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Abstract

The number of assets of civil infrastructure (e.g., bridges or roads) have been increasing
to meet the demands of growing populations around the world. However, they degrade over
time due to environmental factors and must be maintained and monitored to ensure the
safety of its users. The increasing number of infrastructure assets which deteriorate over
time is fast outpacing the rate at which they are inspected and rehabilitated. Currently, the
main mode of structure condition assessment is visual inspection, where human inspectors
manually identify, classify, track, and measure, as needed, deterioration over time to make
assessments of a structure’s overall condition. However, the current process is highly time
consuming, expensive, and subject to the inspector’s judgement and expertise, which could
lead to inconsistent assessments of a given structure when surveyed by several different
inspectors over a period of time. As a result, there is a clear need for the current inspection

process to be improved in terms of efficiency and consistency.

Developments in computer vision algorithms, vision sensors, sensing platforms, and
high-performance computing have shown promise in improving the current inspection pro-
cesses to enable consistent and rapid structural assessments. Recent work often involves
rapid collection and/or analysis of imagery captured from personnel or mobile data col-
lection platforms (e.g., smart phones, unmanned aerial or ground vehicles) to detect and
classify visual features (e.g., structural components or deterioration). These works often
involve the use of advanced image processing or computer vision algorithms such as con-
volutional neural networks to detect and/or classify regions of interest. However, a major

shortfall of vision-based inspection is the inability to deduce physical measurements (e.g.,
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mm or cm) from the collected images. The lack of an image scale (e.g., pixel/mm) on 2D

images does not permit quantitative inspection.

To address this challenge, a learning-based scale estimation technique is proposed. The
underlying assumption is that the surface texture of structures, captured in images, con-
tains enough information to estimate scale for each corresponding image (e.g., pixel/mm).
This permits the training of a regression model to establish the relationship between sur-
face textures in images and their scales. A convolutional neural network was trained to
extract scale-related features from textures captured in images. The trained model is used
to estimate scales for all images captured from surfaces of a structure with similar textures
in subsequent inspections. The capability of the proposed technique was demonstrated
using data collected from surface textures of three different structures. An average scale
estimation error, from images of each structure, is less than 15%, which is acceptable in
typical visual inspection settings. The source code and data are available from a data

repository (GitHub)®.

LCode available on GitHub (https://github.com /cviss-lab/LISE).


https://github.com/cviss-lab/LISE
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Chapter 1

Introduction

The deterioration of existing civil infrastructure, such as buildings, bridges, and nuclear
power plants, is outpacing the ability to replace them. Lean capital budgets for construc-
tion and maintenance severely limit the amount of proactive rehabilitation work that can
be undertaken. As a result, the inventory of aging and degrading infrastructure is growing
and there is a pressing need for new technologies to assess the conditions of infrastructure

reliably and economically.

Changes in external appearance of structures have historically been reliable indica-
tors of structural degradation. Today, visual inspection remains a major component in
maintenance and management of structures. For example, in accordance with the On-
tario Structure Inspection Manual (OSIM) provided by the Ministry of Transportation of
Ontario (MTO), transportation structures should be inspected by engineers, within the

inspector’s arm’s length, at least every 2 years [33]. During these inspections, engineers



are required to classify and quantify types, condition, and area of material deterioration
such as ones shown in Figure 1.1 (e.g., visual cracks, corrosion, and spalling) [3%]. Existing

visual inspection processes are largely manual operations and rely heavily on engineering

judgement, which is time-intensive, and may lead to inconsistent assessments.

Figure 1.1: Sample images of structural deterioration of concrete components: (a) Medium
cracking on abutment wall, (b) severe delamination, spalling, and corrosion of exposed
reinforcement on ballast wall, and (c) severe delamination and spalling of pier column with
exposed reinforcement. Retrieved from [38]

Recent advances in computer vision technologies, new vision sensors, sensing platforms,
and high-performance computing, have transformed the way in which structures are in-
spected [1]. As sensors become smaller, lower in cost, and more powerful, a larger volume

of high-quality visual data can be captured from structure inspections with high spatial
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and temporal granularity. Powerful computer vision methods and machine learning algo-
rithms enable automatic extraction of visual features and semantic information to detect
visual changes of structures, which may be an indicator of structural damage. Modern
computing offering unprecedented speed and performance, and state-of-the-art processing
of visual data, has enabled opportunities to improve inspection practices. Harnessing new
technologies has allowed the development of innovative, reliable, and automated inspec-
tion techniques that leverage in situ visual data collection and facilitates the application

of reliable vision-based inspection.

Despite the tremendous efforts that have been made to advance vision-based inspection
techniques, there is a significant limitation about the use of visual data — the image scale
is unknown. Detecting regions of interest (ROIs) on images, using existing techniques,
provides their size and locations relative to other features in the scene, but have no physical
meaning. Their physical size and location can be obtained only when the scales of the
corresponding images are known, which can be defined as a unit of pixels per unit length
(e.g., pixel/mm or pixel/in.). Without knowing the scale, quantitative evaluation of visual

features in an image may be impossible.

The simplest way to resolve scale is to capture images by a reference object of known di-
mension (e.g., pen, crack gauge, or tape measure) [59], as shown in Figure 1.2. Hence, if the
inspection area and reference object are present on the same plane, scale may be resolved
using a simple pixel-to-length relationship. However, it is impractical to place reference
objects on a structure’s surface each time an image is captured. Additionally, the pixel to
length correlation process requires that the structure surface be accessible to the inspector,

who must place or attach the reference object. A more advanced method to determine scale



is to employ photogrammetry techniques using multiple images [15]; a stereoscopic camera
configuration enables measuring physical depths using simple trigonometry. However, since
a physical baseline length (intra-axial distance) should be known in advance to calibrate
the images, it is not practical to implement this setup in the field, unless pre-built stereo
cameras are used. Recently, tape measure applications have been introduced in modern
smartphones, which use multiple images captured from planar scenes to enable structure
from motion (SfM) or simultaneous localization and mapping (SLAM) algorithms [55].
StM algorithms require calibration length, which is commonly obtained with the help of
additional sensors, such as accelerometers, inertial sensors, or laser sensors. These appli-
cations are easy-to-use but its accuracy highly depends on the initial calibration process
that is performed on start-up. In summary, existing vision-based methods provide rea-
sonable measurement accuracy but require supplemental processes, in addition to simply
collecting images. Although inspectors can obtain measurements using these methods, it
is tedious and scales poorly with respect to the increasing number of infrastructure; the
additional time and effort required to take a measurement cannot be ignored, especially in

field inspections.

It is proposed that it is possible to remove the need to include a reference physical
dimension (e.g., known object size, baseline length, or a measurement using extra sensor
data) in the image scene by using surface textures. For example, Figure 1.3 shows surfaces
of a concrete wall captured from different distances and locations but having similar tex-
tures. From examination of Figure 1.3a, it is difficult to get a sense of distance between the
camera and the wall, as well as the approximate size of aggregates. However, if Figure 1.3b

is examined after examining Figure 1.3a, it is easy to deduce that this image (Figure 1.3b)



()

Figure 1.2: Image scale estimation using a (a) pen, (b) crack gauge, and (c) measuring tape.
These images contain scenes of damaged components with objects included in the scene
and have been collected in real environments by engineers during their field inspection [59)]

was captured from a closer distance, although they were captured at different locations.
This shows that the surface texture (pattern) made by distributions of different sizes of
grains or particles forming the “texture” of a structure can reveal the scale information.
Specifically, the textured pattern on the image plane could determine the standoff distances
of the images and the size of visual contents. The previous assertion implies the possibility
of building a model that can relate the surface texture in an image to the corresponding

scale.

In this study, a learning-based scale estimation technique is developed that enables
quantitative visual inspection. The estimated scales, defined as the pixels per physical di-

mension (e.g., pixel/mm or pixel/in.), facilitate the acquisition of physical measurements



(a) (b)

Figure 1.3: Images captured from the same concrete wall but different locations. The
image in (b) is captured at a closer distance than the one in (a)

from images. A convolutional neural network (CNN) for regression is trained to correlate
the structure’s surface textures captured on images to their corresponding scales. An ex-
isting CNN architecture (MobileNetV2) developed for image recognition [1%] is modified
to estimate a scale (scalar value) from an input image. Custom data augmentation meth-
ods and a loss layer are incorporated to improve accuracy. In addition, a marker-based
automated training data generation method is developed to streamline the model train-
ing process. As an illustration of the robustness of the proposed technique, experimental
studies are conducted using the images collected from three different settings: pedestrian
bridge, building wall, and asphalt pavement. Afterwards, additional images were collected
under different operational conditions to demonstrate the feasibility of the method in real-

world inspection environments, where different cameras and optical zoom may be used.

The key innovation of this research is enabling quantitative visual inspection through

use of CNNs augmented for regression, which estimates image scale directly from a struc-



ture’s texture. This technique can be easily integrated into other existing vision-based in-
spection techniques. Despite recent progress in feature extraction (e.g., damage detection,
component detection) from visual data, the actual implementations of these technologies
remain limited. This is because, without quantitative techniques, they often fail to deliver
an end-to-end solution and still rely heavily on inspector judgement for decision making.
Solely localizing and identifying ROIs from visual data may not provide significant bene-
fits, especially when quantitative evaluations (e.g., size or length) are required, as outlined
in typical inspection manuals [38, 23, 2], or to use modern damage-based structural as-
sessment techniques that rely on damage measurements as model input [01]. Thus, the
technique proposed in this study can add an important functionality to existing vision-
based techniques, making them more practical and useful by facilitating the quantitative

evaluation of any ROIs captured on images.



Chapter 2

Literature Review

Vision-based inspection techniques can be categorized into one of three types: detection,
localization, and quantification. Detection techniques focus on identification of ROIs and is
usually the most well explored subtopic of the three categories. Localization techniques usu-
ally involve mapping extracted features from a detection technique or sensed information
from a sensor to a meaningful context where the data is organized in an easy-to-understand
manner. Lastly, quantification techniques are used to extract numerical damage properties
of civil structures and/or its components from one or more high-dimensional and complex
data sets. For a comprehensive overview of vision-based damage detection, localization,

and quantification techniques, the following surveys can be consulted [25, 51, 57].



2.1 Vision-based inspection

In recent years, numerous vision-based inspection techniques have been developed for appli-
cation on civil structures. Most researchers and engineers, working in inspection industries,
have focused on advancing data collection and feature extraction processes to enable detec-
tion, localization, and quantification of ROIs with increased robustness, efficiency, and/or
accuracy. Exploration of literature for vision-based inspection is sub-divided into three of

the previously mentioned categories.

