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Abstract 

Static Random Access Memories (SRAMs) are ubiquitous in modern computer systems. 

They provide a fast and relatively compact method of data storage. SRAM cells are read from and 

written to using analog differential bitline signals, BL and BLB. To increase operating speed and 

conserve power during a read cycle, cell access time is limited to a short duration. Since SRAM are 

often implemented with near-minimum sized devices to maximize memory density, the devices are 

relatively weak and can only generate a limited differential voltage during this read window, typically 

between 10mV to 100mV. Standard logic devices cannot read this small signal, so sense amplifiers 

are used to rapidly amplify it to logic levels. 

A key metric for a sense amplifier’s performance is its input-referred offset voltage, 𝑉𝑜𝑠. This 

dictates the minimum required input voltage to produce a correct decision. A lower 𝑉𝑜𝑠 means that a 

shorter read window for the SRAM is required, and the overall read cycle can be performed at a 

higher frequency. Unfortunately, with the trends of technology scaling, the effects of device 

mismatches from process variation are becoming more significant. In sense amplifiers, this device 

mismatch will create a statistical spread of 𝑉𝑜𝑠 with a mean and standard deviation of 𝜇𝑜𝑠 and 𝜎𝑜𝑠. To 

guarantee error-free operation, a lower bound for input differential voltage is set by the worst-case 

scenario from this spread. Another difficulty introduced with modern trends is low voltage operation. 

The drive strengths of devices in lower VDD systems are weaker, so any imbalances due to threshold 

mismatch can become more significant compared to the nominal quantities. 

This thesis explores methods of reducing input offset voltage of low voltage SRAM sense 

amplifiers with a primary goal of reducing 𝜎𝑜𝑠. A circuit called the Delayed PMOS VLSA, or 

DVLSA, is proposed. The DVLSA is based on the common VLSA and uses a timing manipulation 

technique with its control signals. The circuit design attempts to reduce 𝜎𝑜𝑠 by reducing the mismatch 

contribution of the PMOS pull-up pair. 

The circuit is tested at 0.4V with the VLSA used as a reference. Statistical simulations show 

that for the PMOS pull-up pair varying in isolation, the circuit works as intended and 𝜎𝑜𝑠 is reduced. 

When all differential devices are varied, the DVLSA has a larger 𝜎𝑜𝑠. Investigating the source of the 

failure using the isolated variation of the other two device pairs shows that the timing manipulation 

technique has a negative impact on the NMOS pair. It also suggests that the use of the DLVSA 

architecture introduces additional covariances when all differential devices are varied. 
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Chapter 1 

Introduction 

1.1 Motivation 

Systems on a Chip (SoC) have been growing in popularity, especially in mobile and IoT 

applications. They allow us to integrate most of what a system needs to function into a single package 

on one or multiple closely spaced Integrated Circuit (IC) dice, which shortens the distance for signals 

to travel. Traditionally, one of the biggest bottlenecks to overall system performance is memory 

access latency due to the use of off-chip memory. With SoCs, it is becoming very common to embed 

memory structures directly on-die, and they will often take up more than half of the total die area [1]. 

As an example, Figure 1.1 shows a die photo of a low power SoC for biomedical applications, where 

most of the die area is taken up by several blocks of memory that are custom designed for specific 

tasks. 

 

Figure 1.1 Die Photo of an Ultra-Low Power 0.4V SoC for Biomedical Wireless Sensor Nodes 

[2] 

One of the most popular technologies used to implement these memories is Static Random 

Access Memory (SRAM). In SRAM, the slowest operation to perform is a bit read. This is because 

SRAM bitcells are usually implemented with transistors near the minimum size allowed by the used 

technology, and many bitcells are packed tightly together to maximize cell density. During a read 
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cycle, the bitcells attempt to drive a logic signal onto the data lines (the bitlines), which are large 

capacitive loads.  Due to the small size of the transistors in the bitcells, their drive strength is weak, 

which results in an unacceptably long access time required for the bitcell to produce logic-level 

signals on the bitlines. For this reason, sense amplifiers (SA) are used. SAs are an analog or dynamic 

digital circuit which can rapidly amplify a small signal produced by SRAM bitcells into a logic-level 

signal. The use of SAs allows for a significantly shorter SRAM bitcell access time and this greatly 

increases the speed of a read operation. 

From the perspective of fast SRAM operation, a key property of a sense amplifier is its input-

referred offset voltage 𝑉𝑜𝑠, which arises from Process-Voltage-Temperature (PVT) conditions and 

device mismatch. This voltage is statistical and can be described with a mean and standard deviation 

of 𝜇𝑜𝑠 and 𝜎𝑜𝑠, respectively. A sense amplifier needs at least this much voltage on its inputs to ensure 

a correct decision. To guarantee the correct operation of an SRAM’s sense amplifiers to a certain 

yield, the minimum required input voltage must be derived from worst-case 𝑉𝑜𝑠 computed as some 

multiple of 𝜎𝑜𝑠 away from 𝜇𝑜𝑠. The greater 𝜎𝑜𝑠 is, the bigger this worst-case 𝑉𝑜𝑠 gets. This directly 

impacts the speed of an SRAM block as it takes more time for bitcells to generate the required signal 

voltage. 

With technology scaling, the minimum size of devices continues to decrease. Short channel 

effects and device mismatch become more significant with minimum sized devices. Additionally, 

there is an industry trend to reduce the power consumption of ICs, often via lowering supply voltages. 

For ultra-low power applications like in IoT, supply voltages are aggressively scaled to 0.4V or 

lower, which can be at or below the threshold voltage of the transistors used. This places their 

operating region within or near the subthreshold region, which reduces the drive strength of 

transistors. These effects culminate as an increased standard deviation of the input offset voltage.  

Figure 1.2 from [3] demonstrates this effect by comparing the distribution of a sense 

amplifier’s input offset voltage normalized to VDD across 90nm and 45nm technology nodes, and a 

VDD of 1V and 0.4V. For the 90nm plots, the 0.4V curve is thinner than the 1V case, indicating that 

𝜎𝑜𝑠 decreased with lower VDD. Relative to the 90nm node the plots for both VDD cases of the 45nm 

node are wider, which indicates a relative increase in 𝜎𝑜𝑠 between the technology nodes. For the 

45nm plots, the 0.4V trace of the 45nm node is significantly wider than the 1V case, which suggests 

that 𝜎𝑜𝑠 at 0.4V is larger than 𝜎𝑜𝑠 at 1V. 
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Figure 1.2 Comparison of Input Offset Voltage of a Sample Sense Amplifier for Multiple 

Technology Nodes and Different Supply Voltages [3] 

 To continue to scale the performance of SRAM with the industry trends of technology 

scaling and power reduction, new sense amplifiers need to be designed in ways that reduce or 

eliminate the input offset voltage. 

1.2 Topics to be Explored 

This thesis explores SRAM sense amplifiers for use in low voltage environments. The 

primary goal of this thesis is to find a sense amplifier topology and control scheme that reduces 𝜎𝑜𝑠. 

The circuit tested is a modified VLSA that allows for independent timing of its control signals. The 

figures of merit used to evaluate sense amplifier performance are the mean and standard deviation, 

𝜇𝑜𝑠 and 𝜎𝑜𝑠, of the sense amplifier’s input-referred offset voltage 𝑉𝑜𝑠. The circuits designed are on 

TSMC’s 65nm node due to it being a mature and readily available technology, yet advanced enough 

to be affected by the modern design challenges of device mismatch and short channel effects. 

1.3 Thesis Organization 

Chapter 2 covers background information on SRAM organization and SRAM bitcells, 

threshold voltage mismatch and short channel effects, cross-coupled pairs, latch type sense amplifiers, 

and some known methods of input offset reduction in sense amplifiers. Chapter 3 details a proposed 

circuit to test, and the test methodology. Chapter 4 presents and analyzes simulation results. Lastly, 

Chapter 5 concludes the thesis. 
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Chapter 2 

B ckground 

2.1 SRAM Architecture and Operation 

2.1.1 Architecture 

A block of SRAM is typically composed of one or more SRAM banks with shared control 

circuitry. Figure 2.1 shows an example architecture of a bank of SRAM. A large portion of the bank 

area is taken up by the bitcell array, which is what stores the data. One of the most common bitcell 

designs used is the 6T SRAM memory cell. Bitcells can be read from or written to using single-ended 

or differential bitlines, which are exposed to a bitcell’s state when the bitcell’s wordline signal is 

activated. The decoder and wordline driver handle activating the wordline signal for a row of bitcells. 

The precharge array is a set of circuit blocks that charge the bitlines before a read or write operation, 

typically to VDD.  

 

Figure 2.1 Example SRAM Bank Architecture [4] 
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The column multiplexers are optional switches inserted between the bitlines and some of the 

read/write circuitry, specifically the sense amplifier and the write driver. Sometimes a sense amplifier 

implementation is larger than a single column of bitcells, so the column multiplexers allow for two or 

more columns to share a single sense amplifier. The sense amplifier is tasked with reading a small 

differential voltage produced on the bitlines during a bitcell read operation and rapidly amplifies it to 

logic levels. The write driver is responsible for pulling the bitlines to VDD or VSS such that during a 

write operation, the state of a bitcell is altered. 

Lastly, the MS-flop array and Tri-gate array as shown in the diagram represent the latch 

circuitry required to save the output state of a sense amplifier after a read, and control of writing this 

latched data to a common data bus only when this bank is selected. 

2.1.2 6T SRAM Operation 

Figure 2.2 shows the topology of the conventional 6T SRAM cell. Parasitic capacitances 

from the bitlines are also shown. Device pairs P1/P2 and N1/N2 form back-to-back inverters, which 

creates a metastable positive feedback loop. Q and QB will latch to VDD or VSS and keep their state 

unless they are externally driven from the bitlines. For whichever of Q or QB is at VSS, the NMOS 

transistor in the cross-coupled pair N1/N2 whose drain is connected to it is activated and is driving 

the node hard to ground. Meanwhile, the other NMOS device of the N1/N2 pair is in the cutoff region 

and thus is not conducting. 

 

Figure 2.2 Conventional 6T SRAM Cell with NMOS Access Transistors and Bitline 

Capacitances 
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To perform a read, the bitlines are first precharged to VDD. After that, the wordline signal is 

activated (driven to VDD), and the SRAM cell discharges one of the bitlines. For VDD much greater 

than the threshold voltage, the activated transistor of the NMOS pair N1/N2 is in a state of strong 

inversion and in the triode region, which makes a strong connection to VSS. This causes the 

connected pass transistor N3 or N4 to be driven into a state of strong inversion, and in the saturation 

region. By the MOSFET Square-Law drain current equation, the maximum current that the pass 

transistors can conduct is proportional to the square of its overdrive voltage, (𝑉𝐺𝑆 − 𝑉𝑡) [5]. Since its 

gate is at VDD, and its source near VSS, we can approximate that its max current is just proportional 

to 𝑉𝐷𝐷2 . If the bitline capacitance is known, then we can estimate the required time to develop a 

certain differential bitline voltage Δ𝑉𝐵𝐿 with Equation (2.1) below. Note that this equation is merely a 

rough approximation; simple device models such as the MOSFET square law cannot accurately 

predict the dynamic latching performance of the bitcell, especially in advanced technology nodes. 

