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Abstract

A cataract is an age-related eye disease and is one of the leading ophthalmological pub-
lic health problems in developed and developing countries. Early detection of cataracts is
necessary to preserve sight and prevent the increase in blindness due to cataracts world-
wide. Lacking eye clinicians and slit lamp cameras in poor and rural areas are the main
causes of the cataract’s late diagnoses. The recent research in this field indicates that it
is possible to screen cataracts using image processing. As smartphones become univer-
sal in most urban areas, cataract self-screening with smartphones removes the limitations
like cataract screening cost and travel/time burdens for patients. Accordingly, a novel
computer-aided automatic cataract grading method is presented in the current disserta-
tion to detect various cataract stages, including normal, early, pre-mature, and mature
cataracts, from the digital camera images. The IIITD Cataract Mobile Periocular (CMP)
dataset was used as the cataractous and normal data images in the current study. This
dataset contains periocular images, including ocular regions such as the eyebrow, pupil,
sclera vasculature, iris, and pupil. These images are captured in the unconstrained condi-
tion such as uncontrolled illumination, complex background, and geometric distortions and
mostly have non-frontal view poses. The current dissertation addresses smartphone-based
cataract grading by proposing a method to classify the periocular eye regions into four
classes of normal, early, pre-mature and mature cataracts on deep features using Convolu-
tional Neural Networks (CNNs). We designed and proposed a four-layer CNN for cataract
grading of the IIITD detected eye regions in the first procedure. In the second procedure,
three pre-trained ConvNets, including VGG-16, Inception V3, and ResNet-101, were fine-
tuned on the target dataset. In the last procedure, to evaluate the classification technique
with the standard supervised classifiers, the extracted features by the ResNet-101 pre-
trained network were fed into the Support Vector Machine (SVM) classifier for cataract
grading. The experimental results show that end-to-end Residual Network (ResNet)-101
with the accuracy rate of 89.62 % outperforms the four-layer CNN, VGG-16, Inception V3,
and ResNet-101+SVM with the mean accuracy of 84.67%, 87.64%, 84.67%, and 87.14%
respectively. Moreover, according to all the calculated evaluation metrics such as precision,
recall, sensitivity, specificity, and also F-measure, which is the trade-off between recall and
precision, the results show that for each class, ResNet-101 outperforms the other models
and has a better grading result for IIITD with the imbalanced number of images for each
class.
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Chapter 1

Introduction

1.1 Background

The human eye is a complicated system consisting of interconnected organs, including the
lens, pupil, iris, retina, cornea, and optic nerve [6]. There are several ocular diseases related
to different components of the eye; age-related diseases such as cataracts are among the
most common ones [7, 6]. If the ocular diseases are diagnosed late, it is challenging to repair
vision effectively and lead to vision loss [6]. Although cataract can be cured [7], it remains
one of the main problems in ophthalmological public health in developed and developing
countries [8, 9, 10, 11, 12, 13, 14], and it is known as the leading cause of blindness in most
countries [14, 6, 2, 15]. Studies show that 36 million people worldwide have blindness,
and more than 12 million cases are diagnosed with cataract [10, 13]. It is estimated that
this number will increase to 13.5 million people in 2020 [13, 14]. In 2015, about 3 million
cataract surgeries were performed in the United States alone, with an estimated 6.8 billion
USD in direct costs [7, 9]. Given the magnitude of both the number of individuals affected
and the associated healthcare costs, assessing both the presence and severity of cataracts
are imperative for diagnosing and monitoring the disorder’s progression [9, 10, 11, 12, 13].

1.1.1 Cataract

The human eye’s crystalline lens is an optically clear organ with ectodermal tissue, located
between the iris and vitreous body and retina [16]. Due to the refractive index of the crys-
talline lens, the shape, and its clarity, the crystalline lens can focus the incident light on the
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retina [17]. Besides the superficial strips of new cells, the lens’s constant growth produces
a series of laminae that are concentrically arranged and gradually increase lens fibers in
life [16]. As a result, the existing crystalline proteins in the lens misfold and aggregate
into insoluble clumps in aged people [18]. When the lens loses its optical clarity, the result
would be a complication known as cataract [19]. Cataracts occlude the transmission of
light to the retina, thereby impairing the vision, even causing blindness [20]. Figure 1.1
indicates the anatomy and structure of the adult human lens.

The lens has three layers, including the nucleus, cortex, and capsule [21]; the nucleus
is the core in the lens surrounded by the cortex and capsule, respectively [2]. According to
the locations of the grown opacity, cataracts are classified into three types namely Posterior
Subcapsular Cataract (PSC), Cortical Cataract (CC), and Nuclear Cataract (NUC) [22]
which might occur either alone or in combination with each other (Figure 1.2). Resultant
changes are typically bilateral but commonly asymmetrical [19]. Cortical cataract CC is a
radial, and white wedged-shaped opacity in the cortex [6]. It begins from the lens’ outside
edge and moves towards the center in a spoke-like manner [22]. Posterior subcapsular
cataract (PSC) appears in the form of small sand-like particles sprinkled near the back of
the lens and is more common in diabetic patients [22, 6]. Figure 1.2 shows three types of
cataracts: nuclear, cortical, and posterior subcapsular cataracts.

Figure 1.1: The human lens subsections[2].

Although cataracts can be cured [7], still, it is considered one of the most prevalent
reasons for visual impairment worldwide [23, 8, 9, 14]. According to a systematic study
conducted in February 2020, the overall prevalence of cataracts in women and men were
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33.67% (95% CI: 25.90–41.44) and 32.57% (95% CI: 26.29–38.85) respectively; in addi-
tion, prevalence of different types of cataracts in women and men was as followed: corti-
cal cataract CC: 15.22% (95% CI: 9.79–20.65) and 13.64% (95% CI: 9.17–18.11); nuclear
cataract NUC: 14.09% (95% CI: 9.67–18.51) and 15.63% (95% CI: 11.44–20.33); and PSC
cataract: 3.66% (95% CI: 3.34–4.98) and 3.70% (95% CI: 2.35–5.05) [14]. According to
the reports, more than 90% of vision lost because of cataracts are observed in developing
countries[10]. Therefore, it is significantly important to take measurement towards the
early diagnosis of cataracts and early prevention of blindness due to cataracts.

Aging is one of the major causes of cataracts [8]. In general, the prevalence of cataracts
varies in different age groups, and most diagnosed cases are over 60 [14]. However, genetic
and environmental factors like exposure to ultraviolet light, diseases (e.g., diabetes and
uveitis), smoking, specific jobs, Intraocular Pressure (IOP)-lowering medications/surgery,
trauma, and steroids, may increase the risk of cataracts [24, 25, 26, 27, 14]. So far, no
effective method has been developed against the formation of a cataractous lens. However,
cataracts’ removal through small-incision surgery, viscoelastic use, and development of
Intra-ocular lens (IOL) have all affected the quality and time of treatment and visual
recovery. Despite that, cataracts are still considered a significant public health problem
that will worsen along with population increase worldwide.

In nuclear cataract, which is the most prevalent age-related cataract [28], new fiber
layers are gradually added to the lens, resulting in compression, and hardening nucleus
with a yellow lens [29]. Therefore, the changes caused by the age-related nuclear cataract
consists of two processes: 1- opacification (clouding) and 2- coloration (browning) [15].
Nuclear cataract advances gradually over the years and does not significantly affect the
vision in some cases. However, only a change in refraction (myopic shift) or second sight
may cause patients not to use glasses for reading anymore [6]. Nevertheless, the further
advance of nuclear cataract might cause color differentiation and vision loss, particularly
distance vision [30].

Surgery is currently the primary method for cataract treatment [31]. In cataracts
surgery, the ophthalmologist takes out the cataractous lens and replaces it with a clear
artificial lens. However, sometimes, cataracts may be corrected without implanting an
artificial lens called an intraocular lens (IOL). Surgical methods for correcting cataracts
include using an ultrasound probe to break up the lens and removing out. The pha-
coemulsification ultrasound probe emits energy into the eye lens, breaks up cataracts, and
facilitates emulsification and aspiration. The annual number of cataracts surgeries in the
USA and Africa are currently 5000 and 200 cased per million [32]. In the late 90s, 1.35
million cataracts operations were conducted annually in the USA with a cost of 3.4 billion
USD [33]. Expenses associated with non-treatment cataracts, which cause non-functional
vision, are remarkably higher than the costs of cataracts surgery and treatment [34]. There-
fore, addressing global access to high-quality cataracts surgery is of primary importance.
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Figure 1.2: The Three Types of Cataract: Nuclear, Cortical and Posterior Subcapsular
cataract[2]

Mass screening of cataracts among elderlies is essential from both a social and economic
point of view [34].

