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Abstract 

Moore's Law will soon be inadequate to keep up with the needs of technological 

developments as the currently used materials have reached their natural performance limits. 

Hence, the development of a new technology to replace traditional semiconductor electronics 

is imminent. Spintronics has been emerged as a promising alternative to control charge 

properties as well as electron spin to improve the device performance. Metal oxide and 

chalcogenide semiconductor nanocrystals (NCs) have generated much research due to their 

unique properties and relatively low cost. In contrast to noble metal nanoparticles (NPs), the 

semiconductor NCs with tunable free charge carrier concentration are regarded as promising 

materials in technological applications including multifunctional quantum devices and next-

generation electronic devices. In this thesis, I investigated the magnetoplasmon resonances in 

antimony-doped SnO2 NCs and demonstrated the defect-related excitonic band splitting in 

ZnO and SnO2 NCs. 

In the first major chapter, I featured the influence of the synthesis methodology and 

post-synthesis treatment on the plasmonic properties of Sb-doped SnO2 NCs. I successfully 

synthesized the nanocrystal (NC) samples having various doping concentrations by two 

different approaches and found that Sb-doped SnO2 NCs prepared by solvothermal method 

display strong localized surface plasmon resonance (LSPR) in the near-infrared (NIR) region, 

which is absent in the coprecipitation-synthesized NCs. After the thermal annealing process, 

the LSPR absorption appears in the NCs prepared by the coprecipitation method, and increases 

in intensity in solvothermally-synthesized NCs. These NCs were investigated by magnetic 

circular dichroism (MCD) spectroscopy. The raise in excitonic MCD intensity coincides with 
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that in plasmon absorption upon extending annealing durations. Furthermore, the plasmon 

intensity is correlated to the oxidation of Sb3+ to Sb5+ ions by using X-ray photoelectron 

spectroscopy. The results showcase that the synthesis approach and post-synthesis processing 

can significantly impact the plasmonic properties of aliovalently-doped semiconductor NCs 

through the dopant oxidation state. 

In the other major chapter, I first demonstrated the carrier polarization related to oxygen 

deficiencies in ZnO and SnO2 NCs. The ZnO NC samples showing various defect-related 

photoluminescence (PL) emission were synthesized by the non-injection method under 

oxidizing and reducing conditions. The as-prepared ZnO NCs present distinct variable-field 

and variable-temperature MCD spectra, indicating their different defect concentrations that 

lead to varying degrees of excitonic band splitting. Upon thermal annealing in an oxygen-rich 

atmosphere, the Curie-type decay associated with unpaired localized electrons vanished as 

shown by temperature-dependent MCD measurements, verifying the loss of paramagnetism 

due to the filling of oxygen vacancies. Similar to ZnO NCs, SnO2 NCs also exhibit such 

magneto-optical properties, and their defect-related carrier polarization and Zeeman splitting 

could also be controlled by synthesis conditions and post-synthesis treatment. Taken together 

both NC samples, the results corroborate the defect-induced carrier polarization and NC band 

splitting in ZnO and SnO2 NCs without introducing additional magnetic dopants.    

The result of this thesis provides an ability to manipulate charge carrier polarization in 

pure and doped metal oxide semiconductor NCs and opens up a window for the application of 

spintronics. 
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Chapter 1 

Introduction 

1.1 Plasmonic Properties in Semiconductor Nanocrystals 
 

The glass of the Lycurgus cup is one of the earliest remaining examples of a dichromic 

material that shows different colours in transmission and reflection. The exploration of this 

unique phenomenon has never stopped, although at that time the techniques and knowledge to 

study this nanoscopic material were scarce and primitive. With the progress of nanoscience 

and nanotechnology, people have gradually constructed a well-established system to explain 

the plasmonic optical-effects of noble metals that mostly occur in the range of visible light. 

Meanwhile, though, the research field of plasmonics has been also extended to some certain 

semiconductor nanocrystals (NCs) with such optical properties in the infrared region. At the 

heart to evaluating plasmonic properties is to understand the localized surface plasmon 

resonance, abbreviated as LSPR. 

 

1.1.1 Localized Surface Plasmon Resonance  

 
The LSPR is defined as coherent free electron oscillations at the interface between two 

media with positive and negative dielectric constants,1 and these oscillations can robustly 

enhance optical fields on surfaces.2 The plasma is a result of the collective oscillation of the 

electron “gas” in a metal or a semiconductor excited with an external electric field.3 Surface 

plasmons are electron “gas” oscillations at the interface, which can be excited by external 
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incident light.4 The photons can couple with surface plasmons only if the frequencies of 

incident electromagnetic waves correspond to those of free electrons at the interface.3 

Moreover, when surface plasmons are confined in NPs with a size comparable to or smaller 

than the wavelength of the incident light, these free electrons can contribute to collective 

oscillations, commonly termed LSPR modes (Figure 1.1).5  

 

Figure 1.1 Schematic illustration of the LSPRs of a spherical nanoparticles excited by 

incident light. The collective oscillations are induced by the oscillating electromagnetic 

field of incident light.3  

 

LSPRs recently have been drawing attention of many physicists, chemists, and 

engineers, and numerous studies have been conducted to explore these optical properties. The 

class of materials with LSPR properties, known as plasmonic NCs, have been applied in 

chemical probes,6 biomolecular sensors,6 as well as energy storage devices.7 As previous 

studies demonstrated, natural LSPR frequencies of noble metal nanoparticles (NPs) like gold 
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(Au) and silver (Ag) lie in the range of the visible spectrum owing to high free carrier 

concentration.8 Most interestingly, the LSPR is not restricted in metal NPs, however, it also 

exists in some n-type metal oxide NCs (Figure 2, top panel), p-type copper chalcogenide NCs 

(Figure 2, bottom panel), as well as given metal nitride/phosphide and aliovalently-doped Si 

NCs (Figure 2, bottom panel). The plasmonic semiconductor NCs usually have a large free 

carrier concentration to exhibit LSPR properties from near- to mid-infrared spectral range.9 

Furthermore, in contrast to that of noble metals, the free charge carrier concentration of 

semiconductor NCs is tunable,9 which causes LSPR spectra ranging from visible to far-infrared 

(FIR).10  

 

 

 

Figure 1.2 LSPR extinction spectra of metal oxide (top panel), copper chalcogenide 

(bottom panel), and other plasmonic nanocrystal materials such as InN, boron- and 

phosphorus-doped Si, and CuP (bottom panel).1 



 

  4 

1.1.2 Physical Models in Plasmonic Semiconductor NCs 

 
The LSPR orienting free electrons in semiconductor NCs can be quantitatively 

evaluated through solving Maxwell’s equations on the basis of light-matter interaction theory. 

For simplicity, we will concentrate on the case of semiconductor NCs with spherical shapes 

and isotropic dielectric constant. Therefore, Mie theory is suitable for solving Maxwell’s 

equations. For other geometric NCs, Maxwell's equations usually need to be settled by 

numerical computational methods. 

Mie theory, a theory characterizing absorption and scattering of plane electromagnetic 

waves, is the simplest way to describe and understand LSPR properties.11 Equation (1.1) 

depicts the calculation of the extinction cross section (𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒) of a metal nanosphere:  

 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 =  24𝜋𝜋
2𝑅𝑅3𝜀𝜀𝑚𝑚3/2

𝜆𝜆
� 𝜀𝜀𝑖𝑖

(𝜀𝜀𝑟𝑟 +2𝜀𝜀𝑚𝑚 )2+ 𝜀𝜀𝑖𝑖2
�       (1.1) 

 

where 𝜆𝜆 is the excitation wavelength, R is the radius of the metal nanosphere, 𝜀𝜀𝑚𝑚 is the relative 

dielectric constant of the surrounding medium, and 𝜀𝜀𝑟𝑟 and 𝜀𝜀𝑖𝑖 are the real part and imaginary 

part of dielectric functions of the metallic NP, respectively.12  

According to this equation, the dielectric function of NPs including a real part 𝜀𝜀𝑟𝑟 and 

an imaginary part 𝜀𝜀𝑖𝑖  will determine the magnitude of 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 . When the denominator of the 

bracketed part approaches zero, i.e., 𝜀𝜀𝑟𝑟 would usually be negative and equal to -2𝜀𝜀𝑚𝑚 and 𝜀𝜀𝑖𝑖 is 

approximately close to zero, 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 will become infinitely large, leading to exceedingly strong 

optical absorption and scattering under this criterion.5 Although it is impractical to find a kind 
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of dielectric with 𝜀𝜀𝑟𝑟 close to -2𝜀𝜀𝑚𝑚, this theory still offers a guideline to enhance LSPRs by 

seeking a material with both a negative 𝜀𝜀𝑟𝑟 and a nil 𝜀𝜀𝑖𝑖. 

A common way to tune LSPR properties is by altering the free carrier concentration, 

which is based on the Drude-Lorentz theory.13 The Drude-Lorentz theory of the free electron 

“gas” in metals applies to predicting and understanding the LSPR properties of both metals14 

and semiconductors.15 The dielectric function of the Drude-Lorentz theory is a complex 

function.16 

 

𝜀𝜀𝑝𝑝(𝜔𝜔) =  𝜀𝜀𝑟𝑟(𝜔𝜔) + 𝑖𝑖𝜀𝜀𝑖𝑖(𝜔𝜔) =  �𝜀𝜀𝑏𝑏 −  𝜔𝜔𝑝𝑝
2

(𝜔𝜔2+ 𝛾𝛾2)
� + 𝑖𝑖 𝜔𝜔𝑝𝑝

2𝛾𝛾
𝜔𝜔(𝜔𝜔2+ 𝛾𝛾2)

      (1.2) 

 

Here, 𝜀𝜀𝑝𝑝 is the dielectric constant of the plasmonic media, 𝜀𝜀𝑏𝑏 is the background dielectric 

constant from the bound electrons in the crystal, 𝛾𝛾 is the damping rate, and 𝜔𝜔𝑝𝑝 is the bulk 

plasma frequency that is depicted as:  

 

𝜔𝜔𝑝𝑝 =  �𝑁𝑁𝑒𝑒2

𝑚𝑚∗𝜀𝜀0
       (1.3) 

 

where 𝑚𝑚∗ is the effective mass of a free electron, e is the electron charge, 𝜀𝜀0 is the vacuum 

dielectric constant, and N is the free carrier concentration.16 

For the LSPR frequency (𝜔𝜔𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) of NPs, the Equation (1.3) can be modified as:17  

 

𝜔𝜔𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  � 𝜔𝜔𝑝𝑝2

1+2𝜀𝜀𝑚𝑚
− 𝛾𝛾2       (1.4) 
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The equation above clearly explains the frequency position of the bulk plasmon 

material. 𝜔𝜔𝑝𝑝 is proportional to the square root of free carrier density, and 𝜔𝜔𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 depends on 

the LSPR peak-broadening factor 𝛾𝛾 .18 Moreover, the absorption coefficient (𝛼𝛼𝑒𝑒𝑒𝑒 ) of free 

electrons is linearly dependent on N:19 

 

𝛼𝛼𝑒𝑒𝑒𝑒 =  𝑁𝑁𝑒𝑒2

𝑚𝑚∗𝜀𝜀0𝑐𝑐𝑐𝑐𝜔𝜔2       (1.5) 

 

where 𝜏𝜏  is the mean free time between two electron scattering events,20 also known as 

relaxation (damping) time,19 and 𝜔𝜔 and c are the frequency and speed of light, respectively.  

Theoretically, the tunability of LSPR absorption and other properties can be simply 

achieved by modulating the dopant concentration as described in Equations (1.3), (1.4), and 

(1.5). One group collected and plotted data (Figure 1.3) for LSPR frequency of NCs for 

different free carrier densities.21 The figure illustrates that noble metals (Au and Ag) have 

significantly larger LSPR frequencies than those of degenerately doped semiconductors. 

