in Chapter 3. Specifically, a dynamic spectrum management
framework is proposed to improve spectrum resource utilization in the MEC-assisted ADVNET.
To support the increasing communication data traffic and guarantee QoS, spectrum slicing,
spectrum allocating, and transmit power controlling are jointly considered. Accordingly, three
non-convex network utility maximization problems are formulated to slice spectrum among
BSs, allocate spectrum among AVs associated with a BS, and control transmit powers of BSs,
respectively. Via linear programming relaxation and first-order Taylor series approximation,
these problems are transformed into tractable forms and then are jointly solved through an
alternate concave search (ACS) algorithm. As a result, optimal spectrum slicing ratios among
BSs, optimal BS-vehicle association patterns, optimal fractions of spectrum resources allocated
to AVs, and optimal transmit powers of BSs are obtained. Based on our simulation, a high
aggregate network utility is achieved by the proposed spectrum management scheme compared
with two existing schemes. The complete research results of this chapter can be seen in [59].

4.1 Background Information

Inspired by existing works, a new architecture that combines MEC with NFV and SDN to address
the challenges in computing and communication in ADVNETs is proposed in Chapter 3. Via the
MEC technology, 1) AVs with limited on-board computing/storage resources can offload the
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tasks requiring high computing/caching requirements to the MEC servers, such that a shorter
response delay can be guaranteed by avoiding the data transfer between the core network and
MEC servers; 2) multiple types of access technologies are permitted, thus moving AVs can access
MEC servers via different BSs, such as Wi-Fi APs, RSUs [106], White-Fi infostations, and eNBs.
Moreover, by integrating SDN and NFV concepts in each MEC server [107], global network
control is enabled, and therefore, the computing/storage resources placed at MEC servers can be
dynamically managed and various radio spectrum resources can be abstracted and sliced to the
BSs and then be allocated to AVs by each BS.

Efficient management for computing, storage, and spectrum resources is of paramount
importance for the MEC-assisted ADVNET. However, it is challenging to simultaneously
manage the three types of resources while guaranteeing the QoS requirements for different
AV applications, especially in a scenario with a high AV density. In this chapter, we focus on
spectrum resource management which can be extended to multiple resource management as our
future work discussed in the next chapter. The main contributions of this chapter are summarized
as follows:

1. By considering the tradeoff between spectrum resource utilization and inter-cell interfer-
ence, we develop a dynamic two-tier spectrum management framework for the MEC-
assisted ADVNET, which can be easily extended to other heterogeneous networks.

2. Leveraging logarithmic and linear utility functions, we formulate three aggregate network
utility maximization problems to fairly slice spectrum resources among BSs connected to
the same MEC server, optimize BS-vehicle association patterns and resource allocation,
and control the transmit power of BS.

3. Linear programming relaxation and first-order Taylor series approximation are used and
an ACS algorithm is designed to jointly solve the three formulated optimization problems.

The remainder of this chapter is organized as follows. First, the dynamic spectrum
management framework is introduced in Section 4.2, followed by the communication model. In
Section 4.3, we formulate three optimization problems to slice and allocate spectrum resources
among BSs and among AVs and control the transmit power of BS. Then, the three problems
are transformed into tractable problems in Section 4.4 and an ACS algorithm is proposed to
jointly solve them. In Section 4.5, extensive simulation results are presented to demonstrate the
performance of the proposed spectrum management framework. Finally, we draw concluding
remarks in Section 4.6.
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4.2 System Model

In this section, we first present a dynamic spectrum management framework under the MEC-
assisted ADVNET architecture with one MEC server, and then describe the communication
model under the considered ADVNET.

4.2.1 Dynamic Spectrum Management Framework

Due to the high vehicle mobility and heterogeneous vehicular applications, ADVNET topology
and QoS requirements change frequently, and therefore, resource allocation should be adjusted
accordingly. To improve spectrum resource utilization, a dynamic spectrum management
framework is developed for downlink transmission. Taking a one-way straight road with two
lanes as an example in Figure 4.1, two wireless access technologies, cellular and Wi-Fi/DSRC,
are available to the AVs. Wi-Fi APs/RSUs and eNBs are uniformly deployed on one side of
the road, where the ith Wi-Fi AP and the jth eNB are denoted by Wi and Sj , respectively. The
transmit power of each eNB, P , is fixed and high enough to guarantee a wide-area coverage, such
that all AVs can receive sufficient strong control signal or information signal from eNBs. Denote
P ′i as the transmit power of Wi-Fi AP Wi, which is lower than P and is dynamically adjusted by
the controller. For AVs within the overlapping area of two BSs, only one of the BSs is associated
for downlink transmission.

eNB S1 eNB S2

AP AP AP AP
  

𝛽1
∗ 𝛽2

∗

𝛽𝑤
∗ +𝛽2

∗ 𝛽𝑤
∗ +𝛽1

∗

Figure 4.1: A dynamic spectrum management framework.

We divide the eNBs into two groups, denoted by B1 and B2, where eNBs in the same group
share the same spectrum resources and are not neighbored to each other. ENBs S1 and S2 shown
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in Figure 4.1 are the two target eNBs from the two different sets, where S1 ∈ B1 is adjacent
to S2 ∈ B2. Set of Wi-Fi APs under the coverage of eNB Sj is denoted by Aj . Denote the
total available spectrum resources for vehicular applications to be Rmax. After collecting the
application requests from AVs via BSs, the controller performs dynamic spectrum management
for downlink transmission. The procedure can be divided into two tiers as the following.

1. Spectrum slicing among BSs: The controller slices the spectrum resource, Rmax, into three
slices with ratio set {β1, β2, βw} with β1 +β2 +βw = 1, and allocates them to eNBs in B1,
eNBs in B2, and Wi-Fi APs, respectively.

2. Spectrum allocating among AVs: Once the spectrum is sliced, each BS allocates its
available spectrum resources to AVs associated with it. By allocating an appropriate
amount of spectrum resources to each AV, the QoS requirements of various vehicular
applications can be satisfied and the sum of transmission rates over the whole ADVNET
can be maximized.

Spectrum slicing among BSs, spectrum allocating among AVs, and transmit power controlling
for Wi-Fi APs are updated once the traffic load of each eNB fluctuates, which is in a relatively
large time scale compared to network dynamic due to vehicle mobility. The traffic load of an
eNB is defined as the average arrival traffic for AVs in the coverage of the eNB.

4.2.2 Communication Model

Assume the three slices of spectrum resources are mutually orthogonal, therefore, there is no
inter-slice interference. To improve the spectrum resource utilization, two levels of spectrum
reusing are considered. The first level is reusing the spectrum resource βwRmax among all the
Wi-Fi APs as long as with an acceptable inter-cell interference. Moreover, we assume that the
Wi-Fi APs with no overlapping coverage area with an eNB can reuse the spectrum allocated to
that eNB. Thus, the interference to eNBs caused by the Wi-Fi APs can be controlled by adjusting
the transmit powers of the Wi-Fi APs while the spectrum resource utilization can be further
improved by allowing each Wi-Fi AP to reuse either the spectrum resource (βw + β1)R

max or
(βw + β2)R

max.

According to the dynamic spectrum management framework presented in Section 4.2.1, all
the eNBs in B1 reuse the spectrum resource β1Rmax for downlink transmission. DenoteMj/Mj

as the set/number of AVs within the coverage of eNB Sj . Then AV k, under the coverage of eNB
S1, i.e., k ∈ M1, experiences two kinds of interference to the corresponding downlink: from
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transmissions of other eNBs in B1 and of Wi-Fi APs in the coverage of eNBs in B2. Then, the
spectrum efficiency at AV k (k ∈M1) from eNB S1 can be expressed as

rk1 = log2(1 +
P1G

k
1∑

Sj∈B1,j 6=1

PjGk
j +

∑
Sj∈B2

∑
Wi∈Aj

P ′iG
′k
i + σ2

), (4.1)

where Gk
j (G′ki ) is the channel power gain between eNB Sj (Wi-Fi AP Wi) and AV k, and σ2 is

the power of the additive white Gaussian noise (AWGN). Similarly, the spectrum efficiency at
AV k (k ∈ M2) from eNB S2, rk2 , can be obtained. Let Rk

j be the amount of spectrum allocated
for AV k from eNB Sj . Then, the achievable transmission rates of AV k associated with eNBs
S1 (or S2) can be expressed as

γk1 = Rk
1r
k
1 (or γk2 = Rk

2r
k
2). (4.2)

Denote Ni/Ni as the set/number of AVs within the coverage of Wi-Fi AP Wi. Let R′k2,g and
R′kw,g be the amount of spectrum allocated to AV k from β2R

max and βwRmax, respectively, by
Wi-Fi AP Wg under the coverage of eNB S1 (i.e., Wg ∈ A1). Then the spectrum efficiencies at
AV k from Wi-Fi AP Wg include the following two parts,

r′k2,g = log2(1 +
P ′gG

′k
g∑

Wi∈A1,i6=g
P ′iG

′k
i +

∑
Sj∈B2

PjGk
j + σ2

)

r′kw,g = log2(1 +
P ′gG

′k
g∑

Wi∈{A1∪A2},i6=g
P ′iG

′k
i + σ2

).

(4.3)

And the achievable transmission rate of a tagged AV k associated with Wi-Fi AP Wg, i.e., k ∈
∪Wg∈A1Ng, can be expressed as

γ′kg =R′k2,gr
′k
2,g +R′kw,gr

′k
w,g. (4.4)

Let R′k1,h and R′kw,h be the amount of spectrum allocated for AV k from β1R
max and βwRmax,

respectively, by Wi-Fi AP Wh under the coverage of eNB S2 (i.e., Wh ∈ A2), and r′k1,h and r′kw,h
be the spectrum efficiencies at AV k from Wi-Fi AP Wh. Similarly, the achievable transmission
rate of a tagged AV k associated with Wi-Fi AP Wh, i.e., k ∈ ∪Wh∈A2Nh, can be given by

γ′kh = R′k1,hr
′k
1,h +R′kw,hr

′k
w,h. (4.5)
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4.3 Resource Management Scheme

We consider two kinds of traffic for each AV: delay-sensitive traffic and delay-tolerant traffic.
Examples of AV’s delay-sensitive traffic include rear-end collision avoidance and platoon-
ing/convoying. The delay-tolerant traffic can be HD map information downloading and
infotainment services. Denote p as the probability that an AV generates a delay-sensitive request.
To accommodate the large amounts of data traffic generated by AVs while guaranteeing different
QoS requirements for different applications, designing efficient resource management schemes
is very important.

For downlink transmission to accommodate AVs’ delay-sensitive requests, the transmission
delay from eNB Sj or Wi-Fi AP Wi should be guaranteed statically. Let Ls and λs be the size
and the arrival rate of the delay-sensitive packet. From [105], the maximum delay requirement,
Dmax, can be transformed to a lower bound of the required transmission rate to guarantee that the
downlink transmission delay exceeding Dmax at most with probability %, which can be expressed
as

γmin = − Lslog%

Dmaxlog(1− log%/(λsDmax))
. (4.6)

4.3.1 Spectrum Resource Allocation

To address complicated resource allocation, we will introduce a two-tier approach, including
spectrum slicing among BSs and spectrum allocating among AVs, as following.

Spectrum slicing among BSs: Based on the dynamic spectrum management framework,
the total available spectrum resources are sliced or divided according to the ratio set {β1, β2, βw}
for different BSs. The main concern for spectrum slicing is fairness among BSs. To this end,
a logarithmic utility function, which is concave and with diminishing marginal utility [105], is
considered to achieve a certain level of fairness among BSs.

For AV k within the coverages of Wi-Fi APs, binary variables xkj and x′ki represent the BS-
vehicle association patterns, where xkj = 1 (or x′ki = 1) means AV k is associated with eNB Sj
(or Wi-Fi AP Wi), xkj = 0 (or x′ki = 0) otherwise. DenoteMj/M j as the set/number of AVs
within the coverage of eNB Sj while outside of Wi-Fi APs. Then, the utility for AV k associated
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with eNBs or Wi-Fi APs is

uk =


uk1 = log(γk1 ), if k ∈M1 ∪ {k|xk1 = 1}
uk2 = log(γk2 ), if k ∈M2 ∪ {k|xk2 = 1}
u′kg = log(γ′kg ), if k ∈ Ng ∩ {k|xkg = 1}
u′kh = log(γ′kh ), if k ∈ Nh ∩ {k|xkh = 1}.

(4.7)

The aggregated network utility is defined as the summation of utility of each individual AV.
Let R = {Rk

1 , R
k
2} and R′ = {R′k2,g, R′kw,g, R′k1,h, R′kw,h} be the matrices describing spectrum

allocated to AVs by eNBs and by Wi-Fi APs, respectively. For given BS-vehicle association
patterns with fixed transmit power of each Wi-Fi AP, the aggregated network-wide utility
maximization problem can be given by

P1 : max
β1,β2,βw

R,R′

∑
k∈M1

uk1 +
∑
Wg

∑
k∈Ng

(xk1u
k
1 + x′kg u

′k
g ) +

∑
k∈M2

uk2 +
∑
Wh

∑
k∈Nh

(xk2u
k
2 + x′kh u

′k
h ) (4.8)

s.t.



β1, β2, βw ∈ [0, 1] (4.8a)
β1 + β2 + βw = 1 (4.8b)∑
k∈M1

Rk
1 +

∑
Wg

∑
k∈Ng

xk1R
k
1 = β1R

max (4.8c)

∑
k∈M2

Rk
2 +

∑
Wh

∑
k∈Nh

xk2R
k
2 = β2R

max (4.8d)

∑
k∈Ng

x′kg R
′k
l,g = βlR

max, l ∈ {2, w} (4.8e)

∑
k∈Nh

x′khR
′k
l,h = βlR

max, l ∈ {1, w} (4.8f)

Rk
1 , R

k
2 , R

′k
2,g, R

′k
w,g, R

′k
1,h, R

′k
w,h ≥ 0. (4.8g)

In problem (P1), the objective function is to maximize the aggregated network utility. Since
β1, β2, and βw are the only three slicing ratios, constraints (4.8a) and (4.8b) are considered in
(P1). Constraints (4.8c)-(4.8g) indicate that spectrum resources allocated to AVs by a BS should
be constrained by its available spectrum resources. According to problem (P1), each BS equally
allocates the spectrum resources to AVs associated with it (will be discussed in detail in the next
section). However, the downlink transmission rate required by an AV depends on its application
request. For a BS with a fixed amount of available spectrum resources, equally allocating
spectrum to AVs associated with it and simultaneously guaranteeing their heterogeneous QoS
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requirements will reduce the number of accommodated AVs. Thus, QoS constraints on R and R′
are not considered in problem (P1) and the optimal {β?1 , β?2 , β?w} is regarded as the only output to
slice the total spectrum resources among BSs.

Spectrum allocating among AVs: To accommodate situations with high density AVs, a
linear network utility function is considered in spectrum allocating among AVs associated with
the same BS. For given slicing ratios β1, β2, and βw, and transmit power of each Wi-Fi AP, a
network throughput maximization problem can be formulated as

P2 : max
X,X′

R,R′

∑
k∈M1

γk1 +
∑

Wg∈A1

∑
k∈Ng

(xk1γ
k
1 + x′kg γ

′k
g ) +

∑
k∈M2

γk2 +
∑

Wh∈A2

∑
k∈Nh

(xk2γ
k
2 + x′kh γ

′k
h )

(4.9)

s.t.



(4.8c)− (4.8g) (4.9a)
xk1, x

k
2, x

′k
g , x

′k
h ∈ {0, 1}, k ∈ Ni (4.9b)

xk1 + x′kg = 1, k ∈ ∪WgNg (4.9c)

xk2 + x′kh = 1, k ∈ ∪Wh
Nh (4.9d)

γkl ≥ γmin, l ∈ {1, 2}, k ∈ {Ms

1 ∪M
s

2} (4.9e)
xk1[γk1 − γmin] ≥ 0, k ∈ ∪WgN s

g (4.9f)

xk2[γk2 − γmin] ≥ 0, k ∈ ∪Wh
N s
h (4.9g)

x′ki [γ′ki − γmin] ≥ 0, k ∈ ∪Wi∈A1∪A2N s
i (4.9h)

γkl ≥ λnLn, l ∈ {1, 2}, k ∈ {Mt

1 ∪M
t

2} (4.9i)
xk1[γk1 − λnLn] ≥ 0, k ∈ ∪WgN t

g (4.9j)

xk2[γk2 − λnLn] ≥ 0, k ∈ ∪Wh
N t
g (4.9k)

x′ki [γ′ki − λnLn] ≥ 0, k ∈ ∪Wi∈A1∪A2N t
i (4.9l)

where X = {xk1, xk2} and X′ = {x′kg , x′kh } are the association pattern matrices between eNBs and
AVs, and between Wi-Fi APs and AVs, respectively; Ln and λn are the corresponding packet size
and the arrival rate for delay-tolerant service requests;Ms

j/M
s

j (orMt

j/M
t

j) are the set/number
of AVs only within the coverage of eNB Sj and requesting for delay-sensitive (or delay-tolerant)
services;N s

i /N s
i (orN t

i /N t
i ) are the set/number of AVs within the coverage of Wi-Fi AP Wi and

requesting for delay-sensitive (or delay-tolerant) services.

In problem (P2), the first five constraints are same with problem (P1) and used to demonstrate
the required spectrum for each AV allocated by its associated BS. Constraints (4.9b)-(4.9d)
indicate that each AV is associated with either the eNB or the Wi-Fi AP closed to it. Constraints
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(4.9e)-(4.9h) ensure the service rates from either eNBs and Wi-Fi APs to guarantee the delay
requirements of delay-sensitive services. For AVs with delay-tolerant requests, constraints (4.9i)-
(4.9l) indicate that the service rate from an eNB or a Wi-Fi AP should be not less than the periodic
data traffic arrival rate at that eNB or Wi-Fi AP. Via solving problem (P2), the optimal association
pattern matrices X∗ and X∗′, and local spectrum allocation matrices R∗ and R∗′ can be obtained,
which maximize the network throughput with guaranteed QoS for different AV applications.

4.3.2 Transmit Power Control

In addition to spectrum slicing and allocating among BSs and among AVs, controlling the
transmit power of Wi-Fi APs to adjust the inter-cell interference would further improve the
spectrum utilization. Denote P′ = {P ′i |Wi ∈ A1 ∪ A2} as the transmit power matrix of Wi-Fi
APs. Equations (4.1) and (4.3) indicate that the received signal-to-interference-plus-noise ratio
(SINR) by AVs from either an eNB or a Wi-Fi AP change with Wi-Fi APs’ transmit powers,
and therefore, impacting the achievable transmission rates of the corresponding downlink. To
obtain optimal transmit powers of Wi-Fi APs, the linear utility function is considered in this part
similar to problem (P2). For a given slicing ratio set {β1, β2, βw}, BS-vehicle association pattern
matrices X and X′, and local spectrum allocation matrices R and R′, the network throughput
maximization problem focusing on transmit power controlling can be formulated as

P3 : max
P′

∑
k∈M1

γk1 +
∑

Wg∈A1

∑
k∈Ng

(xk1γ
k
1 + x′kg γ

′k
g ) +

∑
k∈M2

γk2 +
∑

Wh∈A2

∑
k∈Nh

(xk2γ
k
2 + x′kh γ

′k
h )

(4.10)

s.t.