1.2 Motivation

Cataracts are generally diagnosed by an eye care clinician who observes anatomical changes
occurring in the eye lens by a slit-lamp [35]. The clinician then detects and grades cataracts
to determine their type and severity level in order to be able to plan the necessary treat-
ments [6]. Classification and grading of cataracts, especially in their progressive age-
related forms, has been frequently addressed in clinical and epidemiological research [2, 28].
Cataracts are clinically diagnosed by well-trained eye care clinicians using a slit-lamp biomi-
croscopy and manually graded by comparing the opacity severity of each slit-lamp image
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with a set of standard images [6]. Standard images show increasing severity of cataract in-
dicated by increasing integer-valued grades [36]. Ungraded slit-lamp image is then matched
up with standard images, and a/an decimal/integer-valued grade is specified that shows
opacity’s severity [37, 36]. Common standard grading protocols include Lens Opacities
Classification System (LOCS) III, Age-Related Eye Disease Study (AREDS) cataract grad-
ing protocol, Wisconsin Grading System (WGS), Oxford Clinical Cataract Grading System
(OXCGS) [38] and World Health Organization (WHO) Grading System. LOCS-III and
Wisconsin grading systems are broadly employed by eye care clinicians [6]. The LOCS
III system assesses four features, including nuclear color (NC), nuclear opalescence (NO),
posterior subcapsular cataract (P), cortical cataract (C) [37].

This diagnostic procedure requires expensive medical equipment; besides, manual pro-
cedures of diagnosis are time-consuming and subjective according to clinician’s experiences
[38]. It is reported that when different eye care clinicians are asked to grade the same
slit-lamp images according to the same grading system, only about 65% inter-observer
agreement is reached [37]. Furthermore, eye clinicians are prone to unconscious and im-
precise grading after inspecting numerous images [29]. It is worth mentioning that the
correct screening of cataract hardness is crucial to reduce the surgical complications [15].
Selecting an incorrect phacoemulsification energy level in cataract surgery may disturb the
posterior capsule [39]. Thus, it is essential to ascertain the optimal phacoemulsification
energy level, which relies on the cataract’s density and grading [39].

Although it takes a well-trained eye clinician to grade a cataract only a few minutes,
recent developments in imaging technologies have prompted researchers to propose au-
tomatic systems with the ability to locate the lens landmarks and offer cataract grading
scores. These landmarks are correctly correlated with LOCS III clinical grades and decrease
testing time [40]. The increasing prevalence of artificial intelligence (AI) in ophthalmology
is powered by ever-growing clinical big data [41]. However, AI ’s experience and develop-
ment are still limited in cataracts, compared to other eye diseases like diabetic retinopathy,
age-related macular degeneration, and glaucoma [41]. Previous works used algorithms for
automated cataract determination using various modalities such as slit lamp or color fun-
dus, and, more recently, they are towards cataract grading using smartphone-based images
[42, 43, 44, 45].

A device with a featured camera and remarkably bright and high-resolution screens
can be potentially used for ophthalmology, and eye care [46]. There are billions of smart-
phone users worldwide, which causes revolutionary potential in healthcare applications.
Smartphones are providing low-cost and automated alternatives for expensive medical di-
agnostics, especially in regions where it is difficult to access medical professionals and
equipment. Although the slit-lamp is considered a standard protocol for cataract detec-
tion and grading, using digital camera images for screening cataract is more desirable due
to simple and easy use. Considering all these reasons, the current research study seeks to
investigate automated cataract grading using mobile phone images.
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1.3 Objective

A novel computer-aided automatic cataract grading method is presented in the current
study to detect various cataract stages, including normal, early, pre-mature, and mature
cataracts stages using digital camera images. The IIITD dataset [1] with 2380 images
is utilized. This dataset is captured in two pre-surgery (145 subjects) and post-surgery
(99 subjects) sessions. The main purpose of the proposed method is to implement an
automated end-to-end cataract grading system. According to the proposed method, the
eye region will be detected automatically, and the extracted eye regions will feed into a
CNN model as inputs. The CNN model categorizes the ungraded lenses into normal, early,
pre-mature and mature groups.
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Chapter 2

Related works

2.1 Overview

This chapter provides an overview of the existing literature on cataract grading methods
and techniques and presents recent developments and state-of-the-art smartphone-based
decision support systems in computer-aided cataracts screening and grading. The cur-
rent chapter is then organized into several sections; first, cataract detection and grading
methodologies using smartphone images are reviewed. Cataract grading consists of sev-
eral steps in which each possible method and technique that have been so far applied are
analyzed. Then, the shortcomings and advantages of these techniques and methods are
discussed and some suggestions are introduced to improve the existing methods. Finally,
proposed approach of the current dissertation is presented.

2.2 Cataract grading systems

Imaging modalities currently used for developing automated techniques for detection and
grading of cataracts include slit-lamp, retro-illumination, retinal, digital/optical eye, and
ultrasonic Nakagami images [6].

Slit-lamp images are mostly employed to detect nuclear cataracts, which normally affect
the eye lens’s nucleus; for that reason, it is automatically detected and graded by extract-
ing features of the nucleus region [6]. Several studies have been performed in this regard.

7



Huang et al. in [47, 36] utilized image ranking of neighbor markers and worked on the op-
timization of the learning functions to predict the severity of cataracts by slit-lamp images.
The proposed method (Learned Ranking function (LRF)) achieved better and less ranking
errors among all other learning to rank methods (proposed method = 2 errors; RankBoost
= 16 errors; AdaRank = 9 errors; RankingSVM—4 errors) [47, 36] . Li et al. in [48] utilized
human crystalline lens’ color as the critical feature for nuclear cataracts diagnosis, achieved
95% accuracy rate for feature extraction, and 0.36 mean errors for nuclear cataract grading.
Besides, Fan et al. in [49] presented an algorithm for the classification of cataracts stages
by extracting hand-crafted features based on the intensities of the landmarks of the visual
axis in the human lens and then performing nuclear cataract grading for images taken by
a slit-lamp. The basic rule was extracting global/local features of the human eye lens and
feeding them into SVM or Support Vector Regression (SVR) to conduct the classification
task [50]. The accuracy was up to 90%. However, in the years later, the feature extraction
algorithms moved from traditional methods to CNN-based methods. X. Liu et al.[51], used
the CNN-based method for extracting the features of pediatric slit-lamp images. They used
SVM algorithm for automatic cataract classification with a mean accuracy of 97.07%, the
sensitivity of 97.28% and specificity of 96.83%. The suggested deep learning approach
was approved to be more effective than conventional methods (with the accuracy rate up
to 90%) [52]. Xu et al. [15] proposed a nuclear cataract grading method; they employed
Faster Region-based Convolutional Neural Networks (R-CNN) for locating the nuclear re-
gion and considered it as an input for a classifier based on ResNet-101 network. Although
the automated cataract classification method is constantly proposed, its accuracy needs to
be improved. Furthermore, the lack of eye clinicians and slit lamp cameras in rural regions,
particularly in a developing country, are considered limitations of the cataracts diagnosis
process [6]. Therefore, researchers have developed application systems based on digital
image processing techniques using smartphone cameras that assist in the early detection
of cataracts.

2.3 Cataract grading using smartphone

Since many people in most urban areas are frequently using smartphones, smartphones
can simplify the cataracts self-diagnosing, which is associated with low expenses and is
less time-consuming. [43]. More than 100,000 therapeutic and medical applications can
be currently installed and used in smartphones with several other external devices like an
external attachable device that simulates the slit-lamp in the clinics [52]. In addition to
simplifying the cataracts screening process such applications, reduce the misdiagnosis rate
and improve the treatment accessibility [52].

Smartphone-based cataracts screening systems are categorized into two groups: 1)
Using smartphone images and attaching an external device. 2) Using a smartphone image
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and the photo-taking function of the smartphone camera. In the first group, a micro-
lens, a portable slit-lamp, is designed and attached to the smartphone’s camera [52]. The
eye lens’s images replace the desktop slit-lamp observation system, which helps people in
distant and deprived areas with no medical equipment in the early screening of cataract
diseases. It also solves the problem of the shortage of specialized clinicians in those areas.

Figure 2.1: Automated cataracts grading methods using various imaging modalities. The
modality and the procedures written in red shows the chosen method in the current study.