2.1.1 Detection

Current inspection practices are highly manual and dependent on the experience of the
inspector. This leads to long inspection times, and potential for inconsistent assessments of
a structure. Researchers have proposed novel feature extraction methods to automatically
detect and assess ROIs from visual data for specific visual inspection tasks outlined in the
manual. [38] (e.g., damage detection and classification, structural components, geometric
changes) These approaches show promise of improvements to the status quo by providing a
methodology for rapid, accurate, and consistent inspection for one or more visual inspection

tasks.

One of the most explored topics is crack damage detection. In vision-based inspection,
non-deep learning computer vision techniques have been deployed to detect cracks. For
example, [30] leverages crack breathing behaviour, a cyclic increase and decrease in crack

width under repetitive fatigue loading, to implement an image-based crack segmentation



approach. This approach proposes taking two images of the same scene at different times,
and performing a series of computer vision techniques, such as image registration, noise
reduction, and binary thresholding to identify cracks. The underlying assumption is that
images taken at different times would contain scenes of the same cracks at different mag-
nitude of cyclical loads, which would result in slightly different crack widths between the
two images. As a result, performing image registration and noise reduction would reveal
changes in crack widths. Thus, this technique can distinguish real cracks from false cracks

through crack breathing behaviour.

More recently, many deep learning crack-detection solutions have been proposed. [J]
developed a real-time crack segmentation technique by training a custom encoder-decoder
structure (called SDDNet) inspired by Segnet [1] on a labelled data set. SDDNet provides
pixel-wise binary crack classification. On the other hand, [20] leverages a wall-climbing
unmanned aerial system to collect images of building walls at a fixed distance and retrains
the SSDLite-MobileNetV2 [18] CNN network on a crack data set. After training, the

network is deployed for real-time bounding box crack detection.

However, it is often difficult to distinguish real cracks from false cracks using only
images. To ensure robust detection in the presence of false cracks, [3] combined two visual
data types: colour and infrared images, which are collected using a RGB sensor and a laser
driver/infrared sensor setup. The patch-based binary crack classifier identifies potential
crack regions, while the infrared data helps filter the approach for false cracks, as false
cracks have a heating profile that is visibly different from real cracks. Another method of
robust crack detection is proposed by [02], which uses a 3D depth data set instead of an

image data set to train a CNN segmentation model. By simply switching the visual data
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from images to depth, the trained CNN is more robust against false cracks.

Deep learning models have also been applied to identify structural components and
damages. For example, [10] implements a configuration of two CNNs for scene-aware bridge
component segmentation of images. Given an image containing the scene of a bridge, the
technique automatically classifies relevant portions of the image as either column, slab,
beam, other structural component, or non-structural. To improve the performance of the
component segmentation model, the authors use a CNN-based scene classifier, which pre-
dicts the output scenery of an image (e.g., building, greenery, person, pavement, bridges,
etc.). By providing the scenery information predicted by the scene classifier to the seg-
mentation model, the technique ensures that the segmentation model makes scene-aware
predictions. [50] augments and trains a faster R-CNN [15] model for damage detection of
reinforced concrete, which predicts bounding boxes of cracks, spalling, rebar exposure, and
buckling for images of reinforced concrete columns. Lastly, to combat the lack of large,
labelled image data sets required for training deep learning models in the domain of civil
engineering, [14] proposed Structural ITmageNet, a large, multipurpose, labelled data set
designed to be able to train binary/multi-class models for component type identification,
spalling condition assessment, damage level evaluation, and damage type determination.
Lastly, [31] developed an automatic image retrieval algorithm to extract multiple views
of a residential building of interest from Google maps panoramic images. Given an in-
put image, the algorithm uses the GPS tag in the image metadata to extract an initial
panoramic image from Google maps. Then several rectilinear images are generated from
the panoramic image, and a residential building detector is used to identify images with a

residential building. Next, feature matching is performed between the detected images and
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the input image to determine the correct pair(s). Once found, multiple images of the build-
ing of interest containing scenes of the building at various viewpoints are automatically

extracted from Google maps.

2.1.2 Localization

Access is arguably the main challenge associated with collecting visual data for large-
scale civil infrastructure. Thus, remote and automated data collection systems have been
proposed to increase the efficiency of inspections. Vision sensors (e.g., RGB and infrared
cameras) integrated with mobile and static sensing platforms (e.g., drones, surveillance
cameras, and crawling robots) are used to access and capture inspection regions with
necessary levels of detail. After data collection, feature extraction of structure-relevant
information is performed. However, feature detection is often not enough to enable end-
to-end visual inspections, which require more comprehensive analysis, such as identifying
the precise location of a defect on a structure. Thus, the detection algorithms are often
embedded into a larger framework to use them to perform feature extraction, the results of
which is then spatially and/or temporally mapped to provide information in an organized

and coherent manner.

In recently proposed techniques, unmanned vehicles are often used to collect one or
more sets of sensory data, after which photogrammetry methods are applied to project
the collected information onto a map. [21] developed a framework for rapidly generating
condition-aware building models. The authors use unmanned aerial vehicles (UAVSs) to

collect a video of the building overview, which is then processed to generate a 3D mesh
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of the building using multi-view stereo techniques and to generate segmentation maps of
building relevant classes (e.g., debris, building, cracks, spalling, and exposed rebar) for
each video frame using a deep learning segmentation model. After processing, the model
predictions are projected onto the 3D-mesh to create the condition-aware 3D building

models.

[3] proposes a framework to extract ROIs of a building fagade easily and rapidly from
multiple viewpoints. To achieve this, images of the building fagade collected using an UAV.
Then the SfM algorithm [55] is used to generate an orthophoto of the building fagade.
Then, the orthophoto is used to manually or autonomously specify a ROI, after which
images containing the ROI can autonomously be extracted for the image set for inspector
assessment. Similarly, [58] also uses video footage from an UAV and SfM to generate a
3D point cloud model of a full-scale highway sign truss with welded connections. Then,
image patches showing welded connections are automatically extracted and filtered using

a binary CNN classifier to remove occluded welds from the extracted image set.

Like UAVs, unmanned ground vehicles (UGVs) have also been proposed to enable
end-to-end structure inspection. The advantage of UGVs in comparison to UAVs is the
increased loading capacity, allowing addition of multiple sensors onto one platform. [0]
developed a ground robotic bridge inspection platform capable of producing to-scale, high-
quality, dense, and colourized 3D point clouds for the underside of concrete bridges. To
achieve this, the ground robot has one thermal sensor, one RGB vision sensor, and two
lidar sensors on board. The multiple sensors are carefully calibrated prior to use, and
SLAM [13] is applied to the collected visual data set to generate the point clouds. Lidar

sensors are used to validate the accuracy of the SLAM results, while infrared data is used
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to detect delamination on the structure.

2.1.3 Quantification

Quantification of ROIs and structure properties are critical in enabling end-to-end inspec-
tion frameworks. One typical reason for requiring ROIs to be resolved to a physical scale is
because inspection manuals rely on physical measurements to identify the severity of dam-
age on a structure [38, 23, 2]. However, literature on ROI quantification remains limited,
due to the inherent lack of scale information in visual data. Meanwhile, two works, one
from section 2.1.1 and another from section 2.1.2 previously introduced also deploy quan-
tification measures. [0] developed a UGV data collection platform capable of generating 3D
point clouds using a SfM from visual data. This 3D point cloud is scaled to match physical
dimensions using a control point method and a subset approach, which requires measuring
a feature on the structure while during the field inspection (e.g., column width). [20] de-
veloped a wall-climbing unmanned aerial system that collects visual data along a wall at
a fixed distance. A combination of bounding box CNN model and image thresholding is
used to segmentate cracks. Since the unmanned aerial system captures images at a fixed
distance, the authors simply pre-compute the image scale, which is used to resolve crack
measurement to a physical scale. However, if the distance between the vision sensor and
the wall changes, the approach requires a different method to resolve crack measurements

to a physical scale.

Furthermore, other features, such as bridge displacement measurements and bridge

natural frequencies can also be quantified using vision-based approaches. For example,
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[22] proposed a vision-based modal survey of civil infrastructure using UAVs. ArUco
markers [15] are placed on many sections of the bridge, and an UAV is used to record
video footage of sections of the bridge for a duration of time. Typically, such systems
typically require recording of video of the entire scene of the bridge span for modal survey,
but [22] adopts a divide and conquer strategy, taking several videos of sections of the bridge
instead of one video containing the entire bridge. For each video footage, the displacement
is measured through the tracking of ArUco markers, which is used to identify the local
mode shapes. Then, the results of all the local mode shapes are scaled and combined
using a decentralized modal analysis method to create a single mode shape profile for
the bridge. Lastly, [33] proposed a dual-camera system to enable long-term displacement
measurements of full-scale bridges while mitigating drift that occurs to the ego-motion of
the sensor. Ego-motion of the sensor is caused by the self-weight of the camera system and
the thermal expansion and contraction under cyclic temperature changes. To compensate
for the ego-motion, a second camera is attached to the first camera to track a sub-target,

the results of which are used to remove the camera’s ego-motion from the measurements.

2.2 Research Gap

To date, significant progress has been made in vision-based inspection techniques to im-
prove the pace, consistency, reliability, and accuracy of inspection. However, the proposed
techniques are not without limitations. Often, limited inspection budgets encourage the
use of cost-efficient sensors such as mobile phone cameras over specialized equipment. This

is because specialized equipment costs extra capital and requires additional training for op-
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eration of the equipment. For example, UAVs, usually require two people for inspection,
where one person controls the vehicle, and the other examines the real-time data feed to
conduct data collection and preliminary inspection. Thus, it may be more favourable to im-
prove existing inspection practices instead of transitioning to new inspection frameworks.
For example, detection algorithms using colour images can be implemented without any
change to current inspection practices. However, such vision-based techniques also have
a major limitation. Visual data collected during inspection the lack physical scale infor-
mation, and thus cannot resolve detected features to a physical scale. This work seeks
to address this gap. The image scale estimation method proposed in this study enables
quantification solely through the use of images. This is achieved by extracting the scale
information embedded in the texture of the structure using a learning-based approach. As
a result, the approach enables quantification of images containing scenes of ROIs, solely
through the information contained in the image itself. Thus, no other specialized equip-

ment other than the camera itself is required for the implementation of this approach.
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Chapter 3

Convolutional Neural Networks

3.1 Overview

CNNs have recently mobilized researchers in many communities to pursue computer vision
applications because they enable the learning of complex features (both deep and high level)
for image recognition by leveraging large-scale databases [31]. CNNs often use one or more
convolutional layers linked with weights and pooling layers that work to extract translation,
scale, and rotation-tolerant features. CNNs are most successful when training classifiers
using a large set of images as a source, along with a large set of parameters. Graphical
processing units (GPUs) can also be exploited to implement CNNs to enable a scalable
training process. Furthermore, CNN architectures have seen significant improvement, and

their accuracy has been greatly increased [50, 20, 10, 48].