{
(4.9e)− (4.9l), (4.10a)
P ′i ∈ [0, Pmax], Wi ∈ {A1 ∪ A2} (4.10b)

where Pmax is the maximum transmit power allowed by each Wi-Fi AP. In problem (P3), the first
eight constraints in (4.10a) are same with problem (P2) and used to ensure the QoS requirements
for delay-sensitive and delay-tolerant services. Constraint (4.10b) indicates that transmit power
of each Wi-Fi AP is less than Pmax. Then the optimal transmit power for each Wi-Fi AP can
be determined by solving problem (P3). From the above discussion, variables considered in
problems (P1), (P2), and (P3) are coupled, thus the three problems should be solved jointly.
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4.4 Problem Analysis and Suboptimal Solution

Due to the binary variable matrices X and X′, problems (P2) and (P3) are combinatorial and
difficult to solve. Thus, in this section, we first analyze each problem and then transform (P2)
and (P3) to tractable forms before we jointly solving these three problems for the final optimal
solutions.

4.4.1 Problem Analysis

Let N ′i be the set of AVs within and associated with Wi-Fi AP Wi, i.e., N ′i = {k ∈ Ni|x′ki = 1}
for Wi ∈ {A1 ∪ A2}, and |N ′i | = N ′i . Then, the objective function of (P1) can be transformed
into, ∑
k∈{M1\(∪WgN ′

g)}

log(Rk
1r
k
1) +

∑
Wg

∑
k∈N ′

g

log(γ′kg ) +
∑

k∈{M2\(∪WhN
′
h)}

log(Rk
2r
k
2) +

∑
Wh

∑
k∈N ′

h

log(γ′kh )

(4.11)

where mathematical symbol, \, describes the relative complement of one set with respect to
another set. According to the constraints of (P1), the sets of spectrum allocating variables, {Rk

1},
{Rk

2}, {R′k2,g}, {R′kw,g}, {R′k1,h}, and {R′kw,h}, are independent with uncoupled constrains. Thus,
similar to proposition 1 in [105], we can decompose problem (P1) into six subproblems and
obtain the optimal fractions of spectrum allocated to AVs from the associated BSs as follows,

R∗1 = R∗k1 =
β1R

max

M1 −
∑

Wg
N ′g

R∗2 = R∗k2 =
β2R

max

M2 −
∑

Wh
N ′h

R∗′2,g = R∗′k2,g =
β2R

max

N ′g

R∗′w,g = R∗′kw,g =
βwR

max

N ′g

R∗′1,h = R∗′k1,h =
β1R

max

N ′h

R∗′w,h = R∗′kw,h =
βwR

max

N ′h
.

(4.12)
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Equation (4.12) indicates that each BS equally allocates spectrum to AVs associated with
it. By replacing the spectrum allocating variables with Equation (4.12), problem (P1) can be
transformed into

P1′ : max
β1,β2,βw

∑
k∈{M1\(∪WgN ′

g)}

log(
β1R

maxrk1
M1 −

∑
Wg
N ′g

) +
∑
Wg

∑
k∈N ′

g

log(
β2R

maxr′k2,g + βwR
maxr′kw,g

N ′g
)

+
∑

k∈{M2\(∪WhN
′
h)}

log(
β2R

maxrk2
M2 −

∑
Wh

N ′h
) +

∑
Wh

∑
k∈N ′

h

log(
β1R

maxr′k1,h + βwR
maxr′kw,h

N ′h
)

(4.13)

s.t. { (4.8a)− (4.8b) (4.13a)

Due to the binary variable matrices X and X′, using the brute force algorithm to solve
problems (P2) and (P3) is with high complexity. To address this issue, we allow AVs within
the overlapping area of a Wi-Fi AP and an eNB to associate with one or both the Wi-Fi AP and
the eNB [108]. Thus, binary matrices X and X′ are relaxed into real-valued matrices X̃ and X̃

′

with elements x̃kj ∈ [0, 1] and x̃′ki ∈ [0, 1], respectively. And then, we can transform problem
(P2) into

P2′ : max
X̃,X̃

′

R,R′

∑
k∈M1

γk1 +
∑

Wg∈A1

∑
k∈Ng

(x̃k1γ
k
1 + x̃′kg γ

′k
g ) +

∑
k∈M2

γk2 +
∑

Wh∈A2

∑
k∈Nh

(x̃k2γ
k
2 + x̃′kh γ

′k
h )

(4.14)
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s.t.



(4.8g), (4.9e), (4.9i) (4.14a)∑
k∈M1

Rk
1 +

∑
Wg

∑
k∈Ng

x̃k1R
k
1 = β1R

max (4.14b)

∑
k∈M2

Rk
2 +

∑
Wh

∑
k∈Nh

x̃k2R
k
2 = β2R

max (4.14c)

∑
k∈Ng

x̃′kg R
′k
l,g = βlR

max, l ∈ {2, w} (4.14d)

∑
k∈Nh

x̃′khR
′k
l,h = βlR

max, l ∈ {1, w} (4.14e)

x̃k1, x̃
k
2, x̃

′k
g , x̃

′k
h ∈ [0, 1], k ∈ Ni (4.14f)

x̃k1 + x̃′kg = 1, k ∈ ∪WgNg (4.14g)

x̃k2 + x̃′kh = 1, k ∈ ∪Wh
Nh (4.14h)

x̃k1[γk1 − γmin] ≥ 0, k ∈ ∪WgN s
g (4.14i)

x̃k2[γk2 − γmin] ≥ 0, k ∈ ∪Wh
N s
h (4.14j)

x̃′ki [γ′ki − γmin] ≥ 0, k ∈ ∪Wi∈A1∪A2N s
i (4.14k)

x̃k1[γk1 − λnLn] ≥ 0, k ∈ ∪WgN t
g (4.14l)

x̃k2[γk2 − λnLn] ≥ 0, k ∈ ∪Wh
N t
g (4.14m)

x̃′ki [γ′ki − λnLn] ≥ 0, k ∈ ∪Wi∈A1∪A2N t
i . (4.14n)

To analyze the concavity property of problems (P1′) and (P2′), three definitions about concave
functions [109, 110] and two concavity-preserving operations [109] are introduced as follows,

Second-order conditions: Suppose function f is twice differentiable, i.e., it has Hessian or
second derivative, ∇2f , at each point in its domain, domf . Then f is concave if and only if
domf is a convex set and its second derivative is negative semidefinite for all y ∈ domf , i.e.,
∇2f � 0.

To express biconcave set and biconcave function, we define A ⊆ Rn and B ⊆ Rm as two
non-empty convex sets, and let Y be the Cartesian product of A and B, i.e., Y ⊆ A×B. Define
a- and b-sections of Y as Ya = {b ∈ B : (a, b) ∈ Y } and Yb = {a ∈ A : (a, b) ∈ Y }.

Biconcave set: Set Y ⊆ A × B is called as a biconcave set on A × B, if Ya is convex for
every a ∈ A and Yb is convex for every b ∈ B.

Biconcave function: Define function f : Y → R on a biconvex set Y ⊆ A × B. Then
function f : Y → R is called a biconcave function on Y , if fa(b) = f(a, b) : Ya → R is a
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concave function on Ya for every given a ∈ A, and fb(a) = f(a, b) : Yb → R is a concave
function on Yb for every given b ∈ B.

Biconcave optimization problem: An optimization problem with form max{f(a, b) :
(a, b) ∈ Y } is called as a biconcave optimization problem, if the feasible set Y is biconvex
on Ya and Yb, and the objective function f(a, b) is biconcave on Y .

Nonnegative weighted sums: A nonnegative weighted sum of concave functions is
concave.

Composition with an affine mapping: Let function ~ : Rn → R, E ∈ Rn×m, and e ∈ Rn.
Define function ` : Rm → R by `(y) = ~(Ey + e) with dom ` = {y|Ey + e ∈ dom ~}. Then
function ` is concave if ~ is concave.

The following two propositions summarize the concavity property of problems (P1′) and
(P2′), respectively, The objective function of problem (P1′) is a concave function on the three
optimal variables β1, β2, and βw, and problem (P1′) is a concave optimization problem.

Proof: For problem (P1′), constraint (4.13a) indicates that {β1, β2, βw} is a closed set, i.e.,
the problem domain is a convex set, and the objective function of (P1′) is the summation of
AVs’ logarithmic utilities, where the logarithmic function is a concave function due to the non-
positive second derivative. Moreover, for an AV associated with a BS, the utility is logarithm of
the achievable transmission rate, and the corresponding achievable transmission rate is an affine
function of β1, β2, or βw. Thus, based on the above two operations, we can conclude that the
objective function of problem (P1′) is a concave function on the three optimal variables β1, β2,
and βw. Furthermore, constraint (4.8a) can be rewritten into inequality concave constraints, such
as β1 ∈ [0, 1] can be as −β1 ≤ 0 and β1 ≤ 1, and constraint (4.8b) is an equality affine function.
Therefore, problem (P1′) is a concave optimization problem.

The objective function of problem (P2′) is a biconcave function on variable set {X̃, X̃
′
} ×

{R,R′}, and problem (P2′) is a biconcave optimization problem.

Proof: Constraints (4.14b)-(4.14f) of problem (P2′) indicate that {X̃, X̃
′
} and {R,R′} are

convex sets, and Cartesian product is an operation that preserves convexity of convex sets [109].
Thus, the domain of (P2′)’, {X̃, X̃

′
} × {R,R′}, is a convex set. Moreover, as stated before,

the objective function of (P2′) is the summation of AVs’ achievable transmission rates from
the associated BSs, where the transmission rate achieved by an AV k is an affine function on
elements of {R,R′} for a given association pattern and is an affine function on the association
pattern variable for a given resource allocation. Considering the affine function is both concave
and convex, it can prove that the objective function of problem (P2′) is a biconcave function on
variable set {X̃, X̃

′
} × {R,R′}. Moreover, constraints (4.14g) and (4.14h) are equality affine
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on {X̃, X̃
′
}, constraints (4.14b)-(4.14e) are equality biaffine on {X̃, X̃

′
} × {R,R′}, constraints

(4.8g) and (4.14f) are respectively inequality affine on {X̃, X̃
′
} and {R̃, R̃

′
}, and constraints

(4.9e), (4.9i), and (4.14i)-(4.14n) are inequality biaffine on {X̃, X̃
′
} × {R,R′}. Thus, we can

conclude that (P2′) is a biconcave optimization problem.

Even though the integer-value variables in problem (P3) can be relaxed to real-value ones
by replacing constraint (4.10a) by (4.9e), (4.9i), and (4.14i)-(4.14n), the non-concave or non-
biconcave relations between the objective function and decision variable of problem (P3) makes
it difficult to solve directly. Thus, we use the first-order Taylor series approximation, and
introduce two new variable matrices, C = {Ck

1 , C
k
2} and C′ = {C ′k2,g, C ′kw,g, C ′k1,h, C ′kw,h} with

elements that are linear-fractional function of P ′i , to replace the received SINR on AVs within
each BS’s coverage area. Then, the downlink spectrum efficiency on an AV associated with a
BS can be re-expressed as a concave function of C. For example, using Ck

1 to replace the SINR
received on AV k associated with eNB S1, we can rewritten equation (5.4) as

rk1 = log2(1 + Ck
1 ). (4.15)

Therefore, problem (P3) can be transformed into

P3′ : max
P′,C,C′

∑
k∈M1

Rk
1 log2(1 + Ck

1 ) +
∑
k∈M2

Rk
2 log2(1 + Ck

2 ) +
∑

Wg∈A1

∑
k∈Ng

(xk1R
k
1 log2(1+

Ck
1 ) + x′kg (R′k2,glog2(1 + C ′k2,g) +R′kw,glog2(1 + C ′kw,g))) +

∑
Wh∈A2

∑
k∈Nh

(xk2R
k
2

log2(1 + Ck
2 ) + x′kh (R′k1,hlog2(1 + C ′k1,h) +R′kw,hlog2(1 + C ′kw,h)))

(4.16)

s.t.



(4.9e), (4.9i), (4.14i)− (4.14n) (4.16a)
P ′i ∈ [0, Pmax], Wi ∈ {A1 ∪ A2} (4.16b)
Ck

1 ≤ ξk1 (4.16c)
Ck

2 ≤ ξk2 (4.16d)
C ′k2,g ≤ ξ′k2,g (4.16e)

C ′kw,g ≤ ξ′kw,g (4.16f)

C ′k1,h ≤ ξ′k1,h (4.16g)

C ′kw,h ≤ ξ′kw,h (4.16h)

where ξk (or ξ′k) are the received SINRs on AV k from its associated eNB (or Wi-Fi AP). The
six additional constraints (4.16c)-(4.16h) are biaffine on {P′} × {C,C′} and are considered in
problem (P3′) to ensure the equivalent with problems (P3).
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4.4.2 Algorithms Design

To jointly solve the three problems (P1′), (P2′), and (P3′), we first design an alternate algorithm
for (P3′) and then an ACS algorithm is applied to jointly solve these three problems. For
simplicity, the objective functions for the three problems are denoted by U(P1′), U(P2′), and U(P3′),
respectively.

The objective function of problem (P3′), U(P3′), is concave on {C,C′}, while constraints
(4.16c)-(4.16h) are biaffine on {P′} × {C,C′}. Through maximizing U(P3′), optimal {C,C′}
can be obtained for given P′ with constraints (4.16c)-(4.16h). Moreover, through maximizing 0
with constraints (4.16a)-(4.16h), the feasible set of P′ can be obtained. Thus, we first separate
problem (P3′) into two subproblems as follows

P3′.SP1 : max
C,C′

U(P3′)

s.t. (4.16c)− (4.16h)

and

P3′.SP2 : max
P′

0

s.t. (4.16a)− (4.16h).

It is obvious that there must be a solution to subproblem (P3′.SP1). Moreover, since subproblem
(P3′.SP2) is a feasibility problem and the initial value of P′ is always the solution for (P3′.SP2).
Thus, problem (P3′) converges and can be solved by iteratively solving subproblems (P3′.SP1)
and (P3′.SP2).

To jointly solve (P1′), (P2′), and (P3′) and obtain the final optimal decision variables, the
ACS algorithm is summarized in Algorithm 1. {X̃

(t)
, X̃

(t)′
} and P(t)′ are the values of {X̃, X̃

′
}

and P′ at the beginning of the tth iteration, and U (t)
(P2′) is the maximum objective function value

of problem (P2′) with optimal decision variables {β(t)
1 , β

(t)
2 , β

(t)
w }, {R̃

(t)
, R̃

(t)′
}, {X̃

(t)
, X̃

(t)′
}, and

P(t)′. To enhance the convergence speed of Algorithm 1, the output at the (t − 1)th iteration is
regarded as a feedback to the input at the tth iteration [111], such as, the tth input P(t)′ is defined
as

P(t)′ = P(t−1)′ + θ(P†′ − P(t−1)′) (4.17)

where, θ is the feedback coefficient. Moreover, considering that a lager θ may result in missing
optimal output at each iteration while a small θ reduces the convergence speed, two coefficients
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θ1 and θ2 are considered in Algorithm 1.

According to the analysis of each problem in Subsection 4.4.1, Algorithm 1 converges since:

1. The output of problems (P1′) and (P2′), {β1, β2, βw}, {X̃, X̃
′
}, and {R̃, R̃

′
}, are closed sets;

2. Both (P1′) and (P2′) are concave/biconcave optimization problems such that the optimal
solution for each problem at the end of the kth iteration is unique when the input of the
algorithm is the optimal results obtained from the (k − 1)th iteration;

3. Problem (P3′) is always solvable.

The computational complexity of Algorithm 1 is calculated as follows: In t-th iteration, the
convex optimization problem (P2′) is solved at step 2 for the optimal spectrum allocation results,
where the number of decision variables is 2

∑B
j=1Mj; Then at step 3, solving (P2′) again for the

optimal vehicle-eNB and vehicle-AP association patterns with 2
∑B

j=1Mj decision variables;
Then at step 4, iteratively solving (P3′) for optimal {C(t+1),C(t+1)′} and P(t+1)′ with numbers
of decision variables 2

∑B
j=1Mj and

∑B
j=1Aj , respectively; And solving (P1′) with 3 decision

variables for the optimal slicing ratios at the end of t-th iteration. Therefore, in each iteration,
the convex optimization problems are solved sequentially by using interior-point methods, and
thus the time complexity upper bound of Algorithm 1 is O

[
N̂((

∑B
j=1Mj)

3.5 + (
∑B

j=1Aj)
3.5)
]
,

where N̂ is the maximum number of iterations, B is the number of eNBs within the considered
area, and Mj/Aj is the number of AVs/Wi-Fi APs within the coverage of eNB Sj . In practical,
Mj and Aj are generally less than 100 and 10, respectively.

4.5 Simulation Results

To show the effectiveness of our proposed spectrum resource management framework, extensive
simulation is carried out. We compare the proposed spectrum resource management scheme
with two existing resource slicing schemes, i.e., the maximization-utility (max-utility) based
resource slicing scheme proposed in [105], and the maximization-SINR (max-SINR) based
resource slicing scheme proposed in [108]. The BS-vehicle association patterns and spectrum
slicing ratios are optimized with the objective of maximizing the aggregated network utility in
the max-utility scheme while AVs choose to associate with the BS providing higher SINR and
only spectrum slicing ratios are optimized in the max-SINR scheme.

We consider two eNBs (eNB S1 ∈ B1 and eNB S2 ∈ B2) and four Wi-Fi APs (AP 1 and
AP 2 in A1, and AP 3 and AP 4 in A2) are utilized for AV applications. Transmit power is
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Input: Input parameters for (P1′), (P2′), and (P3′); initial values for {X̃, X̃′} and P′; terminating
criterion κ1; feedback coefficient updating criterion κ2 (κ2 > κ1); feedback coefficients
θ1 and θ2; maximum iterations N̂ .

Output: Optimal spectrum slicing ratios, {β∗1 , β∗2 , β∗w}; Optimal local spectrum allocation
matrix, {R∗,R∗′}; Optimal BS-vehicle association patterns, {X̃∗, X̃∗′}; Optimal
transmit powers for APs, P∗′; Optimal SINR matrices {C∗,C∗′}.