Additionally, operating the transistors near or within the subthreshold region further degrades the 

relationship.  

 𝜏𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 ≈ 𝐶𝐵𝐿

Δ𝑉𝐵𝐿

𝐼N3,N4 max(𝑉𝐷𝐷)
∝ 𝐶𝐵𝐿

Δ𝑉𝐵𝐿

𝑉𝐷𝐷2
 (2.1) 

 

Figure 2.3 SRAM Cell Read and Write Cycles 
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Figure 2.4 SRAM time for 𝚫𝑽𝑩𝑳 = 𝟓𝟎𝒎𝑽 development vs VDD 

Figure 2.3 shows the waveforms of read and write cycles for one SRAM cell using near 

minimum size SVT devices in TSMC 65nm. The supply voltage VDD is set to 0.4V, and the bitlines 

are loaded with 50fF capacitance. The circled region highlights the development of a differential 

voltage Δ𝑉𝐵𝐿 across the bitlines for a read operation of a logical 0 state. Figure 2.4 shows the read 

time required for the example SRAM cell to develop a Δ𝑉𝐵𝐿 of 50mV on the bitlines for a range of 

VDD, with 𝐶𝐵𝐿=1f, 50f, and 100f. These two figures demonstrate that an increase in bitline 

capacitance and the decrease in the supply voltage VDD both result in an increased read time. 

2.2 MOSFET 𝑽𝒕 Model 

 𝑉𝑡 = 𝑉𝑡0 + 𝛾(√Φ𝑠 − 𝑉𝑏𝑠 − √Φ𝑠) , 𝛾 =
√2𝑞𝜀𝑠𝑖𝑁𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝐶𝑜𝑥𝑒
 (2.2) 

Equation (2.2) from the BSIM4 manual [6] shows the ideal model of MOSFET threshold 

voltage for a long and wide MOSFET with uniform substrate doping. 𝑉𝑡0 is the threshold voltage of 

the device with zero body bias, and 𝛾 is the body bias coefficient. For an NMOS device, this equation 

shows that a positive body voltage relative to the source will produce a negative coefficient with 𝛾 

and reduce the effective threshold voltage. 
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2.2.1 Short Channel Effects and Drain-Induced Barrier Lowering 

As device dimensions shrink with newer technology nodes, the 𝑉𝑡 equation is no longer 

completely accurate. Short Channel Effects (SCE) and Drain-Induced Barrier Lowering (DIBL) 

become prevalent and cause deviations in the threshold voltage. The BSIM4 equation that models 

threshold voltage deviation 𝐷𝑉𝑡 due to SCE and DIBL is the following: 

 𝐷𝑉𝑡(𝑆𝐶𝐸, 𝐷𝐼𝐵𝐿) = −𝜃𝑡(𝐿𝑒𝑓𝑓) ⋅ [2(𝑉𝑏𝑖 − Φ𝑠) + 𝑉𝑑𝑠] (2.3) 

Where 𝜃𝑡(𝐿𝑒𝑓𝑓) =
0.5

cosh(𝐿𝑒𝑓𝑓 𝑙𝑡⁄ )−1
 is the short-channel effect coefficient. The first takeaway from this 

equation is that the MOSFET threshold voltage decreases with an increasing Vds, and the slope is 

related to the channel length. The second takeaway is that the slope of deviation drastically increases 

when 𝐿𝑒𝑓𝑓 gets smaller. 

The impact of these nonideal phenomena on design is that the transistor performance is bias 

dependent, and deviations from the bias point can cause significant performance difference for short 

channel devices. Increasing the channel length can help reduce this threshold voltage deviation. 

2.2.2 Mismatch Model 

Pelgrom et al in [7] studied the statistical variations of integrated MOSFET devices due to 

normally distributed process parameters. The key equation from their research was the following:  

 𝜎Δ𝑉𝑡

2 =
𝐴𝑉𝑡

2

𝑊𝐿
   ⇒   𝜎Δ𝑉𝑡

=
𝐴𝑉𝑡

√𝑊𝐿
  (2.4) 

Where 𝜎Δ𝑉𝑡

2  is the variance of threshold voltage in [𝑚𝑉]2 between two equally sized, closely 

spaced devices, 𝜎Δ𝑉𝑡
 is the corresponding standard deviation, and 𝐴𝑉𝑡

 is a technology-dependent 

scaling factor in [𝑚𝑉 ⋅ 𝜇𝑚]. This equation shows that the variance of threshold voltage between two 

devices is inversely proportional to the area of the devices.  

With ever-shrinking technology nodes, the minimum device size continues to decrease. There 

is a preference for using smaller devices because they allow for lower power consumption and higher 

layout density. Unfortunately, this leads to a larger threshold mismatch between devices.  



 

 9 

2.3 Cross-Coupled Pairs 

This section covers cross-coupled MOSFET pairs and the effect of device mismatch on their 

behavior. This circuit topology is important to understand as cross-coupled pairs are often used in 

sense amplifiers. 

2.3.1 Introduction and Derivation  

 
(a) (b)    (c) 

Figure 2.5 NMOS Cross-Coupled Pair (a), Ideal Small-Signal Model (b), Differential Mode 

Small Signal Model (c) 

A cross-coupled pair is two back-to-back NMOS or PMOS transistors, where the gate of each 

device is connected to the drain of the other. The sources are typically tied together. Figure 2.5a 

shows the schematic for an NMOS cross-coupled pair with a common source terminal, and Figure 

2.5b shows the ideal small-signal model with the output resistance due to channel length modulation 

omitted. 

For a common-mode input, the single-ended impedance is 𝑅𝑖𝑐𝑚 =
𝑣𝑖𝑐𝑚

𝑔𝑚𝑣𝑖𝑐𝑚
=

1

𝑔𝑚
. Since 𝑅𝑖𝑐𝑚 

is positive, any resistive driver attached to the inputs in the common-mode case will be loaded and the 

voltages limited. For a differential mode input 𝑣𝑖𝑑 the small-signal model can be reduced to the 

circuit in Figure 2.5c. Assuming devices are matched, the differential input impedance is  

𝑅𝑖𝑑 =
2(𝑣𝑖𝑑 2⁄ )

𝑔𝑚𝑖𝑖𝑑
=

𝑣𝑖𝑑

−𝑔𝑚𝑣𝑖𝑑 2⁄
=  −

2

𝑔𝑚
  [8]. The metastable point of this cross-coupled pair is when the 

input differential current 𝐼𝑖𝑛 is zero. Any perturbation from the input current will cause an imbalance 

in the circuit’s voltage terminals. If the circuit is instead driven by a Norton or Thevenin equivalent 

source with some non-zero resistance, the circuit becomes a positive feedback amplifier. To maintain 

stability, the loop gain of the amplifier must remain less than unity. However, if the loop gain of this 

amplifier is greater than unity, then it is unstable and any deviation from the metastable point will 



 

 10 

cause the voltage at the cross-coupled pair’s terminals to continuously diverge. This is sometimes 

referred to as regenerative feedback. [9] 

2.3.2 Effect of Mismatch on The Cross-coupled Pair 

 

(a) (b) 

Figure 2.6 NMOS Cross-coupled Pair Small Signal Model with Threshold Mismatch (a), 

Differential Mode Small Signal Model (b) 

The input offset voltage of a differential pair is the differential input voltage required on the 

gates to balance the drain currents of both transistors in the pair. Ideally, it is zero but due to process 

variations and other factors, the devices in the pair may not be perfectly matched. Threshold voltage 

variation is a primary source of mismatch. For a cross-coupled pair, the differential input offset 

voltage 𝑉𝑜𝑠 is simply equal to the differential input voltage. Figure 2.6a shows the small-signal model 

of a cross-coupled pair that is modified to incorporate the effects of threshold mismatch. The 

threshold mismatch is represented by Δ𝑉𝑡 and follows a normal distribution 𝒩(𝜇Δ𝑉𝑡
, 𝜎Δ𝑉𝑡

) according 

to Pelgrom’s model. If we assume the mismatch is evenly split between devices (ie: 𝜇Δ𝑉𝑡
= 0) and 

approximate that the 𝑔𝑚 for each device are equal, then the effect of mismatch can be included with a 

fixed current source parallel to the dependent one with a magnitude of 𝑔𝑚Δ𝑉𝑡 2⁄  as seen in Figure 

2.6b [10], and 𝑉𝑜𝑠 = − (𝑔𝑚
Δ𝑉𝑡

2
) (−

2

𝑔𝑚
) = Δ𝑉𝑡. 

2.3.3 Cross-coupled Pairs in Digital Circuits 

In the context of digital circuits, the unstable behavior of the cross-coupled pair is desirable. 

It allows us to take a small differential voltage or current, and rapidly amplify it to a large differential 

voltage. Digital circuits are bound by their supply rails VDD and VSS, so the pair’s nodes can quickly 

saturate to these rails. This creates complementary single-ended logic values on the nodes. An 

additional benefit in the context of digital circuitry is that once saturated to the supply rails, only one 
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transistor is conducting while the other is in the cutoff region. This reduces static power consumption 

when compared to, for example, a current mirror. 

One caveat of the cross-coupled pair on its own is that there always needs to be something 

driving one of the inputs to maintain the saturated state. In digital circuits, we usually want to keep 

devices off as long as possible, and only consume power when a state transition is necessary. A way 

to make its saturated state stable and reduce power is to incorporate an additional cross-coupled pair 

of the complementary transistor type.  

Figure 2.2 showing a conventional 6T SRAM cell illustrates the connection of the 

complementary cross-coupled pairs. In this configuration, the complementary pairs form back-to-

back inverters. This forces the nodes to be complementary logic states and will remain there until 

external circuitry tries to drive the nodes. 

2.4 Latch Type Sense Amplifiers 

Latch type sense amplifiers are similar to a clocked dynamic comparator. The common 

structure in these types of amplifiers is a cross-coupled transistor pair. There may be one, or a 

complementary set used. A differential current or voltage is applied to the cross-coupled pair, and on 

a clock enable signal the cross-coupled pair amplifies the small value to digital levels. 

