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Abstract

In this thesis we investigate two domains of control over the photonic emission from
NV centers. In the first part of the thesis, which focuses on emission control in the spatial
domain, we will be exploring the design of a nanophotonic structure that would be able to
control the directionality of photon emission from NV centers. We will be using the inverse
design methodology known as adjoint optimization to design the structure. Furthermore
we will present FDTD simulations to assess the performance of the designed structure
and compare its performance with existing structures. We then present some preliminary
experimental results from a confocal microscopy setup we built in our lab.

In the second part of the thesis, which focuses on emission control in the spectral do-
main, we investigate the potential of using single NV centers for photon conversion between
the microwave and optical regimes. The conversion between the microwave photons, that
couple to superconducting qubits, and optical photons, that are used in long range com-
munication and memories, is an important component in realizing an extended quantum
network. In our proposed scheme, we explore the use of Λ system in NV centers coupled
to optical and microwave cavities as a platform for efficient conversion between the mi-
crowave and optical regimes. We present analytical and numerical simulations to identify
the required characteristics of the system to achieve high conversion efficiencies.
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Chapter 1

Introduction

Max Planck’s theoretical explanation of blackbody radiation formulated in 1900, together
with Albert Einstein’s 1905 paper on the discrete quantized nature of light paved the way
to our current understanding of the fundamental theory in physics known as quantum
mechanics. Early demonstrations of the exotic properties of quantum mechanics such as
superposition and entanglement [10] raised the question of whether ”quantum resources”
could be exploited for useful applications. This brought forth many exciting avenues of
research such as quantum information and computing, quantum metrology, and secure
quantum communications, all of which can be broadly categorized as quantum technologies.
When selecting potential systems to be used in quantum technology applications, there are
two criteria that need to be considered: control and scalability [11]. Control is achieved
in systems such as single atom/trapped ion experiments where the system is maximally
isolated from environmental effects [12]. Single atom platforms however are not particularly
scalable. In the aspect of scalability, solid state systems are superior due to the possibility
of on chip integration as well as the availability of established nanofabrication techniques
and tools from the semiconductor industries. One such solid state platform that has gained
traction in the past few years are Nitrogen Vacancy (NV) centers embedded in diamonds.
Due to atom like properties and attractive qualities such as long coherence times, whilst also
being embedded in a solid state material, NV centers have been used in several quantum
technology applications.

Having selected a viable system, which in our case are NV centers, an important subse-
quent avenue to explore would be the control over the photon emission from said system.
Indeed, control over the quantum state of light in systems lies central to the implementa-
tion of several useful quantum technology applications such as metrology, communication
and information processing [13]. In this thesis we will be exploring the potential of two
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photonic quantum technology applications involving the control over the photonic emis-
sion from NV centers. We begin the thesis with Chapter 2 with a brief introduction to NV
centers and review a few of their basic properties.

1.1 Design of Nanophotonic Structures for Directional

Control of NV Center Emission

In Part I of this thesis we investigate the design of nanophotonic structures to control
the directionality of photon emission from NV centers embedded near the surface in bulk
diamonds. The control over the emission directionality from NV centers is vital for sev-
eral applications such as on-demand single photon generation [14], nanoscale magnetometry
[15, 16], study of spin interactions and entanglement [17, 18, 19], and quantum information
processing [20]. Specifically, we use an inverse design tool known as adjoint optimization
to design the nanophotonic structure. In Chapter 3 we start by looking at the use of clas-
sical antenna formulations to describe the emission from quantum emitters. In Chapter 4
we look at the theory behind the inverse design methodology known as adjoint optimiza-
tion. We review how adjoint optimization can be used to design photonic structures with
user defined electromagnetic responses. Finally, in Chapter 5 we look at the design of a
nanophotonic structure using adjoint optimization to control the emission profile from NV
centers. We will perform simulations to quantitatively compare the performance of the
adjoint optimized structure to existing structures in controlling the emission directionality
from NV centers. Furthermore, we present some preliminary experimental results from a
confocal microscope setup to observe the fluorescence from NV centers and conclude with
future directions of the project.

1.2 Microwave to Optical Domain Transducer with

Single NV Centers

In Part II of the thesis we investigate the potential of using a single NV center for efficient
photon conversion between microwave and optical regimes. In this project we aim to
develop a quantum interface between microwave and optical photons. This is an essential
component in realising a hybrid quantum network where photons as information carriers
need to be converted between microwave domain, where they interact with superconducting
circuits [21], and optical domain, which allows long-distance communication, high-efficiency
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detection, and storage in a quantum memory [22, 23]. We investigate the potential of micro-
fabricated devices with integrated optical and microwave cavities coupled to a single NV
centre – which we model as a three-level Λ-type quantum emitter – to efficiently convert
microwave photons into optical photons. We present analytical and numerical simulation
results that explore the required characteristics of the microwave and optical cavities to
achieve high conversion efficiency between the microwave and optical regimes. In Chapter
6, we first outline the framework with which we will investigate the conversion between
the microwave and optical regimes using NV centers. We present two definitions of the
conversion efficiency which we will be exploring. In the first intrinsic definition of the
conversion efficiency, we ask the question: If we can get a microwave photon into microwave
cavity, what cavity parameters would maximize the output optical photons?. In second,
extrinsic, definition of the conversion efficiency we ask the question: For every microwave
photon incident on the microwave cavity, what cavity parameters would maximize the output
optical photons? . In Chapter 6 we use analytical and Monte-Carlo simulations of the
system to explore the first conversion efficiency definition in different cavity regimes and
identify the required parameters for the maximum conversion efficiency. In Chapter 7
we continue the analysis from the previous chapter and explore the second conversion
efficiency definition in different cavity regimes and identify the required parameters for the
maximum conversion efficiency. Finally we will conclude with a discussion on the system
limitations and discuss existing optical and microwave cavities that satisfy the required
system parameters to achieve maximal conversion efficiency.
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Chapter 2

NV Centers

2.1 Introduction

A nitrogen vacancy (NV) center in diamond is a point defect in diamond lattice where a
carbon atom is replaced with a nitrogen atom, whilst the carbon atom adjacent to it is
vacant [24]. NV centers can either exist as NV0 or as NV−. In NV0 the three adjacent
dangling carbon atoms contribute 3 bond electrons and the nitrogen atom contributes two
valence electrons. The addition of one extra electron to that results in the formation of the
negatively charged NV− with six electrons in total (Figure 2.1). Although the NV0 state
has been observed to be the preferred charge state formed at the surface (<200nm) of the
pure diamonds through annealing [25], it is the negatively charged NV− that is formed
deeper within the diamonds that have been extensively studied due to it attractive spin
and optical properties [26]. Furthermore NV− is the preferred state that exists dominantly
in natural diamonds [27]. Due to the long electron spin coherence times in NV centers
[28, 29], the ease of microwave rotations[30], optical readout and manipulation [31], and
the ability control the geometric position via ion implantation [32, 33], NV centers offer
an excellent platform for applications in quantum metrology [34, 35, 29, 36, 37], quantum
information [38, 39] and in quantum networks [40, 41, 18]. In this chapter we will look
at the basic properties of NV− centers, including how they can be used as a Λ system in
optical experiments. The Λ configuration consists of one excited state and two ground state
sublevels. Furthermore, we will also briefly discuss the theory behind confocal microscopy,
which is the primary way in which fluorescence from NV centers is experimentally observed.
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Figure 2.1: In the diamond lattice, NV centers are formed by the substitution of a carbon
atom with a nitrogen atom and the vacancy of the adjacent atom. This results in the
contribution of the three dangling bond electrons from the neighbouring carbon atoms,
two from the nitrogen atom, and one additional electron. The total of six electrons results
in the formation of the NV−.

2.2 Basic Properties

The NV− center’s electronic structure consists of a ground and excited spin triplet states,
2A3 and 3E, and the singlet states 1A1 and 1E as seen in Figure 2.2. The ground triplet state
is well studied and documented thoroughly through electron spin resonance (ESR) [42, 43],
Raman heterodyne [44], and optically detected magnetic resonance (ODMR) experiments
[45]. The ground triplet state is split into the spin levels ms = 0 and the levels ms = ±1
levels by 2.87GHz. The dipole transition between the ground spin triplet and excited spin
triplet states corresponds to the 637nm Zero Phonon Line (ZPL) emission band. This
ZPL emission and the 2.87GHz ground spin triplet splitting is characteristic of a NV−

center and is typically used in identifying the presence of a defect. The excited state 3E, is
associated with six excited sates corresponding to two states for the ms = 0, and the four
levels A1, A2, and E (2 levels) corresponding to the spin values of ms = ±1 [46]. External
strain and temperature may cause perturbations that shift or mix the excited triplet levels
even further [27].

At low temperatures (T =2K) the triplet and singlet dipole transitions correspond to
637nm and 1043nm respectively. These transitions between the distinct electronic states
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(a) (b)

Figure 2.2: a) The electronic structure of an NV center showing the ground and excited
triplet and singlet states, and the vibronic bands. The resonant decay from the excited
state results in the ZPL, whilst non resonant decay to the vibronic bands above the ground
triplet contribute to the phonon sidebands in the NV spectrum. b) The NV centers can
be excited with an above resonant energy pulse (green) to the vibronic bands from which
they decay to the excited triplet state 3E by emitting phonons. From the excited triplet
state in spin state ms = 0, the NV decays to the ground triplet state 3A2 via a transition
in the optical regime. If the excited state begins in the m = ±1 spin state, infrared decay
through due to Inter-System Crossing (ISC) occurs with a probability of 1/3.

contribute to what is known as the Zero Phonon Line (ZPL) [47]. At room temperatures
however these transitions are broadened due to phonon-assisted processes as seen in Figure
2.3a. In addition to the electronic excited states, there exists a band of vibronic states above
the electronic triplet states. When the NV center is in the excited state 3E, the NV center
can either decay resonantly through the ZPL, or it can decay to the vibronic bands above
the ground state 3A2 from which it relaxes into the electronic ground triplet states through
phonon relaxations. These transitions involving the vibronic band result in the phononic
side bands (PSB) appearing at higher wavelengths (above the ZPL) due to emission, and
at lower wavelengths due to absorption [24, 27]. As can be seen in Figure 2.3a only ∼ 3%
of the fluorescence from an NV− is emitted into the ZPL. One of the main difficulties in
working with NV centers is the large spectral inhomogeneity that arises due to the phonon
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side bands. This is because only the ZPL emission is what is useful for most applications
as the emission from the non-ZPL spectrum dephases very quickly [48]. By coupling the
NV centers to a cavity however, it has been shown that the ZPL emission can be enhanced
by ∼ 4 times [2, 49]. Similarly as can be seen in Figure 2.2b, the NV center can be excited
with an above resonant energy (wavelength of 532nm) into the vibronic bands above the
excited state, from which it relaxes into the excited states through phonon relaxations.

(a) (b)

Figure 2.3: a) Fluorescence spectrum of a NV− at room temperature (T=300K) and low
temperatures (T = 1.8K). As can be seen approximately only 3% of the spectrum is emitted
in the Zero Phonon Line(ZPL). Figure adapted from Reference [1]. b) Photoluminescence
excitation (PLE) measurements of a single NV center in a CVD diamond excited at ZPL
(632nm) while the photoluminescence is collected from the phonon sidebands repetaed
over many scans. The z-axis represents the photoluminescence intensity, the x axis is the
detuning from the excitation frequency, and the y-axis is the scan number. Figure adapted
from [2]

When in the excited state with spin level ms = 0, the NV center decays to the ground
state via a fluorescence in the optical transition as seen in Figure 2.3a. However if the NV
center begins in the excited state with spin level ms = ±1, there is a 2/3 probability that
the system will decay with the fluorescence in the optical transition and 1/3 probability
that the excited triplet state will decay to the excited singlet state via inter-system crossing
(ISC). The excited singlet state then decays to the ground singlet state emitting into the
infra-red regime. The lifetime of the singlet states is 300ns [24]. Furthermore, the NV
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axis (Figure 2.1), which lies perpendicular to the optical dipole axis, is aligned along the
〈111〉 axis. Which means in (100) oriented diamonds the NV lies at angle of 54.7o with
respect to the surface normal. Thus in a (111)-oriented diamond the optical dipole lies
perpendicular to the surface normal [50].

2.3 Lambda System

In addition, NV centers can also form Λ configurations which can be used in applications
such as Stimulated Raman adiabatic passage (STIRAP) [51], or, in our case, as an interface
for microwave to optical photon conversion. Although the ground triplet of the NV center
is well studied and documented, due to the uncertainty surrounding the excited triplet level
structure, there doesn’t exist one well defined Λ system that can be studied [4]. There exists
several Λ systems that can picked from for different uses. One way to form a Λ system in
the NV center is by applying a magnetic field along the NV axis to lift the degeneracy in
the ground triplet states to split the spin states ms = ±1. For a magnetic field strength
of 117G at a cryogenic temperature of 8K, this splitting between the |+1〉 and |−1〉 state
is 655MHz. A Λ system can then be formed from the excited state 3E and the pair from
the ground state triplet |+1g〉, and |−1g〉 [3], with spin preserving transitions between the
lower |+1g〉, and |−1g〉 levels and the excited level |3E〉 as seen in Figure 2.4a.

Alternatively due to factors such as strain, a Λ system exists in NV centers at zero
magnetic field as well due to the symmetry breaking in the excited state |3E〉 [4, 46, 52].
This results in the formation of a closed Λ system with the excited state |3E〉 and ground
states |0〉 and |±1〉 as seen in Figure 2.4b [53, 4]. The ground triplet state is stable and
has a long lifetime of ∼ 7.5ms [54, 55, 56, 57] and the excited state triplet of the NV center
has a lifetime of ∼ 12ns at cryogenic temperatures. NV centers are also beneficial in that
ground state NV center spins have a long transverse decay time T2, approaching ∼ 2.4ms
[15, 55, 57]. As can be noted from the photoluminiscence emission (PLE) measurement
from Figure 2.3b, the linewidth of the |3E〉 ↔ |0g〉 transition is broadened with a width of∼
100MHz [2]. This spectral diffusion is due to a phonon assisted population decays between
the Ey and Ex sublevels in the excited |3E〉 state. This broadening scales as T 5 with the
temperature till 100K. However at room temperatures and below room temperatures, this
population transfer is at a rapid pace that only an averaged |3E〉 can be observed. Thus
for the purposes of our study we take into account this broadening as a transverse decay
of the excited state.

The |0g〉 ↔ |±1g〉 in the Λ system can be addressed with a microwave field whilst the
remaining two transitions can be coupled with optical fields. This Λ system in NV centers
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(a) (b)

Figure 2.4: The various Λ systems that can be formed in an NV center.a) Λ system formed
by lifting the degeneracy of ±1 states in the ground triplet. This results in a splitting
between the two ground states of B|| × 5.6MHz [3]. b) Due to natural strains within an
NV center a Λ system can be formed in the presence of zero magnetic field with the ground
triplet states and the excited state [4].

can then be used for the conversion between optical and microwave photons as we will see
in Part II of the thesis.

2.4 Confocal Microscopy

The primary method used to experimentally observe fluorescence from NV center is the use
of confocal microscopy. In this section we will briefly go over the theory behind confocal
microscopy. Confocal microscopy, which was developed by Marvin Minsky in 1988 [58],
is based upon the principle of conjugate planes in ray optics. When an optical system
is used to image a point source, the plane at which the image is formed is said to be
conjugate with the plane on which the point source is located. In confocal microscopy the
image is constructed in a ”point-by-point” manner wherein a single point on the sample
is illuminated with incident light, and only the light emerging from the point of interest is
captured, whilst the light that is scattered from unwanted sources on the sample is blocked.
To achieve this, a pinhole is placed on the image plane such that the light rays from the
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point of the interest on the source plane intersect at the pinhole. As such light that is
scattered from other locations are blocked by the barrier and not detected. The pinhole
is said to be on the conjugate plane to the point source plane, or the image is confocal
with the point of interest. As can be seen in Figure 2.5, in a system that comprises of two
convex lenses, only rays from the red circle, the point of interest, intersect at the pinhole
on the image plane and forms an image that is in focus. Light emanating from the off axis
sources (purple cross) have images that are formed on the image plane but are blocked by
the barrier and thus doesn’t get through the pinhole. Light emanating from the sources
that are on the axis but not on the source plane (blue cross) have images that are formed
either before or after the image plane with the pinhole, thus the light that passes through
the pinhole has a low intensity.

Figure 2.5: The principle of confocal microscopy to image NV centers in diamonds with
two convex lenses. The source plane and the image plane are on conjugate planes. The
conjugate point of the point of interest (red circle) is imaged at the pinhole, while all other
conjugate points are blocked on the source plane. The dichroic mirror reflects the NV
excitation green light whilst allows the fluoresced red light from the NV centers to pass.

Either by moving the sample or using scanning optics, different points of interest can
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be focused an imaged through the pinhole, thus reconstructing a complete image of the
sample. To study NV centers, the technique that used is known as fluorescence confocal
microscopy, wherein the excitation and emission wavelength of light is different [24, 27].
For NV centers specifically, as noted in Figure 2.2b, green light of wavelength 532nm is
used to excited the NV centers, and red light of wavelength 637nm in ZPL is emitted. The
microscope setup makes use of a dichroic mirror that reflects the green light and transmits
the red light. The transmitted light is then collected to form an image of the NV center
on a camera or for spectral or photon statistics measurements.
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Part I

Design of Nanophotonic Structures
for Directional Control of NV Center

Emission
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Chapter 3

Optical Antennas

3.1 Introduction

In this chapter we will look at the quantum and classical formalism of an emitter, and
provide motivation as to why in certain contexts it would be beneficial to treat a quan-
tum emitter as a classically radiating dipole antenna. The purpose of this is to provide
background for understanding the results presented in Chapter 5, wherein we shall explore
how we can control the photonic emission pattern from NV centers using sub-wavelength
nanophotonic structures. The control over the emission directionality of photons from
quantum emitters is an important challenge in experiments involving light-matter inter-
actions. One method of studying the emission directionality from quantum emitters is to
treat the emitters as classical dipole antennas. We can then adapt the formulations used
in classical antenna formulations to study the system. Such formulations offer an advanta-
geous approach, as they have been extensively explored and have a well established toolbox
of design parameters such as directivity and front to back ratio. An optical antenna as
defined by Novotny [59], is any device that is able to control free propagating radiation
into localized fields. Thus an antenna can either be a macroscopic device that is driven by
an electrical current, or a nanophotonic structure that is fed by a quantum emitter. In this
chapter we will start with the description of a two level quantum emitter and show that
by using the Local Density of States formalism, we can seamlessly describe the emitter
as a classical electric dipole. Once we can describe an emitter with a classical dipole, we
will show how we can use antenna formalism such as directivity and front to back ratio to
study the emission from a quantum emitter.
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3.2 QED Formalism Approach

Unlike typical antennas that are fed by electric currents, optical antennas are fed by the
radiation from localized emitters. Thus a formalism for the enhancement of electromagnetic
radiation due to an optical antenna is required. Although typically isolated single emitters
such as atoms are treated quantum mechanically, we show in the discussion below that the
spontaneous decay of a two level emitters can be simplified to a purely classical picture of
Green’s function via the local density of electromagnetic states (LDOS) formalism.

Figure 3.1: Transitions from the initial state |e, 0〉 to the final states |g, 1ωk
〉, where Ei (Ef )

is the energy of the initial (final) state. The states describe the emitter and field system
where |e〉 (|g〉) is the excited (ground) state of the emitter while |0〉 is the zero photon
state and |1ωk

〉 is the one photon state in the mode k

Since spontaneous decay of atom is a quantum mechanical process we begin with a
fully quantum treatment of the system. We consider a system which consists of a two
level quantum emitter in the presence of a field, treating it in the Heisenberg picture. The
initial state and final states of the combined emitter and field system is given by:

|i〉 = |e, 0〉
|f〉 = |g, 1ωk

〉
(3.1)

where |e〉 and |g〉 are the excited and ground state of the two level emitter respectively,
|0〉 is the zero photon state and |1ωk

〉 is the one photon state with mode k. The final states
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have the same energy and only differ by the mode k. The mode k does not refer to the
wavevector here, instead it denotes the specific mode of the radiating field which in itself
is described together by the wavevector and the polarization vector of the radiating field.

The decay rate of the total system from an initial state,|i〉, to the final state, |f〉, is
described by Fermi’s golden rule [59]:

γ =
2π

~2

∑
f

| 〈f | ĤI |i〉 |2δ(Ef − Ei) (3.2)

where the summation includes the possible final states and the delta function ensures
energy conservation. In the dipole approximation the interaction Hamiltonian HI between
the emitter and the field is described as:

ĤI = −p̂.Ê (3.3)

where p̂ is the transition dipole moment of the two level emitter and Ê is the quantized
electric field operator. The transition dipole moment operator of the two level emitter, p̂,
is represented as:

p̂ = p(|e〉 〈g|+ |g〉 〈e|) (3.4)

where p is the transition dipole moment or the dipole matrix element. The electric
field operator Ê(r0, t) at position r0 is defined as:

Ê(r0, t) =
∑
k′

(E+
k′(r0)âk′(t) + E−k′(r0)â†k′(t))

=
∑
k′

(E+
k′(r0)âk′(0)e−iωk′ t + E−k′(r0)â†k′(0)eiωk′ t)

(3.5)

where âk′(0) and â†k′(0) are the field annihilation and creation operators respectively,
while the summation is done over all the k′ field modes. The complex fields E+

k′(r0)
and E)−k′(r0) are spatially dependant, and denote the positive and negative frequency
components of the complex electric field such that E+

k′(r0) = (E−k′(r0))∗. The action of the

operator p̂.Ê on the initial state |i〉 results in:
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p̂.Ê |i〉 = p.
∑
k′

E−k′(r0)eiωk′ t |g, 1ωk′
〉 (3.6)

due to the action of the annihilation operator âk′(0) on the initial state. The action of
the state 〈f | on this results in:

〈f | p̂.Ê |i〉 = p.
∑
k′

E−k′(r0)eiωk′ t〈g, 1ωk
|g, 1ωk′

〉 (3.7)

In a similar fashion:

〈i| p̂.Ê |f〉 = p.
∑
k′

E+
k′(r0)e−iωk′ t〈g, 1ωk′

|g, 1ωk
〉 (3.8)

Substituting these definitions of the Ê and p̂ into Eq: 3.2, and invoking the orthogo-
nality of the radiation modes, the decay rate of the system from |i〉 to |f〉 with the non
vanishing terms can be reduced to:

γ =
2π

~2

∑
k

(p.E+
k E−k .p)δ(ωk − ω0) (3.9)

where ω0 = (Ee − Eg)/~, with Ee and Eg being the energy of the excited and ground
states of the emitter. The complex electric fields can then be expressed in terms of the
normal modes uk as:

E+
k (r0) =

√
~ωk

2ε0
uk(r0)

E−k (r0) =

√
~ωk

2ε0
uk(r0)∗

(3.10)

The spatially dependant normal modes, u(r0)k, are eigenfunctions of the time indepen-
dent electric field wave equation:

∇×∇× uk(r0)− (
ωk

c
)2uk(r0) = 0 (3.11)

16



Furthermore, the normal modes are functions that are orthonormal to each other. Using
the expression of the electric field operator in terms of the normal modes, the decay rate
of the system from |i〉 to |f〉 can be expressed as:

γ =
2ω0

~ε0
|p|2

∑
k

(n̂p · uk(r0)u∗k(r0) · n̂p)δ(ωk − ω0)

=
2ω0

3~ε0
|p|2ρp(r0, ω0)

(3.12)

where the outer product of the normal modes is ρp(r0, ω0), which is known as the partial
local density of states.

3.2.1 Local Density of States

The partial local density of states is expressed as:

ρp(r0, ω0) = 3
∑
k

(n̂p · uk(r0)u∗k(r0) · n̂p)δ(ωk − ω0) (3.13)

where np is the unit vector in the direction of p. As can be noted the partial local
density of states is a function of the classical field normal modes, uk. Since the outer
product of the normal modes uk(r0)u∗k(r0) is a 3x3 matrix, if we average the partial local
density of states over over the three different axis orientations of np, we arrive at the total
local density of states:

ρ(r0, ω0) =
∑
k

|uk(r0)|2δ(ωk − ω0) (3.14)

The total local density of states is essentially the total number of electromagnetic modes
that are present in a unit volume at a given frequency ω0. However as shown earlier, in
practice the partial LDOS has more significance as it is directly related to the spontaneous
decay rate, γ, which is dependant on the orientation of the dipole of the emitter. In free
space the total LDOS and partial LDOS are equal to each other and take the value of:

ρ0 =
ω2

0

π2c3
(3.15)
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which refers to the density of states encountered in blackbody radiation, which leads
to the well known result of the spontaneous free space decay rate of an emitter:

γ0 =
ω3|p|2

3πε0~c3
(3.16)

3.2.2 Green’s function

The outer product of the normal modes can also be represented by the system’s dyadic

Green’s function,
←→
G as [60, 59]:

ρp(r0, ω0) =
6ω0

πc2

[
n̂p · Im

{←→
G (r0, r0, ω0)

}
· n̂p

]
(3.17)

In classical electromagnetic theory the dyadic Green’s function
←→
G (r, r0, ω0), is a 3x3

matrix which essentially describes the field at location r due to the emitter at r0. The
electric field produced by a dipole can be described with the Green’s functions as:

E(r) =
ω2

0

c2ε0

←→
G (r, r0, ω0) p (3.18)

where each column in the
←→
G matrix describes the electric field components of a dipole

aligned along that specific axis. The components of the dyadic Green’s function is solved
by starting with the electric field wave equation:

∇×∇× E(r)− ω0

c2
E(r) = i

ω0

c2ε0
j(r) (3.19)

where j(r) is the current density at position r. The current density due to a dipole
source located at location r0is given by:

j(r) = −iω0µδ(r− r0) (3.20)

From the above two equations we can thus solve for the dyadic Green’s function by
solving the wave equation:

∇×∇×
←→
G (r, r0, ω0)− ω

c2

←→
G (r, r0, ω0) =

←→
I δ(r− r0) (3.21)
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where
←→
I is the unit tensor (which is the 3x3 identity matrix). Now that we have a

general idea of the dyadic Green’s function, we can return back to out discussion of the
partial LDOS. Once again averaging over the different dipole orientations of the dipole, np
we arrive at the total local density of states expressed in the form of the Green’s function
[60, 59] :

ρ(r0, ω0) = 〈ρp(r0, ω0)〉 = 〈np ·
←→
G (r0, r0, ω0) · np〉 =

2ω0

πc2
Im
{

Tr[
←→
G (r0, r0, ω0)]

}
(3.22)

where Tr is the trace of the Green’s dyadic tensor function. The total LDOS, ρ, thus
refers to the total number of electromagnetic modes present in per unit volume per unit

frequency at a given point, r0. If we look at it from the classical frame,
←→
G (r0, r0, ω0) is

the field at r0 previously emitted by the quantum emitter, that has been reflected back
towards to the position of the emitter. This is an important result as we can see how the
emission of a two level quantum emitter can be essentially described purely in the classical
frame with classical electromagnetic fields.

It can thus be seen how the surrounding medium influences the spontaneous emission
rate of an emitter by modifying the local density of states in which the emitter is located
in. This characteristic effect of the surrounding environment on the spontaneous emission
rate of emitters is captured in the ratio between the spontaneous decay rate, γ, and the
spontaneous decay rate of the emitter in vacuum, γ0, which is known as the Purcell factor
( γ
γ0

)[61]. The value of the Purcell factor thus is a measure of how much the environment or
structure in which the emitter is embedded in modifies the emitter’s radiative properties.
Now that we have a basic understanding of the quantum mechanical description of a two
level emitter interacting with a field, we will proceed to see how this can be equated to a
classical dipole description.

3.3 Classical Antenna Power Approach

We will now see how the quantum mechanical description of a two level emitter can be
described by classically radiating dipole antenna. This translation from the quantum
mechanical description of a two level emitter to a radiating dipole can be done with the

Green’s function. As we saw above the Green’s function Green’s function
←→
G (r, r0, ω0),

essentially describes the electric field at a point r by a dipole µ, located at some point r0,
oscillating harmonically at a frequency of ω0:
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E(r) =
ω2

0

c2ε0

←→
G (r, r0, ω0)µ (3.23)

In electromagnetic theory the current density of an oscillating dipole µ can be repre-
sented as:

j(r) = −iω0µδ(r− r0) (3.24)

The power dissipated by this classical dipole is defined by Poynting’s theorem from
classical electromagnetic theory as [59]:

P = −1

2

∫
V

Re{j∗.E}dV (3.25)

where V is the volume occupied by the dipole, j is current density generated in the
region V due to the oscillating dipole, and E is the electric field. Since the current density
of the dipole is a delta function at the position r0, the power integral above can be expressed
as:

P =
ω0

2
Im{µ∗.E(r0)} (3.26)

where E(r0), is the electric field at the position of the dipole r0. By substituting the
expression for the electric field in terms of the Green’s function from Equation 3.23, we
arrive at:

P =
ω3

0|µ|2

2c2ε0
[nµ · Im{

←→
G (r, r0, ω0)} · nµ] (3.27)

where µ = µnµ, with nµ being the unit vector in the direction of the dipole moment.
This allows us to directly represent the power emitted by a classical dipole as a function
of the LDOS from Equation 3.17 as:

P =
πω2

0

12ε0
|µ|2ρp(r0, ω) (3.28)

Since the power emitted by a classical dipole oscillating harmonically can be represented
by the LDOS, this gives us a direct connection to the spontaneous emission rate of a two
level quantum emitter (Equation 3.12):
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P

γ
=

|µ|2

| 〈g| p̂ |e〉 |2
~ω0

4
(3.29)

where the ratio between the power emitted by a classically radiating dipole and the
transition rate of a two level quantum emitter can be directly expressed as a ratio of the
classical dipole moment µ, and the transition dipole moment p̂. In other words, the field of
quantum emitter and a classically radiating dipole differs only by a factor. Thus by using
the LDOS formalism, we can connect the emission pattern of a two level quantum emitter
and a classical dipole antenna. Making this connection provides us with a supply of a wide
array of features from the toolbox of classical antenna formalism to study the emission
from quantum emitters by modelling them as classical dipole antennas. One example of
this includes the use of impedance matching by representing the resistance of quantum
emitters Z, as a function of the LDOS:

Re{Z} =
P

I2
=

πρp
12ε0

(3.30)

This circuit formalism of describing quantum emitters has been extended by Krasnok,
et al, in Reference [62]. However for the purposes of this thesis we will restrict ourselves
to adopting the tools of directivity and front to back ratio from classical antenna theory
to study the emission pattern from quantum emitters.

3.4 Directivity

When discussing the control of emission of radiation from emitters, it is also important
to consider the angular distribution of the radiation. In classical antenna theory this is
characterized by the directivity, D, of the antenna. To derive this, we start by describing
the normalized angular power density, p(θ, φ) of radiation as:

∫ π

0

∫ 2π

0

p(θ, φ)sinθdφdθ = Prad (3.31)

where Prad is the total power radiated by the emitter. The directivity, D, is a measure
of the ratio between angular power density of the antenna, p(θ, φ), and the power density
of an isotropic radiator that radiates power evenly around a 4π solid angle:
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D(θ, φ) =
4π

Prad
p(θ, φ) (3.32)

Figure 3.2: Normalized directivity plot of a electric dipole aligned along the x axis. The
concentric circles refer to the power in dB. The angular coordinates are measured along the
θ axis. The front and back lobes are associated with the forward and backward emissions
of the antenna at elevation angle θ = 0o and θ = 180o respectively. The angular axis in
the directivity plot denotes the elevation angle in a spherical coordinate system, and the
radial axis denotes the directivity value in decibels (dB). Inset: Spherical coordinates used
to the describe dipole emission.