/* Initialization phase */
for the first iteration, k = 0 do

set initial values for {X̃, X̃′} and P′, denoted by {X̃(0)
, X̃

(0)′} and P(0)′, respectively; set
U (0)
(P2′) to 0.

end
/* Solving iteratively phase */
repeat

foreach k ≤ N̂ do
Step1: {β†1, β

†
2, β
†
w} ← solving (P1′) given {X̃(t)

, X̃
(t)′} and P(t)′;

Step2: {R†,R†′} ← solving (P2′) given {β†1, β
†
2, β
†
w}, {X̃

(t)
, X̃

(t)′}, and P(t)′;

Step3: {X̃†, X̃†′} ← solving (P2′) given {β†1, β
†
2, β
†
w}, {R†,R†′}, and P(t)′;

Step4: {C(t+1),C(t+1)′}, P(t+1)′← solving (P3′) by iteratively solving (P3′.SP1) and

(P3′.SP2) given {β†1, β
†
2, β
†
w}, {R†,R†′}, and {X̃†, X̃†′};

if No feasible solutions for (P1′), (P2′), or (P3′) then
Go to initialization phase and reset the initial values for related parameters until no

feasible solutions found; Stop and no optimal solutions under current network
setting;

else if ‖ U (t)
(P2′) − U

(t−1)
(P2′) ‖≤ κ2 then

{β(t+1)
1 , β

(t+1)
2 , β

(t+1)
w } ←

{β(t)1 , β
(t)
2 , β

(t)
w }+ θ2 ∗ ({β†1, β

†
2, β
†
w} − {β(t)1 , β

(t)
2 , β

(t)
w });

{R(t+1),R(t+1)′} ← {R(t),R(t)′}+ θ2 ∗ ({R†,R†′} − {R(t),R(t)′});
{X(t+1),X(t+1)′} ← {X(t),X(t)′}+ θ2 ∗ ({X†,X†′} − {X(t),X(t)′}).

end
else
{β(t+1)

1 , β
(t+1)
2 , β

(t+1)
w } ←

{β(t)1 , β
(t)
2 , β

(t)
w }+ θ1 ∗ ({β†1, β

†
2, β
†
w} − {β(t)1 , β

(t)
2 , β

(t)
w });

{R(t+1),R(t+1)′} ← {R(t),R(t)′}+ θ1 ∗ ({R†,R†′} − {R(t),R(t)′});
{X(t+1),X(t+1)′} ← {X(t),X(t)′}+ θ1 ∗ ({X†,X†′} − {X(t),X(t)′}).

end

Obtain U (t+1)
(P2′) at the end of kth iteration with {β(t+1)

1 , β
(t+1)
2 , β

(t+1)
w }, {R̃(t+1)

, R̃
(t+1)′},

{X̃(t+1)
, X̃

(t+1)′}, and P(t+1)′;
end
k← k + 1;

until ‖ U (t)
(P2′) − U

(t−1)
(P2′) ‖≤ κ1 or k ≥ N̂ ;

Algorithm 1: The ACS algorithm for jointly solving (P1′), (P2′), and (P3′).
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fixed at 10 watts (i.e., 40 dBm) for each eNB with a maximum communication range of 600 m.
Since no transmit power control for both max-utility and max-SINR schemes, transmit powers
of APs are set as 1 watt with communication range of 200 m, the same as in [105]. In our
simulation, the minimum inter-vehicle distance is 5 m, and the AV density over one lane, i.e., the
number of AVs on one lane per meter, varies within range of [0.04, 0.20] AV/m. The downlink
channel gains for eNBs and Wi-Fi APs are described as Le(d) = −30− 35log

10
(d) and Lw(d) =

−40 − 35log
10

(d) [105], respectively, where d is the distance between an AV and a BS. We
take platooning/convoying as an example to set the delay bound for delay-sensitive applications,
i.e., 10 ms [40, 112], and downloading HD map is considered as an example for delay-tolerant
applications [113]. Other important parameters in our simulation are listed in Table 4.1.

Table 4.1: Parameters values.

Parameter Value

Maximum transmit power allowed by APs 2.5 watts
Background noise power −104 dBm
HD map packet arrival rate 20 packet/s
HD map packet size 9000 bits
Safety-sensitive packet arrival rate 4 packet/s
Safety-sensitive packet size 1048 bits
Safety-sensitive packet delay bound 10 ms
Safety-sensitive request generating probability 0.1− 0.9
Delay bound violation probability 10−3

θ1/θ2 0.001/0.1
κ1/κ2 0.01/20

We use network throughput that is, the summation of achievable transmission rate by each
individual AV from BSs, to measure performances of different spectrum resource management
schemes. Considering the scarcity of spectrum resources, the different vehicular applications,
and the high network dynamic, we evaluate the performance of the proposed scheme and
compare with the max-utility and the max-SINR schemes under different amounts of aggregate
spectrum resource (Wv), probabilities of generating a delay-sensitive request by AVs (p), and AV
densities in Figure 4.2 to Figure 4.4.

Figure 4.2 demonstrates the network throughputs achieved by the three schemes with respect
to different amounts of aggregate spectrum resources, Wv, where AV density is 0.05 AV/m and
p = 0.2 and 0.8, respectively. With the increase of Wv, the transmission rate for each AV
is increased due to the increase of the amount of allocated spectrum resources. From Figure
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4.2, the minimum requirement for spectrum resources by the proposed scheme to support the
downlink transmissions is 3 MHz while at least 9 MHz and 12 MHz spectrum is required by the
max-utility scheme and the max-SINR scheme1, respectively. Moreover, under different Wv,
the network throughput achieved by the proposed scheme is on average over 70% and over 50%
higher than that of the max-utility scheme for p = 0.2 and 0.8, respectively, and over 45% higher
on average than that of the max-SINR scheme for p = 0.2. From Figure 4.2(a), with the increase
of Wv, network throughput achieved by the proposed scheme increases more rapidly than the
max-utility scheme.
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Figure 4.2: Comparison of network throughput vs. aggregate spectrum resources under the
same AV distribution with AV density 0.05AV/m.

Network throughputs of the three schemes under different p are evaluated in Figure 4.3.
The effect of p on network throughput is mainly caused by the difference between the QoS
requirements for delay-sensitive and delay-tolerant applications. According to Equation (4.6)
and the parameter setting in Table 4.1, the transmission rate required by a delay-tolerant request
is 180.00 kbits/s, which is higher than that for a delay-sensitive request, 140.37 kbits/s. A large
p indicates a low total transmission rate required by all AVs to satisfy their applications’ QoS
requirements, therefore more remaining spectrum resources can be allocated to AVs with higher
received SINRs in the proposed scheme. Thus, under the scenarios with the same AV density,
0.05 AV/m, network throughputs of the three schemes increase with p. For the max-SINR

1Note that, the range of the x-axis is set according to our proposed scheme, and no network throughput is shown
for the max-utility scheme or the max-SINR scheme when the amount of resources is not enough to support the
given scenario by these two schemes.
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scheme, AVs associate with the BS providing higher SINR and each BS equally allocates its
available spectrum resources to AVs. To guarantee the QoS requirements for AVs, the amount
of spectrum resource allocated to AVs from the same BS fluctuates with the distribution of BS-
vehicle SINR and p, resulting in drastic impacts on the achieved network throughput. Moreover,
from Figure 4.3, the proposed scheme outperforms the max-SINR scheme when p is small and
can achieve higher network throughput than the max-utility scheme for the scenario with different
p.
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Figure 4.3: Average network throughput vs. p (AV density is 0.05AV/m).

Fig. 4.4 shows the network throughputs of the three schemes under different AV densities
with p = 0.2 and 0.8, respectively, and 20 MHz aggregate spectrum resources. From the figure,
the proposed scheme is more robust to AV density changing than the other two. For both the max-
SINR and the max-utility schemes, only scenarios with small AV densities can be accommodated
due to equal spectrum allocation among AVs and unbalance between the downlink data traffic
and the available aggregate spectrum resources. Furthermore, the proposed scheme has over 50%
increase in the achieved network throughput than the max-utility scheme with p = 0.2 and 0.8
and has over 40% increase than the max-SINR scheme when p = 0.2.

Fig. 4.4 also indicates the effect of AV density on the achieved network throughputs by
the three schemes. In general, the network throughputs achieved by the three schemes overall
decrease with AV density. To increase the network throughput, the proposed scheme and the
max-SINR scheme prefer slicing high spectrum ratio to the BSs providing higher SINRs to its
associated AVs once enough spectrum is allocated to each AV to guarantee the QoS requirements
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for their applications. When the AV density is relatively lower (e.g., 0.04 AV/m), 20 MHz
spectrum resource is more than enough to satisfy each request’s QoS requirement and the
average probability for AVs with high SINR increases with the AV density, therefore resulting
in increased network throughput. However, the amount of spectrum resources needed to satisfy
AV application’s QoS requirements increases with the AV density for the three schemes, thus
less spectrum resources can be used to increase network throughput, resulting in decreasing in
network throughput.
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Figure 4.4: Average network throughput vs. AV density.

Figure 4.2 to Figure 4.4 show that the proposed scheme outperforms the two comparisons in
terms of network throughput. In addition to replacing the equality allocation with on-demand
spectrum allocating among AVs, the performance improvement is also due to the transmit power
controlling in the proposed scheme. Taking scenarios with four different AV densities, i.e.,
0.05 AV/m, 0.10 AV/m, 0.15 AV/m, and 0.20 AV/m, as examples, the optimal transmit powers
obtained by the proposed scheme are shown in Table 4.2. To avoid the impact of the initial
APs’ transmit powers on the network throughput, APs’ transmit powers are fixed on 2.5 watts
with a communication range of 260 m for both comparisons. With 0.05 AV/m AV density, the
network throughputs achieved by the proposed, the max-utility, and the max-SINR schemes are
0.86 Gbits/s, 0.52 Gbits/s, and 1.12 Gbits/s, respectively. However, both the max-utility and the
max-SINR schemes are ineffective to scenarios with 0.10 AV/m, 0.15 AV/m, and 0.20 AV/m, due
to the high inter-cell interferences. From columns 2 to 5 in Table 4.2, the transmit powers of
AP 2 and AP 3 for the proposed scheme have been adjusted, which helps to control inter-cell
interference for both eNBs and the other two APs’ transmissions. Despite the improvement in
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network throughput, the computational complexity of the proposed scheme is higher than the
other two, resulting in more iterations, as shown in columns 6 to 8 of Table 4.2. In which, N/A
means not available and is used when a scheme is not working due to the limited amount of
spectrum resources.

Table 4.2: Optimal transmit powers and number of iterations for the three schemes
(p = 0.8).

AV Density (AV/m) Optimal Transmit Powers P′(watts) Number of Iterations

P ′
1 P ′

2 P ′
3 P ′

4 Proposed Scheme max-utility Scheme max-SINR Scheme

0.05 2.500 2.4054 2.4144 2.500 12 7 N/A
0.10 2.500 2.3840 2.3748 2.500 23 N/A N/A
0.15 2.500 2.3761 2.3731 2.500 34 N/A N/A
0.20 2.500 2.3699 2.3699 2.500 51 N/A N/A
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Figure 4.5: Spectrum slicing ratios under different AV density for the proposed scheme with
p = 0.8.

In addition to adjusting the transmit powers for the APs, the spectrum slicing ratios among
BSs are also adjusted by the proposed scheme, as shown in Figure 4.5. With AV density
increasing from 0.05 AV/m to 0.20 AV/m, the amount of spectrum resources sliced to Wi-Fi
APs, i.e., the spectrum slicing ratio βw, is increased in the proposed scheme. This is because a
large βw indicates more spectrum resources can be reused among APs and therefore improving
the spectrum efficiency.
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4.6 Summary

In this chapter, we have proposed a dynamic spectrum management framework to enhance
spectrum resource utilization in the MEC-assisted ADVNET with the consideration of cellular
and Wi-Fi interworking. To maximize the aggregate network utility and provide QoS-guaranteed
downlink transmission for delay-sensitive and delay-tolerant requests, three optimization prob-
lems have been investigated to slice spectrum among BSs fairly, to allocate spectrum among
AVs associated with a BS in a QoS-guaranteed way, and to control transmit powers of Wi-Fi
APs. In order to solve these three problems, we first use linear programming relaxation and
first-order Taylor series approximation to transform them into tractable forms, and then design
an ACS algorithm to jointly solve them. Based on the simulation results, the designed ACS
algorithm has good convergence property within an acceptable number of iterations. Compared
with two existing spectrum management schemes, the proposed framework is more robust to AV
density changing and provides higher network throughput. In the next chapter, we will apply AI
technology to jointly manage the multi-dimensional resources in the MVNET.
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Chapter 5

Multi-Dimensional Resource Management
in MVNETs

In this chapter, we study the joint allocation of the spectrum, computing, and caching resources
in an MVNET. To support different vehicular applications, we consider two typical MEC
architectures and formulate multi-dimensional resource optimization problems accordingly,
which are usually with high computation complexity and overlong problem-solving time. Thus,
we exploit RL to transform the two formulated problems and solve them by leveraging the
DDPG and hierarchical learning architectures. Via off-line training, the network dynamics can
be automatically learned and appropriate resource allocation decisions can be rapidly obtained
to satisfy the QoS requirements of vehicular applications. From simulation results, the proposed
resource management schemes can achieve high delay/QoS satisfaction ratios. The complete
research results of this chapter can be seen in [54].

5.1 Background Information

To address the challenges in implementing MVNETs, many research works have been performed
recently, including the design of architecture, task offloading scheme, resource management
scheme, and so on. For example, the MEC-based hierarchical vehicular network framework,
consisted of vehicle level’s on-board computing/caching resources and server level’s resources
(resources placed at the MEC and cloud-computing servers), has been investigated in [13,
114–117]. To better manage the spectrum/computing/caching resources among and make
task offloading decisions to vehicle users, task offloading and resource management schemes
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have been proposed in [59, 115–117]. Since task offloading and spectrum/computing resource
allocation are coupled with each other, the objectives of the most existing works have been
achieved by jointly optimizing these two parts with traditional optimization methods [115, 116].
However, only one or two dimensions of resources have been considered in most of the existing
schemes, which cannot be directly adopted to support some vehicular applications where high
dimensional resources are involved, such as the computing tasks generated by the leading
vehicle for platoon/convoy control [1]. Moreover, there are also some works focusing on
multi-dimensional resources management in the scenarios with low mobility users [67, 68]. For
MVNETs, the computational complexity of multi-dimensional resource management problems
increases due to the high vehicle mobility and time-varying demand on resources, therefore
increasing the time consumption on the resource management scheme itself. Therefore, it is
infeasible to adopt the pure optimization approach-based schemes to achieve multi-dimensional
resource management in MVNETs, especially for the scenarios with delay-sensitive applications.
How to design practical and QoS-oriented multi-dimensional resource management schemes for
the MVNETs still needs effort.

As is known, AI technology, especially RL, can be exploited to solve resource management
problems quickly [118–121]. Q-learning [91, 117], deep Q-learning [90, 93, 122], actor-critic
[67, 123], and other DRL algorithms have been widely exploited for resource management in
wireless communication networks. Inspired by the existing works and considering the dynamic
vehicular network environment caused by high vehicle mobility and heterogeneous applications,
we investigate how to exploit DRL to jointly manage the spectrum, computing, and caching
resources to support delay-sensitive applications in the MVNET [13] in this chapter. Specifically,
the main contributions of this work can be summarized as follows,

1. According to the location of the MEC server, two typical multi-dimensional resource
management frameworks are proposed with placing the MEC server at a macro-cell BS
(MBS) and an edge node (EN)1, respectively.

2. Leveraging optimization theory, optimization problems are formulated to maximize the
number of offloaded tasks with satisfied QoS requirements and constrained total amounts
of available spectrum, computing, and caching resources.

3. To rapidly solve the formulated problems and obtain optimal spectrum slicing among
BSs and optimal spectrum/computing/caching allocation among vehicles, the formulated
optimization problems are transformed with DRL.

1An edge node is the node placed at the edge of the core network, including gateway nodes, edge communication
nodes, and so on.
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4. A DDPG-based algorithm is proposed to solve the transformed RL problems. As the
complexity of the transformed RL problems increases with the sizes of environment state
and action, a hierarchical DDPG (HDDPG)-based algorithm is developed by combining
the DDPG and the hierarchical learning architecture.

The rest of this chapter is organized as follows. First, the system model is presented in Section
5.2, including the spectrum management frameworks, communication model, and comput-
ing/caching resource allocation models. In Section 5.3, we formulate two optimization problems
under two typical MEC architectures to jointly manage the multi-dimensional resources and
transform them with DRL. Then, DDPG- and HDDPG-based algorithms are proposed in Section
5.4 to solve the transformed RL problems. Section 5.5 presents extensive simulation results
to illustrate the performance of the proposed algorithms. Finally, we provide our concluding
remarks in Section 5.6.

5.2 System Model

In this section, the models for spectrum management, vehicular communications, and comput-
ing/caching resource allocation under the considered MVNET are presented.

5.2.1 Spectrum Management Framework

The topology of MVNET and distribution of task offloading requests in the service area change
frequently due to high vehicle mobility and heterogeneous applications. To offload vehicles’
computing tasks to the MEC server with acceptable communication delay to satisfy the QoS
requirements of each offloaded task, dynamic spectrum management frameworks are developed
for two considered scenarios, placing the MEC server at an MeNB and at an EN, as shown in
Figure 5.1. Considering vehicles on a two-lane straight country road with one lane for each
direction, MeNBs and Wi-Fi APs are uniformly deployed on one side of the road with multiple
Wi-Fi APs under the MeNB’s coverage. In the following, we provide the detailed spectrum
management procedures executed by the controllers installed at the MeNB- and EN-mounted
MEC servers, including spectrum slicing among MeNBs and Wi-Fi APs and spectrum allocation
among vehicles associated with the same BS.

MeNB-mounted MEC server: Denote Am/Am as the set/number of Wi-Fi APs under the
service area of an MeNB-mounted MEC server, i.e., Am = {Wi, i = 1, ..., Am}. Then the
spectrum management procedures executed by the controller can be summarized into three steps:
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Figure 5.1: Dynamic spectrum management frameworks.
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(1) aggregating available spectrum resources from the MeNB and the Am Wi-Fi APs into Rmax;
(2) dynamically slicing the aggregated spectrum resources, Rmax, to the MeNB and the Wi-Fi
APs with ratios βm and βw, respectively, where βm+βw = 1; and (3) allocating a proper fraction
of spectrum to each vehicle’s uplink transmission. To improve the spectrum efficiency with
acceptable interference, spectrum reusing is enabled [124]. Vehicles associated with different
Wi-Fi APs share spectrum Rmaxβw to transmit computing tasks to the MeNB-mounted MEC
server. Note that spectrum reusing among MeNBs is not considered in this scenario as it is
beyond the scope of the control capability of the controller installed at the MeNB-mounted MEC
server.

EN-mounted MEC server: To overcome the challenges caused by the limited serving
time to each vehicle due to high vehicle mobility, the MEC server can be placed at an EN
and with multiple MeNBs wired connected to it to enlarge its service area. According to the
spatial adjacency relation among different MeNBs, the MeNBs under the service area of the
EN-mounted MEC server are divided into two groups with sets/numbersM1/M1 andM2/M2,
such that two MeNBs from the same group are not neighbored to each other. Spectrum slicing
and spectrum reusing then are considered among the Wi-Fi APs and the two groups of MeNBs.
By the controller installed at the EN-mounted MEC server, the aggregated spectrum resources,
Rmax, are sliced with ratio set {α1, α2, αw}, and then reallocated to MeNBs inM1, MeNBs in
M2, and Wi-Fi APs. In Figure 5.1(b), we take two adjacent MeNBs fromM1 andM2 as the
target MeNBs to illustrate the spectrum slicing results. Let Aj/Aj be the set/number of Wi-Fi
APs within the coverage of MeNB Sj . Then for uplink transmission under the service area,
considered spectrum reusing includes, (1) vehicles associated with MeNBs in M1 (or in M2)
reuse the spectrum resource Rmaxα1 (or Rmaxα2); (2) vehicles associated with Wi-Fi APs reuse
the spectrum resource Rmaxαw; and (3) vehicles associated with a Wi-Fi AP reuse the spectrum
resources sliced to the MeNBs that with no overlapping with this Wi-Fi AP, such as vehicles
associated with the Wi-Fi APs in Aj (where Sj ∈M1) reuse the spectrum resource Rmaxα2 that
is sliced to MeNBs inM2.