It is well known that the major advantage of CNNs for image recognition applications
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is that the network is trained to automatically extract and interpret features to predict
a class or value corresponding to input images. These features are essentially condensed
representations of simple or complex visual patterns, such as corners, blobs, or colour that
can be used to indicate what class or value the input image is associated with. In this
study, such capabilities are utilized to build the scale estimation model. Since patterns of
surface texture can contain image scale information, illustrated in Section 1, CNNs can be
trained to extract and interpret texture patterns to predict the corresponding scale for a

given image.

The CNN architecture mainly consists of two parts: (i) a base model and (ii) a top
layer, as shown in a simple example in Figure 3.1. Common components of a base model
are convolutional and pooling layers, which are key in extracting features that uniquely
and compactly represent the input images. Then, these features are fed into the top layer
to identify the correct label(s) corresponding to the input image. These value(s) can be
binary, integer (class), multi-label, or real value(s). At least one fully connected layer with
an activation function is placed at the beginning of the top layer to predict the output
value(s) from features. The activation and loss function should be designed according to

the output type [17, 41].

In the following subsections, common techniques and layers of a typical CNN base
model and top layer, as well as those specific to the development of the scale estimation
model are described. Detailed descriptions regarding CNNs and their components can be

found by consulting the following literature [32].
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Figure 3.1: An illustration of a conventional CNN model architecture. The CNN model
can be described in two parts: the base model and the top layer. The features of an image
relevant to the label being predicted are extracted through a series of convolutional and
pooling layers in the base layer. The features then interpreted in the top layer through
one or more sets of hidden dense layers to output a single prediction. The flattened layer
simply is an unravelling of the previous layer’s output vector. Note that only a part of the
weights has been shown from the flattened to the hidden dense layer to maintain simplicity

3.2 Convolutional Layer

A convolutional layer (also called Conv 2D in this study) consists of k learn-able kernels
(also known as filters) used to extract features to create a feature map, which can contain
information pertaining to colours, simple morphologies, or complex morphologies (e.g.,
edge, corner, or shape of a nose). In implementation, kernel dimensions are three dimen-
sional (k,, X k, X k,), with k,,, k,, and k, denoting the kernel’s height, width, and depth
parameters. The convolution operation of a kernel on an input matrix (e.g., an image or a

feature map) can be seen in Figure 3.2.

The convolution operation can be explained via a rolling window approach. Assuming
a stride of 1 and no padding (to be explained later), a window of the same size as the kernel

starts in the top-left portion of the input matrix, and a dot product of the values inside
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Figure 3.2: A sample convolution operation. The input matrix of size 5 x5 x 1 is convolved
with the 3 x 3 x 1 kernel with stride of 1. For this example, the Sobel filter in the horizontal
direction of size 3 x 3 x 1 is used to identify horizontal edge features. Each sub-box (also
known as a window) is convolved with the filter to produce the coloured sub-box values
in the convolved matrix. The ReLu activation function is then applied to the convolved
matrix to yield the output vector of the convolutional layer

the window and the kernel is computed, yielding the value for the upper-left most element
of the convolved matrix (a value of 5, in Figure 3.2). Then the window is shifted 1 element
to the right, and the dot product is performed again with the kernel to produce the value
for the element immediately right of the upper-left most element of the convolved matrix
(a value of 6, in Figure 3.2). This is repeated until the window reaches the rightmost edge
of the input matrix, after which it is shifted one row down and moved to the left most side
of the input matrix. The process is repeated until the window reaches the bottom-right

most part of the input matrix.

Important hyperparameters of the convolutional layer is the kernel size, number of
kernels (which corresponds to the number of output channels), activation function, stride,
and padding. The kernel size simply determines the height and width of the learn-able
convolution kernel that is used to extract features from the input matrix. The number of

kernels specifies how many individual learn-able kernels will be used, where each kernel
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outputs a single channel. Note that since one kernel is used to create one channel of the
feature map, the number of kernels is equivalent to the number of output channels (one
channel is a single 2D slice of the feature map). The activation function is applied to each
element in the feature map to introduce non-linearity, allowing CNNs to learn complex
patterns. ReLu [39] has been the most used activation function in convolutional layers.
However, Swish [11], a recently proposed activation function has been shown to outperform
ReLu and as a result have seen increased usage. The stride parameter controls the number
of elements by which the rolling window shifts in the horizontal and vertical direction. For
example, given a horizontal stride of 2 and a vertical stride of 3, the rolling window shifts by
2 in the horizontal direction, and 3 in the vertical direction instead of 1 for each iteration,
in comparison to the previously discussed example where a horizontal and vertical stride
of 1 was used. The padding parameter can be used to control the output dimensions of the
feature map. When an input matrix is processed through a convolutional layer, the width
and height of the resulting matrix is smaller than the original matrix. In some cases, it
is desirable to maintain the width and height of the original matrix after the convolution
operation. To achieve this, the original matrix is padded with zeros to match the input
height and width. Essentially, the output feature map’s height and width can be calculated

as,

= ds

d, +1

where d,, d;, di, d,, ds, is the output, input, kernel, padding, and stride length along an

axis (height or width). It is important to note that convolutional layers typically perform
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3D convolutions, where a single, learn-able 3D convolution kernel produces one 2D feature
map. The depth parameter of the kernel is automatically adjusted to the number of
channels of the input matrix. Lastly, there are other hyperparameters which are utilized

more on a case-by-case basis, such as the dilation rate and bias.

3.3 Depthwise Separable Convolutional Layer

Efficiency has become a key topic of interest in the implementation of CNNs for problems
with resource constraints. The computational requirements of a conventional convolutional
layer grow increasingly inefficient as larger channel sizes are used. To improve the efficiency
of convolutions, a variation of the convolutional layer called depthwise separable convolu-
tional layer have been proposed, which have proven to perform just as well as conventional
convolution layers while using a fraction of the number of parameters [18]. This has led to

the rise of a new generation of state-of-the-art, efficient CNNs [10, 18, 53].

The efficacy of this convolutional layer variation can be illustrated using an example.
Given an input matrix of size 5 x 5 x 3 and a desired output of feature map with depth
(interchangeable with the term, number of channels) of 64, the conventional convolution
layer with kernel of size 3 x 3 x 3 requires 3 x 3 X 3 x 9 = 243 multiplication operations
to produce one channel of the 3 x 3 x 64 feature map. To produce the entire feature
map, 243 x 64 = 15,552 multiplication operations are required. In addition, each output
channel requires an individual kernel, and the number of parameters required are 64 x
3 x3x3=1,728. In comparison, the depthwise separable convolutional layer, instead

uses an individual 2D convolution kernel of size 3 x 3 for each channel (which is a total
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of three 2D kernels in this example) to produce an intermediate matrix of size 3 x 3 x 3,
which involves 243 multiplication operations. Then a total of 64, 1 x 1 x 3 kernels are
applied to the intermediate matrix to produce the 3 x 3 x 64 feature map. In sum, a total
of 3 x3x3x94+3x3x3x64=1,971 multiplication operations are performed and
3x3Ix3+3x64 = 219 parameters used. In this case, the depthwise separable convolutional
layer achieves the same function as a regular convolutional layer while using only 12.7% of
the number of parameters and operations. Because of this efficiency, depthwise separable

convolutional layers have become quite common in recent CNN architectures [10, 18, 53].

3.4 Pooling Layer

Pooling layers spatially aggregate the input matrix into a smaller, condensed matrix. There
are two main benefits to using a pooling layer [19]. First, the model becomes more robust
against local translations, meaning even if the image is shifted by a minor amount, the
features output from the pooling layer mostly would not change. Second, pooling also
acts a form of down sampling. The resulting feature map after a pooling operation is
significantly smaller, reducing computational costs for following layers compared to if there
was no pooling layer in place. Two types of pooling layers, namely average and max pooling
are the most used in a CNN model. An example max pooling operation can be seen in

Figure 3.3.

An example max pooling operation can be seen in Figure 3.3a. The pooling operation
uses a window (also called a pool) of size p,, X p,. By default, horizontal and vertical

stride lengths are equal to the window’s horizontal and vertical lengths. The operation
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Figure 3.3: Sample pooling operations. In (a), an input matrix of size 4 x 4 is max pooled
using a kernel size of 2 x 2 to produce a 2 x 2 matrix. In (b), 2D global average pooling is
performed on an input matrix of size 4 x 4 x 4 to produce a 1 x 1 x 4 matrix

starts at the upper-left corner of the input matrix which performs an aggregation (max or
average) of the upper-left pool to produce the upper-left corner value of the output matrix.
Then, the window shifts according to the set stride value and performs the aggregation on
the new pool. This process is repeated in similar fashion with the rolling window of the
convolutional layer until the pooling window reaches the bottom right most part of the
matrix. Note that the pooling layer differs from convolutional layers in that the pooling is

performed spatially in 2D instead of 3D. Thus, the number of channels is fixed and does
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not change.

Main hyperparameters are pool size, stride, and padding. Pool size determines the
height and width of the aggregation rolling window. Stride and padding parameters are
essentially identical to the stride and padding described in section 3.2. However, the key
difference is that, in implementation, it is common for the default stride values for pooling
layers to be equal to the dimensions of the pool size, while for convolution layers, it is

common to set the horizontal and vertical stride as 1, unless otherwise stated.

Lastly, there is a variation of the pooling operation known as global pooling, as shown
in Figure 3.3b. Global pooling (assuming 2D global pooling) aggregates across the entire
spatial axis (horizontal and vertical) to produce a single value. If the input matrix is a
3D matrix, containing a feature map with depth of C, then the global pooling operation
aggregates the spatial components of each channel in the feature map to produce a 3D
array of length 1 x 1 x C. Global pooling layers have been commonly used to replace
dense layers as they are less prone to overfitting [35]. However, they are also used to down

sample the feature map at the end of the base model prior to feeding into dense layers.

3.5 Dense Layer (Fully Connected Layers)

A dense layer is the set of fully connected neurons with activation functions, where in-
dividual, learn-able weights are connected from each neuron to all the output values of
the preceding layer [17]. Dense layers are typically placed in the top layer and is used to

interpret the features extracted from the base model to generate a prediction. Depending
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on the complexity of the problem, additional dense layers may be added in succession of
one another to increase the learning capacity. Dense layers can be further categorized into
two different types. If it is the last layer of the CNN, then it is the output layer responsible
for generating predictions and has the number of neurons equal to the number of variables
that are required to be predicted, with each neuron being responsible for the prediction of
a single variable. Otherwise, the dense layer is an intermediary between two other layers
and is referred to as a hidden layer, whose output values feed into the next layer. Dur-
ing training, the dense layer learns to interpret the output features of the previous layer
through the automatic tuning of its weights. An example operation of a dense layer can

be seen in Figure 3.4.