The values of the directivity, D, is usually measured in decibels (dB). As we would see
in Chapter 5, in the simulation results, the directivity pattern allows one to gain better
knowledge of the angular emission pattern of a given structure. As an example, Figure 3.2
shows the directivity plot a dipole positioned along the x-axis, wherein the front and back
lobes are associated with the emission of the dipole are at θ = 0o and θ = 180o respectively.
The radial axis denote the directivity values at each angle and the angular axis denotes the
elevation angle θ. Another measure of an antenna performance is the Front to Back ratio
(FBR). The front to back ratio is the ratio between the power gain of the antenna in the
forward propagating fields and the backward propagating fields from an antenna defined
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as:

FBR = D(θ = 0)−D(θ = 180o) (3.33)

A positive FBR indicates that the antenna is preferentially emitting in the intended
forward direction and a negative FBR indicates that it is preferentially emitting in the
backwards direction. Thus in designing a directional antenna, it would be ideal to design
an antenna wherein it has a large positive FBR value.
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Chapter 4

Inverse Design

4.1 Introduction

In this chapter, we will look at the theoretical framework for understanding the inverse de-
sign methodology used in Chapter 5. This methodology allows one to design nanophotonic
structures that produce a specified electromagnetic response.

All of electromagnetic theory is condensed into the four succinct equations known
as Maxwell’s equations. The electromagnetic response and the propagation of the fields
through any structure can thus be fully defined by solving the Maxwell’s equations with
the appropriate boundary conditions. This is the basis of the forward design methodology
used in most nanophotonic problems: for a given structure, what would be the expected
electromagnetic response?. In certain contexts however, it is much more beneficial to ask
the inverse design question: for a user defined electromagnetic response, what would be
the required geometry?. Answering this question would allow one engineer designs that are
more efficiently suited to solving the problem at hand.

However, one caveat in trying to solve the inverse problem is that, unlike the forward
problem, there doesn’t exist one unique solution. Furthermore, sometimes for a given field
response, there might not even exist a geometry to produced the desired output due to
the demands of physical reality. These issues can be circumvented by instead framing the
inverse problem as an optimization problem, wherein we look for the geometry that would
most closely produce the desired electromagnetic response. Inverse design then becomes
an optimization problem where we try to optimize a certain figure of merit (FOM) con-
strained to the Maxwell’s equations. Or, in other words, what geometry, described by the
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spatially varying permitivity (ε) and permeability (µ) of the structure, would maximize the
desired FOM. In recent years, the use of inverse design methodologies for photonic design
has become prevalent and has included the use of deep learning networks [63] and linear
regression models such as gradient descent [64, 65]. In our work, we focus on the use of a
gradient descent optimization model known as adjoint optimization that is used to calcu-
late the gradients of the FOM as a function of the design parameters. We will theoretically
show how the use of the adjoint optimization will greatly improve computational efficiency
in solving the inverse design problem, as opposed to a brute force method.

For the purposes of gaining an intuitive understanding of the process of adjoint opti-
mization we will assume that the material of the structure is non-magnetic (µ = µ0), and
we will also assume that the fields are time harmonic. For a more comprehensive discussion
on the adjoint optimization technique please refer to Owen Miller’s PhD thesis [66].

4.2 Adjoint Optimization

Figure 4.1: The initial setup of the design problem to intuitively understand the process
of adjoint optimization. We have a field that is incident on the design region, or the
region over which we intend to optimize a structure such that the figure of merit (FOM)
is maximized at the point x0. The background permitivity of the design region is assumed
to be ε1.

As discussed above, the inverse design problem can be re-framed as an optimization
problem that can be solved iteratively using linear regression models such as the gradient
ascent or descent methodology. The gradient ascent (descent) method is an optimization
algorithm in which the local maximum (minimum) of a function is reached by iteratively
moving in (away from) the direction of the steepest gradient at each point in the function
[67]. This can be understood in the electromagnetic design context with a simple two
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dimensional example as shown in Figure 4.1. The problem can be posed as follows: what
geometry within the design region, with a background permitivity of ε1, would maximize the
electric field intensity, |E(x0)|2, at the position x0[66]?. The FOM can then written as:

FOM = |E(x0)|2 (4.1)

Following from this, the gradient, or the change in the FOM, subject to a change in
the geometry in the design region can be expressed as:

δ(FOM) = |Enew(x0)|2 − |Eold(x0)|2 (4.2)

where |Enew(x0)|2 is the electric field intensity at x0 after a change in geometry in the
design region, and |Eold(x0)|2 is the electric field intensity at x0 before the geometry change
was made. The change in geometry for simplicity can be modelled by splitting the design
region into a grid with N number of points, and placing small dielectric inclusions with a
permittivity ε2 and volume V at different points, xn, on the grid. The change in the FOM
due to the inclusion can be represented as:

δ(FOM) = |Eold(x0) + δE(x0)|2 − |Eold(x0)|2 (4.3a)

= Eold(x0)δE(x0) + Eold(x0)δE(x0) + |δE(x0)|2 (4.3b)

≈ 2Re
{
Eold(x0)δE(x0)

}
(4.3c)

where in the the last step the higher order terms can be ignored in the limit that
the dielectric inclusion is small (V → 0) which is also known as linearization. Lineariza-
tion allows for complex non-linear electromagnetic design problems to be modelled and
solved with linear regression as long as the change in geometry in each iteration is small.
Furthermore taking the limit, V → 0, allows for any arbitrary topology or shape to be
approximated. The naive straightforward approach to optimizing the FOM would be to
use a brute force method. As shown in Figure 4.2, this might done by placing a dielectric
inclusion at every possible point, xn, on the grid one-by-one. The geometry is updated by
keeping the geometry with the largest gradient, δ(FOM), and in the next iteration the
process is repeated by placing an inclusion in every possible point on the new geometry.
As can be seen right away this is a computational exhaustive process as N + 1 simulations
are required within each iteration.
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Figure 4.2: The setup for brute force optimization. The optimization begins with no
inclusions within the design region. Within iteration, a simulation is performed with an
inclusion at each possible position on the grid xn. The inclusion with the largest increase
in the FOM is kept and the second iteration is begun. The process is repeated until the
best solution is found wherein there is no longer an increase in the FOM.

As we shall see, by utilizing the reciprocity of Maxwell’s equations of electromagnetism,
this process can be reduced to performing only two simulations in each iteration. For
any dielectric inclusion placed at a point, xn, on the grid, there is an induced dipole
moment, pind, on that inclusion due to the old electric field, Eold(x) (since for V → 0,
Enew(xn) = Eold(xn))[68]:

pind ≈ α(ε2, V )Eold(xn) (4.4)

where α is the polarizability of the inclusion which is given by the Claussiu-Mosotti
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factor [68] according to the shape of the inclusion 1. The polarizability of the inclusion
is a function of the volume,V , and the permitivity, ε2, of the inclusion. As we saw in
the previous chapter, the electric field due to a dipole can be expressed with the Green’s
function (3.18). Using this formalism, the change in the electric field at x0 due to the
dielectric inclusion at x can then represented as:

δE(x0) = G(x0, xn)pind(xn) (4.5)

where the Green’s function, G(x0, xn), is the field at point x0 due to a dipole with unit
amplitude at point xn [59] (where for simplicity we have dropped the normalization factor
seen in Equation 3.18). Furthermore, in this case we are referring to the scalar Green’s
function as opposed to the dyadic Green’s function we saw in the previous chapter. The
FOM gradient due to the dielectric inclusion at point xn can then represented as:

δ(FOM)xn = 2Re
{
Eold(x0)G(x0, xn)pind(xn)

}
= 2Re

{
Eold(x0)G(x0, xn)αEold(xn)

} (4.6)

From Equation 4.6, the terms Eold(x0) and pind(xn) can be determined from a single
forward simulation. By invoking the reciprocity of the Maxwell’s equation, the Green’s
function can be written as: G(x0, xn) = G(xn, x0). Or in the other words, the field at x0

due to a unit dipole at xn, is equal to the field at xn due to a unit dipole at x0. Using this
symmetry, the FOM gradient can now be written as:

δ(FOM)xn = 2Re
{
G(xn, x0)αEold(x0)Eold(xn)

}
(4.7)

where the first three terms G(xn, x0)αEold(x0) can be interpreted as the field at xn due
to a dipole at x0 with amplitude αEold(x0). We define this field as the adjoint field:

Eadj(xn) = G(xn, x0)αEold(x0) (4.8)

Using this definition of the adjoint fields, Eadj, the FOM gradient can now be expressed
as:

1Before the optimization begins, the shape of the inclusion is selected and fixed. This shape is then
used throughout the optimization process
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δ(FOM)xn = Eadj(xn)Eold(xn) (4.9)

As we can see very quickly, this greatly reduces the computation required to determine
the FOM gradient. At each iteration to determine the FOM gradient due to an inclusion
with a polarizability α, a forward simulation is performed to calculate the Eold(xn) at all
possible potential points at which the dipole inclusion could be placed, xn. In a second
adjoint simulation, a dipole with amplitude αEold(x0) (the value of which was determined
from the forward simulation) is driven from the position x0. From this second simulation
the adjoint field, Eadj(xn), at all possible potential positions, xn, due to a dipole at x0

with amplitude αEold(x0) can be calculated. Hence with this optimization technique, at
each iteration, the inclusion which results in the largest FOM gradient can be determined
simply from two simulations (forward and adjoint) as opposed to the N + 1 simulations
required if a brute force method is used [66].

For the sake of intuitive understanding in the simple two dimensional problem above,
all the fields were scalar and the FOM was only dependant on the electric field. The same
approach can be extended to three dimensions to include vector fields with the FOM being
an arbitrary function of both electric and magnetic fields. Although this extension is non
trivial, the general theory remains the same. The FOM gradient due to a change in the
geometry, G, at xn is represented as:

δ(FOM)xn = 2Re

{∫
G

Pind(xn).Eadj(xn)d3xn

}
(4.10)

where Pind(xn), is the induced polarization density due to a change in geometry, G, and
Eadj(xn) is adjoint field2. As was before, in the general case, the use of adjoint optimization
results in the requirement of only 2 simulations per iteration to identify the largest gradient
of the FOM [66]: one forward simulation to identify all the possible induced polarization
densities, Pind(xn), and one adjoint simulation to identify the adjoint field, Eadj(xn). The
induced polarization density, Pind(xn), is calculated in a different manner for a topological
and shape variation, which we will see in the next section.

4.3 Topology vs Shape Variation

The change in geometry of a design structure can be done through a shape variation or a
topological variation as seen in Figure 4.4. We will briefly see what the differences between

2Here the adjoint field is in units of dipole moment as the polarizability α is absorbed into Pind

29



Figure 4.3: Adjoint optimization setup wherein by representing each inclusion as a dipole,
the N+1 simulations in each iteration can be reduced to only two simulations per iteration
by using the reciprocity of electromagnetic theory. One forward simulation and one adjoint
simulation is required in each iteration to calculate the change in the FOM, δ(FOM).
From the forwad simulation, the Eold(xn) at all possible points, xn, is calculated. From
the adjoint simulation, a dipole with amplitude αEold is driven from x0 thus the Eadj(xn)
at possible points xn can be calculated.

them are.

4.3.1 Topology Variation

If the design region is split into a grid, and dielectric inclusion of an arbitrary permitivity
is included at specific points on the grid, then the topology of the design is said to be
changed as seen in Figure 4.4a. If the inclusion is a dielectric with a permitivity ε2, placed
in a region where the background permitivity is ε1, the induced polarization due to the
inclusion in Equation 4.10 is given by:
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(a) (b)

Figure 4.4: a) Topology variation wherein the change in the geometry G, is due to an
inclusion with an arbitrary permittivity included anywhere within the design region. b)
Shape variation wherein the change in the geometry, G, is due to a change in the boundary
of the initial structure. The permittivity of the structure within the boundary is fixed
throughout the optimization process.

Pind(x) = αE(x) (4.11)

where α is the polarizability which is defined by the Claussiu-Mosotti factor [68] ac-
cording to the shape of the inclusion. The change in the FOM at each iteration is expressed
by substituting this into Equation 4.10:

δ(FOM)xn = 2Re

{∫
G
αE(xn).Eadj(xn)d3xn

}
(4.12)

In the limit that the size of the inclusion goes to zero, the above integral can be
approximated as:

δ(FOM)xn = 2V Re {αE(xn).Eadj(xn)} (4.13)

where V is the volume of the inclusion. Hence with topology changes due to inclusion,
the adjoint optimization design process in each iteration would go as follows: i) Simulate
the forward fields E(xn) and adjoint fields Eadj(xn) over the design region. ii) Add an
inclusion at the point in the design region at which δ(FOM) is maximized.
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4.3.2 Shape Variation

With the shape variation the structure is defined with fixed boundaries with a specific
permitivity within the boundary, εin = ε2, and a different permitivity outside the boundary,
εout = ε1. The boundary of the structure can be changed as shown in Figure 4.4b. Figure
4.4b shows the cross-sectional area of a three dimensional shape, where the shaded region
is the change in volume due to the changing boundary. The change in the FOM due to
this volumetric change can be written as:

δ(FOM)xn = 2Re

{∫ ∫
Pind(xn).Eadj(xn)dx⊥dA

}
(4.14)

where dA is the differential area element on the surface and dx⊥ is the the differential
length element normal to the surface area. In the limit that deformation size goes to zero,
the change in FOM can be written as:

δ(FOM)xn = 2Re

{∫
Pind(xn).Eadj(xn)δx⊥(xn)dA

}
(4.15)

where δx⊥ is the size of the deformation in the normal direction at each point on the
grid, xn. The induced polarization, Pind(xn), is given by:

Pind(xn) = (ε2 − ε1)Enew(xn) (4.16)

where Enew(xn) is the electric field due to the new shaped with the deformed boundary
related to the electric field of the original shape non-trivially. For a full treatment on this
see Reference [66]. Equation 4.15, thus gives us a way to identify the change in FOM due
to a boundary change.

The change in the boundary of a structure is usually done by first defining the boundary
by defining it as a spline: a piecewise polynomial function. Incremental changes to the
structure can then be made by incrementally moving different sectors in the spline. However
this is computationally costly and not effective. Instead a more efficient way to perform
this would be to use something known as a level set function [69] where the boundary is
embedded into a signed function, LS, such that for all coordinates within the boundary
the function is negative and for all points on the boundary are zero. For instance, the level
set function of a two dimensional circle centered at (0, 0) with radius R can be represented
as:
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LScircle =
√
x2 + y2 −R (4.17)

Using a level set function allows for easier tracking and storing of the boundary condi-
tions and the permitivities associated with the shape. The level set function is initialized
with:

LS(x(t), t) = 0 (4.18)

where x(t) are all the points on the initial boundary at time, t = 0. The boundary is
then changed continuously and the level set function is continuously updated according to
the time derivative:

δ(LS)

δt
+
dx

dt
.OLS = 0 (4.19)

where dx
dt

is velocity normal to the boundary of the shape. Keeping track of incremental
changes in the level set function is computationally more efficient than keeping track of
individual boundary points and updating them constantly. Thus in the circle example,
the change in the shape boundary would be an incremental change defined by the velocity,
and the level set function is constantly updated. Using the level set technique is one
way in which computational efficiency can be improved over using a spline to keep track
of boundary conditions when performing shape variation optimization. For an in depth
analysis of extending this to any arbitrary shape see Reference [69].
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Chapter 5

Directional Control of Photon
Emission from NV Centers with
Adjoint Optimization

5.1 Introduction

The control over the emission directionality of photons from quantum emitters is an im-
portant challenge in experiments involving light-matter interactions. Efficient collection
of photons from emitters is an important aspect that needs to be addressed for use in
applications such as single photon sources [14], sensing/metrology [15, 16] and quantum
information processing[20, 18].

For a given emitter to be used in any useful manner, extracting the spontaneously
emitted photons in an efficient manner is vital for applications involving communication,
metrology, or information processing. For an emitter in positioned free space, the photon
emission from the emitter is isotropically emitted in the entire 4π solid angle. Theoretically,
to collect all the photons from this free space emitter, detectors would have to be placed
in the entire 4π solid angle around the emitter. As we can see very quickly that this is
not an efficient approach at all. Thus we can see there is a need to be able to control the
emission directionality of the photon emission from free space emitters. If this emitter was
instead embedded in a solid state material, as is the case with quantum dots and colour
centers, there is an added constraint that needs to be addressed. This is because for solid
state emitters, majority of the photon emission is scattered back into the material due to
the large refractive index mismatch at the boundary between the material and free space.
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For instance, in diamonds, the photon extraction efficiency from NV centers is greatly
hindered due to the total internal reflection at the vacuum-diamond interface. This results
in a requirement for additional ’guiding’ structures to allow for efficient photon extraction
from the solid state emitter into free space for to be utilized in any useful manner.

Some of the structures that have been previously used to address this issue include
nano-pillars [70, 50, 71, 72], solid immersion lenses [73, 8, 74, 75] and bullseye gratings
[76, 77, 78]. Here in our work, we investigate the use of the inverse design methodology, seen
in Chapter 4, as a potential framework to design a structure for the efficient control over
the directionality of radiation from an embedded solid state emitter. We will be specifically
looking at the control of fluorescence from NV centers, the properties of which we looked
at in Chapter 2. In particular, by treating the emitter as an individual dipole antenna,
the system can be studied in the framework of antenna formulations. Such formulations
offer an advantageous approach, as they have been extensively explored and have a well
established toolbox of design parameters such directivity and front to back ratio as seen in
Chapter 3. In this chapter we briefly go over the need for photon emission control in NV
centers, existing design structures, and the use of inverse designed structure for NV center
emission control. This work was done together with Supratik Sarkar. The project was
influenced and guided by Dr. Behrooz Semnani and the experimental setup was possible
due to the tremendous help provided by Dr. Rubayet Al Maruf.

5.2 Emission Control

For all the advantages that NV centers present that was discussed, one important constraint
in collecting the fluorescence/photo-luminescence out of NV centers is the total internal
reflection of light at the diamond-air interface due to the large refractive index mismatch
(ndiamond ≈ 2.4). The Fresnel reflection coefficient for normal incidence between diamond
and air is:

r =
ndiamond − nair
ndiamond + nair

= 0.41 (5.1)

Furthermore total internal reflection occurs at any incidence angle above the critical
angle, θc = 23.6o. To understand quantitatively the emission from NV centers embedded
in a bare diamond slab we perform a Finite-Difference Time-Domain (FDTD) simulation.
As seen in Chapter 3 we can represent the NV center as a radiating electric dipole. Fur-
thermore as we saw in Chapter 2, the optical dipole axis of the NV center is perpendicular
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Figure 5.1: Structure, simulated normalized electric field intensity (log scale), and direc-
tivity plots of bare slab with an embedded horizontal dipole. The angular axis in the
directivity plot denotes the elevation angle in a spherical coordinate system, and the radial
axis denotes the directivity value in decibels (dB).

to the NV axis (Figure 2.1) which lies along the 〈111〉 axis. This means in a (111) ori-
ented diamond crystal the NV center can be modelled as a horizontal dipole embedded in
a dielectric with a refractive index of ndiamond ≈ 2.4. To model the emission from an NV
center it is important to select the best orientation of the dipole axis.

Even though the most commonly available diamond samples are (100) diamonds which
are cut along < 100 > crystal axis, the NV centers formed in these samples are not efficient
for use in photon extraction applications. This is because as we saw in Chapter 2, in (100)
oriented diamonds, the NV axis lies at an angle of 54.7o to the surface normal. It has been
reported that the photon collection efficiency is maximized when the dipole axis is oriented
perpendicular to the surface normal [50] as is the case with (111) surface diamonds. The
reason for this can be understood by referring back to the directivity pattern of the dipole
emission in Figure 3.2. For a dipole oriented along the x-y plane, the fields are maximized
along the z-axis, thus it becomes easier to control the photon emission from a horizontal
dipole. Furthermore, single NV centers formed in (111) diamonds have also shown to have
more attractive properties, such as longer spin coherence times, than single NV centers
formed in (100) diamonds [79, 80]. As such we proceed to understand the field emission
pattern from a horizontal dipole embedded in a (111) sample.

Figure 5.1 shows the FDTD simulation of the electric field and the far field directivity
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of a NV center, modelled as a horizontal dipole, embedded at a depth of 0.5µm below the
surface of a (111) diamond slab. The emission spectrum of the dipole is modelled like the
spectrum of an NV center at room temperature (Figure 2.3a) centered around a wavelength
of ∼680nm. As can be seen in the simulation in Figure 5.1, majority of the emitted field
is scattered back into the diamond. The maximum upward directivity of the emission is
-6.74dB with a FBR of -1.32dB. This means that the emission is preferentially emitted
backwards. The upward scattered light into the air is not directional with most of the
upward emission into air scatted within the whole upwards half angle of 90o (Numerical
Aperture(NA) = 1 ).

Since majority of the emission from the NV center is reflected back into the diamond
due to total internal reflection, there exists a need to design structures to control the
emission. Some of the existing dielectric designs that are used to control the emission
profile of solid state emitters can be broadly categorized into three main design structures
which include vertical nano-pillars [70, 50, 71, 72], solid immersion lenses [73, 8, 74, 75],
and two dimensional bullseye structures [76, 77, 78]. To understand how each of these
structures perform we will briefly look at the simulations of the existing structures.

Bullseye

Bullseye structures, as seen in Figure 5.2, are concentric circles of a fixed periodicity
etched around around the emitter. These high contrast bullseye gratings work on the basis
of Distributed Bragg Reflectors (DBR) with the periodicity of the structure satisfying
the second order Bragg condition (a = λ/n) where λ ≈ 680nm. Light extraction with
circular Bragg gratings have been demonstrated in light emitting diodes [78], vertically
emitting lasers [81], and for out of plane coupling of waveguide modes [82]. The Bragg
gratings provide strong horizontal confinement of light from the emitter due to partial
reflections at each period of the grating. Preferential emission in the vertical direction is
then achieved by reducing the index contrast in the collection side interface compared to
backward interface. For instance in the structure used in Reference [76], photon emission
is preferentially emitted into a glass base due to the lower index contrast of the diamond-
glass interface as opposed to the diamond-air interface. However with just the bare bullseye
structure with no additional guiding elements, the field is not preferentially emitted into
the air layer with as the FBR of the structure -4.94dB as seen in Figure 5.2. However due
to the tight horizontal confinement provided by the high contrast bullseye structure, there
is a greater horizontal field confinement of the fields compared to the directivity of the
slab in Figure 5.1. We can note from the directivity plot that majority of the upward and
backward radiation is confined within a half angle of 45o (NA = 0.7).
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Figure 5.2: Structure, simulated normalized electric field intensity (log scale), and directiv-
ity plots of a 2D bullseye pattern with a horizontal dipole embedded at its focus point. The
angular axis in the directivity plot denotes the elevation angle in a spherical coordinate
system, and the radial axis denotes the directivity value in decibels (dB).

Solid Immersion Lenses

Solid Immersion Lenses (SILs) are semi-spherical structures with the radiating horizontal
dipole placed at the focus. Figure 5.3 shows the FDTD simulation results of a SIL with a
radius of 2.5µm [73]. SILs function by reducing total internal reflection at the diamond-air
interface by providing a surface that is normal to all rays radiating spherically outward from
the dipole. This in effect reduces total internal reflection thus maximizing the collection of
upward radiating field. As can bee seen in the directivity plot in Figure 5.3, the maximum
upward directivity is 4.71dB with a positive front to back ratio of 3.80dB. However as
can been seen the directivity plot, the SIL isn’t not great at focusing the emission as the
upward propagating field is confined within the whole upward half angle of 90o (NA = 1).
This reduces the maximum achievable forward directivity as the SIL doesn’t provide any
structural design that allows for specific focusing of upward propagating fields.
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Figure 5.3: Structure, simulated normalized electric field intensity (log scale), and direc-
tivity plots of a solid immersion lens with a horizontal dipole embedded at its focus point.
The angular axis in the directivity plot denotes the elevation angle in a spherical coordinate
system, and the radial axis denotes the directivity value in decibels (dB).

Nanopillars

Nanopillars structures are cylindrical shaped extrusions on the surface of the diamond with
the horizontal dipole placed in the center of the cylinder. Nanopillars function as a waveg-
uide wherein the dipole couples to the fundamental mode of the waveguide (HE11)[70].
This waveguide mode guides the upward emitting field from the dipole and couples it the
radiating modes in the the air with minimal reflection at the interface. Figure 5.4 shows
the FDTD simulation results of a dipole embedded within a nanopillar with a radius of
0.23µm. The field has a maximum upward directivity of 3.66dB, however the upward field
is scattered over the total upward half angle of 90o (NA = 1). The FBR of the nanopillar
is -3.19dB, which means that the dipole emits preferentially in the backwards direction.
Improvements on the nanopillar structures have been made by tapering the nanopillar to-
wards to the tip which ensures that all waveguide coupled fields are maximally emitted at
the tip of the waveguide [71] however the control of the emission mode of the structure
cannot be achieved with the nanopillar structure.

Several other design structures of emission control from solid state emitters exist which
include different permutations of the above described structures[8, 83], however arbitrary
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Figure 5.4: Structure, simulated normalized electric field intensity (log scale), and direc-
tivity plots of a nano-pillar structure with a horizontal dipole embedded at its focus point.
The angular axis in the directivity plot denotes the elevation angle in a spherical coordinate
system, and the radial axis denotes the directivity value in decibels (dB).

control of the field pattern is not attainable with any of the above described dielectric
structures.

5.3 Adjoint Optimized Structure

To have arbitrary control of the field pattern of NV centers, we can make use of inverse
design tool, known as adjoint optimization, that we discussed in Chapter 4. To do that let
us first look at the initial setup to the optimization problem that we intend to solve.

Intial Setup

We intend to design a two dimensional grating structure that would be able to efficiently
couple light emitted by the NV center to free space with a large FBR and a narrow upward
half angle emission. In addition to that we would like to see if we can design a nanophotonic
structure that would be able to control the output propagating mode profile such that it
can directly couple to a fiber placed above the surface of the diamond. This would allow

40



for the design of an integrated device that can be used to extract photons out of an NV
center without the need for additional bulky optics. As such the optimization problem can
be framed as follows: For a horizontal dipole, corresponding to a NV center embedded in
(111)-oriented diamond, positioned at a distance of 0.5um below the surface of diamond,
what two dimensional pattern etched on the diamond surface would maximize the upwards
directional coupling to a fiber of radius, r=0.7µm, positioned 2µm above the surface of the
diamond)?

The initial setup is presented in Figure 5.5. Since we intend to work with two di-
mensional structures, due to the ease of fabrication, we begin with the two dimensional
bullseye grating as our initial guess. The optimization region is set to have a footprint of
3µm× 3µm, with a periodicity of 282nm corresponding to the second order Bragg condi-
tion, and an etch depth of 0.3µm [76]. A cylindrical silicon fiber (nsilicon ≈ 1.44) of radius
0.7µm is placed at a distance of 2µm above the surface of the diamond, well beyond the
distance at which the fields from a bare bullseye structure tends to zero. Now from this
setup, we set the figure of merit (FOM) to be the overlap integral between the upward
propagating fields from the structure and the fundamental mode of the fiber at the surface
of the fiber, S:

FOM =
|
∫

(E×Hm.+ E×Hm).dS|2∫
Re{Em ×Hm}.dS

(5.2)

where E and H are the electric and magnetic fields from the structure at S, and Em

and Hm are the electric and magnetic fields of the fundamental mode of the fiber.

Adjoint Optimization Tool

For the performing the inverse design operation we use the Python based adjoint optimiza-
tion package, LumOpt [65, 84], together with the electromagnetic simulation application
Lumerical FDTD Simulation. The Automation API is used to interface between Python
optimization process and the and Lumerical simulations. Since we are interested in an
arbitrarily shaped structure with no fixed boundaries, we use topology optimization (see
Figure 4.4). Figure 5.6a shows an overview of the optimization process. The initial geome-
try is first defined in Lumerical FDTD, and the optimization constraints and cutoff values
are defined in Python. Once the optimization process is begun, in each iteration a forward
simulation with the dipole source, and an adjoint simulation with the adjoint source (fun-
damental mode source) at the fiber tip is performed in Lumerical. The results are then
exported to Python wherein the max[δ(FOM)] for each topological geometric inclusion is
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(a) (b)

Figure 5.5: The initial structure that is used to begin the optimization process. The
structure is initialized with a a bullseye structure with a periodicity corresponding to the
second order Bragg condition (p = λ/n), with a horizontal dipole embedded 500nm below
the surface of the diamond. A silicon fiber is placed 2µm above the and the figure of merit
to be optimized is the overlap between the fields of the structure and the fundamental
mode of the fiber.

calculated. If the change in the max[δ(FOM)] between each iteration is below the defined
cutoff region, the optimization process is exited, otherwise the geometry is updated as a
function of the max[δ(FOM)] according to the optimizer chosen, which in our case is the
L-BFGS method, to update the index profile of the structure.

Optimized structure

The FOM of the structure is calculated at each iteration and plotted in Figure 5.6b.
As can be observed, the optimization process is stopped when the change in the FOM,
δ(FOM), is relatively constant over a number of iterations. The final optimized structure,
which provides the maximum overlap between the output fields from the structure and the
fundamental mode of the fiber placed above the structure, is shown in Figure 5.7.

With the adjoint optimized structure we then perform FDTD simulation to analyze
the performance of the structure. As can be seen in the FDTD forward field simulation in
Figure 5.8a, the optimized structure is able to direct the emission from the dipole source
in a highly directional manner. The far field directivity plot in Figure 5.8b shows that the
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Figure 5.6: a)The flowchart representing the implementation of the inverse design process.
The forward and adjoint simulations are performed with the FDTD solver from the Lumeri-
cal suite, and the results are exported to Python using the Automation API. The derivative
of the figure of merit, δ(FOM), is calculated in Python and if δ(FOM) > cutoff the ge-
ometry of the structure is updated and the process continues until the δ(FOM) < cutoff.
b)Normalized FOM plot as a function of the iteration number in the inverse design process.

structure has a maximum upward directivity of 7.323dB, which is ∼3dB larger than the
fields from a solid immersion lens. Thus we see that by optimizing the structure to have
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(a) (b)

Figure 5.7: a) Index profile of the structure designed with adjoint optimization with the
horizontal dipole, where the colored blue indicates the diamond and the white space indi-
cate the etched region. b) Isometric view of the adjoint optimized structure.

maximal overlap with a fiber, we were able to increase the forward directivity to ∼ 14dB
larger than that of a rectangular slab. We note that with the adjoint optimized structure
we are able to collect ∼ 8 more power within a NA of 0.7 compared to a an NV center
embedded in a rectangular slab. This signature can be used in a confocal microscopy
setup to validate the efficacy of the fabricated structure. Furthermore all of the upward
emitting fields from structure is confined within a upward half angle of 45o (NA = 0.7).
In addition to that the FBR of the optimized structure is 4.71dB which shows that the
dipole emission is preferentially upwards. This shows the the adjoint optimized structure
is able to control the emission from the embedded dipole in a highly directional manner
whilst providing a maximum upward directivity compared to the other structures that
were previously discussed. Figure 5.8c shows the far field emission profile of the structure,
showing that the optimized structure performs as intended by producing a emission field
profile that has a maximum overlap with the fundamental mode of a fiber of radius 0.7µm.
This means that the field emitted from the structure is able to maximally couple to a fiber
placed above the structure without any additional guiding structures. This, in principle,
means that the complexity of the experimental setup required to image the fluorescence
and collect photons out of the NV centers embedded beneath the structure can be greatly
reduced. Howev . This design methodology offers a promising step forward in producing
a tightly integrated device which includes the fabricated structure packaged together with
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Figure 5.8: a) Simulated normalized electric field intensity (log scale) from the dipole within
the inverse designed structure. b) Directivity plot of the inverse designed structure. The
angular axis in the directivity plot denotes the elevation angle in a spherical coordinate
system, and the radial axis denotes the directivity value in decibels (dB). c) Simulated
normalized electric field intensity (log10(|E|2/|Emax|2)) of the far field emission profile from
the optimized structure.

a single mode fiber that can be used to excite the NV center and collect the fluorescence
from the NV center without the need of any additional optical components.