Semiconductors have a wide range of LSPR frequencies relying on tunable doping density 

(shown in Figure 1.4).22 The fixed free carrier concentration and the high cost of noble metals 

generally limit their applications. 
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Figure 1.3 Illustration of the LSPR frequency dependence on free carrier concentration 

and doping constraints in quantum dots (QDs) of metals, doped, and degenerately doped 

semiconductors.21 

 

While increasing the free carrier density shifts LSPRs toward higher frequencies, it 

brings about considerable optical loss, attributed to two reasons: (i) higher doping levels will 

increase the imaginary part of the dielectric function in Equation (1.1), leading to 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 

declining and a further decrease in LSPRs absorption,23 and (ii) an increase in a damping 

constant,24 which is the rate of energy loss from a free carrier excitation.1 Several scattering 

mechanisms impacting energy loss containing electron-electron/hole-hole scattering 
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( 𝛾𝛾𝑒𝑒−𝑒𝑒/ℎ−ℎ ), electron/hole-impurity scattering ( 𝛾𝛾𝑒𝑒/ℎ−𝑖𝑖𝑖𝑖 ), electron/hole-phonon scattering 

(𝛾𝛾𝑒𝑒/ℎ−𝑝𝑝ℎ), inter or intraband transition scattering (𝛾𝛾𝑖𝑖𝑖𝑖), as well as surface scattering (𝛾𝛾𝑠𝑠) have 

been studied in recent years.1 Matthiessen’s rule provides a succinct equation to describe the 

interplay among these factors:23,25 

 

𝛾𝛾 =  ∑𝛾𝛾𝑖𝑖 =  𝛾𝛾𝑒𝑒−𝑒𝑒/ℎ−ℎ +  𝛾𝛾𝑒𝑒/ℎ−𝑝𝑝ℎ +  𝛾𝛾𝑖𝑖𝑖𝑖 +  𝛾𝛾𝑠𝑠 +   𝛾𝛾𝑒𝑒/ℎ−𝑖𝑖𝑖𝑖 + ⋯         (1.6) 

 

In semiconductor NCs, impurities and vacancies play a salient role in scattering, which 

contributes to defect scattering (𝛾𝛾𝑒𝑒/ℎ−𝑖𝑖𝑖𝑖).26 As a result of small sizes of NCs, surface scattering 

can also impact damping significantly.23 On the other hand, electron-electron or hole-hole 

scattering cannot dominate damping due to minor interactions between them.22 Generally, the 

overlap between free carrier excitation and inter- or intraband excitation in semiconductors is 

small, imposing a slight influence on inter- or intraband transition scattering ( 𝛾𝛾𝑖𝑖𝑖𝑖 ).27 

Electron/hole-phonon scattering can be considered as a significant contributor to damping only 

at high temperatures.24 These scattering factors can shape an LSPR spectrum, i.e., the higher 

the damping, the broader the resonance.28 Overall, an improved understanding of the free 

carrier concentration and damping factors can guide the development of semiconductor NCs 

with targeted LSPRs properties. 
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Figure 1.4 Normalized optical extinction spectra of LSPRs in solutions and films of metals 

NPs such as Ag and Au, and metal oxides NCs such as WO2.83, CsxWO3, ITO, ICO, and 

AZO semiconductor NCs.22 

 

1.1.3 Contributing Factors and Dynamic LSPR Modulation in 

Semiconductor NCs 

 
There are several approaches to tune the free carrier concentration and/or LSPR 

damping, and then achieve plasmonic frequency modulation in semiconductor NCs. The 

contributing factors based on the In2O3 nanocrystal (NC) system can be summarized as NC 

size,29 crystal structure,30 surface depletion,31 ensemble broadening,32 strain effect,33 and 

dopant distribution.34 Crockett et al. discovered that the LSPR energy of ITO NCs having 

nearly identical doping concentration and distribution increases with increasing the NC size, 
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suggesting higher carrier concentration for larger ITO samples.29 Wang et al. synthesized two 

types of ITO NCs with different crystal structures, body-center cubic (bcc) structure and 

metastable corundum structure. Interestingly, they observed strong LSPR behaviour in bcc-

ITO NCs but lacking LSPR in corundum phase ITO NCs.30 It is proposed that for the corundum 

ITO samples, the band gap energy and separation between the donor state and the conduction 

band bottom are comparatively large, resulting in high dopant activation energy, and therefore 

lacking appreciable free electrons in the NCs. Zandi et al. found that the depletion layer of ITO 

NCs could weaken the near-field effect and the LSPR sensitivity to the surrounding 

environment.31 Johns et al. compared ensemble and single ITO and AZO NC, and 

demonstrated that the ensemble ones exhibit higher LSPR energy and broader LSPR band 

width associated with the size, shape, and dopant heterogeneity.32 Runnerstrom et al. showed 

that compared with ITO NCs, Ce-doped In2O3 NCs show remarkably narrower LSPR band 

width but the similar LSPR energy.33 They explained that Ce4+ ions have relatively similar 

sizes with In3+, which could minimize the lattice stain to enhance electron mobility, thus reduce 

LSPR band width. Lounis et al. synthesized two series of  ITO NCs using different precursors 

and ligands, and they noticed that these two series of samples have diverse dopant activation 

energy and different LSPR line shapes, imputing the hybridization between the interstitial 

oxygen atoms and Sn orbitals near the surface vicinity.34 

 Dynamic LSPR modulation is feasible through change the charge carrier concentration 

owing to the nature of semiconductor NCs as host materials. Generally, three different 

approaches have been demonstrated: (1) chemical redox reaction; (2) photochemical charging; 

and (3) electrochemical charging/discharging. 
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 A chemical redox reaction is one of the commonest ways to tune the LSPR due to its 

high sensitivity of addition or subtraction of a small amount of free charge carriers.35,36 Non-

stoichiometric Cu2-xSe NCs exhibit reversibly tunable LSPR responses from ca. 0.5 eV to ca. 

1.0 eV via redox tuning of the Cu stoichiometry.35 As Figure 1.5 shows, the LSPR absorption 

of Cu2Se NCs can be controlled by around 600 nm with the addition of oxidizing agents Ce(IV) 

or exposure to air (O2). The reason can be attributed that this oxidation process increases copper 

deficiency, leading to the increase of free charge carriers which are holes in this case and 

enhancing the LSPR. On the contrary, the LSPR could be reverted by adding reducing agents 

such as Cu(I) complex which would decrease copper deficiency followed by lessening the 

charge concentration and red shifting the LSPR peak. Because of the simple manipulation of 

redox reaction and extremely robust LSPR response, people apply this robust approach to track 

electron transfer in complex media, which could detect the optical changes as low as 1 e- per 

NC.  
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Figure 1.5 Left figure: extinction spectrum of Cu2-xSe NCs with varying stoichiometry. 

Right figure: the schematic of reversible oxidation/reduction of Cu2-xSe NCs. Oxidizing 

step is occurred by addition of Ce (IV) or exposure to atmosphere. Reducing step is 

occurred by adding Cu(I) complex.35 

 

 

Photochemical charging has been considered as a universal approach to dynamically 

control electron density, thus the LSPR absorption in semiconductor NCs.37,38 Photochemical  

charging has been extensively studied on ZnO NCs. It has been found that upon UV 

illumination, ZnO NCs display a sharp IR peak concomitant with a strong bleach of the 

interband transition and quenching of photoluminescence (Figure 1.6).39 This IR absorption 

eventually is assigned as LSPR behaviour instead of the intra-conduction-band single-electron 

transitions by Faucheaux et al. in the light of three observations.40 First, they found that the IR 

peak shifted to higher energy under subsequent charging. Second, the LSPR-based calculation 

for carrier density of charged NCs was consistent with the reported values collected by 

chemical titration. Third, compared with a NC dispersion, the IR band red-shifted with the 

increase of electromagnetic coupling in a film of NCs. 
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Figure 1.6 Photoexcitation spectra of ZnO NCs: (a) as-synthesized ZnO; (b) charged 

ZnO; and (c) differential plot.1 Infrared absorbance peak appears in charged ZnO (red 

curve in b) due to free electron excitation, but disappears in as-synthesized ZnO (red 

curve in a). Visible absorption blue shifts to higher energy due to Burstein-Moss effect 

(blue curve in a, b, and c), and PL emission is quenched owing to the enhancement of 

Auger recombination (yellow curve in a and b). 

 

 

 Electrochemical charging/discharging is also used to tune the LSPR behaviour as an 

external voltage can accumulate or deplete charge carriers near their interfaces and surfaces, 

thus modulate the free charge carrier concentration in semiconductor NCs. Llorente et al. 

demonstrated that the LSPR in p-type Cu2Se NCs can be well-controlled by potentiostatic 

potential switching, indicating the free charge carrier (hole) concentration can be modulated 

electrochemically (Figure 1.7).41 Similarly, people also demonstrated that this electrochemical 

way is suitable for n-type semiconductor NCs. Garcia et al. achieved the reversible controlling 
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of LSPR in ITO NCs thin film where the carrier (electron) concentration could be altered by a 

factor of three.10 

 

 

 

Figure 1.7 Scheme of an opto-electrochemical cell and the mechanism of tuning plasmon 

in Cu2-xSe NCs-in-Nafion films and the corresponding optical absorption spectra.41 

 

1.2 Plasmonic Semiconductor NCs 
 

Crystalline solid-state materials possess particular energy band structures (shown in 

Figure 1.8). Various band structures determine different electronic characteristics and further 

make an effect on the optical properties of solid-state materials. The band gap is defined as the 

energy difference between the conduction band (CB), which is normally unoccupied, and the 
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valence band (VB) with occupied energy states. Figure 1.8 depicts that there is a large band 

gap within an insulator indicating extremely high energy needed to promote electrons from VB 

to CB. A metal, however, has a large overlap between VB and CB, resulting in no energy band 

gaps. Thus, electrons in metals can move freely across the bands.42 In the case of intrinsic 

semiconductor materials, the band gap energy is smaller than that of insulators. And the free 

electrons donated by shallow donor states can easily jump into CB with photon excitation, after 

which the semiconductors will have similar behaviour to metals. This small band gap structure 

of semiconductors renders scientists’ tremendous interests. 

 

 

Figure 1.8 Illustration of band structures of insulators with a large band gap (left), 

semiconductors with a relatively small band gap (middle), and metals without a band gap 

(right). 
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1.2.1 Doping Mechanism of Semiconductor NCs 

 
Semiconductors can be classified into two types according to their doping source: 

intrinsic and extrinsic semiconductors. An intrinsic semiconductor is an undoped or pure 

semiconductor with charge carriers generated without intentional incorporation of impurities.43 

In intrinsic semiconductors, charge carriers arise are mainly from electron excitation or 

crystallographic defects.43 On the contrary, extrinsic semiconductors are formed by 

incorporating impurities (dopant atoms) into pure semiconductors. These impurities can be 

either donors or acceptors. An extrinsic semiconductor containing electron donor levels is 

named an n-type semiconductor because the majority of charge carriers are negative 

(electrons). Analogously, a p-type semiconductor is defined when a pure semiconductor 

contains positive holes.44 The band gap structures of p-type and n-type semiconductors are 

demonstrated in Figure 1.9.  
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Figure 1.9 Schematic of p-type semiconductors with acceptor energy level close to the 

valence band (left figure) and n-type semiconductors with donor energy level close to the 

conduction band (right figure). 

 

 

There are three major mechanisms of chemical doping of semiconductors, as shown in 

Figure 1.10: vacancy doping, aliovalent substitutional or interstitial doping, and compensation 

doping.45–47 In a vacancy doping system, vacancies can produce either free positive holes or 

free negative electrons as free charge carriers by controlling the stoichiometry without doping 

extrinsic ions. An example is Cu vacancies in Cu2-xS.48 Aliovalent doping refers to the host 

lattice incorporating foreign ions having different valence from the host ions at interstitial or 

substitutional lattice sites.49 These impurities can donate a free electron or free hole to the CB 

or VB, respectively. Synthetically, aliovalent interstitial or substitutional doping can be 

realized by balancing reactivity between dopants and host precursors during NC growth.50 

Compensation doping, as the name suggests, implies the interplay between extrinsic dopants 

and intrinsic defects. A representative example is tin-doped indium oxide (Sn:In2O3) studied 

by Agoston et al. in 2009.47 They elucidated that the source of free charge carriers comes from 

substitutional Sn4+ atoms (extrinsic), oxygen vacancies (intrinsic), and 2Sn⋅In – Oi′′ defect 

complex (compensation). 
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Figure 1.10 Schemes of common doping types with host metal cations (orange spheres) 

and oxygen anions (red spheres); (b) vacancy doping; (c) aliovalent substitutional doping 

with external atoms (green spheres); (d) aliovalent interstitial doping with external atoms 

(purple spheres).22 

 

1.2.2 Metal Oxide Semiconductor NCs 

 
Plasmonic metal oxide semiconductors are of major interest in this work. Most of these 

metal oxides are intrinsic n-type semiconductors, such as In2O3,51 CdO,52 and ZnO.53 In such 

metal oxides, the intrinsic doping occurs since the oxygen vacancy concentration can be 

modulated through trapping a nonequilibrium concentration or tuning oxygen partial pressure, 

breaking the original equilibrium oxygen vacancy concentration.1 Additionally, aliovalent 

doping has been a subject of intense study in recent years, especially for the following 

semiconductor materials: Sn:In2O3,20 In:CdO,24 and Al:ZnO.54 In these systems, the host lattice 

ions are substituted by dopant ions having lower or higher valence to achieve n-type doping of 
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the material. These doping sites can contribute to free charge carrier density and make 

significant effects on the optical properties of plasmonic semiconductor NCs.  