The two traditional classes of latch type sense amplifiers are the voltage latch sense amplifier, 

and the current latch sense amplifier [11]. 
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Figure 2.7 Voltage Latch Sense Amplifier (VLSA) 

The VLSA as seen in Figure 2.7 above is one of the simplest latch type sense amplifier 

topologies. Output nodes Q and QB are set to some differential input voltage through P3 and P4 by 

using the bitlines BL and BLB, which are near VDD. The differential voltage applied means that one 

of the NMOS devices in the inverter pair has a larger VGS than the other. When the footer NMOS N3 

is activated on the clock signal / SAE, the NMOS with the larger VGS will conduct more current than 

the other NMOS in the pair. This pulls its drain to VSS faster than the other output node. As Q and 

QB are pulled to VSS, the PMOS devices get closer to turning on. Since Q and QB are at different 

voltages, one of the PMOS devices turns on earlier than the other one and slows the rate of decrease 

of its drain voltage. Eventually one of the NMOS devices will turn off, and its drain will be pulled to 

VDD by the PMOS connected above it. The complementary output node will be pulled to VSS. The 

read decision produced here will remain as long as SAE is asserted. 
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Figure 2.8 Current Latch Sense Amplifier (CLSA) 

The CLSA as seen in Figure 2.8 above is another popular sense amplifier topology. This class 

of circuit uses currents to start the regenerative feedback of a cross-coupled inverter pair. Instead of 

precharging the output nodes to BL and BLB, they are precharged to VDD. The input voltages are 

applied to the input sensing pair N3/ N4, which converts the signals to the currents. The imbalance in 

currents due to a differential input voltage causes the source terminals of N1 and N2 to be pulled to 

VSS at different rates. The side with the higher discharge current will cause the connected device to 

turn on sooner. The output node that is connected to the drain of this device will be pulled to VSS, 

while the other side is not driven. This creates an imbalance in the output node voltage, and 

regenerative feedback begins. 

2.5 Latch Type Sense Amplifier Vos Yield Model 

To guarantee that a sense amplifier produces the correct output for some input voltage Δ𝑉𝑖𝑛, 

the input voltage must be large enough to overcome the input offset voltage 𝑉𝑜𝑠.  If this condition 

cannot be met, then the sense amplifier can produce an incorrect result. The probability that a sense 
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amplifier produces a correct result for some Δ𝑉𝑖𝑛, or read yield 𝑌(Δ𝑉𝑖𝑛), can be estimated by testing 

some large N number of randomly selected devices and counting the number of correct results: 

𝑌(Δ𝑉𝑖𝑛) =
Number of Correct Results

Number of Devices (N)
∗ 100% (2.5) 

 Recall that the input offset voltage of a cross-coupled pair depends on the normally 

distributed 𝑉𝑡 mismatch of its devices.  Since cross-coupled pairs are a primary component in sense 

amplifiers, the read yield of a sense amplifier can be modelled as a probability distribution of the 

sense amplifier offset voltage [12]:  

𝑌(Δ𝑉𝑖𝑛) = 𝑃{Δ𝑉𝑖𝑛 ≥ 𝑉𝑜𝑠} 

= Φ (
Δ𝑉𝑖𝑛 − 𝜇𝑜𝑠

𝜎𝑜𝑠
) 

=
1

2
(1 + erf (

Δ𝑉𝑖𝑛 − 𝜇𝑜𝑠

𝜎𝑜𝑠√2
 ))   

(2.6) 

 Where 𝑉𝑜𝑠 ~ 𝒩(𝜇𝑜𝑠, 𝜎𝑜𝑠) is a normally distributed random variable, Φ(𝑥) is the cumulative 

Gaussian distribution, and erf(𝑥) is the error function. Equation (2.6) can be rearranged to find the 

required Δ𝑉𝑖𝑛 normalized to 𝜎𝑜𝑠 for a target yield at Δ𝑉𝑖𝑛: 

𝑘 =
Δ𝑉𝑖𝑛 − 𝜇𝑜𝑠

𝜎𝑜𝑠
= √2 ∗ erf −1(2𝑌(Δ𝑉𝑖𝑛) − 1) (2.7) 

 

 

Figure 2.9 Plot of Required 𝚫𝑽𝒊𝒏 Normalized to 𝝈𝒐𝒔 for a Target Yield of a Sense Amplifier 
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Figure 2.9 plots equation (2.7) with 𝜇𝑜𝑠 = 0 for a range of target yields. The relationship is 

roughly linear for yields <= 90%. It starts to curve upward around 95%, and at >= 99% the curve 

becomes asymptotically vertical. A 99.73% yield (0.23% error rate) is obtained with a 3𝜎𝑜𝑠 offset, 

while an error rate of 1 part per million (1 ppm) requires a minimum input of 4.75𝜎𝑜𝑠. This shows 

that there is diminishing returns to reducing error rate by increasing the minimum input offset 

voltage. A corollary to this is that for high yield designs, the minimum input voltage increases sharply 

for any marginal improvement to yield. Since Δ𝑉𝐵𝐿 development takes time in SRAM circuits, 

reducing 𝜎𝑜𝑠 of a sense amplifier will help reduce the time required for the SRAM cells to produce 

the required Δ𝑉𝑖𝑛 for a targeted yield and thus reduce the total read cycle time.  

2.6 Review of Offset Reduction Methods 

This section briefly covers some input offset reduction techniques for VLSA and CLSA style 

sense amplifiers that other researchers have previously investigated. The following subsections group 

the techniques by their style of offset reduction. 

2.6.1 Self Calibration / Auto Zeroing 

Sense amplifiers can be designed with additional structures that allow for active monitoring 

and zeroing of its input offset voltage. Figure 2.10 below shows an example of this idea. 

 

Figure 2.10 Self Calibrating Dynamic Comparator [13] 

Mc1 and Mc2 devices are used to trim the input sensing pair of the comparator for zero input 

offset voltage. By driving the Mc2 gate voltage Vc in a feedback loop with an up/down sensor and a 

charge pump, spare clock cycles in between memory read operations can be used for a self-calibration 

routine to zero out the input offset voltage. 
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2.6.2 𝑽𝒕 Mismatch Cancellation and Compensation 

This type of scheme uses a precharge or cancellation phase in its sensing sequence to 

eliminate the effect of 𝑉𝑡 mismatch of devices. This scheme works well in current-mode sense 

amplifiers, where nodes can be precharged with the threshold voltages of the critical transistors. This 

balances the current drive strength of the devices when the sensing stage begins. 

 

 

 

 

Figure 2.11 Offset Cancelling Sense Amplifier Example [14] 

 Figure 2.11 from [14] uses a current mode input topology. It has a two-part cancellation 

phase that pre-loads the threshold voltages of the input pair P1/P2 onto the latching pair N1/N2 

without the influence of the bitline voltages. On sense amp enable, the input signal is added to the 

gates of the input pair to induce a current imbalance going into the N1/N2 pair to trigger the positive 

feedback loop.  

An important feature of this architecture is that the cancellation phase can occur 

simultaneously with the SRAM bitcells being prepared for access, which is time that the sense 

amplifier would otherwise not be doing anything. 
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Figure 2.12 Capacitor Based Compensation for CLSA [15] 

Figure 2.12 from [15] uses a CLSA structure. MOS caps are inserted in between the source 

terminals for the N1/N2 pair devices, and the drain terminals of the N3/N4 input sensing pair. These 

capacitors assist in the precharge phase in setting the node voltages Cs0 and Cs1 to VDD minus the 

threshold voltages of N1/N2. During the sensing phase, they provide a way to discharge Cs0 and Cs1 

to VSS quickly. In combination with the N6/N7 pair, the N3/N4 input pair sets an imbalanced 

discharge path through the capacitors to VSS that affects the current-mode regeneration of the cross-

coupled pair.  

Similar to the previously shown sense amplifier, this architecture utilizes dead time for state 

preparation. Cs0 and Cs1 precharge begins on the falling edge of the sensing clock SAE. 
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2.6.3 Multiple Injection 

 

Figure 2.13 HYSA-QZ Schematic [16] 

Figure 2.13 from [16] uses a hybrid topology of a CLSA with VLSA-like precharging. 

Instead of precharging the output nodes Q and QB to VDD and relying only on the input signals at the 

NMOS pair N3/N4, the pass transistors P3, P4, P5, and P6 are used to inject BL/BLB onto the output 

nodes Q/QB and the intermediate nodes Z/ZB during a precharge phase. For an input differential 

voltage Δ𝑉𝐵𝐿 = 𝐵𝐿 − 𝐵𝐿𝐵 that is applied to Q/QB and Z/ZB during precharge, then the VGS on N1 

and N2 are −Δ𝑉𝐵𝐿 and Δ𝑉𝐵𝐿 respectively, which results in a Δ𝑉𝐺𝑆 between N1 and N2 of 2Δ𝑉𝐵𝐿. 

Additionally, since N1 has a negative VGS, it takes some time during the sensing phase for 

its source node to discharge and produce a large enough positive VGS to form a conducting drain-

source channel. Meanwhile, the VGS on N2 is already positive so it will take less time for its VGS to 

grow enough to start conducting. The key takeaway of this architecture is that multi-point signal 

injection can be used to shift the effective VGS seen by the transistors in the sense amplifier.  
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2.6.4 Input Boosting / Multiplication 

 
 

Figure 2.14 SBLSA [17] 

Figure 2.14 from [17] uses a VLSA structure targeted for low voltage applications. Boosting 

circuitry is added to the Q and QB lines. These structures allow for BL and BLB to be loaded onto 

matched MOS caps while Q and QB are precharged, and during the sensing stage, the MOS cap gates 

are shifted from VSS to BL and BLB. Since the MOS cap voltage cannot change instantaneously, the 

voltages that were applied to Q and QB get a two times differential boost. The benefit of this boosting 

is two-fold: the differential input voltage needed for a given input offset is effectively halved, and the 

common-mode boost increases the gate overdrive of the NMOS pair which contributes to a 

significant improvement on sensing delay for subthreshold operation. This circuit also borrows the 

multiple injection point concept by powering the pull-up PMOS pair P1/P2 with the bitlines.  
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2.6.5 Timing Manipulation 

Timing manipulation refers to the adjustment of the properties of a sense amplifier’s control 

signals.  This can be done by inserting timing skews between control signals, or by adjustment of the 

signal rise and fall times. 

  

Figure 2.15 Intrinsic and Extrinsic Offset of VLSA vs SAE Rise Time [18] 

Singh and Bhat in [18] investigated the effect of the rise time of the SAE signal on the input 

offset of a VLSA. They used an “input decoupled” VLSA topology, which is the VLSA presented in 

Figure 2.7 but with additional column multiplexer switch transistors. Offset sources were separated 

into “intrinsic” and “extrinsic”, for the core cross-coupled pairs (N1/N2, and N3/N4) and the pass 

transistors (P3/P4), respectively. Plots of intrinsic and extrinsic offset sources for a swept SAE rise 

time as in Figure 2.15 were recorded. The intrinsic offset has a 1/x like response, decreasing as the 

rise time is increased. For the extrinsic offset, the plots have a V like shape to them, with the center of 

the V moving closer to 0 seconds as the W/L ratio of the pass transistors is increased. The combined 

offset results for the whole latch have a 1/x like shape to them that flattens out for larger rise times. 