5.4 Sensitivity Analysis

To understand how the emission performance of the structure is affected by the position
of the NV center relative to the structure, we perform two sensitivity analysis: emission
sensitivity and excitation sensitivity.

5.4.1 Emission Sensitivity

An emission sensitivity analysis was performed to calculate the sensitivity of the structure’s
emission performance with respect to the spatial position of the embedded dipole or the
NV center. Using the reciprocity of electromagnetic fields, the structure was illuminated
from above (at the location with the fiber 2µm above the surface of the structure) with the
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fundamental mode source of the fiber. Figure 5.9 shows the two dimensional normalized
field plots (second row) and the one dimensional normalized field plots across the horizontal
coordinates and the depth from the surface of the structure (third row). Due to reciprocity,
the field strength at each location indicates the relative overlap of the emission field with
the output fundamental mode, if the dipole was placed in that location. As can be noted,
the performance of the structure has a high sensitivity to the lateral position of the NV
center. The structure has an intended peak performance for a dipole placed at x = y = 0
at a depth of z = 0.5µm with a full-width half maximum of 200nm and 160nm across
the x and y dimensions respectively. For a diamond sample with a concentration of 5ppb
(1ppb = 180µm−3), which is typically used in sensing applications, the average distance
between each NV center is ∼ 103.4nm. Thus with a diamond of 5ppb concentration, this
would mean there is a reduction in the emission from the background emitters that are
not positioned directly in the intended position. With respect to the depth of the NV, the
performance of the structure peaks steeply at the intended depth of 0.5µm. With further
increase in the depth of the dipole, the structure’s performance decreases more gradually
compared to the lateral x and y position of the dipole.

5.4.2 Excitation Sensitivity

To observe fluorescence from the NV centers, the NV centers in a confocal microscopy
setup are excited with an above resonant energy source with a wavelength of 532nm as
seen in Figure 2.2. To observe the focusing capabilities of the structure at for excitation
light at a wavelength of λ = 532nm, perform a simulation of the structure illuminated
from the above with a plane wave. Figure 5.10 shows the two dimensional normalized
field plots (first row) and the one dimensional normalized field plots across the horizontal
coordinates and the depth from the surface of the structure (second row). As seen in x
and y axis field plots from Figure 5.10, the structure successfully focuses the fields at the
location of the NV center (x = y = z = 0) with a full-width half maximum of 160nm
and 140nm across the x and y dimensions respectively.. Thus with a diamond of 5ppb
concentration, with average NV center separation of ∼ 103.4nm, this would mean there is
a reduction in the excitation from the background emitters that are not positioned directly
in the intended position. With regards to the depth of the illumination, although the
illumination intensity is not maximised at the dipole position at a depth of 0.5µm, the
illumination is large enough to excite an NV. Furthermore, even if an NV located at the
maximized depth of 0.65µm is excited, the fluorescence from the emitted structure will be
suppressed as we saw previously in Figure 5.9.
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Figure 5.9: The simulated electric field intensity of the structure when illuminated from
above with the intended fundamental mode source corresponding to the spectrum of an
NV center at room temperature. Due to the reciprocity of electromagnetism, the strength
of the fields in the structure correspond to the sensitivity of the output of the fields to the
relative position of the dipole within the structure. First row: Fundamental mode source
used to illuminate the structure from 2µm above the surface of the structure. Second row:
Two dimensional normalized field plots. Third row: One dimensional normalized field plots
across the horizontal coordinates(x and y) and the depth within the structure.

47



|E|2/|Emax|2

XZ plane (y = 0) YZ plane (x = 0) XY plane (z = 0)

X-axis (y = z = 0) Y-axis (x = z = 0) Z-axis (x = y = 0)

Figure 5.10: The simulated electric field intensity of the structure when illuminated from
above with a fundamental mode corresponding to a wavelength of 532nm. The electric
field strength within the structure correspond to the excitation strength of the NV centers
at that position. As can be seen the structure is able to focus the excitation light to
the intended NV center location thus reducing the contributions from background NV
centers. First row: Two dimensional normalized field plots. Second row: One dimensional
normalized field plots across the horizontal coordinates(x and y) and the depth within the
structure.

5.5 Confocal Microscopy Setup

To observe the fluorescence out of the diamond structures we use a confocal microscopy
setup, the theory of which was covered in Chapter 2. As discussed, the confocal microscopy
setup allows us to observe images of the NV centers at specific depths of interest whilst
blocking out the images formed different depths. Figure 5.11 shows the schematic of the
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experimental setup used in the lab to observe fluorescence from NV centers. Although
we have optimized the structure for a fiber mode, as we noted above, with the adjoint
optimized structure we are able to collect ∼ 8 more power within a NA of 0.7 compared to
a an NV center embedded in a rectangular slab. This signature can be used of the adjoint
optimized structure can be used to characterize the fabricated structure.

Figure 5.11: The confocal microscopy setup used to observe fluorescence from the NV
centers in the diamond sample. The corresponding component names have been listed in
Table 5.1.
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Component Manufacturer Part Diagram

Laser Sprout Sprout-G LS
Fiber-coupled red LED Thorlabs M625F2 LED

Diamond sample Applied Diamond Inc
< 1ppm, < 5ppb,
(111) orientation

S

Translation stage
Thorlabs MBT616D TS1

Machifit LD-60-LM TS2

Galvo mirror Thorlabs GVSM002-US G
Objective Mitutoyo MY 100X-806 O
CMOS camera Edmund Optics EO-5012M C
Dichroic mirror Semrock LM01-552-25 DM
Flip Mount Thorlabs TRF90 FM
Mirrors Newport 10D620ER.2 M

Lens Thorlabs

AC254-200-A L1

AC254-100-A L′1
AC254-200-A L2

AC254-100-A L3

AC254-35-A L′3
90-10 Beam splitter Thorlabs BSN10 BS
Iris Thorlabs ID25Z I
Single mode patch cable Thorlabs P1-630A-FC-2 SMF
Multi mode patch cable Thorlabs M76L02 MMF
Vertical Breadboard Thorlabs MB12 BB
Fiber Coupler Lens Thorlabs C220TMD-A CL

Table 5.1: Experimental components for confocal scanning microscopy of NV centers

Objective

The objective used in the confocal microscopy setup is a infinity corrected Mitutoyo MY
100X-806 model. It is important that when working with NV centers the objective have
a magnification of > 80×[24]. The Mitutoyo MY 100X-806 is a dry objective with a
numerical aperture(NA) of 0.7 and a working distance of 6mm. Furthermore the objective
is also infinity corrected, which means the light from the sample that exits through the
back aperture of the objective forms a collimated infinity parallel beam before reaching
the tube lens (L1). This means that the magnification of the objective does not change
even if the distance between the objective lens and the tube lens is changed. Furthermore
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this also means placing optical elements such as mirrors or filters between the objective
lens and the tube lens wouldn’t shift the position of the image formed. From the objective
specification, the magnification provided by the objective is thus m = 100 × f1

200mm
. The

effective focal length of the objective is fobjective =
fdesigntube

m
= 200mm/100 = 2mm. To

produce a diffraction limited spot on the sample, the excitation light should fill the back
aperture of the objective. The back aperture of the objective daperture = 2×fobjective×NA =
2 × 2mm × 0.7 = 2.8mm. The objective has a working distance of 6mm and the Field of
View(FOV) of the microscope in mm is given by, FOV = 24/mobjective.

The total linear magnification of the microscope is calculated as follows:

mtotal = mobjective ×mtelescope

= (100× f1

200mm
)× f3

f2

(5.3)

where f1, f2, and f3 and the focal lengths of the lenses in L1, L2, and L3 respectively in
Figure 5.11. As can be noted from Figure 5.11, the lenses L1 (L′1) and L3 (L′3) are placed
on flip mounts(FM), and by switching between different configurations of L1 or L′1, and L2

or L′3, different magnifications of the microscope can be achieved as summarized in Table
5.2.

Magnification, mtotal f1(mm) f2(mm) f3(mm)
50 200 200 25
100 200 200 50
100 100 200 100
100 50 200 200

Table 5.2: Summary of magnifications for different lens configurations.

Wave Propogation

To model the propagation of the fluorescence from the NV center to the detector so as
to determine the positions of the lenses in relation to the iris and camera, we make use
of a Gaussian Wave propagation method used in Reference [24] with the ABCD matrix
approach. We employed the methodology introduced in Reference [85] wherein the beam
profile is evolved with two real rays using the ABCD ray matrix method.
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In ray optics the ABCD matrix method allows us to model the effect of various optical

elements on the path of a ray. The rays are represented as a column vector

(
x
θ

)
where x

is the distance of the ray from the optical axis and θ is the angle between the ray and the
optical axis. The effect of the propagation through air and thin lenses are then modelled
with the ABCD matrices as:

Mair =

(
1 d
0 1

)
(5.4a)

Mlens =

(
1 0
− 1
f

1

)
(5.4b)

where d is the propagation distance through air, and f is the focal length of the lens.

Although a simple ray optics approach wouldn’t suffice to model Gaussian beam propa-
gation, the Arnaud method introduced in Reference [85] offers a bridge to model Gaussian
beams with the ABCD matrix approach. In general the intensity distribution of a Gaussian
or a TEM00 wave is defined as:

I(r, z) = I0

(
w0

w(z)

)2

exp

(
−2r2

w(z)2

)
(5.5)

with

I0 =
2P

πw2
0

(5.6)

where w0 is the beam waist, P is the total power in the beam, r is the radial distance
orthogonal to the optical axis of the beam, z is the distance along the optical axis, and w(z)
is known as the beam radius or the distance from the optical axis at which the intensity
of the Gaussian beam reduces to 1

e2
. The beam radius can be expressed as:

w(z) = w0

√
1 +

(
λz

πw2
0

)2

(5.7)
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where λ is the wavelength of the beam. The profile of the beam expressed by w(z) is
hyperbolic in nature as can be seen in Figure 5.12. The entire beam profile of the Gaussian
beam can be defined by two rays ξ and η at z = 0 where:

ξ =

(
0
λ
πθ0

)
(5.8a)

η =

(
w0

0

)
(5.8b)

where the asymptotic angle θ0 = λ
πw0

. The beam radius can then be computed from the

x components of the column matrices ξ and η as w(z) =
√
ξ2
x + η2

x. The evolution of the
Gaussian beam radius through the optical components can now be computed by action of
the ABCD matrices corresponding to the optical elements on the two rays ξ and η.

Figure 5.12: The profile of a Gaussian beam.

Using the wave propagation ray tracing method listed above the, the beam radius of
the system is plotted to identify where the iris and the camera should be located. In Figure
5.13 we plot the Gaussian beam propogation through the system for the lenses with focal
lengths of f1 = 100mm, f2 = 200mm, and f3 = 200mm.

Galvo Mirrors

To perform fine scanning over the sample we use the two axis galvo GVSM002-US from
Thorlabs. We built a manual scan circuit (see Appendix C) to control the individual galvo
mirror angles with a resolution of 1V/o.
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(a)
(b)

Figure 5.13: a) The beam radius evolution of the fluorescence collected by the objective as
it propagates from the back aperture of the objective to the camera. Focal lengths used in
this plot are f1 = 100mm, f2 = 200mm, and f3 = 200mm. b) Close up of bream radius
plot at position of iris.

Dichroic Mirror

To perform spatial separation of the excitation laser light of 532nm and emission light from
the NV center of ∼680nm, we use the dichroic mirror Semrock LM01-552-25. The filter
has a reflectance of 96−99% for wavelengths <552nm and has a transmittance of 94−95%
for wavelengths >552nm.

Diamond Sample

The sample of the diamond we use for the experiment are pure type IIa diamonds with NV
center concentration of 1ppm(1ppm = 1.80× 1017cm−3 ) and <5ppb (1ppb = 180µm−3 ).
The diamonds were purchased from Applied Diamonds Inc. and are cut along the (111)
axis wherein the optical dipole axis is horizontal with respect to the surface of the diamond.

Camera and Fiber Coupler

The fluorescence from the objective can be collected in the camera C, for imaging purposes
or be coupled to the fiber coupler FC, for spectral and g(2) measurement purposes, by
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switching the mirror mounted on to the flip mount(M,FM) to change the path of the
beam.

5.5.1 Microscope Results

Once the microscope was built we captured some preliminary images for calibration of
the image. We used a silicon wafer with a standard dose test design patterned on it with
Electron Beam Lithography. Some of the images taken for microscope calibration are
presented in Figure 5.14.

(a) (b)

Figure 5.14: a) Image of a standard JEOL EBL dose test wafer. The size of the individual
square in the checkerboard pattern is 2.5µm× 2.5µm. b) Image of a standard JEOL EBL
dose test wafer. The size of the individual square in the checkerboard pattern is 5.7µm×
6.4µm. 50x magnification was used in both images.(f1 = 100mm, f2 = 200mm, f3 =
100mm)

We then tried to look for NV centers within a diamond sample from Element Six with a
concentration of <200ppm using the confocal microscope setup. Figure 5.15 shows some of
the images that were produced. Figure 5.15a shows the image of the sample captured with
just a red LED for illumination. This shows us the image of the surface of the diamond
sample. When the green excitation laser (λ = 532nm) with a power of 7µm, was turned
on a bright spot appears in the image as seen in Figure 5.15b. This bright spot with
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the radius of ∼ 0.8µm is a suspected image of the NV center fluorescence. Figure 5.15c
shows the image of the sample with the red illumination LED turned off. The presence
of the NV center can be confirmed by performing a spectral measurement of the emitted
fluorescence.(f1 = 100mm, f2 = 200mm, f3 = 100mm)

(a) (b) (c)

Figure 5.15: a) Image of diamond sample with red LED. Image shows reflections off of
the diamond surface b) Image of diamond sample with red LED and green excitation laser
turned on. The red circle indicates the suspected fluorescence from NV center. c) Image
of diamond sample with only green excitation laser turned on.

5.6 Conclusion and Outlook

As we have seen in the simulations presented above, by using adjoint optimization we
can design subwavelength structures that are able to control the directionality of photo
emission from NV centers. We saw that with the adjoint optimized structure the maximum
forward directivity was 7.323dB whilst all forward emission was confined to a 45o (NA =
0.7) upward half angle. As discussed above this directivity was not achievable with any
of the other bare structures that currently exist. A further advantage of using the inverse
approach includes the possibility to shape the output mode of the NV center emission.
In our case above we were able to design a structure that produces an output mode that
overlaps with the fundamental mode of a fiber without the need of additional bulky optical
elements. This design approach is a promising step forward in designing an integrated
device with a single mode fiber that can be used to both excite the NV centers and collect
fluorescence and single photons from the NV centers. We also have assembled a confocal

56



microscopy setup capable of observing and collecting NV center emission and presented
some preliminary images that we observed with the microscope.

Although the structure proposed above is advantageous in several aspects, there are
still avenues for further improvements. As is the case with any optimization problem, since
there doesn’t one unique solution, the output of the results is only as good as the initial
starting point and constraints placed on it. To further enhance the upward emission of the
from the NV center, the initial optimization structure could include mirror like structures
on the backward emitting face of the device. The addition of metallic mirror structures
could also be used to further improve the Purcell enhancement of the device. Furthermore
to optimize for the parameters of the structure including the depth of the NV center,
and thickness of the grating, a combination of particle swarm optimization and adjoint
optimization can be combined in a back and forth fashion wherein the depth/thickness is
optimized via particle swarm and the topology of the 2D grating is optimized via adjoint
optimization [86].

On the experimental side of things one of the first steps to be taken would be to fabricate
the proposed design above. There exists literature on the standard process to be followed
for the fabrication of the structure on diamond samples [70, 76, 50, 87, 88, 89]. One of the
main fabrication challenges to be overcome would be spin-coating of the small diamond
samples which would result in large edge bead. One approach to overcome this would be to
etch a recess of the appropriate size in a silicon wafer and attaching the sample to the recess
with vacuum bonding. With the sample flush with the surface of the silicon wafer, the edge
bead effects will be minimized. It is also important to note that once the diamond sample
is etched, the quality of the shallow NV centers are drastically reduced, but this can be
overcome by annealing the sample post etching. Another approach that could be considered
instead of randomized fabrication of the structures over a randomly distributed population
of NV centers, would be the deterministic implantation of the NV centers over fabricated
structures via ion implantation [32, 33]. In addition to the fabrication challenges in the
design of the experimental setup, the galvo and the camera could be integrated to a single
control and monitoring station to automate the scanning and imaging of over the samples.
This can be achieved by implementing the galvo on a DAQ (data acquisition) platform.
The results presented in this chapter opens up a whole avenue for designing structures with
arbitrary output field patterns that can be used in several different applications.

While working on this project we became aware of two recent works that use inverse
design to design structures for photon extraction from NV centers [90, 91]. In both papers
the authors use adjoint optimization to control the extraction of photons from an NV center
embedded in diamond with a two dimensional grating structure designed with topology
optimization. The authors in Reference [91], proposed a design for a silicon grating placed
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above the surface of the diamond. The FOM used to design the structure, in this case,
was the photon extraction efficiency at the surface of the diamond. This efficiency was
defined as the ratio between the photon extraction with and without the grating structure.
Furthermore, this paper also performed a two dimensional optimization of the grating
thickness before a three dimensional optimization was performed to design the grating.
This resulted in a reported upward half angle confinement of 30o. However this work
did not perform any mode shaping of the upward propagating emission from the NV
centers. In a similar manner in Reference [90], a gallium phosphide grating structure was
designed to control the emission from NV centers. Here, the authors used two different
FOMs to test the photon collection enhancement. Total flux collection and local density
of states (LDOS) were used as the two different figures of merit. It was shown that
higher photon collection was achievable only by optimizing the flux collection, as Purcell
factor enhancement by optimizing the LDOS was not achievable with a purely dielectric
structure. This result validates the approach we took in optimizing the field collected above
the diamond. Furthermore, the authors of the paper also fabricated the structure and
used ion implantation to position the NV centers at precise locations below the structure.
However in this paper no mode shaping of the emission of the NV centers was performed.
Furthermore in both the papers, the enhancement was done with a NV center in a (100)
diamond. As shown in Reference [50], a larger enhancement of the output flux can be done
with a horizontal dipole embedded in a (111) diamond. The progress made in both the
papers give us confidence and validates our approach that using adjoint optimized grating
structures for photon extraction is a step in the right direction.
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Part II

Microwave to Optical Domain
Transducer with Single NV Centers
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Chapter 6

Microwave to Optical Domain
Conversion I

6.1 Introduction

The development of superconducting qubits, that operate at gigahertz frequencies, for
quantum information processing applications have been rapidly evolving in recent years
[92, 93]. However microwave photons, that couple to superconducting qubits, are unus-
able in long range networks as microwave photons suffer from losses due to noise in the
environment. As can be seen from the spectral radiance plot of blackbody radiation in
Figure 6.1, for temperatures T≤300K, there is large component of background radiation
at microwave gigahertz frequencies. This interference with the background radiation is
the primary reason why microwave photons are unusable for long range communications.
Optical photons, that operate at hundreds of terahertz frequencies, on the other hand
have low transmission losses over long distances and have been used to make long lived
quantum memories [22, 23, 9]. Hence there is a need for a quantum interface between
microwave and optical photons. This component is essential in realising a scalable hybrid
quantum network where information needs to be efficiently interfaced between supercon-
ducting microwave circuits, for quantum information processing, and optical photons, for
communication and memories. Currently there exists several theoretical and experimental
proposals for the microwave to optical frequency conversion. These include nanomechnical
oscillators [5, 94, 95, 96, 97], non-linear crystals modulators [98, 99, 100, 6], Rydberg gases,
and more recently the use of rare earth doped crystals [101, 102, 103, 104].

In the nanomehanical or optomechanical approach (Figure 6.2a) [5, 94, 95, 96, 97],

60



Figure 6.1: Blackbody spectral radiance plot for different temperatures against frequency.
The dotted black line shows the frequency band of visible light. The spectral radiance is
the emissive power per unit area, per solid angle for different frequencies (W.sr−1.m−3).

a mechanical resonator, such as a membrane, that couples to both the microwave and
optical modes is used to interface between a optical cavity and a microwave cavity. The
mechanical resonator is positioned between the optical and microwave cavity in such a
way that it is coupled to both the microwave and optical cavities which results in effective
coupling between the microwave and optical domains via the vibrational modes. This
coupling is done via radiation pressure wherein there is an exchange of momentum between
the mechanical membrane and the electromagnetic field. These methods of frequency
conversion have shown to exhibit quantum conversion efficiencies of ∼ 0.1 [5]. However
one of the downsides of using the nanomechanical approach is achieving a low noise in
the output which requires the mechanical resonator to be cooled down to its ground state.
Cooling down of the resonator can be however quite challenging to reduce vibrational noise
at the single-quantum level.

In the second approach [98, 99, 100, 6], a microwave field is used to modulate the
refractive index of the optically transparent material non-linear materials (Figure 6.2b).
This results in the formation of symmetric sidebands produced around the optical carrier
frequency with one sideband at the microwave frequency. One of the symmetric sideband
can be removed by manipulation of the transmission spectrum of the resonator, however
quantum conversion has been demonstrated to ∼ 0.01 [98]. The main challenge with this
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(a)
(b)

(c) (d)

Figure 6.2: a) In the optomechanical approach for frequency conversion, a mechanical
resonator such is coupled to both the optical and microwave cavities thus allowing allowing
for an effective coupling between both the microwave and optical cavities. Figure adapted
from Reference [5] b) In the nonlinear materials approach, a microwave pump is used to
modulate the refractive index of a non-linear material, such that symmetric sidebands
around the optical pump frequency is produced. The down-converted sideband can be
suppressed by detuning the optical carrier frequency from resonance. Figure adapted from
[6, 7]. c)Ensembles of Rubidium atoms, in the Rydberg state, are used in a six-wave
mixing scheme to convert photons in the microwave transition (M) to photons in the
optical transition (L). Figure adapted from Reference [8] d) In the rare-earth materials
approach, ensembles of Λ systems based on rare-earth ions doped into glass-like materials
are used as an interface between the optical and microwave photons. By coherently driving
the microwave transition (|1〉 ↔ |2〉) and one optical transition (|2〉 ↔ |3〉) and optical field
is produced in the other optical transition (|1〉 ↔ |3〉). Figure adapted from Reference [9]
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approach is producing non-linearities that are high enough for the conversion between the
microwave and optical frequency domains, and also in ensuring that the conversion is single
sideband.

In the Rydberg gasses approach [105, 106], ensembles of cold trapped atoms, such as
rubidium, are used together with several pumps that coherently couple to the multiple
transitions, allowing for the conversion from microwave to optical regime. Figure 6.2c,
shows a one such scheme which uses a six wave mixing process to convert the the microwave
photons in the M transition to converted photons in the L transition. Frequency conversion
using Rydberg states in rubidium atoms was demonstrated to achieve maximum conversion
efficiencies of ∼ 0.05 [105].

The final more recent approach in microwave to optical domain conversion involves
the use of ensembles of Λ-system quantum emitters based on rare-earth ions doped into
glass-like materials [101, 102, 103, 104] as a medium that couples to both the optical and
microwave cavities (Figure 6.2d). Rare earth materials, such as Er3+ : Y2SiO5, are attrac-
tive due to narrow inhomogenous broadening of the microwave and optical transitions and
long coherence times. The approach involves the use of a Λ system which has a microwave
frequency transition and two optical frequency transitions. By coherently driving the mi-
crowave and one of the optical transition, an optical field is produced in the other optical
transition. Although no conclusive demonstrations have been reported some preliminary
results in proof-of-concept experiments have shown this methodology to produce conver-
sion efficiencies of 10−4 [101] with aims of achieving experimental conversion efficiencies
of > 0.3 [104]. One of the main downsides in using spin ensembles for the conversion
between the microwave and optical domains are the losses in the system due to collective
spin decoherence.

Conversion Scheme Demonstrated Conver-
sion Efficiency

Optomechanical Resonator ∼ 0.1 [5]
Nonlinear Materials ∼ 0.01 [98]
Rydberg Gases ∼ 0.05 [105]
Rare-Earth Ions ∼ 10−4 [101]

Table 6.1: Summary of conversion efficiency schemes and the experimentally demonstrated
conversion efficiencies

In this work, we investigate the potential of micro-fabricated devices with integrated
optical and microwave cavities that use individual three-level solid-state emitters. We will
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be exploring the potential of using the three level Λ configuration in single NV centers
coupled to a microwave and optical cavity for efficient conversion between the microwave
and optical regimes. The long spin-coherence times, and well defined transitions that
correspond to the microwave and optical frequency regimes make NV centers a viable
candidate to investigate in the conversion schemes. Furthermore, the solid-state nature
of NV centers make it more attractive due to the potential of scalability and on-chip
integration. We will explore a similar scheme for frequency conversion as used in the
rare-earth ion approach. We propose the use of the Λ system in single NV centers which
has a microwave frequency transition and two optical frequency transitions as an interface
between an optical and microwave cavity. By coherently driving the microwave cavity and
one optical transition, an output field is produced in the optical cavity. The goal of this
work is to identify the microwave and optical cavity parameters that would maximize the
conversion between the input microwave field and the output optical field.

In this chapter, we begin by briefly looking at the cavity dynamics of a two level emitter
coupled to a cavity to get a basic understanding of the dynamics of an emitter coupled
to a cavity. In Section 6.3, we will introduce the proposed model which we intend to
study in which a Λ-system is coupled to a microwave and optical cavity. Based on the
proposed model, in Section 6.4 we then present two definitions for the conversion efficiency
between the microwave and the optical regimes: A) an intrinsic definition and B) a extrinsic
definition for the conversion. The analysis in this chapter will be focused on understanding
the conversion efficiency of the former kind. In Section 6.5, we perform analytical non-
Hermitian approximations of the ground state and first manifold of the system to get an
intuitive understanding of the system dynamics. In Section 6.6 we employ the Python
based QuTIP package [107, 108] to investigate via Monte-Carlo simulations the intrinsic
conversion efficiency of the system with: a i) weak continuous drive microwave field and ii)
with a single microwave photon. The QuTIP package is an computational physics package
that is used to simulate the dynamics of open quantum systems.

The Python codes used to perform the simulations in this chapter have been attached
in Appendix E.

6.2 Two-Level Emitter in a Cavity

Before we begin looking into the three level Λ system coupled to two cavities, in this section
we will very briefly go over the dynamics of a two level system resonantly coupled to a
cavity. Studying the dynamics of a two level emitter in a cavity will serve as a sanity check
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Figure 6.3: Two level emitter coupled to a cavity.

to understand the results we obtain from the three level Λ system. The dynamics of cavity
with a single atom emitter inside the cavity is described by the Hamiltonian:

H = Ho +Hint (6.1)

where

Ho/~ = ωa |e〉 〈e|+ ωca
†a (6.2a)

Hint = −d̂ · Ê (6.2b)

where |e〉 and |g〉 are the excited and ground states of the emitter respectively, a is the
annihilation operator of the cavity mode, ωe is the |g〉 ↔ |e〉 transition frequency, ωa is the
cavity mode frequency, Ê is the electric field operator, and d is the atomic dipole moment
operator. With the second field quantization, we can express the electric field in the cavity
in terms of the annihilation and creation operators in the Heisenberg picture as:

Ê = ~ζE(~r)

√
~ωc

2Vmodemax{ε(~r)|E(~r)|2}
(ae−iωct + a†eiωct) (6.3)

where E(~r) is the spatially dependent electric field within the cavity, ~ζ is the unit
polarization vector of the electric field, ε(~r) is the permitivity at position ~r in the cavity,
Vmode is cavity mode volume, and ωc is cavity resonance frequency. The mode volume of
the cavity Vmode is given as:
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Vmode =

∫∫∫
V
ε(~r)|E(~r)|2dV

max{ε(~r)|E(~r)|2}
(6.4)

where E(~r) is the electric field at position r within the cavity. The dipole operator in
the Heisenberg picture can be expressed as:

d̂ = −~µdeg(|g〉 〈e| e−iωat + |e〉 〈g| eiωat) (6.5)

where ~µ is the unit vector in the direction of the dipole orientation, and deg is the atomic
dipole matrix element. With these above two definitions, we can write the interaction
Hamiltonian as:

Hint = ~µdeg ·~ζE( ~rA)

√
~ωc

2Vmodemax{ε(~r)|E(~r)|2}
(ae−iωct+a†eiωct)(|g〉 〈e| e−iωat+ |e〉 〈g| eiωat)

(6.6)

where ~rA is the position of the emitter. We can note that the interaction Hamiltonian
contains both fast oscillating terms e±(ωa+ωc)t, and slow oscillating terms e±(ωa−ωc)t. Here
we can invoke the rotating wave approximation (RWA) to ignore the fast oscillating terms
under the assumption that |ωa − ωc| << ωa + ωc, which means that the fast oscillating
terms average to zero over long times where only the slowly varying dynamics of the system
is considered. Returning back to the time independent Schrodinger picture, the interaction
Hamiltonian can be written as:

Hint/~ = g( ~rA)(a |e〉 〈g|+ a† |g〉 〈e|) (6.7)

where we define the position dependent field-atom coupling rate g( ~rA) = g0Ψ( ~rA)cos(ξ),
with

g0 = deg

√
ωc

2εM~Vmode
(6.8a)

Ψ( ~rA) =
E( ~rA)

|E( ~rM)|
(6.8b)

cos(ξ) = ~µ · ~ζ (6.8c)
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where rM is the position within the cavity where the electric field intensity is maximum,
εM is the dielectric constant at that position, and ξ is the angle between the unit dipole
vector ~µ and the unit polarization vector ~ζ. Unless otherwise stated, we focus on the
idealized case where Ψ( ~rA) = 1, and cos(ξ) = 1 such that g = g0. This corresponds to the
emitter placed at the field maximum of the cavity mode and the emitter’s dipole moment
aligned with the mode polarization. The coupling rate g refers to the rate at which the
cavity mode couples to the emitter, and the value 2g is known as the one photon Rabi
frequency, as we shall see below. It can be noted that g is proportional to the dipole moment
of the emitter and inversely proportional to the mode volume of the cavity. Thus with a
large atomic dipole moment and low mode volumes of the cavity, there is strong coupling
between the emitter and the cavity. Putting the initial and interaction Hamiltonian terms
together, the Hamiltonian of the two-level emitter in a cavity, otherwise known as the
Jaynes-Cummings Hamiltonian, (Figure 6.3) in the rotating wave approximation can now
be written as:

H/~ = ωe |e〉 〈e|+ ωaa
†a+ g(a |e〉 〈g|+ a† |g〉 〈e|) (6.9)

In this study we assume that the cavity mode is on resonance with the two level emitter,
ωe = ωa. The losses of the system include the cavity field decay rate, κ, and the atomic
decay rate, Γ. The cavity field decay rate, κ, refers to the rate at which photons are lost
from the cavity, whereas the atomic decay rate Γ refers to the spontaneous emission rate of
the atom which includes decay into non-cavity modes and non-radiative decay. Throughout
this thesis, to observe the open system dynamics of a given system, we use the Monte-Carlo
solver provided by the QuTIP package to perform the simulations.