In the intrinsic system, the origin of free charge carriers in the CB is mostly from the 

intrinsic oxygen vacancies. Several researchers have successfully tuned the oxygen vacancy 

concentration by controlling the effective oxygen partial pressure in the process of NC 

synthesis.55–57 As each oxygen vacancy is compensated by two free electrons to keep charge 

neutrality, by this means, the carrier concertation generated by defects can reach the order of 

1019 cm-3, executing the LSPR in undoped metal oxide semiconductor NCs. On the other hand, 

in the extrinsic regime, free carriers can be generated by cation vacancies or interstitial oxygen 

forming different defect complexes in host lattices in which the Fermi level is raised or lowered 

by aliovalent dopants substituting lattice atoms. Several studies have been conducted to 

investigate activated dopant ions and the impact of defect complex concentration on LSPR 

properties.19,27,47 In this thesis, I will focus on both intrinsic doping (SnO2, ZnO NCs) and 

aliovalent substitutional doping (Sb:SnO2) regimes. 

 

1.2.3 Metal Chalcogenide Semiconductor NCs 

 
Plasmonic metal chalcogenide compounds such as Cu2-xE 58,59  and HgE 60,61 (E = S, 

Se, Te) are p-type semiconductor NCs having the LSPR behaviour. Extraordinarily, the 

research study in plasmonic copper chalcogenide NCs has been a focus over the past few 

decade. The LSPR in Cu2-xE (E = S, Se, Te) NCs is traceable to the collective oscillation of 

free holes in the VB and its frequency can be controlled by intrinsic doping through crafting 
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the stoichiometry of NCs. Generally, it is measured that the concentration of free charge 

carriers (holes) of as-synthesized Cu2-xE (E = S, Se, Te) NCs is on the order of 1021 cm-3 

bringing about the LSPR in the NIR region.62 Cu2S is intrinsically unstable and easy to degrade 

into copper-deficient Cu2-xS phases under an oxygen atmosphere. Zhao et al. successfully 

synthesized various non-stoichiometric djurleite (Cu1.97S), digenite (Cu1.8S) and covellite 

(CuS) NCs through tuning the reduction potential by changing the pH or using different 

precursor treatments.63 They were the first to attribute the origin of infrared absorption in Cu2-

xS NCs to free carrier collective oscillation or LSPR, and they concluded that the plasmonic 

absorption shifts to higher energy with increasing cation vacancy concentration (Figure 1.11), 

implying that the LSPR is dependent on free carrier concentration, in this case, the copper 

vacancy. Additionally, they found that the phase of Cu1.97S NCs has the most stable 

characteristic under air conditions. Dorfs et al. achieved tuning plasmonic absorption in non-

stoichiometric Cu2-xSe NCs from ca. 0.5 eV to ca. 1.0 eV by adding oxidant Ce(IV) complex 

or reductant Cu(I) complex (Figure 1.5).35 Kriegel et al. extended the understanding of LSPR 

in vacancy-doped copper chalcogenide NCs to the entire family of Cu2-xE (E = S, Se, Te) 

NCs.64 They conducted a straightforward strategy to synthesize Cu2-xTe NCs with well-defined 

morphology, and all of these prepared Cu2-xTe NCs exhibit pronounced LSPR absorption in 

the NIR region (Figure 1.12). Furthermore, they found that the standard Drude model is not 

appropriate for various-shaped Cu2-xTe NCs since the damping could not be neglected for 

nanorods or tetrapods. 
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Figure 1.11 Plasmon absorption spectra of Cu2-xS NCs. Blue trace: covellite CuS (x = 1), 

red trace: digenite Cu1.8S (x = 0.2), and black trace: djurleite Cu1.97S (x = 0.03).63 
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Figure 1.12 Absorption spectra of Cu2-xTe NCs of different shapes: Cu2-xTe spheres (blue 

curve, λmax = 1074 nm), nanorods (purple curve, λmax = 1069 nm), and tetrapods (green 

curve, λmax = 1103 nm).64 

 

1.3 Interactions between Plasmon and Quasiparticles  
 

In the research study of plasmonic materials, one of the most fundamental problems is 

the electronic interaction in the quantum regime. Plasmons can interact with other 

quasiparticles due to the energetic proximity, which provides opportunities for novel 

discoveries and advanced technologies. Therefore, it is necessary to thoroughly understand the 

mechanism of interactions between plasmon and other quasiparticles such as phonons and 

excitons.  

 

1.3.1 Exciton-Phonon Coupling 

 
An exciton is a quasiparticle referring to a bound state of an electron attracted to a hole 

through the electrostatic Coulomb force. Phonons which are intrinsic property of any solid 

with any form participate in most excitonic reactions. In the formation of an exciton, phonons 

play an important role to conserve energy and momentum. Phonons can be classified into two 

different types, optical phonons having higher energy and acoustic phonons having lower 

energy. Additionally, the frequency of acoustic phonons increases with phonon wavevectors 

raising, while that of optical phonons is independent of phonon wavevectors.65 The exciton-

phonon coupling has received wide attention during the past few decades. Perebeinos et al. 



 

 23 

found a strong effect of exciton-phonon coupling in carbon nanotubes.66 They theoretically 

investigated the character of electron-phonon coupling and found strong phonon effects in 

excitonic spectra. Krauss et al. used resonant Raman spectroscopy to examine the strength of 

the exciton-phonon coupling in PbS NCs and figured out that the strength of the coupling is 

four orders of magnitude larger than the value calculated from the intrinsic electronic and 

vibrational wavefunction, while is similar to the value measured in Cd(S, Se) NCs.67 Moreover, 

their results also support that the large exciton-phonon coupling is in accord with charge 

carriers localized at the surface of the NCs. 

 

 

 

 

Figure 1.13 Anti-Stokes Raman spectra of n-type GaAs semiconductors. As shown in the 

figure, the frequency shift scale is not linear. 68 
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Figure 1.14 Calculated Raman shift of the coupled phonon-plasmon L+ (blue curve) and 

L- (green curve) modes versus the square root of the free electron concentrations in InAs. 

The longitudinal optical (LO) and transverse optical (TO) scattering energies are 

displayed by blue and green dashes lines, respectively. The plasmon energy is displayed 

by the dashed red line. The two vertical dashed black lines from left to right represent 

the carrier concentrations equivalent to 0.1 and 1 electrons per NC. 69 

 

1.3.2 Plasmon-Phonon Coupling 

 
The study of the plasmon-phonon coupling could be traced back to the 1960s in which 

research in III-V semiconductors attracted robust interests.68,70 At that moment, Mooradian et 

al. first observed the interaction between conduction-electron plasmons and the longitudinal 

optical (LO) phonon in GaAs semiconductors via the Raman spectrum.68 They detected that as 

the plasmon frequency approaching the phonon frequency, the LO phonon line in the Raman 
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spectrum broadens and shifts to higher energy. Meanwhile, there is a second small band with 

a lower frequency appearing and reaching the transverse optical (TO) phonon frequency at 

higher carrier concentration (Figure 1.13). These experimental results verified the theoretical 

predictions of plasmon-phonon behavior. 

With further investigation of polarization properties from the plasmon-phonon modes 

in n-type GaAs semiconductors, they proposed that the TO mode at a certain frequency is not 

affected by the free carriers.70 However, these free carriers (plasmons) lead to the formation of 

upper longitudinal branch L+ and lower branch L-
 in the LO mode.70 In recent years, Faust et 

al. presented the Raman scattering study in Cu-doped InAs NCs and obtained similar results.69 

As shown in Figure 1.14, the frequency of L+ and L- branches are related to the free charge 

carrier concentration at high doping levels. At high free carrier concentration, the L+ mode 

converges closely to the plasmon mode which has a linear relationship with the square root of 

the free electron concentration, while the L- mode asymptotically tends to TO mode. These 

results confirm that the plasmons could couple with LO phonons in semiconductors, which 

would be promising for the future development of electronic devices. 

 

1.3.3 Plasmon-Exciton Coupling 

 
According to the previous study, the coupling between a plasmon and an exciton exists 

in plasmonic semiconductor NCs.71 The plasmon-exciton coupling could be able to not only 

contribute to the excitonic absorption and emission but also enhance the optical Stark 

effect.20,72 For example, Okamoto et al. noticed the strong enhancement in PL emission spectra 



 

 26 

induced by the exciton-surface-plasmon coupling when InGaN/GaN quantum well materials 

coat with Ag thin films (Figure 1.15).73,74 Additionally, the plasmon-exciton coupling was also 

observed in a metal-semiconductor heterostructure consisting of Au NPs with localized 

plasmons and CdTe nanowires (NWs) with mobile excitons, and it confirmed that the NW 

emission becomes stronger and blue-shifted by changing the distance between these two 

nanocomposites.75  Similar resonant coupling was detected in Au-CdSe heterostructure as well, 

where the spin manipulation is tailored as well as the optical Stark effect is enhanced via 

controlling the plasmon resonance.76 

 

 

 

 
Figure 1.15 a. Sample structure and excitation/emission configuration of PL 

measurement. b. PL spectra of InGaN/GaN QWs coated with Ag (red curve), Al (blue 

curve), Au (green curve), and no metal (grey curve).73 
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Figure 1.16 Schematic of the degenerate cyclotron plasmonic modes excited by left 

circularly polarized (LCP) and right circularly polarized (RCP) light with an external 

magnetic field.71 

 

 

However, a challenge of the plasmon-exciton coupling in single-phase semiconductor 

NCs arises from the absence of resonance between confined plasmon oscillations and excitonic 

transitions.20 Plasmonic metal oxide semiconductor NCs provide a chance to understand the 

mechanism of interface-free plasmon-exciton coupling. Yin et al. designed a creative 

experiment, for which they generated a degenerately doped In2O3 cyclotron magneto-

plasmonic mode (Figure 1.16), and then measured the magneto-optical properties by magnetic 

circular dichroism (MCD) spectroscopy.20 They hypothesized that the optical phonons, 

quasiparticles describing vibrational degrees of freedom in lattices, play a critical role in 

plasmon-exciton coupling because they can couple with both plasmons and excitons in 
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semiconductor NCs.66–70 Besides, it has been observed and proven that phonons can transfer 

angular momentum providing for magneto-plasmonic modes generation and band state 

splitting, and thus phonons could be considered as the media for plasmon-exciton coupling.77 

 

1.4 Magnetic Semiconductor NCs 
 

Magnetic semiconductors perform both ferromagnetic and semiconducting properties, 

which would provide a new way to control the conduction when they are implemented in 

devices. Moreover, magnetic semiconductors would also regulate the quantum spin state (up 

and down), which is considered to be a vital property for spintronics applications.78 

 

1.4.1 Diluted Magnetic Semiconductors 

 
Although some traditional magnetic materials such as magnetite also exhibit 

semiconductor characteristics, it is anticipated that magnetic semiconductors will be 

extensively adopted only if they are similar to those well-developed semiconductors. To that 

end, dilute magnetic semiconductor (DMS) has become a novel candidate material in magnetic 

material study and microelectronics industry application due to its unique spin-dependent 

magneto-electro-optical properties, which has aroused tremendous interest. DMS is a class of 

magnetic materials which is created when a non-magnetic semiconductor is non-degenerately 

doped with magnetic metal atoms, typically transition-metal impurities. The field of dilute 

magnetic semiconductors (DMSs) emerged in the 1970s then developed with the investigation 

of II-VI semiconductors (CdSe and HgTe).79 People realized that introducing a small number 
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of magnetic dopants would not deteriorate the electronic and optical properties of host 

materials, whilst would induce a strong magnetic field effect. It can be ascribed to the exchange 

interaction between s or p-electrons in the host and d-electrons in the dopants.79 These 

interactions can be achieved and manipulated at the single nanostructure level,80,81 which has 

created a significant interest in designing DMS nanomaterials.82 The biggest challenge of 

DMSs is the Curie temperature (TC) which is below room temperature leading to the loss of 

magnetic properties. Generally, temperature is a key factor for the ordering amongst magnetic 

moments since if the thermal energy is larger than the ordering energy, the material will lose 

its magnetism. Therefore, seeking DMS materials with a high TC above room temperature is 

crucial. Recently, some metal oxide with wide band gaps such as SnO2, ZnO, In2O3, and TiO2 

have been widely used as host materials for the research study of diluted magnetic 

semiconductor oxides (DMSOs).83–86 Among these materials, the magnetic properties and the 

TC are directly controllable by the doping level. Coey et al. demonstrated that high TC could 

be achieved by an extended hybridized state which is caused due to the interaction between the 

electronic states of the localized 3d impurity band and delocalized donor states when increasing 

the donor concentration over the critical one, leading to the impurity band states delocalizing 

and spin splitting.84 In this thesis, I will focus on SnO2 and ZnO NCs in which the defect-

correlated band splitting occurs without magnetic dopants, which is analogous to DMS 

characteristics.  
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1.4.2 Introduction of Magnetic Circular Dichroism  

 
Orbital polarization can be produced by an external magnetic field in addition to the 

intrinsic spin angular momentum. In the case of cyclotron LSPR modes exposure to an external 

electric and magnetic field which is parallel to the light propagation direction, the two LSPR 

modes are non-degenerate arising from the Lorentz and electric field forces acting on electrons. 