The conclusion drawn is that a slower rise time can help reduce the VLSA offset. 

Shi in [19] studied both VLSA and CLSA amplifiers. For a VLSA with separate control 

signals for the NMOS footer transistor (controlled by SAE) and the pass transistors (controlled by 

PGB), intentionally adding a skew between the control signals can have a positive impact on reducing 

input offset. Simulation results showed that delaying PGB by a small amount relative to SAE (10ps in 

their example) produced an approximate 10% reduction in input offset. 
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2.7 VDD Dependence of Device Mismatch Contribution in VLSA 

Pileggi in [20] analyzed the input offset voltage of a VLSA in 65nm technology. He used a 

basic model to fit the input offset voltage as a linear function of the 𝑉𝑡 mismatch of the NMOS and 

PMOS pairs: 𝑉𝑜𝑠 = 𝑎Δ𝑉𝑡𝑛 + 𝑏Δ𝑉𝑡𝑝 + 𝑐 . Using this model, the parameters a and b are used to 

construct a correlation coefficient (CC) that measures the contribution of the PMOS and NMOS 

mismatch as a ratio to the input offset voltage. He performed a sweep of bitline precharge voltages up 

to VDD and computed the NMOS and PMOS CC for each point. The plot shows that the closer the 

bitline precharge voltage is to VDD, the lower the CC of the PMOS pair. The reasoning is that time 

which the PMOS is off during a read cycle is maximized, during which only the NMOS pair is 

conducting. 

An important detail in Pileggi’s analysis is that he performed this at a VDD of 1V, which is 

the nominal core voltage for 65nm CMOS. This is well above the 𝑉𝑡 of the standard 𝑉𝑡 devices 

(300mV to 400mV range for 65nm). At the time of initial discharge, the transistors in the NMOS pair 

are driven very hard into the saturation region, and the PMOS pair is effectively off. Even accounting 

for any subthreshold currents in the PMOS devices, the currents in the NMOS pair are orders of 

magnitude greater. 

At lower voltages, however, this is not necessarily the case. The lower the supply voltage, the 

weaker the drive on the NMOS pair. If the voltage becomes low enough, then the NMOS devices may 

be operating near or within the subthreshold region. The original assumptions from the 1V case may 

no longer be valid as the currents in the NMOS devices are now on a much more comparable level to 

the PMOS devices. This may mean that PMOS mismatch has a more significant impact on the input 

offset voltage. 

To demonstrate this, a standard VLSA circuit is constructed with standard 𝑉𝑡 devices in 65nm 

technology. Input offset is characterized by using a Monte Carlo simulation as described in Section 

3.4.6 of this document. The measurement is conducted for a set of supply voltages ranging from 0.2V 

to 1V. Virtuoso’s sensitivity analysis tool is then used to analyze the mismatch contribution of each of 

the transistors to the variance of the input offset voltage. 
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Table 2.1 Offset Variance Contribution of NMOS and PMOS pairs for standard VLSA vs VDD 

Parameter Device Value 

VDD (V) - 0.20 0.40 0.70 1.00 

𝝈𝒐𝒔 (mV) - 11.26 10.79 11.01 9.15 

Variance 

Contribution R^2 

total (%) 

- 95.34 99.98 100 100 

Variance 

Contribution (%) of 

𝝈𝒐𝒔
𝟐  

N1 39.25 47.10 47.78 47.95 

N2 41.45 51.12 51.84 51.98 

P1 7.08 0.89 0.19 0.04 

P2 7.56 0.87 0.18 0.03 

Combined Variance 

Contribution (%) of 

𝝈𝒐𝒔
𝟐  

NMOS Pair 

(N1+N2) 
80.70 98.23 99.62 99.93 

PMOS Pair 

(P1+P2) 
14.64 1.76 0.37 0.07 

  

Table 2.1 above presents the results of the input offset mismatch contribution analysis. For 

each VDD point the standard deviation of input offset voltage 𝜎𝑜𝑠 is reported for reference of scale. 

The mismatch contribution of each device is reported as a percentage of the offset variance 𝜎𝑜𝑠
2 , and 

the NMOS and PMOS contributions are summed to give the mismatch contribution of each cross-

coupled pair. Note that VDD near 1V results in a negligible mismatch contribution by the PMOS pair. 

As VDD lowers to the threshold voltage and below, the PMOS contribution becomes much more 

significant. This raises a question about the possibility of reducing the PMOS contribution at lower 

operating voltage. 
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Chapter 3 

M thodo ogy 

This chapter presents a sense amplifier circuit topology and timing mechanism with the goal 

of reducing input offset voltage variation in a low supply voltage environment, specifically at 0.4V. 

The circuit is based on the standard VLSA circuit and its control mechanism is a type of timing 

manipulation. Its design attempts to address the mismatch contribution issues of the VLSA as 

discussed in Section 2.7. Two testbenches and their architectures are described in Section 3.4. Section 

3.5 outlines the tests to be performed and Section 3.6 presents the default simulation parameters used. 

3.1 Hypothesis 

In the standard VLSA, the PMOS pull-ups are initially off due to the Q and QB nodes being 

precharged to near VDD with some Δ𝑉𝐵𝐿. When the sense amplifier is activated there is some time 

where it is only the NMOS pair conducting, and Q and QB are discharged to GND. However, once Q 

and QB have discharged enough that they are |𝑉𝑡𝑝| below VDD, the PMOS devices will begin to turn 

on and start the regenerative feedback. It is at this point that the mismatch of the PMOS threshold 

voltage will influence the output voltage development.  

From this description of the VLSA’s operation, we recognize that there is some time delta 

between the start of the sensing cycle and the time at which the PMOS devices turn on. Also, as 

outlined in Section 2.7, there is the possibility of reducing the VLSA’s input offset voltage by 

reducing the PMOS pair’s contribution to the VLSA’s input offset variation. These two statements 

raise the following question: would extending this time where the PMOS pair devices are off 

influence the input offset voltage variation of the sense amplifier? Thus, we hypothesize that 

introducing this time extension will reduce the PMOS pair’s contribution to the input offset voltage of 

the sense amplifier due to threshold voltage mismatch, and by extension reduce the input offset 

voltage variation. 
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3.2 Proposed Circuit – DVLSA 

3.2.1 Concept 

 
(a) 

 
(b) 

Figure 3.1 DVLSA Schematic (a) and Conceptual Waveforms (b) 

The proposed circuit as seen in Figure 3.1 is a VLSA with delayed SAEB signal, or DVLSA. 

It is a modified version of the conventional VLSA. A header PMOS switch, P5, is inserted between 

VDD and the PMOS pullup pair P1/P2. The method of control is similar to the standard VLSA, with 

the difference being the use of P5 (controlled by SAEB) to control the current path from VDD to the 

P1/P2 pair independently from the other devices.  

Observe Figure 3.1b for the circuit’s conceptual waveforms to help understand the predicted 

method of operation. The plots assume Δ𝑉𝐵𝐿 is positive (Q > QB), which corresponds to a logic ‘1’. 

We expect that this circuit will behave in the following manner:  

1. Delaying SAEB extends the period for which the PMOS devices are off, and thus only the 

NMOS pair is developing a differential signal. 

2. With enough SAEB delay, the Q and QB nodes should decay to near the threshold voltages of 

the NMOS devices. If there is a sufficiently large differential voltage already developed, then 

the NMOS device with the lower gate voltage will shut off first. Using the conceptual 

waveforms as a reference this is device N1 and node QB on its gate. The Q node attached to 

N1’s drain should now have no discharge path as both the connected NMOS and PMOS 
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devices are off, so this node is left floating. Due to the cross-coupled connections the gate of 

N2 is now a fixed voltage, and thus that NMOS device will continue to discharge QB until it 

reaches VSS. If this large differential voltage develops correctly, then it should completely 

compensate for any mismatch in the PMOS devices when they are turned on. 

There is some concern relating supply voltage to the effectiveness of this control method. The 

performance of the circuit relies on P node remaining floating and not discharging through the PMOS 

pair during the delayed SAEB period. Supply voltages that are at the upper end of the allowed range 

for the technology will result in voltage swings on Q/QB that are larger than the magnitude of 𝑉𝑡 by 

some multiple. Even if the P node was floating during the beginning part of a read operation, the 

Q/QB nodes can reach voltages low enough below the voltage of P that the PMOS pair will turn on 

anyway and discharge the P node. In this event, the PMOS devices will still have some influence on 

Q/QB voltage development and potentially increase the input offset variation.  

If the supply voltage is restricted to the low voltage region that is comparable in magnitude to 

|𝑉𝑡|, the Q/QB nodes will have to discharge by an amount near the full supply voltage before the 

PMOS devices gain sufficient 𝑉𝐺𝑆 to be considered on. Under these conditions, the concern is reduced 

to possible subthreshold conduction through the PMOS pair. This may be small enough that the 

performance is not significantly affected. We will target a VDD of 0.4V for testing. 
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3.2.2 Device Sizing 

 

Figure 3.2 NMOS 𝑽𝒕 Extraction vs VDS 

In sub-micrometer technology nodes such as TSMC 65nm, short channel effects and DIBL 

can become significant for minimum dimensioned devices. Figure 3.2 is a plot of 𝑉𝑡 extracted from a 

DC sweep of VDS for a set of channel lengths. VGS is held at a fixed value of 0.5V, and the gate area 

is held at a constant 0.08𝜇𝑚2. In the plot we can see that the slope of the 𝑉𝑡 curve is large for a small 

L and flattens out as L increases, which agrees with what was discussed in Section 2.1. 

From the perspective of input offset voltage reduction, we are concerned with device 

threshold variation. Depending on how the sense amplifier is precharged and a differential voltage is 

applied, DIBL can work together with the threshold mismatch to make the input offset voltage even 

worse. For the critical transistor pairs of a sense amplifier, gate area and W/L ratio must be designed 

carefully. The area should be selected based on Pelgrom’s model to achieve a nominal threshold 

voltage variation. Designing the W/L ratio is a tradeoff between drive strength and short channel 

effects; a lower W/L ratio for a given gate area means the channel length is longer which can reduce 

DIBL but at a cost of a lower device transconductance.  