Peterson et al., in [42], used an iPhone X camera for cataracts grading of 50 subjects
and attached an external device to the camera as the flashlight with auto-focus capability
and maximum resolution. The eye region images were recorded and evaluated to measure
luminance reflection and color features of the lens combined with a CNN as a classifier
for cataracts grading. Accuracy, specificity (the true negative rate), and sensitivity (the
true positive rate) of the method in diagnosing the affected eyes and distinguishing them
from healthy eyes were respectively 98.2%, 97.8%, and 97.2%. In [43], a micro-lens was
attached to a smartphone to simulate a slit-lamp. Images taken by the smartphone were
fed into a deep learning system, which resulted in real-time and effective screenings. The
obtained images included photos of cataracts and normal eyes. Also, the anterior/posterior
capsules and cortex of the eye’s lens were straightforward to differentiate in these images
[43]. Unlike the slit-lamp, which requires professional skills for operation, this approach can
be used by less-skilled or inexperienced people. In another study, a portable and recordable
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slit-lamp device that could be attached to the smartphone, known as Smart Eye Camera
(SEC), was invented and presented [53]. In this study, both SEC and conventional/non-
portable slit-lamp microscope were used to assess NUC, and the results were compared.
A total number of 64 Japanese patients (mean age: 73.95 ± 9.28 years; range: 51–92
years; female: 34) were examined. According to WHO cataract grading system, NUC
is categorized into four grades (grade 0 to 3) based on three standard photos of nuclear
opacities. No new algorithm was used in this study, and a single ophthalmologist performed
the grading. Results revealed that NUC grading using the approaches mentioned above
correlated significantly; in other words, SEC was too similar to the conventional non-
portable slit-lamp microscope for NUC evaluation in terms of reliability. However, there are
some limitations and drawbacks; the micro-lens should always be attached to smartphones,
it is too expensive for patients, and the patients need to be taught to use the attached
slit-lamp device. A review of mobile applications for cataracts detection based on image
processing techniques is presented in [52].

In the second group, smartphone images are directly captured, and no additional equip-
ment is required. This approach solves the problem of accessing micro-lens slit-lamp, which
can be quite challenging and impractical in rural areas. Therefore, if the second group can
provide precise and significantly better accuracy, it may replace the portable slit-lamp
device.

Using a smartphone for cataract grading requires several steps, including data acqui-
sition, image preparation, and eye region detection. In this process, the eye region is
considered the region of interest, and useful features must be extracted to classify the
input image into normal and various cataracts stages: early cataracts, pre-mature and
mature cataracts. The following section reviews recent works on cataract grading using
smartphone images without any additional device. After presenting each approach’s ad-
vantages and disadvantages, some suggestions are made to improve the previously available
algorithms.

2.3.1 A review on eye region detection methods

Due to the development of many potential applications such as biometrics, iris recognition,
eye tracking, and diagnosis of ocular diseases, automatic human eye detection has received
particular attention during the past decades. A review of recent eye detection methods is
presented in [54].

Zhu et al. [55] classified existing eye detection techniques into two categories: active
infrared (IR)-based methods [55, 56, 57, 58] and traditional image-based passive techniques
[54]. The first approach is based on the red-eye effect in flash photographs and uses
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an IR-sensitive Charged Coupled Device (CCD) for image acquisition special IR and an
illuminator [54]. The most important drawback, however, is that lighting conditions should
be stable and the camera must be set close to the subject [55].

Some special features of eyes, including color distribution, intensity, appearance, and
shape, are often used in image-based passive eye detection methods[54]. Template matching
[59, 60], eigenspace [61], and Hough transform-based methods are among the most common
ones in this category. Template matching technique compares different segments of an input
image with those of the template utilizing correlation values to assess the similarity [54].
Despite that, this approach is not very robust because it cannot deal with eye variations
in rotation, scale, illumination, and expression. In their study, a deformable template for
face feature extraction is introduced by Yuille et al. [62]. Accordingly, a parameterized
template of an eye was presented and an energy function was developed to connect the
peaks, edges, and valleys of input image to corresponding features of template [54]. Besides
location, this method could simultaneously detect more eye features, like its shape and
size. However, this approach is time-consuming, and its success rate is subject to change
according to the template’s primary position. Pentland et al. [61] used an eigenspace
method and used training data that covered eye variations in orientation, appearance, and
lighting conditions. However, the performance of this technique is highly dependent on
the selected training set. Hough transform method is another widely employed technique
that deals with the binary valley or edge maps and is based on the shape of the iris [63].
This method’s problem is that the performance relies on the threshold values chosen for
binarization of valley or edge maps. Although much effort has been made, automatic eye
detection still has some limitations and drawbacks which need to be addressed. There
are many factors, including face rotation in-plane and depth, facial expression, lighting
conditions, and occlusion, that could certainly impact the performance of eye detection
algorithms [64]. However, most of the existing eye detection approaches are basically
concentrated on face images with a frontal view.

While automation of the cataract grading process is highly required, there are still some
challenges: the reliable localization of the eye region in a relatively complex background
is one of the challenges. Several studies cropped the eye regions manually [42]. Besides,
previous works like [65, 36, 66] presented a new technique and approximately localized a
Region of Interest (ROI) in slit-lamp images by thresholding 20% to 30% of the brightest
pixels in a gray-scale image. However, the background noise could not be avoided with
such an intensity-based binarization [15]. In their study, Fan et al. [49] used a whole image
and acknowledged that the nuclear region covered less than 3% of the pixels in slit-lamp
photos and digital images; thus, grading based on the whole image is not reliable enough.

Addressing the ROI challenge in nuclear cataract grading, for the first time, Xu et al.
proposed a technique based on deep learning. They localized the nuclear region by Faster
R-CNN [67] which, according to Ren et al. [67, 15], contains two subnetworks including
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Region Proposal Network (RPN) accompanied by a detection network. The former pro-
poses several bounding boxes with the highest likelihood to contain ROIs. Moreover, the
detection network is responsible for distinguishing foreground from background and pro-
cessing the predicted location and size of ROIs. As a slit-lamp photo contains only one
nuclear region, ROI with the highest rank can be selected as xnuc.

It is worth mentioning that Faster R-CNN could not directly be utilized for cataract
grading of the detected nuclear regions [15]. Consequently, a grading model based on
ResNet-101 [68] was applied and received the nuclear region as input. Unlike previous
studies, ResNet-101 resulted in a unified framework of feature extraction and grading
phases. Therefore, the proposed solution was more functional and computationally more
efficient [15].

In a recent study in smartphone-based semi slit-lamp images [52], the nuclear region
of the lens was detected by YOLOv3, which is the latest variant of an object detection
algorithm. Compared with the previous state-of-the-art method, Faster-RCNN (accuracy
of 50.13%), YOLOv3, with the accuracy of 52.36%, could effectively detect the ROIs in
the captured images and simplify the cataract grading process. Therefore, difficulties
in examination and diagnosis of cataracts were remarkably decreased by optimizing the
framework.

2.3.2 Feature Extraction Methods in the previous works

After successfully extracting the ROI in the images, another challenge still exists; how to
obtain a vectorized description of ROI based on which a grading (or regression) model can
be constructed [15]? According to the available dataset, two types of images are used in
cataract grading; smartphones take the first types, and the second group includes images
captured by digital cameras.

Methods using hand-crafted features

The problem with the images captured by a compact camera is that they do not have
good quality and illumination. For instance, eye images taken in bright environments
have high-intensity values inside the pupil, making the analysis of color information quite
difficult and challenging. Three features were normally used in previous methods, including
texture uniformity, specular reflection appearance, and average intensity inside the pupil
[69, 70, 71, 72]. Supriyanti attempted to address the existing cataract diagnosis problems
and studied these three features [69, 70, 71, 72].
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Using specular reflection feature could solve the illumination and low-quality image
problems. Supriyanti et al. [69] used the obtained data on specular reflection to establish
a connection between severe and non-severe cataract conditions. They applied the specular
reflection feature only in 75 images and found that normal eye images showed two types of
pupil reflections in the eye. In contrast, images of the eyes with cataract showed only one
reflection that was always coaxial. This finding helped them distinguish cataractous and
normal eye images more efficiently. Specular reflection always seems to be brighter than its
surrounding area, independent of illumination conditions. However, to prove the validity
of this technique, it has to be applied on a larger scale, and other factors, including camera
focus, angle, and distance, should be taken into account for a robust screening system.
The best camera angle would be 50◦ - 70◦, and the best distance from the object would be
30 cm - 60 cm [69]. Furthermore, an advanced algorithm is required to calculate the pupil
and front-side reflection localization.