5.2.2 Communication Model

Assume the transmit powers of the MeNB and the Wi-Fi AP are fixed, full signal coverage is
provided on the considered road segment by the MeNB, and there is no overlapping between
any two Wi-Fi APs. Based on the duality theorem for the transmission in the same coherence
interval [67], we assume the channels between a vehicle and a BS for uplink and downlink
transmissions are symmetry. Let P be the transmit power of a vehicle. In the following, we
analyze the spectrum efficiency and transmission rate achieved at the BS from the associating
vehicles under the two dynamic spectrum management frameworks presented in Section 5.2.1.
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Under the service area of the MeNB-mounted MEC server: As spectrum reusing is not
considered among MeNBs in this scenario, the spectrum efficiency achieved at the MeNB from
associating vehicle k can be given by

hmk = log2(1 +
PGm

k

σ2
), (5.1)

where Gm
k (or G′ik ) is the channel gain between vehicle k and the MeNB (or Wi-Fi AP Wi),

which varies with the distance between vehicle k and the MeNB or Wi-Fi AP, and the calculating
formulas are given in Section 5.5 in detail. σ2 is the power of AWGN. Considering interference
generated by the transmission under Wi-Fi AP We ∈ Am (e 6= i), spectrum efficiency achieved
at Wi-Fi AP Wi from vehicle k can be given by

h′ik = log2(1 +
PG′ik∑

We∈Am,e6=i
PG′ek + σ2

). (5.2)

Let fmk (or f ′ik ) be the spectrum fraction allocated to vehicle k by the MeNB (or Wi-Fi AP
Wi), namely, spectrum resource Rmaxβmf

m
k (or Rmaxβwf

′i
k ) are available for vehicle k’s uplink

transmission. Then the data rate of the uplink transmission from vehicle k to the MeNB (or Wi-Fi
AP Wi) can be expressed as

Rm
k = Rmaxβmf

m
k h

m
k (orR′ik = Rmaxβwf

′i
k h
′i
k). (5.3)

Under the service area of the EN-mounted MEC server: As shown in Figure 5.1(b),
vehicles under the service area of the EN-mounted MEC server can access the MEC server
through either an MeNB in M1 or M2, or a Wi-Fi AP. According to the considered spectrum
reusing, we can obtain the spectrum efficiency achieved at the MeNB and Wi-Fi AP in this
scenario accordingly. Taking the uplink transmission from vehicle k to MeNB Se ∈ M1 as an
example, experienced interference includes that from uplink transmission to MeNB Sj ∈ M1

(j 6= e) and from uplink transmission to Wi-Fi AP Wi ∈ Aj (Sj ∈ M2). And the spectrum
efficiency achieved at MeNB Se from vehicle k then can be given by

hek = log2(1 +
PGe

k∑
Sj∈M1,j 6=e

PGj
k +

∑
Sj∈M2

∑
Wi∈Aj

PG′ik + σ2
). (5.4)

Let f ek be the spectrum fraction allocated to vehicle k by MeNB Se ∈ M1. As the spectrum
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resource sliced to MeNBs inM1 is Rmaxα1, the transmission rate from vehicle k to MeNB Se is

Re
k = Rmaxα1f

e
kh

e
k. (5.5)

Similarly, for the uplink transmission from vehicle k to MeNB Su ∈ M2, we can also get the
achievable spectrum efficiency huk and transmission rate Ru

k accordingly.

For uplink transmission from vehicle k to the associated Wi-Fi AP, the achievable spectrum
efficiency includes two parts since spectrum sharing is considered between a Wi-Fi AP and an
MeNB and between two Wi-Fi APs. Taking Wi-Fi AP Wi ∈ Aj (Sj ∈ M1) as an example.
According to spectrum reusing shown in Figure 5.1(b), both spectrum resource Rmaxα2 and
Rmaxαw are available for uplinks under Wi-Fi AP Wi. Using subscripts m and w to distinguish
the reused spectrum resources that are sliced to MeNBs and Wi-Fi APs, respectively, i.e.,Rmaxα2

and Rmaxαw. Then the corresponding spectrum efficiency achieved from these two parts can be
described as

h′im,k = log2(1 +
PG′ik∑

Wg∈Am1 ,g 6=i
PG′gk +

∑
Sj∈M2

PGj
k + σ2

) (5.6)

and

h′iw,k = log2(1 +
PG′ik∑

Wg∈{Am1∪Am2},g 6=i
PG′gk + σ2

), (5.7)

respectively, where Am1 and Am2 are the sets of Wi-Fi APs within the coverages of MeNBs in
M1 and in M2, respectively. Let f ′im,k and f ′iw,k be the spectrum fractions allocated to vehicle
k by Wi-Fi AP Wi from Rmaxα2 and from Rmaxαw, respectively. Then, the transmission rate
achieved by the uplink from vehicle k to Wi-Fi AP Wi can be given by

R′ij,k = Rmaxα2f
′i
m,kh

′i
m,k +Rmaxαwf

′i
w,kh

′i
w,k, (5.8)

where the subscript j of R′ij,k indicates that Wi-Fi AP Wi is within the coverage of MeNB Sj .

5.2.3 Computing and Caching Resource Allocation Models

For vehicles under the service area of the MEC server, we assume each vehicle randomly
generates computing tasks, such as image processing tasks for assisting in automatic driving
[125], and periodically sends them to the MEC server with their driving state information
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together. Denote {csk, cck, dk} as the computing task generated by vehicle k, where csk is the
data size of the computing task that needs to be transmitted to and cached by the MEC server,
cck denotes the required number of CPU cycles for task execution, and dk is the maximum
delay tolerated by the task. Without loss of generality, we assume a vehicle generates different
computing tasks during different time slots and the vehicle distribution under the considered road
segment changes with time.

Due to the high and stable data rate achieved by the wired connection between a BS and
the MEC server, the transmission time in a wired link is relatively small and is neglected in this
chapter. Assume each MEC server is equipped with computing capabilities of Cc

max CPU cycles
per second (i.e., Hz) and caching capabilities of Cs

max kbits. Let f ck be the fraction of computing
resources allocated to vehicle k. Then, under the service area of an MeNB-mounted MEC server,
the total time consumption on offloading and executing the computing task generated by vehicle
k can be expressed as

Tk =

{ csk
Rmk

+
cck

Ccmaxf
c
k
, if vmk = 1

csk
R′i
k

+
cck

Ccmaxf
c
k
, if v′ik = 1,

(5.9)

where binary variable vmk (or v′ik ) is the association pattern between vehicle k and the MeNB (or
Wi-Fi AP Wi), which equals to 1 if vehicle k associates to the MeNB (or Wi-Fi AP Wi), and 0
otherwise. We assume a vehicle only associates with an MeNB when it is outside of the coverage
of any Wi-Fi AP. For vehicles under the service area of an EN-mounted MEC server, let vjk (or
v′ij,k) be the association pattern between vehicle k and MeNB Sj (or Wi-Fi AP Wi in Aj). Then
we can express the total time consumption on offloading vehicle k’s task through MeNB Sj or
Wi-Fi AP Wi ∈ Aj to and executing the task at the EN-mounted MEC server as

Tk =


csk
Rjk

+
cck

Ccmaxf
c
k
, if vjk = 1

csk
R′i
j,k

+
cck

Ccmaxf
c
k
, if v′ij,k = 1.

(5.10)

Denote f sk as the fraction of caching resources allocated to vehicle k. Then, we call
vehicle k’s offloaded task is completed with satisfied QoS requirements when the following
two conditions are satisfied: (1) at least csk caching resources are allocated to vehicle k, i.e.,
f skC

s
max ≥ csk, and (2) the spectrum and computing resources allocated to vehicle k are enough

for transmitting the csk data to and executing the task at the MEC server with a total time cost less
than dk.
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5.3 Problem Formulation and Transformation

In this section, we first formulate problems to jointly manage the spectrum, computing, and
caching resources, and then transform the formulated problems based on RL.

5.3.1 Problem Formulation

In the MVNET, moving vehicles send their moving state, position, and task information, i.e.,
{csk, cck, dk}, to the MEC server. Then based on the collected information, the controller centrally
manages the spectrum, computing, and caching resources among vehicles with task offloading
requests. How to efficiently allocate the limited three dimensions of resources to support as
many task offloading requests with satisfied QoS requirements as possible is important to the
MVNETs. To achieve this goal, problems are formulated to maximize the numbers of offloaded
tasks that are completed with satisfied QoS requirements by the MeNB- and EN-mounted MEC
servers. The one for the MeNB-mounted MEC server is as follows,

max
βm,βw
f,fc,fs

∑
k∈N

H(dk − Tk)H(f skC
s
max − csk), (5.11)

s.t.



βm, βw ∈ [0, 1] (5.11a)
βm + βw = 1 (5.11b)
fmk , f

′i
k , f

c
k , f

s
k ∈ [0, 1], k ∈ N (5.11c)∑

k∈Nm

fmk = 1 (5.11d)∑
k∈N i

f ′ik = 1, ∀i (5.11e)∑
k∈N

f ck = 1 (5.11f)∑
k∈N

f sk = 1, (5.11g)

where Tk is given by equation (5.9), N is the set of vehicles under the service area of the MEC
server, and Nm (or N i) is the set of vehicles associated with the MeNB (or Wi-Fi AP Wi).
f = {fmk , f ′ik } (k ∈ N ) is the spectrum allocation matrix to vehicles by the MeNB and Wi-Fi APs
Wi. fc and fs are the matrices describing computing and caching resources allocated to vehicles
by the MEC server, respectively. To describe an offloaded task with satisfied QoS requirements,
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the Heaviside step function denoted byH(·) is involved in the objective function, which is 1 if the
variable is larger or equal to 0, and 0 otherwise. Then, for an offloaded task that is generated by
vehicle k and completed with satisfied QoS requirements, we haveH(dk−Tk)H(f skC

s
max−csk) =

1. Similarly, according to equation (5.10) and the communication model corresponding to Figure
5.1(b), a joint resource management optimization problem can be also formulated for the scenario
with EN-mounted MEC servers.

5.3.2 Problem Transformation with DRL

As the two formulated optimization problems are both non-convex due to the Heaviside step
function, traditional optimization methods are infeasible without transforming the original
objective functions. Due to the coupled relation among optimization variables βm, βw, f, fc,
and fs, the original problems have to be decomposed into subproblems and then leverage some
alternate concave search algorithms to solve them [126]. Nevertheless, overlong solving time is
resulted due to the alternating process among subproblems, which makes it impossible to satisfy
the stringent delay requirements and would be further increased with the number of vehicles
under the service area of the MEC server.

It is critical to rapidly obtain an optimal resource allocation decision for a given dynamic
environment state with delay-sensitive tasks. Thus, we model the above resource allocation
decision making problems as Markov decision processes (MDPs) [127], and then adopt DRL
methods to solve them [128]. As shown in Figure 5.2, the fundamental DRL architecture consists
of agent and environment interacting with each other [51]. The agent is implemented by the
controller installed at each MEC server and everything beyond the controller is regarded as the
environment. Through learning the best policy (called as resource allocation policy that maps the
environment state to a resource allocation decision) to maximize the total accumulated reward,
the above problems can be solved directly.

Agent (the controller)

State s(t) Policy Action a(t)

Environment

Take action a(t)

Reward r(t)

Observe state s(t)

Wi-Fi AP

eNB MEC Server

Figure 5.2: The fundamental DRL architecture in the MVNET.
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Environment state: As discussed before, each vehicle periodically sends the driving state
information and task information to the MEC server. By collecting such information, the agent
(i.e., the controller) can obtain the environment state. Denote S as the state space, N(t) = |N |
as the number of vehicles under the service area of the MEC server at time slot t, and xk(t) and
yk(t) as the x- and y- coordinates of the position of vehicle k. Then, the environment state at
time slot t, s(t) ∈ S, can be described as

s(t) ={x1(t), x2(t), . . . , xN(t)(t), y1(t), y2(t), . . . , yN(t)(t), c
s
1(t), c

s
2(t), . . . ,

csN(t)(t), c
c
1(t), c

c
2(t), . . . , c

c
N(t)(t), d1(t), d2(t), . . . , dN(t)(t)},

(5.12)

According to each vehicle’s position information, the uplink channel gain from a vehicle to a BS
can be obtained by the agent. Note that the environment state should be adjusted according to
the association patterns between vehicles and MeNBs (or Wi-Fi APs).

Action: Based on the observed environment states in S, the agent will make resource
allocation decisions according to the resource allocation policy π. Denote A as the action space.
Then the action taken by the MeNB-mounted MEC server at time slot t, including the spectrum
slicing ratio set {βm(t), βw(t)}, spectrum allocation fraction sets for the MeNB fmk (t) and for
each Wi-Fi AP f ′ik (t) (Wi ∈ Am), computing resource allocation fraction f ck(t), and caching
resource allocation fraction f sk(t), can be given by

a(t) ={βm(t), βw(t), fm1 (t), fm2 (t), . . . , fmN(t)(t), f
′i
1 (t), f ′i2 (t), . . . , f ′iN i(t)(t), f

s
1 (t),

f s2 (t), . . . , f sN(t)(t), f
c
1(t), f c2(t), . . . , f cN(t)(t)},∀Wi ∈ Am

(5.13)

and that for the EN-mounted MEC server is

a(t) ={α1(t), α2(t), αw(t), fm1 (t), fm2 (t), . . . , fmN(t)(t), f
′i
1 (t), f ′i2 (t), . . . , f ′iN i(t)(t),

f s1 (t), f s2 (t), . . . , f sN(t)(t), f
c
1(t), f c2(t), . . . , f cN(t)(t)},∀Wi ∈ {Am1 ∪ Am2},

(5.14)

where N i(t) = |N i| is the number of vehicles associated with Wi-Fi AP Wi at time slot t.

Reward: As shown in Figure 5.2, once the agent takes action a(t − 1) based on the
observed environment state s(t − 1), the environment will return an immediate reward r(t) to
the agent2. Then in the learning stage, the agent updates the resource allocation policy, π, based
on the received reward until the algorithm converged. Indicated by equation (5.11), the delay
requirement and requested caching resources should be simultaneously satisfied to guarantee the
QoS requirements of an offloaded task. Thus, to maximize the number of offloaded tasks that

2In RL, the immediate reward at time slot t, r(t), is the consequence of action token at the previous time slot,
a(t− 1).
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are completed with satisfied QoS requirements by the MEC server at time slot t, we define the
following two reward elements for offloaded task k that are corresponding to H(dk − Tk) and
H(f skC

s
max − csk) of equation (5.11),

rdk(t) = log2(
dk(t− 1)

Tk(t− 1)
+ 0.00095) (5.15)

rsk(t) = log2(
Cs

maxf
s
k(t− 1)

csk(t− 1)
+ 0.00095), (5.16)

where rdk(t) ≥ 0 when the delay requirement dk(t − 1) is satisfied by the allocated spectrum
and computing resources, and rsk(t) ≥ 0 when enough caching resources are allocated to task
k, otherwise negative rdk(t) and rsk(t) are obtained. To improve the convergence performance of
the RL algorithm and the fairness among vehicles, we use the logarithm function to define the
reward elements. And a small value 0.00095 is added when calculating the logarithm reward to
the base 2, such that the minimum value of each reward element is limited to −10 to avoid sharp
fluctuation.

5.4 DDPG Algorithm based Solution

According to whether the agent can learn the environment for decision making in advance or
not, DRL algorithms can be classified into two categories: model-based and model-free. In the
considered MVNET, the environment state dynamically changes over time due to the infinite
channel states and dynamic task offloading requests. That is, the agent cannot make a resource
allocation decision for the subsequent time slot according to the current observed environment
state. Thus, we consider a model-free DRL algorithm with an uncertain environment in this
work. Moreover, the environment state and action vectors given in the previous section indicate
that the sizes of state space S and action space A are infinite. Hence, policy-based3 and model-
free DRL algorithms, such as policy gradient, actor-critic, deterministic policy gradient (DPG),
and DDPG, should be adopted. In this work, we combine the DDPG with normalization and
hierarchical learning architecture to solve the modeled MDPs.

DDPG is an improved actor-critic algorithm, which combines the advantages of policy
gradient and deep Q-network (DQN) algorithms. As the DDPG architecture shown in Figure 5.3,

3As opposed to the value-based RL algorithm, the policy-based DRL algorithm makes an action decision
according to actions’ probabilities, and can be applied to scenarios with infinite state and action spaces.
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the agent is more complex compared with the fundamental DRL architecture shown in Figure
5.2, and is mainly consisted of two entities, actor and critic. Similar to DQN, both actor and critic
adopt target nets with soft updated parameters to achieve stable convergence. We use two DNNs
with the same structure but different parameters, i.e., an evaluation net with real-time updated
parameters and a target net with soft updated parameters, to realize the actor and critic. Let θµ

and θµ′ (or θQ and θQ′) be the parameter matrices of the evaluation net and target net in the actor
(or in the critic), respectively. Then the parameters of the target nets are soft updated with that
of the evaluation nets as follows,

θµ
′
= κaθ

µ + (1− κa)θµ
′

(5.17)

θQ
′
= κcθ

Q + (1− κc)θQ
′

(5.18)

with κa � 1 and κc � 1. Denote µ(·) and µ′(·) (or Q(·) and Q′(·)) as the network functions
of the evaluation and target nets in the actor (or in the critic). Same as the fundamental RL
algorithm, the agent first makes a resource allocation action a(t) = µ(s(t)) according to the
observed environment state s(t), and then waits for reward r(t) and next subsequent state s′

from the environment.

Actor

Evaluation
Net     

Target Net

Critic

Evaluation
Net

Target Net

Policy 
gradient

update

soft
update

soft
update

Loss
Function

update

Replay
Memory Mini-batch

Environment

Normalization

{

Agent

Figure 5.3: The architecture of the DDPG learning.

To improve the performance and stability of the evaluation and target nets and accelerate
the convergence rate of DDPG, experience replay and input normalization are considered. As
shown in Figure 5.3, each experience of the agent, denoted by {s(t), a(t), r(t), s′}, is saved in the
replay memory. Assume up toMr experiences can be saved in the replay memory. Then once the
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number of experiences saved in the replay memory reaches to Mr, the experience first saved will
be replaced by the new coming experience and the learning stage of the DDPG starts. In each
step during the learning stage, the agent randomly chooses a mini batch of Mb experiences from
the replay memory, denoted by {si, ai, ri, s′i} (i = 1, . . . ,Mb), to update θµ and θQ. By randomly
choosing experiences from the replay memory, the correlation among experiences are disrupted,
and therefore accelerating the convergence rate. Moreover, considering a great difference among
data elements of an experience would result in a large number of artificial neurons with inactive
outputs4, each experience is locally normalized before inputted to the actor and critic. Based on
the architecture shown in Figure 5.3, two algorithms, i.e., DDPG- and HDDPG-based algorithms,
are designed to solve the MDPs in the MVNET.