Specifically, a dense layer is composed of one or more neurons with an activation func-
tion. Each neuron is connected to all the values of the preceding layer via weights, shown
as red lines in Figure 3.4. Each weight has a randomly initialized value which is auto-
matically tuned during model training. The output value of each neuron is calculated
as follows. First, a weighted sum between the values of the previous layer with a single
neuron’s weights is computed. If the bias is nonzero of the corresponding dense layer, it is
added to the weighted sum of each neuron as a constant. Afterwards, the activation func-
tion is applied to this computed value to introduce non-linearity in the learning process.
After the application of the activation function to the value, its result is either passed on
to the following layer, or is output as a prediction. The main hyperparameters of the dense
layer are d,,, dq¢, and dp, which are the number of neurons, activation function, and bias,

respectively.
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Figure 3.4: A sample dense layer example, using a 1D input matrix of size 2, a 3-neuron
hidden dense layer with ReLu activation function and a bias of 0, and a 1-neuron output
dense layer with a sigmoid activation function. The neuron consists of two values, where
the left value is the weighted sum between the inputs and their corresponding weights, and
the right value is the left value after the activation has been applied. The right value of
the neuron is then output to the next layer for all the neurons in the dense layer

3.6 Dropout Layer

CNNs deploy a large number of tunable parameters to provide powerful learning capabili-
ties, allowing it to accurately make predictions despite a highly variable and complex input
data. However, a major drawback of using large number of weights is overfitting [60], a
phenomenon where the model memorizes the training data set, leading to poor general-
ization. Dropout is a regularization technique that has been proposed to reduce model

overfitting which occurs during training [52].
Dropout layers are placed in-between layers, usually after hidden dense, convolutional,
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or pooling layers, and is active only during the training phase. The technique simply
samples the input values from the previous layer by randomly setting a proportion of the
input values to zero, while leaving the remaining proportion of input values unchanged.
Afterwards, the augmented input values are passed onto the next layer. The proportion
of input values to keep during training is empirically chosen. By randomly setting a
proportion of the input values to zero during each iteration of training, dropout layers
prevent neurons from significant depending on one or two other neurons (known as co-
adaptation), but instead learn to depend on larger number of neurons in a more distributed

manner. This change in behaviour leads to better generalization capabilities.

3.7 Batch Normalization Layer

Batch normalization is a technique applied typically after activations (e.g., ReLu, sigmoid,
swish) to reduce the effect of internal covariate shift that occurs during model training
[24]. Internal covariate shift is defined as the change in layer input distribution over the
course of model training. This phenomenon gives rise to training difficulties, such as the
saturation of layer input values, resulting in longer training times for model convergence

and increased potential for training instability.

Internal covariate shift is reduced through the implementation of batch normalization,
where the distribution of each mini batch is normalized to a more appropriate mean and
standard deviation during training. Mean and standard deviation is also known as gamma
and beta, which are learned parameters with default values of 0 and 1, respectively. As

a result of applying this layer, total number of iterations required for model training are
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significantly reduced (reported up to 14 times fewer training steps). In addition, model
training instability is reduced, and in some cases, the layer acts as a regularizer, like that

of the function of dropout layers, allowing for better model generalization.

Specifically, the layer operates differently between the two phases, training, and in-
ference. During training, each mini-batch is standardized (to a mean of 0 and standard
deviation of 1) using mean and standard deviation of the mini-batch and then rescaled to
a distribution with mean and standard deviation of gamma and beta. During inference,
however, the input image or mini batch of images is standardized using the running mean
and standard deviation computed during model training, and then rescaled to a distribu-
tion with mean and standard deviation of gamma and beta. Overall, batch normalization

is now commonly applied in most state-of-the-art CNNs, such as EfficientNet [53].

3.8 Bottleneck Residual Block

A bottleneck residual block is a series of three layers [13], designed with the main idea in
mind that information residing in a high dimensional feature map can be embedded into a
low dimensional one with minimal loss of information. When the block’s input dimension
matches the output dimension, an additive residual connection [20, 48] is added (referred
to as inverted residuals), connecting the previous block’s bottleneck layer with the current
block’s bottleneck layer. Residual connections enhance model training by reducing the
problem of vanishing gradient when implementing deep neural architectures. By using
bottleneck residual blocks, significant computational and memory resources are saved, and

allow models to reach state-of-the-art accuracies while using minimal number of parameters
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and operations.

Specifically, the first layer is a 1 x 1 x C' convolutional layer (where C' is the number of
channels of the input matrix) with a modified ReLu activation function where the maximum
possible output value is set to 6 (known as ReLu6), and output channel size of C' X t,
where t is a hyperparameter, called the expansion factor. The second layer is a depthwise
separable convolutional layer with a 3 x 3 kernel, with stride s, and a ReLu6 activation
function. Note that the depthwise separable convolutional layer is padded to maintain
the height and width of the input matrix and has a stride of 1. Lastly, the third layer
performs a 1 x 1 x C' convolution layer with a linear activation function, with output channel
size C'. Essentially, the first layer performs an expansion from a low-dimensional feature
map to a high dimensional feature map to enable the application of nonlinear activation
functions, such as ReLLu6 while preserving information. The second layer spatially filters
the high dimensional feature map, extracting meaningful features, while the third layer
maps the filtered high dimensional feature map back to a low dimensional feature map.
The third layer uses a linear activation function in comparison to the two preceeding
layers to better preserve information during the down sampling, is referred to as a linear

bottleneck. Together, the three layers enable an efficient method of feature extraction.

The hyperparameters for designing a bottleneck residual block is ¢, C’, n, and s, which
is the expansion factor (determining by how much to expand the low dimensional feature
map), number of output channels at the end of the set of repeated blocks, number of
times the block is repeated, and the stride for the first block in the set of repeated blocks

(following repeating blocks have a stride of 1).
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Chapter 4

Proposed Approach

4.1 Overview

The objective of the proposed scale estimation technique is to enable quantitative visual
inspection using a single collected image, without relying on extra sensor data. The basic
premise for this approach is that images of a unique surface texture contain scale informa-
tion. A CNN-based regression model is trained to extract the scales from surface textures.
If users take images including surface textures, which are similar to the one for training
the model, the scales of the images can be estimated, and they can measure the size of the
inspection region on the collected images. Moreover, if existing vision-based inspection al-
gorithms that automatically detect areas of interest are integrated into this process, a fully
automated procedure aimed toward damage detection, localization, and quantification can

be developed and employed using only images.
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Figure 4.1 presents an overview of the proposed technique. In general, once users collect
an image of the target region for inspection (hereafter, TRI) in Step 1 (note that the TRI
is concrete cracking damage shown in Figure 4.1), they can quantitatively evaluate the
TRI in Step 5. Steps 2-5 are conducted automatically if the users complete training of the
scale estimator and ROI detector in advance (or conducted in a semiautomatic manner if

ROI(s) is manually detected in Step 2).

Step 1.Image collection for target region Step 2.Region-of-interest (ROI) detection Step 3. Patch extraction of surface
texture

Max width: 66.9 pixels
Length: 1,115.0 pixels
Area: 49,729.0 pixels?

Step 5. Quantitative ROI
Step 4.Image scale estimation using trained CNN model evaluation

Max width: 3 mm
Length: 50 mm
Area:- 100 mm?

~[253]~(22.3]

pixel/mm

Fully Connected Layer

Base Model

Figure 4.1: Overview of the proposed scale estimation technique

In Step 1, users collect the images of TRIs. The images should be captured reasonably
parallel to the surface where TRIs are present and contain surface textures. These back-
ground textures are utilized for estimating the scale of the corresponding images. Image
collection at Step 1 is the only manual work that users are required to conduct if vision-
based ROI detectors are incorporated in the process via Step 2. Next, an ROI (concrete
cracking in the case of Figure 4.1) detection algorithm is applied to the image in Step 2.

The goal for ROI detection is to automatically quantify the ROI (e.g., crack length, size,
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width) using the scale estimated in Step 5 as well as to facilitate the extraction of back-
ground textures that are not overlapped with ROIs. When users do not have automated
ROI detectors, they can manually provide the location of ROIs on the image. For example,
in Figure 4.1, a user could manually draw the boundary of the crack outline. In Step 3,
patches for surface texture are randomly extracted from the background (non-ROI region)
of each collected image. All patches are square and of the same fixed size. Large patches
are extracted from the image background so that each patch is not susceptible to local
variations on the texture. In Step 4, the scale of each image collected is estimated using
the patches extracted from its background. The CNN architecture originally developed
for general image classification purposes is modified and improved so that the network
estimates an accurate numeric scale value from the input image. In actual implementa-
tion, Steps 2 to 4 are repeated multiple times so that a precise scale value may be derived
through averaging. Finally, the actual size of TRI can be measured using the correspond-
ing ROI on the image and its scale. The properties of an ROI represented by pixels can
be converted to its physical dimension by simply dividing its image scale in Step 5. The
proposed technique enables making a measurement on the entire region captured by the

image.

Before illustrating the technical details of the proposed techniques, the assumptions

made in the proposed technique are stated and explained.

e Surface textures are prominent and unique across the structure being inspected. This
assumption becomes the basis that the scales of images can be estimated with one-

time training at the beginning and used for multiple areas on the structure in the
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future. For instance, in the case of concrete bridges, it is reasonable that surface
textures would be similar because they are the product of the concrete mixtures that
are largely confined to similar details for similar element types (e.g., concrete girders,
pile caps), within specific geographic regions. If there is more than one unique texture
presented in a single structure (e.g., several different textured concrete fagades on
a single structure), multiple estimators may be needed. In the case where there is
no unique surface texture (e.g., a painted steel girder, or smoothed concrete surface)
or new textures are introduced (e.g., due to partial retrofit or extensive concrete
efflorescence damage), the proposed technique is not able to estimate the scales of

the images collected.

Degree of self-similarity of the surface texture is low or negligible. For highly self-
similar textures, there is little to no visual difference between an image taken close to
the surface and an image taken far away from a surface, at which it will be difficult for
the estimator to determine scale. For civil structures fulfilling the first assumption, it
is reasonable to assume that the texture’s self-similarity is low or negligible. Consider
the example of a concrete surface with visible aggregates. Such surface texture can
have areas where the size distribution of aggregates minimally overlaps with other
image scales. Images taken at similar scales (e.g., 30 mm/pixel, 35 mm/pixel, and 40
mm /pixel) can have minor visual differences for texture patches, which the estimator
has difficulty picking up, but a scale of 200 mm /pixel has significant visual differences,
which the estimator can learn. This is explained by the qualitative differences of
images taken close-up versus far away, where the detail of the aggregate binder’s

texture is prominent in images taken closer to the image, as compared to it looking
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less prominent as the distance from the camera increases. These visual cues allow

the estimator to make relatively accurate predictions.