In her next study, Supriyanti also added a texture analysis [70, 71] to identify more
characteristics of severe and non-severe conditions and to expand the performance of the
cataract screening system. She also exploited the uniformity and average intensity. Whitish
colors inside the lens are distributed in two ways: smoothly and unevenly. A thin layer of
whitish color is observed in a first manner that gradually covers the whole lens surface till
it becomes thick. When all gray levels are equal, uniformity is maximized. Approximately
all non-severe conditions are smoothly textured and highly uniformed. Supriyanti explains
that the average intensity is measured inside the pupil and is obtained by summing up
the pupil region’s gray levels and dividing the result by the total number of pixels in the
pupil. Eyes with cataracts have brighter intensities than normal eyes. Since she could
not effectively process small or moderate samples in her previous study, Supriyanti used
a larger database this time. She used specular reflection and texture analysis features
together and found that they were promising in cataracts screening. Supriyanti proposed
an algorithm with a True Positive Rate (TPR) equal to 92% and a False Positive Rate
(FPR) equal to 18%.

Although Supriyanti et al. considered only the circular shape of specular reflections
in most of their studies, in a study conducted in 2011, [73], different shapes of specular
reflections were focused for cataracts screening. They found that specular reflection could
be in different shapes, including ellipse, circle, cube, or rectangle; however, using an oval
shape is recommended to achieve the best results.

Anayet et al. [74] extracted colors of each block of cataract images by extracting
the average of their R, G, and B values. They used these extracted features to classify
the eye images into normal eyes plus grades 1, 2, 3, 4, and 5 of cataract. Nayak and
Jagadish [75] also used Tag Image File Format (TIFF) optical images of pupils to divide
them into normal, cataractous, and post-cataract groups. According to their method, the
pupil and cornea areas were detected using an edge detection method known as Canny.
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White pixels in every image were then counted, and the cataract perimeter was detected
using erosion. Finally, the images were classified with an average accuracy of 88.39%. In
their study, Fuadah et al. cropped the pupil areas manually and converted the extracted
regions into grayscale images. They used Gray level Co-occurrence Matrix (GLCM) for
feature extraction to distinguish between normal and cataract images. In their study on
early diagnosis and grading of cataract, Tawfik et al. [44] combined the wavelet transform
method with 2D Log Gabor Wavelet transform. This method was state-of-the-art for a
while and obtained a high success rate of 96.8% due to Log Gabor and wavelets’ strength
in detecting features.

2.3.3 Classification in the previous methods

After extracting good features of the eye as the ROI, the last step is distinguishing normal
lenses from cataractous ones. For this purpose, input eye images need to be classified based
on their cataracts stages. Some classification techniques used in the existing literature
about cataract grading are presented and discussed in the following section.

Various cataract detection and classification systems have been designed and imple-
mented by many researchers in the field. Neural network classifiers were developed as a
diagnostic tool to help ophthalmologists detect and grade cataracts. For instance, Artificial
Neural Network (ANN) is a supervised learning algorithm consisting of layers that include
a number of neurons connected with an activation function. In this algorithm, data are
fed to the network through an input layer, which passes them to one or more hidden layers
where weighted connections will process them. Outputs are then sent to the output layer
through hidden layers. Some advantages of ANN include nonlinear performance, working
consistency even when an element of the neural network fails, implementation in any ap-
plication, and its design that can fit almost any type of data or problems. Acharya [76]
used ANN classifier to classify TIFF natural eye images based on different eye diseases,
including cataracts, corneal haze, corneal arcus, and normal eye with an accuracy of 90%.
In another study, Acharya [77] also used ANN to classify pupils’ images based on their
extracted features by fuzzy k-means into three classes, including cataracts, post-cataracts,
and normal images with an accuracy of 90%. In [44], Tawfik et al. used ANN (with an ac-
curacy of 92.3 %) to differentiate between normal, early, and advanced stages of cataracts
using a dataset of 120 eye images divided into training (78) and testing (42) sets. In their
study, [44], ANN used 70 neurons in the hidden layer.

K-Nearest Neighbor (K-NN) is another classification technique that performs based on
previously classified data. K-NN was presented by Fix and Hodges (1951) and is commonly
used due to its simplicity and low computation time [78]. This classification method
works by searching the nearest distance between testing and training data. Training data
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are reflected in a multidimensional space where each dimension indicates their extracted
features. Accordingly, that space is divided into different classes (normal and cataractous)
based on the classification of training data [78]. During the classification process, feature
extraction results related to testing data are shown as some vectors in multidimensional
space; the similarity of test and training data is then calculated by spotting the nearest
distance using euclidean distance. K value in the K-NN technique represents the nearest
distance of testing and training data that will be utilized for classification and cataract
grading. The k-value that gives the highest accuracy performance is k=1. Fuadah et
al. [79] used K-NN to classify the pupil areas into cataract or normal areas with an
accuracy of 94.5%. In a study on smartphone-based cataract grading in 2015, Yunendah
Nur Fuadah [78] used K-NN to classify the proposed optimal combination candidate of
statistical texture features and performed cataract grading with the highest accuracy of
97.5%. This approach is currently considered as the state-of-the-art in smartphone-based
cataract grading systems.

SVM is a machine learning algorithm that can successfully overcome any training error
[80]. With a polynomial kernel function, SVM can achieve effective results with a small
training sample, compared to other kernel functions [81]. Its learning output is robust, and
its prediction accuracy is high [81]. A polynomial kernel detects similar training samples
in a feature space over polynomials of the original variables and allows the learning of
non-linear models[44]. Nayak et al. [75] used TIFF optical images of pupils and SVM
classifier to classify the eye images into normal, cataracts, and post-cataracts with an
average accuracy of 88.39%. In their study [44], Tawfik et al. used SVM in order to
classify a dataset of digital images (120 images) of iris into normal, early, and advanced
stages of cataracts with a success rate of 96.8%.

In [74], Anayet et al. classified digital images of healthy and cataractous (NC and CC
) eyes into normal eyes plus grades 1, 2, 3, 4, and 5 of cataract using K-means algorithm
with an accuracy of 92.5%. U. Patwari et al. detected, categorized, and assessed eye
cataract using digital image processing with an accuracy of 94.96%. In another study
[82], researchers used digital images of healthy and cataractous eyes (taken by microscope
during surgery) and removed the noise of pupil images and then converted them into binary
images for edge detection. To determine the cataract type, they measured the circularity of
cataracts and compared them with a circularity threshold of nuclear cataract (NC) binary
shape or with a cortical cataract (CC) binary shape. As a result, cataracts were classified
into two classes; nuclear cataracts with 94.96% accuracy and cortical cataract with 95.14%
accuracy.
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2.3.4 Evaluation metrics in the previous methods

Accuracy, precision, recall, specificity, F-measure value are metrics that are utilized to
assess the performance of proposed algorithms in the cataract grading literature [52].

All these metrics are calculated according to following equations:

Accuracy =
(TP + TN)

(TP + FN + TN + FP )
(1)

Specificity =TNR =
TN

FP + TN
(2)

Precision =
TP

TP + FP
(3)

Sensitivity =TPR = Recall =
TP

TP + FN
(4)

F1 =
2 ∗ Precision ∗Recall

Precision + Recall
(5)

TP, FP, TN, and FN respectively indicate the number of true positives, false positives,
true negatives, and false negatives in grading results.

To assess the predictability of a model, Receiver Operating Characteristic ROC curves
and Area Under the ROC Curve (AUC) can be used [43]. The ROC curve indicates the
True Positive Rate (TPR) against the False Positive Rate (FPR) according to various
threshold settings [43]. The TPR is similar as sensitivity, recall, or probability of detection
[43]. The FPR is similar to the probability of false alarm and is equal to (1 specificity) [43].
Larger AUC shows better predictability, which is measured by sensitivity and specificity
of test datasets.

2.4 Conclusion

Some several challenges and factors play essential roles in choosing a suitable method for
cataract grading. These challenges and factors are the following.

Different types of modalities can help eye care clinicians to grade cataracts. Type
of modalities determines the characteristics of databases, which might vary due to some
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factors, including illumination, angle, the orientation of captured images, and facial pose,
particularly for smartphone-based images. The difference between all types of datasets
utilized in the literature is how the eye region is captured. Do we have the other parts of
the face, or just the eye region is captured? Therefore, according to the selected dataset
and the number of images, different grading and classification techniques may be used. All
of these factors affect the final decision. Moreover, the lack of a benchmark dataset in
smartphone-based cataract grading studies should be highlighted.