6.2.1 Monte-Carlo Solver

Here we will very briefly describe the Monte-Carlo solver from the QuTIP package, which
is used to simulate the different systems in this thesis. In quantum optics, the open system
dynamics of a quantum state is described by the quantum master equation [109]:

dρ

dt
= − i

~
[H, ρ] +

∑
k

(ĈkρĈ
†
k −

1

2
Ĉ†kĈkρ−

1

2
ρĈ†kĈk) (6.10)

where ρ is the time dependent density matrix of the state, H is the Hamiltonian of the
system, and Ĉk are the collapse operators describing the loss terms of the system. For the
case with the two level emitter coupled to a cavity, these collapse operators are:
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Ĉ1 =
√
κoa, (6.11a)

Ĉ2 =
√

Γ |g〉 〈e| , (6.11b)

The collapse operator Ĉ1 describes the decay of the cavity field modes with decay rate
κ. The collapse Ĉ2 describes the spontaneous emission decay of the emitter from the
excited state |e〉 to the ground state |g〉 with a decay rate Γ. The state evolution can
thus be derived by iteratively solving the quantum master equation. However, keeping
track of the state density matrix of the system for individual time steps requires a lot of
computational processing and memory. This is a very inefficient way to solve the state
evolution, especially when the system is large consisting of several atomic states and with
multiple cavity modes. A more efficient way to simulate the dynamics of the system is to
use the Monte-Carlo, or quantum trajectory, approach for the state evolution [110]. Here
the time evolution of the state is described by the Schrodinger equation with the effective
non-Hermitian Hamiltonian:

Heff = H − i~
2

∑
k

Ĉ†kĈk (6.12)

In addition to the time evolution via the Schrodinger equation, the system is monitored
continuously at each time step δt, where a system collapse may take place with a certain
probability. For instance if the environmental measurements register a quantum jump via
the spontaneous emission of the emitter, the wave function undergoes a jump to the state
described by:

|ψ(t+ δt)〉 =
Ĉ2 |ψ(t)〉√

〈ψ(t)| Ĉ2
†
Ĉ2 |ψ(t)〉

(6.13)

where the probability of collapse is:

P2(t) =
〈ψ(t)| Ĉ2

†
Ĉ2 |ψ(t)〉

δt
∑

k Ĉ
†
kĈk

(6.14)

This is extended to all collapse operators included in the system Ĉk. This stochastic
process is repeated over a number of times, or trajectories, and the final state of the
system is averaged over the total number of quantum trajectories. Thus the Monte-Carlo
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approach is essentially a stochastic way of solving the master equation. In this thesis we
use the Monte-Carlo solver provided by the QuTIP package. As mentioned above, QuTIP
is a Python based computational physics package that has inbuilt functions that can be
used to simulate the dynamics of open quantum systems. The advantage of using the
Monte-Carlo approach over solving the master equation, is that only the state vector of
the system is required to be stored in the computers memory, as opposed to the entire
density matrix. As mentioned previously, this is especially advantageous for large systems.
For instance, for a system with a Hilbert space of size n, the master equation solver requires
n2 computations, while the Monte-Carlo solver requires only n computations.

Although for the system consisting of a two-level emitter coupled to a cavity the over-
head cost of averaging over multiple stochastic trajectory calculations does not offer any
specific advantage, since we will be working with larger systems in the subsequent sections,
we use the Monte-Carlo solver here as well for the sake of consistency and as a form of
sanity check. In QuTIP, we set up the simulation by first defining the Hilbert space of
the system. This Hilbert space is the tensor product of the Hilbert space of the two level
emitter and the Hilbert space of the cavity. In our case this results in a vector space of
dimension 2 + N , where N is the size of the cavity mode Hilbert space. Although ide-
ally in a physical system N → ∞, to perform numerical simulations we have to truncate
the Hilbert space. This truncation should be done such that N is large enough to produce
physically meaningful results, whilst also being small enough that the simulation time isn’t
too long. In the simulations in this thesis, we set N = 7, as for any manifold level N < 7
the system evolution was not accurate, while for N > 7 the simulation time was long.

The atomic and annihilation operators of the system are then defined in the Hilbert
space as matrices. For instance the cavity mode annihilation operator, a, is defined as:

a = I2 ⊗


0
√

1 0 · · · 0

0 0
√

2 · · · 0

· · · · · · · · · . . . · · ·
0 0 0 · · ·

√
N

0 0 0 · · · 0

 (6.15)

and the atomic operator |e〉 〈e| is defined as:

|e〉 〈e| =
(

1 0
0 0

)
⊗ IN (6.16)

where In is the n dimensional identity matrix, and ⊗ is the tensor product. We extend
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this methodology to define the collapse operators Ĉk. These operators can then be used to
construct the Hamiltonian of the system (Equation 6.9). Furthermore we set the number
of trajectories to be ntraj = 500. This value was chosen because the errors in the simulation
scale as 1/ntraj, and for ntraj = 500 we get good accuracy. The Hamiltonian and the initial
state vector are then fed to the Monte-Carlo solver (mcsolve) in QuTIP, along with the
collapse operators to simulate the time evolution of the of the system.

Now that we’ve introduced the solver we use, let us begin simulating the system. Before
we start introducing losses into the system, lets observe what happens in a perfectly lossless
system (κ = 0,Γ = 0) by using the Monte-Carlo solver. In a perfectly lossless system, this
reduces to solving the Schrodinger equation:

d

dt
|ψ(t)〉 =

1

i~
H |ψ(t)〉 (6.17)

The system is initialized with the emitter in the excited state with no photons in the
cavity, ψ(0) = |e, 0〉.

As can be noted from Figure 6.4, in a lossless system we observe oscillations known as
Rabi between the between the states |e, 0〉 state and the |g, 1〉. The expectation value 〈a†a〉
is the probabilistic expected value of the photon number in the cavity, and the expectation
value 〈|e〉 〈e|〉 is the probabilistic expected value that the emitter is in the excited state
|e〉. In general for photon number n, these oscillations occur at a frequency of 2g

√
n+ 1,

between the |e, n〉 and |g, n+ 1〉 states. Now we see why 2g is known as the single photon
Rabi frequency.

From here we can introduce losses into the system to observe the dynamics of a lossy
system. Here we would like to explore two regimes of the system: namely the strong
coupling regime, where g > κ,Γ, and the weak coupling regime , g < κ,Γ.

6.2.2 Strong Coupling Regime

In the strong coupling regime, the coupling of the atom to the cavity modes is at a much
higher rate than the atomic and cavity decay rates. Since the rate of the coupling constant
is larger than the rate at which either the atom or the cavity modes can decay, Rabi
oscillations occur in the system. The condition for the strong coupling regime is given as:
g
κ
>> 1 and g

Γ
>> 1. To observe the transient dynamics of the system, we initialize the

system in the |e, 0〉 state with the atom in the excited state and with no photons in the
cavity and we evolve the state with the Hamiltonian in Equation 6.9 together with the
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Figure 6.4: Transient response of a two level emitter coupled to a cavity with parameters
κ = 0, and Γ = 0.

collapse operators defined in Equation 6.11. Figure 6.6a shows the transient response of a
strongly coupled cavity to an atom. As can be seen when the system is evolved, we observe
Rabi oscillations as we did before in the lossless system. In general for photon number n,
these oscillations occur at a frequency of 2g

√
n+ 1, between the |e, n〉 and |g, n+ 1〉 states.

However, in the system with losses we observe that the oscillations are damped at a rate
of κ+Γ

2
.

Figure 6.5 shows the energy manifolds of the system on resonance ωa = ωc. The states
|g, n+ 1〉 and |e, n〉 are known as the bare states and the states |±, n+ 1〉 are known as the
dressed states. With atom is not coupled to the cavity, the bare states of the system are
the eigenstates of the Hamiltonian. When the interaction Hamiltonian is turned on and
the system is strongly coupled ( g

κ
>> 1 and g

Γ
>> 1), the new eigenstates of the system

are the dressed states. The dressed states of the system are expressed as:

|±, n+ 1〉 =
|e, n〉 ± |g, n+ 1〉√

2
(6.18)

As can be6.5, the energy splitting between the dressed states in the nth manifold is
2g
√
n+ 1. This splitting between the dressed states is characteristic of the strong coupling

regime. The splitting between the dressed states in the first manifold can be observed by
looking at the transmission spectrum of the system by driving the cavity with a classical
field. We define the cavity drive term of the Hamiltonian as:
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Figure 6.5: The left ladders represent the uncoupled states of the system with ωc = ωa.
When the atom and the cavity are strongly coupled, the eigenstates of the system are the
dressed states shown in the right most ladder.

Hdrive/~ =
√
κεe−iωdta† +

√
κε∗eiωdta (6.19)

where ωd is the frequency of drive and the drive term ε is given by:

ε =

√
P

~ωd
(6.20)

where P is the power of the laser used to drive the cavity. The addition of this term to
Equation 6.9 results in a time dependant Hamiltonian. We can however get rid of the time
dependence of the Hamiltonian by transforming from the static lab frame to a rotating
frame of the laser. This transformation can be done applying a time dependent unitary
operator, U , to the Hamiltonian such that the rotated Hamiltonian is given by:

H = U †HU + i
dU †

dt
U = Ho +Hint +Hdrive (6.21)

where
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U = eiωdt(a
†a+|e〉〈e|) (6.22)

The transformed Hamiltonian is :

H/~ = ∆e |e〉 〈e|+ g(a |e〉 〈g|+ a† |g〉 〈e|)∆ca
†a+

√
κ(εa† + ε∗a) (6.23)

where the detunings ∆e = ωe−ωd and ∆c = ωc−ωf . We can now observe the splitting
between the dressed states with a weak drive |ε|2 = 0.01g and plotting the steady state
transmission of the system. The steady state transmission, T , of the system is defined
defined as:

T =
〈a†a〉κ
|ε|2

(6.24)

where 〈a†a〉 is the expectation value of photons in the cavity at steady state. The term
〈a†a〉κ refers to the rate at which the photons are exiting the cavity, and the term |ε|2
refers to the rate at which the photons are incident on the cavity laser power P . Thus
the transmission T describes the ratio between the photons exiting the cavity and the
photons incident on the cavity. The steady state transmission of the system with weak
drive (|ε|2 = 0.01g) is plotted in Figure 6.6b with the detuning ∆ = ωd − ωa (ωa = ωc).
These transmission peaks, also known as the polariton peaks, are split by 2|g| in the first
manifold [111] as can be seen in Figure 6.6b.

6.2.3 Weak Coupling Regime

In the weak coupling regime, the coupling of the atom to the cavity mode is at a much lower
rate than the atomic and cavity field decay rates. The condition for the weak coupling
regime is given as: g

κ
<< 1 and g

Γ
<< 1. To observe the dynamics of the system we

simulate the non-Hermitian Hamiltonian described in Equation 6.12 in the weak coupling
regime. Figure 6.7a shows the transient response of a weakly coupled cavity to an atom.
The system is initialized in the |e, 0〉 state with the atom in the excited state and no
photons in the cavity. As can be noted in Figure 6.7a, when the system is evolved, we
don’t observe any oscillations between in the system as the atom-cavity system doesn’t
have enough time to couple coherently before the dissipation in the system occurs. We
once again plot the steady state transmission of the system T by driving the system with a
weak drive (|ε|2 = 0.01g). We observe that in the weak coupling regime the eigenstates, are
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(a) (b)

Figure 6.6: a) Transient response of a two level emitter coupled to a cavity with parameters
κ = 0.1g, and Γ = 0.1g. b) Transmission spectrum of the transmission through an empty
cavity and a strongly coupled atom loaded cavity when weakly excited. ∆ is the detuning
between the excitation frequency and the cavity-atom system.

not split and transmission occurs mainly on resonance with ∆ = 0. Figure 6.7b shows the
transmission spectrum of the a weakly coupled system. The transmission linewidth of the
loaded cavity is slightly larger than the transmission profile of an empty cavity, however
as with the empty cavity, maximum transmission through the cavity occurs at a detuning
of zero, or when the excitation frequency is resonant with the system.

A special case of the weakly coupled system, also known as the Purcell regime, occurs
when κ > g >> Γ. In this regime, there exists no Rabi oscillations or transmission
spectrum splitting as we previously saw, but due to the presence of the cavity, the decay
rate of the atom is modified. This can be observed by looking at the transient response of
the system in the Purcell regime as seen in Figure 6.7c. The atom decays at an enhanced
rate of 2|g|2/κ due to the coupling between the cavity and the atom. This enhanced decay
rate of atoms coupled to cavities are used to increase the rate of spontaneous emission
rate of emitters. For instance the spontaneous emission rate of the ZPL transmission in
NV centers can be increased by coupling the NV center to a cavity resonant with the ZPL
[49]. Figure 6.7d shows the transmission spectrum of the system in the Purcell regime when
driven with a weak drive (|ε|2 = 0.01g). We note that there exists a dip in the transmission
when the the detuning ∆ = 0. This can be explained by observing the energy manifold
diagram in Figure 6.5. When κ > g >> Γ, the eigenstates of the system are the bare
states seen on the left of the diagram in Figure 6.5. When the system is driven resonantly
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(a)
(b)

(c)
(d)

Figure 6.7: a) Transient response of a two level emitter coupled to a cavity with parameters
g = 2π,κ = 10g, and Γ = 10g. b) Transmission spectrum of the transmission through an
empty cavity and a weakly coupled atom loaded cavity when weakly excited with excitation
rate |ε|2 = 0.01g. ∆ is the detuning between the excitation frequency and the cavity-atom
system. c) Transient response of a two level emitter coupled to a cavity with parameters
κ = 2g, and Γ = 0.1g. The decay rate of the atom is 2|g|2/κ due to the presence of
the cavity. d) Transmission spectrum of the transmission through an empty cavity and a
weakly coupled atom loaded with parameters κ = 10g, and Γ = 0.1g when weakly excited
with excitation rate |ε|2 = 0.01g. ∆ is the detuning between the excitation frequency and
the cavity-atom system.
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with a weak drive such that only the bare states in the first manifold are accessed, a
transition occurs between the level |g, 0〉 and the level |g, 1〉. However this transition can
occur via two pathways: |g, 0〉 → |g, 1〉 or |g, 0〉 → |g, 1〉 → |e, 0〉 → |g, 1〉. The probability
amplitudes of these two allowed transition pathways interference destructively resulting in
a transparency window at resonance. This phenomenon can be observed in a large number
of systems and is termed cavity induced transparency [112], or electromagnetically induced
transparency [113]. We can observe looking at the steady state transmission spectrum of
the system in Figure 6.7d. We note that there exists a dip in the transmission spectrum
at a detuning of ∆ = 0.

6.3 Proposed System

(a)

(b)

Figure 6.8: a) Schematic of the proposed model consisting of a three level closed Λ system
coupled to a microwave cavity and an optical cavity. The |g〉 ↔ |s〉 transition is coupled to
the microwave cavity (gµ,κµ), and the |s〉 ↔ |e〉 transition is coupled to the optical cavity
(go,κo). The levels |s〉 and |e〉 are coupled with a classical field with a frequency of ωΩ

and a driving rate Ω. In the case where the microwave field is due to a classical drive, the
microwave cavity is driven by a weak classical field at a frequency of ωd and a driving rate
ε. b) Ground, first, and second manifold of the three Λ system coupled to a microwave
and optical cavity with coupling rates gµ and go respectively. The basis states represented
are the atomic state, optical photon and the microwave photon respectively.
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Now that we have a basic understanding of the cavity dynamics of a two-level emitter,
we turn out attention to the proposed system that we intend to study for inter-photon
conversion. The system consists of a three level Λ emitter that is coupled to two cavities
corresponding to the microwave (|g〉 ↔ |s〉) and the optical frequency transitions (|g〉 ↔
|e〉) respectively as seen in Figure 6.8a. An external monochromatic classical electric field
given by E(t) = E0e

−ıωΩt +E∗0e
ıωΩt is used to drive the |s〉 ↔ |e〉 transition. As was before

this interaction Hamiltonian in the dipole approximation is given by Equation 6.2b, where
the dipole operator in the Heisenberg picture is given by:

d = −dse(|e〉 〈s| e−iωset + |s〉 〈e| eiωset) (6.25)

where dse is dipole matrix element between |s〉 ↔ |e〉 transition, and ωse is the transition
frequency. Thus the interaction Hamiltonian between the classical drive and the |s〉 ↔ |e〉
transition can be written as:

Hse = dse(|e〉 〈s| e−iωset + |s〉 〈e| eiωset)(E0e
−ıωΩt + E∗0e

ıωΩt) (6.26)

Once again we notice that this Hamiltonian contains both fast oscillating terms e±(ωse+ωΩ)t,
and slow oscillating terms e±(ωse−ωΩ)t. Here we can invoke the rotating wave approximation
(RWA) to ignore the fast oscillating terms under the assumption that |ωse−ωΩ| << ωse+ωΩ,
which means that the fast oscillating terms average to zero over long times where only the
slowly varying dynamics of the system is considered. This is also under the assumption
that the drive field is a weak probe such that, dseE0

~ << ωse. Thus Hamiltonian Hse in the
Schrodinger picture can be written as:

Hse = ~(Ωe−iωΩt |e〉 〈s|+ Ω∗eiωΩt |s〉 〈e|) (6.27)

where the Rabi frequency Ω = dseE0

~ .

With this system, the proposed conversion efficiency scheme is as follows: by introduc-
ing a microwave field into the microwave cavity, and by coherently driving the |s〉 ↔ |e〉
transition with the Rabi drive Ω, we expect an optical field to be produced in the optical
cavity. The optical photons decaying out of the optical cavity is then said to be the fre-
quency converted photons. We can now describe the dynamics of the the system depicted
in Figure 6.8a by the Hamiltonian:

H = Ho +Hint (6.28)
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where in the rotating wave approximation,

Ho/~ = ωs |s〉 〈s|+ ωe |e〉 〈e|+ ωoa
†a+ ωµb

†b, (6.29a)

Hint/~ =gµ(b |s〉 〈g|+ b† |g〉 〈s|) + go(a |e〉 〈g|+ a† |g〉 〈e|)
+ (Ωe−iωΩt |e〉 〈s|+ Ω∗eiωΩt |s〉 〈e|),

(6.29b)

where a and b are the annihilation operators for the optical and microwave cavity modes
respectively, Ω is the Rabi frequency of the classical field coupling the levels |s〉 and |e〉
without injecting any photons into the cavities. Furthermore ωe (ωs) is atomic frequency
of the |g〉 ↔ |e〉 (|g〉 ↔ |s〉) transition while ωo (ωµ) is the optical (microwave) cavity mode
frequencies. The field in the microwave cavity couples the levels |g〉 and |s〉 with a rate of
gµ, and the field in the optical cavity couples the levels |g〉 and |e〉 with a rate of go. In the
equations above ωs and ωe are the atomic transition frequencies from the level |g〉 to the
levels |s〉 and |e〉 respectively, while ωµ and ωo are the microwave and optical mode cavity
frequencies.

In this work we will explore three ways in which the microwave photons are input into
the system: i) classical drive, ii) cavity initial conditions and iii) with a feeder/source
cavity. With the classical drive, we drive the system with a continuous classical wave that
is defined the Hamiltonian term Hdrive:

Hdrive/~ =
√
κµεe

−iωdtb† +
√
κµε

∗eiωdtb (6.30)

where κµ is the microwave cavity decay rate, and ε is the rate at which the classical
field is injected at the microwave cavity with a frequency of ωd. As we saw in the previous
section, the drive term ε can be expressed as:

ε =

√
P

~ωd
(6.31)

where P is the power of with which the microwave cavity is driven. The term
√
κµε is

thus a measure of the rate at which microwave photons enter the microwave cavity. The
second way in which the microwave photons can be input into the system is by initializing
the microwave cavity into a specific photon state (as we shall see in Section 7.2). The third
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way in which the microwave photons can enter the system by using a source cavity in a
cascaded cavity system [114], that is initialized with a specific photon state, which is then
used to feed the target system which consists of system described by the Hamiltonian 6.29
(we will explore this approach in Chapter 7).

If we looked at the case with the classical drive, the addition of the Hdrive term results
in a time dependant Hamiltonian. As we did before in the previous section, we can get rid
of the time dependant terms by moving to a rotating frame of a time dependent unitary
U :

U = exp (−it)[ωd(b†b+ |s〉 〈s|) + (ωd + ωΩ)(|e〉 〈e|+ a†a)] (6.32)

the Hamiltonian is transformed according to:

H = U †HU + i
dU †

dt
U = Ho +Hint +Hdrive (6.33)

with

Ho/~ = ∆s |s〉 〈s|+ ∆e |e〉 〈e|+ ∆oa
†a+ ∆µb

†b, (6.34a)

Hint/~ =gµ(b |s〉 〈g|+ b† |g〉 〈s|) + go(a |e〉 〈g|+ a† |g〉 〈e|)
+ (Ω |e〉 〈s|+ Ω∗ |s〉 〈e|),

(6.34b)

Hdrive/~ =
√
κµεb

† +
√
κµε

∗b (6.34c)

where the detunings ∆s = ωs−ωd, ∆e = ωe−ωd−ωΩ, ∆o = ωo−ωd−ωΩ, ∆µ = ωµ−ωd.
With the proposed system above, the goal of the problem now is to identify the optical

(go, κo) and microwave cavity (gµ, κµ) parameters that optimize the output of optical pho-
tons from the optical cavity for a given microwave drive rate ε. In other words we would
like to find the required quality factor Q and mode volumes Vmode of the microwave and
optical that would maximize conversion efficiency. The quality factor of the cavity deter-
mines the temporal confinement of light whilst the mode volume determines the spatial
confinement of light within the cavity. As we saw earlier the mode volume of the cavity is
related to the the coupling constant g. The quality factor of a cavity is calculated as:
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Q =
ω

κ
(6.35)

where ω is the cavity resonance frequency and κ is the cavity field decay rate.

Now would be a good time to introduce the characteristics of the three level Λ system
that we intend to study. We model our quantum emitter on the naturally occurring Λ
system in NV centers at zero magnetic field (see Chapter 2). As seen in Figure 6.9, the Λ
system is formed from the |0〉, |±1〉, |3E〉 subspace in the NV center corresponding to the
states |g〉, |s〉, and |e〉 in Figure 6.8a. As can be seen from Figure 6.9, the frequencies ωe
and ωs correspond to the operating regimes of optical terhertz and microwave gigahertz
frequencies respectively. Furthermore this Λ system is particularly attractive due to the
zero magnetic field operation, as it is reported that superconducting resonators which
have high quality factors at zero magnetic fields suffer from losses at non-zero magnetic
fields[115].

The population decay rate of the metastable state |±1g〉 state is Γs = 2π × 21.2Hz
[56, 57]. The population decay rate from the excited |3E〉 state is Γe = 2π × 13.3MHz
which is the total spontaneous emission rate including the emission into the phonon side
bands. The branching ratio of the excited state |3E〉 is:

Γe = ΓZPL + ΓPSB + Γes (6.36)

where ΓZPL is the decay into the ground state through the resonant zero phonon line
emission, ΓPSB is the non-resonant decay into the ground state via the phonon sidebands,
and Γes is the decay into the metastable |±1g〉 state. Here ΓZPL = 2π× 0.35MHz, ΓPSB =
2π × 10.20MHz and Γes = 2π × 2.66MHz [2]. To take into account the phonon sideband
(PSB) decay into the ground state from the excited state, this system can be modelled as
a ”pseudo” three level system as shown in Figure 6.9. Here the excited state decays to the
ground state |g〉 via the ZPL decay, and to the virtual ground state |g′〉 via the PSB decay.
The virtual state |g′〉 represents the states in the vibronic bands above the ground triplet
through which PSB decay occurs. The virtual state |g′〉 then decays to the ground state
|g〉 via phonon decay at a rate of Γp = 2π × 60 THz [116].

In addition to the population decays, the coherences of the states also damp at a
rate given by the transverse decay rate. The transverse decay rate of the system of the
metastable state and excited states are γs⊥ = 2π × 66.3Hz and γe⊥ = 2π × 15.9MHz
respectively. The transverse decay rate, γ⊥, is related to the population decay rate, Γ, of
the transition as [109]:
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Figure 6.9: The schematic of the pseudo three-level system showing the resonant ZPL and
PSB decay. The ground state |g〉 and the metastable state |s〉 corresponds to the |0〉 and
|±1〉 state from the ground state triplet state 3A2 in the NV center. The excited state |e〉
in the Λ system corresponds to the excited state 3E in the NV center. The excited state
|e〉 decays to the ground state |e〉 at a rate of ΓZPL = 2π × 0.35MHz and the virtual state
|g′〉 at a rate of ΓPSB = 2π × 12.95MHz. The ground state |g〉 is then populated from the
virtual state |g′〉 at a decay rate of Γp which occurs at a faster rate than the timescales of
the other processes involved in the system (Γp = 2π × 60THz)

γ⊥ =
Γ

2
+ γc (6.37)

where γc models additional coherence decay in the system due to effects such as dephas-
ing. These additional coherence decays in the metastable state γs and the excited state γs
of the system are:

γs = γs⊥ −
Γs
2

= 2π × 55.7Hz (6.38a)

γe = γe⊥ −
Γe
2

= 2π × 9.25MHz (6.38b)
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6.4 Conversion Efficiency Definition

(a) (b)

Figure 6.10: a) Schematic of the intrinsic conversion efficiency TAµ→o wherein the efficiency
is defined as the ratio between the output optical photons (red circle) for every microwave
photon (blue circle) initialized within the cavity. b) Schematic of the extrinsic conversion
efficiency TBµ→o wherein the conversion efficiency is defined as the ratio between the output
optical photons (red circle) for every microwave photon (blue circle) incident on the cavity.

Now that we have setup the initial system, based on the above model it is important to
define the conversion efficiency between the microwave and optical photons. We define two
versions of the conversion efficiencies in this work. One would be the conversion efficiency
in the intrinsic case and the other is a conversion efficiency in a extrinsic case.

In the intrinsic case of the definition, we ask the question: If we can get a microwave
photon into microwave cavity, what cavity parameters would maximize the output optical
photons?. The intrinsic conversion efficiency is defined as:

TAµ→o =
〈a†a〉out
〈b†b〉cavity

(6.39)

where 〈a†a〉out is the expectation value of the optical photons decaying out of the optical
cavity, and 〈b†b〉cavity is the expectation value of the microwave photons in the microwave
cavity that is input into the cavity. In the continuous drive regime, 〈a†a〉out would be the
rate at which optical photons decay out of the optical cavity, and 〈b†b〉cavity would be the
rate at which microwave photons enter the due to the Hdrive term. When we instead input
microwave photons by initializing the microwave cavity with a a specific photon number
n, 〈a†a〉out is the total number of optical photons that decay out of the optical cavity and
〈b†b〉cavity would be n.
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In the second extrinsic definition of the conversion efficiency we ask the question: For
every microwave photon incident on the microwave cavity, what cavity parameters would
maximize the output optical photons? . The extrinsic conversion efficiency is defined as:

TBµ→o =
〈a†a〉out
〈b†b〉in

(6.40)

where 〈a†a〉out is the expectation value of the optical photons decaying out of the
optical cavity, and 〈b†b〉in is the expectation value of the microwave photons incident on
the microwave cavity. In the continuous drive regime, 〈a†a〉out would be the rate at which
optical photons decay out of the optical cavity and 〈b†b〉in would be the rate at which
microwave photons are incident on the cavity due to the Hdrive term. When we instead
input microwave photons using a feeder cavity with a a specific photon number n, 〈a†a〉out
is the total number of optical photons that decay out of the optical cavity and 〈b†b〉in would
be n. In this chapter we analyze the conversion efficiency of the intrinsic type, TAµ→o , and
in the subsequent Chapter 7 we explore the conversion efficiency of extrinsic type, TBµ→o .
By observing the results from the ideal case, we would be able to understand the results
in the non-ideal case.

6.5 Approximate Analytical Solution

In order to understand an intuitive picture of the system we perform an analytical ap-
proximation. An estimate of the conversion from the injected microwave photon to the
optical photon output is obtained by analyzing the non-Hermitian Hamiltonian describ-
ing the transition of the system between the ground and first manifolds as seen in Figure
6.8b. In the analytical approximation we treat the system as purely three level Λ system
without the virtual state |g′〉. We can absorb some of the loss terms from the collapse
operators from the the non-Hermitian Hamiltonian used in the Monte-Carlo simulations
(from Equation 6.12) and analytically solve the Hamiltonian:

H̄(1) = H̄(1)
o +Hint +Hdrive (6.41)

where
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H̄(1)
o /~ =− (i

γs⊥
2
−∆s) |s〉 〈s| − (i

γe⊥
2
−∆e) |e〉 〈e|

− (i
κo
2
−∆a)a

†a− (i
κµ
2
−∆b)b

†b
(6.42)

where the complex terms iγs⊥
2
|s〉 〈s|, and iγe⊥

2
|e〉 〈e| describe the coherence decays of

the |s〉 and |e〉 respectively, while the complex terms iκo
2
a†a, and iκµ

2
b†b describe the cavity

field decay of the optical and microwave fields respectively. Assuming the state is described
by:

|ψ(1)〉 = c
(1)
0 |g, 0, 0〉+ c

(1)
1 |e, 0, 0〉+ c

(1)
2 |s, 0, 0〉+

c
(1)
3 |g, 1, 0〉+ c

(1)
4 |g, 0, 1〉

(6.43)

where the state vector |a, o, µ〉 describes the atomic state, optical cavity photon number
and the microwave cavity photon number respectively (see Figure 6.8b). We apply the non-
Hermitian Hamiltonian to the wave function describing the ground and first manifolds and
find a steady state solution of the system in the limit of a weak microwave drive, ε [117]
and solve:

i~
d

dt
|ψ(1)〉 = H̄(1) |ψ(1)〉 (6.44)

In the steady state solution, the we set the time derivative d
dt
|ψ(1)〉 to zero to find the

value of c
(1)
3 . Thus the problem is reduced to solving a set of linear equations where we

solve for the coefficients c
(1)
n . In the limit that |√κµε| → 0, we set c

(1)
o ≈ 1 and ignore the

transitions to higher manifolds such as |g, 1, 0〉 → |g, 1, 1〉, |e, 0, 1〉 → |e, 1, 1〉, |s, 0, 0〉 →
|s, 1, 0〉, |s, 0, 0〉 → |s, 0, 1〉 and |g, 0, 1〉 → |g, 1, 1〉 couplings. By setting c

(1)
o ≈ 1, we

overcome the atom number conservation problem that arises from using the non-Hermitian
Hamiltonian. Otherwise all the other coefficients c

(1)
n will be zero in steady state. We use

the conversion efficiency definition from Equation 6.39 to define the conversion efficiency
of the first microwave photon in the cavity to the output optical photon:

TAµ→o =
〈a†a〉out
〈b†b〉cavity

≈ |c
(1)
3 |2κo
|√κµε|

(6.45)

where |c(1)
3 |2κo is the rate at which optical photons decay out of the optical cavity (c

(1)
3 is

the expectation value of the state |g, 1, 0〉 where there is one photon in the optical cavity),
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and |√κµε| is the rate at which microwave photons enter the cavity due to the classical
drive ε. Thus the conversion efficiency reads as the rate of output optical photons divided
by the rate of microwave photons entering the microwave cavity. As a sanity check of the
methodology we use, we first perform a similar analysis of the transmission of the first and
second photon through single mode cavity with a two level emitter the results of which
are plotted in Figure 6.11a and 6.11b. We observe the two polariton peaks in the strong
coupling regime due to the dressed states, and a single peak in the weak coupling regime as
expected. Furthermore in the strong coupling regime, for small values of κ, the maximum
transmission of the first and second photons occur at a detuning of ∆/g = 1. However with
increasing κ, the maximum transmission of the first and second photons broaden [117]. For
a a two level emitter weakly coupled to a cavity, the maximum transmission occurs at a
detuning of ∆ = 0. With increasing κ, the transmission peaks of the system broaden as
seen in Figure 6.11c and 6.11d. This is in agreement with the dynamics of a two level
emitter coupled to a cavity as we saw earlier.