The surface where TRIs are located is reasonably flat, and the images are captured
parallel to the surface. The model is designed to estimate a single scale per image.
By maintaining a single constant distance between an image plane and the surface,

the entire region of the image has a single identical scale.

Images are captured at standoff distances ranging from 0.5 to 2.5 m. This range is
in-line with the recommended one (to two) arm’s length inspection distance noted in
existing guidelines [33]. Empirically, the images captured within this range contain
both TRI and background surface textures in most cases. If the TRIs are located far
from the users, zoom can be used enlarge the TRIs to emulate the image being cap-
tured at a closer distance. In Section 5, the technique is experimentally demonstrated

to work on optically zoomed images.

The images are sharp. Out-of-focus or motion-blur causes a collection of blurry im-
ages. It is not recommended to use a high-ISO under low-light conditions because it
may generate unwanted speckle noise on the images. These effects on images nega-
tively influence the ability to estimate scale as a result of degrading and corrupting
texture details. Basically, taking images under good lighting reduces the risk of

motion blur and speckle noise, allowing fast shutter speed and low-ISO setup.
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4.2 Image regression using CNNs

Since its inception, CNNs have seen significant progress in the development of CNN archi-
tecture and training algorithms and have been utilized in a broad range of applications,
such as scene classification, object detection, and image-to-image translation [17]. As such,
there are many choices of hyperparameters in network structure and training algorithms
appropriate to each application. In implementation, instead of developing a CNN model
from scratch, an appropriate CNN base model is selected from one of many state-of-the-art
architectures in literature and is augmented according to the required specifications of a
given project. Typical augmentations involve implementing a custom top layer or aug-
menting the pre-existing one, changing the number and types of layers, and/or changing
the output layer’s activation function, and using a loss function designed for regression, in

the case of this study.

There are many state-of-the-art CNN architectures for the base model, such as VG-
GNet [50], ResNet [20], Xception [10], and MobileNetV2 [18]. In this study, MobileNetV2
was implemented. MobileNetV2 makes use of a novel inverted residual structure with lin-
ear bottleneck layers in its architecture. This model achieves a competitive accuracy in
the ImageNet competition while using 10 to 100 times lower number of parameters than
previous well-performing CNN models, such as ResNet or VGGNet. This can dramatically
reduce computation for training and validating the model. In this application, the com-
plexity of the data set is expected to be lower than the existing benchmark data sets such
as ImageNet because the proposed procedure requires texture patterns on images. Thus,

in this case, MobileNetV2 is well-suited for the application domain.
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The CNN model in this study learns to predict scale through an optimization process
and requires training prior to use. First, a batch of patches, in random sequence, are
selected from the training set. The model predicts a scale for each patch in the batch.
After initial estimation, a loss function is used to assess model performance and measure
the error in the model’s predictions. The error is used to calculate correction values for the
weight parameters in the model. The correction values are then backpropagated into the
model to update its weight parameters, resulting in a decrease in error. Then, a new set
of patches are selected to form a batch to train the model. This process is repeated until
all patches in the training set have been used to train the model and is referred to as a
single epoch. The model is then trained for a predefined set of epochs, until a satisfactory
accuracy is achieved, or if the model training accuracy converges. The batch size (e.g.,

number of patches per batch) is predetermined prior to the start of training.

Next, several data augmentation methods were designed for pre-processing input images
to train a robust and unbiased scale estimation model. Data augmentation is a commonly
used method that expands the training set to avoid overfitting problems by modifying the
existing input data through label-preserved transformation [31]. It is important to develop
an unbiased estimator. To do so, first, colour scale images are converted to grayscale. Re-
gardless of image scales, the colours of the structure surface are easily affected by weather
conditions, degradation, or lighting directions. This causes unwanted bias in the model.
Thus, colour information is removed from the image, random brightness changes and chan-
nel mean shifts are added to mimic potential lighting variations (e.g., glare, cloudy, camera
flash, or urban lighting), affecting the grayscale images. Second, fixed-size patches are ex-

tracted from random locations of the surface textures on the original images. The original
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images, to be used for training, are captured from the target structure after a marker is
attached to the surface. This marker automatically provides a scale of each image, which
is explained in Section 4.3. Surface textures are rotational invariant, meaning that the
scale information does not change due to rotation of the input texture patch. For prepar-
ing input texture patches, several rotated square patches are extracted from non-marker
regions of the original images (see Figure 5.5). Third, further augmentation is done during
the training phase to reasonably impose perturbation of the input training patches, which
allows the model insensitive to the variations on actual testing data. Vertical and hori-
zontal flips were added as they simply mirror the texture, which increases variation in the
input patches. Note that rotational and horizontal shift augmentations are not included

here because randomly cropping from raw images already simulates these augmentations.

Afterwards, MobileNetV2’s existing top layer, is designed to support regression. The
sigmoid activation function is replaced in existing MobileNetV2 with a ReLu activation
function to produce a single positive scalar value to be estimated as image scales. Then,
a loss function is selected to evaluate the predicted scales. The loss function is defined
as the error between the predicted and actual scale for each patch. During training, the
loss function is used to penalize the model’s wrong predictions. The correction values
are calculated from the model’s errors and then backpropagated to update the model’s
parameters. Choosing the right loss function is crucial to building a robust model. For
this application, a loss function must work for regression, and penalize errors uniformly,
meaning both small and large values must be penalized proportionally to their value. Thus,
a mean absolute percentage error (hereafter, MAPE) function is chosen for this application.

There are several other loss functions that are used for regression, such as mean absolute
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error, mean squared error, or mean squared logarithmic error. The key advantage of MAPE
in comparison to other loss functions is that MAPE weighs loss equally across entire range
of possible values. This is not the case for many loss functions that can be considered
as biased, either penalizing smaller values more than larger values and vice versa. For
example, if mean squared error is used, a predicted value of 11 and an actual value of 10
will produce a loss of 1. But for a predicted value of 55 and an actual value of 50, a loss
value of 25 is produced. In both situations, the errors are equally 10% of its actual value
but they are not equally weighted. Thus, for mean squared error, it weighs loss toward
larger values, adding bias. For the proposed scale estimation model, it is desirable to be
able to uniformly penalize loss across entire range of values. Thus, MAPE is an ideal loss
function for this application. MAPE is a loss function that expresses error as a percentage
metric. MAPE is calculated between the predicted and actual image scale for a given set

of patches and is defined as,

1 |y — 0
MAPE = = :u « 100% (4.1)
n < Yi
i=1

where y; and ; is the actual and predicted image scale for a given crop, respectively, and

1 is for a given patch in a batch containing n patches.

Existing class imbalances within each data set are identified and mitigated via an
oversampling approach. Class imbalance is used to describe any data set with an uneven
distribution of its labels. Without any measures, significant bias can be added to the model
due to class imbalances. For example, training on an imbalanced binary data set with 1

true label for every 100 false label results in the model learning more from false labels
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than true labels. Such situations often yield models that predict the false label with high
degree of accuracy (e.g., near 100%) while the true label is predicted with a low degree of
accuracy (e.g., less than 20%). This is because the model is more tended to predict samples
as negative predictions, even when a sample has a true label. The degree of bias introduced
by data sets varies depending on the degree of class imbalance. While it is ideal to use
a perfectly balanced data set to train a model. However, such data sets rarely exist. To
mitigate class imbalances, several methods, such as weighted loss or oversampling [19, 27]
have been proposed. For this study, number of patches extracted from scene-level texture
images have been adjusted to create a data set with an approximately balanced distribution
of scales. Number of patches extracted from each scene image has been calculated using a
histogram of binned scales, extracting more patches from images belonging to a scale bin
with low number of counts, while extracting less patches from images belonging to a scale
bin with high number of counts. Essentially, by equalizing the distribution of counts for
the training data set, the chance for the loss distribution to be imbalanced significantly

decreases.

Lastly, for validating the trained scale estimation model, multiple rotated or non-rotated
texture patches are randomly extracted from each test image (50 in this study). Afterwards,
the model predicts the scales of all patches and the final single scale belonging to the test
image is then aggregated to minimize the variations of the scale estimations due to local
texture noise or bias. For this experiment, mean and median functions have been tested

for aggregating scales estimated from patches and the results are compared in Section 6.
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4.3 Automated ground-truth training data generation

CNNs have been successful in many applications by training robust features extracted from
a massive collection of labelled data sets, such as COCO or ImageNet benchmark data set
[11, 36]. In training CNNs, the accuracy is highly dependent on the quality and quantity
of the images. In general, collecting and labelling a large number of images is far more
time-consuming than building and validating models using CNNs. For the training of the
proposed scale estimator, many images of surface texture with known scales are prepared
in advance. The problem is that it would take a considerable amount of time to manually

measure the scale of each collected image.

To remedy this issue, a simple and efficient way of preparing a ground-truth training
database from the collected images was devised such that surface texture images and their
corresponding scales can be automatically generated. A key idea is to use a fiducial marker
with a known dimension and a detection algorithm. During data collection, the marker is
included in the image scene by placing it on the structure’s surface prior to taking a picture.
Afterwards, a marker detection algorithm is run to detect the marker’s outer boundaries
in the scene. Since the dimension of the marker is known, the scale can be computed
from the ratio of the pixel size of the detected boundary on the image to its physical size.
Any fiducial marker can be used for this application permitting that a clear boundary of
the marker can be obtained from the image. In this research, the ArUco marker and its

detection algorithm implemented in an OpenCV library were used [16, 16].

ArUco markers are square planar fiducial markers (shown in Figure 4.2) with a black

outer border and inner matrix of N x N squares, called bits (black has a value of 0, and
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white has a value of 1) [15]. The size of the inner matrix (V) typical ranges from 4 to 7. The
squares in the 1st, 3rd, and 5th columns are parity bits, and the squares in the remaining
columns contain data bits. The parity bits are used to ensure that the data bits have been
detected correctly, which is used to identify the specific identifier for the ArUco marker from
a dictionary containing several markers. The markers are automatically detected using a
sequence of computer vision techniques [16]: image resizing, adaptive image thresholding,
contour extraction, contour filtering, marker corner approximation, and binarization. Note
that at a given resolution, the algorithm looks for a marker of fixed pixel size - hence the

detection algorithm is repeated for various image sizes, and the results compiled.