The total force 𝑭𝑭 is expressed as: 

 

𝑭𝑭 =  −𝑒𝑒𝑬𝑬 − 𝑒𝑒(𝒗𝒗 × 𝑩𝑩)         (1.7) 

 

where  𝑒𝑒 and 𝒗𝒗 are the charge and velocity of electrons, respectively; 𝑬𝑬 and 𝑩𝑩 refer to external 

electric and magnetic fields, respectively.   

 Magnetic circular dichroism (MCD) provides new opportunities to explore the 

structure and magneto-optical properties of semiconductor NCs. MCD spectroscopy can detect 

the differential absorption of left (𝜌𝜌−) and right (𝜌𝜌+) circularly polarized (LCP and RCP) light 

of a sample, where the magnetic field is oriented parallel to the direction of light propagation 

(Figure 1.17).20 Without an external magnetic field, LCP and RCP terms are degenerate at zero 

field thus indistinguishable. However, under the influence of an external magnetic field, two 

modes are split as they are experiencing an opposite Lorentz force, resulting in a derivative-

shaped MCD spectrum and a shift of frequency (∆𝜔𝜔) which is given as:  

 

∆𝜔𝜔 =  |𝜔𝜔𝐵𝐵 −  𝜔𝜔0| = 𝑔𝑔(𝜔𝜔0)𝐵𝐵          (1.8) 
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where  𝜔𝜔𝐵𝐵 is the frequency of the separated magneto-plasmonic mode (𝜔𝜔𝐵𝐵
−, 𝜔𝜔𝐵𝐵

+), 𝜔𝜔0 is the 

zero-field LSPR frequency, 𝐵𝐵  is the given magnetic field strength, and 𝑔𝑔(𝜔𝜔0)  is the 

proportionality constant. In the light of Equation (1.8), it straightforwardly reveals that the 

MCD signal of LSPR is only related to the magnetic field and shows a linear relationship, 

while irrelevant to temperature.  

 Additionally, MCD measurement could also detect the splitting in DMSs. In such 

materials, the interaction between d-electrons from magnetic impurities and s- and p-electrons 

from host lattices would lead to the splitting of VB and CB hinging on spin orientation. 

Therefore, this spin-polarized semiconductor band structure would change the absorption 

between LCP and RCP beams, and the absorption difference could be collected by MCD 

spectra.87 

 

 

 

Figure 1.17 Schematic representation of the origin of the MCD signal of LSPR in 

plasmonic NCs (yellow curve), represented as the difference between the absorption of 

the LCP (ρ−) beam (blue curve) and RCP (ρ+) beam (red curve) for a magnetic field.20 
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Figure 1.18 Schematic representation of the origin of the MCD signal in magnetic 

semiconductors. Left figure: for nonmagnetic semiconductors, electronic energy is 

independent on the direction of electron spin. Right figure: for magnetic semiconductors, 

the splitting of conduction band and valence band is related to the direction of electron 

spin.87 

 

MCD signal emanates from Zeeman splitting for which a transition from the ground 

state to an excited state. MCD intensity is usually expressed as a sum of three Faraday terms, 

i.e. A, B and C terms. And the fundamental equation is described as Equation (1.9):88  

 

∆𝐴𝐴
𝐸𝐸

=  𝛾𝛾𝜇𝜇𝐵𝐵𝐵𝐵 �𝐴𝐴1 �−
𝜕𝜕𝜕𝜕(𝐸𝐸)
𝜕𝜕𝜕𝜕

�+ �𝐵𝐵0 + 𝐶𝐶0
𝑘𝑘𝐵𝐵𝑇𝑇

� 𝑓𝑓(𝐸𝐸)�             (1.9) 

 

where  𝐴𝐴1, 𝐵𝐵0, and 𝐶𝐶0 are constants referring to A, B and C terms of MCD, respectively; ∆𝐴𝐴 is 

the differential absorption between LCP and RCP light; 𝛾𝛾 is a constant which is related to the 
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units chosen; 𝜇𝜇𝐵𝐵 is the Bohr magneton; 𝐵𝐵 is the magnetic field; 𝐸𝐸 is the energy and 𝑓𝑓(𝐸𝐸) refers 

to the line-shape function; 𝑘𝑘𝐵𝐵 is the Boltzmann constant; and 𝑇𝑇 is the temperature. 

 A term, a temperature-independent MCD signal term with a derivative line shape, 

indicates the degeneracy of excited states. As shown in Figure 1.19a, the originally degenerate 

𝐽𝐽−1,+1 state is split into two sublevels of 𝐽𝐽+1 and 𝐽𝐽−1 when exerting a magnetic field along the 

direction of light. The absorption of LCP and RCP light occurs in the transition of 𝐴𝐴0 → 𝐽𝐽+1 

and 𝐴𝐴0 → 𝐽𝐽−1, respectively, giving rise to the energy difference of the transition, namely, the 

Zeeman splitting.88 B term is also a temperature-independent factor, which originates from the 

mixing effect of zero-field functions between non-degenerate states in a magnetic field but 

exhibits a “absorption-like” signal (Figure 1.19b).88 Generally, the analysis of B term is 

simplified to evaluate only a few mixing states close in energy. Compared with A or C terms, 

B term is much weaker and hard to distinguish in an MCD spectrum, even though it contributes 

to almost every molecule’s MCD signal. Different from A and B terms, C term has a 

temperature-dependent nature with a Gaussian line shape as a result of the ground-state 

degeneracy in the presence of an external magnetic field (Figure 1.19c).88 The intensity of C 

term is especially sensitive to temperature owing to the strong dependency of the population 

of filed-split ground states on temperature. In a diamagnetic system, C term equals zero as the 

molecules are of non-degenerate ground states. Whereas, for paramagnetic molecules, C term 

becomes dominant in MCD spectra especially at low temperature, in accordance with the 

Curie-type relationship the signal has the following temperature dependence, Equation (1.10): 

 

𝑀𝑀 = 𝑁𝑁
𝑇𝑇

           (1.10) 
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where 𝑀𝑀 is the resulting magnetization, 𝑁𝑁 is the fitting parameter, and 𝑇𝑇 is the temperature. 

This equation will be adapted to the future fitting of MCD spectra in this thesis. 

 

 

 

 

 

Figure 1.19 The simplified diagram of the mechanism of a) A; b) B; and c) C terms in 

MCD. The dashed curves represent absorption of LCP light (positive peaks along the 

vertical axis) and RCP light (negative peaks along the vertical axis). The solid curves in 

the top graphs stand for the resultant MCD responses.88 
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1.5 Two Major Metal Oxide Semiconductor NCs 

1.5.1  Tin(IV) Oxide (SnO2) NCs 

 
Tin (IV) oxide (SnO2) with mineral form in nature called cassiterite has engaged 

immense interest in scientific research and industrial application. SnO2 which has a rutile 

crystal structure is an n-type oxygen-deficient semiconductor having a band gap energy of 3.6 

eV.89 Figure 1.20 depicts that the SnO2 lattice is of a tetragonal unit cell in the space group of  

P42/mnm with lattice parameters of a = b = 4.70 3Å and c = 3.173 Å.90  

The presence of oxygen vacancies (VO) in SnO2 semiconductors induces electrons 

conduction, and the Kröger-Vink notation is shown as follows: 

 

OO
X  →  VO∙∙ + 2e′ +  1

2
 O2(g)       (1.11) 

 

In light of this equation, one doubly ionized vacancy site and two free electrons are generated 

by one oxygen vacancy, providing a source for charge carriers.90 The other potential source of 

free electrons comes from tin interstitials, Sni. 91 Kilic and Zunger 91 indicated that interstitial 

tin played a dominant role in conductivity. Sni forms a donor level within the conduction band 

because of its loosely bound outer free electrons, resulting in prompt donor conductivity.91 

Moreover, Sni exists abundantly owing to its low formation energy, and it is able to reduce the 

formation energy of VO as well. 

Tin oxide (SnO2) can be regarded as a transparent conducting oxide (TCO) due to its 

high band gap energy as well as mechanical and chemical stability.92 As a consequence, SnO2 



 

 36 

is a promising material for wide applications in sensors, solar cells, and lithium-ion batteries. 

Additionally, there are several synthesis approaches to make pure or doped SnO2, such as 

solvothermal, polymerized complexes, sol-gel, co-precipitation etc.  

 

 

Figure 1.20 Schematic of the tin(IV) oxide with rutile crystal structure. Grey spheres 

represent tin atoms and red spheres represent oxygen atoms.90 

 

1.5.2 Zinc Oxide (ZnO) NCs 

 
Zinc oxide (ZnO) has always been a research subject of great concern in the past few 

decades due to its non-toxic, cost-effective, and environment-benign merits. ZnO has three 

different crystalline forms: cubic rocksalt, cubic zincblende, and hexagonal wurtzite, as shown 

in Figure 1.21. Particularly, the wurtzite phase is of major attraction because of its better 

thermodynamical standability at ambient pressure and temperature. For the wurtzite structure, 

the lattice spacing of a and c are 0.325 and 0.521 nm, respectively.93 The calculated ratio of 
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c/a is around 1.603 that is very close to the ideal value for unit hexagonal cell in the ratio of 

c/a = 1.633.93 In this hexagonal structure, as shown in Figure 1.21c, tetrahedral zinc and oxygen 

atoms are stacked alternately along the c-axis and each zinc atom is surrounded by four oxygen 

atoms, and vice versa.94 Zinc-blende form is metastable and can be stabilized by growth on 

cubic substrates.93 The rocksalt crystal structure has been rarely discussed since it may only 

exist at relatively high pressure.94  

ZnO is a common semiconductor with n-type electrical conductivity, a wide direct band 

gap of ca. 3.37 eV and a large exciton binding energy of ca. 60 meV at room temperature.95 

Additionally, ZnO exhibits strong optical absorption in both UVA (315-400 nm) and UVB 

(280-315 nm), giving a new way of improving antibacterial response.93 These unique features 

in optical, electrical, semiconducting and chemical sensing aspects capacitate ZnO having 

significant applications in diverse areas, such as photocatalyst, transistors, optoelectronic 

devices, and chemical sensors.93,96,97  
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Figure 1.21 Stick and ball representation of ZnO crystal structures: (a) rocksalt (cubic); 

(b) zinc blende (cubic); and (c) wurtzite (hexagonal). Yellow spheres represent zinc atoms 

and blue spheres represent oxygen atoms.94 

 

ZnO-based DMSOs have been one of the most attractive research subjects for 

application in spintronics.98 After substantive theoretical and experimental investigations, 

native point defects are considered as the cause of ferromagnetism at room temperature.99 

Nevertheless, the origin of d0 ferromagnetism in ZnO semiconductors is still under debate. 

There are four major defect forms present in ZnO materials: oxygen vacancies (VO), oxygen 

interstitials (Oi), zinc vacancies (VZn), and zinc interstitials (Zni).98 Normally, VO serves as 

donors, whilst VZn acts as acceptors. For instance, Liu et al. demonstrated three different 

sources of defect-related visible emission in ZnO NPs: electrons trapped in (a) single ionized 

oxygen vacancies (VO
+); (b) doubly ionized oxygen vacancies (VO

++); and (c) intrinsic oxygen 

interstitials (Oi) behaving as traps for photo-generated holes.100 Moreover, Das et al. proposed 
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that the visible emission derived from electronic transitions between defect levels within band 

gaps of ZnO NPs.101 They reported two types of these electronic transitions (as shown in Figure 

1.22): (a) from neutral oxygen vacancies (VO) to zinc vacancies (VZn ) and (b) from singly 

charged oxygen vacancies (VO
’) to zinc vacancies (VZn).101  

 

 

Figure 1.22 Diagram of band states including relevant defect levels. VO and VO’ are donor 

levels localized at 2.49 eV and 2.26 eV above VZn, respectively.101 

 

1.6 Motivations and Scope of the Thesis 
 

In order to contribute to potential breakthroughs in multifunctional quantum devices 

and optoelectronic devices, the vital motivation of this thesis is to manipulate plasmonic 

properties in n-type antimony-doped SnO2 (ATO) NCs via multiple mechanisms and to 

investigate the effect of point defects on carrier polarization and band splitting in ZnO and 

SnO2 NCs. Additionally, SnO2 NCs synthesized under different conditions or having different 

compositions will contribute to our database of LSPR in metal oxide semiconductors and 
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further help to build up a universal model to demonstrate the plasmon-exciton coupling 

mechanism.  