6.5.1 Coupling Regimes

Returning to the Λ system coupled to the two cavities, we perform the analytical ap-
proximation for the conversion efficiency of the first photon microwave photon to optical
photon. There are 4 limiting case regimes, two for each cavity, of the system that can be
explored. Namely the regimes: gµ >> Γs, gµ << Γs, go >> Γe and go << Γe (where
Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz). Due to the large difference in the values of
the of Γe and Γs, in the limiting case with gµ << Γs, the conversion efficiency approaches
zero, TAµ→o → 0. The reason for this can be understood by looking at the Fermi’s golden
rule and referring to Figure 6.8b. The transition probability between the states |g, 0, 1〉
and |s, 0, 0〉 in the first photon manifold if given by [118]:

Γ|g,0,1〉→|s,0,0〉 =
2π

~2
| 〈g, 0, 1| H̄int |s, 0, 0〉 |2 ∝ |gµ|2 (6.46)

where H̄int is the non-Hermitian interaction Hamiltonian of the first photon manifold
from Equation 6.41. As can be noted since the transition probability Γ|g,0,1〉→|s,0,0〉 scales
with |gµ|2, for gµ << Γs, the transition probability Γ|g,0,1〉→|s,0,0〉 is much smaller than the
transition probabilities between the other bare states in the first photon manifold (Figure
7.1). This means that very few of the photons that are injected into the microwave cavity
are being coupled to the atomic transition and hence the conversion efficiency of the system
goes to zero, TAµ→o → 0. Thus it is a necessary condition that the microwave coupling rate,
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Small Mode Volume

(a) (b)
Large Mode Volume

(c) (d)

Figure 6.11: a) and b) Analytical approximation of the transmission of the first and second
photons respectively through a cavity resonantly coupled with a two level emitter. The
detunings, ∆ = ∆c = ∆eg and coupling strength, g = 100Γ, where Γ is the decay rate of
the two level emitter. c) and d) Analytical approximation of the transmission of the first
and second photons through a cavity resonantly coupled with a two level emitter. The
detunings, ∆ = ∆c = ∆eg and with a coupling strength, g = 0.01Γ, where Γ is the decay
rate of the two level emitter.

gµ >> Γs, when working with the Λ system in an NV center. With gµ >> Γs we explore
the two regimes with optical cavity: go >> Γe and go << Γe.
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Small Optical Cavity Mode Volume Regime: go >> Γe

With the cavity coupling rates g0 = 100Γe and gµ = 100Γs (where Γe = 2π× 13.3MHz and
Γs = 2π×21.2Hz), we perform the analytical approximation for constant cavity decay rates
κµ = gµ and κo = go, whilst sweeping over the the Rabi coupling rate, Ω, and detunings,
∆ (= ∆s = ∆e = ∆o = ∆µ), and κo and κµ respectively (see Figure 6.12 ).

TAµ→o(κµ = gµ) TAµ→o(κo = go)

(a) (b)

Figure 6.12: Conversion efficiency (log10 scale) for a constant κµ = gµ and κo = go sweeping
through three different values of κo and κµ respectively, for go = 100Γe and gµ = 100Γs
(where Γe = 2π × 13.3MHz, Γs = 2π × 21.2Hz and ∆ = ∆s = ∆e = ∆o = ∆µ). a) The
conversion efficiency (log10 scale) for a fixed κµ sweeping through three different values of
κo. As can be observed, as κo is increased, the Ω required to achieve maximum conversion
efficiency decreases. b)The conversion efficiency for a fixed κo sweeping through three
different values of κµ. With a weak optical cavity maximum conversion efficiency occurs
mainly on resonance (∆/gµ = 0) but as κµ decreases, additional peaks corresponding to
the polariton peaks start appearing at ∆/gµ = ±1 (polariton peaks).

Some key characteristics of the system can be understood from the analytical plots in
Figure 6.12a and Figure 6.12b. It can be noted from Fig. 6.12a, for constant κµ, as the value
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of κo is increased, the maximum achievable conversion efficiency increases. Furthermore, as
κo is increased the value of Ω required to achieve maximum conversion efficiency decreases.
These two responses of the system can be attributed to the fact that as the κo increases,
the optical cavity becomes more leaky allowing for more optical photons to be collected in
the output. Furthermore as the optical cavity becomes more leaky, a smaller value of Ω is
required for the converted photon to leave the optical cavity within each cycle.

From Fig. 6.12b it can be noted that for a fixed κo, as the microwave decay rate, κµ
is decreased, that is as the microwave cavity gets stronger, the maximum value conversion
efficiency occurs at detunings of, ∆/gµ = ±1 (polariton peaks). As Ω is increased, the
peaks at which the maximum conversion efficiency occurs start broadening, thus resulting
in a broadened detuning over which the conversion efficiency occurs. This phenomenon is
known as power broadening and can be understood if we digress a little and look at a two
level emitter that is driven with a Rabi drive Ω as seen in Figure 6.13.

Figure 6.13: Two level emitter driven by a Rabi drive, Ω with decay rate Γ.

Digression: In a two level system with excited state |e〉 and |g〉, that is being driven
by a Rabi drive Ω, and decay rate Γ, the excited state population of the system in steady
state derived from the Optical Bloch equations can be expressed as [109]:

ρee =
Ω2/Γ2

1 + (2∆
Γ

)2 + 2(Ω
Γ

)2
(6.47)

where ∆ is the detuning. In the weak Rabi drive limit:

ρee =
Ω2/4

∆2 + (Γ
2
)2

(6.48)
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This represents a Lorentizian with a Full Width Half Maximum(FWHM) of Γ with a
maximum value of (Ω

Γ
)2 << 1. In the strong Rabi drive limit, the excited state population

is:

ρee =
Ω2/4

∆2 + (Ω2

2
)

(6.49)

In the strong drive limit, this also represents a Lorentzian but has a larger FWHM of√
2Ω with a maximum value of 0.5 as expected for a saturated transitions of a two level

system. The absorption line of a two level system for different Rabi drive strengths is
plotted in Figure 6.14.

Figure 6.14: Steady state population of the excited state of a two level system with popu-
lation decay rate Γ, driven by a Rabi drive Ω with a detuning of ∆.

Now returning back to the Λ system, we now understand maximum conversion effi-
ciency can be achieved for the system on resonance for a sufficiently large Ω due to power
broadening and manifold mixing. Furthermore we also note from Figure 6.12b that with
increasing κµ, the conversion efficiency decreases, due to the increase in the leakage of the
microwave photons from the microwave cavity.

In order to understand the conversion efficiency dependence on the the parameters κo,
κµ and Ω simultaneously, we sweep over the the three parameters and plot the maximum
conversion efficiency for each pair of κo and κµ, and the corresponding Rabi drive rate,
Ω, required to achieve the maximum conversion (Fig. 6.15) with the system on resonance
(∆s = ∆e = ∆o = ∆µ = 0).
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Maximum TAµ→o Ω/go for Maximum TAµ→o

(a) (b)

Figure 6.15: Maximum conversion efficiency (log10 scale) and the corresponding Ω to
achieve maximum efficiency for the system for go = 100Γe and gµ = 100Γs (where
Γe = 2π×13.3MHz, Γs = 2π×21.2Hz), for the system on resonance (∆s = ∆e = ∆o = ∆µ

= 0).

As can be noted from the plots in Figure 6.15, as the optical cavity decay rate κo
is increased the conversion efficiency of the system increases, whilst the required Ω for
maximum conversion decreases. This is in agreement with what was observed in Figure
6.12a, wherein with a larger κo more photons that are in the |g, 1, 0〉 are able to leave
the cavity before being coupled back into the emitter. Furthermore as the microwave
cavity decay rate, κµ, is increased there exists a turnaround point at which the conversion
efficiency starts decreasing. This is in agreement with what was observed in Figure 6.12b,
wherein with the increase in κµ the lifetime of the microwave photons in the cavity decreases
resulting in fewer photons being converted to optical photons.

Large Optical Cavity Mode Volume Regime: go << Γe

We perform a similar analysis as before for the system with the cavity coupling rates
g0 = 0.01Γe and gµ = 100Γs (where Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz), for
constant cavity decay rates κµ = gµ and κo = go, whilst sweeping over the the Rabi
coupling rate, Ω, and detunings, ∆ (= ∆s = ∆e = ∆o = ∆µ), and κo and κµ respectively
(see Figure 6.16 ).
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TAµ→o(κµ = gµ) TAµ→o(κo = go)

(a) (b)

Figure 6.16: Conversion efficiency (log10 scale) for a constant κµ = gµ and κo = go sweeping
through three different values of κo and κµ respectively, for go = 0.01Γe and gµ = 100Γs
(where Γe = 2π × 13.3MHz, Γs = 2π × 21.2Hz and ∆ = ∆s = ∆e = ∆o = ∆µ). a)
The conversion efficiency for a fixed κµ sweeping through three different values of κo.
b)The conversion efficiency for a fixed κo sweeping through three different values of κµ.
For small κµ, maximum conversion efficiency occurs at detunings, ∆/gµ = ±1 (polariton
peaks), whereas as κµ is increased, maximum conversion efficiency takes place at detunings,
∆/gµ = 0, or when the system is on resonance.

From Figure 6.16a for a constant κµ, the conversion efficiency increases with increasing
κo similar to the trend noted earlier in the previous case (see Figure 6.12a). However due
to the lower optical coupling strength, the detuning bandwidth over which maximum con-
version occurs is also much narrower and occurs mainly at resonance, ∆ = 0. From Figure
6.16b we observe as before that as κµ decreases the polariton peaks that are characteristic
of a strong cavity start appearing in addition to the single peak on resonance peak due to
the weak cavity coupling. However in this case the polariton peaks are much narrower due
to the lower go. It can also be noted that for a small κµ, as Ω is increased the conversion
efficiency increases, whilst for large κµ the change in Ω results in little to no change in the
conversion efficiency. This is due to the fact that as the microwave cavity gets stronger, the
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lifetime of the microwave photons in the cavity increases, thus as Ω is increased, more and
more microwave photons can be converted, whilst for a leaky microwave cavity, regardless
of how much Ω is increased, there isn’t a change in the expectation value of the output
optical photons.

Maximum TAµ→o Ω/go for Maximum TAµ→o

(a) (b)

Figure 6.17: Maximum conversion efficiency (log10 scale) and the corresponding Ω to
achieve maximum efficiency for the system for go = 0.01Γe and gµ = 100Γs (where Γe =
2π × 13.3MHz and Γs = 2π × 21.2Hz), for the system on resonance (∆s = ∆e = ∆o = ∆µ

= 0).

We perform a similar simulation as before and sweep over the values of pair of κo,
κµ and Ω, and plot maximum conversion efficiency for each pair of κo and κµ, and the
corresponding Rabi drive rate, Ω, required to achieve the maximum conversion is plotted
(Fig. 6.17) with the system on resonance (∆s = ∆e = ∆o = ∆µ = 0). As before with
increasing κo, the conversion efficiency increases as more optical photons can leave the
cavity before being coupled back to the system. However when compared with Figure
6.15, the required κo before which unit conversion efficiency occurs is increased by an order
of magnitude. As was noted before, as κµ is decreased, the conversion efficiency increases
and the required Ω to achieve maximum conversion increases due to the increased lifetime
of the microwave photons. However when compared with with Figure 6.15, the required
κµ to achieve maximum conversion efficiency is decreased by an order of magnitude. This
means in the weak optical coupling regime, κo is required to be larger and κµ is required
to smaller than in the strong coupling regime to achieve unit conversion efficiency.
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6.6 Monte-Carlo Simulations

6.6.1 Continuous Drive

Although the analytical simulations provide us with a intuitive understanding of the re-
quired cavity parameters to achieve maximum conversion, to understand the effects of
higher manifolds in the system, we perform Monte-Carlo simulations of the Hamiltonian
described in Equation 6.54. We employ the Monte-Carlo Solver from the Python pack-
age, QuTIP [107, 108] to perform the simulations. With the Monte-Carlo simulations
we also take into the account the fact that only the decay rate via the ZPL emission,
ΓZPL = 2π × 0.35MHz, is coupled resonantly to the cavity while the PSB decay – which
results in photons emitted in the phonon sideband– from the excited to the ground state is
ΓPSB = 2π × 10.2MHz [2]. Thus only a small percentage of the emission from the excited
state is resonantly coupled to the ground state |g〉 via the ZPL whilst the ground state is
populated via non resonant decay. We do this by simulating the pseudo three level system
that was described in Figure 6.9 using the QuTIP package we introduced in Section 6.2.
The effective non-Hermitian Hamiltonian describing the dynamics of the system in the
rotating frame is given by:

H = Ho +Hint +Hdrive −
i~
2

∑
k

Ĉ†kĈk, (6.50)

with the collapse operators Ĉk defined as:

Ĉ1 = aout =
√
κoa, (6.51a)

Ĉ2 = bout =
√
κµb, (6.51b)

Ĉ3 =
√

ΓZPL |g〉 〈e| , (6.51c)

Ĉ4 =
√

ΓPSB |g′〉 〈e| , (6.51d)

Ĉ5 =
√

Γp |g〉 〈g′| , (6.51e)

Ĉ6 =
√

Γs |g〉 〈s| , (6.51f)

Ĉ7 =
√

Γes |s〉 〈e| , (6.51g)

Ĉ8 =
√
γe |e〉 〈e| , (6.51h)

Ĉ9 =
√
γs |s〉 〈s| (6.51i)
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where κo (κµ) is the optical (microwave) cavity decay rate, Γs is the population decay
rate of the |s〉 state in the Λ system, γe (γs) is models additional coherence decays rate of
|e〉 (|s〉) state, ΓZPL is the ZPL decay rate, ΓPSB is the PSB decay rate, Γes is the decay
rate from |s〉 to |g〉, |s〉 to the Γp is the decay rate from shelving state |g′〉 to |g〉. The
operator Ĉ1 (Ĉ2) is the optical (microwave) photon decay, Ĉ3 describes the population
decay from the excited state |e〉 to the ground state |g〉, Ĉ4 describes the PSB decay from
the excited state |e〉 to the virtual state |g′〉, Ĉ5 describes the population decay from the
virtual state |g′〉 to the ground state |g〉 through phonon decay, Ĉ6 describes the population
decay from the metastable state |s〉 to the ground state |g〉, Ĉ7 describes the population
decay from |e〉 to |s〉, and Ĉ8 (Ĉ9) describes the additional coherence decay of the state |e〉
(|s〉) denoted in Equation 6.38.

The Hamiltonian terms in the rotating frame Ho, Hint, and Hdrive are defined in Equa-
tion 6.34. We define the intrinsic conversion efficiency together with the collapse operator,
aout =

√
κoa as:

TAµ→o =

∫
〈a†outaout〉dt∫
|√κµε|dt

(6.52)

in the limit that |√κµε| → 0. The term 〈a†outaout〉 is the rate at which optical photons
decay out of the optical cavity. Thus the integral in the numerator denotes the total
optical photons exiting the optical cavity. The term |√κµε| is the rate at which microwave
photons enter the microwave cavity due to the drive ε. Thus the integral in the denominator
describes total microwave photons entering the cavity.

As we did before in Section 6.2.1, we first set up the operators in the Hilbert space of
the system. The Hilbert space of the system has a dimension of 4 +N +N corresponding
to the pseudo-three level emitter (Figure 6.9), and the two cavity modes respectively. The
Hilbert space for each cavity mode was truncated at N = 7, as for any manifold level
N < 7 the maximum conversion efficiency saturated at values that were less than one.
Although for N > 7 we get a unit conversion efficiency, using too large of a Hilbert space
results in longer simulation times. The system is initialized in ψ(0) = |g, 0, 0〉 with the
NV center in the ground state with no photons in both the optical and microwave cavities
respectively. As we did before in Section6.2.1, we simulate the system by feeding the
Hamiltonian and the initial state of the system to the Monte-Carlo solver. The Python
codes for this simulation are included in Appendix E.
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Small Optical Cavity Mode Volume Regime: go >> Γe

We simulate the system with the cavity coupling rates g0 = 100Γe and gµ = 100Γs (where
Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz), with the system on resonance (∆s = ∆e =
∆o = ∆µ = 0) by sweeping over the optical and microwave cavity decays rates, κo and κµ,
and the Rabi driving rate, Ω. The maximum conversion efficiency for each pair of κo and
κµ, and the corresponding Rabi drive rate, Ω, required to achieve the maximum conversion
is plotted.

Maximum TAµ→o Ω/go for Maximum TAµ→o

(a) (b)

Figure 6.18: a) Maximum conversion efficiency (log10 scale) and the corresponding b) Ω
to achieve maximum conversion efficiency for the system with gµ = 100Γs and go = 100Γe
(where Γe = 2π×13.3MHz, Γs = 2π×21.2Hz). The system is initialized with the Λ system
in the ground state with no photons in the optical and microwave cavities (ψ(0) = |g, 0, 0〉).

Some key characteristics that can be noted from Figure 6.18. Firstly, when higher
manifolds of the system are included, there exists a upper bound on the optical cavity decay
rate κo for maximum conversion efficiency, as opposed to the analytical approximation of
the conversion efficiency of the first photon seen in Figure 6.18. This can be attributed to
the fact that in the analytical approximation, only the first and ground manifolds of the
system was considered where all the optical cavity decay from the state |g, 1, 0〉 resulted
in being reinitialized again in the ground state |g, 0, 0〉. However the inclusion of higher
manifolds in the simulation results in the increase of decay channels as well. Thus with
the higher manifolds, the conversion efficiency starts decreasing as the optical decay rate
is increased beyond κo ≈ 10go. We also note that with increasing κo the required Ω to
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achieve maximum conversion efficiency decreases.

With the microwave cavity parameter, κµ, we observe a similar trend in the conversion
efficiency as seen in the analytical approximations in Figure 6.18. As the microwave cavity
becomes stronger, the conversion efficiency increases due to the increased lifetime of the
microwave photons. Unit conversion efficiency occurs for a an optical cavity decay rate of
κo ∼ 10−2go − 100go and microwave cavity decay rate κµ < 10gµ. This corresponds to an
optical cavity quality factor (Q = ω/κ) of Qo ∼ 106 − 108 and microwave cavity quality
factor Qµ > 103.

Large Optical Cavity Mode Volume Regime: go << Γe

Maximum TAµ→o Ω/go for Maximum TAµ→o

(a) (b)

Figure 6.19: a) Maximum conversion efficiency (log10 scale) and the corresponding b) Ω
to achieve maximum conversion efficiency for the system with gµ = 100Γs and go = 0.01Γe
(where Γe = 2π×13.3MHz, Γs = 2π×21.2Hz). The system is initialized with the Λ system
in the ground state with no photons in the optical and microwave cavities (ψ(0) = |g, 0, 0〉).

We simulate the system with the cavity coupling rates g0 = 0.01Γe and gµ = 100Γs
(where Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz), with the system on resonance (∆s =
∆e = ∆o = ∆µ = 0) by sweeping over the optical and microwave cavity decays rates, κo
and κµ, and the Rabi driving rate, Ω. The maximum conversion efficiency for each pair
of κo and κµ, and the corresponding Rabi drive rate, Ω, required to achieve the maximum
conversion is plotted.
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In the large optical mode volume regime, from Figure 6.19 we note that as before when
higher manifolds of the system is included there exists a upper bound on the optical cavity
decay rate κo, as opposed to the analytical approximation of the conversion efficiency of the
first photon seen in Figure 6.19. Furthermore as we observed in the analytical approxima-
tions, in the large optical mode volume regime, the maximum conversion efficiency occurs
for a larger κo and a smaller κµ as compared to the strong coupling regime.. Unit conver-
sion efficiency occurs for an optical cavity decay rate of κo ∼ go − 102go and microwave
cavity decay rate κµ < 10−1gµ. This corresponds to an optical cavity quality factor of
Qo ∼ 108 − 1010 and Qµ > 105.

6.6.2 Single Photon

So far we have seen the conversion efficiency of the system when it is continuously driven
with a weak microwave drive. Now we shall explore the conversion efficiency of the sys-
tem when initialized with a single photon in the microwave cavity. As before, the system
dynamics is described by the Hamiltonian H = Ho + Hint without the Hdrive term from
Equation 6.29. We go into a rotating frame using the time dependent unitary transforma-
tion U :

U = exp (−it)[ωΩ(|e〉 〈e|+ a†a)] (6.53)

where the Hamiltonian is transformed according to:

H = U †HU + i
dU †

dt
U = Ho +Hint (6.54)

with

Ho/~ = ωs |s〉 〈s|+ (ωe − ωΩ) |e〉 〈e|+ (ωa − ωΩ)a†a+ ωµb
†b, (6.55a)

Hint/~ =gµ(b |s〉 〈g|+ b† |g〉 〈s|) + go(a |e〉 〈g|+ a† |g〉 〈e|)
+ (Ω |e〉 〈s|+ Ω∗ |s〉 〈e|),

(6.55b)

Once again we define the effective Hamiltonian, H:

97



H = Ho +Hint −
i~
2

∑
k

Ĉk
†
Ĉk (6.56)

with collapse operators Ĉk defined in Equation 6.51. Together with the collapse oper-
ator, aout =

√
κoa, we define the intrinsic conversion efficiency as:

TAµ→o =

∫
〈a†outaout〉dt (6.57)

The term 〈a†outaout〉 is the rate at which optical photons decay out of the optical cavity.
Thus the integral denotes the total optical photons exiting the optical cavity. The system
is initialized with one photon in the microwave cavity, ψ(0) = |g, 0, 1〉. The Python codes
for this simulation are included in Appendix E. Furthermore, as before we would like to
explore the case where the system is on resonance with ωe = ωo, ωs = ωµ, and ωΩ = ωe−ωs.

Small Optical Cavity Mode Volume Regime: go >> Γe

We simulate the system with the cavity coupling rates g0 = 100Γe and gµ = 100Γs (where
Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz), with the system on resonance (∆s = ∆e =
∆o = ∆µ = 0) by sweeping over the optical and microwave cavity decays rates, κo and
κµ, and the Rabi driving rate, Ω. The system is initialized with one microwave photon
ψ(0) = |g, 0, 1〉, with the drive term Hdrive = 0. The maximum conversion efficiency for
each pair of κo and κµ, and the corresponding Rabi drive rate, Ω, required to achieve the
maximum conversion is plotted.

We can observe from Figure 6.20 a similar trend in the maximum conversion efficiency
as we observed in the system with a continuous drive (Figure 6.18). However in the single
photon regime, the maximum κµ required to achieve unit maximum conversion efficiency,
is decreased by an order of magnitude. This means that in the single photon regime the
microwave cavity is required to be stronger than in the continuous drive regime to increase
the lifetime of the microwave photon. The difference between the drive term turned on and
off in Figure 7.6, is due to state ground state |g, 0, 0〉 not being excited again to participate
in the conversion. Furthermore the range of κo over which the unit maximum conversion
occurs is narrower. We observe a similar trend in Ω as observed in the continuous drive
regime, where with increasing κo, the Ω required to achieve maximum conversion decreases.
Unit conversion efficiency occurs for a an optical cavity decay rates of κo ∼ 10−1go − go
and microwave cavity decay rates of κµ < gµ. This corresponds to an optical cavity quality
factor of Qo ∼ 106 − 107 and Qµ > 104.

98



Maximum TAµ→o Ω/go for Maximum TAµ→o

(a) (b)

Figure 6.20: a) Maximum conversion efficiency (log10 scale) and the corresponding b) Ω
to achieve maximum conversion efficiency for the system with gµ = 100Γs and go = 100Γe
(where Γe = 2π×13.3MHz, Γs = 2π×21.2Hz). The system is initialized with the Λ system
in the ground state with one photon in the microwave cavity and with the drive turned off
(ψ(0) = |g, 0, 1〉)

Large Optical Cavity Mode Volume Regime: go << Γe

We perform a similar analysis the system as before with the cavity coupling rates g0 =
0.01Γe and gµ = 100Γs (where Γe = 2π×13.3MHz and Γs = 2π×21.2Hz), with the system
on resonance (∆s = ∆e = ∆o = ∆µ = 0) by sweeping over the optical and microwave
cavity decays rates, κo and κµ, and the Rabi driving rate, Ω. The system is initialized with
one microwave photon ψ(0) = |g, 0, 1〉, with the drive term Hdrive = 0. The maximum
conversion efficiency for each pair of κo and κµ, and the corresponding Rabi drive rate, Ω,
required to achieve the maximum conversion is plotted.

In the large optical mode volume regime with a single photon the maximum conversion
efficiency and the required Ω to achieve maximum conversion follows the same trend as
was observed in Figure 6.18. However in the ranges plotted, the maximum conversion
efficiency is 2 orders of magnitude lower than in the continuous drive case. This is also
contributed by the fact that the coupling strength go is much lower than the atomic decay
rate Γe thus there is a higher probability of atomic decay before state can be converted to
a optical photon. Maximum conversion efficiency occurs for a an optical cavity decay rates
of κo ∼ go − 101go and microwave cavity decay rates of κµ < 10−2gµ. This corresponds to
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Maximum TAµ→o Ω/go for Maximum TAµ→o

(a) (b)

Figure 6.21: a) Maximum conversion efficiency (log10 scale) and the corresponding b) Ω
to achieve maximum conversion efficiency for the system with gµ = 100Γs and go = 0.01Γe
(where Γe = 2π×13.3MHz, Γs = 2π×21.2Hz). The system is initialized with the Λ system
in the ground state with one photon in the microwave cavity and with the drive turned off
(ψ(0) = |g, 0, 1〉).

an optical cavity quality factor of Qo ∼ 109 − 1010 and Qµ > 106.

6.7 Conclusion

Over these past simulations we have been able to identify some of the characteristics of the
system to achieve unit conversion efficiency between the microwave and optical regimes
using the Λ system. In this chapter we used the intrinsic conversion efficiency definition of
the first kind defined in Equation 6.39 where we asked the question: If we can get a mi-
crowave photon into the microwave cavity, what system parameters are required to achieve
maximum conversion efficiency?. We first identified that due to the large discrepancies
in the decay rates of the level structure in an NV center, a fundamental requirement of
system to achieve maximal conversion efficiency is that the microwave cavity be strongly
coupled to the |g〉 ↔ |s〉 transition. Thus in the above simulations the microwave cavity
coupling strength was required to be, gµ = 100Γs = 2π × 2.12kHz.

Now with that constraint on the microwave cavity, we explored the small (go = 100Γe =
2π× 1.33GHz) and large (go = 100Γe = 2π× 133kHz) optical cavity mode volume regimes
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Max
TAµ→o

Optical Cavity Microwave Cavity

Continuous Drive
Small Mode Volume

1
Qo ∼ 106 − 108, Qµ > 103,

(go = 100Γe, gµ = 100Γs) Vo = 0.65(λa/n)3 Vµ = 10−10(λb/n)3

Large Mode Volume
1

Qo ∼ 108 − 1010, Qµ > 105,
(go = 0.01Γe, gµ = 100Γs) Vo = 6.5× 107(λa/n)3 Vµ = 10−10(λb/n)3

Single Photon
Small Mode Volume

1
Qo ∼ 106 − 107, Qµ > 104,

(go = 100Γe, gµ = 100Γs) Vo = 0.65(λa/n)3 Vµ = 10−10(λb/n)3

Large Mode Volume
10−2 Qo ∼ 109 − 1010, Qµ > 106,

(go = 0.01Γe, gµ = 100Γs) Vo = 6.5× 107(λa/n)3 Vµ = 10−10(λb/n)3

Table 6.2: Summary of the conversion efficiency, TAµ→o , and the corresponding optical
and microwave cavity parameters for the continuous drive and single photon regimes. (
Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz)

to understand what cavity parameters are required to maximize conversion efficiency. The
required cavity parameters for the maximum conversion efficiency in each of the different
cases explored above have been summarized in Table 6.2. The transition dipole moments of
the NV center corresponding to the |g〉 ↔ |s〉 transition in the Λ system is 3.38×10−5 Debye
[45] and the transition dipole moments of the NV center corresponding to the |g〉 ↔ |e〉
transition in the Λ system are 0.8Debye [119]. Since in the analysis above we assumed that
the cavity was resonant with the atomic transitions, we can calculate the mode volumes
and the quality factors of the cavities in the different regimes. These results have been
summarized in Table 6.2.

We can note two main characteristics of the conversion efficiency performance from the
analysis above. Firstly we note that when we move from the small optical optical mode
volume regime to the large optical mode volume regime, to achieve maximum conversion
efficiency the required κo is increased by an order of magnitude and the required κµ is
decreased by an order of magnitude. Secondly we see that when we move from the con-
tinuous drive to the single photon regime, to achieve maximum conversion efficiency, the
required κµ is decreased by an order of magnitude. We can also observe from the analysis
and from Table 6.2 that in order to achieve maximum conversion efficiency that optical
cavity is required to have a strong temporal confinement whilst the microwave cavity is
required to have a strong spatial confinement. We will continue this analysis in the next
chapter where we will look at the system dynamics with the extrinsic conversion efficiency
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definition TBµ→o.
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Chapter 7

Microwave to Optical Domain
Conversion II

Continuing from study in the previous chapter, in this chapter we will look at the system
dynamics with the extrinsic conversion efficiency definition, TBµ→o that we defined in Section
6.4. In the previous chapter while working with the intrinsic conversion efficiency definition
TAµ→o, we asked the question: If we can get a microwave photon into microwave cavity, what
cavity parameters would maximize the output optical photons?. Here we will work with the
extrinsic conversion efficiency definition where we ask the question: For every microwave
photon incident on the microwave cavity, what cavity parameters would maximize the output
optical photons?. Once again we will follow a similar analysis procedure as before. In
Section 7.1 we perform analytical non-Hermitian approximations of the ground state and
first manifold of the system to get an intuitive understanding of the system dynamics.
In Section 7.2 we employ the QuTIP package [107, 108] to investigate via Monte-Carlo
simulations the extrinsic conversion efficiency of the system with: a i) weak continuous
drive microwave field and ii) with a single microwave photon using a cascaded cavity
simulation. Finally in Section 7.3 we will discuss some of potential platforms that the
system can be integrated onto.