Figure 4.2: A 5 x 5 Aruco fiducial marker used for this study.
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Images of scenes containing ArUco markers are shown in Figures 5.3 and 5.4 in Section
5. By utilizing the automated marker detection algorithm, the manual work required for
building the ground-truth database is limited to collecting images of surface textures with
the marker in the scene, as the labelling process is fully automated through automated

marker detection and scale extraction.
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Chapter 5

Experimental Design

The experiment design presented in this section was used to demonstrate the following
aspects of the technique: (i) The relationship between images of surface textures and their
scales can be established using CNNs; (ii) the technique works on various structures, each
having different surface textures; and (iii) the performance of the technique can be used
under different image collection conditions including the use of the camera different from
the one used for training and the use of a zoom function to capture the remote region
of more than one or two arm’s length. All images captured for experimental validation
include the marker to make a comparison between estimated scales of images with their
actual scales computed from the marker detection proposed in Section 4.3. Of course, the
images used in actual implementation are intended to be captured without markers, as seen
in Figure 4.1. The marker presented on testing images in this experiment is to evaluate

the accuracy of the scale estimation model developed.
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To enable the scale estimation technique shown in Figure 4.1, a robust scale estimator
must be trained. Training such models requires a labelled data set containing texture
patches with known image scales. In this study, a rapid data labelling methodology is
proposed, as shown in Figure 5.1. In step 1, multiple images of the structure texture
are taken for each scene. Note that a fiducial marker is included in the image, which
is used to automatically generate the training and testing data set. Using the marker’s
known physical dimension (e.g., in mm or cm) as a reference, the pixel dimensions of the
marker can be determined to calculate the image scale. The marker’s pixel dimensions
are estimated using a ArUco marker detection algorithm [16] to calculate the image scale.
Following marker detection, texture patches are randomly extracted from the scene (while
avoiding the detected marker). Step 2 is repeated for each image in the collected data
set, and once the scale calculation and patch extraction are complete for all images, the
extracted patches with their corresponding scales form the texture-scale data set. In step
3, the texture-scale data set is split into training and testing data sets, where the former
is used to train the CNN model, and the latter to validate the performance. Note that
the split is performed on a scene-level (meaning that patches pertaining to one scene are
not distributed in both training and testing data sets but are only in one or the other).
This is to prevent data leakage, which is to ensure that the model has not seen any of the
texture contained in the testing data set during the training phase. Details of each step

are discussed in the following subsections.
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Step 1. Marker-included image collection for model training Step 2. (For each image) Marker detection, scale calculation, and

patch extraction
) .

m) |Image scale: 80 pixel/cm

Step 3. CNN model training using patches and their
corresponding image scales

|I"5 53]~

pixel/mm

[]

Base Model

Figure 5.1: Overview of data collection and training data set generation methodology

5.1 Data collection

To validate the proposed technique, images are collected from three different structures
having different surface textures. Three different structures (sites) were selected on the
main campus of the University of Waterloo, Ontario, Canada: pedestrian bridge (PED),
building wall (BW), and asphalt pavement (ASH). Figure 5.2 shows the overall view of

each selected structure.

A set of images was collected from many different scenes at each structure. Here, the
scenes indicate the surfaces in different locations on the same structure. Once the marker
is attached to each scene, multiple images are captured by varying the distance between
the camera and the scene. The distance is randomly chosen roughly from 0.5 to 2.5 m,
which is the typical distance required for inspectors to perform a close-up inspection [33].

The entire area of the marker is fully included in each image. The images were collected
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()

Figure 5.2: Overviews of test structures: (a) pedestrian bridge (PED), (b) building wall
(BW), and (c) asphalt pavement (ASH)

near parallel to the scene during the daytime with good lighting conditions. The sample
images collected from each structure are shown in Figure 5.3. In each row, two original
images captured at close (left) and far (right) standoff distances are provided, and the
square patch on the right of each original image is a magnified area corresponding to a box
(in red) on the sample image. This box becomes a potential input for the scale estimation

model.
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Figure 5.3: Sample images collected from (a) PED, (b) BW, and (c) ASH. Note that the
original images with a marker on the right and left are captured from close and far distance,
respectively. The square patch next to the image is a magnified area corresponding to a
box on the original image

The collected images are split into training and testing sets by scenes. The training
set is assumed to be the set of the images that inspectors (or users) collect initially with
a marker from the structure being inspected to train the scale estimation network. The
testing set is assumed to be the set of images that are used for visual inspection. Rather
than randomly splitting all collected images, the images were randomly split by scenes,

because the scenes from the testing set should not be included in the training set for

48



accurate performance evaluation. Likewise, inspectors in a real-world setting would likely
capture images from the new scenes that may not be included in the training set. In Table
5.1, there are a number of images collected from each structure. Table 5.1 shows the total
number of scenes and corresponding images collected from each structure. Around 20% of
the scenes are assigned as the testing set in each data set. For training the model, a Canon
90D camera with a fixed focal length was used to collect all images for PED and ASH,
and an Olympus TG-2 camera was used to collect the images for BW. Their resolutions
are 5,184 x 3,456 and 3,968 x 2,976 pixels, respectively. The marker detection algorithm
introduced in Section 4.3 could detect rotated markers on images as well; however, the

images were collected in a way that the bottom side of the marker was near horizontal.

Structure Total number of scenes Total number of images
(training/testing) (training/testing)
PED 22 (18/4) 191 (154/37)
BW 14 (12/2) 434 (352/82)
ASH 21 (17/4) 182 (149/33)

Table 5.1: Overview of data sets collected at different structures

In actual implementation, it is likely that inspectors may bring a different camera on
site. Also, inspectors often capture inspection images in a remote distance using a zoom
function. Thus, further experiment was conducted to validate the method under different
operating conditions: different camera (DIFF) and focal length (ZOOM). First, 192 images
from 22 different scenes are captured from PED using a different camera, Nikon Coolpix
S9900 with image resolution 4,608 x 3,456. Second, 298 images from 23 different scenes are
captured from PED by varying the focal length of Canon 90D using optical zoom. Sample

images are shown in Figure 5.4. In Figure 5.4a, in comparison to the original PED data,
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there are some colour differences when taken with a different camera, but no significant

texture changes.

(b)

Figure 5.4: Sample images collected from PED using (a) different camera and (b) different
focal lengths. Like Figure 5.3, two images on the left and right are captured from different
distances and a magnified area corresponding to a box on each image is on the right

After collecting images from each structure, the texture database for training is gener-
ated. This can be done by leveraging the known dimensions of the marker on each image
and the ArUco marker detection algorithm in OpenCV [16, 46]. Given an image with a
marker, the marker corners are detected. Then, the pixel lengths of the marker sides are
calculated from the detected corners. Ideally, pixel lengths for all four sides should be
identical; but, for actual images, there is a discrepancy between the lengths of the sides
due to unwanted perspective distortion, induced by unparalleled images to the structure
surface or inconsistent gaps between the marker and the surface. Thus, to account for this,

the four side lengths are simply averaged to minimize errors on the scale computation.
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Once the scale of each image is computed from the marker, texture patches for training are
randomly extracted from non-marker areas on the images. Figure 5.5 shows the sample
patches extracted from the original images. Rotated patches such as the one labelled as
(1) in Figure 5.5 are transformed into the non-rotated square one to make the input form

of the scale estimation model.

Figure 5.5: Sample texture patches from an original image: Patches are randomly extracted
(shown as red squares) from non-marker areas

5.2 Model training

Four tests were conducted to evaluate the performance of the proposed model. To note,
the training set was further split into two sets with ratio 80% to 20%, where 80% of the
set was used to train the model, and 20% as the validation set. First, three different
patch sizes were tested to demonstrate that sufficient texture information was acquired to

permit accurate predictions. Prediction results were compared when square patch sizes
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of 100 x 100, 350 x 350, and 850 x 850 from the PED data set are used as an input.
Second, scale estimation models were developed and tested using three data sets (PED,
BW, and ASH). This test demonstrated that the technique can learn various textures to
associate with their scales. Third, the transferability of the technique to different cameras
without further training was explored. The model trained on the PED data set collected
using Canon DSLR 90 is implemented to a new PED data set collected using DIFF, and
the accuracy of the scale estimation is evaluated. Lastly, the effect of changing the focal
length on the model performance is examined. The model trained on the PED data set
collected without using a zoom function is applied to a new PED data set of which images
are captured with different focal lengths. Note that since it is demonstrated that the use
of the larger patch outperforms the ones of smaller patches in the first test, the patch size

of 850 x 850 was used from the second test onward.

In this experiment, a light-weight CNN model called MobileNetV2 [18] is utilized. The
base model and top layer of the network architecture can be seen in Table 5.2. This
network has an initial 2D convolution layer with an output of 32 channels followed by
seven configurations of bottleneck residual blocks with different number of output channels,
number of repeating layers, and stride. Then, a 2D convolution layer with a 1 x 1 kernel and
an output of 1,280 channels is applied, followed by a global 2D average pooling layer. The
top layer of MobileNetV2 was configured with a 1280-neuron dense layer, which is connected
to a single-neuron dense layer output with the ReLu activation function. MAPE was used
as the loss function. A stochastic gradient descent (SGD) optimizer was selected, and its
learning rate, momentum, and stochastic decay are 1 x 107*, 0.9, and 0.01, respectively.

Patches were randomly extracted from a non-marker region of each training image collected
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and re-sized to 299 x 299, which is an input size of MobileNetV2. Prior to feeding the
texture patches into the model, data augmentations that included random intensity changes
with £20%), and mean shifts with 50, and horizontal and vertical flips were added. Then,
the image pixel range was normalized to a range between —1 and +1 instead of using the
mean and standard deviation of the data set. This is because the size of the collected data
set was small and, as such, may introduce biases when using different cameras with filter

settings that differed from the camera used for this experiment.

H Model section Input Operation Kmxn 1t c n s H
299 x 299 x 1 Conv 2D 3x3 - 32 1 2
150 x 150 x 32 Bottleneck residual 3x3 1 16 1 1
150 x 150 x 16 Bottleneck residual 3x3 6 24 2 2
75 X 75 x 24 Bottleneck residual 3x3 6 32 3 2
Base model 38 x 38 x 32 Bottleneck residual 3x3 6 64 4 2
19 x 19 x 64 Bottleneck residual 3x3 6 9 3 1
19 x 19 x 96 Bottleneck residual 3x3 6 160 3 2
10 x 10 x 160 Bottleneck residual 3x3 6 320 1 1
10 x 10 x 320 Conv 2D 1x1 - 1280 1 1
10 x 10 x 1280 Global 2D average pooling 10 x 10 - 1280 1
Top layer 1 x1x 1280 Hidden Dense - - 1280 1 -
1 x1x 1280 Output Dense - - 1 1 -

Table 5.2: Description of the augmented MobileNetV2 used for this study. Each line
describes a single layer/block repeated n times, which have the same number of output
channels, c¢. Variables k,,«x,, t, ¢, n, and s are kernel height and width, expansion factor,
number of output channels, number of times the layer/block is repeated, and stride, re-
spectively. Note that s describes the stride for the first layer/block in a series of repeated
layers/blocks, and the stride after the first layer/block is 1 (e.g., for Conv 2D with s = 2
and n = 2, s = 2 for the first Conv 2D, and s = 1 for the 2nd Conv 2D). k,,, for bot-
tleneck residual blocks describes the kernel size for its depthwise convolution layer. The
expansion factor is applied to the input channel length.