Considerable work on LSPR properties of noble metal nanoparticles has been done in 

the past few decades. Although Ag and Au's nanostructures have high free charge carrier 

concentration leading to a strong LSPR signal, the tunability of LSPRs in these metals is 

constrained, and noble metals are pricey. On the contrary, SnO2 is a cost-effective and 

environmental-benign semiconductor, and its optical properties can be controlled over via an 

aliovalent doping approach. Moreover, degenerately doped SnO2 semiconductors possess 

significant LSPRs, regarded as promising materials in optoelectronic applications. Antimony 

(Sb) is in group V of the periodic table of elements and was selected as a dopant in SnO2 

because it has a similar atom radius as the adjacent Sn. Besides, Sb itself has various oxidation 

states such as +3 and +5, providing an opportunity for aliovalently doping in SnO2 

semiconductors, where the valence of Sb is +5. However, few studies of LSPR properties in 

ATO NCs were done. Therefore, in the first part of this thesis, I attempted different 

methodologies to synthesis ATO NCs with various doping concentrations. Going forward, a 

series of techniques including UV-vis-NIR spectroscopy, MCD spectroscopy, and X-ray 

diffraction (XRD) measurements were employed to characterize optical and magneto-optical 

properties, as well as crystal structures in pure and/or doped SnO2 semiconductor NCs. 

Moreover, post-synthesis processing such as thermal annealing was applied to this work to 

tune the LSPR absorption. And the plasmon intensity and the oxidation states of Sb are 

correlated by analyzing X-ray photoelectron spectroscopy (XPS). 

ZnO is highlighted as a third-generation semiconductor owing to its wide band gap, 

high exciton bind energy at room temperature, and other merits including chemical stability, 
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rich-defect properties, and nontoxicity. One of the most renowned research on ZnO is native 

defect-induced ferromagnetism for potential applications in spintronics. Unlike diluted 

magnetic semiconductors (DMSs), the magnetic property in pure ZnO NCs reflects its 

independent relation with the presence of magnetic impurities. Hence, it is necessary to clarify 

this mechanism and elucidate how point defects influence the carrier polarization and band 

state splitting in the NCs. In the second part of this thesis, I leveraged photoluminescence (PL) 

spectroscopy to detect the point defects and combined with MCD spectra to study the defect-

related charge carrier polarization and band splitting in ZnO NCs prepared under varying 

atmosphere. Subsequently, I treated the NC samples with thermal annealing in the air to further 

confirm the relationship between oxygen deficiencies and the excitonic splitting. More 

interestingly, I also observed this Zeeman splitting in SnO2 NCs. These results imply the 

universality of carrier polarization and band splitting associated with native defects in metal 

oxide NCs, and it is worth exploring further.  
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Chapter 2 

Experimental Section 

2.1 Chemicals 
 

All chemicals were purchased from the manufacturers and used without any future 

purification. Tin (IV) chloride pentahydrate (SnCl4·5H2O, 98% ) and antimony (III) chloride 

(99%-Sb) were purchased from STREM Chemicals.89 Zinc stearate (ZnSt2, 12.5-14 %) was 

purchased from Alfa Aesar. Oleylamine (OAm, 70%), oleic acid (OA, 90%), tri-n-

octylphosphine oxide (TOPO, 90%), dodecylamine (DDA, 98%), 1-dodecanol (DDOL, 98%), 

1-octadecene (ODE, 90%), ammonium hydroxide (NH4OH, 28.0-30.0%), 1,4-dioxane (99%), 

acetone (HPLC grade), toluene (HPLC grade), hexane (HPLC grade), tetrachloroethylene 

(TCE, 99.5%), and ethanol (EtOH, HPLC grade) were all purchased from Sigma-Aldrich 

company.89 The mixture gas of hydrogen and nitrogen (7 % H2 in N2) was purchased from 

Praxair. 

 

2.2 Synthesis Procedure 

2.2.1 Solvothermal Synthesis of SnO2 and ATO NCs 

 
Solvothermal SnO2 and ATO NCs were synthesized using a modified form of a 

previously reported procedure.89,102,103 In a typical synthesis of SnO2 NCs, 1.0 g of 

SnCl4·5H2O, 7 mL of EtOH, 20 mL of OA, and 4 mL of OAm were mixed into a 45 mL 

Teflon-lined stainless-steel autoclave (as shown in Figure 2.1), and then the autoclave was 
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placed into a preheated oven (185 °C). The reaction duration was 4 h, after which the autoclave 

was taken out and cooled down to room temperature naturally in the fume hood. The acquired 

xerogel was washed with acetone and centrifuged three times. Afterward, the washed NCs 

were treated with TOPO at 90 °C for 1 hour to remove dopant ions bounded on the surface.104 

The post-synthesized SnO2 NCs were repeatedly washed with acetone and centrifuged three 

times. Finally, one portion of SnO2 NCs was dispersed in hexane for optical measurements, 

and the left was dried out onto a watch glass at room temperature for crystalline structure 

analysis. To avoid SbCl3 exposure to moisture leading to weighing inaccuracy, a stock solution 

of SbCl3 was prepared in the glove box via dissolving 1.625 g of SbCl3 solids to 50 mL of 

EtOH, for which 1 mL of the stock solution is corresponding to 5% Sb doping content. For the 

preparation of ATO NCs with variable doping concentration, a certain molar ratio portion 

([Sb]/[Sn] = 0.05, 0.10, 0.15, and 0.20) of SbCl3 stock solution was added into the reactants, 

and then the addition of EtOH was decreased to 6, 5, 4, and 3 mL, respectively. The reaction 

temperature, duration time, washing process, and post-synthesis treatment were consistent with 

the pure SnO2 NCs preparation. For future study, small portions of solvothermal-made 

powdered SnO2 and ATO NCs were annealed at 500  and 1000 °C from 1 min to 24 h in a 

muffle furnace. The reaction mechanism is shown as the Kröger-Vink notation (Equation 2.1): 

  

2Sb2O5
SnO2�⎯⎯�  4SbSn∙ + 10OO

X +  VSn4′         (2.1) 
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Figure 2.1 Pressure Vessel for solvothermal NCs synthesis, including stainless-steel shells 

and lids, teflon cups, and bursting discs. 

 

2.2.2 Coprecipitation Synthesis of SnO2 and ATO NCs 

 
Coprecipitation synthesis of SnO2 and Sb:SnO2 (ATO) NCs was performed using a 

previously reported procedure.105,106 Briefly, 0.7 g of SnCl4·5H2O and different amounts of 

SbCl3 were added to 10 mL of deionized water, followed by stirring until precursors were fully 

dissolved. The reaction mixture was then placed into an ice bath to cool down for 15 min and 

then concentrated NH4OH was slowly added to the mixture until the pH became 6. After 

allowing the content to settle down for 3 h, the obtained fine powder was washed multiple 

times with deionized water. Dilute NH4OH was added to the washed precipitate. The clear 
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suspension was transferred to a three-neck round-bottom flask and refluxed at 90 °C for 15 h, 

after which it was cooled to room temperature. The resulting NCs were extracted with 1,4-

dioxane, followed by centrifugation and washing with EtOH three times. The precipitated NCs 

were resuspended in excess DDA and heated at 120 °C for 30 min to give a clear suspension 

which was precipitated and triple washed with EtOH. The DDA-capped NCs were then 

resuspended in melted TOPO, heated at 90 °C for 1 h, and precipitated and washed with EtOH. 

This process allows for further removal of surface-bound dopant ions and NC capping with 

TOPO. Finally, a portion of NCs was dispersed in hexane for optical measurements, and the 

rest was dried out onto a watch glass at room temperature for crystal structure analysis. For 

further processing investigation, small portions of powder SnO2 and ATO NCs were annealed 

at 500 °C and 1000 °C from 1 min to 24 h in a muffle furnace. 

 

2.2.3 Colloidal Synthesis of ZnO NCs 

 
The synthesis of zinc oxide NCs was conducted by an existing non-injection 

procedure.107 In a typical reaction, 1.89 g of ZnSt2 was added to a three-neck round bottom 

flask (RBF) mixed with 16.00 g of ODE, 2.65 g of OA, and 4.80 g of DDOL. Then the mixture 

was degassed under the hydrogen (or air) flow for 10 min. The reactants were first heated up 

to 100-140 ℃ for 30 min for dissolving evenly and then heated to 250 ℃ for 1 h under 

hydrogen (air) flux. Finally, the obtained solution was centrifuged after cooling down to room 

temperature, and the precipitate was washed with toluene and acetone three times. For future 

measurements, portions of NCs were suspended in hexane and toluene, and the rest was dried 
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on a watch glass naturally overnight. Small portions of powder ZnO NCs were annealed at 500 

℃ for 12 h in a muffle furnace. 

 

Figure 2.2 Colloidal setup for NC synthesis, including round bottom flask (RBF), 

condenser, thermometer, and hot and stir plate. 

 

2.3 Characterization Techniques 

2.3.1 Powder X-ray Diffraction (XRD) 

 
Powder X-ray diffraction (XRD) is an effective measurement to identify the three-

dimensional crystal structure of NPs. The size of NPs can be calculated based on the Scherrer 

equation: 

 

𝐿𝐿ℎ𝑘𝑘𝑘𝑘 =  𝐾𝐾𝐾𝐾
𝛽𝛽 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)

           (2.2) 
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where 𝐿𝐿ℎ𝑘𝑘𝑘𝑘  is the mean crystallite size of samples, 𝜆𝜆  is the X-ray wavelength, 𝐾𝐾  is a 

dimensionless shape factor, 𝛽𝛽 is the full width at half-maximum (FWHM), and 𝜃𝜃 is the Bragg 

angle.108 The XRD patterns of all samples were collected with an INEL XRD diffractometer 

with a position-sensitive detector and monochromatic Cu-Kα radiation (λ = 1.5406 Å) in Dr. 

Holger Kleinke’s group in the Department of Chemistry at the University of Waterloo.  

 

2.3.2 Transmission Electron Microscopy (TEM) 

 
Transmission electron microscopy (TEM) is used in investigating the morphology and 

nanoparticle size of NCs and energy dispersive X-ray (EDX) spectroscopy reveals the 

morphology and elemental composition of NCs. TEM can present high-resolution images, 

which is beneficial to study the nanostructure of plasmonic semiconductor NCs. In this work, 

TEM images were acquired with a JEOL-2010F microscope operating at 200 kV at McMaster 

University. TEM specimens were dropped onto copper grids with lacey Formvar/carbon 

support films purchased from Ted Pella, Inc.  

 

2.3.3 X-ray Photoelectron Spectroscopy (XPS) 

 
X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative tool 

measuring the elemental composition, electronic state and chemical state of the elements 

existing within materials.109 XPS was conducted in precisely evaluating the doping 

concentration of Sb and Sn contents. In this thesis, XPS measurements were carried out with a 

Thermo-VG Scientific ESCALab 250 microprobe featuring a monochromatic AI Kα source 
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(1486.6 eV) in Dr. Tong Leung’s lab in the Department of Chemistry at the University of 

Waterloo. 

 

2.3.4 Ultraviolet-Visible-Near-Infrared (UV-vis-NIR) Spectroscopy 

 
UV-vis-NIR spectroscopy is the most commonly used technique to measure the 

absorption of NCs among a certain wavelength range, where optical properties (absorption of 

band gap and LSPR) and electronic structures (band edge) of the NCs could be determined 

through the spectra. In this study, optical absorption spectra were collected with a Varian Cary 

5000 ultraviolet-visible-infrared (UV-vis-NIR) spectrophotometer operated at room 

temperature. The suspensions of NCs were drop-casted onto quartz substrates, and the spectra 

were recorded from 200 nm to 3300 nm. 