The Python codes used to perform the simulations in this chapter have been attached
in Appendix E. The code for the cascaded cavity system used in Section 7.2.2 was written
based on an original code written by Jinjin Du in Reference [114].
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7.1 Approximate Analytical Solutions

We begin once again with the analytical approximation as we did before to observe the
conversion efficiency of the first microwave photon to and optical photon. In the analytical
approximation we treat the system as purely three level Λ system without the virtual state
|g′〉.

Figure 7.1: Ground state and first manifold of the three Λ system coupled to a microwave
and optical cavity with coupling rates gµ and go respectively. The basis states represented
are the atomic state, optical photon and the microwave photon respectively.

We follow the approach previously followed in Section 6.5 and look at the non-Hermitian
Hamiltonian describing the transition of the system between the ground and first manifolds
(see Equations 6.41 - 6.42). We now define the conversion efficiency with a subtle change
from Equation 6.45 as:

TBµ→o =
〈a†a〉out
〈b†b〉in

≈ |c
(1)
3 |2κo
|ε|2

(7.1)

where |c(1)
3 |2κo is the rate at which optical photons decay out of the optical cavity (c

(1)
3 is

the expectation value of the state |g, 1, 0〉 where there is one photon in the optical cavity),
and |ε|2 is the rate at which microwave photons are incident on the microwave cavity due
to the classical drive. Thus the conversion efficiency reads as the rate of output optical
photons divided by the rate at which microwave photons are incident on the microwave
cavity. We perform the analysis in the weak drive limit, |ε|2 → 0
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7.1.1 Coupling Regimes

We once again look at the different cavity coupling regimes. As was before due to the large
difference in the values of Γe and Γs, in the limiting case with gµ << Γs, the conversion
efficiency TBµ→o → 0. This can be understood by referring to Equation 6.46 and referring to
Figure 7.1. As can be noted since the transition probability Γ|g,0,1〉→|s,0,0〉 scales with |gµ|2,
when gµ << Γs, the transition probability Γ|g,0,1〉→|s,0,0〉 is much smaller than the transition
probabilities between the other bare states in the first photon manifold (Figure 7.1). This
means that only few photons that are injected into the microwave cavity are coupled to
the atomic transition and hence the conversion efficiency of the system approaches zero,
TBµ→o → 0. Thus it is a necessary condition that the microwave coupling rate, gµ >> Γs,
when working with the Λ system in an NV center. With gµ >> Γs we explore the two
optical cavity regimes: go >> Γe and go << Γe.

Small Optical Mode Volume Regime: go >> Γe

With the cavity coupling rates g0 = 100Γe and gµ = 100Γs (where Γe = 2π× 13.3MHz and
Γs = 2π × 21.2Hz), we perform the analysis for constant cavity decay rates κµ = gµ and
κo = go, whilst sweeping over the the Rabi coupling rate, Ω, and detunings, ∆ (= ∆s =
∆e = ∆o = ∆µ =), and κo and κµ respectively (see Figure 7.2 ).

Some key characteristics of the system can be understood from the analytical plots in
Figure 7.2a and Figure 7.2b. It can be noted from Fig. 7.2a, for constant κµ, as the value
of κo is increased, the maximum achievable conversion efficiency increases. Furthermore, as
κo is increased the value of Ω required to achieve maximum conversion efficiency decreases.
Furthermore as the optical cavity becomes more leaky, a smaller value of Ω is required for
the injected microwave photon to be converted within each cycle. These two responses of
the system have been previously noted in the earlier conversion efficiency, TAµ→o, in Figure
6.12a.

From Fig. 7.2b it can be noted that for a fixed κo, as the microwave decay rate, κµ is de-
creased, that is as the cavity gets stronger, the maximum value of the conversion efficiency
occurs at, ∆/gµ = ±1 (polariton peaks). As Ω is increased due to power broadening, the
peaks start broadening as well. However as opposed to Figure 6.12b, here the broadened
peak widths are narrower. Thus microwave photon injection into the microwave cavity can
done on resonance for large Ω. Another main difference that can be noted to be different
from the previous conversion efficiency definition is that when κµ is too large or too small
the maximum conversion efficiency is decreases. There exists a midpoint at which conver-
sion efficiency is maximized. This is due to the fact that when κµ is too large, or when the

105



TBµ→o(κµ = gµ) TBµ→o(κo = go)

(a)
(b)

Figure 7.2: Conversion efficiency (log10 scale) for a constant κµ = gµ (a) and κo = go (b)
sweeping through three different values of κo and κµ respectively, for go = 100Γe and gµ =
100Γs (where Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz and ∆ = ∆s = ∆e = ∆o = ∆µ).
a) The conversion efficiency for a fixed κµ sweeping through three different values of κo.
As can be observed, as κo is increased, the Ω required to achieve maximum conversion
efficiency decreases. b)The conversion efficiency for a fixed κo sweeping through three
different values of κµ. For small κµ, maximum conversion efficiency occurs at detunings,
∆/gµ = ±1 (polariton peaks), whereas as κµ is increased, maximum conversion efficiency
takes place at detunings, ∆/gµ = 0, or when the system is on resonance.

cavity is leaky, more and more microwave photons leave the cavity before being coupled
to the NV center. However for too small of a κµ, when the cavity is strong, it becomes
harder to inject microwave photons into the cavity. Thus there exists an ideal value of the
microwave cavity decay rate that would allow for maximal injection of microwave photons
whilst decreasing photon leakage from the cavity.

In order to understand the conversion efficiency dependence on the parameters κo, κµ
and Ω, we sweep over the the three parameters and plot the maximum conversion efficiency
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for each pair of κo and κµ, and the corresponding Rabi drive rate, Ω, required to achieve the
maximum conversion (Fig. 7.3) with the system on resonance (∆s = ∆e = ∆o = ∆µ = 0).

Maximum TBµ→o Ω/go for Maximum TBµ→o

(a) (b)

Figure 7.3: a) Maximum conversion efficiency (log10 scale) and the corresponding b)Ω to
achieve maximum efficiency with go = 100Γe and gµ = 100Γs, for a system on resonance
(∆s = ∆e = ∆o = ∆µ = 0).

As can be noted from the plots in Figure 7.3, as the optical cavity decay rate κo
is increased the conversion efficiency of the system increases, whilst the required Ω for
maximum conversion decreases. This is in agreement with what was observed in Figure
7.2a and in the previous conversion efficiency definition (Figure 6.15), wherein with a larger
κo more photons that are in the |g, 1, 0〉 are able to leave the cavity before being coupled
back into the emitter.

However we notice as opposed to the trend we noticed with TAµ→o in the previous chapter,
for κµ that is too large or too small, the conversion efficiency starts decreasing. This is
in agreement with what was observed in Figure 7.2b, wherein with increased increased κµ
the injected microwave photons in the state |g, 1, 0〉 decay out of the cavity before it can
be coupled to the emitter for the conversion to take place, however if the κµ is too small
the it becomes harder to inject microwave photons into the cavity.

Large Optical Mode Volume Regime: go << Γe

We perform a similar analysis as before for the system with the cavity coupling rates
g0 = 0.01Γe and gµ = 100Γs (where Γe = 2π×13.3MHz and Γs = 2π×21.2Hz), for constant
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cavity decay rates κµ = gµ and κo = go, whilst sweeping over the the Rabi coupling rate,
Ω, and detunings, ∆ (= ∆s = ∆e = ∆o = ∆µ =), and κo and κµ respectively (see Figure
7.4 ).

TBµ→o(κµ = gµ) TBµ→o(κo = go)

(a) (b)

Figure 7.4: Conversion efficiency (log10 scale) for a constant κµ = gµ and κo = go sweeping
through three different values of κo and κµ respectively, for go = 0.01Γe and gµ = 100Γs
(where Γe = 2π × 13.3MHz, Γs = 2π × 21.2Hz and ∆ = ∆s = ∆e = ∆o = ∆µ). a) The
conversion efficiency for a fixed κµ sweeping through three different values of κo. b) The
conversion efficiency for a fixed κo sweeping through three different values of κµ. With a
weak optical cavity maximum conversion efficiency occurs mainly on resonance (∆/gµ = 0)
but as κµ decreases, additional peaks corresponding to the polariton peaks start appearing
at ∆/gµ = ±1 (polariton peaks).

From Figure 7.4a for a constant κµ, the conversion efficiency increases with increasing
κo similar to the trend noted earlier in the previous case (see Figure 7.4a). However
due to the lower optical coupling strength, the detuning bandwidth over which maximum
conversion occurs is also is much narrower and occurs mainly at resonance ∆/gµ = 0. From
Figure 7.4b as seen before as κµ decreases the polariton peaks that are characteristic of a
strong cavity start appearing. However as the value of κµ is increased the polariton peaks
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characteristic of a strong cavity start decreasing and maximum conversion efficiency occurs
on resonance. We note once again a similar trend that we observed previously in Figure
7.4b where for too large or too small of a κµ, the maximum conversion efficiency starts
decreasing.

Maximum TBµ→o Ω/go for Maximum TBµ→o

(a) (b)

Figure 7.5: a) Maximum conversion efficiency (log10 scale) and the corresponding b) Ω to
achieve maximum efficiency with go = 0.01Γe and gµ = 100Γs, for a system on resonance
(∆s = ∆e = ∆o = ∆µ = 0).

We perform a similar simulation as before and sweep over the values of κo, κµ and Ω, and
plot the maximum conversion efficiency for each pair of κo and κµ, and the corresponding
Rabi drive rate, Ω, required to achieve the maximum conversion (Fig. 7.3) with the system
on resonance (∆s = ∆e = ∆o = ∆µ = 0). As before with increasing κo, the conversion
efficiency increases as more optical photons can leave the cavity before being coupled back
to the system. However as compared with Figure 7.3, the required κo before which unit
conversion efficiency occurs is increased by an order of magnitude. Furthermore as observed
earlier in Figure 7.3, with increasing κµ, although more microwave photons can be injected
into the cavity, there is a higher probability of microwave photons can leave the cavity
before it can be picked up for conversion. On the other hand as with decreasing κµ, as the
microwave cavity becomes stronger, its becomes harder to inject microwave photons in to
the cavity.
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7.2 Monte-Carlo Simulations

7.2.1 Continous Drive

To understand the effects of higher manifolds in the system, we once again perform Monte-
Carlo simulations to analyse the Hamiltonian as we did in Section 6.6.1. We employ Monte-
Carlo Solver from the Python package, QuTIP [107, 108] to perform the simulations. The
non-Hermitian Hamiltonian describing the dynamics of the system in the rotating frame
is described by Equation 6.50 together with the collapse operators in Equation 6.51. We
define the conversion efficiency together with the output operators, aout =

√
κoa as:

TBµ→o =

∫
〈a†outaout〉dt∫
|ε|2dt

(7.2)

in the limit |ε|2 → 0. The term 〈a†outaout〉 is the rate at which optical photons decay
out of the optical cavity. Thus the integral in the numerator denotes the total optical
photons exiting the optical cavity. The term |ε|2 is the rate at which microwave photons
are incident on the microwave cavity due to the classical drive. Thus the integral in the
denominator describes total microwave photons incident on the microwave cavity. The
system is initialized in ψ(0) = |g, 0, 0〉 with the NV center in the ground state with no
photons in both the optical and microwave cavities respectively. Once again we take into
account the decay through the phonon sideband emission as we did in the previous chapter
by modelling the NV center as a pseudo-three level system with the virtual state |g′〉. The
Python codes for this simulation are included in Appendix E.

Small Optical Mode Volume Regime: go >> Γe

We simulate the system with the cavity coupling rates g0 = 100Γe and gµ = 100Γs (where
Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz), with the system on resonance (∆s = ∆e =
∆o = ∆µ = 0) by sweeping over the optical and microwave cavity decays rates, κo and κµ,
and the Rabi driving rate, Ω. The maximum conversion efficiency for each pair of κo and
κµ, and the corresponding Rabi drive rate, Ω, required to achieve the maximum conversion
is plotted.

Firstly, as was before in the previous chapter, we note from Figure 7.6, when higher
manifolds of the system is included there exists a upper bound on the optical cavity decay
rate κo, as opposed to the analytical approximation of the conversion efficiency of the
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Maximum TBµ→o Ω/go for Maximum TBµ→o

(a) (b)

Figure 7.6: a) Maximum conversion efficiency (log10 scale) and the corresponding b) Ω to
achieve maximum conversion efficiency for the system with gµ = 100Γs and go = 100Γe
(where Γe = 2π×13.3MHz, Γs = 2π×21.2Hz). The system is initialized with the Λ system
in the ground state with no photons in the microwave and optical cavities (ψ(0) = |g, 0, 0〉).

first photon seen in Figure 7.3. Unit conversion efficiency occurs for a an optical cavity
decay rate of κo ∼ 10−1go−go. This is the similar range over which we observed maximum
conversion in the TAµ→o in Figure 6.18. Across the microwave cavity decay rates, we observe
a maximum unit conversion efficiency for κµ ∼ gµ − 10gµ. These ranges correspond to
an optical cavity quality factor of Qo ∼ 106 − 107 and microwave cavity quality factor
Qµ ∼ 102 − 104. We can also note that to achieve maximum conversion efficiency we
require the Rabi drive rate, Ω, to be ∼ go.

Large Optical Mode Volume Regime: go << Γe

We simulate the system with the cavity coupling rates g0 = 0.01Γe and gµ = 100Γs (where
Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz), with the system on resonance (∆s = ∆e =
∆o = ∆µ = 0) by sweeping over the optical and microwave cavity decays rates, κo and κµ,
and the Rabi driving rate, Ω. The maximum conversion efficiency for each pair of κo and
κµ, and the corresponding Rabi drive rate, Ω, required to achieve the maximum conversion
is plotted.

In the large optical mode volume regime we observe that the maximum conversion
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Maximum TBµ→o Ω/go for Maximum TBµ→o

(a) (b)

Figure 7.7: a) Maximum conversion efficiency (log10 scale) and the corresponding b) Ω to
achieve maximum conversion efficiency for the system with gµ = 100Γs and go = 0.01Γe
(where Γe = 2π×13.3MHz, Γs = 2π×21.2Hz). The system is initialized with the Λ system
in the ground state with no photons in the microwave and optical cavities (ψ(0) = |g, 0, 0〉).

efficiency is 2 orders of magnitude lower than in the small optical mode volume regime
observed in Figure 7.6. This can be understood by recalling the performance of the intrinsic
conversion efficiency TAµ→o from the previous chapter, when moving from the small optical
cavity mode volume to the small optical cavity mode volume in Figures 6.18 and 6.19. We
observed that in the large optical mode volume regime, the maximum conversion efficiency
was shifted lower along the κµ axis by an order of magnitude. This was because in the
large optical mode volume regime a stronger microwave cavity is required to achieve unit
maximum conversion. However with Figure 7.7, we note that a stronger microwave cavity
would mean that it becomes harder to inject photons into the cavity. Thus the maximum
conversion efficiency is reduced by two orders of magnitude. Maximum conversion efficiency
occurs for a an optical cavity decay range of κo ∼ 101go − 102go. This is the similar range
over which we observed maximum conversion in the TAµ→o in Figure 6.19. Furthermore
maximum conversion occurs across a microwave cavity decay range of κµ ∼ 10gµ − 102gµ.
This corresponds to an optical cavity quality factor of Qo ∼ 108−109 and microwave cavity
quality factor, Qµ ∼ 102 − 103. We understand that when using the conversion efficiency
definition TBµ→o, we require that both the optical and microwave cavities be strongly coupled
to achieve unit conversion efficiency. We can also note that the Rabi drive rate, Ω, follows
a similar trend as we noted in the analytical approximations. The required Ω to achieve
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maximum conversion is ∼ 101.8go.

7.2.2 Single Photon

Figure 7.8: Schematics of the model of a cascaded cavity system consisting of a three level
closed Λ coupled to an optical and microwave cavity. The source cavity has a decay rate
of κs which is inversely proportional to the pulse width of the source microwave field. In
the target system, the |g〉 ↔ |s〉 transition is coupled to the microwave cavity (gµ,κµ), and
the |s〉 ↔ |e〉 transition is coupled to the optical cavity (go,κo). The levels |s〉 and |e〉 are
coupled with a classical field with a frequency of ωΩ and a driving rate Ω. The target
microwave cavity is driven by a microwave pulse from the source cavity.

To simulate the conversion efficiency of a single microwave photon incident on the
microwave cavity, we make use of a cascaded quantum system as shown in Fig. 7.8 [114,
120]. The source cavity produces a well defined microwave pulse which is incident onto the
target microwave cavity. The source cavity here is modelled as a single-sided microwave
cavity that has a decay rate of κs. The target system is similar to the initial model of
the system which consists of a microwave cavity and an optical cavity coupled to the Λ
system in an NV center. Following from Equation 6.29, the Hamiltonian of the system is
described by:

H = Ho +Hint +Hsource (7.3)
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with

Ho/~ = ωs |s〉 〈s|+ ωe |e〉 〈e|+ ωoa
†a+ ωµb

†b, (7.4a)

Hint/~ =gµ(b |s〉 〈g|+ b† |g〉 〈s|) + go(a |e〉 〈g|+ a† |g〉 〈e|)
+ (Ωe−iωΩt |e〉 〈s|+ Ω∗eiωΩt |s〉 〈e|),

(7.4b)

Hsource = ωµb
†
sbs (7.4c)

where a, b and bs are annihilation operators of optical, microwave, and the source cavity,
respectively. The output modes of the optical and microwave cavity are represented with
the input-output formalism [121]. The two output modes for the optical and microwave
photons (a and b respectively) are given by:

aout =
√
κoa (7.5)

bout =
√
κµb+

√
κsbs (7.6)

In the rotating frame of a time dependant unitary U :

U = exp (−it)[ωΩ(|e〉 〈e|+ a†a)] (7.7)

the Hamiltonian is transformed according to:

H = U †HU + i
dU †

dt
U = Ho +Hint +Hsource (7.8)

with

Ho/~ = ωs |s〉 〈s|+ (ωe − ωΩ) |e〉 〈e|+ (ωa − ωΩ)a†a+ ωbb
†b, (7.9a)

Hint/~ =gµ(b |s〉 〈g|+ b† |g〉 〈s|) + go(a |e〉 〈g|+ a† |g〉 〈e|)
+ (Ω |e〉 〈s|+ Ω∗ |s〉 〈e|),

(7.9b)
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Hsource/~ = ωµb
†
sbs (7.9c)

Using the quantum trajectory simulations [120], the time evolution of the system is
described by the Schrodinger equation:

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 (7.10)

Once again we take into the account the phonon sideband decay from the excited state
in the target cavity by setting up a pseduo-three level system with a virtual state |g′〉 as
seen in Figure6.9. The non-Hermitian Hamiltonian, H, is given by:

H = Ho +Hint +Hsource −
i~
2

∑
k

Ĉk
†
Ĉk (7.11)

with collapse operators Ĉk defined as:

Ĉ1 = aout =
√
κoa, (7.12a)

Ĉ2 = bout =
√
κµb+

√
κsbs, (7.12b)

Ĉ3 =
√

ΓZPL |g〉 〈e| , (7.12c)

Ĉ4 =
√

ΓPSB |g′〉 〈e| , (7.12d)

Ĉ5 =
√

Γp |g〉 〈g′| , (7.12e)

Ĉ6 =
√

Γs |g〉 〈s| , (7.12f)

Ĉ7 =
√

Γes |s〉 〈e| , (7.12g)

Ĉ8 =
√
γe |e〉 〈e| , (7.12h)

Ĉ9 =
√
γs |s〉 〈s| (7.12i)

where κo (κµ) is the optical (microwave) cavity decay rate, Γs is the population decay
rate of the |s〉 state in the Λ system, γe (γs) is models additional coherence decays rate of
|e〉 (|s〉) state, ΓZPL is the ZPL decay rate, ΓPSB is the phonon sideband decay rate, Γes
is the decay rate from |s〉 to |g〉, |s〉 to the Γp is the decay rate from shelving state |g′〉
to |g〉. The operator Ĉ1 (Ĉ2) is the optical (microwave) photon decay, Ĉ3 describes the
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population decay from the excited state |e〉 to the ground state |g〉, Ĉ4 describes the PSB
decay from the excited state |e〉 to the virtual state |g′〉, Ĉ5 describes the population decay
from the virtual state |g′〉 to the ground state |g〉 through phonon decay, Ĉ6 describes the
population decay from the metastable state |s〉 to the ground state |g〉, Ĉ7 describes the
population decay from |e〉 to |s〉, and Ĉ8 (Ĉ9) describes the additional coherence decay of
the state |e〉 (|s〉) denoted in Equation 6.38.

The Hamiltonian terms in the rotating frame Ho, Hint, and Hdrive are defined in Equa-
tion 6.34. The Hilbert space of the system has a dimension of 4+N+N+N corresponding
to the pseudo-three level emitter, the target two cavity modes, and the source cavity modes
respectively. As before, the Hilbert space for each cavity mode was truncated at N = 7, as
for any manifold level N < 7 the maximum conversion efficiency saturated at values that
were less than one for any system configuration used. The system is initialized with the
Λ system in the ground state, with zero photons in both the target microwave and optical
cavities, and with one photon in the source cavity (ψ(0) = |g, 0, 0, 1〉).

TBµ→o =

∫
〈a†outaout〉dt (7.13)

The term 〈a†outaout〉 is the rate at which optical photons decay out of the optical cavity.
Thus the integral denotes the total optical photons exiting the optical cavity.

To maximize the conversion efficiency the microwave source cavity decay rate should
be matched to the target microwave cavity decay rate, κs = κµ. This would mean that the
photons enter the microwave cavity at the same rate that they are emitted by the source
cavity. Furthermore, as before we would like to explore the case where the system is on
resonance with ωe = ωo, ωs = ωµ, and ωΩ = ωe − ωs.

Small Optical Mode Volume Regime: go >> Γe

We simulate the system with the cavity coupling rates g0 = 100Γe and gµ = 100Γs (where
Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz), with the system on resonance by sweeping
over the optical and microwave cavity decays rates, κo and κµ, and the Rabi driving rate,
Ω. The maximum conversion efficiency for each pair of κo and κµ, and the corresponding
Rabi drive rate, Ω, required to achieve the maximum conversion is plotted.

As can be noted from Figure 7.9, we observe that in the single photon regime we
observe the similar trend in the conversion efficiency that we observed previously in the
continuous drive system in Figure 7.6. However in the single photon regime, the maximum

116



Maximum TBµ→o Ω/go for Maximum TBµ→o

(a) (b)

Figure 7.9: a) Maximum conversion efficiency (log10 scale) and the corresponding b)Ω to
achieve maximum efficiency in a cascaded cavity system with gµ = 100Γs and go = 100Γe
(where Γe = 2π×13.3MHz, Γs = 2π×21.2Hz). The system is initialized with the Λ system
in the ground state, with zero photons in both the target microwave and optical cavities,
and with one photon in the source cavity (ψ(0) = |g, 0, 0, 1〉).

achievable conversion efficiency is reduced by 1.6 orders of magnitude. This discrepancy
can be understood if we recall the intrinsic conversion efficiency from the previous chapter,
TAµ→o, and compare the plots between the continuous drive and single photon regimes in
Figures 6.18 and 6.20 respectively. We observed that when we moved to the single photon
regime, the required κµ to allow for unit conversion efficiency was decreased by an order of
magnitude. We concluded that in the single photon regime we require the microwave cavity
stronger than in the continuous driven system. Bringing our attention back to Figure 7.9,
reducing the κµ would mean that the rate at which microwave photons enter the cavity
would be decreased. Hence the maximum conversion efficiency is decreased compared to
the system with a continuous drive. Maximum conversion efficiency occurs for a an optical
cavity decay range of κo ∼ 10−1go−go. Across the microwave cavity decay rates, we observe
a maximum unit conversion efficiency for κµ ∼ 101gµ − 102gµ. These ranges correspond
to an optical cavity quality factor of Qo ∼ 106 − 107 and microwave cavity quality factor
Qµ ∼ 102 − 103. We also note a similar trend in the required Ω as before in the small
optical mode volume regimes. As was the case in continuous drive regime, we note that
the required Rabi drive rate for maximum conversion is ∼ go.
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Large Optical Mode Volume Regime: go << Γe

We simulate the system with the cavity coupling rates g0 = 0.01Γe and gµ = 100Γs (where
Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz), with the system on resonance by sweeping
over the optical and microwave cavity decays rates, κo and κµ, and the Rabi driving rate,
Ω. The maximum conversion efficiency for each pair of κo and κµ, and the corresponding
Rabi drive rate, Ω, required to achieve the maximum conversion is plotted.

Maximum TBµ→o Ω/go for Maximum TBµ→o

(a) (b)

Figure 7.10: a) Maximum conversion efficiency (log10 scale) and the corresponding b)Ω to
achieve maximum efficiency in a cascaded cavity system with gµ = 100Γs and go = 0.01Γe
(where Γe = 2π×13.3MHz, Γs = 2π×21.2Hz). The system is initialized with the Λ system
in the ground state, with zero photons in both the target microwave and optical cavities,
and with one photon in the source cavity (ψ(0) = |g, 0, 0, 1〉).

In the large optical mode volume regime, we note from Figure 7.9 that the maximum
achievable conversion efficiency is reduced by ∼ 2 orders of magnitude from the small
optical mode volume regime. This was similar in what we observed in the continuous drive
system in Figures 7.6 and 7.7, wherein when moving from the small optical mode volume
regime to the large optical mode volume regime, we observe that there is a drop in the
conversion efficiency by approximately two orders of magnitude. In the large optical mode
volume regime maximum conversion efficiency occurs for a an optical cavity decay range of
κo ∼ 10go − 102go. Across the microwave cavity decay rates, we observe a maximum unit
conversion efficiency for κµ ∼ 101gµ − 102gµ. These ranges correspond to an optical cavity
quality factor of Qo ∼ 108 − 109 and microwave cavity quality factor Qµ ∼ 102 − 103. We
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also note the Rabi drive rate, Ω, follows a similar trend as was noted in the continuous
drive regime.

7.3 Conclusion

7.3.1 System Limitations

In all the analysis we have seen above we note that there are two main limitations with the
model that is used above. The first limitation we observe is the fundamental requirement
that the microwave cavity have a coupling strength of gµ >> Γs. This is due to the nature
of the NV center wherein since Γs is much smaller than all other transition probabilities,
the conversion efficiency, TBµ→o → 0 for gµ << Γs. The second limitation that we note with
the system is small fraction of the ZPL emission from the excited state (ΓZPL/Γe ∼ 3%).
Which means most of the population decay that occurs from the excited state occurs
without being coupled directly to the |e〉 → |g〉 transition. This results in fewer optical
photons being coupled to the optical cavity thus resulting in a smaller conversion efficiency.
Although this ZPL emission can be enhanced in the weakly coupled Purcell regime, as we
have seen in the above analysis this regime doesn’t result in a large conversion efficiency
of the output optical photons when the system is on resonance.

7.3.2 Results Summary

In the above simulations with the constraint that the microwave cavity coupling strength
be, gµ = 100Γs = 2π × 2.12kHz, we explored the responses of the system with a strong
optical cavity (go = 100Γe = 2π × 1.33GHz) and weak optical cavity (go = 100Γe =
2π × 133kHz). The maximum achievable conversion efficiencies and the required cavity
parameters in each regime have been summarized in Table 7.1. We first note that although
unit conversion efficiency is achievable with a continuous drive, only a maximum conversion
efficiency of only 10−1.6 is achievable in the single photon system. In addition to that we
also observed in both the driven case and the non-driven cases above, in the large optical
mode volume regime, the maximum conversion efficiency is ∼ 2 orders of magnitude lower
than the strong cavity regime.

Starting with the microwave cavity requirements we observe that non zero conversion
efficiency is possible in only the small cavity mode volume regime: gµ >> Γs. This results in
a mode volume requirement of Vµ = 10−10(λb/n)3. In the driven case, for a unit conversion
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Max
TBµ→o

Optical Cavity Microwave Cavity

Continuous Drive

Small Mode Volume
100 Qo ∼ 106 − 107, Qµ ∼ 102 − 104,

(go = 100Γe, gµ = 100Γs) Vo = 0.65(λa/n)3 Vµ = 10−10(λb/n)3

Large Mode Volume
10−2.3 Qo ∼ 108 − 109, Qµ ∼ 102 − 103,

(go = 0.01Γe, gµ = 100Γs) Vo = 6.5× 107(λa/n)3 Vµ = 10−10(λb/n)3

Single Photon

Small Mode Volume
10−1.6 Qo ∼ 106 − 107, Qµ ∼ 102 − 103,

(go = 100Γe, gµ = 100Γs) Vo = 0.65(λa/n)3 Vµ = 10−10(λb/n)3

Large Mode Volume
10−3.8 Qo ∼ 108 − 109, Qµ ∼ 102 − 103,

(go = 0.01Γe, gµ = 100Γs) Vo = 6.5× 107(λa/n)3 Vµ = 10−10(λb/n)3

Table 7.1: Summary of the conversion efficiency, TBµ→o , and the corresponding optical
and microwave cavity parameters for the continuous drive and single photon regimes(
Γe = 2π × 13.3MHz and Γs = 2π × 21.2Hz).

efficiency, the decay rate of the microwave cavity is required to be κµ ∼ gµ − 102gµ. This
corresponds to a quality factor of Qµ ∼ 102 − 104. In the single photon regime the we
observe a similar requirement in the microwave cavity quality factors, albeit resulting in a
lower conversion efficiency.