Unlike ANN, SVM can process small training samples and datasets effectively [80,
75, 44]. In a recent study in which both SVM and ANN approaches were used for the
classification of 120 eye images into normal, early, and advanced cataracts [44], the former
showed a success rate of 96.8%, while ANN success rate result was 92.3%. Nevertheless,
SVM technique needs to be tested on a larger dataset.

A comprehensive review of recent literature on cataract grading systems showed the
application of a device that simulates slit-lamp in the clinics. This device attaches to
the smartphone camera for capturing images directly from the lens [52, 43]. Although
this device captures good-quality images too similar to slit-lamp, patients’ access to such
equipment, especially in rural regions, can be a big challenge. Therefore, if smartphone-
based methods that utilize only the smartphone’s photo-taking functionality could offer
more precise and accurate screening capacity, they can replace the attachable slit-lamp
device. This reason was a motivation for the current study.

Based on the literature review for cataract grading using smartphone images, feature
engineering methods were utilized to extract the features previously. The previous methods
were mostly based on hand-crafted feature extraction methods. These methods were based
on the images of the pupil rather than periocular images in the IIITD dataset. Moreover,
the number of images was small, around 150 – 120 images. In [75], Nayak used edge detec-
tion methods to extract the pupil’s center for cataractous images and measured the area
of the extracted region. Other hand-crafted features such as Big Ring Area (BRA), Small
Ring Area (SRA), Edge Pixel Count (EPC), and Object Perimeter were extracted and fed
as the input to SVM classifier for classification and cataract grading. The classification
rate was nearly 90%. In most of the previous methods, only two-class classification is ad-
dressed so far. Therefore, cataracts and various stages of cataracts need to be considered
and investigated[6].

Traditional machine learning methods try to learn and build a model for each task
from scratches. The problem is that it is expensive or sometimes impossible to recollect
the required data and reconstruct the models from the beginning. In this case, knowl-
edge/learning transfer between task domains would be beneficial [83]. Transfer learning
techniques transmit the knowledge from previous tasks to a target task when the target
task possess less high-quality training data [83].
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In contributing to previous methods and improving previous works, the present study
introduces a novel computer-aided automatic cataract grading method for detecting various
cataracts stages using smartphone images. Since most previously-used approaches were
based on hand-crafted features of extracted eye regions, the current study attempts to feed
ROIs to a CNN model to improve the feature extraction and grading process and extract
useful features using the end-to-end nature of CNN.

In the current study, the IIITD dataset [1] will be used, classified into four stages:
normal, early, pre-mature, and mature cataracts. Smartphones captured eye images before
and after cataracts surgery. Since most of the traditional methods are based on frontal-
view facial poses, the eye detection process in IIITD images is difficult because, in most of
the captured images, only a part of the face is visible and is not a frontal view. The current
study addresses this eye detection challenge using an eye detection method practical for
non-frontal facial poses.

Additionally, the proposed method will implement an automated end-to-end method
to a larger database.

The current study will compare available pre-trained convolutional neural networks
(CNN) like VGG, ResNet, and Inception v3 together and also use the best accuracy to
carry out automatic cataract classification. The pre-trained CNN models are trained and
tested on a wide-scale ImageNet dataset [84]. For feature extraction and classification
tasks, pre-processed images are passed into a deep learning model, the output of which is
then passed into the next layer as input [84]. Finally, the last layer produces the results.
The last layer will be fine-tuned with digital cataractous images collected from IIITD
dataset, divided into four stages of normal, early, pre-mature, and mature cataracts with
the help of an optometrist.

Like all neural networks, the layer size and network depth are considered hyper-parameters.
Generally, deeper models show better performance than shallow models in extracting richer
features; however, too much depth does not always guarantee the best performance for all
types of tasks. Furthermore, the more data we have for our task, the more we can un-
freeze the original model layers and fine-tune them for our specific task. After selecting an
effective optimizer, data augmentation is used to avoid over-fitting and neutralize data dis-
parity. Augmented data will reproduce a more comprehensive set of potential data points,
reducing the difference between training, validation set, and any future testing sets [85].
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Chapter 3

Methodology

3.1 Overview

Early detection of cataracts is considered a necessary first step. Preliminary research shows
that it is possible to detect cataracts using image processing. As smartphones become sen-
sibly universal in most urban areas, cataracts screening with smartphones reduces the
screening cost and travel/time bothers for patients. Accordingly, a novel computer-aided
automatic cataract grading method is presented in the current dissertation to detect var-
ious cataracts stages, such as normal, early, pre-mature, and mature cataracts, from the
smartphone images.

3.2 Contributions of this thesis

1. A novel computer-aided automatic cataract grading method is presented to detect
various cataracts stages, namely normal, early, pre-mature, and mature cataracts,
using the photo-taking function of smartphones.

2. The recent, state-of-the-art studies on cataract grading utilize a device simulating
slit-lamps. This device is attached to the smartphone camera [52]. Although they
provide good quality images that are very close to the slit-lamps in the clinics, it
can be a burden for the patient to access these types of equipment in rural areas
of developing countries. Therefore, by proposing a precise and accurate screening
automated method, the current investigation aims to compete with the portable
slit-lamp-based approaches.
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3. By proposing an eye detection method practical for non-frontal facial poses, the
current thesis aims to deal with the non-frontal poses and eye detection challenge in
the utilized dataset.

4. In the current study, as first steps, a few feature engineering methods such as the
Canny edge detection method and Hough transform were applied to some of the eye
regions after the eye detection step. Because the images are not focused on the pupil,
and the pupil is a very small region of the images, the edge detection and the Hough
transform method were not successful in extracting the pupil, and the results do not
make sense. Therefore, we did not report the feature engineering results. In the IIITD
dataset, the total number of images was 1324. A general feature extraction method
was required to extract reliable features from images with inconsistent orientations,
facial poses, backgrounds, illumination, and distances between camera and subject.
Therefore, we implemented multiple CNN-based models such as a four-layer CNN
and pre-trained networks such as VGG-16, Inception V3, and ResNet-101 for cataract
grading to extract general features and do cataracts classification in an end-to-end
framework.

5. The proposed method also aims to compare the available pre-trained Convolutional
Neural Networks (CNNs) such as VGG network, ResNet, Inception v3, and use the
best accuracy to carry out automatic cataracts classification.

6. In the earlier state-of-the-art methods, the classification result on a dataset with
120 images indicates that the SVM classifier cannot process effectively and needs
a larger dataset tawfik2018early. The current research will implement ResNet-101
feature extractor combined with SVM classifier on a larger dataset, and also it aims
to compare the result with an end-to-end ResNet-101. The aim is to remove the
shortcoming of the small number of input images.

7. Most previous research has only dealt with the two-class classification problems -
cataract and no-cataract - by smartphone [6] and the cataract stages were limited into
early and advanced cataracts [44, 78, 74]. Therefore, degrees of cataracts, including
early, pre-mature, and mature cataracts, will be automatically graded in the current
study.

3.3 Proposed Methodology

A novel computer-aided automatic cataract grading system proposed in the current study
consists of several vital steps. After data acquisition and preparing the images, it is nec-
essary to detect the eye region. By considering the eye region as the region of interest,
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proper features must be extracted to classify the input images into normal and various
cataracts stages. The comprehensive description of each step is presented in the following
sections. Figure 3.1 illustrates the block diagram of the cataract grading system proposed
in the current dissertation.

Figure 3.1: The proposed block diagram for the cataract grading system using smartphone-
based images.

3.3.1 Dataset

The IIITD Cataract Mobile Periocular (CMP) database [1] was utilized as the cataractous
and normal data images [1] in the current study. This database contained images capturing
ocular information utilizing the photo-capturing functionality of the smartphones in the
visible spectrum.

The IIITD dataset [1] in the current study is a part of a large-scale biometric recognition
systems project. Large scale biometric recognition systems often rely on the iris as a specific
modality. Based on the literature on iris recognition, the publications have proposed using
periocular biometrics when iris recognition fails. It has been established that periocular
recognition can be more accurate for recognition at a distance than iris recognition [1].
Periocular biometrics is ocular biometrics where the ocular region includes the eyebrow,
pupil, sclera vasculature, and iris [1]. The IIITD dataset consists of periocular images for
recognizing the identity of individuals [1]. A significant number of individuals registered
in large-scale identification programs belong to a population over the age of 50 years [1].
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Sessions 2
Pre-operative subjects 145
Post-operative subjects 99
Total number of images 1804
Resolution of an image 4608 ×3456
Mobile camera resolution 16 megapixels
Eliminated images due to noises 480
Total number of images after elimination 1324

Table 3.1: The characteristics of the IIITD Cataract Mobile Periocular database [1].