 

2.3.5 Fourier Transform Infrared (FTIR) Spectroscopy  

 
FTIR spectroscopy can obtain optical properties of samples in the mid-infrared range 

because of its distinct frequencies of vibrations, which is considered as a powerful tool to 

identify the organic molecules/groups remained on the surface of NCs. FTIR measurement can 

also be applied in ascertaining the LSPR absorption of some plasmonic semiconductor NCs 

with relatively low free charge carrier concentration, of which plasmonic absorption happens 

in the MIR range. In this research, FTIR spectra were recorded in the range between 400 and 

4000 cm-1 with a resolution of 0.5 cm-1 on the FTIR Bruker Tensor 37 spectrometer. Samples 

were prepared by drop-casting to pressed KBr pellets before the measurement. 
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2.3.6 Photoluminescence (PL) Spectroscopy 

 
PL spectroscopy is a widespread technique to characterize the light emission properties 

of semiconductors. In this work, steady-state PL spectra were acquired at room temperature 

with a Varian Cary Eclipse fluorescence spectrometer. All samples were measured in liquid 

phase by dispersing in a hexane solvent. SnO2 NC samples were excited at 240 nm with both 

excitation and emission slits set to 5 nm. ZnO NC samples were excited at 350 nm with 

excitation and emission slits set to 10 and 5 nm, respectively. 

 

2.3.7  Magnetic Circular Dichroism (MCD) Spectroscopy 

 

MCD spectroscopy can detect the differential absorption of left (𝜌𝜌−) and right (𝜌𝜌+) 

circularly polarized light of a sample, where the magnetic field is oriented parallel to the 

direction of light propagation.20 The working fundamental of MCD is similar to UV-Vis-NIR 

spectroscopy, however, it would show more details and offer higher resolution results.   

Generally, the MCD intensity, defined as ∆𝐴𝐴, needs to be converted from ellipticity (𝜃𝜃) 

to ∆𝐴𝐴/𝐴𝐴 form by using this relationship: 

 

∆𝐴𝐴
𝐴𝐴

=  𝜃𝜃
32982 × 𝐴𝐴

       (2.3) 
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Figure 2.3 Magnetic circular dichroism setup, including three major parts: circularly 

polarized light generation component (left dashed frame), superconducting cryostat with 

external magnetic field, and detector.20 

 

where ∆𝐴𝐴 =  𝐴𝐴𝐿𝐿 −  𝐴𝐴𝑅𝑅 (𝐴𝐴𝐿𝐿 and 𝐴𝐴𝑅𝑅 refer to the absorption of LCP and RCP, respectively),  𝐴𝐴 

is the band gap absorbance collected by circular dichroism detector, and 𝜃𝜃 is ellipticity in 

millidegrees.  

Figure 2.3 displays MCD experimental setup and basic measurement process.20 The 

white light emitted by the xenon lamp is passed through a monochromator and a linear 

polarizer to produce linearly polarized monochromatic light. It is then passed through a photo-

elastic modulator to generate LCP and RCP light. A sample is pre-mounted in a 

superconducting magneto-optical cryostat with a magnetic field parallel to the direction of light 

propagation. Upon moving through the sample, LCP and RCP beams are absorbed to a 

different degree. Different intensities of LCP and RCP light (IL and IR, respectively) are 

combined to form an elliptically polarized beam and the signal is collected by the detector. The 

ellipticity (θ) defined as the angle between the long and short axes of an ellipse is then 

converted to a differential absorption in accordance with Equation (2.3). 
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In this study, the MCD measurement was carried out in a Faraday configuration using 

a Jasco J815 spectropolarimeter. Samples deposited on clean and strain-free quartz substrates 

were placed in an Oxford SM 4000 magneto-optical cryostat with controllable temperature 

from 5 K to 300 K as well as a controllable field between 0 and 7 T.  

In MCD data analysis, the Brillouin function is applied to fit the field-dependent MCD 

intensities, and the equation is dressed here: 

 

𝑀𝑀𝑆𝑆 =  1
2
𝑁𝑁𝑔𝑔𝑆𝑆𝜇𝜇𝐵𝐵[(2𝑆𝑆 + 1)] coth�(2𝑆𝑆 + 1) 𝑔𝑔𝑆𝑆𝜇𝜇𝐵𝐵𝐵𝐵

2𝑘𝑘𝐵𝐵𝑇𝑇
� − coth (𝑔𝑔𝑆𝑆𝜇𝜇𝐵𝐵𝐵𝐵

2𝑘𝑘𝐵𝐵𝑇𝑇
)]           (2.3) 

 

where 𝑁𝑁 refers to the carrier concentration as the fitting parameter; 𝐵𝐵 is the external magnetic 

field strength; 𝑀𝑀𝑆𝑆  is the sample saturation magnetization; 𝑇𝑇  is the temperature; 𝑘𝑘𝐵𝐵  is the 

Boltzmann constant; and  𝜇𝜇𝐵𝐵 is the Bohr magneton. 
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Chapter 3 
Manipulating Plasmonic Properties of Sb-Doped SnO2 

Nanocrystals 

 
In this chapter, I investigated the role of the synthesis approach and post-synthesis 

processing on the plasmonic properties of antimony-doped SnO2 NCs. I synthesized Sb:SnO2 

NCs by solvothermal and coprecipitation methods, and directly compared their structural, 

electronic, optical, and magneto-optical properties, including TEM, XRD, XPS, UV-vis-NIR, 

and MCD characterizations. The results of this work demonstrate that the choice of synthesis 

methodology and post-synthesis processing allows for the control of the plasmonic properties 

via redox chemistry of aliovalent dopant ions. This chapter is adapted from the following 

publication: 

 

Zhang, C.; Yin, P.; Radovanovic, P.V. “Manipulating Plasmonic Properties of Sb-Doped SnO2 

Nanocrystals by Controlling Dopant Oxidation State via Synthesis Method and Processing 

Conditions” ECS Trans. 2020, 98(3) 77-86. Copyright © 2020, IOP Publishing.  

 

I am the primary contributor in designing the experiment, analyzing the data, and writing the 

paper. The other co-authors contributed in guiding the experiment and writing the paper. 
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3.1 Structure and Morphology of SnO2 and ATO NCs  
 

Overview TEM images of typical ATO NCs synthesized by coprecipitation and 

solvothermal methods are shown in Figure 3.1a and b, respectively. The two images appear 

qualitatively similar, although NCs synthesized by coprecipitation method are somewhat 

smaller and more aggregated. High-resolution TEM images show lattice fringes in individual 

NCs indicating their single crystalline form (insets in the corresponding panels in Figure 3.1).  
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Figure 3.1 TEM images of typical ATO NCs synthesized by (a) coprecipitation and (b) 

solvothermal method. Insets are high-resolution images of representative individual NCs. 

 

 

X-ray diffraction patterns of ATO NCs prepared by coprecipitation method, having 

different nominal doping concentrations, are shown in Figure 3.2a. All peaks can be readily 

indexed to cassiterite SnO2 (vertical red lines), and no secondary phases are evident in any of 

the collected XRD patterns. However, significant peak broadening suggests that these NCs are 

very small, consistent with the TEM images in Figure 3.1a. The XRD patterns of typical 

solvothermally-synthesized ATO NCs having different nominal doping concentrations are 

shown in Figure 3.2b. These patterns are also in excellent agreement with that of bulk 

cassiterite SnO2. The XRD peaks in Figure 3.2b are narrower, which is most likely associated 

with the larger average NC size. The accurate sizes of as-synthesized ATO NCs were 

determined according to the Scherrer equation (Equation 2.2), where K is a constant equal to 

0.9. The calculated results of solvothermally and coprecipitation-prepared ATO NCs are 

shown in Tables 3.1 and 3.2. 
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Figure 3.2 XRD patterns of ATO NCs having different nominal doping concentrations, 

as indicated in the graphs, synthesized by (a) coprecipitation and (b) solvothermal 

method. Vertical red lines represent the pattern of bulk cassiterite SnO2 (JCPDS 41-

1445). 
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Figure 3.3 XRD patterns of 10 % Sb:SnO2 NCs annealed at 500 °C for 2 hours under the 

same conditions for NCs synthesized by (a) coprecipitation and (b) solvothermal method. 

The XRD patterns of the same samples before annealing are shown in the graphs for 

comparison. Vertical red lines represent the pattern of bulk cassiterite SnO2 (JCPDS 41-

1445).  
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Table 3.1 Calculated size of coprecipitation-synthesized ATO NCs with different nominal 

doping concentrations. 

 

 

 

 

 

Table 3.2 Calculated size of solvothermally-synthesized ATO NCs with different nominal 

doping concentrations. 

 

 

 

X-ray diffraction patterns of coprecipitation and solvothermally-synthesized ATO NCs 

upon annealing at 500 °C for 2 h are shown in Figure 3.3a and b (blue and purple traces). 

Compared with the XRD patterns of the same samples before thermal annealing (red and green 

traces), especially for the coprecipitation-prepared ATO NCs, remarkable peak narrowing and 

FWHM reducing reveal that these NCs became much larger after annealing processing, which 

can be attributed to the increase in particle size and/or grain growth due to the high-temperature 

annealing thus improving the crystallinity of Sb-doped SnO2.110 

 

Sample SnO2 1% ATO 7% ATO 10% ATO 

Size (nm) 3.8 3.6 2.8 2.7 

Sample SnO2 5% ATO 10% ATO 15% ATO 20% ATO 

Size (nm) 3.1 3.8 5.1 4.2 3.5 
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3.2  Optical Properties of SnO2 and ATO NCs  
 

Optical absorption spectra of ATO NCs from Figure 3.2a are shown in Figure 3.4a. The 

most notable spectral feature is a strong band gap absorption with the onset at ca. 300 nm. No 

discernable absorption was detected in the NIR range, suggesting the absence of a strong 

LSPR. It is not excluded, however, that some plasmon oscillations exist, but result in a broad 

and weak absorption band below the detection limit of our spectrophotometer. Figure 3.4b 

shows the Tauc plots for ATO NCs in Figure 3.4a. The band-edge absorption of ATO NCs 

shifts to slightly higher energies relative to undoped SnO2 NCs, and varies within ca. 0.1 eV 

for the studied doping concentration range. This shift suggests a change in the NC host lattice 

electronic structure induced by quantum confinement104 and/or the substitutional incorporation 

of Sb dopants. Figure 3.4c shows absorption spectra of solvothermally-prepared ATO NCs 

having varying doping concentrations. In contrast to coprecipitation-synthesized NCs, these 

spectra display a broad band in the NIR range that increases in intensity and blue shifts with 

increasing doping concentration. Based on their behaviour, these bands are readily attributed 

to the LSPR.30 The increase in the intensity of the LSPR band is accompanied by a systematic 

shift of the band edge absorption to higher energies (Figure 3.4d), despite the fact the 

solvothermally-synthesized NCs have larger average sizes, and therefore less pronounced 

quantum confinement effects. The shift in the absorption arises from the Burstein-Moss effect, 

which is associated with increased electron occupancy of the conduction band states, and is 

consistent with the appearance of LSPR band in NIR.19,30 
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Figure 3.4 (a, c) Band-gap-normalized absorption spectra of ATO NCs having different 

nominal doping concentrations, as indicated in the graphs, synthesized by (a) 

coprecipitation and (c) solvothermal method. (b, d) Tauc plots for ATO NCs synthesized 

by (b) coprecipitation and (d) solvothermal method. 
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Several important questions emerge from these results. For example, what is the origin 

of the difference in plasmonic properties of ATO NCs synthesized by different methods? What 

roles do the synthesis methodology and conditions play in defining the plasmonic properties 

of ATO NCs? How can the plasmonic properties of ATO NCs be controlled? One of the 

simplest ways to test the possibility of post-synthesis manipulation of LSPR in ATO NCs is 

through thermal annealing. Figure 3.5a shows the absorption spectra of typical ATO NCs 

synthesized by coprecipitation method upon annealing at 500 °C for different durations. Upon 

annealing the NCs for only 5 minutes, a robust LSPR band appears in the absorption spectrum, 

suggesting a strong dopant activation. Further annealing causes only incremental enhancement 

in the LSPR intensity. On the other hand, annealing solvothermally-synthesized NCs at the 

same temperature and for the same durations leads to much less pronounced and more gradual 

increase in the LSPR intensity (Figure 3.5b). To directly compare the effect of the synthesis 

conditions on the plasmonic properties of ATO NCs, we show in Figure 3.6 the band-gap-

normalized absorption spectra of ATO NCs, synthesized by the two methods, before and after 

annealing at 1000 °C. Interestingly, the NCs synthesized by coprecipitation method experience 

comparable LSPR intensity to that of the NCs synthesized by the solvothermal method upon 

annealing. This is despite the fact that the LSPR band is non-observable in solvothermally-

synthesized NCs before annealing. These results emphasize the ability to optimize plasmonic 

properties of ATO NCs by simple post-synthesis treatment. 
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Figure 3.5 Absorption spectra of 10 % Sb:SnO2 (ATO) NCs annealed at 500 °C for 

different durations, as indicated in the graphs, for NCs synthesized by (a) coprecipitation 

and (b) solvothermal method. 