Now with the optical cavity requirements as we have seen above, non zero conversion
efficiency is possible with both the small and large cavity mode volumes. This results in
a mode volume requirements of Vo = 0.65(λa/n)3 and Vo = 6.5 × 107 respectively. With
go = 100Γe, for maximum unit conversion the decay rate of the optical cavity is required
to be, κo ∼ 10−1go − go, which corresponds to a quality factor of Qo ∼ 106 − 107. With
go = 0.01Γe, for maximum conversion efficiency the decay rate of the optical cavity is
required to be, κo ∼ 10go − 102go corresponding to a quality factor of Qo ∼ 108 − 109.
Once again we see a similar trend that we noted in the previous chapter wherein that in
order to achieve maximum conversion efficiency in each of the regimes listed in Table 7.1,
the optical cavity is required to have a strong temporal confinement whilst the microwave
cavity is required to have a strong spatial confinement.
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7.3.3 Design Considerations

For optical cavities, there are several potential platforms that can be explored. These
include fiber based cavities [116], whispering gallery resonators [122], H0 photonic crystal
cavities [123] and cross beam cavities [124, 125], the quality factors and mode volumes of
which have been summarized in Table 7.3. As seen in Table 7.3, although the fiber based
microcavity fulfills the requirements for efficient inter-photon conversion, integration of a
fiber based cavity with a microwave cavity might prove to be difficult. For the purpose
of photon conversion, the cross beam cavities would be especially interesting platform
to explore due to the availability for the spatial separation of the optical photons from
the optical cavity and the optical Rabi drive. Cross-beam photonic crystal cavities are a
variation of the photonic crystal nano-beam cavities wherein two orthogonal nano-beams,
each with a different photonic bandgap, intersect [125]. These cross beam photonic crystal
have been demonstrated to reach Q-factors of up to 106. In Reference [49], a variation
of a cross beam cavity was demonstrated with a nano-diamond containing an NV center
positioned in the intersection of the cross-beams. In the cavity design presented in Refernce
[49], a waveguide orthogonal to the photonic crystal cavity was used for above resonant
excitation of NV center while the cavity was used to couple the fluorescence from the NV
center with a demonstrated quality factor of ∼ 103. In a similar fashion the cross-beam
photonic rystal cavity can be used in the frequency conversion design wherein the orthongal
waveguide can be used for the Rabi drive Ω, while the optical photons are coupled to the
cavity. With the ongoing research improvements can be made to improve the Q-factors
of these cross beam cavities by two orders of magnitude [49] to the demonstrated design.
Furthermore several experiments in recent times have shown the coupling of single NV
centers to optical cavities [126, 127, 116] which is a promising step forward in implementing
single NV centers for use in microwave to optical domain conversion.

However when coupling single NV centers to microwave cavities the requirements are
little bit more restrictive due to the tighter mode volume requirements for strong coupling.
This is due to the small dipole moment in NV center between the |g〉 and |s〉 states,
and the large coupling strength requirement identified in the analysis. In the past few
years there have been several demonstrations showing the coupling of high-Q and low
mode volume Coplanar Waveguide (CPW) resonators to spin ensembles NV centers in
diamonds [129, 130, 131, 132] reaching Q-factors of up to Q ∼ 106 with ensemble with
mode volumes reaching as low as of V ∼ 10−6(λ/n)3. In an ensemble of N emitters, the
coupling strength scales as

√
N permitting the system to achieve strong coupling regimes

[130] thus coupling strength between ensemble NV centers and microwave cavities can be
increased by increasing the density of NV centers. However considerable experimental
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Cavity Type Quality Factor Mode Volume
Crossbeam Photonic Crys-
tal

Q ∼ 1.9× 104 [124, 125] V = 0.25(λ/n)3 [124, 125]

Photonic Crystal
Nanobeams

Q ∼ 13× 103 [88] V = 3.7(λ/n)3 [88]

Toroid Microcavity Q ∼ 4× 108 [128] V = 1.6× 102(λ/n)3 [128]
H0 Photonic Crystal Cav-
ity

Q ∼ 6× 103 [126] V = 0.74(λ/n)3[126]

Whispering Gallery Micro-
resonator

Q ∼ 109 [122] V = 0.65(λ/n)3 [122]

Fiber Based Microcavity Q ∼ 109 [116] V = 2.4(λ/n)3 [116]

Table 7.2: Summary of optical cavity parameters from literature.

Cavity Type Quality Factor Mode Volume
Crossbeam Photonic Crys-
tal

Q ∼ 1.9× 104 V = 0.25(λ/n)3

Photonic Crystal
Nanobeams

Q ∼ 13× 103 V = 3.7(λ/n)3

H0 Photonic Crystal Cav-
ity

Q ∼ 6× 103 V = 0.74(λ/n)3

Whispering Gallery Micro-
resonator

Q ∼ 109 V = 0.65(λ/n)3

Fiber Based Microcavity Q ∼ 109 V = 2.4(λ/n)3

Table 7.3: Summary of optical cavity parameters from literature.

progress still need to be done in the coupling of CPW resonators to single NV centers
[133] as the demonstrated coupling of single NV centers to microwave cavities have been
in the weak coupling regime with coupling strength of g ∼ 65Hz which is well below the
required coupling strength. However Reference [134] provides a proposal of using a hybrid
spin-electromechanical resonator wherein the coupling between a single NV center and the
CPW cavity is achieved through phonon mediated coupling resulting in cavity Q-factors of
Q ∼ 106 and an effective coupling strength of g ∼ 2π×10kHz. Furthermore in the approach
presented in Reference [134], the diamond is only required to be placed above the CPW
without the requirement to be integrated with the coupling capacitor, thus alleviating some
of the system integration concerns.
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7.4 Future Work

From this point on this work opens up several avenues which can be further investigated.
One of the first approaches that can be explored would be to incorporate the use of phonon
assisted microwave cavity coupling, discussed in Reference [76], into the Hamiltonian used
in this study to understand how the conversion efficiency compares to the work investigated
here. To do this, improvements need to be made to the NV center model presented here.
For our purpose we assumed one vibrational state |g′〉 which was at the same energy level
as the ground state |g〉. However in an NV center there are multiple vibrational states,
in the vibronic band, each at a different energy level above the ground state |g〉 which
decay to the ground state with different phonon decay rates. This subtle difference will
become much more important when working with phonon assisted coupling. Secondly,
more research should be done into designing microwave cavities that are able to achieve
small mode volumes, as this is a primary requirement for efficient conversion between the
microwave and optical regimes. Furthermore, as the NV centers offer also provide other
level schemes, such as a 4 level diamond system, the potential of using the 4 level diamond
scheme in single NV centers to convert between microwave and optical photons can be
explored [135] in a similar manner as presented above. Furthermore, in this work we have
looked at a small scope of optimizing over the rich parameter space available to us. One
could potentially devise a much more efficient way of optimizing over the several parameters
available to identify the required cavity characteristics to maximize conversion between the
microwave and optical photons. Finally, another aspect in which progress has to be made is
to identifying an efficient way in which the optical and microwave cavities can be integrated
together. As the simulations we performed assumed a complete mode overlap between the
optical and microwave modes, this would require that optical and microwave cavities to
be tightly confined. Some progress should be made via FDTD simulations in devising an
efficient way of integrating the optical and microwave cavities to achieve maximum mode
overlap between the NV center and the cavities.
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Chapter 8

Conclusion

8.1 Directional Control of NV Center Emission

In Part I of this we thesis we saw a study on using an inverse design tool, known as adjoint
optimization, to design a 2D subwavelength structure that would be able to control the
emission pattern from NV centers embedded in diamonds. In Chapter 3 we looked at how
two level quantum emitters can be modelled as a classical electric dipole using the Local
Density of state formalism. Since quantum emitters can be modelled as dipoles, we looked
at the use of antenna design parameters such as directivity and gain to study the emission
pattern from emitters. In Chapter 4 we looked at the theoretical derivation of adjoint
optimization as a tool for nanophotonic device design. We observed that by using adjoint
optimization over brute force methods the number of required simulations per iteration
can be reduced from N + 1 simulations to just 2 simulations. In Chapter 5 we looked the
use of adjoint optimization for the design of a subwavelength structure that would be able
to control the emission profile of the NV centers. The use of adjoint optimization approach
also has the added advantage of mode profile shaping which allows for direct coupling NV
center emission to a free standing fiber without any additional optical elements. We saw
that the adjoint optimization designed structure has a maximum upward directivity of
7.3dB with the upward emission confined within upper half angle of 45o(NA = 0.7). We
also saw the confocal microscope setup assembled in the lab to observe fluorescence from
NV centers with some preliminary images from the microscope. Unfortunately a lot of the
planned work towards an experimental realisation of the designed structure was impossible
due to the quarantine measures placed in early 2020 due to the COVID situation.
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8.2 Microwave to Optical Transducer

In Part II of the thesis we investigated the potential of using the Λ system in single NV
centers coupled to microwave and optical cavities for efficient conversion between the mi-
crowave and optical regimes. In Chapter 6 we first started by looking at the proposed
model for inter-photon conversion. We then defined the conversion efficiency of the system
with two definitions. The intrinsic conversion efficiency of the system was defined as the
ratio between the output optical photons and the microwave photons in the microwave cav-
ity. We performed analytical studies with the ground state and first manifold of the system
to intuitively understand the steady state performance of the system large and small opti-
cal cavity mode volumes. We then performed Monte-Carlo simulations with a continuous
drive and in the single photon regimes to observe the required cavity parameters for max-
imum conversion efficiency (see Table 6.2 for cavity parameters summary). We continued
our investigation in Chapter 7 where we explored the extrinsic conversion efficiency. The
extrinsic conversion efficiency was defined as the ratio between the output optical photons
and the microwave photons incident on the microwave cavity. We performed a similar
analysis to the previous chapter to identify the required cavity parameters for maximum
conversion efficiency (see Table 7.1 for cavity parameters summary). We first observe that
a fundamental requirement for non-zero conversion efficiency, we require the microwave
cavity to have small mode volumes. Furthermore, we observe that in both the continu-
ous drive and the single photon system, maximum conversion efficiency is achieved with
small optical cavity mode volumes, go >> Γe. Although unit extrinsic conversion efficiency
(TBµ→o) is achievable in the continuous drive system, a maximum conversion efficiency of
only 10−1.6 is achievable in the single photon system. The primary reason for this would be
the low fraction of optical emission into the Zero Phonon Line (ZPL). However the method
of analysis presented in this thesis can be easily adapted to investigate other potential
three level Λ systems. Although there currently exist different optical cavities that satisfy
the requirements of the system to achieve maximal conversion efficiency, further research
needs to be done in microwave cavity design to satisfy the requirement for strong coupling
between individual NV centers and the microwave cavity.
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Appendix A

Fabrication of Photonic Crystal
Membranes for Hollow-Core Fiber
Integrated Cavities

This work was done together with Supratik Sarkar, and Dr. Rubayet Al Maruf with
guidance from Dr. Jeremy Flannery.

The fabrication was done with by following the recipe developed by Dr. Jeremy Flan-
nery in Referece [136] detailed in Figure A.1.

1. We began with a silicon wafer which had SiN deposited on it with a layer of PMMA
protective coating. The PMMA was removed by sonicating the chip in Remover
PG at 80oC for 15 minutes. Then the SiN layer was etched down to the required
thickness of 400nm by Reactive Ion Etching(RIE)(Oxford Instruments ICP380) with
a mixture of C4F8 at 130 SCCM, and SF6 at 60 SCCM with a pressure of 10mTorr,
RF power of 1000W ICP, and platen RF powe of 30W. The thickness of the SiN
layer was characterized with reflectometry (Filmetrics F40) before and after etching
to determine the etch rate.

2. Al Deposition: A hardmask of Aluminium was deposited on to the sample with a
E-beam Physical Vapour Deposition (Intlvac Nanochrome II).

3. ZEP: A 450nm later of ZEP520A(positive resist) was deposited on the Aluminium
with a spincoater(3000RPM for 60s with a 3000RPM/s ramp) and developed on a
hotplate at 180oC for 2 minutes.
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Figure A.1

4. E-beam Lithography(EBL): The photonic crystal pattern was then transferred to
the ZEP with EBL(JEOL JBX-6300FS) at 100keV and developed with amyl-acetate.

5. Aluminium Etch: The Aluminium hardmask was etched with RIE. Any oxidation
layer was first removed with a mixture of Cl2 at 10SCCM, BCl3 at 40SCCM, and N2

at 50SCCM, with a pressure of 5mTorr, ICP power of 800W, and HF power of 150W
for 8s. The Aluminium was then etched with a mixture of Cl2 at 40SCCM, BCl3 at
10SCCM, and N2 at 50SCCM, with a pressure of 5mTorr, ICP power of 800W, and
HF power of 120W for 10s.

6. ZEP Removal: The ZEP layer was removed by sonication in Remover PG at 80oC
for 15 minutes.

7. SiN Etch: The same recipe from Step 1 was used to etch the SiN. The etching was
done for 1.5 times the SiN thickness to ensure that the holes was etched all the way
through.

8. KOH Wet Etch: This step was performed by Rubayet Al Maruf. The Si substrate
was undercut with KOH wet etching by immersing the chip in 45% concentration of
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KOH for 1 hour at 80oC followed by two baths in deinonized water for 5 minutes
each at 80oC. After that the chips were immersed in two IPA baths for for 5 minutes
each.
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Appendix B

Inverse Design Setup Codes

This work was done in collaboration with Supratik Sarkar.

B.1 Lumerical Intial Structure Setup File (.lsf)

1 switchtolayout;

2 selectall;

3 delete;

4

5 ## SIM PARAMS

6 opt_size_x = 3.0e-6;

7 opt_size_y = 3.0e-6;

8 opt_size_z = 300e-9;

9

10 fiber_rad = 700e-9;

11

12 dist_to_source = 200e-9;

13 dist_to_fiber = 2e-6;

14

15 grating_thickness = 300e-9;

16

17 size_x = opt_size_x + 1.5e-6;

18 size_y = opt_size_y + 1.5e-6;

19 size_z_min = - (grating_thickness /2 + dist_to_source + 50e-9);

20 size_z_max = grating_thickness /2 + dist_to_fiber + 50e-9;

21

22 wavelength = 680e-9;
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23

24 diamond_index = 2.41;

25 fiber_index = 1.44;

26 air_index = 1;

27

28 dx = 20e-9;

29

30 # DIAMOND SAMPLE

31 addrect;

32 set(’name’,’diamond sample ’);

33 set(’x’ ,0);

34 set(’x span’ ,2* opt_size_x);

35 set(’y’ ,0);

36 set(’y span’ ,2* opt_size_y);

37 set(’z max’,grating_thickness /2);

38 set(’z min’,-grating_thickness /2 - 1e-6);

39 set(’index’,diamond_index);

40

41 # OUTPUT FIBER

42 addcircle;

43 set(’name’,’output fiber top’);

44 set(’x’ ,0);

45 set(’y’ ,0);

46 set(’radius ’,fiber_rad);

47 set(’z min’,grating_thickness /2 + dist_to_fiber);

48 set(’z max’,grating_thickness /2 + dist_to_fiber + 5e-6);

49 set(’index’,fiber_index);

50

51 # NV CENTER SOURCE

52 adddipole;

53 set(’x’ ,0);

54 set(’y’ ,0);

55 set(’z’,-grating_thickness /2 - dist_to_source);

56 set(’amplitude ’ ,1);

57 set(’center wavelength ’,wavelength);

58 set(’wavelength span’ ,0);

59 set(’theta’ ,90);

60

61 # FDTD

62 addfdtd;

63 set(’dimension ’,’3D’);

64 set(’background index’,air_index);

65 set(’mesh accuracy ’ ,3); #< To increase this , we also need to refine the

optimization mesh below 20nm

66 set(’x min’,-size_x /2);
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67 set(’x max’,size_x /2);

68 set(’y min’,-size_y /2);

69 set(’y max’,size_y /2);

70 set(’z min’,size_z_min - 0.5e-6);

71 set(’z max’,size_z_max);

72 set(’y min bc’,’Symmetric ’);

73 set(’x min bc’,’Anti -Symmetric ’);

74 set(’auto shutoff min’,1e-7);

75

76 # OPTIMIZATION FIELDS MONITOR IN OPTIMIZABLE REGION

77 addpower;

78 set(’name’,’opt_fields ’);

79 set(’monitor type’,’3D’);

80 set(’x’ ,0);

81 set(’x span’,opt_size_x);

82 set(’y’ ,0);

83 set(’y span’,opt_size_y);

84 set(’z’ ,0);

85 set(’z span’,opt_size_z);

86

87 # FOM

88 addpower;

89 set(’name’,’fom’);

90 set(’monitor type’,’2D Z-normal ’);

91 set(’x’ ,0);

92 set(’x span’,fiber_rad * 2.1);

93 set(’y’ ,0);

94 set(’y span’,fiber_rad * 2.1);

95 set(’z’,grating_thickness /2 + dist_to_fiber);

96

97 # FOR LATER VISUALIZATION

98 addindex;

99 set(’name’,’global_index ’);

100 set(’monitor type’,’3D’);

101 set(’x min’,-size_x /2);

102 set(’x max’,size_x /2);

103 set(’y min’,-size_y /2);

104 set(’y max’,size_y /2);

105 set(’z min’,-opt_size_z /2);

106 set(’z max’,opt_size_z /2);

107 set(’enabled ’,true);

108

109 # INITIAL BULLSEYE GEOMETRY

110 addstructuregroup;

111 set(’name’,’initial_guess ’);
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112 mesh_order = 2;

113 gradient_factor = 0.1;

114 period = wavelength/diamond_index; #< Second order Bragg grating

criterion

115 radius = 2* period;

116 ridge_width = period /2;

117

118 for (0; (2*( radius + ridge_width)) < (opt_size_x) ; 0) {

119 addring;

120 set(’name’,’etch_ring ’);

121 set(’x’ ,0);

122 set(’y’ ,0);

123 set(’inner radius ’,radius);

124 set(’outer radius ’,radius + ridge_width);

125 set(’z’ ,0);

126 set(’z span’,grating_thickness);

127 set(’material ’,’etch’);

128 addtogroup(’initial_guess ’);

129 radius = radius + (2 * ridge_width);

130 }

B.2 Python Adjoint Optimization Code

1

2 # General purpose imports

3 import numpy as np

4 import os

5 import sys

6 import scipy as sp

7

8 # Uncomment the next two lines if using Linux

9 #import imp

10 #lumapi = imp.load_source (" lumapi", "/opt/lumerical /2019b/api/python/

lumapi.py")

11

12 # Optimization specific imports

13 from lumopt import CONFIG

14 from lumopt.geometries.topology import TopologyOptimization2D ,

TopologyOptimization3DLayered

15 from lumopt.utilities.load_lumerical_scripts import load_from_lsf

16 from lumopt.figures_of_merit.modematch import ModeMatch

17 from lumopt.optimization import Optimization

18 from lumopt.optimizers.generic_optimizers import ScipyOptimizers

19 from lumopt.utilities.wavelengths import Wavelengths
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20

21 # DEFINE BASE SIMULATION #

22 def runSim(params , eps_air , eps_diamond , x_pos , y_pos , z_pos , size_x ,

filter_R):

23

24 # DEFINE A 3D TOPOLOGY OPTIMIZATION REGION #

25 geometry = TopologyOptimization3DLayered(params=params , eps_min=

eps_air , eps_max=eps_diamond , x=x_pos , y=y_pos , z=z_pos , filter_R=

filter_R)

26

27 # DEFINE FIGURE OF MERIT #

28 # The base simulation script defines a field monitor named ’fom’ at

the point where we want to modematch to the fundamental TE mode

29 fom = ModeMatch(monitor_name = ’fom’, mode_number = ’Fundamental TE

mode’, direction = ’Forward ’, norm_p = 2)

30

31 # DEFINE OPTIMIZATION ALGORITHM #

32 optimizer = ScipyOptimizers(max_iter =40, method=’L-BFGS -B’,

scaling_factor =1, pgtol=1e-6, ftol=1e-4, scale_initial_gradient_to

=0.25)

33

34 # LOAD TEMPLATE SCRIPT AND SUBSTITUTE PARAMETERS #

35 script = load_from_lsf(os.path.join(CONFIG[’root’], ’examples/

NV_grating/dipole_source.lsf’))

36

37 wavelengths = Wavelengths(start = 680e-9, stop = 680e-9, points = 1)

38 opt = Optimization(base_script=script , wavelengths = wavelengths , fom

=fom , geometry=geometry , optimizer=optimizer , use_deps=False ,

hide_fdtd_cad=True , plot_history=False , store_all_simulations=False)

39

40 # RUN THE OPTIMIZER #

41 opt.run()

42

43 if __name__ == ’__main__ ’:

44 size_x = 3000

45 size_y = 3000

46 size_z = 300

47

48 filter_R = 400e-9

49

50 # Permittivity of diamond and air

51 eps_diamond = 2.41**2

52 eps_air = 1**2

53

54 if len(sys.argv) > 2 :
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55 size_x = int(sys.argv [1])

56 filter_R = int(sys.argv [2])*1e-9

57 print(size_x ,filter_R)

58

59 x_points = int(size_x /20) + 1

60 y_points = int(size_y /20) + 1

61 z_points = int(size_z /20) + 1

62

63 x_pos = np.linspace(-size_x /2*1e-9,size_x /2*1e-9,x_points)

64 y_pos = np.linspace(-size_y /2*1e-9,size_y /2*1e-9,y_points)

65 z_pos = np.linspace(-size_z /2*1e-9,size_z /2*1e-9,z_points)

66

67

68 ## Initialization tests

69 paramList =[None , #< Use the structure

defined in the project file as initial condition

70 np.ones((x_points ,y_points)), #< Start with the

domain filled with eps_diamond

71 0.5*np.ones((x_points ,y_points)), #< Start with the

domain filled with (eps_diamond+eps_air)/2

72 np.zeros((x_points ,y_points)), #< Start with the

domain filled with eps_air

73 ]

74

75 for curParams in paramList:

76 runSim(curParams , eps_air , eps_diamond , x_pos , y_pos , z_pos ,

size_x *1e-9, filter_R)
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Appendix C

Galvo Control Circuit

This work was done in collaboration with Supratik Sarkar

Figure C.1
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Appendix D

Gaussian Beam Waist Calculation

This work was done in collaboration with Supratik Sarkar

D.1 Mathematica Code

1 Lens[f_] := {{1, 0}, {-1/f, 1}};

2 Air[d_] := {{1, d}, {0, 1}};

3

4 (*The ray vectors at z=0*)6Xi[ wavelength_ , w0_] := {{0}, {wavelength

/(Pi*w0)}};

5 Eta[w0_] := {{w0}, {0}};

6 WInit = 1.4*2;

7 Lambda = 532*(10^ -9);

8 f1 = 100;f2 = 200;f3 = 200;

9

10 d1 = ((f1^2)/f2) + f1 - (d3*((f1/f2)^2));d2 = f1 + f2;

11 d3 = 150;d4 = f3;

12

13 (* Propagation through air*)16M1 = Air[z];

14 Eta1 = M1.Eta[WInit];

15 Xi1 = M1.Xi[Lambda , WInit];

16 R1 = Sqrt[Eta1 [[1]]^2 + Xi1 [[1]]^2];

17

18 (* Propagation through lens*)

19 M2 = Air[z - d1].Lens[f1].Air[d1];

20 Eta2 = M2.Eta[WInit];

21 Xi2 = M2.Xi[Lambda , WInit];
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22 R2 = Sqrt[Eta2 [[1]]^2 + Xi2 [[1]]^2];

23

24 (* Propagation through air*)28M3 = Air[z - d1 - d2].Lens[f2].Air[d2].

Lens[f1].Air[d1];

25 Eta3 = M3.Eta[WInit];

26 Xi3 = M3.Xi[Lambda , WInit];

27 R3 = Sqrt[Eta3 [[1]]^2 + Xi3 [[1]]^2];

28

29 (* Propagation through lens*)34M4 = Air[z - d1 - d2 - d3].Lens[f3].Air[

d3].Lens[f2].Air[d2].Lens [35f1].Air[d1];

30 Eta4 = M4.Eta[WInit];

31 Xi4 = M4.Xi[Lambda , WInit];

32 R4 = Sqrt[Eta4 [[1]]^2 + Xi4 [[1]]^2];

33

34 Plot[Piecewise [{{R1 , z < d1}, {R2 ,41d1 < z < (d2 + d1)}, {R3 , (d1 +

d2 + d3) > z > (d2 + d1)}, {R4 ,42z > (d1 + d2 + d3)}}], {z, 0, d1 +

d2 + d3 + d4 + 180} ,43 AxesLabel -> {"z", "Beam radius"}]
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Appendix E

Microwave to Optical Domain
Converison Codes

E.1 Analytical Approximation Codes

E.1.1 Analytical Approximation for Constant κo or κµ

1 #Import necessary libraries to run the Conversion Efficiency Codes

2 import matplotlib.pyplot as plt

3 import numpy as np

4 from pylab import *

5 from scipy import arange , conj , prod

6 import scipy.sparse as sp

7 from mpl_toolkits.mplot3d import Axes3D

8 from mpl_toolkits.axes_grid1 import make_axes_locatable

9 from math import sqrt

10 import matplotlib

11 matplotlib.use("TKAGG")

12 import matplotlib.pyplot as pyplot

13 import mpl_toolkits.mplot3d

14 import matplotlib as mpl

15

16 fact = (1E9)

17 wa = 2*pi *470*(10**12) /(fact) #optical cavity frequency

18 wb = 2*pi *2.88*(10**9) /(fact) #microwave cavity frequency

19 wl = wa -wb #coherent drive frequency

20

153



21

22 #Defining the decay rates corresponding to NV center

23 gammaE = 2*pi *13.3*1 E6/(fact)

24 gamma_31 = 2*pi *0.35*1 E6/(fact) #ZPL

25 gamma_32 = 0.2* gammaE

26 gamma_34 = gammaE - gamma_31 - gamma_32

27 gamma_21 = 2*pi *21.2/( fact)

28

29 #Coherence Decay Rates

30 gamma_a = 2*pi *66.3/( fact)

31 gamma_b = 2*pi *15.9*1 E6/(fact)

32

33 #Optical and Microwave cavity coupling strengths

34 g_o = gammaE *(0.01)

35 #g_o = gammaE *(100) #Uncomment for strong optical coupling

36 g_mu = gamma_21 *100

37

38 #Detuning list to loop over

39 det_list = linspace (-3*g_mu ,3*g_mu ,50)

40

41 #

#################################################################################################################

42 #Loop over the microwave cavity paramters with a constant kappa_a

43 #Defining the list of optical and microwave cavity decay rates to loop

over

44 kappa_a = g_o

45 kappa_b_list = linspace (-2,2,3)

46 kappa_b_list = [(10**x)*g_mu for x in kappa_b_list]

47

48 T1_o_list = np.zeros ([len(kappa_b_list),l,l])

49

50 #Loop over the microwave cavity paramters with a constant kappa_a

51 for kappa_b in kappa_b_list:

52

53 Omega_list = linspace ((10** -4)*g_o ,(10** -0.5)*g_o ,l)

54 i= 0;j =0;

55

56 T1_o = np.zeros ([l,l])

57 T1_m = np.zeros ([l,l])

58

59 for Omega in Omega_list:

60 for det in det_list:

61 #Linear set of equations defining the zeroth and first

manifold of the system analytically
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62 A = np.array ([[-( gamma_a *1j + det), 0, g_o , Omega],

63 [0, -(kappa_b *1j + det), 0, g_mu],

64 [g_o , 0, -(kappa_a *1j + det ), 0],

65 [Omega , g_mu , 0, -(gamma_b *1j + det)]]);

66 b = np.array ([0, -epsilon , 0, 0]);

67

68 C = np.linalg.solve(A, b);

69 c2 = C[1]

70 c3 = C[2]

71

72 #Save conversion efficiency values in a 2D array

73 T1_o[i][j] = (c3*(c3.conjugate ()))*( kappa_a)/( epsilon) #

Conversion Efficiency Definition A

74 #T1_o[i][j] = (c3*(c3.conjugate ()))*( kappa_a)*( kappa_b)/(

epsilon **2) #Conversion Efficiency Definition B

75

76 i = i+1;

77 if (i ==l):

78 i = 0;

79 j = j+1

80

81 temp_min = min(map(min , T1_o))

82 if (min_value > temp_min):

83 min_value = temp_min

84

85 temp_max = max(map(max , T1_o))

86 if (max_value <temp_max):

87 max_value = temp_max

88

89 T1_o_list[kappa_b_list.index(kappa_b)] = T1_o

90

91

92 OMEGA ,DET = np.meshgrid(Omega_list ,det_list);

93 normi = mpl.colors.Normalize(vmin = log10(min_value/max_value),vmax = 0);

94

95

96 fig = plt.figure(figsize = (8,10))

97 ax = fig.gca(projection=’3d’)

98 cset0 = ax.contourf(log10(OMEGA/g_o), DET/g_mu , log10(T1_o_list [0]), zdir

=’z’, offset=off[0], levels = 20,norm = normi)

99 cset1 = ax.contourf(log10(OMEGA/g_o), DET/g_mu , log10(T1_o_list [1]), zdir

=’z’, offset=off[1], levels = 20,norm = normi)

100 cset2 = ax.contourf(log10(OMEGA/g_o), DET/g_mu , log10(T1_o_list [2]), zdir

=’z’, offset=off[2], levels = 20,norm = normi)

101
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102 ax.set_xlabel(r’$log10 (\ Omega / g_o)$’,fontsize = 20, linespacing =3)

103 ax.set_ylabel(r’$\Delta / g_\mu$’,fontsize =20, linespacing =3)

104 ax.set_zlabel(r’$log_ {10}(\ kappa_\mu / g_\mu) $’,fontsize =20,

linespacing =5)

105 ax.tick_params(axis=’x’, pad =-0.1)

106 ax.tick_params(axis=’y’, pad =-0.1)

107

108 ax.xaxis.labelpad =10

109 ax.yaxis.labelpad =10

110 ax.zaxis.labelpad =25

111

112 ax.tick_params(axis=’z’, pad =10)

113

114 ax.set_zlim (-2,2)

115

116 fig.colorbar(cset0 ,fraction = 0.04, pad = 0.1)

117 plt.show()

118

119 #

#################################################################################################################

120 #Looping over optical cavity paramters with a constant kappa_b

121 #Detuning list to loop over

122 det_list = linspace (-3*g_mu ,3*g_mu ,50)

123

124 #Defining the list of optical and microwave cavity decay rates to loop

over

125 kappa_b = g_mu

126 kappa_b_list = linspace (-2,2,3)

127 kappa_b_list = [(10**x)*g_mu for x in kappa_b_list]

128

129 l = 50;

130 T1_m_list = np.zeros ([len(kappa_a_list),l,l])

131

132 #Loop over the optical cavity paramters with a constant kappa_b

133 for kappa_a in kappa_a_list:

134

135 Omega_list = linspace ((10** -4)*g_o ,(10** -0.5)*g_o ,l)

136 i= 0;j =0;

137

138 T1_m = np.zeros ([l,l])

139 T1_m = np.zeros ([l,l])

140

141 for Omega in Omega_list:

142 for det in det_list:
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143 #Linear set of equations defining the zeroth and first

manifold of the system analytically

144 A = np.array ([[-( gamma_a *1j + det), 0, g_o , Omega],

145 [0, -(kappa_b *1j + det), 0, g_mu],

146 [g_o , 0, -(kappa_a *1j + det ), 0],

147 [Omega , g_mu , 0, -(gamma_b *1j + det)]]);

148 b = np.array ([0, -epsilon , 0, 0]);

149

150 C = np.linalg.solve(A, b);

151 c2 = C[1]

152 c3 = C[2]

153

154 #Save conversion efficiency values in a 2D array

155 T1_m[i][j] = (c3*(c3.conjugate ()))*( kappa_a)/( epsilon) #

Conversion Efficiency Definition A

156 #T1_m[i][j] = (c3*(c3.conjugate ()))*( kappa_a)*( kappa_b)/(

epsilon **2) #Conversion Efficiency Definition B

157

158 i = i+1;

159 if (i ==l):

160 i = 0;

161 j = j+1

162

163 temp_min = min(map(min , T1_m))

164 if (min_value > temp_min):