A workstation having an Intel Core i9-7940 CPU and a GPU, NVIDIA GTX1080Ti
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with 11 GB video memory was used for training and testing the model. A batch size of
32 was used to train the model for 250 epochs. From this setup, a single epoch containing
4,440 patches requires 45 seconds, resulting in a total of approximately 3 hours and 8

minutes to train a single model for 250 epochs.
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Chapter 6

Results and Discussion

In this section, comparisons of the scale estimation performance depending on the patch
sizes are shown. The three different sizes of the patches extracted from the PED data set,
100 x 100, 350 x 350, and 850 x 850 pixels, have been used for training and testing. Figure
6.1 shows the model’s loss plot in log scale for three different patch sizes—where training
curves are plotted in Figure 6.1a and testing curves in Figure 6.1b. From the figure, it is
obvious that the loss curve of larger patches converges at a lower MAPE value than those of
the smaller ones. This result demonstrates that since larger patches contain more texture
information on the physical surface, they are less prone to overfit on local variations in
texture or lighting. All three configurations converge roughly after 25 epochs of training,
though there is a very slow decrease in loss over the duration of the entire training. The
result shows that users should use a larger sized patch to improve accuracy. However,
users should also consider the marker size when selecting an appropriate patch size, as the

patch size is fixed when extracting patches for all collected images. If the patch size is too
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large, every randomly selected square patch would either contain a portion of the marker
(making it an invalid patch) or have parts of the patch simply out of bounds. In these
cases, no patches would be extracted. Thus, it is important to choose a large enough patch
size, but not too large such that there are boundary issues. Furthermore, marker sizes in
the images vary depending on the distance of the camera from the surface. For example,
when the camera is close to the surface, the size of the marker on the image also increases,
leading to a smaller extractable texture region. Thus, a recommendation for determining
the patch size is that given the camera resolution used for training, users should determine
a reasonably large patch size that can be extracted from the image captured at the closest
distance without overlapping with the marker (which was around 850 x 850 pixels in this

study).

Using the patch size of 850 x 850 pixels, the scale prediction performance was evaluated.
To directly observe the prediction performance, an Actual-to-Predicted scale scatter (AtP)
plot was drawn to compare true and predicted scale estimations. The AtP plot for the PED
training and testing data set is shown in Figures 6.2 and 6.3, respectively. The red dotted
line is a true prediction line, which means that the model predicts the scale correctly as
the estimated values are close to this line. The inner dashed and the outer lightly coloured
bands are, in order, 10% and 20% error margins. Figure 6.2a shows the scale predictions
of all patches (black dots) in the PED training data set. In the plot, sets of the black dots
are aligned vertically because they are obtained from different patches of the same image,
which has the same actual scale. The predicted scales are dispersed around their actual
values due to estimation errors. Thus, the values are aggregated using a median function,

shown in Figure 6.2b. Both median and mean functions were used for aggregation, but the
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Figure 6.1: Loss curves on a log-linear plot of training in (a) and testing in (b) for three
different patch sizes: 100 x 100, 350 x 350, and 850 x 850. The PED data set is used for

this experiment

median function is more robust to outliers, which may have been introduced from large
local texture variations or blurring. Similar to Figure 6.2 for training, the AtP plots for
the PED testing are in Figure 6.3. Note the scenes in the testing data sets were not used
for training. The final aggregate prediction in Figure 6.3b is quite close to the actual scale

values, and most of the predictions are within the 20% error margin. This means that any
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region on the images can be measured with a 20% margin of error, using the trained scale

estimation model.
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Figure 6.2: Actual-to-Predicted scale scatter (AtP) plots obtained from the PED training
data set: (a) scales for all patches and (b) aggregated scales for each image using a median
function. The red line indicates a correct prediction line and inner dashed and outer
coloured bands indicate 10% and 20% error margins, respectively

The technique was also validated using BW and ASH data sets. The scale estimation
model for each data set was trained using the same architecture and configuration as
employed in the PED model. The aggregated AtP plots for each testing data set are
shown in Figure 6.4. Note that since images for BW were captured with a lower resolution
camera than those obtained for the other two data sets at the same distance range, the
range of the scale in Figure 6.4a is smaller (up to 200 pixel/cm). In Figure 6.4b, the results

from ASH testing data set have more dispersion in larger actual scales. These variations
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Figure 6.3: AtP plots obtained from the PED testing data set: (a) scales for all patches
and (b) aggregated scales for each image using a median function

are caused by partial light variations by shading or debris on the ground. As such, images
taken with shorter standoff distances are more prone to wrongly predict the scale if such
variations are present in the scenes. As the scenes are captured at a closer distance, regions

for extracting patches are smaller, being more susceptible to such local variations.

The scale prediction results for all three structures are summarized in Table 6.1. The
table shows the average and standard deviation error of the three structure data sets used
in this study. As previously shown, two aggregate functions used to aggregate multiple
scale estimations for a given image into a single scale are mean and median. For both
aggregations, the error is represented as mean values with their standard deviation. The

preference of one function over the other is not immediately obvious; however overall, the

29



300

300

=7 =7
—— 10% Error — —— 10% Error —
20% Error I’ 20% Error I"
250{ ® Scale per Image —,’— 2504 @ Scale per Image *7"—
+ - '+
—_ 2 —_ . Z
E —_—r g PR L —
3 2007 yr— = 200+ P
$ i — $ — £
o 7 - o e i oy
© 150 —A— * © 150 ——
[Z] = « .
i 7 - 7
& e & —
= . © >
E 100 f E 100+ f
o - o W 4
7 =
50 f 50 y
V
Vs
/
/ /
0 . , : , ; 0 . " ; ; :
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Actual scale (pixel/cm) Actual scale (pixel/cm)
(a) (b)

Figure 6.4: AtP plots for (a) BW and (b) ASH testing data sets. The scales are aggregated
using a median function

performance of the median-based aggregation was shown to slightly outperform the mean-
based aggregation. The scale for all three cases can be accurately estimated within a 20%

error most of the time.

H Aggregation PED BW ASH H
Mean 6.7% +4.0% 15.8% +13.6% 10.5% + 8.4%
Median 7.3% £4.5% 141% +11.9% 9.9% £+ 8.3%

Table 6.1: Overall scale prediction results for all three structures: aggregation using either
a mean or median function

In addition, the transferability of the scale estimation model was explored by examining
the impacts of (i) training and testing images being captured with different cameras and

(ii) the zoom function being used to capture the scene in distance. First, for actual imple-
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mentation, it is likely that users will collect images using different cameras from those that
were used for collecting images for model training. Figure 6.5a shows the AtP plot aggre-
gated using the median function. The scale estimation model for PED shown in Figure 6.2
is applied to the images collected from a different camera, used for this experiment. The
mean error and its standard deviation are 11.8% + 9.7%. Compared with the accuracy
in Figure 6.3b and Table 6.1, prediction results are still reasonably good but less accurate
than the one from the same camera images. This is because the model may have learned
the camera’s features in addition to features associated with the textures, such as lens dis-
tortion and colour variation. Although various data augmentations such as colour shift or
intensity variations were imposed, the model has overfitted specific image features because
it was trained using images from a single camera. The model could have been using images
captured from different cameras to relieve the overfitting issues, but it requires extra effort

to collect images.

Second, the effect of the zoom function was investigated. Figure 6.5b shows the aggre-
gated AtP plot. Like the previous test, the scale estimation model developed using PED in
Figure 6.2 is applied to the zoomed images. The median and its median absolute deviation
is 16.3% =+ 12.5%, which is comparable to the results presented in Table 6.1 and in the order
of the 20% error bounds. Like the results obtained for the different camera, the predic-
tion accuracy is reasonable, however, could not be deemed highly accurate. Nevertheless,
the error levels obtained would still permit the application of existing crack classification
procedures. For example, the International Atomic Energy Agency [23] guidebook, which
employs some of the more stringent criteria, categorizes the damage severity in concrete

structures using a series of grades: Grade I is used for members/structures with maximum
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Figure 6.5: AtP plots for new PED testing data sets collected (a) using a different camera
and (b) under different focal lengths. The scale estimation model in Figure 6.2 is applied
to these two data sets

crack widths that are less than or equal to 0.20 mm, Grade II is assigned to structures
with maximum crack widths that fall between 0.20 and 1.0 mm, and Grade III is assigned
to structures with maximum crack widths that are greater than 1.0 mm. Similar ranges
of pre-established crack width limits are established for transportation structures in North
America [38, 2]. Considering the bounds on these types of pre-established crack classifica-
tion categories, 15% average measurement error is not likely to have a critical impact on
damage classification, with the exception of crack width estimates at the boundaries of the

grade ranges.

One potential reason for the magnitudes of error obtained in these cases is that images
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with zoom suffer from lens (barrel) distortion, causing scenes away from the centre of image
to bend. This causes more variations and bias on the estimated scales. Finally, it should be
noted that, in the case of arm’s length inspections, the impact of focal length is arguably
of lesser significance than camera type because at short standoff distances, adequate ROI

and feature data can typically be captured with the application of the zoom function.

The error statistics of the three different structures, as well as the two tests of model
transferability on different data collection scenarios are summarized as a box and whisker
plot in Figure 6.6. The positive effect of aggregation (using median function in this figure)
is prevalent through all 5 data sets, seeing an average mean error reduction ranging from 4%
to 6%, and a consistent decrease in variance. Using aggregation results in more consistent
scale predictions, which is more robust against local variations and minimally self-similar
surface textures. Lastly, errors are comparably larger for ZOOM and DIFF data sets than
they are for the PED data set. This is likely due to the model training overfitting to
the unique visual characteristics of the specific camera/collection techniques used. The
difference in focal lengths (for ZOOM and DIFF) and camera configurations (for DIFF)
leads to subtle differences in the overall image quality such as tone and contrast that
negatively influence model performance. However, despite this, it is evident that the
correlation between texture and scale is decently preserved despite using differing collection

techniques or cameras.
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by-side for each data set. The error mean and median are represented as the X mark and
solid line through the box, respectively. The box represents the inter-quartile range, where
its upper and lower edge 75th and 25th percentile. The top and bottom of the vertical line
represent the largest and lowest data point, excluding outliers. Error statistics shown for
the aggregated scales are aggregated using the median function
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this study, a learning-based image scale estimation technique was developed. The tech-
nique leverages visually prevalent texture information contained in inspection images and
translates that to an image scale. The image scale was used to convert pixel-based measure-
ments of ROIs (e.g., spalling or cracks) into physical measurements (e.g., mm or cm), which

can be used to enable quantitative evaluations outlined in typical inspection manuals.