5.4.1 DDPG-based Algorithm

The DDPG-based algorithm is with exactly the same architecture in Figure 5.3. For the two
considered scenarios with MeNB- and EN-mounted MEC servers, the environment state vector
at time slot t is given by equation (6.8). According to the basic idea of DDPG [129], the goal of
the agent is to find an optimal resource allocation policy π with the maximum achievable long-
term average reward, E{Qπ(s, a)}, and can be approached by the learning stage step by step.
In which, Qπ(s, a) is the standard Q-value function used to evaluate the state-action value under
policy π, and can be given by

Qπ(s, a) = E

{
∞∑
τ=0

γτr(t+ τ)
∣∣π, s = s(t), a = a(t)

}
, (5.19)

where r(t) is the immediate reward received by the agent at time slot t, γ ∈ (0, 1) is a discount
factor on r(t), and τ is a time slot counting symbol. In order to achieve the objective functions
of the formulated optimization problems, we define the reward achieved by vehicle k at time slot
t, rk(t), as

rk(t) = rdk(t) + rsk(t), (5.20)

such that a positive reward can be guaranteed once vehicle k’s offloaded task is completed with
satisfied QoS requirements by the MEC server. Considering the vehicle density changes over

4An output that is on the boundary of the output range is called as an inactive output of the artificial neuron,
which depends on the input data and the enabled activation function. For example, −1 and 1 are inactive outputs
of an artificial neuron with the tanh activation function. A large number of artificial neurons with inactive outputs
would reduce the convergence rate of the learning algorithm.
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time, the immediate reward, r(t), then is defined as the average reward over vehicles within the
service area of the MeNB- or EN-mounted MEC server, i.e., r(t) = 1

N(t)

∑
k∈N rk(t).

For the DDPG-based algorithm, the evaluation net of the actor is the one that makes the
resource allocation action for each given environment state. Thus, how to update the parameter
matrix, θµ, during the learning stage is the key to find the optimal π in DDPG. As mentioned,
in each step during the learning stage, a mini batch of experiences are randomly chosen from
the replay memory and then inputted to the agent one by one. With each inputted experience,
the actor and critic interact with each other to update the parameter matrices of their evaluation
nets, θµ and θQ. Taking the i-th experience from the mini batch of experiences, {si, ai, ri, s′i},
as an example, the interaction can be summarized as, (1) the actor makes resource allocation
actions according to the two adjacent environment states, a = µ(si) and a′ = µ′(s′i), by using
the evaluation and target nets, respectively; (2) the critic evaluates a and ai with its evaluation
net5, Q(a) and Q(ai), and evaluates a′ with its target net, i.e., Q′(a′); (3) the actor updates θµ

according to the policy gradient to maximize E{Q(a)}, and the critic updates θQ according to
the loss function to minimize the temporal difference (TD)-error for each inputted experience.
Here, the TD-error describes the difference between the estimated Q-value Q(ai) and the target
Q-value ri + γQ′(a′), which can be given by

εi = Q(ai)− (ri + γQ′(a′)). (5.21)

And then, the loss function can be described as L(θQ) = E {(εi)2}.
From the critic perspective, the network functions of the evaluation and target nets are in

charge of estimating the Q-value functions. As the achievable Q-value under the optimal policy
π is Qπ(s, a), i.e., π(a|s) = arg maxaQ

π(s, a) [130], the parameter updating in the critic during
the learning stage is similar to DQN to make Q(a) approximate Qπ(s, a). As mentioned, a mini
batch of Mb experiences are adopted in each step during the learning stage. Assume that the loss
function, L(θQ), is continuously differentiable with respect to θQ. Then the critic can update θQ

with the gradient of L(θQ) as follows,

∆θQ = λc
1

Mb

∑
Mb

εi∇θQQ(ai), (5.22)

where λc is the learning rate of the critic and ∇θQQ(ai) is the derivative of L(θQ) with respect
to θQ.

The role of the actor is to make a resource allocation action for each given environment state.
5Even though si and ai are the state-action pair and we have a = µ(si), ai and a may be two different actions

due to the updating on the parameter matrix θµ. Thus, Q(a) and Q(ai) may also be different.
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Considering the goal of the agent, the actor should update its parameter matrix to make µ(si)
approximate the optimal resource allocation policy π to achieve the maximum E{Qπ(s, a)}.
Thus, the policy objective function, used to evaluate the policy under a given parameter matrix
θµ, can be defined as J(θµ) = E{Q(a)} as in [131], where a = µ(si). The actor adopts the
policy gradient method to update the parameter matrix θµ during the learning stage. Similar to
the critic, when the policy objective function J(θµ) is continuously differentiable with respect to
θµ, θµ then can be updated with the gradients of J(θµ) as follows,

∆θµ = λa
1

Mb

∑
Mb

∇aQ(a)|a=µ(si)∇θµµ(si), (5.23)

where λa is the learning rate of the actor,∇aQ(a)|a=µ(si) is the derivative of Q(a) with respect to
a with a = µ(si), and∇θµµ(si) is the derivative of µ(si) with respect to θµ. Note that equations
(5.22) and (5.23) are obtained by using the derivative method for compound function.

Combining with the parameter updating processes in the critic and actor, the DDPG-based
algorithm can be summarized in Algorithm 2. To better observe the convergence of the algorithm,
the total rewards per episode, rep, are considered in the DDPG-based algorithm. Let Ms be the
number of steps in each episode, then for the episode from time slot t0 to t0 + Ms, we have
rep =

∑Ms+t0
t=t0

r(t).

When leveraging the DDPG-based algorithm to solve the MDPs in the scenarios with MeNB-
and EN-mounted MEC servers, the state and action vectors are given by equations (6.8), (5.13),
and (5.14). The three equations indicate that the sizes of state and action vectors increase linearly
with the number of vehicles under the service area. That is more complex MDP would be
modeled due to the increase of vehicle density in or service area of an MEC server, and therefore
resulting in longer convergence time of the DDPG-based algorithm. Moreover, the total time
consumption on offloading and executing vehicle k’s task, Tk(t) (given by equations (5.9) or
(5.10)), is co-determined by the spectrum and computing resource allocation results. In an action,
the spectrum slicing ratios and the spectrum/computing allocation fractions are the elements
related to spectrum and computing resource allocation. And the impacts of these elements on the
reward achieved by vehicle k are only implied by rdk. With the MDP becoming more complex, it
will be more difficult for the DDPG-based algorithm to learn the impacts of such elements, and
therefore resulting in longer convergence time. To overcome the above issues, we combine the
architecture shown in Figure 5.3 with the hierarchical learning architecture [132], and propose
an HDDPG-based algorithm in the next subsection.
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/* Initialization phase */
Initialize the evaluation and target nets for the actor and critic with parameter matrices
θµ, θµ′ , θQ, and θQ′;

Initialize the replay memory buffer.
/* Parameter updating phase */
foreach episode do

Receive initial observation state s0 and reset rep = 0.
foreach step t do

Make an action a(t) = µ(s(t)) with the parameter matrix θµ;
Receive the subsequent state s′ and reward r(t);
if the number of experiences <Mr then

Store the experience {s(t), a(t), r(t), s′} into the replay memory;
else

Replace the first saved experience with {s(t), a(t), r(t), s′} in the replay
memory;

Randomly select a mini batch of Mb experiences from the replay memory;
Update the parameter matrices in the critic:
θQ ← θQ + ∆θQ

θQ
′
= κcθ

Q + (1− κc)θQ
′;

Update the parameter matrices in the actor:
θµ ← θµ + ∆θµ

θµ
′
= κaθ

µ + (1− κa)θµ
′ .

end
rep = rep + r(t).

end
end

Algorithm 2: The DDPG-based algorithm
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5.4.2 HDDPG-based Algorithm

According to the DDPG architecture shown in Figure 5.3 and the hierarchical learning
architecture, the main idea of the HDDPG-based algorithm is to decompose the original
MDP into sub-MDPs. By involving a variable matrix ν = {ν1, ν2, . . . , νN}, defined as
the proportion of delay allowed by each vehicle’s data transmission, the original resource
allocation decision making problem can be decomposed into two subproblems for spectrum
allocation and computing/caching resource allocation. The spectrum allocation subproblem
is in charge of spectrum slicing among BSs and spectrum allocation among vehicles while
satisfying the communication delay requirement νkdk(t) (0 ≤ νk ≤ 1) of vehicle k’s task. The
computing/caching resource allocation subproblem is to manage the MEC server’s computing
and caching resources among the received tasks. Then we solve the two subproblems with
two DDPG algorithms (spectrum DDPG algorithm and computing DDPG algorithm). For the
spectrum DDPG algorithm, the state and action vectors can be given by

ssp(t) ={x1(t), x2(t), . . . , xN(t)(t), y1(t), y2(t), . . . , yN(t)(t), c
s
1(t), c

s
2(t), . . . ,

csN(t)(t), ν1d1(t), ν2d2(t), . . . , νN(t)dN(t)(t)}
(5.24)

and

asp(t) ={α1(t), α2(t), αw(t), fm1 (t), fm2 (t), . . . , fmN(t)(t), f
′i
1 (t), f ′i2 (t), . . . ,

f ′iN i(t)(t)},∀Wi ∈ {Am1 ∪ Am2}
(5.25)

respectively. At time slot t, each vehicle’s time consumption on data transmission, denoted by
T ′ = {T ′1(t), T ′2(t), . . . , T ′N(t)(t)}, can be obtained by taking action asp(t) on the current state.
Then, for the spectrum DDPG algorithm, we define the reward achieved by vehicle k as

r′k(t) = log2(
νkdk(t− 1)

T ′k(t− 1)
+ 0.00095). (5.26)

And the immediate reward received by the agent at time slot t, rsp(t), can be given by rsp(t) =
1

N(t)

∑
k∈N r

′
k(t).

Similarly, we can define the environment state and action vectors for the computing DDPG
algorithm as follows,

scp(t) ={T ′1(t), T ′2(t), . . . , T ′N(t)(t), c
s
1(t), c

s
2(t), . . . , c

s
N(t)(t), c

c
1(t),

cc2(t), . . . , c
c
N(t)(t), d1(t), d2(t), . . . , dN(t)(t)}

(5.27)
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and

acp(t) ={f s1 (t), f s2 (t), . . . , f sN(t)(t), f
c
1(t), f c2(t), . . . , f cN(t)(t)}. (5.28)

By updating equation (5.10) with Tk(t) = T ′k(t) + cck(t)/(C
c
maxf

c
k(t)), the reward achieved by

vehicle k in the computing DDPG algorithm can be given by equation (5.20). And the immediate
reward received by the agent of the computing DDPG is rcp(t) = 1

N(t)

∑
k∈N rk(t).

As indicated by the action vector in the computing DDPG algorithm, the computing DDPG
algorithm correlates with the spectrum DDPG algorithm. Thus, we regard the action made by
the agent of the spectrum DDPG as a part of the environment of the computing DDPG algorithm.
To distinguish the two DDPG architectures in the HDDPG, a subscript is added to the notations
defined in Section 5.4.1. For example, {ssp(t), asp(t), rsp(t), s′sp} and {scp(t), acp(t), rcp(t), s′cp}
are denoted as the agent’s experiences at time slot t in the spectrum DDPG and computing
DDPG, respectively. Similar to the DDPG-based algorithm, the HDDPG-based algorithm can
be summarized in Algorithm 3, where reps =

∑Ms+t0
t=t0

rsp(t) and repc =
∑Ms+t0

t=t0
rcp(t) are the

episode rewards for the spectrum DDPG and computing DDPG.

5.5 Simulation Results and Analysis

To demonstrate the performance of the proposed DRL-based resource management schemes
for the vehicular scenarios with MeNB- and EN-mounted MEC servers, simulation results
are presented in this section. The simulation procedures of an RL-based algorithm can be
summarized into two stages, i.e., learning stage to learn the model and inferring stage to test
the learned model [133]. In this section, we first learn the DDPG- and HDDPG-based models
for the two considered scenarios. Then, the learned models are tested under the scenarios with
different amounts of available resources to measure the performance of the proposed resource
management schemes.

We consider a two-lane straight country road with one for each direction, where the traffic
flow on the road is generated by PTV Vissim [134]. For the scenario with the MeNB-mounted
MEC servers, one MeNB and two Wi-Fi APs (AP 1 and AP 2) are deployed on one side of
the road to support vehicular applications. And for the scenario with the EN-mounted MEC
servers, we assume the MEC server is placed at an EN, where two adjacent MeNBs (Sj ∈ M1

and Sj+1 ∈ M2) and four Wi-Fi APs (AP 1 and AP 2 in Aj , and AP 3 and AP 4 in Aj+1) are
wired connected to the EN. In the simulation, we assume a vehicle chooses to associate with a
Wi-Fi AP when it is under the coverage of that Wi-Fi AP, otherwise associate with the MeNB.
The transmit power of each vehicle is set as 1 watt (i.e., 30 dBm), and the uplink channel gain
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/* Initialization phase */
Initialize the evaluation and target nets for the actor and critic in the spectrum DDPG
with parameter matrices θµsp, θ

µ′
sp, θ

Q
sp, and θQ′

sp ;
Initialize the evaluation and target nets for the actor and critic in the computing DDPG
with parameter matrices θµcp, θ

µ′
cp, θ

Q
cp, and θQ′

cp ;
Initialize the replay memory buffers for both spectrum DDPG and computing DDPG.
/* Parameter updating phase */
foreach episode do

Receive initial observation state s0sp, and reset reps = 0 and repc = 0.
foreach step t do

Make an action asp(t) = µsp(ssp(t)) with the parameter matrix θµsp, receive the
subsequent state s′sp and reward rsp(t), and obtain
T ′ = {T ′1(t), T ′2(t), . . . , T ′N(t)(t)};

Make an action acp(t) = µcp(scp(t)) with the parameter matrix θµcp, and receive
the subsequent state s′cp and reward rcp(t);

if the number of experiences <Mr then
Store {ssp(t), asp(t), rsp(t), s′sp} and {scp(t), acp(t), rcp(t), s′cp} into the
replay memory buffers of the spectrum DDPG and computing DDPG,
respectively;

else
Replace the first saved experiences with {ssp(t), asp(t), rsp(t), s′sp} and
{scp(t), acp(t), rcp(t), s′cp} in the two replay memory buffers;

Randomly select two mini batches of Mb experiences from the replay
memory buffers of the spectrum DDPG and computing DDPG;

Update the parameter matrices in the critic of the spectrum DDPG:
θQsp ← θQsp + ∆θQsp
θQ

′
sp = κcθ

Q
sp + (1− κc)θQ

′
sp ;

Update the parameter matrices in the actor of the spectrum DDPG:
θµsp ← θµsp + ∆θµsp
θµ

′
sp = κaθ

µ
sp + (1− κa)θµ

′
sp;

Update the parameter matrices in the critic of the computing DDPG:
θQcp ← θQcp + ∆θQcp
θQ

′
cp = κcθ

Q
cp + (1− κc)θQ

′
cp ;

Update the parameter matrices in the actor of the computing DDPG:
θµcp ← θµcp + ∆θµcp
θµ

′
cp = κaθ

µ
cp + (1− κa)θµ

′
cp.

end
reps = reps + rsp(t);
repc = repc + rcp(t).

end
end

Algorithm 3: HDDPG-based algorithm
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Table 5.1: Parameters for the learning stage.

Parameter Value

Data size of a computing task [0.8, 1.2] kbits
Number of CPU cycles required to execute a computing task [80, 120] Mcycles/s
Amount of spectrum resources at an MeNB-/EN-mounted MEC server 10/20 MHz
Computational capability at an MeNB-/EN-mounted MEC server 100/200 GHz
Capacity of caching at an MeNB-/EN-mounted MEC server 60/120 kbits
Communication range of an MeNB/Wi-Fi AP 600/150 m
Straight-line distance between the MeNB (or Wi-Fi AP) and the road 225 m (or 3 m)
Service range of an EN-mounted MEC server 1100 m
Background noise power −104 dBm
Discount factor on immediate reward 0.92
κa/κc 0.005
Replay memory size 10000
Size of a mini batch of experiences 32
Learning rate of the actor/critic 0.00005/0.0005

between a vehicle and an MeNB (or a Wi-Fi AP) is described as Lm(d′) = −30 − 35log10(d
′)

(or Lw(d′) = −40 − 35log10(d
′)) [126], where d′ is the distance between the vehicle user and

the MeNB (or the Wi-Fi AP). Taking a type of delay-sensitive computing task (e.g., the analysis
of the surveillance content of special road segments for approaching vehicles [46, 135]) as an
example, the delay bound for the offloaded computing task is set as 50 ms, i.e., dk = 50 ms
for k ∈ N . Other parameters for the learning stage are listed in Table 5.1. Unless specified
otherwise, parameters for the inferring stage are same to that of the learning stage.

Figures 5.4 and 5.5 demonstrate the convergence performance of the DDPG- and HDDPG-
based algorithms in the scenarios with MeNB- and EN-mounted MEC servers, respectively. As
we can see from the six subfigures, among the 1, 200 episodes during the learning stage, the total
rewards per episode fluctuate sharply and are relatively small in the first few hundreds episodes
and then tend to a relatively stable and high value. As mentioned in Algorithms 2 and 3, all
parameters of the actors and critics of the DDPG- and HDDPG-based algorithms are initialized
by the TensorFlow. Once 10, 000 of experiences are saved in the replay memory buffers, the
learning stages of the DDPG- or HDDPG-based algorithms start to update the parameters of
the actor and critic. Thus, the total rewards per episode fluctuate sharply in the beginning of
the learning stage and then increase with the parameters gradually being optimized. Moreover,
to direct the agent to satisfy more tasks’ QoS requirements, we clip rdk(t) to be [−8, 0.2] and
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rds(t) to be [−7, 0.2]. And the average number of steps in each episode is 1100. Hence, the
maximum total rewards per episode achieved by the DDPG-based algorithm and the computing
DDPG of the HDDPG-based algorithm is 440, as shown in Figures 5.4(a), 5.4(c), 5.5(a), and
5.5(c). Similarly, the maximum total rewards per episode achieved by the spectrum DDPG of the
HDDPG-based algorithm is 220, as shown in Figures 5.4(b) and 5.5(b) is 220.

(a) DDPG-based algorithm (b) Spectrum DDPG in HDDPG-based algo-
rithm

(c) Computing DDPG in HDDPG-based algo-
rithm

Figure 5.4: The total rewards of each episode in scenario with an MeNB-mounted MEC server.

As the outputs of the spectrum DDPG are parts of the inputs of the computing DDPG in
the HDDPG-based algorithm, we regard the convergence performance of the computing DDPG
as that of the HDDPG-based algorithm. From Figures 5.4(a) and 5.4(c) (or Figures 5.5(a) and
5.5(c)), the HDDPG-based algorithm converges within a smaller number of episodes than the
DDPG-based algorithm in the scenario with an MeNB-mounted MEC server (or with an EN-
mounted MEC server). For example, in the scenario with an MeNB-mounted MEC server, the
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DDPG-based algorithm starts to converge after around 400 episodes and that of the HDDPG-
based algorithm is around 300 episodes. That is because the impacts of the spectrum slicing
and spectrum allocation on the final rewards are learned by the spectrum DDPG in the HDDPG-
based algorithm. However, since two DDPG models need to be trained, the training time of
1200 episodes for the HDDPG-based algorithm is physically longer than that for the DDPG-
based algorithm. Moreover, Figures 5.4 and 5.5 indicate that more episodes are required for the
proposed algorithms to converge in the scenario with an EN-mounted MEC server comparing to
the scenario with an MeNB-mounted MEC server. This is due to the more complex MDP caused
by the increased numbers of vehicles and BSs under the EN-mounted MEC server.

(a) DDPG-based algorithm (b) Spectrum DDPG in HDDPG-based algo-
rithm

(c) Computing DDPG in HDDPG-based algo-
rithm

Figure 5.5: The total rewards of each episode in scenario with an EN-mounted MEC server.