 

 

 

Figure 3.6 Band-gap-normalized absorption spectra of ATO NCs annealed at 1000 °C for 

60 minutes under the same conditions for NCs synthesized by (a) coprecipitation and (b) 

solvothermal method. The spectra of the same samples before annealing are shown in the 

graphs for comparison. 
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3.3 Magneto-optical Properties of SnO2 and ATO NCs  
 

Figure 3.7 (bottom panel) compares the MCD spectra of 10 % Sb:SnO2 NCs 

synthesized by coprecipitation (red solid line) and solvothermal (black solid line) method in 

the range between 200 and 450 nm, recorded at 5 K and 7 T.  Both negative MCD bands with 

maximum intensities at ca. 4.5 (red band) and  4.3 (black band) eV coincide with the band gap 

absorption shown in the top panel, affirming the excitonic origin of these bands. By 

comparison of the MCD intensities, it is clearly seen that the MCD intensity of solvothermally-

prepared ATO NCs is around twice as strong as that of coprecipitation-prepared ones, 

suggesting a strong plasmon-exciton interaction in the former NCs. This result is in agreement 

with the LSPR absorption spectra where ATO NCs synthesized by solvothermal method had a 

strong plasmonic absorption with a broad peak in the NIR range, while no discernable LSPR 

was detected for the NCs synthesized by coprecipitation approach in the accessible spectral 

range. Additionally, based on the excitonic MCD spectra of coprecipitation-prepared ATO 

NCs, we could confirm the presence of free charge carriers, but the plasmon is too week to be 

detected due to the limitation of our spectrophotometer. Combined with UV-vis-NIR 

absorption and MCD spectra, it is concluded that the plasmonic properties of Sb-doped SnO2 

NCs could be manipulated by synthesis methods. 
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Figure 3.7 Absorption (top panel) and MCD (bottom panel) spectra of 10 % Sb:SnO2 

NCs synthesized by coprecipitation (red solid lines ) and solvothermal (black solid lines) 

method. MCD spectra were recorded at 5 K and 7 T.  
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In order to further present the effects of thermal annealing on the LSPR properties of 

Sb-doped SnO2 NCs, the MCD measurements were performed for coprecipitation-synthesized 

ATO NCs annealed at 500 °C for varying durations from 1 to 10 min, collected at 300 K and 

7 T (Figure 3.8, bottom panel). The band gap absorptions are shown in the top panel of Figure 

3.8 to confirm their excitonic origin. From the MCD spectra, a sustained increase from 18 to 

32 mdeg in excitonic MCD intensities was observed with increasing annealing time, which is 

strongly correlated with an increased LSPR absorption. These results further suggest enhanced 

plasmon-exciton correlation. These results are consistent with the optical absorption spectra 

and evidently demonstrate the feasibility of post-synthesis treatment to modulate plasmonic 

properties of ATO NCs.  
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Figure 3.8 Absorption (top panel) and MCD (bottom panel) spectra of coprecipitation-

synthesized 10 % Sb:SnO2 NCs annealed at 500 °C for different durations, as indicated 

in the graph. MCD spectra were collected at 300 K and 7 T. 
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3.4 Electronic Properties of SnO2 and ATO NCs  
 

Based on the redox properties of the antimony ions discussed in the Introduction, we 

hypothesized that the dependence of the plasmonic properties of ATO NCs on the synthesis 

conditions and annealing is largely associated with the dopant ion oxidation states. To test this 

hypothesis we performed XPS measurements on typical ATO NCs prepared by coprecipitation 

and solvothermal methods before and after their annealing. One of the challenges associated 

with the antimony XPS analysis is the fact the Sb 3d5/2 peaks, as the most prominent Sb spectral 

feature, overlaps with O 1s peak. Therefore, we used Sb 3d3/2 region for the oxidation state 

analysis. Figure 3.9a shows Sb 3d3/2 XPS spectrum of ATO NCs synthesized by the 

coprecipitation method. The asymmetric configuration of the band suggests the presence of Sb 

with at least two different speciations. By fitting the XPS spectrum with Voigt function we 

identified two peaks at ca. 539.7 eV and 541.3 eV, which can be assigned to Sb3+ and Sb5+, 

respectively,19 with Sb3+ having the dominant contribution. This is exactly opposite from the 

ATO NC prepared by solvothermal method, for which Sb5+ is the dominant feature (Figure 

3.9c). The presence of a larger amount of Sb5+ in solvothermally-synthesized ATO NCs is 

consistent with the stronger LSPR in these NC samples. Upon annealing the NCs from Figure 

3.9a, the intensities of 3d3/2 peaks for Sb3+ and Sb5+ reverse (Figure 3.9b), indicating that Sb3+ 

is oxidized to Sb5+ in the annealing process. Similarly, annealing ATO NCs from Figure 3.9c 

causes further increase in the amount of Sb5+ at the expense of Sb3+ (Figure 3.9d). The final 

Sb3+/Sb5+ ratio in Figure 3.9b and d is very similar, suggesting that the equilibrium between 

these two oxidation states is reached for the given annealing conditions. One of the key 

questions is what determines the different average oxidation state for the two synthetic 
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methodologies explored in this work. One of the possibilities is that the coprecipitation method 

provides more reducing conditions, enabled by the presence of NH4OH, which prevents an 

effective oxidation of Sb3+. This phenomenon has been observed for other dopant ions in 

transparent metal oxide NCs synthesized under reducing conditions.111,112 

 

 

 

Figure 3.9  (a, b) Sb 3d3/2 XPS spectra of typical coprecipitation-synthesized ATO NCs 

(a) before and (b) after annealing. (c, d) Sb 3d3/2 XPS spectra of typical solvothermally-
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synthesized ATO NCs (c) before and (d) after annealing. Red and green traces are best 

fits for Sb3+ and Sb5+, respectively, and blue trace is the overall fit to the experimental 

data points. 

  

 

3.5 Conclusions 
 

In summary, we investigated the effect of the synthesis method and subsequent thermal 

annealing on the plasmonic properties of ATO NCs. The ATO NCs having variable doping 

concentration were prepared by the coprecipitation and solvothermal methods and their 

structure, optical, and magneto-optical properties were investigated. Unlike solvothermally-

synthesized ATO NCs, those prepared by the coprecipitation method do not show discernable 

LSPR band in the NIR. However, upon thermal annealing, the LSPR absorption emerges in 

the NCs prepared by coprecipitation method. Annealing also enhances the existing LSPR 

intensity in solvothermally-synthesized NCs. For both synthetic methods the LSPR intensity 

is correlated with the oxidation of Sb3+ to Sb5+. The difference in the ratio of the antimony 

oxidation states in ATO NCs synthesized by the two applied methods suggests a more reducing 

environment for coprecipitation method, which may be enabled by the presence of ammonium 

hydroxide as a reducing agent. The results of this work demonstrate that synthesis 

methodology can dramatically influence the plasmonic properties of aliovalently-doped 

semiconductor NCs via dopant oxidation state, and the selection of synthesis methodology and 

processing conditions can be used to design semiconductor NCs with targeted plasmonic 

properties. 
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Chapter 4 
Effect of Oxygen Vacancy on Excitonic Splitting in ZnO 

and SnO2 Nanocrystals 

 
In this chapter, I demonstrated the effect of oxygen vacancies on conduction band 

splitting in ZnO and SnO2 NCs. I synthesized ZnO NCs by colloidal and SnO2 NCs by 

coprecipitation and solvothermal methods, and conducted several measurements including 

TEM, UV-vis-NIR, PL, and MCD spectroscopy to investigate their morphology, optical 

properties, and carrier polarization. The result of this work suggests that localized electrons 

affiliated with oxygen vacancies can activate electron polarization and NC band splitting in 

ZnO and SnO2 NCs without the addition of magnetic impurities.  

 

4.1 Study of ZnO NCs 

4.1.1 Morphological and Optical Properties of ZnO NCs 

 
Colloidal ZnO NCs were synthesized by a non-injection method under a reducing 

atmosphere (7% hydrogen in nitrogen, referred to as hydrogen) and under an oxidizing 

surrounding (air) to manipulate the defect density, particularly the oxygen deficiency in the 

crystal lattices. As shown in Figure 4.1a, the top low-resolution TEM image reveals that as-

synthesized NCs in hydrogen atmosphere have spherical and quasi-spherical shapes with 

uniform size distribution. While the bottom low-resolution TEM image shows that the NCs 

synthesized in air have irregular shapes with relatively uniform size distribution. By 
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comparison between the high-resolution TEM images, it can be intuitively seen that the NCs 

synthesized in the air have a larger size than those synthesized in hydrogen, implying the 

oxidizing condition would be apt to tune the crystal growth rate and promote the NC growth. 

The reason could be explained that the air atmosphere surrounded by oxygen and water 

molecules could saturate the oxygen vacancies and supply hydroxyl groups to accelerate the 

NC growth.113 The UV-Vis absorption spectra were obtained and their corresponding Tauc 

plots are given in Figure 4.1b to determine the approximate optical band gaps. The ZnO NCs 

prepared in hydrogen have a larger band gap as reducing conditions lead to increasing the 

probability for forming oxygen vacancies and maximizing their concentration. In contrast, the 

ZnO NCs synthesized in the air would limit oxygen vacancies, resulting in a lower band gap 

energy. Moreover, the band gap result is consistent with the TEM images, which shows smaller 

NCs possess higher optical band gaps.59 Additionally, the exciton Bohr radius of bulk ZnO has 

been reported as 2.34 nm,114 which is much smaller than the as-synthesized NCs according to 

their sizes displayed in TEM images, therefore, the quantum confinement effects can be 

neglected. Figure 4.1c shows PL emission spectra of ZnO NCs. A broad emission peak with 

the maximum emission at ca. 500 nm appears for ZnO NCs formed in reducing atmosphere. 

This visible emission peak may be attributed as defect-related emission caused by the 

combination of singly charged oxygen vacancies (VO+) and neutral oxygen vacancies (VOX).115 

Interestingly, no discernable PL emission peak (red trace) was detected for ZnO NCs prepared 

in air, indicating the lack of oxygen vacancies. 
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Figure 4.1  (a) TEM images of ZnO NCs synthesized in hydrogen (top panel) and air 

(bottom panel). (b) Tauc plots for optical band gap determination of the hydrogen- and 

air-ZnO NCs. (c) PL emission spectra of as-synthesized hydrogen- and air-ZnO NCs with 

the excitation wavelength of 350 nm. 
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4.1.2 Carrier Polarization in ZnO NCs 

 
MCD spectroscopy was used in this work to examine the excitonic properties and 

evaluate the role of defects in the magneto-optical response of ZnO NCs. Figure 4.2a shows 5 

K MCD spectra of ZnO NCs synthesized in oxygen-free conditions with variable magnetic 

fields. The spectra were collected in the range of 330 to 400 nm which is around the band gap 

region. Intriguingly, a robust derivative-shape signal appears cohering with the band gap 

absorption, announcing strong excitonic splitting in these ZnO NCs. The integrated MCD 

intensity is plotted as a function of the applied magnetic fields from 0 to 6 T (Figure 4.2b). The 

red curve exhibits a saturation at high magnetic fields, and this behaviour is always 

characteristic of paramagnetic materials. Providing this splitting comes from the localized 

unpaired electrons affiliated with defects, in this case, oxygen vacancies, we used a Brillouin 

function with spin state 𝑆𝑆  = 1/2, electron-spin Landé g-factor, 𝑔𝑔𝑆𝑆  = 2.002, and carrier 

concentration N as the sole fitting parameter to fit the integrated MCD intensity data points:  

𝑀𝑀𝑆𝑆 =  1
2
𝑁𝑁𝑔𝑔𝑆𝑆𝜇𝜇𝐵𝐵[(2𝑆𝑆 + 1)] coth�(2𝑆𝑆 + 1) 𝑔𝑔𝑆𝑆𝜇𝜇𝐵𝐵𝐵𝐵

2𝑘𝑘𝐵𝐵𝑇𝑇
� − coth (𝑔𝑔𝑆𝑆𝜇𝜇𝐵𝐵𝐵𝐵

2𝑘𝑘𝐵𝐵𝑇𝑇
)]. 