Statistically, eye-based diseases such as cataracts have been quite prevalent among this age
group. According to the National Eye Institute (NEI), 14.36% age group 50-60, 40.18%
age group 60-70, 85.98% age group 70-80). The IIITD dataset is captured in phases: pre-
and post-cataract surgery sessions by a smartphone camera in uncontrolled illumination,
complex background, and geometric distortions [1]. The images had challenges, including
translation, rotation, and blur. Therefore, compared to the medical offices for cataract
grading, the IIITD dataset does not have controlled illumination with controlled orientation
and distance between the camera and the subject.

The images were obtained using a MicroMax A350 Canvas Knight mobile phone equipped
with a 16-megapixel camera [1]. The eye images were labeled and diagnosed by an op-
tometrist. Table 3.1 and figure 3.3 illustrates the dataset characteristics and sample images
of the IIITD dataset respectively.

There is no information about the age groups and the number of each gender in the
IIITD dataset. As one of the steps before cataract grading, we detect the eye regions, and
we did cataract grading independent of the gender and age group. Figure 3.3 illustrates
the challenges regarding the IIITD dataset.

Pre-processing and extra data cleaning

Due to the unconstrained nature of the images, in the first step, some data pre-processing
and data cleaning were applied to prepare the input images and make them usable for CNN
network input. Therefore, the images were checked one by one manually, and 480 images
from a total of 1804 images were eliminated because of blurriness, low quality, or closed
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Figure 3.2: Sample images of the IIITD database.

Figure 3.3: The challenges regarding the IIITD dataset

eyes. The outliers and the scattered data were eliminated; for the remaining data. After
resizing, the eye regions were detected and were fed as the input to the CNN networks.
Some examples of eliminated images are shown in Fig 3.4. Table 3.2 shows the number of
available data for each label after data cleaning.
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Table 3.2: Number of available data for each label after data cleaning
Label Number of images
Normal 70

Early cataracts 121
Pre-mature cataracts 404

Mature cataracts 243

Figure 3.4: Corrupted images.

3.3.2 Eye region detection

As described in the previous section, due to the high resolution and the large size of images,
direct use of this data considerably prolongs network training time. Due to this issue, these
images must be resized before feeding to the CNN network. One easy way to fulfill it is to
rescale the images directly. However, this method reduces the photos’ quality, and some
parts of the data will be lost. An alternative solution is to extract the subjects’ eyes
in every photo using an eye detection method and then feeding the detected eyes to the
classification/grading model. For fulfilling this purpose, there are many different methods
and tools. In this project, the dlib face landmark detection tool is used to extract the
subjects’ eyes [86].

Dlib face landmark detection method finds human faces in an image and estimates
the facial pose in the images [87]. This robust approach employs component landmark
detection that performs accurately for all poses changing from side to frontal view [86, 87].
To obtain robust detection for extreme poses, it uses a set of independent poses, and specific
landmark detectors [87]. The failure rate for this technique is lower than the commercially
available software [87]. The pose considers 68 landmarks. These landmarks are facial
points such as the corners of the mouth, the eyebrows, the eyes, etc. A sample of the
landmarks has been shown in figure 3.5.

The face detector employed the classic Histogram of Oriented Gradients (HOG) features
accompanied by a linear classifier, an image pyramid, and a sliding window detection
strategy [88]. The pose estimator was built utilizing the dlib method proposed by [89, 88]
and was trained on the iBUG 300-W face landmark dataset.
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Figure 3.5: The full set of facial landmarks that can be detected via dlib [3].

In the first part of the implementation, for eye region extraction, after rescaling the
images, the landmarks were extracted using dlib landmark detection technique. Then,
according to the samples’ extracted landmarks, the acceptable range of pixels was selected
to obtain the right eye bounding box.

It has to be noted that most of the existing eye detection methods use models to identify
a person’s full face and then obtain the eyes or other parts from the extracted face. Since
most of the IIITD dataset photos include only a part of the face, the direct use of the
landmarks extraction method in many cases does not match the true landmarks correctly.
To get a better and more accurate result, a method was used to recover the person’s entire
face and then extract the eyes. For this purpose, each image was concatenated to its
flipped image horizontally to create a complete image of the person’s face. Next, with the
described method, the existing landmarks were identified, and the person’s eye region was
clipped from the photos.

After extracting the eye regions, all the outputs were checked manually, and the output
was eliminated if the eye region was not extracted wholly and correctly.

The centralized eye region in the detected bounding box was another issue that had to
be checked. If there was a little deviation, it was ignored because there were other samples
from various angles for each eye region, and the samples from different angles could cover
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these small deviations. The critical point in extracting the eyes from the original photos is
that the location of the eye’s landmarks may be such that the photo’s size may be smaller
than the required size. In this case, zero-padding was added to the photos.

In the next step, the extracted eye region was fed into the CNN model to be graded.
However, before this step, the augmentation process was implemented on the available
images.

3.3.3 Data augmentation

Data augmentation was also performed on the dataset. It prevents the network from
memorizing the exact details of the training images and overfitting. By adding transformed
versions of images in the dataset, the image augmentation method artificially expands the
size of the training dataset. Training the CNN model on more variable images results
in more skillful models and generalizing better from what they have learned from new
samples. Image transformations include a range of operations from image manipulation,
such as shifts, flips, zooms, rotates, and much more.

It has to be mentioned that another procedure that solves the centralization in the
detected bounding boxes is the horizontally and vertically shifting technique, which were
utilized as a part of the augmentation techniques. The horizontal and vertical shifting
techniques can reduce non-centralized eye regions’ effect in the detected bounding boxes.

In the next step, the augmented data was used to train the CNN network.

3.3.4 Proposed Convolutional Neural Network for automated
cataract grading

Network Architecture

After data pre-processing, different models can be used for classification. This project
used CNNs to categorize the images into four classes of normal, early cataracts, pre-
mature cataracts, and mature cataracts. For this purpose, a network with the following
specifications was used.

Input

In this step, to speed up the training process, the input images were pre-processed and
resized into half of the initial size.
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Network Layers

Four layers of convolutions, in which [32,32,64,64] filters with kernel size [(5,5), (5,5), (3,3),
(3,3)] were used in each layer, respectively. Also, a max-pooling layer was used between
each pair of convolution layers. After convolutional layers, a flattening layer was used
to convert the data into a 1-dimensional array to pass it as the input to the next layer.
Finally, two Dense layers were used to dimension reduction and determine the label of the
images. Figure 3.6 illustrates the architecture of the implemented network and its layers.

Output

Existing data labels include the following six values:

1. NC/ NVC (No view of Cataracts)

2. EC (Early Cataracts)

3. PMC (Pre-Mature Cataracts)

4. MC (Mature Cataracts)

5. NV (No clear view)

6. IOL (Intra-ocular lens)

NV-labeled data was removed from the processed data due to noise. Also, IOL(Intra-
Ocular Lens) was considered as the normal and no cataract condition. Therefore, four
classes were considered for training the dataset. To feed these labels into the CNN network,
a one-hot encoding was used. A sample of one-hot encoding is shown in Figure 3.7.

Weight initializers

Generally, the neural network starts with some weights, and then in an iterative process,
the weights are updated to better values. The term kernel initializer is a term that is
utilized for the statistical distribution or the function to initialize the weights. The library
will create numbers from that statistical distribution and employ them as starting weights.
In this project, a random normal distribution was used as the kernel initializer.
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Figure 3.6: The architecture of the implemented 4-layer CNN network.
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Figure 3.7: sample of one-hot encoding.

Activation Functions

The Relu and Leaky Relu function were used as the activation function for convolution
layers and existing dense layers. Finally, for the last dense layer (output layer), the softmax
function was used as the activation function.

Dropouts

Deep learning neural models are prone to over-fit quickly on the training data with few
samples. By randomly dropping out some of the neurons during the training process,
a single model can simulate having a large number of examples and avoid over-fitting.
This method is called dropout. It provides a very computationally efficient and notably
effective regularization strategy to reduce over-fitting and improve generalization error in
deep neural networks. In the implemented network, a dropout layer was used after each
convolution and dense layer.