The transistor pair N1/N2 is the primary contributor to the input offset in the VLSA, so their 

sizing is critical. It is assumed that the N1/N2 pair is also the primary contributor to the DVLSA 

structure given the similarity to the VLSA. A gate area of 0.08𝜇𝑚2 is chosen with initial dimensions 

of 160nm length and 500nm width for an estimated 𝜎Δ𝑉𝑡
= 8.34𝑚𝑉.  
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 PMOS pull-ups P1/P2 are given a length of 120nm to significantly reduce DIBL, and the 

width kept at the device default of 200nm. Bitline access transistors P3,4 are kept at the default width 

of 200nm, and an increased length of 80nm to reduce leakage. Footer switch NMOS N3 is kept at 

minimum length and given an increased width of 300nm for increased drive strength. PMOS switch 

P5 is given a length of 80nm, and a total width of 600nm. The pull-up path to VDD is weak here, so 

giving a higher W/L ratio can improve drive strength. For layout considerations, this device is split 

into 2 fingers of 300nm width, which can allow for symmetric placement around P1 and P2. Table 3.1 

below provides a summary of the chosen device sizes. 

Table 3.1 DVLSA Transistor Sizes 

Device Width (nm) Length (nm) Fingers 

N1, N2 500 160 1 

N3 300 60 1 

P1, P2 200 120 1 

P3, P4 200 80 1 

P5 300 80 2 

 

3.3 Reference Circuit – VLSA 

A standard VLSA, as shown in Figure 2.7, will be used as a reference for evaluating the 

DVLSA’s performance. The topologies of the VLSA and DVLSA are very similar, so this reference 

VLSA implementation is designed with the same device sizes as the DVLSA as in Table 3.1. One 

exception to this is P5 since it does not exist in VLSA. A benefit of using the same device sizes is that 

each device should have the same threshold variation when operating individually. This gives higher 

confidence that any difference in circuit performance is due to the topology and control mechanism 

rather than just Pelgrom scaling. 

3.4 Testbench Architecture 

It is often possible to characterize some aspects of analog amplifiers and digital circuitry 

using only DC simulations. As an example, input offset voltage for an op-amp can be found with a 

simple DC operating point simulation or a DC sweep. Some circuits however are dynamic and their 

performance must be evaluated from a time-domain simulation. As mentioned in Section 2.4, latch 

type sense amplifiers are a form of a dynamic comparator, and thus fall into this latter category of 

circuits. 
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This section discusses the testbench architecture and the different testbenches used for 

evaluating the selected sense amplifier designs. Two testbenches are used. The first testbench is the 

fixed Δ𝑉𝐵𝐿 testbench as seen in Section 3.4.5. It is used to evaluate the nominal operation of the 

device, and to measure parameters such as sensing delay. The second testbench is the dynamic 

testbench as seen in Section 3.4.6. It is used to characterize input offset voltage and device mismatch 

contribution. 

Each testbench can be used for both single-point measurements and multi-point statistical 

runs. The Monte Carlo method is used for the statistical variation of device parameters, and 1000 

single points are used per statistical run.  

3.4.1 Sense Amp Selection Cell (SA_SEQ_SWEEP) 

 

Figure 3.3 DVLSA Implementation for SA_SEQ_SWEEP 

For each sense amplifier topology tested, the sense amplifier core and its corresponding 

timing circuitry are implemented in separate cells. They are then assembled in uniquely implemented 

schematic views of a cell named SA_SEQ_SWEEP. Figure 3.3 shows the implementation of this cell 

for the DVLSA. An instance of SA_SEQ_SWEEP is instantiated at the top level of each testbench.  

This configuration encapsulates topology-specific signals within the SA_SEQ_SWEEP cell. 

Only the common signals VDD/VSS, Q/QB, BL/BLB, and TRIG are exposed as ports. By using 

Virtuoso’s config view hierarchies at the top-level schematic of the testbench one can easily swap a 

SA_SEQ_SWEEP instance’s implementation at netlisting time to change the device under test 
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(DUT). The config views can also be used to swap out variants of timing blocks and core blocks for a 

given topology. The major advantage of this is the ability to have a single testbench and simulation 

environment that is shared across every DUT. 

3.4.2 Sense Amplifier Cores 

 

Figure 3.4 VLSA Sense Amplifier Core Implementation 
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Figure 3.5 DVLSA Sense Amplifier Core Implementation 

Figure 3.4 and Figure 3.5 show the implementation of the sense amplifier core cells for the 

VLSA and DVLSA, respectively. The device sizes in each cell match what is displayed in Table 3.1. 

The nch and pch instances represent transistors using the standard 𝑉𝑡 models of the TSMC 65nm 

PDK. nch_mac and pch_mac are variants on the standard nch and pch devices; they operate the same 

under nominal conditions but enable the local variation of that instance’s parameters in statistical 

simulations. By default, the regular nch and pch devices are used for each instance; they are only 

swapped to the nch_mac and pch_mac variants if a test requires them to be varied. 
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3.4.3 Timing Blocks 

 

Figure 3.6 DVLSA Timing Cell 

Each sense amplifier tested has a custom timing cell. All timing cells have a common TRIG 

input from which the design-specific output signals are derived. For consistency in simulation, each 

implementation is composed of a set of voltage-controlled voltage sources (VCVS). This allows for 

consistent rise times to be applied to every output signal and is dependent only on the input trigger 

signal. Each VCVS can also have a fixed propagation delay specified as an argument set by the 

testbench environment. Figure 3.6 shows the timing block implementation for the DVLSA following 

this methodology. The implementation for the reference VLSA’s timer is similar, but all VCVS 

delays are set to 0. 
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3.4.4 Output Decision Block 

 

Figure 3.7 Output Decision Block 

 Figure 3.7 shows the output decision block, tb_SA_SEQ_decision, which is implemented in 

Verilog-A (refer to Appendix A for the code). This block continuously reads the analog signals of the 

sense amplifier’s Q and QB output nodes and converts it into a binary state for a testbench to sample 

on its clock edges. SGN determines if (VQ-VQB) is positive or negative, and DECISION tests if 

VQ>VQB. These are simple calculations that could output a favourable decision even if the sense 

amplifier’s output delta is quite small. An actual circuit sampling the sense amplifier output would 

most certainly be unable to correctly determine the output state in this case. Therefore CRIT_SGN 

and CRIT_DECISION are provided to decide on the sense amplifier’s output with additional 

conditions. CRIT_SGN is programmed to output the sign of the input delta only if the magnitude is 

above a specified threshold (default to 90% of VDD). Otherwise, it remains at zero. 

CRIT_DECISION is programmed to output a binary test of if CRIT_SGN equals 1. 

 Using CRIT_DECISION as the signal to sample allows a testbench to determine if the sense 

amplifier can read a logic ‘1’ from its inputs and produce a large enough output delta for other 

circuits in the system to correctly interpret the result.  
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3.4.5 Fixed 𝚫𝑽𝑩𝑳 Testbench 

 

Figure 3.8 Fixed 𝚫𝑽𝑩𝑳 Testbench 

 

Figure 3.9 𝑽𝑩𝑳 and 𝑽𝑩𝑳𝑩 Setup vs 𝚫𝑽𝑩𝑳 (VDD=400mV) 

Figure 3.8 shows a testbench that allows for sense amp reads with a fixed Δ𝑉𝐵𝐿 on the 

bitlines. Two voltage sources are used to set the voltages on BL and BLB using a single differential 

control voltage VBLDELTA_SET. Figure 3.9 shows how BL and BLB are set up for a given Δ𝑉𝐵𝐿. 

    

     

 
  
 
 
 

     

     

     

     

     

     

     

     

     

     

     
    

                 

                                                



 

 34 

This configuration limits the max voltage on either of the lines to be VDD, regardless if Δ𝑉𝐵𝐿 is 

positive or negative.  

The testbench can run a single read cycle (default) or multiple read cycles. This testbench 

allows for inspection of the DUT’s operation at nominal conditions, and statistical characterization of 

directly measurable parameters such as read time (𝑡𝑠𝑒𝑛𝑠𝑒). To model a realistic capacitive load on the 

sense amplifier output that would be expected in a physical implementation, a small chain of near-

min-sized inverters is added to the outputs of Q and QB. 

3.4.6 Successive Approximation of 𝚫𝑽𝑩𝑳 Testbench 

 

Figure 3.10 Successive Approximation of 𝐕𝐎𝐒 Testbench 

Figure 3.10 shows the testbench for input offset characterization using a Successive 

Approximation (SAR) algorithm in a clocked servo loop. The benefit of a SAR algorithm is its 

logarithmic time complexity, which offers a significant reduction in simulation time for high-

resolution tests [21]. If the controller starts the search at 0 and the first step is VDD, the resolution of 

the search will be equal to 𝑉𝐿𝑆𝐵 =
𝑉𝐷𝐷

2𝑁−1 , where N is the number of cycles.  
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Figure 3.11 Example Waveforms for SAR Testbench 

Figure 3.11 shows an example set of waveforms for this testbench. The SAR controller sets 

BL and BLB voltages with a differential voltage of BL_DELTA and follows the same function seen 

in Figure 3.9 in the fixed Δ𝑉𝐵𝐿 testbench. On the rising edge of the testbench clock, the sense 

amplifier DUT will perform its sensing operation. The evaluator block will read the differential 

output voltage of the sense amplifier and apply some function to the output. The result is fed back to 

the SAR controller so that it can decide to step up or down for the next read cycle. Once enough 

cycles are performed to reach the desired accuracy level, the FINISH signal is asserted immediately 

so that the testbench measurements can read the last used BL_DELTA quantity. This becomes the 

resulting input offset voltage for the simulation. 

Refer to Appendix A for the Verilog-A code of the SAR controller. 
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3.5 Tests 

3.5.1 Nominal Waveform Comparison 

 

Figure 3.12 VLSA Nominal Waveforms (𝚫𝑽𝑩𝑳 = 𝟒𝟎𝒎𝑽) 

This test uses the basic testbench from Section 3.4.5 to perform a sensing operation for the 

VLSA and DVLSA under nominal conditions with the same selected parameters. By the circuit 

behavior predicted in Section 3.2.1, there should be some duration where the P1 and P2 transistors are 

off and thus do not influence the discharging of the Q/QB nodes. To evaluate this, we will examine 

the waveforms for the drain currents of P1 and P2. The waveform for the ZG node will also be used 

to help determine if there is any subthreshold leakage through the PMOS devices. Figure 3.12 shows 

an example set of these waveforms collected for the reference VLSA implementation at Δ𝑉𝐵𝐿 =

40𝑚𝑉. 
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3.5.2 Statistical Input Offset – Isolated PMOS Pair 

 

Figure 3.13 VLSA Input Offset Voltage Histogram – PMOS Pair Only 

This test will run a Monte Carlo simulation on SAR testbench from Section 3.4.6 with only 

the PMOS pair devices P1 and P2 varying. The goal of this test is to determine if the DVLSA 

topology can achieve a smaller standard deviation of 𝑉𝑜𝑠 relative to the VLSA when the PMOS pair 

devices P1 and P2 are varied in isolation from other devices. Since only two devices from a single 

pair are being varied there is no need to perform a mismatch contribution analysis. Figure 3.13 above 

shows a set of this data collected for the reference VLSA implementation. 
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3.5.3  Statistical Input Offset – All PMOS and NMOS Symmetric Pairs 

 

Figure 3.14 VLSA Input Offset Voltage Histogram – PMOS and NMOS Pairs 

This test will run a Monte Carlo simulation on SAR testbench from Section 3.4.6 where all 

differential devices are being varied. This set of devices includes the NMOS cross pair N1/N2, the 

PMOS cross pair P1/P2, and the PMOS access pair P3/P4. Histogram plots and input offset voltage 

statistics are to be collected. Figure 3.14 above shows a set of this data for the reference VLSA 

implementation. The goal of this test is to determine if the DVLSA topology can achieve a smaller 

standard deviation of Vos relative to the VLSA when all the devices in the NMOS and PMOS pairs 

are varied. In a physical implementation of this circuit, all devices will have some variation. 