 As expected, the red curve in Figure 4.2b demonstrates an ideal Brillouin fit, 

suggesting that the NC band states are able to be spin-split by defects such as oxygen vacancies, 

associated with localized unpaired electrons, which is analogous to transition metal dopants in 

DMSs.71,116 We also collected the MCD spectra at 7 T with various temperatures to investigate 

the temperature dependence. As shown in Figure 4.2c, the absolute value of MCD intensity 

decreases sharply at the low temperature and levels off after 200 K. We plotted the integrated 

MCD intensity with respect to the temperature in Figure 4.2d. The red curve shows an inversely 
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proportional relationship to temperature in light of Curie’s law, indicating that paramagnetic 

centers exist in hydrogen-synthesized ZnO NCs. 

 

 

 
Figure 4.2 (a) MCD spectra of ZnO NCs prepared in hydrogen recorded at 5 K for 

different external magnetic fields. (b) Magnetic-field dependence of integrated MCD 

intensity for ZnO NCs synthesized in hydrogen. Red line is the best fit of the integrated 

excitonic intensity with the Brillouin function for 𝑺𝑺 = 1/2. (c) MCD spectra collected at 7 

T for varying temperatures of ZnO NCs prepared in hydrogen. (d) Temperature 

dependence of integrated MCD intensity for ZnO NCs synthesized in hydrogen. Red line 

is the best fit of the Curie-Weiss law to the corresponding experimental data points. 
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Temperature-dependence MCD measurement plays a vital role in addressing the nature 

of band splitting in semiconductor NCs. To further investigate the defect impacts on excitonic 

splitting, we conducted the MCD measurement at 7 T for temperatures between 5 and 200 K 

for ZnO NC samples which were synthesized in air and subsequently annealed at 500 ℃ for 

12 hours (Figure 4.3). Thermal annealing processing is taken advantage of cramming the 

oxygen vacancies in the ZnO NC lattices. Surprisingly, Curie-type decay completely 

disappeared. Instead, all spectra are practically identical, revealing the temperature-

independent behaviour of the excitonic MCD intensity. This indicates that there are very few 

unpaired localized electrons owing to the filled oxygen vacancies in the oxygen-rich synthesis 

conditions and annealing post-processing. Taken together with PL results, it can be concluded 

that the Curie behaviour can be tuned via manipulating NC defects by means of controlling 

synthesis conditions and/or post-processing treatment. This result is novel and thrilling as it is 

the first demonstration that ZnO NC band splitting and carrier polarization can be induced by 

localized electrons associated with oxygen vacancies instead of incorporating magnetic 

dopants in semiconductor NCs.  
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Figure 4.3 MCD spectra collected at 7 T for varying temperatures of ZnO NCs prepared 

in air and annealed at 500 ℃ for 12 hours.  

 

 

4.2 Study of SnO2 NCs 

4.2.1 Carrier Polarization in Solvothermally-Synthesized SnO2 

NCs 

 
In order to demonstrate the universality of defect-induced band splitting, we 

synthesized SnO2 semiconductor NCs using two different synthesis methodologies, 
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solvothermal and coprecipitation approaches. Figure 4.4a shows the MCD spectra of 

solvothermally-synthesized SnO2 NCs at 5 K with different external magnetic field strengths. 

As with the MCD results of ZnO NCs, the baseline for each MCD spectrum of SnO2 NCs is 

well-matched, and we can see that the difference of the maximum MCD intensity between 

each adjacent trace becomes smaller with increasing external magnetic field, implying a 

characteristic paramagnetic behaviour. The Brillouin function best fit (red curve in Figure 

4.4b) to the integrated MCD intensity has achieved for the 𝑆𝑆 = 1 and 𝑔𝑔𝑆𝑆 = 2.002. Surprisingly, 

the net spin state is 1 rather than 1/2 which could correspond to isolated non-interacting 

oxygen-vacancy sites. It could be hypothesized that two oxygen vacancy-trapped electrons are 

localized around two nearest-neighbour ions to form a triplet ground state, leading to the net 

spin state equal to 1. The same effect also showed in TiO2 NCs, where a pair of exchange-

coupled Ti3+ ions give the net spin state of 1.116 In Figure 4.4c, it can be clearly observed that 

the MCD intensity drops steeply when heating up from 5 to 20 K, while declines gradually for 

temperatures above 50 K. The decay follows the Curie-Weiss law (red curve in Figure 4.4d) 

which reveals the presence of ground-state splitting attributed to sufficient amounts of oxygen 

vacancies existing in SnO2 NCs. 
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Figure 4.4 (a) MCD spectra of solvothermally-synthesized SnO2 NCs recorded at 5 K for 

different external magnetic fields. (b) Magnetic-field dependence of integrated MCD 

intensity for SnO2 NCs in (a). Red line is the best fit of the integrated excitonic intensity 

with the Brillouin function for 𝑺𝑺  = 1. (c) MCD spectra collected at 7 T for varying 

temperatures of solvothermally-synthesized SnO2 NCs. (d) Temperature dependence of 

integrated MCD intensity for SnO2 NCs in (c). Red line is the best fit of the Curie-Weiss 

law to the corresponding experimental data points. 
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4.2.2 Carrier Polarization and Optical Properties of 

Coprecipitation-Synthesized SnO2 NCs 

 
To further study this carrier polarization, we also recorded the MCD spectra for 

coprecipitation-prepared SnO2 NCs. Figure 4.5a shows that the variable-field MCD spectra 

collected at 5 K, and a strong single-signed MCD signal appears, which is similar to the MCD 

signal of solvothermally-prepared SnO2 NCs, pointing out the polarization of excitons. And a 

sign of saturation is revealed at a high external magnetic field. As shown in Figure 4.5b, the 

integrated MCD intensity data points are plotted as the best fit (green line) combing the linear 

and Brillouin functions. In this case, the net spin sate is considered as 1, which is consistent 

with that of solvothermally-prepared SnO2 NCs. In Figure 4.5c, a relatively slight MCD 

intensity decay occurs when heating the sample, and this decay also follows the Curie-Weiss 

law (red line in Figure 4.5d), confirming the Curie-type paramagnetism and indicating the 

existence of ground-state splitting in coprecipitation-synthesized SnO2 NCs as well. Taken 

together MCD spectra of both types of SnO2 NCs gives evidence that the defect induced band 

splitting is a general phenomenon in SnO2 NCs, although the saturation and Curie-type 

paramagnetism of the solvothermally-synthesized NCs are not as strong as those prepared by 

coprecipitation method due to the relatively small concentration of unpaired localized electrons 

associated with oxygen vacancies.  
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Figure 4.5 (a) MCD spectra of coprecipitation-synthesized SnO2 NCs recorded at 5 K for 

various external magnetic fields. (b) Magnetic-field dependence of integrated MCD 

intensity for SnO2 NCs in (a). Dashed red line is the best fit of the integrated excitonic 

intensity with a linear function. Dashed blue line is the best fit of the integrated excitonic 

intensity with the Brillouin function for 𝑺𝑺 = 1. Green line is the best fit of the integrated 

excitonic intensity with a combination of the linear and Brillouin function for 𝑺𝑺 = 1. (c) 

MCD spectra collected at 7 T for varying temperatures of coprecipitation-synthesized 

SnO2 NCs. (d) Temperature dependence of integrated MCD intensity for SnO2 NCs in 

(c). Red line is the best fit of the Curie-Weiss law to the corresponding experimental data 

points. 
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To investigate the post-processing effect on the defects in NCs, we annealed the 

coprecipitation-synthesized SnO2 NCs at 500 ℃ for 2 hours followed by MCD measurement 

at the temperature of 5 K and the external magnetic field of 7 T. As shown in Figure 4.6a, the 

absolute value of the peak intensity in MCD spectra has a significant decrease after annealing 

(red trace), which drops almost twice compared to those without annealing processing (black 

trace). Furthermore, the PL emission spectra were collected for SnO2 NCs synthesized by 

coprecipitation method. In Figure 4.6b, a broad PL peak with the maximum  at ca. 530 nm 

appears for the NCs before annealing (black trace), which is presumed to be generated by the 

combination of singly charged oxygen vacancies and neutral oxygen vacancies.101,117 

However, the peak is fully quenched after annealing (red trace). This PL result is in agreement 

with MCD spectra and demonstrates that defect-related emission was diminished, together 

with the reduction in paramagnetic behaviour of unpaired localized electrons due to the 

insufficiency of oxygen vacancies for SnO2 NCs synthesized in the oxygen-rich atmosphere 

and post-processed with thermal annealing. 
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Figure 4.6 (a) Absorption (top panel) and MCD (bottom panel) spectra of coprecipitation-

synthesized SnO2 NCs before (black solid lines) and after (red solid lines) thermal 

annealing, recorded at 5 K and 7 T. (b) PL emission spectra of coprecipitation-

synthesized SnO2 NCs before (black trace) and after (red trace) thermal annealing, with 

the excitation wavelength of 240 nm. 
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According to the result, we obtained from Figure 4.7, oxygen vacancies in the 

coprecipitation-synthesized SnO2 NCs have been filled up after thermal annealing. In this 

scenario, there should be no (or very few) unpaired localized electrons inside the lattice. A 

straightforward way to demonstrate this effect is by measuring the temperature-dependent 

MCD spectra. The blue and green lines in Figure 4.7 (bottom panel) show the excitonic MCD 

signals collected at 7 T and 5 and 300 K, respectively. The MCD spectra display negative 

bands which coincide with their band edge absorption (top panel in Figure 4.7). As expected, 

the Curie-type decay disappears and MCD intensities in both temperatures are practically the 

same. The result is a further proof of the validity of our hypothesis that the excitonic splitting 

in SnO2 NCs is generated by unpaired electrons which are localized in oxygen vacancies, and 

the splitting could be manipulated by means of post-synthesis treatments such as thermal 

annealing. 
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Figure 4.7 Absorption (top panel) and MCD (bottom panel) spectra recorded at 7 T under 

5 and 300 K (blue and green curves, respectively) for coprecipitation-prepared SnO2 NCs 

annealed at 500 ℃ for 2 hours.  

 

4.3 Conclusions 
 

In summary, we reported the excitonic splitting produced by oxygen vacancies in ZnO 

and SnO2 NCs. The colloidally-synthesized ZnO NCs and solvothermally- as well as 

coprecipitation-synthesized SnO2 NCs were successfully prepared and their morphology, 

optical, and magneto-optical properties were evaluated. For ZnO NCs synthesized under 

reducing atmosphere, the defect-related PL emission is observed and synchronistically, the 

excitonic splitting caused by the singly charged oxygen vacancies with a strong Curie-type 
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decay are detected through the MCD measurements. To the contrary, neither paramagnetic 

polarization nor discernable PL emission in the visible range are revealed for the ZnO NCs 

prepared and post-treated under oxidizing conditions, which indicates that oxygen vacancies 

are saturated in the oxygen-rich atmosphere and consequently, the defect-induced PL emission 

disappears and carrier polarization would no longer be produced by singly ionized oxygen 

vacancies as only VO+ state is paramagnetic and can induce unpaired electrons.117 In analogy to 

ZnO NCs, SnO2 NCs also show paramagnetic properties without external magnetic impurities. 

Moreover, we can control the defect concentration and thus paramagnetism via synthesis 

conditions and post-synthesis treatment. The results of this work demonstrate for the first time 

that oxygen vacancies can lead to the excitonic band splitting without magnetic ion doping into 

ZnO and SnO2 semiconductor NCs. This novel outcome enables applications of spintronics 

and related quantum technologies more promising. 
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Future Work 

 
In this thesis, we reported the role of the synthesis approach and post-synthesis 

treatment on the plasmonic properties of Sb-doped SnO2 NCs. We have measured the MCD 

spectra of coprecipitation-prepared SnO2 NCs for varying annealing time at 300 K and 7 T. 

However, it is necessary to measure MCD signal for SnO2 NCs prepared in both ways at low 

temperature and high magnetic field, which will present a more direct and accurate result 

showing the dependence on plasmonic properties related to synthesis approach. Additionally, 

due to the limit of our spectrometer, we did not observe the LSPR in ATO NCs synthesized by 

coprecipitation method, while we detected the excitonic MCD signal, indicating there exists 

plasmonic absorption but too weak and broad. Hence it is helpful to utilize a blackbody infrared 

light source to record the faint LSPR. Furthermore, it is also important to thoroughly 

understand the mechanism of the plasmon-exciton coupling by expanding the library of 

plasmonic materials.   

The intrinsic origin of defect-induced paramagnetism is still controversial due to the 

complexity of the ZnO system, and more work needs to be performed to determine this 

mechanism. It can be more straightforward and convincing if magnetic-field-dependent MCD 

measurement would be done for annealed ZnO NCs prepared in an oxidizing atmosphere. 

Moreover, we demonstrated the defect-related carrier polarization and band splitting in ZnO 

and SnO2 NCs. It is necessary to investigate more metal oxide samples to extend this generality, 

which may provide with new ideas in applications of spintronics.  
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