From the MEC server perspective, an efficient resource management scheme should be
able to serve as many users as possible with the given available resources. And for a vehicle
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user, satisfied delay or QoS requirements are critical. Thus, to measure the performance of
the two proposed DRL-based resource management schemes, we define delay/QoS satisfaction
ratio as the number of vehicles with satisfied delay/QoS requirements over the total number of
vehicles within the service area and use them as the evaluation criterion in the inferring stage.
Two comparisons are considered, the DPG-based scheme and the random resource management
scheme. Considering the relatively large number of vehicles under the service area and the large
size of a resource allocation action, it is unbefitting to discretize each action. Thus, we choose the
DPG-based scheme, which is also applicable to MDPs with continuous state and action spaces
as one of our comparisons. The other comparison is the random resource management scheme6,
which can obtain resource allocation decisions rapidly, same as our proposed schemes.

Figure 5.6 demonstrates the average delay/QoS satisfaction ratios over 5000 adjacent
environment states in the scenario with the MeNB-mounted MEC server, with respect to different
amounts of aggregated spectrum resources, computation capabilities, and capacity of caching,
respectively. The three subfigures show that, except the cases with short supply available
resources, higher average delay satisfaction ratios and doubled average QoS satisfaction ratios
are achieved by the proposed DDPG- and HDDPG-based schemes compared with the DPG-
based scheme7 and the random resource management scheme. With the increase of the amount
of the available spectrum/computing/caching resources, the average satisfaction ratios achieved
by the proposed schemes and the two comparisons increase due to the increase of the amount
of resources allocated to vehicle users. As mentioned before, the delay requirement is a part
of its QoS requirement for an offloaded task, i.e., for a task with satisfied delay requirement,
its QoS requirement would not be satisfied if no enough caching resources allocated to it.
And the delay satisfaction of an offloaded task is co-determined by the amounts of spectrum
and computing resources allocated to it. Thus, with the increase of the amount of spectrum
resources (or computing/caching), the delay/QoS satisfaction ratios achieved by the proposed
schemes tend to be saturated due to the fixed amounts of the computing and caching resources
(or the spectrum and caching/computing resources). Moreover, the gaps between the delay
satisfaction ratios and QoS satisfaction ratios of the proposed schemes are much smaller than
that of the two comparisons. That is because the proposed schemes have overall managed the
spectrum/computing/caching resources to satisfy the QoS requirements for as many vehicles’
tasks as possible.

6With the random resource management scheme, the MEC server randomly allocates the spectrum, computing,
and caching resources among vehicles under its service area.

7The DPG-based algorithm is trained with the same parameter setting as the two proposed schemes. Without
deep learning, the convergence performance of the DPG-based algorithm cannot be guaranteed, especially in a
scenario with large sizes of environment state and action vectors. Thus, low delay/QoS satisfaction ratios are
obtained by the DPG-based scheme.
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(a) Versus the aggregate spectrum
resources

(b) Versus the computation capabili-
ties

(c) Versus the capacity of caching

Figure 5.6: Average delay/QoS satisfaction ratio over the vehicles under the service area of the
MeNB-mounted MEC server.

Figure 5.7 shows the average delay/QoS satisfaction ratios in the scenario with the EN-
mounted MEC server. Similar to the scenario with the MeNB-mounted MEC server, the
subfigures show that higher delay/QoS satisfaction ratios can be obtained by the proposed
resource management schemes compared with the DPG-based scheme and random resource
management scheme. Except for the scenarios with short supply available resources, such
as the scenarios with 2 MHz or less spectrum resources available for the EN-mounted MEC
server with 100 or more vehicles under its service area, over 90% of tasks are with satisfied
QoS requirements under different environment states with the proposed schemes. Also, from
Figure 5.7 and the zoom in figures of Figure 5.6, the HDDPG-based scheme outperforms the
DDPG-based scheme in terms of the delay/QoS satisfaction ratios in addition to improved
convergence. That is because two DDPG models are adopted to optimally manage the spectrum
and computing/caching resources in the HDDPG-based scheme. Moreover, as the HDDPG-
based algorithm is more applicable to the scenario with complex MDPs, compared to the scenario
with the MeNB-mounted MEC server, more performance enhancements are achieved by the
HDDPG-based algorithm than the DDPG-based algorithm in the scenario with the EN-mounted
MEC server.

5.6 Summary

In this chapter, we have investigated the joint spectrum, computing, and caching resource
management problem to accommodate delay-sensitive applications in the MVNET. Particularly,
we have considered two typical MEC architectures, i.e., with MeNB- and EN-mounted MEC
servers, under which two resource optimization problems have been formulated to maximize the
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(a) Versus the aggregate spectrum
resources

(b) Versus the computation capabili-
ties

(c) Versus the capacity of caching

Figure 5.7: Average delay/QoS satisfaction ratio over vehicles under the service area of the
EN-mounted MEC server.

number of offloaded tasks that are completed with satisfied QoS requirements. As the formulated
problems are computationally intractable in real time, we have exploited the DRL to transform
and solve them and devised the DDPG- and HDDPG-based algorithms. Extensive simulation
results have shown that our proposed DDPG- and HDDPG-based resource management schemes
can converge within acceptable training episodes and outperform the DPG-based scheme and
random resource management scheme in terms of delay/QoS satisfaction ratios. In the next
chapter, we will consider UAV-mounted MEC servers to address the issues caused by uneven
resource demanding in MVNETs.
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Chapter 6

Multi-Dimensional Resource Management
in UAV-Assisted MVNETs

In this chapter, we investigate multi-dimensional resource management for UAV-assisted
MVNETs. To efficiently provide on-demand resource access, the MeNB and UAV, both
mounted with MEC servers, cooperatively make association decisions and allocate proper
amounts of resources to vehicles. Since there is no central controller, we formulate the resource
allocation at the MEC servers as a distributive optimization problem to maximize the number
of offloaded tasks while satisfying their heterogeneous QoS requirements, and then solve it
with an MADDPG-based method. Through centrally training the MADDPG model offline,
the MEC servers, acting as learning agents, then can rapidly make vehicle association and
resource allocation decisions during the online execution stage. From our simulation results,
the MADDPG-based method can converge within 200 training episodes, comparable to the
single-agent DDPG (SADDPG)-based one. Moreover, the proposed MADDPG-based resource
management scheme can achieve higher delay/QoS satisfaction ratios than the SADDPG-based
and random schemes. The complete research results of this chapter can be seen in [69].

6.1 Background Information

To implement MEC- and/or UAV-assisted vehicular networks, many efforts have been made
recently. Some of them have been focused on the deployment of MEC-mounted UAVs. For
example, [136] has studied how to deploy and schedule the MEC-mounted UAVs to support
vehicular applications. Resource management, as another research emphasis, has also attracted

87



lots of attention from the existing works, where most of them adopt the optimization and RL
methods. In [58], the transmit powers of vehicles and the trajectories of UAVs have been
jointly optimized to maximize the resource efficiency on MEC-mounted UAVs. In [137], a
DRL based adaptive computation offloading method has been proposed to balance the tradeoff
between energy consumption and data transmission delay in an MEC-assisted vehicular network.
In [138], a framework using MEC-mounted UAVs has been proposed to support mobile users in
the extended 5G network, and an RL method is adopted to manage the resources carried by the
UAV. To jointly manage the spectrum, computing, and caching resources available to an MEC-
mounted BS, DDPG- and HDDPG-based schemes have been proposed in chapter 5. However,
only vehicular networks supported either by MEC-mounted BSs or UAVs have been studied by
most of the existing works. How to perform efficient resource allocation to support applications
with various resource demand and heterogeneous QoS requirements in vehicular networks with
MEC-mounted BSs and UAVs still needs effort.

In this chapter, we investigate multi-dimensional resource management in the UAV-assisted
MVNETs, where MEC servers are mounted at an MeNB and in some UAVs to provide resource
access to vehicles with limited on-board resources. Inspired by existing works [137–140],
we adopt RL methods to achieve real-time resource management in the considered scenario.
Considering the sensitive delay requirements of some vehicular applications (e.g., autonomous
driving) and the wireless transmission time between a UAV and a controller, installing a central
controller either at the MeNB or an edge node to enable a centralized resource management
scheme is infeasible sometimes. Thus, we develop a distributed cooperative scheme based on
a multi-agent RL method to manage the multi-dimensional resources available to the MEC-
mounted MeNB and UAVs. The main contributions of this work are summarized as follows,

1. To support as many offloaded tasks as possible while satisfying their QoS requirements,
we formulate an individual optimization problem to each MEC server to jointly manage
the MEC-mounted MeNB’s and UAVs’ spectrum, computing, and caching resources;

2. Because of the vehicle association pattern variables, the formulated problems are coupled
with each other and non-convex. To rapidly solve these problems to satisfy the
sensitive delay requirements of the offloaded tasks, we transform each formulated problem
according to the main idea of RL;

3. We convert the transformed problems as a multi-agent problem by letting each MEC server
act as an agent and develop an MADDPG algorithm to solve it. Through training the
MADDPG model offline, the vehicle association and resource allocation decisions can be
made in real time by each MEC server.
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The rest of this chapter is organized as follows. In Section 6.2, the UAV-assisted MVNET
architecture and the multi-dimensional resource management model are presented, followed
with the formulated optimization problems. We develop an MADDPG algorithm to solve the
formulated problems in Section 6.3 and provide simulation results in Section 6.4 to validate the
performance of the MADDPG algorithm. This work is concluded in Section 6.5.

6.2 System Model and Problem Formulation

In this section, we first introduce a UAV-assisted MVNET architecture and a resource man-
agement model, and then formulate optimization problems to manage the multi-dimensional
resources available to the MEC servers.

6.2.1 UAV-Assisted MVNET

Consider a UAV-assisted MVNET with MEC servers mounted at an MeNB and in multiple UAVs
to support heterogeneous delay-sensitive vehicular applications, as illustrated in Figure 6.1. Each
UAV flies at a constant speed under the coverage area of the MeNB and cooperatively provides
resource access to vehicles. Vehicles drive either in cooperative states, such as in convoy and
platoon forms, or in non-cooperative states [40]. Each vehicle periodically generates computing
tasks with different QoS requirements and computing/caching resource demands. If demands to
offload its task to the MEC server, the vehicle first sends a resource access request to the MeNB
and/or a UAV covering it. After receiving the access permission and resource allocation results
from the corresponding MEC servers, the computing task will be offloaded to the associated
MEC server over the allocated spectrum resources. As task division is not considered here, we
assume a vehicle under the overlapping area between the MEC-mounted MeNB and UAV can
only associate with and offload its task to one of the MEC servers.

6.2.2 Resource Management Model

Due to the diversified applications and high vehicle mobility, the vehicular network topology
and the distribution of resource access requests change over time frequently, thereby resulting
in time-varying resource demand from vehicles under the service area of the MeNB. To allocate
proper amounts of spectrum, computing, and caching resources to each resource access request to
satisfy the offloaded tasks’ QoS requirements, a multi-dimensional resource management model
is developed in this section.
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Cooperative driving vehicle

Non-cooperative driving vehicle

Wireless link

Trajectory of UAV

MeNB

MEC server UAV

Figure 6.1: An illustration of the UAV-assisted MVNET.

Consider a two-lane and two-way country road segment, shown in Figure 6.2, an MEC-
mounted MeNB is placed on one side of the road to provide full signal coverage to vehicles, and
U MEC-mounted UAVs, denoted as U , are flying above the road and under the coverage of the
MeNB. Each UAV covers parts of the considered road segment and flies at a constant speed with
no overlapping with other UAVs. Note that, the UAVs’ flight trajectories are fixed in this work.
The reason is, the range that each UAV is allowed to fly to is relatively small and the resource
demanding from vehicles remains relatively stable within a small range, the impacts of trajectory
design on the resource utilization improvement are small here.

Let N (t) = {1, 2, ·, i, ·, N(t)}1 be the set of vehicles within the coverage of the MeNB
at time slot t, where N(t) = |N (t)|. The computing task generated by vehicle i at time
slot t is described as {csi (t), cci(t), cdi (t)}, where csi (t), cci(t), and cdi (t) are the data size of, the
number of CPU cycles required to execute, and the maximum delay tolerated by vehicle i’s
task, respectively. Once a computing task is generated, vehicle i sends a resource access request,
containing the detailed information about this task, i.e., {csi (t), cci(t), cdi (t)}, and the driving state,
e.g., moving direction and current position, to the MEC servers on demand. According to the
collected information, each MEC server then makes vehicle association and resource allocation

1In this chapter, we add (t) at the end of some notations to distinguish the fixed parameters from the time-varying
parameters. Yet the vehicular network is assumed to be static during each time slot [58].
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MEC Server

UAV
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...

Figure 6.2: A simplified UAV-assisted MVNET scenario for multi-dimensional resource
management.

decisions and returns them to vehicles, where each decision contains the vehicle-MeNB or
vehicle-UAV association patterns and the fractions of the spectrum, computing, and caching
resources allocated to vehicles.

Spectrum resource management: Denote the resource matrix for the MEC-mounted MeNB
by {Sm, Cco

m , C
ca
m }, where Sm, Cco

m , and Cca
m are the amounts of available spectrum, computing,

and caching resources, respectively. Likewise, for MEC-mounted UAV j ∈ U , the resource
matrix is given by {Su, Cco

u , C
ca
u }. To offload the computing tasks from each vehicle to its

associated MEC server with an acceptable transmission delay, a proper amount of spectrum
should be allocated to each vehicle. Let N ′(t)/N ′(t) be the set/number of vehicles under
the coverage of the MeNB while outside of the U UAVs at time slot t, and Nj(t)/Nj(t)
(j ∈ U) is the set/number of vehicles under the coverage of UAV j. Namely, we have
N (t) = N ′(t) ∪ {Nj(t) : j ∈ U}. For vehicle i ∈ Nj(t), let binary variables bi,m(t) and bi,j(t)
be the vehicle-MeNB and vehicle-UAV association patterns, where bi,m(t) = 1 (or bi,j(t) = 1)
if vehicle i associates with the MeNB (or UAV j) at time slot t, and bi,m(t) = 0 (or bi,j(t) = 0)
otherwise. As the task division technology is not adopted, we have bi,m(t) + bi,j(t) = 1 for
vehicles inNj(t). Note that for vehicle i ∈ N ′(t), bi,j(t) is null and we set bi,m(t) = 1 since it is
outside of the coverage of any UAV.

1) Vehicles associated with the MeNB: Let Nm(t) denote the set of vehicles associated
with the MeNB, i.e., vehicles with bi,m(t) = 1. Then, all uplink transmissions for offloading
tasks from vehicles in Nm(t) to the MeNB share spectrum resource Sm. Considering the

91



duality transmission over the same coherence interval, the channels for uplink and downlink
transmissions between a vehicle and the MeNB/UAV are assumed to be symmetry [67]. Let
Gi,m(t) denote the average channel gain between vehicle i ∈ Nm(t) and the MeNB at time slot
t, which varies dynamically over the vehicle-MeNB distance. Then, we can express the achieved
spectrum efficiency at the MeNB from vehicle i as

ei,m(t) = log2

(
1 +

PGi,m(t)

σ2

)
, (6.1)

where P is the vehicle’s transmit power and σ2 is the power of the white noise. Denote fi,m(t)
as the fraction of spectrum allocated to vehicle i by the MeNB at time slot t. Namely, vehicle
i can occupy spectrum resource Smfi,m(t) to offload its task to the MeNB at time slot t. The
corresponding uplink transmission rate then can be given by

Ri,m(t) = Smfi,m(t)ei,m(t). (6.2)

2) Vehicles associated with UAVs: Considering the limitation of spectrum resources, we adopt
spectrum reusing among UAVs with acceptable interference by pre-designing the fly trajectory
of each UAV. Specifically, the uplink transmissions from vehicles to the U UAVs reuse spectrum
resource Su. As each UAV flies at a constant speed above the road, we assume there always
exists a line-of-sight connection between a vehicle and a UAV. And the average channel gain
between vehicle i and UAV j ∈ U at time slot t, Gi,j(t), is defined similar to [141]. In addition
to the white noise, UAV j also experiences the interference from the uplink transmission to UAV
v ∈ U\{j}. Thus, the corresponding spectrum efficiency achieved at UAV j can be given by

ei,j(t) = log2

(
1 +

PGi,j(t)∑
v∈U\{j} PGi,v(t) + σ2

)
. (6.3)

Let fi,j(t) be the fraction of spectrum allocated to vehicle i by UAV j at time slot t. Then we can
express the uplink transmission rate from vehicle i to UAV j as

Ri,j(t) = Sufi,j(t)ei,j(t). (6.4)

Computing/Caching resource management: As mentioned above, in addition to the
vehicle-MeNB or vehicle-UAV association patterns and the spectrum allocation results, each
MEC server also needs to allocate proper amounts of computing and caching resources to
vehicles. As the transmit powers of the MeNB and UAVs are much higher than that of a vehicle
and the data size of each task’s process result is relatively small [142], the time consumption on
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downlinking the task process result to each vehicle is neglected here [58]. Let f coi,m(t) (or f coi,j(t))
be the fraction of computing resources allocated to vehicle i’s task from the MeNB (or from
UAV j ∈ U) at time slot t. Then, the completion time of vehicle i’s computing task, i.e., the
time duration from the task is generated until vehicle i receives the task process result from its
associated MEC server, can be expressed as

Ti(t) =


csi (t)

Ri,m(t)
+

cci (t)

Ccom f
co
i,m(t)

, if bi,m(t) = 1
csi (t)

Ri,j(t)
+

cci (t)

Ccou f
co
i,j(t)

, if bi,j(t) = 1.
(6.5)

A proper amount of caching resource has to be pre-allocated to each resource access request,
such that all data related to this task can be cached for task processing. For a resource access
request sent by vehicle i, let f cai,m(t) (or f cai,j(t)) be the fraction of caching resources allocated by
the MeNB (or by UAV j). Then, a task offloaded from vehicle i to an MEC server is regarded
to be completed with satisfied QoS requirements, if i) at least csi (t) caching resource is allocated
to cache vehicle i’s task, i.e., f cai,m(t)Cca

m ≥ csi (t) or f cai,j(t)C
ca
u ≥ csi (t), and ii) the task’s delay

requirement is satisfied, namely, the task completion time is less than its maximum tolerance
delay, Ti(t) ≤ cdi (t).

6.2.3 Problem Formulation

As resources available to both MeNB and UAV are finite, it is critical to efficiently allocate them.
To avoid time consumption on exchanging information between a central controller and the MEC
servers, a distributed resource management scheme is considered here. We formulate individual
optimization problems to the MEC-mounted MeNB and UAVs to distributively manage their
available spectrum, computing, and caching resources.

According to the resource management model presented in the previous subsection, the
optimization problems formulated for the MeNB and UAVs can be described as

max
bm(t),fm(t),
fcom(t),fcam (t)

∑
i∈N (t)

bi,m(t)H[cdi (t)− Ti(t)]H[f cai,m(t)Cca
m − csi (t)]
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s.t.