Weight Regularizations

The second principal approach to control the complexity of a model is utilizing regular-
ization, which involves adding a penalty term to the error function. Weight regularization
is a technique to decrease the overfitting of a deep learning neural network model on the
training data and make the model’s performance better on new data. In the implemented
network, an l2 norm regularization was used for the convolutional layers.

Optimizer

The Adam optimization algorithm is a replacement for the classic stochastic gradient de-
scent. It is computationally efficient and straightforward in terms of implementation. As

29



another advantage, it is suitable for tasks with noisy gradients. In this project, Adam
optimizer was used as a network optimizer.

3.3.5 Training

The classification model is responsible for assigning the items in the dataset to the de-
termined classes. Consequently, the classifier must be assessed to determine its accuracy,
error rate, and error estimates. The holdout method was used as one of the most primitive
methods to evaluate the classification models in terms of their accuracy, error rate, and
error estimates in the current study. After shuffling the dataset in this technique, the data
set was randomly divided into two sets of the training set and the test set. The maximum
data is randomly selected in the holdout method and belongs to the training set, and the
remaining data belongs to the test set. The partitioning rate was 80:20 for the training
and test sets. After partitioning the dataset into two sets, the training set was used to
create the classification model. After building the model, we used the data examples in
the test set to examine the accuracy, error rate, and error estimate of the cataract grad-
ing model. If maximum possible data examples are considered for the training set in the
holdout method, the error rates would be very low, and accuracy would be high. It can be
interpreted as a good classification model.

Inspired by various works, due to the holdout method’s simplicity, the holdout method
was selected to train and test the cataract grading model in the current study, but other
techniques such as cross-validation could be utilized as well [3]. The holdout method is
suitable to use when we are on a time crunch because cross-validation uses multiple train-
test splits. Cross-validation needs more computational power and time to run than using
the holdout method. On the other hand, cross-validation is beneficial because it offers the
model the chance to train multiple train-test splits.

The network was trained for 500 epochs, and the model with the best validation accu-
racy (the least loss) was saved and considered as the final model.

3.4 The evaluation of cataract grading by various pre-
trained CNN’s

In general, transfer learning is a technique in deep learning and is a process of training a
neural network on one problem and using it somehow on a second related task [83, 90].
There are several available pre-trained networks namely, VGG-16, ResNet-101, Inception
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v3. These networks have been trained on ImageNet dataset with more than a million
images and can classify images into 1000 object categories [83, 90]. Then, one or more
layers of the trained model are utilized in a new model and fine-tuned on the desired task
[83, 90]. Transfer learning is beneficial in terms of decreasing the training time for a CNN
model and reducing the generalization error[83, 90]. This method is also used when the
number of available data is low, and the quality of data is not good enough to extract
reliable features for the machine learning task [83, 90].

There are some usage patterns of transfer learning for pre-training task [83, 90] that
includes:

1. Classifier: The pre-trained network is utilized directly to categorize new images [91].

2. Standard feature extractor: The pre-trained model, or some portion of the pre-trained
network, is utilized to do some sorts of image processing and obtain related features
[91].

3. Integrated feature extractor: The pre-trained model, or some part of the pre-trained
network, is united into a new model, but during the training process, the layers of
the pre-trained model are frozen [91].

4. Weight initialization: The pre-trained model, or some part of the network, is merged
into a new model, and the layers in the pre-trained model are trained at the same
time with the new model [91].

Each strategy can effectively and time-savingly help to develop and train a deep convo-
lutional neural network model. In the current study, to compare the pre-trained networks
and evaluate the proposed CNN model, we used VGG-16, Inception v3, ResNet-101 pre-
trained models, which contain 16, 48, and 101 layers, respectively. The relevant recent
works were our motivation to select these networks [15]. The image input layer requires
224x224x3 , 299×299x3, 224x224x3 input size for VGG-16, Inception v3 and ResNet-101
respectively. To use pre-trained models, first, the data was pre-processed for a second
time based on each model’s requirements. For training, all layers of the base model were
frozen(except Batch-Normalization layers for ResNet-101 and Inception v3), and only the
top layers(classification layers)of the network were trained(which were randomly initial-
ized). As the last step, some network layers (according to network architecture) were
fine-tuned for some epochs. For more information on VGG, ResNet, and Inception v3 and
their architectures, you can refer to appendices in the current dissertation.

In the utilized four-layer CNN model and the pre-trained networks, the number of layers
and nodes between the models was different, but they were the same for each model’s
available input images.
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3.4.1 Cataract grading using SVM classifier

To evaluate the current classification technique with the standard supervised classifiers,
support vector machine SVM was utilized to classify the available dataset into four classes of
normal and three cataracts stages, including early, pre-mature, and matured cataracts. As
the feature extractor, pre-trained ResNet-101 was utilized. In the next step, the extracted
features were fed as the input to the SVM classifier. The Radial Basis Function (RBF)
kernel was utilized, and C and gamma parameters were tuned to get the best result.
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Chapter 4

Results

In this chapter, the IIITD dataset’s details and the evaluation criteria utilized in the
experiments are presented, and then the experimental results and the related analysis are
shown.

4.1 Experimental setup

4.1.1 Dataset

Among the 1804 periocular images available in IIITD dataset, 480 scattered and noisy
images were eliminated, and a total number of 1324 images were remained to fed into
the cataract grading system. The images were labeled and graded by an experienced
optometrist into four class of normal, early, pre-mature and mature cataracts. After data
cleaning, in the IIITD images, 70 images had non-cataract labels, while 121 , 404, and
243 images were diagnosed as early, pre-mature, and mature cataracts, respectively. The
dataset was divided randomly into two non-overlapping subsets of patients, i.e., training
and test, at a rough ratio of 8:2, and the validation split rate was 0.2. Figure 4.1 shows
few samples of the photographs in the dataset.

All of the methods were implemented using Python 3.8 Keras library and tested on
a personal computer (Microsoft Windows 10, CPU Intel Core i7 - 6700K, GPU: Nvidia
Geforce GTx TITAN X RAM: 64GB).
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Figure 4.1: Sample images of the database.

4.1.2 Evaluation criterion

The cataract grading processes implemented in the current study were object detection
for eye region extraction and a classification problem in the grading phase. According to
the equations described in 2.3.4, the evaluation metrics such as accuracy, precision, recall,
sensitivity, specificity, and F-measure were calculated and reported in table 4.3 to measure
the performance of three-level cataract grading.

In the ROC curves illustrated in Fig. 4.8, each figure is for one model and shows the
ROC curves of that model for each group of normal, early cataracts, pre-mature cataracts,
and mature cataracts. Thus, the model, number of layers, and nodes are consistent between
the groups, but they are changed for different implemented models.

4.2 Eye region detection results

Since the dataset images had a big size of 4606*3456 pixels and they had a complex
background with irrelevant objects such as sclera, pupil, eyelid, nose, and other parts of
the face; in order to alleviate this problem, different attempts were made to extract the
eye regions in the IIITD images. Since the images were captured in an unconstrained
condition with different facial poses, illumination condition, occlusion, and also because,
in most cases, the whole face was not visible in the images, after implementing most of
the conventional eye detection techniques, the implemented methods could not detect the
eye region correctly, and the regions were in most cases false positive. The conventional
and the eye detection techniques that were implemented include hough transform, haar
cascade and Multi-Task Cascaded Convolutional Neural Networks (MTCNN) [54, 92]. To
extract subjects’ eyes, the images were first re-scaled by two, and then the landmarks were
extracted using dlib landmarks detection. Fig. 4.2 and Fig. 4.3 are the results of detected
landmarks using dlib.
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Figure 4.2: A sample of detected landmarks using dlib

The pixels in range of (37:40, 38:42) were considered as the left eye (the right eye in
the dataset), and the pixels (43:46, 44:47) were considered as the right eye (the left eye in
the dataset). The proposed method’s outputs were the bounding boxes for the extracted
eye regions (600 × 800 due to the use of borders for each point). To get a better and
more accurate result, the person’s entire face was regenerated, and then the eye regions
were extracted using dlib landmarks detection method. Figure 4.4 illustrates a sample of
the detected eyes using the modified dlib method and shows the difference of extracted
eye regions with the previous method (using dlib without rebuilding the whole face). The
second method can detect true landmarks better.

After extracting the eye regions, all the outputs were checked manually, and the output
was eliminated if the eye region was not extracted wholly and correctly. The original image
size for the dataset was 3456×4608, and the extracted eye region size was 600×800. Figure
4.5 shows the whole process from resizing the original image to the extracted eye region.