Therefore, testing with most of the devices varying will provide a more realistic prediction of the 

circuit’s performance than the previous isolated PMOS test. 

Note that the TSMC 65nm PDK uses two standard gaussian parameters per transistor to 

determine the variation of its properties. For NMOS they are parn1 and parn2, and for PMOS they are 

parp1 and parp2. In the test from the previous section, there is only a single device pair varying. As 

such, all variation to input offset voltage is directly attributable to that one device pair, hence these 

varied input parameters are not as important. In this test, however, there are several devices across 

multiple device pairs that are being varied, and thus we cannot directly determine how much each 
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device pair affects the input offset voltage. To obtain that level of information it becomes necessary to 

perform a mismatch contribution analysis. 

The mismatch contribution analysis tool in Virtuoso performs a multivariate regression on a 

measured result to correlate its variation with one or more varied input parameters. The tool uses this 

information to compute how much each varied input parameter contributed to the output parameter’s 

variation and reports these quantities as a percentage of the total variance of the output parameter. In 

this test, the target result to measure is the input offset voltage, and the varied input parameters are the 

parn and parp variables of each varying device. By summing the variance contribution of parn1, 

parn2, parp1, and parp2 for each device we can obtain an estimate of how much that device 

contributed to the input offset voltage variation. This step can be repeated across devices to determine 

how much a pair or group of devices contributed to the input offset voltage variation.  

3.6 Test Conditions 

Table 3.2 Testbench Default Parameters 

Technology TSMC 65nm GP 

Transistor 𝑽𝒕 Type Standard 𝑉𝑡 

Temperature 27 °𝐶 

𝑽𝑫𝑫 0.4V 

𝒇𝒄𝒍𝒌 1MHz 

𝒕𝒓𝒊𝒔𝒆 250ps 

SAEB_delay 2ns 

SAR Testbench Cycles 18 

SAR Testbench 𝑽𝑳𝑺𝑩 3.05uV 

 

All tests are conducted with the conditions in Table 3.2 unless otherwise specified. Due to 

how the SAR controller is programmed, the sense amplifier experiences differential voltage steps as 

large as VDD in the early cycles of the offset testbench. At the low voltage of VDD=0.4V, the 

transistors are weaker so the precharge response to voltage steps has a large time constant. A 

frequency of 1MHz ensured that there is more than enough time for the internal nodes to settle for 

most of the input range. The SAR testbench uses 18 clock cycles to locate the offset voltage. Using 

the equation in Section 3.4.6 for SAR resolution, the input offset measurement should be accurate to: 

𝑉𝐿𝑆𝐵 = 0.4𝑉 ∗ 2−(18−1) = 3.05uV.  



 

 40 

Chapter 4 

Si u  tion R  u t   nd An  y i  

4.1 Nominal Waveform Comparison 

For the results presented below, a SAEB_delay of 2ns is used. The nominal waveforms are 

collected for a Δ𝑉𝐵𝐿 of 10mV and 40mV to compare the performance when using a small input 

voltage versus a large input voltage. For each SAEB configuration of the DVLSA tested, the plots of 

the collected waveforms have the waveforms of the reference VLSA superimposed to simplify the 

comparison between the circuits. 

Note that some of the plots below report the region of operation of certain devices. These 

waveforms are integer enumerations of the operating region as described in the BSIM manual:  

0 = cutoff, 1 = triode, 2 = saturation, and 3 = subthreshold. 

4.1.1 Large input Voltage (𝚫𝑽𝑩𝑳 = 𝟒𝟎𝒎𝑽) 

 

Figure 4.1 Nominal Comparison of VSLA vs DVLSA (𝚫𝑽𝑩𝑳 = 𝟒𝟎𝒎𝑽, 𝐒𝐀𝐄𝐁_𝐝𝐞𝐥𝐚𝐲=2.0ns) 
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Figure 4.2 Nominal Comparison of Currents and Operating Regions  

(𝚫𝑽𝑩𝑳 = 𝟒𝟎𝒎𝑽, SAEB_delay=2.0ns) 

Figure 4.1 shows the nominal waveforms of the DVLSA with a SAEB_delay of 0ns VLSA 

when Δ𝑉𝐵𝐿 = 40𝑚𝑉. Initial observations of the Q and QB waveforms at the rising edge of TRIG that 

the DVLSA appears to perform as expected in the concept description, with the exception being the 

transient spike at the rising edge of TRIG. We see as the ZG node gets discharged to VSS through 

N3, both Q and QB discharge but at different rates. At about 0.5ns we see that the Q waveform of 

both the VLSA and DVLSA levels off to approximately 300mV, while QB continues to discharge. In 

the VLSA, Q reverses direction and charges back to VDD, while in the DVLSA the Q node remains 

nearly flat at this level. This suggests that the PMOS pair of the VLSA turned on and the circuit’s 

regenerative feedback started, while in the DVLSA the PMOS pair remained off. 

To confirm these details, we analyze Figure 4.2. This figure plots the regions of operation for 

the PMOS pair P1 and P , in addition to a zoomed plot of these devices’ drain currents. The Q and 

QB waveforms are included as a common reference with the previous figure. At the rising edge of 

TRIG, we can see the transient spikes in the current waveforms. From 0.0 to 0.2ns the region of 

operation reported for P1 and P2 across both the VLSA and DVLSA are reported to be in the cutoff 
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region. In this region of operation, these devices should not conduct any current, so these current 

transients are most likely due to capacitive coupling with the control signals.  

After 0.2ns we see P1 in both the VLSA and DVLSA entering the subthreshold conduction 

region. At 0.3ns we see P2 for the VLSA entering the subthreshold conduction region, but P2 for the 

DVLSA remains in the cutoff region. P2 for the DVLSA remaining in cutoff matches our 

expectations for the circuit’s operation, but P1 going into subthreshold differs. To explain this 

discrepancy, we note that at 0.5ns Q has discharged to 355mV, QB to 310mV, and the P node to 

391mV. This gives a |𝑉𝐺𝑆| on P1 of 81mV while |𝑉𝐺𝑆| on P2 is less than half that at 36mV. Both Q 

and P continue to discharge with Q being much more rapid than P. This grows the |𝑉𝐺𝑆| of P1, 

pushing it closer to the saturation region. QB however slows its rate of discharge. With the P node 

discharging through P1, there is a point where the |𝑉𝐺𝑆| of P2 starts to decrease. Near 0.5ns this |𝑉𝐺𝑆| 

reaches a peak of 66mV, which is less than the 81mV that P1 experienced when it transitioned to 

subthreshold conduction. 

Another interesting feature of the current waveforms is the P2:ID current behavior that occurs 

just after the transient spike. We note that it has a negative peak of approximately -100nA and it takes 

more than 1ns to decay to near zero. As stated previously, P1 for the VLSA and DVLSA transition to 

the subthreshold region around 0.2ns. At this time, P1:ID is -60nA to -45nA between the cases, while 

P2:ID is -100nA. Even though the P2:ID current is double that of P1:ID when P1 is considered to be 

in the subthreshold region, P2 is still considered to be in the cutoff region. Combined with the earlier 

observation that the |𝑉𝐺𝑆| of P2 around this time is about half that of P1, we would expect if anything 

that the P2 current is lower than the current of P1. If the current is not due to P2 conducting, then we 

suspect it is due to the rapidly declining QB voltage that induces some capacitive coupling between 

P ’s drain node and other internal nodes. 
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4.1.2 Small Input Voltage (𝚫𝑽𝑩𝑳 = 𝟏𝟎𝒎𝑽) 

 

Figure 4.3 Nominal Comparison of VSLA vs DVLSA (𝚫𝑽𝑩𝑳 = 𝟏𝟎𝒎𝑽, SAEB_delay=2.0ns) 

 

Figure 4.4 Nominal Comparison of Currents and Operating Regions  

(𝚫𝑽𝑩𝑳 = 𝟏𝟎𝒎𝑽, SAEB_delay=2.0ns) 
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Figure 4.3 shows the nominal waveforms of the DVLSA with a SAEB_delay of 0ns VLSA 

when Δ𝑉𝐵𝐿 = 10𝑚𝑉, and Figure 4.4 is a plot of P1 and P ’s drain currents and their operating 

regions. Initial observations of the Q and QB waveforms indicate that they follow the conceptual 

waveforms. After the initial transient spike, both Q and QB begin to decay at different rates. The 

differential voltage develops at a slower rate than the previous test case due to the smaller initial input 

voltage delta. The consequence of this is that both Q and QB decay further before N1 shuts off and Q 

levels off. The voltage that Q settles at is approximately 250mV, which is 50mV lower than the 

300mV in the previous test case.  

A consequence of the lower Q and QB voltages combined with the slower discharge of the P 

node is that both P1 and P2 enter the subthreshold region and conduct a small amount of current. 

After both turn on, we note that both currents remain less than 50nA in magnitude for the remainder 

of the time until SAEB is activated. 

We once again direct our attention to the P2:ID current behavior just after the transient 

spikes. Notice that it decays towards zero much more rapidly than the other test case. It experiences a 

sharper kink in the 0.3ns region. At this time the P2 device goes into the subthreshold region, and the 

current waveform decays to zero at a noticeably slower rate. Correlating this initial rapid decay of the 

current with the discharging of QB that is noticeably slower than the previous test case, this further 

supports the suggestion that this current is due to capacitive coupling through P ’s drain and not 

channel conduction. 

4.1.3 Summary 

The 10mV and 40mV cases tested have Q and QB waveforms that perform as expected in the 

DVLSA’s concept description. However, the details of the PMOS pair devices’ operating regions are 

not entirely as expected. We predicted that the DVLSA would keep the PMOS pair off until SAEB is 

activated, but the simulation results showed that this is not entirely true. While the devices stayed out 

of the saturation and triode regions during the SAEB_delay period, they did manage to enter the 

subthreshold conduction region. For the large input voltage case, P2 remained in the cutoff region as 

predicted but P1 entered the subthreshold conduction region. For the small input voltage case, both P1 

and P2 entered the subthreshold conduction region between 0.2ns to 0.3ns.  