(6.1), (6.2), (6.5) (6.6a)
bi,m(t) ∈ {0, 1} i ∈ N (t) (6.6b)
bi,m(t) + bi,j(t) = 1 ∀i ∈ ∪j∈UNj(t) (6.6c)
fi,m(t), f coi,m(t), f cai,m(t) ∈ [0, 1], i ∈ N (t) (6.6d)∑
i∈N (t)

bi,m(t)fi,m(t) = 1 (6.6e)

∑
i∈N (t)

bi,m(t)f coi,m(t) = 1 (6.6f)

∑
i∈N (t)

bi,m(t)f cai,m(t) = 1 (6.6g)

and

max
bj(t),fj(t),
fcoj (t),fcaj (t)

∑
i∈Nj(t)

bi,j(t)H[cdi (t)− Ti(t)]H[f cai,j(t)C
ca
u − csi (t)]

s.t.



(6.3), (6.4), (6.5) (6.7a)
bi,j(t) ∈ {0, 1} i ∈ Nj(t) (6.7b)
bi,j(t) + bi,m(t) = 1 ∀i ∈ Nj(t) (6.7c)
fi,j(t), f

co
i,j(t), f

ca
i,j(t) ∈ [0, 1], i ∈ Nj(t) (6.7d)∑

i∈Nj(t)

bi,j(t)fi,j(t) = 1 (6.7e)

∑
i∈Nj(t)

bi,j(t)f
co
i,j(t) = 1 (6.7f)

∑
i∈Nj(t)

bi,j(t)f
ca
i,j(t) = 1, (6.7g)

respectively, where bm(t) = {bi,m(t) : i ∈ N (t)} and bj(t) = {bi,j(t) : i ∈ Nj(t)} are the
vehicle association pattern matrices between vehicle i ∈ N (t) and the MeNB and between
vehicle i ∈ Nj(t) and UAV j ∈ U , respectively. As vehicles send their resource access
requests to both MeNB and UAV, yet their computing tasks can be only offloaded to one of them,
constraint bi,j(t) + bi,m(t) = 1 is considered in both formulated problems. fm(t), fcom(t), and
fcam(t) (or fj(t), fcoj (t), and fcaj (t)) are the spectrum, computing, and caching resource allocation
matrices among vehicles associated with the MeNB (or with UAV j), respectively. The objective
function of both formulated problems is to maximize the number of offloaded tasks completed
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by the MEC server with satisfied QoS requirements, where the Heaviside step function, H(·),
indicates whether the offloaded task’s QoS requirements are satisfied.

6.3 MADDPG-based Resource Management Scheme

It is difficult to rapidly solve the above optimization problems using the traditional methods due
to the following reasons,

1. The two problems are mixed-integer programming problems.

2. For each problem, spectrum resource management is coupled with computing resource
management.

3. As indicated by constraints (6.6c) and (6.7c), the problem formulated for the MeNB is
coupled with those for the UAVs in U .

4. Considering the high network dynamic caused by the mobility of vehicles and UAVs
and the sensitive delay requirements of different vehicular applications, each formulated
problem has to be solved rapidly, and which is impossible to be achieved by the traditional
optimization methods.

Thus, an RL approach is leveraged here. Considering the coupled relation among the formulated
problems and there is no central controller, a multi-agent RL algorithm is designed, where
each MEC server acts as an agent to learn the resource management scheme and solve the
corresponding formulated problem. Specifically, we first re-model the resource management
problems targeting the MeNB and the U UAVs as a multi-agent extension of MDPs [127, 140,
143], and then design an MADDPG algorithm to solve the MDPs.

6.3.1 Problem Transformation

We transform the formulated problems into a partially observable Markov game for U + 1
agents, including the MeNB agent and U UAV agents. Define the Markov game for U + 1
agents as a set of states S, a set of observations O = {Om,O1, . . . ,Oj, . . . ,OU}, and a set of
actions A = {Am,A1, . . . ,Aj, . . . ,AU}. The state set S describes the possible configurations
of the road segment under the coverage of the MEC-mounted MeNB, including the mobility
characteristics of vehicles and UAVs, and the time-varying tasks generated by vehicles. Om and
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Oj are observation spaces for the MeNB agent and UAV j agent (j ∈ U), respectively, and the
observation of each agent at time slot t is a part of the current state, s(t) ∈ S. Am andAj (j ∈ U)
are action spaces for the MeNB and UAV j. For each given state s ∈ S, the MeNB agent and
UAV j agent use the policies, πm: S 7→ Am and πj: S 7→ Aj , to choose an action from their
action spaces according to their observations corresponding to s, respectively.

Environment state: Let xi(t) and yi(t) be the x- and y- coordinates of vehicle i ∈ N (t),
and x′j(t), y′j(t), and z′j(t) denote the x-, y-, and z- coordinates of UAV j at time slot t. Then,
according to the resource management problems formulated for the UAV-assisted MVNET, the
environment state at time slot t, s(t) ∈ S, can be given by

s(t) ={x1(t), x2(t), . . . , xN(t)(t), y1(t), y2(t), . . . , yN(t)(t), c
s
1(t), c

s
2(t), . . . , c

s
N(t)(t),

cc1(t), c
c
2(t), . . . , c

c
N(t)(t), c

d
1(t), c

d
2(t), . . . , c

d
N(t)(t), x

′
1(t), x

′
2(t), . . . , x

′
U(t), y′1(t),

y′2(t), . . . , y
′
U(t), z′1(t), z

′
2(t), . . . , z

′
U(t)}.

(6.8)

Observation: As the considered road segment is under the coverage of the MeNB and no
information exchanging among different MEC servers, the observations of the MeNB and UAV
j at time slot t, i.e., om(t) ∈ Om and oj(t) ∈ Oj , can be described as

om(t) ={x1(t), x2(t), . . . , xN(t)(t), y1(t), y2(t), . . . , yN(t)(t), c
s
1(t), c

s
2(t), . . . ,

csN(t)(t), c
c
1(t), c

c
2(t), . . . , c

c
N(t)(t), c

d
1(t), c

d
2(t), . . . , c

d
N(t)(t)}

(6.9)

and

oj(t) ={x1,j(t), x2,j(t), . . . , xNj(t),j(t), y1,j(t), y2,j(t), . . . , yNj(t),j(t), cs1,j(t),
cs2,j(t), . . . , c

s
Nj(t),j

(t), cc1,j(t), c
c
2,j(t), . . . , c

c
Nj(t),j

(t), cd1,j(t), c
d
2,j(t), . . . ,

cdNj(t),j(t), x
′
j(t), y

′
j(t), z

′
j(t)}, j ∈ U ,

(6.10)

respectively. For vehicle i ∈ Nj(t) under the coverage of UAV j, xi,j(t) and yi,j(t) denote
the x- and y- coordinates, and csi,j(t), cci,j(t), and cdi,j(t) are the detailed information about the
offloaded computing tasks. Note that, for vehicle i under the overlapping area between the MeNB
and UAV j, we have {xi,j(t), yi,j(t), zi,j(t)} = {xi(t), yi(t), zi(t)} and {csi,j(t), cci,j(t), cdi,j(t)} =
{csi (t), cci(t), cdi (t)}.

Action: According to the current policy, πm or πj , and the corresponding observation, each
MEC server chooses an action from its action space. The actions of the MeNB and UAV j at
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time slot t, i.e., am(t) ∈ Am and aj(t) ∈ Aj (j ∈ U), can be described as

am(t) ={b′1,m(t), b′2,m(t), . . . , b′N(t),m(t), f1,m(t), f2,m(t), . . . , fN(t),m(t), f co1,m(t),

f co2,m(t), . . . , f coN(t),m(t), f ca1,m(t), f ca2,m(t), . . . , f caN(t),m(t)}
(6.11)

and

aj(t) ={b′1,j(t), b′2,j(t), . . . , b′Nj(t),j(t), f1,j(t), f2,j(t), . . . , fNj(t),j(t), f
co
1,j(t), f

co
2,j(t),

. . . , f coNj(t),j(t), f
ca
1,j(t), f

ca
2,j(t), . . . , f

ca
Nj(t),j

(t)}, j ∈ U ,
(6.12)

respectively, where the value ranges of fi,m(t), f coi,m(t), f cai,m(t), fi,j(t), f coi,j(t), and f cai,j(t) are
same to constraints (6.6d) and (6.7d), namely, within [0, 1]. To address the challenge caused
by the mixed integers, we relax the binary variables, bi,m(t) and bi,j(t), into real-valued ones,
b′i,m(t) ∈ [0, 1] and b′i,j(t) ∈ [0, 1]. As task division is not considered here, when measure the
effect of an action at a given state, vehicle i under the overlapping area between the MeNB
and UAV j will choose to offload its task to the MeNB if b′i,m(t) ≥ b′i,j(t), otherwise to
UAV j. Also, we do additional processing on each action’s elements to guarantee the total
amount of resources allocated to all the associated vehicles is no more than {Sm, Cco

m , C
ca
m } or

{Su, Cco
u , C

ca
u }, corresponding to the constraints (6.6e)-(6.6g) or (6.7e)-(6.7g) in the formulated

problems. According to the actions defined by equations (6.11) and (6.12) and the value range
of each element of am(t) and aj(t), the action spaces for the MeNB and UAV j ∈ U , Am and
Aj , are continuous sets.

Reward: The reward is a function of state and action, which measures the effect of the
action taken by an agent at a given state. Similar to any other learning algorithms [144], during
the training stage, a corresponding reward will be returned to an agent at time slot t once the
chosen action is taken by this agent at the previous time slot. Then according to the received
reward, each agent updates its policy (πm or πj) to direct to an optimal one, i.e., to a policy
that the chosen actions at different environment states are always with high rewards. Denote the
reward returned to the MeNB agent as rm: S ×Am 7→ R and that to UAV j agent as rj: S ×Aj
7→ R.

As the reward leads each agent to its optimal policy and the policy directly determines
the association and resource allocation decision for the corresponding MEC server, the reward
function should be designed based on the objectives of the original formulated problems. Thus,
considering shaped rewards would help the algorithm to learn faster than sparse rewards [145,
146], the following two reward elements corresponding to H(cdi (t)− Ti(t)) and H(f cai,m(t)Cca

m −
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csi (t)) of equation (6.6) are designed for the MeNB agent,

rdi,m(t+ 1) = log2

(
cdi (t)

Ti(t)
+ 0.01

)
, (6.13)

rsi,m(t+ 1) = log2

(
f cai,m(t)Cca

m

csi (t)
+ 0.01

)
, (6.14)

where rdi,m(t+ 1) and rsi,m(t+ 1) describe how far the delay and caching resources requested by
vehicle i are satisfied by action am(t), respectively. Specifically, we have rdi,m(t + 1) ≥ 0 and
rsi,m(t + 1) ≥ 0 for vehicle i if its requested delay and caching resources are satisfied by action
am(t), respectively, and negative rdi,m(t + 1) and rsi,m(t + 1) are obtained otherwise. Similarly,
the two reward elements for UAV j agent corresponding to equation (6.7) can be designed as

rdi,j(t+ 1) = log2

(
cdi,j(t)

Ti(t)
+ 0.01

)
, (6.15)

rsi,j(t+ 1) = log2

(
f cai,j(t)C

ca
u

csi,j(t)
+ 0.01

)
. (6.16)

As the formulated problems’ objective is to maximize the number of offloaded tasks while
satisfying their QoS requirements, the logarithmic function is adopted in the reward for fairness.
The reward increases with the amounts of allocated resources. However, the incremental rate of
a logarithm reward element slows once it reaches a positive value. Thus, instead of allocating
more resources to parts of the offloaded tasks to achieve a higher reward, each agent is guided by
the logarithm reward to allocate its resources to satisfy the QoS requirements of as many tasks
as possible. Moreover, to avoid sharp fluctuation on the reward, a small value 0.01 is added to
limit the minimum value of each reward element to log2(0.01).

6.3.2 MADDPG-based Solution

To solve the above Markov game for U +1 agents, an MADDPG algorithm combines the DDPG
algorithm with a cooperative multi-agent learning architecture. For each agent, indicated by
equations (6.9), (6.10), (6.11), and (6.12), the observation and action spaces are continuous.
Also, as the value range of each resource allocation element is [0, 1] and their numerical
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relationships must satisfy the original problems’ constraints, disassembling the action space into
discrete and efficient action vectors is difficult, especially for the cases with large size of action
vectors. Hence, instead of RL algorithms for discrete state or action spaces, such as deep Q-
network (DQN), the DDPG algorithm is adopted by each agent to address its corresponding
MDP. Yet from the perspective of the whole Markov game, as the central controller is not
considered in the network scenario, the RL algorithm with a single agent is infeasible. Moreover,
to avoid spectrum and time cost on wireless communications among different MEC servers,
we assume there is no information exchanging among different agents. Namely, only partial
observation is available to each MEC server, and meanwhile, the decision made by one MEC
server is unaware to others. Thus, considering the coupled relation among the formulated
optimization problems, a cooperative multi-agent learning architecture with returning the same
reward to the U + 1 agents is adopted to address the re-modeled Markov game to achieve the
common objective of the original problems.

DDPG algorithm: The DDPG algorithm adopted by the MeNB agent is illustrated in the left
of Figure 6.3, which combines the advantages of policy gradient and DQN. Here, we take the
MeNB agent as an example to explain how to address the corresponding MDP with the DDPG
algorithm, and which can be easily extended to the DDPG algorithm adopted by a UAV agent.
Two main components, actor and critic, are included in the MeNB agent. According to policy
πm, an action decision is made by the actor for each observation. Another component, critic,
then uses a state-action function, Qm(·), to evaluate the action chosen by the actor. Let sm be
the input state to the MeNB and γ be the discount factor to the immediate reward rm. Then
we have Qm(sm, am) = E[

∑∞
τ=0 γ

τrm(t + τ)|πm, sm = sm(t), am = am(t)], and which can
be recursively re-expressed as Qm(sm, am) = E[(rm|sm,am) + Qm(s′m, a

′
m)]. As in DQN, target

networks and experience replay technology are adopted to improve the stabilization of DDPG. As
shown in Figure 6.3, both the actor and the critic are implemented by two deep neural networks
(DNNs), an evaluation network and a target network. And an experience replay buffer with size
Mr is used to save transitions for the training stage.

As a type of policy gradient algorithm, the main idea of DDPG is to obtain an optimal
policy π∗m and learn the state-action function corresponding to π∗m, which is carried out by
adjusting the parameters of the evaluation and target networks for the actor and the critic until
convergence. In the above, the evaluation networks’ parameters, θµm and θQm, are updated in real
time. Specifically, a mini-batch of transitions with sizeMb are randomly sampled from the replay
buffer and inputted into the agent one by one. According to each inputted transition, the actor
and the critic then update the parameters of the evaluation networks during the training stage.

Taking the i-th transition, {sim, aim, rim, si′m}, as an example, the critic adjusts the evaluation
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Figure 6.3: The MADDPG framework in the UAV-assisted MVNET.

network’s parameters by minimizing the loss,

L(θQm) = E[(Qm(sim, a
i
m)− (rim + γQ′m(si′m, a

i′
m)))2], (6.17)

where Q′m(·) is the state-action function for the target network. That is, if L(θQm) is continuously
differentiable, θQm can be adjusted with the gradient of the loss function [147]. As the actor makes
action decisions for each observation and each agent aims to maximize the cumulative reward,
the evaluation network’s parameters for the actor are updated by maximizing the policy objective
function,

J(θµm) = E[Qm(sim, am)|am = µm(oim)], (6.18)

where µm(·) is the evaluation network function of the actor, which represents the deterministic
policy πm: Om 7→ am. As each association pattern variable is relaxed to [0, 1], the action space of
the MeNB agent, Am, is continuous, and so as µm(·) is. Under this condition, we can conclude
that J(θµm) is continuously differentiable according to [143], such that θµm can be adjusted in
the direction of ∇θµmJ(θµm). With the real-time updated θµm and θQm, the parameters of the target
networks, θµ′m and θQ′

m , then can be softly updated as follows,

θµ
′

m = κamθ
µ
m + (1− κam)θµ

′

m ,

θQ
′

m = κcmθ
Q
m + (1− κcm)θQ

′

m ,
(6.19)

with κam � 1 and κcm � 1.

MADDPG framework: As illustrated in the right figure of Figure 6.3, the MADDPG
framework is composed of the vehicular environment and U + 1 agents, where each agent is
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implemented by the DDPG algorithm similar to the MeNB agent. Benefiting from the actor and
the critic compositions in the DDPG algorithm, centralized training and decentralized execution
can be adopted directly in the MADDPG framework as in [148]. Next, we take the MeNB agent
as an example to explain how to centrally train the MADDPG model and execute the learned
model in a decentralized way.

In the centralized offline training stage, in addition to the local observation, extra information,
i.e., observations and actions of all the UAV agents, is also available to the MeNB agent, om(t)
in (6.9). Namely, at time slot t, {oj(t), aj(t), o′j(t)} (j ∈ U) is saved into the MeNB’s replay
buffer with {om(t), am(t), rm(t), o′m(t)} together. For the i-th transition of the MeNB agent,
{sim, aim, rim, si′m}, we have sim = {oim(t), oi1(t), a

i
1(t), . . . , o

i
j(t), a

i
j(t), . . . , o

i
U(t), aiU(t)} and

si′m = {oi′m(t), oi′1 (t), ai′1 (t), . . . , oi′j (t), ai′j (t), . . . , oi′U(t), ai′U(t)} as shown in Figure 6.3. When
updating the parameters of the actor and the critic according to the inputted mini-batch of
transitions, the actor chooses an action according to the local observation oim, i.e., am = µm(oim),
and the chosen action and sim then are valued by the critic. As the QoS satisfaction of each vehicle
under the considered road segment is co-determined by the actions of the U + 1 agents, using sim
which includes the information about other agents’ actions to learn the state-action value function
Qm would ease training. Moreover, with the extra information, each agent allows to learn its
state-action value function separately. Also, as aware of all other agents’ actions, the environment
is stationary to each agent during the offline training stage. Thus, the biggest concern to other
multi-agent RL algorithms, i.e., the dynamic environment caused by other agents’ actions, is
addressed here. During the execution stage, as only local observation is required by the actor,
each agent can obtain its action without aware of other agents’ information.

Considering the common objective of the formulated optimization problems, the U + 1
agents should cooperatively maximize the number of offloaded tasks while satisfying their
QoS requirements. To achieve a cooperative Markov game for improving the overall resource
utilization, we assume the same immediate reward r is returned to each agent [52], i.e., r(t) =
rm(t) = rj(t) (j ∈ U). To avoid large fluctuation on reward, define r(t) = 1

N(t)

∑
i∈N (t) ri(t),

where ri(t) is the reward achieved by vehicle i at time slot t and

ri(t) =

{
rdi,m(t) + rsi,m(t), if bi,m(t) = 1

rdi,j(t) + rsi,j(t), if bi,j(t) = 1.
(6.20)

MADDPG-based solution: According to the above discussion and Figure 6.3, the proposed
MADDPG-based resource management scheme can be summarized in Algorithm 4. In
Algorithm 4, continuous time slots are grouped into different episodes with Ms time slots
included in each episode. To better describe the convergence performance, we let r′ denote
the total rewards achieved per episode. For example, for an episode starts at time slot t0, we have
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r′ =
∑Ms+t0

t=t0
r(t).