165 min_value = temp_min

166

167 temp_max = max(map(max , T1_m))

168 if (max_value <temp_max):

169 max_value = temp_max

170

171 T1_m_list[kappa_a_list.index(kappa_a)] = T1_m

172

173

174 OMEGA ,DET = np.meshgrid(Omega_list ,det_list);

175 normi = mpl.colors.Normalize(vmin = log10(min_value/max_value),vmax = 0);

176

177 fig = plt.figure(figsize = (8,10))

178 ax = fig.gca(projection=’3d’)

179 cset0 = ax.contourf(log10(OMEGA/g_o), DET/g_mu , log10(T1_m_list [0]), zdir

=’z’, offset=off[0], levels = 20,norm = normi)

180 cset1 = ax.contourf(log10(OMEGA/g_o), DET/g_mu , log10(T1_m_list [1]), zdir

=’z’, offset=off[1], levels = 20,norm = normi)

181 cset2 = ax.contourf(log10(OMEGA/g_o), DET/g_mu , log10(T1_m_list [2]), zdir

=’z’, offset=off[2], levels = 20,norm = normi)
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182

183 ax.set_xlabel(r’$log10 (\ Omega / g_o)$’,fontsize = 20, linespacing =3)

184 ax.set_ylabel(r’$\Delta / g_\mu$’,fontsize =20, linespacing =3)

185 ax.set_zlabel(r’$log_ {10}(\ kappa_\mu / g_\mu) $’,fontsize =20,

linespacing =5)

186 ax.tick_params(axis=’x’, pad =-0.1)

187 ax.tick_params(axis=’y’, pad =-0.1)

188

189 ax.xaxis.labelpad =10

190 ax.yaxis.labelpad =10

191 ax.zaxis.labelpad =25

192

193 ax.tick_params(axis=’z’, pad =10)

194

195 ax.set_zlim (-2,2)

196

197 fig.colorbar(cset0 ,fraction = 0.04, pad = 0.1)

198 plt.show()

E.1.2 Analytical approximation sweeping over κµ and κo with
system on resonance

1

2 #Import necessary libraries to run the Conversion Efficiency Codes

3 import matplotlib.pyplot as plt

4 import numpy as np

5 from pylab import *

6 from scipy import arange , conj , prod

7 import scipy.sparse as sp

8 from mpl_toolkits.mplot3d import Axes3D

9 from mpl_toolkits.axes_grid1 import make_axes_locatable

10 from math import sqrt

11 import matplotlib

12 matplotlib.use("TKAGG")

13 import matplotlib.pyplot as pyplot

14 import mpl_toolkits.mplot3d

15 import matplotlib as mpl

16

17 fact = (1E9)

18 wa = 2*pi *470*(10**12) /(fact) #optical cavity frequency

19 wb = 2*pi *2.88*(10**9) /(fact) #microwave cavity frequency

20 wl = wa -wb #coherent drive frequency

21

22

23 #Defining the decay rates corresponding to NV center
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24 gammaE = 2*pi *13.3*1 E6/(fact)

25 gamma_31 = 2*pi *0.35*1 E6/(fact) #ZPL

26 gamma_32 = 0.2* gammaE

27 gamma_34 = gammaE - gamma_31 - gamma_32

28 gamma_21 = 2*pi *21.2/( fact)

29

30 #Coherence Decay Rates

31 gamma_a = 2*pi *66.3/( fact)

32 gamma_b = 2*pi *15.9*1 E6/(fact)

33

34 #Optical and Microwave cavity coupling strengths

35 g_o = gammaE *(0.01)

36 #g_o = gammaE *(100) #Uncomment for strong optical coupling

37 g_mu = gamma_21 *100

38

39 #Detuning list to loop over

40 det_list = linspace (-3*g_mu ,3*g_mu ,50)

41

42 #Defining the list of optical and microwave cavity decay rates to loop

over

43 kappa_a_list = linspace (-3,3,50)

44 kappa_a_list = [(10**x)*g_o for x in kappa_a_list]

45

46 kappa_b_list = linspace (-3,3,50)

47 kappa_b_list = [(10**x)*g_mu for x in kappa_b_list]

48

49

50 #Defining the Rabi drive list and microwave cavity drive terms where

epsilon -> 0

51 Omega_list = linspace(g_o ,200*g_o ,7)

52 eps_b = (1E-4)*g_mu

53 Omega_list = linspace ((10** -4)*g_o ,(10**4)*g_o ,l)

54

55 l = 50

56 det_list = linspace (0,0,1)*g_mu# Detuning values to loop through (running

system on resonance)

57 #Defining empty arrays to fill with the maximum photon values

58 max_list = np.zeros ([len(kappa_a_list),len(kappa_b_list)])

59 max_Omega_list = np.zeros([len(kappa_a_list),len(kappa_b_list)])

60 max_det_list = np.zeros([len(kappa_a_list),len(kappa_b_list)])

61 max_x=0

62 max_y=0

63

64 for kappa_a in kappa_a_list:

65 for kappa_b in kappa_b_list:
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66

67 T1_o = np.zeros([l,l])

68 T1_m = np.zeros([l,l])

69

70 for Omega in Omega_list:

71 for det in det_list:

72 #Linear set of equations defining the zeroth and first

manifold of the system analytically

73 A = np.array ([[-( gamma_a *1j + det), 0, g_o , Omega ,0],

74 [0, -(kappa_b *1j + det), 0, g_mu ,0],

75 [g_o , 0, -(kappa_a *1j + det ), 0,epsilon],

76 [Omega , g_mu , 0, -(gamma_b *1j + det) ,0],

77 [0, 0, epsilon ,0, -(kappa_b *1j+ kappa_a *1j

+ (2*det))]]);

78 b = np.array ([0, -epsilon , 0, 0,0]);

79

80 C = np.linalg.solve(A, b);

81 c2 = C[1]

82 c3 = C[0]

83

84 T1_o[i][j] = (c3*(c3.conjugate ()))*( kappa_a)/( epsilon) #

Conversion Efficiency Definition A

85 #T1_o[i][j] = (c3*(c3.conjugate ()))*( kappa_a)*( kappa_b)/(

epsilon **2) #Conversion Efficiency Definition B

86

87 i = i+1;

88 if (i ==l):

89 i = 0;

90 j = j+1

91

92 #Pick the maximum value for conversion efficiency term from the

list of conversion values.

93 photon_out = max(map(max , T1_o))

94 if (photon_out >= 1):

95 photon_out = 1

96

97 #Store max values in a 2D array

98 max_list[kappa_a_list.index(kappa_a)][ kappa_b_list.index(kappa_b)

] = photon_out

99 max_Omega_list[kappa_a_list.index(kappa_a)][ kappa_b_list.index(

kappa_b)] = Omega_list[unravel_index(T1_o.argmax (), T1_o.shape)[1]]

100

101

102 KAPPA_A ,KAPPA_B = np.meshgrid(kappa_a_list ,kappa_b_list)

103
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104 KAPPA_A = KAPPA_A.transpose ()

105 KAPPA_B = KAPPA_B.transpose ()

106

107 plt.rcParams.update ({’font.size’: 20})

108 fig ,ax=plt.subplots(figsize =(8 ,6))

109

110 #plot Maximum Conversion Efficiency Values

111 max_conversion_plt = plt.contourf(log10(KAPPA_A/g_o),log10(KAPPA_B/g_mu),

log10(max_list),levels = 30)

112 plt.colorbar(max_conversion_plt)

113 plt.xlabel(r’$log_ {10}(\ kappa_o / g_o)$’,fontsize = 25)

114 plt.ylabel(r’$log_ {10}(\ kappa_\mu / g_\mu)$’,fontsize =25)

115 plt.show()

116

117 fig ,ax=plt.subplots(figsize =(8 ,6))

118

119 #plot corresponding Rabi Drive Strength Values

120 max_omega_plt = plt.contourf(log10(KAPPA_A/g_o),log10(KAPPA_B/g_mu),log10

(max_Omega_list/g_o),levels = 30)

121 plt.colorbar(max_omega_plt)

122 plt.xlabel(r’$log_ {10}(\ kappa_o / g_o)$’,fontsize = 25)

123 plt.ylabel(r’$log_ {10}(\ kappa_\mu / g_\mu)$’,fontsize =25)

124 plt.show()

E.2 Python Qutip Monte Carlo Solver Code for Con-

tinuous Drive

1 #Import necessary libraries to run the Conversion Efficiency Codes

2 from qutip import *

3 import matplotlib.pyplot as plt

4 import numpy as np

5 from pylab import *

6 from scipy import arange , conj , prod

7 import scipy.sparse as sp

8 from qutip.qobj import Qobj

9 from qutip.operators import destroy , jmat

10 from qutip.tensor import tensor

11 from mpl_toolkits.mplot3d import Axes3D

12 import time

13 from scipy.constants import *

14 import qutip.settings

15 from qutip.ipynbtools import HTMLProgressBar

16

17 ntraj = 500
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18 sampls =10000

19 t=10000

20 tlist=np.linspace(0,t,sampls)

21

22 #atom operators

23 N = 7 #number of mnaifolds in system

24 sigma11=tensor(qeye(N),qeye(N),basis (4,0)*( basis (4,0).dag()))

25 sigma22=tensor(qeye(N),qeye(N),basis (4,1)*( basis (4,1).dag()))

26 sigma33=tensor(qeye(N),qeye(N),basis (4,2)*( basis (4,2).dag()))

27 sigma44=tensor(qeye(N),qeye(N),basis (4,3)*( basis (4,3).dag())) #virtual

state

28

29

30 sigma32 = tensor(qeye(N),qeye(N),basis (4,2)*( basis (4,1).dag()))

31 sigma23 = tensor(qeye(N),qeye(N),basis (4,1)*( basis (4,2).dag()))

32 sigma21 = tensor(qeye(N),qeye(N),basis (4,1)*( basis (4,0).dag()))

33 sigma12 = tensor(qeye(N),qeye(N),basis (4,0)*( basis (4,1).dag()))

34 sigma31 = tensor(qeye(N),qeye(N),basis (4,2)*( basis (4,0).dag()))

35 sigma13 = tensor(qeye(N),qeye(N),basis (4,0)*( basis (4,2).dag()))

36 sigma43 = tensor(qeye(N),qeye(N),basis (4,3)*( basis (4,2).dag()))

37 sigma34 = tensor(qeye(N),qeye(N),basis (4,2)*( basis (4,3).dag()))

38 sigma14 = tensor(qeye(N),qeye(N),basis (4,0)*( basis (4,3).dag()))

39

40 #a - annihilation operator on optical field

41 #b - annihilation operator on microwave field

42 a = tensor(destroy(N),qeye(N),qeye (4))

43 b = tensor(qeye(N),destroy(N),qeye (4))

44

45

46 def evolve_sys_int(kappa_a ,kappa_b ,Omega):

47 #function defining the evolution of the system

48 a_outint = zeros(len(tlist))

49 b_outint = zeros(len(tlist))

50 a_int = zeros(len(tlist))

51 b_int=zeros(len(tlist))

52

53 #initial wavefunction setup with atom initialized to ground state and

with no photons in the microwave/optical cavities

54 #For non -driven case with one photon in microwave cavity set psi0=

tensor(basis(N,0),basis(N,1),basis (4,0))

55 psi0=tensor(basis(N,0),basis(N,0),basis (4,0))

56

57 #defining the Hamiltonian of the system

58 H0 = det_su*sigma22 + det_Omega*sigma33 + det_Omega *(a.dag()*a) +

det_bu *(b.dag()*b)
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59 #H0 = wb*sigma22 + wb*sigma33 + wb*(a.dag()*a) + wb*(b.dag()*b) #

uncomment for non -driven case

60 Hint = g_mu*(b*sigma21 + b.dag()*sigma12) + g_o*(a*sigma31 + a.dag()*

sigma13) + Omega*( sigma32+sigma23)

61 Hdrive = eps_b*(b+b.dag())

62 #Hdrive = 0 #For non -driven case

63

64 H = H0+Hint+Hdrive

65

66 #Defining the collapse operators of the system

67 C_1= np.sqrt(kappa_a)*a

68 C_2= np.sqrt(kappa_b)*b

69 C_3= np.sqrt(gamma_31) * sigma13

70 C_4 = np.sqrt(gamma_32) * sigma23

71 C_5 = np.sqrt(gamma_21)* sigma12

72 C_6 = np.sqrt(gamma_34) * sigma43

73 C_7 = np.sqrt(gamma_2)*( sigma22)

74 C_8 = np.sqrt(gamma_3)*( sigma33)

75 C_9 = np.sqrt(gamma_41)*sigma14

76

77 c_ops = [C_1 ,C_2 ,C_3 ,C_5 ,C_4 ,C_6 ,C_7 ,C_8 ,C_9]

78

79 #Evolve system with the Qutip Monte -Carlo Solver

80 result=mcsolve(H,psi0 ,tlist ,c_ops ,[sigma11 ,sigma22 ,sigma33 ,a.dag()*a,

b.dag()*b,C_1.dag()*C_1 ,C_2.dag()*C_2],ntraj=ntraj ,progress_bar=

HTMLProgressBar (),map_func=parallel_map)

81

82 #Expectation values of the photon number operators

83 a_cav = result.expect [3]

84 b_cav = result.expect [4]

85 aout=result.expect [5]

86 bout=result.expect [6]

87

88 #Integral of the photon number operators

89 for i in range(1,len(tlist)):

90 a_int[i] = (a_cav[i]*((t)/sampls)+a_int[i-1])

91 b_int[i] = (b_cav[i]*((t)/sampls)+b_int[i-1])

92 a_outint[i]=( aout[i]*((t)/sampls)+a_outint[i-1])

93 b_outint[i]=( bout[i]*((t)/sampls)+b_outint[i-1])

94

95 a_out = a_outint [-1]

96 b_out = b_outint [-1]

97

98 return a_out , b_out , a_int[-1], b_int[-1]

99
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100

101

102 #GHz

103 fact = 1E13

104 wa = 2*pi *470*(10**12) /(fact) #optical cavity frequency

105 wb = 2*pi *2.88*(10**9) /(fact) #microwave cavity frequency

106 wl = wa -wb #coherent drive frequency

107

108 #Defining the decay rates corresponding to NV center

109 gammaE = 2*pi *13.3*1 E6/(fact)

110 gamma_31 = 2*pi *0.35*1 E6/(fact) #ZPL

111 gamma_32 = 0.2* gammaE

112 gamma_34 = gammaE - gamma_31 - gamma_32

113 gamma_21 = 2*pi *21.2/( fact)

114 gamma_41 = 2*pi*66*1 E12/(fact)

115

116 #Transverse Decay rate

117 gamma_a = 2*pi *66.3/( fact)

118 gamma_b = 2*pi *15.9*1 E6/(fact)

119

120 #Pure Decay rates

121 gamma2 = gamma_a - (gammaE /2)

122 gamma3 = gamma_b - (gamma_21 /2)

123

124

125

126 #Optical and Microwave cavity coupling strengths

127 g_o = gammaE *(0.01)

128 #g_o = (1/(12*(1E-9)*(fact)))*(100) #Uncomment for strong optical

coupling

129 g_mu = gamma_21 *100

130

131

132 #Defining the list of optical and microwave cavity decay rates to loop

over

133 kappa_a_list = linspace (-3,3,5)

134 kappa_a_list = [(10**x)*g_o for x in kappa_a_list]

135

136 kappa_b_list = linspace (-3,3,5)

137 kappa_b_list = [(10**x)*g_mu for x in kappa_b_list]

138

139 #Defining the Rabi drive list and microwave cavity drive terms where

epsilon -> 0

140 Omega_list = linspace(g_o ,200*g_o ,7)

141 eps_b = (1E-4)*g_mu
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142 det_list = linspace (0,0,1)*g_mu # Detuning values to loop through (

running system on resonance)

143

144 transmission_a =[]

145 transmission_b = []

146 transmission_a_cav = []

147 transmission_b_cav =[]

148

149 #Defining empty arrays to fill with the maximum photon values

150 max_list = np.zeros ([len(kappa_a_list),len(kappa_b_list)])

151 max_list_b = np.zeros ([len(kappa_a_list),len(kappa_b_list)])

152 max_list_a_cav = np.zeros([len(kappa_a_list),len(kappa_b_list)])

153 max_list_b_cav = np.zeros([len(kappa_a_list),len(kappa_b_list)])

154 max_Omega_list = np.zeros([len(kappa_a_list),len(kappa_b_list)])

155

156

157 #Looping over the cavity decay paramters and the rabi drive strength

terms

158 for kappa_a in kappa_a_list:

159 for kappa_b in kappa_b_list:

160 for Omega in Omega_list:

161 for det in det_list:

162 det_Omega = det

163 det_su =det

164 det_bu = det

165

166

167 A_out ,B_out , A_cav , B_cav = evolve_sys_int(kappa_a ,

kappa_b ,Omega)

168

169

170 fexpt_a = (A_out*kappa_b /( eps_b **2)) #Conversion

efficiency B Definition

171 #fexpt_a = (A_out /(eps_b **2)) #Conversion efficiency A

Definition

172

173 fexpt_b = (B_out/( eps_b **2))

174 fexpt_a_cav = (A_cav)

175 fexpt_b_cav = (B_cav)

176

177 transmission_a.append(fexpt_a)

178 transmission_b.append(fexpt_b)

179 transmission_a_cav.append(fexpt_a_cav)

180 transmission_b_cav.append(fexpt_b_cav)

181
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182 #Pick the maximum value for conversion efficiency term from the

list of conversion values.

183 photon_out = max( transmission_a)

184

185 print(’Conversion Efficiency max = %.0e \n kappa_a =%1.3 fg_o

kappa_b =%1.3 fg_mu ’%( photon_out ,kappa_a/g_o ,kappa_b/g_mu))

186

187 max_list[kappa_a_list.index(kappa_a)][ kappa_b_list.index(kappa_b)

] = photon_out

188 max_list_b[kappa_a_list.index(kappa_a)][ kappa_b_list.index(

kappa_b)] = transmission_b[transmission_a.index(max(transmission_a))]

189 max_list_a_cav[kappa_a_list.index(kappa_a)][ kappa_b_list.index(

kappa_b)] = transmission_a_cav[transmission_a.index(max(

transmission_a))]

190 max_list_b_cav[kappa_a_list.index(kappa_a)][ kappa_b_list.index(

kappa_b)] = transmission_b_cav[transmission_a.index(max(

transmission_a))]

191 max_Omega_list[kappa_a_list.index(kappa_a)][ kappa_b_list.index(

kappa_b)] = Omega_list[transmission_a.index(max(transmission_a))]

192

193 transmission_a =[]

194 transmission_b = []

195 transmission_a_cav = []

196 transmission_b_cav =[]

197

198 KAPPA_A ,KAPPA_B = np.meshgrid(kappa_a_list ,kappa_b_list)

199 KAPPA_A = KAPPA_A.transpose ()

200 KAPPA_B = KAPPA_B.transpose ()

201

202 #Save the Maximum Converion Efficiency values with the corresponding

parameters

203 np.savez(’Conversion_Efficiency.npz’,kappa_a=KAPPA_A ,kappa_b=KAPPA_B ,

max_list = max_list ,max_list_b=max_list_b , max_list_a_cav=

max_list_a_cav ,max_list_b_cav=max_list_b_cav , max_Omega_list =

max_Omega_list )

204

205 #plot Maximum Conversion Efficiency Values

206 max_conversion_plt = plt.contourf(log10(KAPPA_A/g_o),log10(KAPPA_B/g_mu),

log10(max_list),levels = 50)

207 plt.colorbar(max_conversion_plt)

208 plt.title(r’Maximum "Conversion Efficiency" of First Microwave to Optical

Photon / $log_ {10}$’,fontsize = 22)

209 plt.xlabel(r’$log_ {10}(\ kappa_a / g_o)$’,fontsize = 22)

210 plt.ylabel(r’$log_ {10}(\ kappa_b / g_\mu)$’,fontsize =22)

211 plt.show()

166



212

213 #plot corresponding Rabi Drive Strength Values

214 max_omega_plt = plt.contourf(log10(KAPPA_A/g_o),log10(KAPPA_B/g_mu),log10

(max_Omega_list/g_o),levels = 50)

215 plt.colorbar(max_omega_plt)

216 plt.title(r’$\Omega/g_{o}$ for Max Conversion/ $log_ {10}$’,fontsize = 22)

217 plt.xlabel(r’$log_ {10}(\ kappa_a / g_o)$’,fontsize = 22)

218 plt.ylabel(r’$log_ {10}(\ kappa_b / g_\mu)$’,fontsize =22)

219 plt.show()

E.3 Python Qutip Monte Carlo Solver Code for Source

Cavity Case

1 #Import necessary libraries to run the Conversion Efficiency Codes

2 %matplotlib inline

3 import matplotlib.pyplot as plt

4 import numpy as np

5 from qutip import*

6 from pylab import*

7 from scipy import arange , conj ,prod

8 import scipy.sparse as sp

9 from qutip.qobj import Qobj

10 from qutip.operators import destroy ,jmat

11 from qutip.tensor import tensor

12 import time

13 from scipy.constants import *

14 import qutip.settings

15 from qutip.ipynbtools import HTMLProgressBar

16

17 ntraj = 500 #number of trajectories taken in the monte carlo solver

18 sampls =10000 #no of samples to consider

19 t=10000 #total time the solver is evolved for

20 tlist=np.linspace(0,t,sampls)

21

22 #atom operators

23 N = 7

24 #(source_cavity , optical , microwave ,atom)

25 sigma11=tensor(qeye(N),qeye(N),qeye(N),basis (4,0)*( basis (4,0).dag()))

26 sigma22=tensor(qeye(N),qeye(N),qeye(N),basis (4,1)*( basis (4,1).dag()))

27 sigma33=tensor(qeye(N),qeye(N),qeye(N),basis (4,2)*( basis (4,2).dag()))

28 sigma44=tensor(qeye(N),qeye(N),qeye(N),basis (4,3)*( basis (4,3).dag()))

29

30 sigma32 = tensor(qeye(N),qeye(N),qeye(N),basis (4,2)*( basis (4,1).dag()))

31 sigma23 = tensor(qeye(N),qeye(N),qeye(N),basis (4,1)*( basis (4,2).dag()))
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32 sigma21 = tensor(qeye(N),qeye(N),qeye(N),basis (4,1)*( basis (4,0).dag()))

33 sigma12 = tensor(qeye(N),qeye(N),qeye(N),basis (4,0)*( basis (4,1).dag()))

34 sigma31 = tensor(qeye(N),qeye(N),qeye(N),basis (4,2)*( basis (4,0).dag()))

35 sigma13 = tensor(qeye(N),qeye(N),qeye(N),basis (4,0)*( basis (4,2).dag()))

36 sigma43 = tensor(qeye(N),qeye(N),qeye(N),basis (4,3)*( basis (4,2).dag()))

37 sigma34 = tensor(qeye(N),qeye(N),qeye(N),basis (4,2)*( basis (4,3).dag()))

38

39 #a - annihilation operator on optical field

40 #b - annihilation operator on microwave field

41 #b_s - annihilation operator on microwave field from source cavity

42 b_s = tensor(destroy(N),qeye(N),qeye(N),qeye (4))

43 a = tensor(qeye(N),destroy(N),qeye(N),qeye (4))

44 b = tensor(qeye(N),qeye(N),destroy(N),qeye (4))

45

46

47 def evolve_single_photon(kappa_a ,kappa_b ,Omega):

48 #function defining the evolution of the system

49 a_outint = zeros(len(tlist))

50 b_outint = zeros(len(tlist))

51

52

53 #initial wavefunction setup with atom initialized to ground state and

with one photon in the microwave source cavity

54 psi0=tensor(basis(N,1),basis(N,0),basis(N,0),basis (4,0))

55

56 det_Omega = wb #if system is on resonance

57 H0 = wb*sigma22 + det_Omega*sigma33 + det_Omega *(a.dag()*a) + wb*(b.

dag()*b)

58 Hint = g_mu*(b*sigma21 + b.dag()*sigma12) + g_o*(a*sigma31 + a.dag()*

sigma13) + Omega*( sigma32+sigma23)

59 Hsource = wb*(b_s.dag()*b_s)

60 H1 = (1j/2)*(np.sqrt(kappa_b*kappa_s)*b_s.dag()*b) - (1j/2)*(np.sqrt(

kappa_b*kappa_s)*b.dag()*b_s)

61 H = H0+Hint+Hsource+H1

62

63 #Defining the collapse operators for the system

64 C_1= np.sqrt(kappa_a)*a

65 C_2= np.sqrt(kappa_s)*b_s + np.sqrt(kappa_b)*b

66 C_3= np.sqrt(gamma_31) * sigma13

67 C_4 = np.sqrt(gamma_32) * sigma23

68 C_5 = np.sqrt(gamma_21)* sigma12

69 C_6 = np.sqrt(gamma_34) * sigma43

70 C_7 = np.sqrt(gamma_2)*( sigma22)

71 C_8 = np.sqrt(gamma_3)*( sigma33)

72 C_9 = np.sqrt(gamma_41)*sigma14
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73

74 c_ops = [C_1 ,C_2 ,C_3 ,C_5 ,C_4 ,C_6 ,C_7 ,C_8 ,C_9]

75

76 #Evolve system with the Qutip Monte -Carlo Solver

77 result=mcsolve(H,psi0 ,tlist ,c_ops ,[sigma11 ,sigma22 ,sigma33 ,a.dag()*a,

b.dag()*b,b_s.dag()*b_s ,C_1.dag()*C_1 ,C_2.dag()*C_2],ntraj=ntraj ,

progress_bar=HTMLProgressBar (),map_func=parallel_map)

78

79 aout=result.expect [6]

80 bout=result.expect [7]

81

82 for i in range(1,len(tlist)):

83 a_outint[i]=( aout[i]*((t)/sampls)+a_outint[i-1])

84 b_outint[i]=( bout[i]*((t)/sampls)+b_outint[i-1])

85

86 return a_outint [-1], b_outint [-1]

87

88

89 fact = 1E13

90 wa = 2*pi *470*(10**12) /(fact) #optical cavity frequency

91 wb = 2*pi *2.88*(10**9) /(fact) #microwave cavity frequency

92 wl = wa -wb #coherent drive frequency

93

94 #Defining the decay rates corresponding to NV center

95 gammaE = 2*pi *13.3*1 E6/(fact)

96 gamma_31 = 2*pi *0.35*1 E6/(fact) #ZPL

97 gamma_32 = 0.2* gammaE

98 gamma_34 = gammaE - gamma_31 - gamma_32

99 gamma_21 = 2*pi *21.2/( fact)

100 gamma_14 = 2*pi*66*1 E12/(fact)

101

102 #Transverse Decay rate

103 gamma_a = 2*pi *66.3/( fact)

104 gamma_b = 2*pi *15.9*1 E6/(fact)

105

106 #Pure Decay rates

107 gamma2 = gamma_a - (gammaE /2)

108 gamma3 = gamma_b - (gamma_21 /2)

109

110

111 #Optical and Microwave cavity coupling strengths

112 g_o = gammaE *(0.01)

113 #g_o = (1/(12*(1E-9)*(fact)))*(100) #Uncomment for strong optical

coupling

114 g_mu = gamma_21 *100
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115

116

117

118 #Defining the list of optical and microwave cavity decay rates to loop

over

119 kappa_a_list = linspace (-3,3,5)

120 kappa_a_list = [(10**x)*g_o for x in kappa_a_list]

121

122 kappa_b_list = linspace (-3,3,5)

123 kappa_b_list = [(10**x)*g_mu for x in kappa_b_list]

124

125 #Defining the Rabi drive list and microwave cavity drive terms where

epsilon -> 0

126 Omega_list = linspace(g_o ,200*g_o ,7)

127 eps_b = (1E-4)*g_mu

128 det_list = linspace (0,0,1)*g_mu # Detuning values to loop through (

running system on resonance)

129

130 transmission_a =[]

131 transmission_b = []

132 transmission_a_cav = []

133 transmission_b_cav =[]

134

135 #Defining empty arrays to fill with the maximum photon values

136 max_list = np.zeros ([len(kappa_a_list),len(kappa_b_list)])

137 max_list_b = np.zeros ([len(kappa_a_list),len(kappa_b_list)])

138 max_Omega_list = np.zeros([len(kappa_a_list),len(kappa_b_list)])

139

140 for kappa_a in kappa_a_list:

141 for kappa_b in kappa_b_list:

142 for Omega in Omega_list:

143

144 kappa_s = kappa_b # Setting source cavity decay rate to

microwave cavity decay rate

145 A_out ,B_out = evolve_single_photon(kappa_a ,kappa_b ,Omega)

146

147 transmission_a.append(A_out)

148 transmission_b.append(B_out)

149

150 #Pick the maximum value for conversion efficiency term from the

list of conversion values.

151 photon_out_a = max(transmission_a)

152 print(’Conversion Efficiency max = %.0e \n kappa_a =%1.3 fg_mu

kappa_b =%1.3 fg_mu ’%( photon_out_a ,kappa_a/g_o ,kappa_b/g_mu))

153
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154 #Store the maximum conversion values in a 2 dimenisonal array

155 max_list[kappa_a_list.index(kappa_a)][ kappa_b_list.index(kappa_b)

] = photon_out_a

156 max_Omega_list[kappa_a_list.index(kappa_a)][ kappa_b_list.index(

kappa_b)] = Omega_list[transmission_a.index(max(transmission_a))]

157

158 transmission_a = []

159 transmission_b = []

160

161 j = -1;

162

163

164 KAPPA_A ,KAPPA_B = np.meshgrid(kappa_a_list ,kappa_b_list)

165 KAPPA_A = KAPPA_A.transpose ()

166 KAPPA_B = KAPPA_B.transpose ()

167

168 #Save the Maximum Converion Efficiency values with the corresponding

parameters

169 np.savez(’Conversion_Efficiency_withSourceCavity.npz’,kappa_a=KAPPA_A ,

kappa_b=KAPPA_B ,max_list = max_list ,max_Omega_list = max_Omega_list )

170

171 #plot Maximum Conversion Efficiency Values

172 max_conversion_plt = plt.contourf(log10(KAPPA_A/g_o),log10(KAPPA_B/g_mu),

log10(max_list),levels = 50)

173 plt.colorbar(max_conversion_plt)

174 plt.title(r’Maximum Conversion Efficiency of First Microwave to Optical

Photon / $log_ {10}$’,fontsize = 22)

175 plt.xlabel(r’$log_ {10}(\ kappa_a / g_o)$’,fontsize = 22)

176 plt.ylabel(r’$log_ {10}(\ kappa_b / g_\mu)$’,fontsize =22)

177 plt.show()

178

179 #plot corresponding Rabi Drive Strength Values

180 max_omega_plt = plt.contourf(log10(KAPPA_A/g_o),log10(KAPPA_B/g_mu),log10

(max_Omega_list/g_mu),levels = 50)

181 plt.colorbar(max_omega_plt)

182 plt.title(r’$\Omega/g_{o}$ for Max Conversion/ $log_ {10}$’,fontsize = 22)

183 plt.xlabel(r’$log_ {10}(\ kappa_a / g_o)$’,fontsize = 22)

184 plt.ylabel(r’$log_ {10}(\ kappa_b / g_\mu)$’,fontsize =22)

185 plt.show()
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