Note that for much of the SAEB_delay time, the drain currents of P1 and P2 remained under 

50nA. This is roughly a factor of 10 lower than the peak currents achieved once SAEB is activated, or 
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the peaks in the VLSA when the regenerative feedback starts. Although the PMOS pair devices may 

not truly be off, the currents that pass are small enough that we believe they should not cause any 

issues once statistical variation is incorporated. 

A general observation is that the waveforms in the Δ𝑉𝐵𝐿 = 10𝑚𝑉 test case appear to be 

stretched out in comparison to the Δ𝑉𝐵𝐿 = 10𝑚𝑉 test case. Due to the smaller initial input voltage 

and the slower rate of signal development the Q and QB nodes of the DVLSA and VLSA are similar 

for a longer period before the VLSA’s regenerative feedback activates. For smaller input voltages or 

voltages that are close to the sense amplifier’s input offset voltage, this suggests that short 

SAEB_delay quantities may not have much of an effect and that the performance improvements will 

be expected with the longer SAEB_delay quantities.  

 We also noticed some odd behavior in the P2:ID waveform just after the initial transient spike 

that is likely due to capacitive coupling. With the data collected up until this point, we cannot make a 

definitive claim on whether this has some effect on the statistical performance of the circuit. This 

feature may warrant further investigation in future research. 

4.2 Statistical Input Offset – Isolated PMOS Pair 

Monte Carlo simulations are performed with only the PMOS pair devices P1 and P2 varying. 

The statistics and histogram plot of the sense amplifier’s input offset voltage is recorded for each 

statistical run. For the DVLSA the process is repeated for a SAEB_delay of 0.0ns, 0.5ns, 1.0ns, and 

2.0ns. The statistics and histogram for the reference VLSA can be found in Figure 3.13 under Section 

3.5.2 where this test is initially described. 



 

 46 

 

Figure 4.5 DVLSA Input Offset Voltage (SAEB_delay=0.0ns) Histogram – PMOS Pair Only 

Figure 4.5 above presents the histogram of the DVLSA’s input offset voltage when 

SAEB_delay is set to 0.0ns. The mean input offset 𝜇𝑜𝑠 is 40.83uV and the standard deviation 𝜎𝑜𝑠 is 

675.2uV. Compared to (𝜇𝑜𝑠 , 𝜎𝑜𝑠) = (-41.52uV, 682.5uV) for the reference VLSA, this configuration 

of the DVLSA exhibits an improvement in both parameters. The nominal waveform analysis in the 

previous section showed that for the first couple hundred picoseconds the waveforms between the 

VLSA and DVLSA are near identical. For this reason, we did not expect this DVLSA configuration 

to show much of an improvement, if at all.  

 

Figure 4.6 DVLSA Input Offset Voltage (SAEB_delay=0.5ns) Histogram – PMOS Pair Only 
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Figure 4.6 above presents the histogram of the DVLSA’s input offset voltage when 

SAEB_delay is set to 0.5ns. The mean input offset 𝜇𝑜𝑠 is 38.31uV and the standard deviation 𝜎𝑜𝑠 is 

633.3uV. Compared to (𝜇𝑜𝑠 , 𝜎𝑜𝑠) = (-41.52uV, 682.5uV) for the reference VLSA, this configuration 

of the DVLSA exhibits an improvement in both parameters.  

 

 

Figure 4.7 DVLSA Input Offset Voltage (SAEB_delay=1.0ns) Histogram – PMOS Pair Only 

Figure 4.7 above presents the histogram of the DVLSA’s input offset voltage when 

SAEB_delay is set to 01.0ns. The mean input offset 𝜇𝑜𝑠 is -38.23uV and the standard deviation 𝜎𝑜𝑠 is 

630.2uV. Compared to (𝜇𝑜𝑠 , 𝜎𝑜𝑠) = (-41.52uV, 682.5uV) for the reference VLSA, this configuration 

of the DVLSA exhibits an improvement in both parameters.  
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Figure 4.8 DVLSA Input Offset Voltage (SAEB_delay=2.0ns) Histogram – PMOS Pair Only 

Figure 4.8 above presents the histogram of the DVLSA’s input offset voltage when 

SAEB_delay is set to 2.0ns. The mean input offset 𝜇𝑜𝑠 is -36.36uV and the standard deviation 𝜎𝑜𝑠 is 

597.4uV. Compared to (𝜇𝑜𝑠 , 𝜎𝑜𝑠) = (-41.52uV, 682.5uV) for the reference VLSA, this configuration 

of the DVLSA exhibits an improvement in both parameters.  

Table 4.1 Input Offset Voltage Statistics - Isolated PMOS Pair (P1/P2) 

 
Value 

(VLSA) 
Value (DVLSA) 

SAEB Delay 

(ns) 
- 0.00 0.50 1.00 2.00 

𝝁𝒐𝒔 (uV) -41.52 -40.83 -38.31 -38.23 -36.36 

𝝈𝒐𝒔 (uV) 682.53 675.15 633.32 630.20 597.45 

 

Table 4.1 shows a summary of the input offset voltage statistics of the DVLSA across SAEB 

sweeps and the reference VLSA. We can see that across all SAEB delay choices of the DVLSA that 

both the mean and standard deviation of the input offset voltage are lower than that of the reference 

VLSA. Additionally, we see a clear trend in both the parameters decreasing as the delay is increased. 

On a percentage basis, the improvement of 𝜇𝑜𝑠 ranges from 1.66% to 12.42% and 𝜎𝑜𝑠 ranges from 

1.07% to 12.47%. 
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These results support the hypothesis of this thesis. However, they cannot be used to make a 

definitive claim that this architecture does reduce input offset. In a fabricated chip all devices will 

have some variation of their parameters, so to increase our confidence in this result we must perform 

additional tests with more devices being varied.  

4.3 Statistical Input Offset – All PMOS and NMOS Symmetric Pairs 

Monte Carlo simulations are performed with P1, P2, P3, P4, N1, and N2 varying. The 

statistics and histogram plot of the sense amplifier’s input offset voltage is recorded for each 

statistical run. For the DVLSA the process is repeated for a SAEB_delay of 0.0ns, 0.5ns, 1.0ns, and 

2.0ns. The statistics and histogram for the reference VLSA can be found in Figure 3.14 under Section 

3.5.3 where this test is originally described. 

 

Figure 4.9 DVLSA 0.4V Input Offset Voltage (SAEB_delay=0.0ns) 

Figure 4.9 shows the input offset voltage histogram of the DVLSA at 0.4V with a 

SAEB_delay of 0ns. It is centered at 42.35uV with a standard deviation of 10.40mV. Compared to  
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(𝜇𝑜𝑠, 𝜎𝑜𝑠) = (-417.8uV, 9.64mV) for the reference VLSA, this configuration of the DVLSA exhibits 

an improvement in 𝜇𝑜𝑠 by 94.00% and a degradation in 𝜎𝑜𝑠 by 7.88%.  

 

 

Figure 4.10 DVLSA 0.4V Input Offset Voltage (SAEB_delay=0.5ns) 

Figure 4.10 shows the input offset voltage histogram of the DVLSA at 0.4V with a 

SAEB_delay of 0.5ns. It is centered at 27.58uV with a standard deviation of 10.43mV. Compared to  

(𝜇𝑜𝑠, 𝜎𝑜𝑠) = (-417.8uV, 9.64mV) for the reference VLSA, this configuration of the DVLSA exhibits 

an improvement in 𝜇𝑜𝑠 by 93.38% and a degradation in 𝜎𝑜𝑠 by 8.20%.  
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Figure 4.11 DVLSA 0.4V Input Offset Voltage (SAEB_delay=1.0ns) 

Figure 4.11 shows the input offset voltage histogram of the DVLSA at 0.4V with a 

SAEB_delay of 1ns. It is centered at 27.70uV with a standard deviation of 10.44mV. Compared to  

(𝜇𝑜𝑠, 𝜎𝑜𝑠) = (-417.8uV, 9.64mV) for the reference VLSA, this configuration of the DVLSA exhibits 

an improvement in 𝜇𝑜𝑠 by 93.36% and a degradation in 𝜎𝑜𝑠 by 8.30%.  
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Figure 4.12 DVLSA 0.4V Input Offset Voltage (SAEB_delay=2.0ns) 

Figure 4.12 shows the input offset voltage histogram of the DVLSA at 0.4V with a 

SAEB_delay of 2ns. It is centered at 28.55uV with a standard deviation of 10.48mV. Compared to  

(𝜇𝑜𝑠, 𝜎𝑜𝑠) = (-417.8uV, 9.64mV) for the reference VLSA, this configuration of the DVLSA exhibits 

an improvement in 𝜇𝑜𝑠 by 93.16% and a degradation in 𝜎𝑜𝑠 by 8.71%.  
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Table 4.2 DVLSA Mismatch Contribution Summary 

 Device Value (VLSA) Value (DVLSA) 

SAEB_delay (ns) - - 0.00 0.50 1.00 2.00 

𝝈𝒐𝒔 (mV) - 9.64 10.40 10.43 10.44 10.48 

𝝁𝒐𝒔 (uV) - -422.85 25.01 27.58 27.70 28.55 

Variance 

Contribution 

(%) to 𝝈𝒐𝒔
𝟐  

N1 49.74 50.60 50.64 50.65 50.67 

N2 49.51 48.70 48.74 48.74 48.76 

P1 0.28 0.25 0.21 0.21 0.19 

P2 0.25 0.23 0.20 0.19 0.17 

P3 0.11 0.11 0.10 0.10 0.10 

P4 0.11 0.11 0.10 0.10 0.10 

Combined 

Variance 

Contribution 

(%) of 𝝈𝒐𝒔
𝟐  

NMOS Pair 

(N1+N2) 
99.25 99.30 99.38 99.39 99.43 

PMOS Pair 

(P1+P2) 
0.54 0.48 0.41 0.41 0.37 

Other (P3+P4) 0.22 0.22 0.20 0.20 0.20 

 

Table 4.2 compares the mean and standard deviation of the input offset voltage of the 

DVLSA across SAEB_delay sweeps to the reference VLSA. It also shows the contribution of device 

mismatch to the input offset voltage variance, presented as a percentage of the total variance. The 

mismatch contributions from the access transistors P3 and P4 remain approximately constant between 

the VLSA and all configurations of the DVLSA; the difference between 0.11% and 0.10% across the 

cases is due to rounding errors. For all DVLSA configurations, we see that the PMOS pair mismatch 

contribution is lower than that in the VLSA. There is a clear trend of the PMOS mismatch 

contribution decreasing as SAEB_delay increases. This confirms the first half of our hypothesis. 