To enable a robust and easy-to-implement surface texture to scale translation method-

ology, several techniques were utilized.

e A CNN-based scale estimation model was trained to predict the scale given a texture
patch extracted from the image. To improve the model performance against local

variations and minor degrees of self-similarity, scales are predicted for several patches
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extracted from a single image and averaged using either a mean or median aggregation
function to derive a final image scale. Furthermore, the training data was randomly
augmented using random intensity changes, mean shifts, and horizontal and vertical
flips and the image pixel range normalized to a range between —1 and +1 to combat
small data set size and be more tolerant of introduced biases when using different

cameras or different data collection methods.

The MAPE loss function was selected after empirical analysis for its ability to equally
distribute the loss across the possible scale range. This is important, as other loss
functions, such as MAE or MSE would penalize error corresponding to larger scale
values significantly more than error corresponding to smaller scale values, leading to
a model with bias towards larger values. Furthermore, imbalances in scale distribu-
tion were eliminated through an automatic analysis of the histogram of scale counts
combined with an oversampling approach. The scale distribution was equalized by
extracting more patches from images corresponding to a scale bin with low number
of counts, while less patches were extracted from images corresponding to a scale bin

with high number of counts.

To efficiently generate the ground-truth texture data set for training, an automatic
data labelling and training data generation algorithm was implemented. The algo-
rithm involves attaching a marker of known dimension on the structure’s surface and
collecting images with the marker included in the scene. Then, the algorithm auto-
matically detects the marker, and calculates the scale for the image. Then, patches

of the structure texture are extracted from the images without including any portion

66



of the marker, which form the training data set. The only manual part of this process
is the data collection phase. Among various fiducial markers, ArUco markers and

their corresponding detection algorithm was used.

To demonstrate the capability of the proposed scale estimation model, images collected
from three different structures were used for training and testing the model. In addition,
the proposed model was explored for the influence of two different operating conditions,
which is using camera zoom and using a different camera. The technique was shown to
successfully estimate image scale solely by inferring from the surface texture, with less than

20% mean error for all testing cases.

7.2 Future Work

This study has examined the implementation and validation of patch-based image scale
estimation of surface textures using regression CNNs. Despite its advantages of being
able to directly infer image scales using nothing but textures contained in the collected
image, one main practical limitation is that images are assumed to be collected relatively
parallel to the surface. This is because when collecting images relatively parallel to the
surface, only one scale needs to be estimated. However, as is typical of data collection
during visual inspection, images can also be taken at slight angles to the target scene,
resulting in planar surfaces with projective distortion. For such images, no single scale value
exists, and is difficult to convert pixel measurements into physical measurements using the

technique proposed in this study. Furthermore, there remains room for improvement in
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model accuracy.

There are several ideas which are being considered to improve the technique. First,
there are improvements to the model training process and model design that have yet been
undertaken. In the current study, the model only observes a single patch to output a single
scale. However, the model can be augmented to accept multiple patches from a single image
to output a scale prediction which would allow the model to predict the image scale while
having significantly more information than the current model design, increasing robustness
against local variations in texture in the CNN. Furthermore, the training data set can be
artificially increased using the magnification augmentation. Note that, to implement the
zoom augmentation the image scale needs to change based on the zoom factor applied on
the patch. Second, inspection images often exhibit low to moderate degree of perspective
distortion, meaning that the images are taken usually within 25 degrees perpendicular to
the surface being captured. The same technique has yet to be applied to such images and
their error statistics have yet to be explored. If the error introduced by the perspective
distortion is low, and the model error statistics shown in this work can be improved through
suggestions in the first improvement suggestion, the model could be applied to images of
low perspective distortion with minimal changes to the technique. Lastly, a self-supervised
CNN technique can be explored, which is inspired by the work of DeTone et al. [12]. A
CNN model can learn to estimate the distance between two user selected points in an
image, whether it exhibits significant projective distortion. The model architecture would
take as input one patch, and the two difference vectors between the patch’s centroid to
points 1 and 2 to predict physical distance between the two points. The main motive

behind this idea is that projective distortion for approximately flat surfaces is linear and
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can be inferred by a CNN model using a patch of the distorted texture. Then, the positions
of two points relative to the extracted patch can be inputted into the model get a distance
prediction. The relative position of the points to the patch is given to relate the visual
information to the locations of the points, as otherwise, the model has no way to correlate

the visual information with the selected points.
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license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto

e NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
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OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU.

e WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

¢ You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

e INNO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN.

¢ Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby.

o The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party.

¢ This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

e Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

e These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
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all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns.

o In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

e WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms
and conditions.

e This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

e This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and

transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)
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Use by commercial "for-profit" organizations
y Y g

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.
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Appendix

This appendix shows the main page and readme of the project published in the GitHub
repository (https://github.com/cviss-lab /LISE). All source code and data have been shared
through this repository. The page will be maintained by Computer Vision for Smart

Structure Lab (cviss.net)

Pull requests Issues  Marketplace

© cote ssves Pulrequests 1 Actions Projects [ Wiki Securiy nsights 3 Settngs
P master - | P 3bnches ©0tags Gotofie || acdfie- | ([EECEI @
YT ne—
cote o Rea

. b MIT License,
D gitignore
D ucense Releases

D READMEmG

D requirements.ixt

Packages
READMEM 2

Languages

——
@  pyhon 1000
CVISS Research

Learning based Image Scale Estimation (LISE) for Quantitative Visual
Inspection

Introduction
“This repository contains the source code used by the authors for treining and validating the LISE network developed

for the paper. LISE is a CNN regression model trained to predict image scale using texture patches. Once estimated,
the image scales can be used to quantify features on images (example image shown below)

Stop 1.Image collecton fortarget region  Step 2.Region-of-nterest (ROI) detection Stop 3. Patch exraction of surface

The README file of the GitHub repository is shown. The README contains a

summary of the proposed technique, as well as instructions on how to use the source code.
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https://github.com/cviss-lab/LISE
cviss.net

CVISS Research

Learning based Image Scale Estimation (LISE) for
Quantitative Visual Inspection

Introduction

This repository contains the source code used by the authors for training and validating the LISE
network developed for the paper. LISE is a CNN regression model trained to predict image scale
using texture patches. Once estimated, the image scales can be used to quantify features on
images (example image shown below).

Step 1.Image collection for target region Step 2.Region-of-interest (ROI) detection Step 3. Patch extraction of surface
texture

Max width; 66.9 pixels
Length: 1,115.0 pixels
Area: 49,729.0 pixels?

Step 5. Quantitative ROI
evaluation

Max width: 3 mm
Length: 50 mm
Area:-100 mm?

pixel/mm

This repository strictly deals with the generation of the patch-scale image dataset, and the
training of the CNN model. Note that for the pretrained models, all models use greyscale patch
size of 850 X 850 pixels as input. The training framework is shown in the following image. The
data generation algorithm uses ArUco markers as a method to calculate image scale.
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Step 1. Marker-included image collection for model training Step 2. (For each image) Marker detection, scale calculation, and

patch extraction

mmp [image scale: 80 pixel/cm

Step 3. CNN model training using patches and their
corresponding image scales

1~

~l53)~223]

pixel/mm

Dependencies

LISE was built using the following dependencies (requirements.txt).

Python version: 3.7.7

Keras==2.4.3
opencv_contrib_python==4.5.1.48
pandas==1.0.3

tqdm==4.46.0

numpy==1.18.4

matplot1ib==3.1.3
Shapely==1.7.1
tensorflow-gpu==2.3.0
scikit_learn==0.24.1

NOTE for training with a cpu, use tensorflow instead of tensorflow-gpu
Sample usage example

Creating the training dataset from collected images

Step 1: unzip the sample dataset into the "datasets" folder

Download sample_PED.zip from the data repository and unzip to the dataset folder .
Step 2: Detect markers and generate the patch-scale dataset
In create_montage_markers_by_scene.py, add this command to the main section of the code

(at the bottom) like so:

if _name__ == '_main__':
create_n_by_n_markers(n_crops=1, m_images=50, raw_folder='../datasets/PED/",
out_folder="../datasets/PED/2_detected_imgs', marker_len=9.4)
n_crops: number of patches to include in one image (should be NA2)
m_images: number of images to extract
raw_folder: path to the collected dataset

out_folder: output folder of detected results
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marker_len: in units of cm, the physical dimensions of the marker.

NOTE: in the case the algorithm cannot find the marker, the problem will visualize the image and
ask the user to manually select the four points. In this case, simply click the 4 corners of the
marker and click "c" to continue. To reset the corner selections, click "r".

Step 3: Split the dataset into training and testing

There should be crop_dataset.csv and img_dataset.csv in datasets/PED/2_detected_imgs.

crop_dataset.csv: each row contains the a patch image file path and its scale (used to train the
model)

img_dataset.csv: each row contains a image file path and its scale (used to rapidly generate the
crop dataset without rerunning the detection algorithm. See function
create_n_by_n_markers_from_df in create_montage_markers_by_scene.py)

Change the pth variable in split_data.py to "../datasets/PED/2_detected_imgs" and run it.
Note: the validation_split ratio can also be changed to control the ratio of images between
training and testing datasets.

python split_data.py

This will split the img_dataset.csv and crop_dataset.csv into training and testing portions.

test_1_data_crop_dataset.csv
train_1_data_crop_dataset.csv

The two csv files are used to train the scale estimation model.

Training a image scale estimation model

Using the crop dataset generated in the previous section, we can train a patch-based scale
estimator:

In "model_training.py",
three variables can be adjusted to train/validate models:

e train (list of tuples): each tuple contains, in order the training configurations specific to the
model being trained.

e train_config (dict): contains the training configurations applicable to all models

o test (list of tuples): each tuple contains configurations specific to a model test

For this example, ensure that the train and train_config variable looks as follows:

train = [
# Sample
('../output/PED_sample', # output folder
"../datasets/PED/2_detected_imgs/train_l_data_crop_dataset.csv", # Path
to the training crop csv

'mape', # Loss function to use
0.001, # Learning rate
'reg', # does nothing

"../datasets/PED/2_detected_imgs/test_1_data_crop_dataset.csv"), # Path
to the test crop csv

]
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train_config = {
"epochs": 250, # number of epoches

"output_pth": "',

"pth_to_labels": ""

'img_norm': '-1_to_+1', # image normalization
'norm_labels': False, # Normalize labels?
'greyscale': True, # Color or greyscale images?

"1f_setting": 'mape',

'learning_rate': 0.001,

"image_augmentations": { # image augmentations
"channel_shift_range": 50.0,
"brightness_range": [0.8, 1.2],
"horizontal_flip": True,

"vertical_flip": True,

All model training results will be output in the output folder, which contains:

e best_model.h5: best performing model

e model.h5: most recent model

e hist.csv: Loss history

e training_config.json: training configuration used

e results: folder containing image results of patches

e train.csv and test.csv: the csvs used for training and validation - test.csv also contains
model.h5 predictions

e |oss.jpg: loss curves.
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