6.4 Simulation Results

In this section, we present simulation results to validate the proposed MADDPG-based resource
management scheme. Specifically, we use PTV Vissim [134], a traffic simulation software,
to simulate the vehicle mobility on a two-lane and two-way country road, where the behavior
type is set to be “Freeway” and the number of inputs is 3. Environment states then can be
obtained according to the vehicles’ position information. With a mass of environment states, we
train the MADDPG model2 based on Algorithm 4 in the training stage. Then new environment
states are used to test the performance of the learned model, i.e., the MADDPG-based resource
management scheme, in the execution stage. In this section, we show the convergence
performance of the MADDPG algorithm and compare it with a SADDPG algorithm [139]. Also,
we compare the performance of the MADDPG-based resource management scheme with the
SADDPG-based scheme and the random scheme. For the SADDPG algorithm, we assume
a controller is installed at the MeNB and acts as the agent to centrally manage the resources
available to the MeNB and UAVs. As this algorithm is based on DDPG and implemented with
one agent, we call it as SADDPG to distinguish it from the MADDPG algorithm proposed in this
work. For the random scheme, the association patterns and the amounts of resources allocated
to vehicles under the coverage of an MEC server are randomly decided by the MeNB and/or a
UAV.

Assume an MEC-mounted MeNB with 50 meters high is deployed on one side of the
considered road segment [42]. On each side of the MeNB, two MEC-mounted UAVs are
flying at speed 10 m/s in fixed altitude of 40 meters and parallel to the road to support vehicular
applications [56, 65]. To guarantee an acceptable inter-UAV interference, assume the two UAVs
are always flying with the same direction and the distance between them keeps at 600 meters.
Vehicles under the coverage of a UAV can either associate with the UAV or the MeNB, and each
vehicle’s association pattern is co-determined by the association action elements of the MeNB
and UAV. Similar to [141] and [126], the channel gains of uplinks from a vehicle to the MeNB
and to the UAV are defined as Lm(d′m) = −40− 35log10(d

′
m) and Lu(d′u) = −30− 35log10(d

′
u),

respectively, where d′m (or d′u) denotes the vehicle-MeNB (or vehicle-UAV) distance. As vehicles
randomly generate heterogeneous computing tasks and the agents periodically manage the

2For the actors of the MeNB agent and the UAV agent, we respectively deploy two fully-connected hidden
layers with [1024, 512] and [512, 256] neurons. And four fully-connected hidden layers with [2048, 1024, 512, 256]
neurons are deployed for their critics. Except for the output layer of each agent’s actor which is activated by the
tanh function, all other layers’ neurons are activated by the ReLU function.

102



/* Initialization */
Initialize each agent’s actor’s and critic’s evaluation and target networks to explore
actions for the training stage;

Initialize the size of each agent’s replay memory buffer.
/* Parameter updating */
foreach episode do

Receive initial observations om and oj (j ∈ U), and set r′ = 0.
foreach step t do

Each agent k selects action ak(t) = µk(ok(t)) w.r.t. the current policy πk and
obtains the corresponding input state sk(t);

Execute a(t) = {am(t), a1(t), . . . , aU(t)}, receive reward r(t), and obtain new
observations o′k and input states s′k(t) to each agent.

foreach each agent k do
if the number of transitions <Mr then

Store {sk(t), ak(t), r(t), s′k} into its replay buffer.
else

Replace the earliest saved transitions in the buffer with
{sk(t), ak(t), r(t), s′k};

Randomly select a mini-batch of transitions {sik(t), aik(t), ri(t), si′k} with
sizeMb from the replay buffer;

Update the parameter matrix of critic’s evaluation network by minimizing
the loss L(θQk ) = 1

Mb

∑
Mb

(Qk(s
i
k, a

i
k)− (ri + γQ′k(s

i′
k , a

i′
k)))2;

Update the parameter matrix of actor’s evaluation network by
maximizing the policy objective function
J(θµk ) = 1

Mb

∑
Mb

(Qk(s
i
k, ak)|ak = µk(o

i
k));

Update actor’s and critic’s target networks’ parameters according to
equation (6.19).

end
end
r′ = r′ + r(t).

end
end

Algorithm 4: MADDPG-based Solution
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available resources among the received resource access requests, we assume the task generation
rate of each vehicle to be one task per time slot, and the computing task generated by vehicle i
at time slot t is with csi (t) ∈ [0.5, 1] kbits, cci(t) ∈ [50, 100] MHz, and cdi (t) ∈ [10, 50] ms. During
the training stage, we fix the amounts of spectrum, computing, and caching resources available
to the MeNB and UAVs to be {10 MHz, 250 GHz, 50 kbits} and {2 MHz, 30 GHz, 6 kbits},
respectively. As a high learning rate speeds up the convergence of the RL algorithm while
impacts the convergence stability, we take exponential decay/augment on the actors’ and critics’
learning rates, as well as on κa/κc and the reward discount factor. Unless otherwise specified,
other parameters used in the training and execution stages are listed in Table 6.1.

Table 6.1: Parameters for the learning stage.

Parameter Value

Vehicle’s transmit power 1 watt
Communication range of the MeNB/UAV 600/100 m
Length of the considered road segment 1200 m
Background noise power −104 dBm
Size of the replay buffer 10000
Size of a mini-batch 32
Actor’s learning rate Decaying from 0.0002 to 0.0000001
Critic’s learning rate Decaying from 0.002 to 0.000001
κa/κc Decaying from 0.02 to 0.0001
Reward discount factor Augmenting from 0.8 to 0.99

Figure 6.4 shows the rewards achieved per episode in the training stages of the MADDPG
and SADDPG algorithms. As all parameters of the MeNB and the two UAV agents are globally
initialized by the TensorFlow based on the initial state in the first episode, the rewards achieved
by one episode are small and fluctuate dramatically in the first 200 episodes of the MADDPG
algorithm. Yet, with the training going, the actors and critics adjust their evaluation and
target networks’ parameters to gradually approximate the optimal policies and the state-action
functions corresponding to the optimal policies, respectively. Therefore, relatively high and
stable rewards are achieved starting from the 200-th episode. Comparing with the SADDPG
algorithm, the MADDPG algorithm converges as quickly as the SADDPG algorithm does
although the achieved rewards are a little bit less stable.

As discussed above, three agents, i.e., one MeNB agent and two UAV agents, are trained
centrally by the MADDPG algorithm. To demonstrate the convergence performance of the three
agents, we show the varying tendency of the Q-values obtained from the evaluation network
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Figure 6.4: Rewards achieved per episode in the training stage.

of each agent’s critic in Figure 6.5. With the training going, positive and stable Q-values are
obtained by the three agents starting from the 200-th episode, which implies that, the training
processes converge within 200 episodes and their convergence rates are consistent with the
rewards achieved per episode of the MADDPG algorithm.

Similar to [54], we use the delay/QoS satisfaction ratios, defined as the proportions of the
offloaded tasks with satisfied delay/QoS requirements, to measure the performance of different
resource management schemes. As the amounts of resources carried at the MEC-mounted MeNB
and UAVs are always pre-allocated, we use fixed amounts of resources to train the MADDPG
model. During the online execution stage, the learned model is tested over 10, 000 continuous
environment states.

Figure 6.6 shows the average delay/QoS satisfaction ratios achieved by different schemes
versus the amounts of spectrum, computing, and caching resources available to the MEC-
mounted MeNB and UAVs, respectively3. Different from the random scheme, both MADDPG-
and SADDPG-based schemes jointly manage the multi-dimensional resources available to the
MeNB and UAVs to satisfy the offloaded tasks’ QoS requirements. Thus, under the scenarios
with different amounts of available spectrum, computing, and caching resources, more than
doubled delay or QoS satisfaction ratios are achieved by the MADDPG- and SADDPG-based
schemes than the random one. As the delay satisfaction ratio is not affected by the allocation
of caching resources, only the QoS satisfaction ratio curves are described in Figures 6.6(c)

3Unless specified in the x-coordinate of each figure, the amounts of spectrum, computing, and caching
resources available to the MeNB and UAVs during each test are fixed to {6MHz, 250GHz, 50 kbits} and
{0.5MHz, 25GHz, 5 kbits}, respectively.
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(a) MeNB agent (b) UAV 1 agent

(c) UAV 2 agent

Figure 6.5: The averaged Q-value over each episode under the MADDPG algorithm.
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and 6.6(f). Constrained by the achieved delay satisfaction ratios, the QoS satisfaction ratios
of the MADDPG- and SADDPG-based schemes tend to stable and reach the corresponding
delay satisfaction ratios with the increasing of caching resources. However, for the random
scheme, as the gap between the delay and QoS satisfaction ratios is relatively large, the QoS
satisfaction ratio increases slowly when the amounts of caching resources at the MeNB and
UAVs increase from 10 MHz to 100 MHz and from 1 MHz to 10 MHz, respectively. Moreover,
as the delay requirement is a part of the QoS requirement, i.e., satisfying the delay requirement
is indispensable for a task with satisfied QoS requirement, the delay satisfaction ratio is always
higher than the corresponding QoS satisfaction ratio for the three schemes.

As we know, when leveraging learning-based methods to solve an optimization problem, only
sub-optimal results can be obtained in most cases [149]. In the MADDPG-based scheme, three
agents are cooperatively trained to solve three MDPs to achieve a maximum common reward.
Allowing each agent to learn other agents’ policies during the training stage, issues caused
by the coupled relation among the optimization problems are partially addressed. The central
optimization problem is much more complex than the ones formulated for the MeNB agent or the
UAV agent, and which makes solving it by the SADDPG algorithm more challenging. Thus, in
addition to avoiding extra spectrum and time cost on exchanging information between the central
controller and the UAV4, a higher delay/QoS satisfaction ratio is even achieved by the MADDPG-
based scheme than the SADDPG-based one under most of the scenarios, as shown in the zoom-in
figures in Figure 6.6. Moreover, the gap between the delay and QoS satisfaction ratios achieved
by the MADDPG-based scheme is smaller than that of the SADDPG-based one, which indicates
that the MADDPG-based scheme can better manage the multi-dimensional resources.

As discussed in subsection 6.3.1, reward element rd is defined to measure how far the
task’s delay requirement is satisfied, which is co-determined by the spectrum and computing
resource management results. However, for both MADDPG and SADDPG algorithms, allocating
more spectrum resources to satisfy the delay requirement of an offloaded task is the same
as allocating more computing resources. Namely, performance difference would be resulted
between the spectrum and computing resource management for both learned MADDPG and
SADDPG models. From the zoom in figures in Figures 6.6(a) and 6.6(b), under the scenarios
with a small amount of spectrum and a large amount of computing resources at the MeNB,
higher delay satisfaction ratios are achieved by the SADDPG-based scheme than the MADDPG-
based one, which means that more optimal spectrum management is obtained by the SADDPG-
based scheme5 while more optimal computing management is obtained by the MADDPG-based
scheme. As most of the vehicles choose to offload tasks to the MeNB, the amounts of resources

4For the SADDPG-based scheme, we assume extra spectrum resources are used for wireless communications
between the UAV and the MeNB and time cost on them are not counted in Figure 6.6.

5The communication delay satisfaction ratio, defined as the proportions of tasks with csi (t)
Ri,m(t) ≤ cdi (t) or

107



(a) (b)

(c) (d)

(e) (f)

Figure 6.6: The average delay/QoS satisfaction ratios achieved by different schemes versus the
amounts of spectrum, computing, and caching resources at the MeNB (subfigures (a), (b), and

(c)) and UAVs (subfigures (d), (e), and (f)).
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at the MeNB mainly determine the delay/QoS satisfaction ratios achieved by the three schemes
when very small amounts of resources at the UAV, as shown in Figures 6.6(d), 6.6(e), and
6.6(f). And with the increase of resources at the UAV, the varying tendencies of the delay/QoS
satisfaction ratios achieved by the three schemes are then gradually similar to Figures 6.6(a),
6.6(b), and 6.6(c).

6.5 Summary

In this chapter, we have studied multi-dimensional resource management in the UAV-assisted
MVNETs. To cooperatively support the heterogeneous and delay-sensitive vehicular applica-
tions, an MADDPG-based scheme has been proposed to distributively manage the spectrum,
computing, and caching resources available to the MEC-mounted MeNB and UAVs. For the
high dynamic vehicular scenarios with delay-sensitive and computing-intensive applications, the
MADDPG-based scheme can rapidly make vehicle association decisions and allocate proper
amounts of multi-dimensional resources to vehicle users to achieve high delay/QoS satisfaction
ratios. In the next chapter, we will conclude this thesis and show our future research directions.

csi (t)
Ri,j(t)

≤ cdi (t), achieved by the SADDPG-based scheme is always higher than that of the MADDPG-based scheme.
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Chapter 7

Conclusions and Future Works

In this chapter, we summarize the main results and contributions of this thesis and present our
future research directions.

7.1 Main Research Contributions

In this thesis, we have investigated the resource management issues in MEC- and/or UAV-
assisted vehicular networks. Specifically, we have proposed an MEC-assisted vehicular
network architecture by integrating the SDN and NFV concepts. Under the proposed network
architecture, the spectrum and multi-dimensional resource management issues have been studied.
To overcome the issue of imbalance between supply and demand of resources remaining in the
vehicular scenarios supported by only MEC-mounted BSs, we have also extended the proposed
MVNET architecture into a UAV-assisted MVNET and studied the multi-dimensional resource
management issue under it. The main contributions of this thesis are summarized as follows.

1. A novel vehicular network architecture by integrating the SDN and NFV concepts into
MEC has been proposed. In which, functions supporting different applications can be
host on servers flexibly with reduced function provisioning cost. The SDN control
functionality is applied to achieve intelligent traffic steering and efficient multi-resource
management. The proposed architecture can be used to efficiently support the emerging
vehicular applications and services;

2. A dynamic two-tier spectrum management framework has been proposed to improve the
spectrum resource utilization under the MVNET architecture, which considers the trade-
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off between spectrum resource utilization and inter-cell interference. In specific, by lever-
aging logarithmic and linear utility functions, we have formulated three aggregate network
utility maximization problems to fairly slice spectrum resources among BSs connected to
the same MEC server, optimize BS-vehicle association patterns and resource allocation,
and control the transmit power of BS. To jointly solve the three formulated optimization
problems, linear programming relaxation and first-order Taylor series approximation have
been used and an ACS algorithm has been designed;

3. We have investigated the joint spectrum, computing, and caching resource management
problem to accommodate delay-sensitive applications in the MVNET. Particularly, two
typical MEC architectures, i.e., with MeNB- and EN-mounted MEC servers, have been
considered, and under which we have formulated two resource optimization problems
to maximize the number of offloaded tasks that are completed with satisfied QoS
requirements. To solve the formulated problems in real time, we have exploited the DRL
for problem transformation and devised the DDPG- and HDDPG-based algorithms;

4. We have studied multi-dimensional resource management in the UAV-assisted MVNETs.
To distributively manage the spectrum, computing, and caching resources available to
the MEC-mounted MeNB and UAVs to support the heterogeneous and delay-sensitive
vehicular applications, we have proposed an MADDPG-based scheme. For the high
dynamic vehicular scenarios with delay-sensitive and computing-intensive applications,
the proposed MADDPG-based scheme can rapidly make vehicle association decisions and
allocate proper amounts of multi-dimensional resources to vehicle users to achieve high
delay/QoS satisfaction ratios.

The architecture and schemes proposed in this thesis should provide useful guidelines for future
research in multi-dimensional resource management scheme designing and resource utilization
enhancement in highly dynamic wireless networks with diversified applications and services.

7.2 Future Works

For future research, I plan to design a comprehensive satellite-terrestrial network architecture
enabled by MEC and cloud computing to support vehicular applications, focusing on design
AI-based multi-dimensional resource management schemes. Combining satellite networks with
the MEC- and/or UAV-assisted vehicular cyber-physical system, i.e., enabling satellite-terrestrial
vehicular networks, can provide seamless signal coverage, high-capacity communication, and
more flexible Internet access to support a large number of vehicle applications and services. For
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example, the satellite antennas can be embedded into the roof of an autonomous vehicle to allow
it to acquire satellite signals even without terrestrial BS coverage. Moreover, due to the complex
vehicular environments, constructing fiber-equipped or stable wireless backhaul links to enable
idea backhaul capacity for every small BSs is usually impracticable. Embedding the satellite
antennas into small BSs to enable satellite-based small cells can provide users with a high-
capacity backhaul to access the cloud computing server. However, due to the mobility of vehicles,
UAVs, and satellites, challenges arise in satisfying the high requirements of dynamic adaptation
and rapid response for intelligent vehicular networks. How to achieve fast, adaptive, efficient, and
privacy-preserved resource management is in urgent demand for the satellite-terrestrial vehicular
network.

1. Adaptive Multi-radio Access Design: In the satellite-terrestrial vehicular network,
vehicle users, including manually driving vehicles and autonomous vehicles, are allowed
to access the network via either a satellite, UAV, or terrestrial BS. To support the
V2X communications, different communication techniques, such as DSRC and LTE,
and new radio allocation and access techniques, including orthogonal frequency-division
multiplexing (OFDM), non-orthogonal multiple access (NOMA), multiple-input-multiple-
output (MIMO), and beamforming, can be applied in the satellite-terrestrial vehicular
network. Designing access schemes by intelligently scheduling the above-mentioned
access techniques and adaptively allocating the spectrum resources (including spectrum
resources for both satellite and terrestrial communications) among vehicles to improve the
spectrum utilization while satisfying the delay-sensitive and high-throughput requirement
of V2X communication is critical and is one of my research focuses shortly.

2. Multi-Dimensional Resource Management Scheme: In addition to providing computing
capabilities for computing-intensive applications, MEC servers can also benefit many data-
sensitive applications, such as video streaming and online gaming. Caching some popular
content at the edge can help to mitigate the traffic congestion in the core network and
improve content delivery efficiency. Optimally placing the content at the terrestrial, aerial,
and space MEC servers to maximize the storage resource utilization while allocating a
proper amount of spectrum for delivering the content to vehicles is one of the critical
research problems in the satellite-terrestrial vehicular network. On the other hand,
with more vehicular applications emerging, diversified tasks, such as computing task
offloading and content delivery, are usually generated by vehicles and require multi-
dimensional resources. Designing a multi-dimensional resource management scheme to
effectively manage the uplink/downlink communication, computing, and storage resources
is still urgent. Considering the heterogeneous quality of service requirements of different
applications and the highly dynamic vehicular network environment, AI technologies can

112



be utilized to effectively manage the multi-dimensional resources here. For scenarios
with multiple vehicular services that require multi-dimensional resource support, the
procedure of multi-dimensional resource management can be summarized into two
stages, multi-dimensional resource planning among services (also referred to as service
slicing) and multi-dimensional resource scheduling among vehicles. We can slice the
multi-dimensional resources among different services based on the statistical resource
demanding from each service either via optimization or AI methods. For the multi-
dimensional resource scheduling, to reduce the complexity of the learning algorithm and
increase the convergence rate, we can decompose the resource scheduling problem into
two sub-problems, computing task offloading and content placement/delivery, and then
adopt the hierarchical learning architecture to solve them.

3. Privacy-Preserved Resource Management Scheme: Data-privacy preservation is always
an important concern for vehicles. Vehicles have to share their data with the cloud or
MEC server to support some AI-powered applications or services. For example, to enable
automated driving, connected vehicles need to share their sensing data with the server for
learning the optimal automated driving strategy. How to preserve the privacy of vehicles’
data while allowing it to benefit from these applications is very important to the satellite-
terrestrial vehicular network. One of the potential technologies to preserve data privacy in
AI-powered applications is federated learning, also known as collaborative learning. With
the federated learning technique, we can enable decentralized learning, namely, building
the learning model at the MEC server while training it in vehicles without uploading raw
data to the server, or building the learning model at the cloud computing server while
training it in MEC servers.
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