For all cases of the DVLSA, the measured 𝜇𝑜𝑠 is reduced by 93-94% relative to that of the 

VLSA, but unfortunately 𝜎𝑜𝑠 is higher by 7.9-8.2%. There is also a trend of both 𝜇𝑜𝑠 and 𝜎𝑜𝑠 

increasing as SAEB_delay is increased. This result is the opposite of what is observed in the isolated 

PMOS pair mismatch test where the DVLSA showed some improvement. To identify the cause for 

this discrepancy in the results, further investigation is needed.  

 



 

 54 

4.3.1 Further Investigation into Source of Failure 

The data suggests the source of the raised 𝜎𝑜𝑠 could be due to the mismatch performance of 

one of the other device pairs, and possible covariances between device pairs that only arise when all 

devices are varied. To test this, the isolated mismatch test is performed again for the NMOS pair 

varying in isolation, and for the PMOS access pair varying in isolation.  

Table 4.3 Input Offset Voltage Statistics - Isolated PMOS Access Pair (P3/P4) 

 Value (VLSA) Value (DVLSA) 

 SAEB_delay (ns) - 0.00 0.50 1.00 2.00 

𝝈𝒐𝒔 (uV) 480.2 500.9 480.6 481.3 481.9 

𝝁𝒐𝒔 (uV) 30.70 32.09 30.99 31.05 30.87 

 

Table 4.3 shows the input offset results for the PMOS access pair P3/P4 varying in isolation. 

The results of the DVLSA are comparable to the reference VLSA. 𝜇𝑜𝑠 for all cases differs by up to 

1.3uV, which is less than the minimum resolution of the testbench. 𝜎𝑜𝑠 for the 0.0ns delay case is 

higher by 20uV than the reference VLSA, but the remaining three configurations differ by less than 

2uV. This consistency in 𝜎𝑜𝑠 correlates well with the consistency in mismatch contribution seen in the 

comprehensive simulation. Therefore, due to the small magnitude of 𝜎𝑜𝑠 being less than 1mV and the 

relatively small differences across DVLSA configurations we do not believe this pair is the cause of 

the negative result. 

Table 4.4 Input Offset Voltage Statistics - Isolated NMOS Pair (N1/N2) 

 Value (VLSA) Value (DVLSA) 

 SAEB_delay (ns) - 0.00 0.50 1.00 2.00 

𝝈𝒐𝒔 (mV) 9.907 9.905 9.936 9.953 9.992 

𝝁𝒐𝒔 (uV) 504.6 504.7 506.3 506.9 508.9 

 

Table 4.4 shows the input offset results for the NMOS cross pair N1/N2 varying in isolation. 

At a delay of 0.0ns, we see the performance of the DVLSA is near identical to the VLSA. As 

SAEB_delay increases however we see that both parameters increase. 𝜇𝑜𝑠 increases by 4.2uV over 

the sweep range. 𝜎𝑜𝑠 increases by 98.7uV over the SAEB_delay sweep range. As per Table 4.2 for 

the comprehensive mismatch result, 𝜎𝑜𝑠 ranges from 10.4mV to 10.48mV, which has a delta of 80uV 

over the sweep range. This delta is comparable to the 98.7uV seen in Table 4.4. Given the similarity 
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in the increase of 𝜎𝑜𝑠 from the isolated NMOS results to the comprehensive mismatch simulation, we 

conclude this NMOS pair is the reason for the offset degradation. 

With the data collected for all three device pairs varied in isolation, we can as a sanity check 

estimate what the expected 𝜎𝑜𝑠 should be, assuming all mismatch sources are uncorrelated. For the 

0.0ns delay case, 𝜎𝑜𝑠,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (mV) = √𝜎𝑜𝑠,𝑃1+𝑃2
2 + 𝜎𝑜𝑠,𝑃3+𝑃4

2 + 𝜎𝑜𝑠,𝑁1+𝑁2
2  =

√9.9052 + 0.5012 + 0.6752 =  9.941mV. This is 459uV or 4.4% lower than the simulation 

measurements.  

The discrepancy could be due to several factors.  One source could be is variations in device 

properties not considered in this thesis.  Another source could be is covariances in mismatch 

parameters between devices that can only arise when all devices are varied.  A third source could be 

the odd P2:ID capacitive current seen in Section 4.1; if the variation of P1 and P2 parameters caused a 

difference in capacitance on the Q and QB nodes, then this could affect the varying NMOS pair and 

cause additional offset. 
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Chapter 5 

Conc u ion   nd Futur  R    rch 

A VLSA circuit modified with an additional PMOS switch to VDD was tested. A fixed delay 

between the sense amp enable signal (SAE) and the turn-on of this additional PMOS switch 

(controlled by SAEB) was added in an attempt to reduce the mismatch contribution of the PMOS 

pull-up cross pair to the input offset voltage. Nominal simulations were run to observe the difference 

of behavior between this topology and the reference VLSA implementation. Statistics on input offset 

were also collected for isolated variation of the PMOS pull-up pair, and all differential devices varied. 

Isolated PMOS mismatch results showed that both the mean and standard deviation were reduced, 

with further reduction for increasing SAEB delay.  

The statistics for the more comprehensive statistical run showed that 𝜇𝑜𝑠 was reduced in all 

cases, but 𝜎𝑜𝑠 was higher in all cases. The data had a trend that opposed the isolated PMOS mismatch 

results, where both 𝜇𝑜𝑠 and 𝜎𝑜𝑠 increased with increasing SAEB delay. Further investigation showed 

in an isolated NMOS pair simulation that 𝜇𝑜𝑠 and 𝜎𝑜𝑠 experienced a similar positive correlation with 

increased SAEB delay. In conjunction with the large magnitude of 𝜎𝑜𝑠 relative to that from the other 

isolated mismatch simulations, the data suggests that the NMOS pair is the root cause of the negative 

result. 

 Given the results collected, the conclusion drawn is that the DVLA topology and method of 

control as presented in this thesis is inferior to the reference VLSA for the design goal of reducing 𝜎𝑜𝑠 

of a sense amplifier. As a result, the recommendation would be to use a different combination of 

topology and control mechanism to achieve a reduced 𝜎𝑜𝑠.  

Further research could investigate in more detail the effect of the negative current out of 

device P2 after the initial transient spike. This current appears to be due to capacitive coupling and it 

may be a source of offset. Within this context, the DVLSA idea can be revisited with a modification 

that aims to reduce the capacitance on the Q/QB nodes as seen by the N1/N2 device pair.  Another 

research path could be combining the DVLSA topology with other offset-reducing methods, such as 

input multiplication. 
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Appendix A  

Testbench Verilog-A Code 

A.1 Evaluator 

// Verilog-A for mtw_sense_amp_2, tb_SA_SEQ_decision, Verilog-A 

  

`include "constants.vams" 

`include "disciplines.vams" 

  

// Analog output voltage sampler for SA SEQ testbench 

// Monitors output voltage delta between Q and QB.   

// outputs digital sgn(x) of delta voltage; -1, 0, 1 - also makes a binary 

decision, if (sgn(x) == 1) 

// also outputs a variant that adds an absolute ammplitude threshold 

condition as a % of VDD 

// default:  crit_sgn(x) = sgn(x) if abs(x) >= VDD*threshold_ratio else 0 

module tb_SA_SEQ_decision (VDD, VSS, VQ, VQB, VQDELTA, SGN, CRIT_SGN, 

DECISION, CRIT_DECISION); 

electrical VDD, VSS, VQ,VQB, VQDELTA, SGN, CRIT_SGN, DECISION, 

CRIT_DECISION; 

input VDD, VSS, VQ, VQB; 

output VQDELTA, SGN, CRIT_SGN, DECISION, CRIT_DECISION; 

  

real vqdelta; 

real crit_threshold_ratio = 0.9; 

real crit_threshold; 

integer sgn; 

integer crit_sgn; 

  

analog begin 

 vqdelta = V(VQ,VSS)-V(VQB,VSS); 

 crit_threshold = V(VDD,VSS) * crit_threshold_ratio; 

  

 sgn = (vqdelta > 0) ? 1 : (vqdelta < 0) ? -1 : 0; 

 crit_sgn = (abs(vqdelta) >= crit_threshold) ? sgn : 0; 

  

 V(VQDELTA, VSS) <+ vqdelta; 

 V(SGN, VSS) <+ sgn; 

 V(DECISION, VSS) <+ (sgn == 1); 

 V(CRIT_SGN, VSS) <+ crit_sgn; 

 V(CRIT_DECISION, VSS) <+ (crit_sgn == 1); 

end 

endmodule 
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A.2 SAR Controller 

// Verilog-A for mtw_sense_amp_2, tb_vqdelta_offset_servo, Verilog-A 

  

`include "constants.vams" 

`include "disciplines.vams" 

  

module tb_vqdelta_offset_servo(VSS, CLK, FB, BL, BLB, VBLDELTA, FINISHED); 

electrical VSS, CLK, FB, BL, BLB, VBLDELTA, FINISHED; 

input VSS; 

input CLK, FB; 

output BL, BLB, VBLDELTA, FINISHED; 

  

parameter real VDD = 0.4; 

parameter real fclk = 1e6; 

real period = 1/fclk; 

parameter real ncycles = 18; 

  

real tr = 250.0e-12; 

real bl_update_delay = 0.05*period; 

parameter real t_delay = 0; 

  

  

real bl_out = 0; 

real blb_out = 0; 

real delta_out = 0; 

real delta_step = 0; 

real sgn_sample = 0; 

integer finished = 0; 

integer cycle_count = 0; 

  

analog begin 

 @(initial_step) begin 

  delta_out = 0; 

  delta_step = VDD; 

  finished=0; 

  cycle_count = 0; 

 end 

  

  

 @(cross(V(CLK,VSS) - VDD/2, -1)) begin 

  sgn_sample = V(FB, VSS); 

  if(sgn_sample < 0) delta_out = delta_out + delta_step; 

  if(sgn_sample > 0) delta_out = delta_out - delta_step; 

  delta_out = max(-VDD, min(VDD, delta_out)); // bound to {-

VDD, VDD} 

  delta_step = delta_step/2; 

  cycle_count = cycle_count + 1; 

  if(cycle_count >= ncycles) finished = 1; 

 end 
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 V(FINISHED, VSS) <+ finished; // instantaneous transition to latch 

VBLDELTA before transition 

 // slightly delayed transition to update other values 

 V(VBLDELTA, VSS) <+ transition(delta_out, 0.05*period, tr); 

 V(BL,  VSS) <+ transition(VDD + (delta_out < 0 ? delta_out : 0), 

bl_update_delay, tr); 

 V(BLB, VSS) <+ transition(VDD - (delta_out > 0 ? delta_out : 0), 

bl_update_delay, tr); 

  

end 

  

endmodule 
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