Eye detection results clearly show the validity of our approach. A correct eye detection
rate of 97 % was achieved using the modified method.
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Figure 4.3: A sample of detected landmarks using dlib

Figure 4.4: The top branch shows the eye detection process using the face landmarks. The
bottom branch illustrates the eye detection in two steps of rebuilding the whole face and
extracting the face landmarks using dlib.
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Figure 4.5: The process of resizing images from original image to the extracted eye region.
(a) the raw image (3456 × 4608 pixels). (b) The image is resized into half of the initial
size, (c) The whole face is rebuilt. (d) The eye region bounding box is extracted. (e). The
eye region is resized into half (600 × 800 pixels).

4.3 Image augmentation

Figure 4.6 is a sample of rotation and shift up-sampling. The augmented data was utilized
for training the CNN networks. The total number of images after augmentation reached
2427 images.

4.4 Cataract grading results

4.4.1 Procedure 1: CNN model

The results of the four-class classification using a four-layer CNN model are presented
in table 4.2. Table 4.1 shows the number of parameters and running time for the pro-
posed four-layer CNN model. We also presented the classification accuracy for each of the
individual classes using the CNN model in Table 4.3.

The confusion matrix and the ROC curve is shown in figure fig:cm and Fig 4.8. Ac-
cording to the confusion matrix, the CNN model can grade images into four classes of
normal, early cataracts, pre-mature, and mature cataracts with an accuracy rate of 60 %,
95%, 95%, and 63%. The best classification and grading occurred for early cataracts and
pre-mature cataracts.
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Figure 4.6: Augmentation sample (shift and rotation).

The ROC curve of the CNN model is illustrated in Figure 4.8. A ROC curve is visu-
alized by plotting the TPR rate against the FPR rate and presents the trade-off between
sensitivity (or TPR) and specificity (1 – FPR). The TPR shows the proportion of accu-
rately predicted observations to be positive among all positive observations. Similarly, the
FPR, the horizontal axis in this curve, is the proportion of falsely predicted observations
to be positive among all negative observations. Classifiers that result in curves closer to
the top-left corner show better performance. Furthermore, the closer the curve is to the
45-degree diagonal of the ROC space, the less accurate the test is. According to the ROC
curve in figure 4.8, ROC curve of class 1 (mature cataracts) with area = 0.88 shows less
accuracy, and ROC curve of class 0 (early cataracts) with the area = 0.97 is closer to the
top left corner and has better accuracy.

4.4.2 Procedure 2: Transfer learning

In the second procedure, first, the data was again pre-processed based on each model’s
requirements. Then, all layers of the base model were frozen(except Batch Normalization
layers for ResNet-101 and Inception v3), and only the top layers(classification layers)of the
network were trained(which were randomly initialized). After some epochs of training of
the classifier, these layers including Inception v3 = 249:315, ResNet = 338:349, VGG-16 =
19:23 were re-trained respectively. First, for the fine-tuning and training of the classifier,
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50 epochs were selected. For the training of the other layers, the epoch was increased up to
500. The other parameters utilized to fine-tune the pre-trained models include rmsprop as
the optimizer for the first training and Stochastic Gradient Descent (SGD) for the second
round of training. The learning rate (lr) was 0.0001, and momentum was selected 0.9.

The average accuracy rates of the pre-trained networks i.e. VGG-16, ResNet-101,
Inception v3 are shown in table 4.2.The results show that among the pre-trained models
implemented and fine-tuned for cataract grading, ResNet-101, with the mean accuracy
of 89.62 %, achieved the best accuracy in cataract grading. The ResNet-101 pre-trained
model has been trained on more than a million images of ImageNet and contains 347 layers
in total, corresponding to a 101 layer residual network, and can classify images into 1000
object categories. The first layer inputs 224x224x3 image size. Table 4.1 shows the number
of parameters and running time during the training process for each pre-trained model.

The ROC curve of the VGG-16 network is illustrated in figure 4.8. According to the
ROC curve in the figure. 4.8, ROC curve of class 2 (no cataract/normal) with area = 0.95
shows less accuracy and is closer to the 45-degree line. The ROC curve of class 0 (early
cataracts) and class 1 (mature cataracts) are equal, and with the area = 0.98 are closer to
the top left corner and have better accuracy.

The confusion matrix of the VGG-16 network is shown in the figure. 4.7. According to
the confusion matrix, the accuracy rate of 67%, 84 %, 95%, and 83% is achieved to classify
the images into a normal, early cataracts, pre-mature cataracts, and mature cataracts,
respectively. The best classification and grading occurred for pre-mature cataracts.

The ROC curve of the Inception v3 network is illustrated in figure 4.8. According to
the ROC curve in the figure. 4.8, ROC curve of class 1, mature test samples, and class 3,
normal images, with equal area = 0.95 show less accuracy and are closer to the 45-degree
line. The ROC curve of class 0 (early cataracts) with the area = 0.98 is closer to the top
left corner and has better accuracy.

The confusion matrix of the Inception v3 network is shown in figure 4.7. According to
the confusion matrix, the accuracy rates of 76%, 78 %, 89%, and 83% are achieved to clas-
sify the images into a normal, early cataracts, pre-mature cataracts, and mature cataracts,
respectively. The best classification and grading occurred for pre-mature cataracts. More-
over, the least accuracy was for the classification of normal images.

The ROC curve of the ResNet-101 network is illustrated in figure 4.8. According to
the ROC curve in the figure 4.8, ROC curve of early cataract, mature cataract, and the
pre-mature cataracts images (class 0, 1, and class 3) with equal area = 0.98 show less
accuracy comparing with normal lenses (class 2) with area =0.99 and are closer to the
45-degree line. The ROC curve of normal test samples (class 2) is closer to the top left
corner and has better accuracy.
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The confusion matrix of the ResNet-101 network is shown in the figure 4.7. According to
the confusion matrix, the accuracy rates of 87%, 86 %, 93%, and 87% are achieved to clas-
sify the images into a normal, early cataracs, pre-mature cataracts, and mature cataracts,
respectively. The best classification and grading occurred for pre-mature cataracts. The
least accuracy was for the classification of early cataracts images.

4.4.3 Procedure 3: Cataract grading using SVM classifier

In the last phase of the experiment, the end-to-end ResNet-101 was compared with the
SVM classifier. For C in the range of [1,10,100,500], the best achieved mean accuracy
is illustrate in table 4.2. Table 4.3 compares the evaluation metrics and accuracy rates
for each of the classes. According to SVM’s results as the classifier, the Fully Connected
(FC) layer in the end-to-end pre-trained ResNet-101 could outperform the cataract grading
model using SVM as the classifier.

Fig 4.8, illustrates the ROC curve for ResNet-101 using SVM. The ROC curve of the
ResNet-101 network as a feature extractor and SVM classifier used both together as the
cataract grading model is illustrated in figure 4.8. Accordingly, the normal images’ ROC
curve (class 2) with area = 0.98 shows less accuracy and is closer to the 45-degree line.
The mature cataracts group (class 1) with area =0.91 is closer to the top left corner and
shows better accuracy.

The confusion matrix of the ResNet-101 network as the feature extractor and SVM
classifier is shown in the figure 4.7. According to the confusion matrix, the accuracy
rates of 65%, 75 %, 95%, and 86% are achieved to classify the images into normal, early
cataracts, pre-mature cataracts, and mature cataracts, respectively. The best classification
and cataracts grading are for pre-mature cataracts, and the least classification accuracy
was for the classification of the normal images.

4.5 Conclusion

According to Table 4.2, ResNet-101 is outperforming the other models implemented in this
study.

To see how the model performs for each class, we can take a look and use other calcu-
lated metrics in Table 4.3. According to the definitions, precision answers that how many
of those whom we labeled as, for example, early cataract have actually early cataract?
Recall looks for that from all the participants who are EC, how many of those are correctly
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Table 4.1: Execution time and total number of parameters for each implemented model.
Model Total parameters Train1parameters Time per epoch(S) Fine-tuning Time per epoch(S)

Proposed CNN 5,398,884 5,398,884 78
VGG16 15,244,100 529,412 31 1,347,530 38

Inception v3 23,905,060 2,119,492 37 13,227,844 43
ResNet-101 44,760,452 2,207,620 61 5,618,052 62

Table 4.2: The mean accuracy of the implemented models

CNN VGG-16 Inception v3 ResNet-101 ResNet-101 with SVM
Mean Accuracy 84.67 87.64 84.67 89.62 87.14

predicted? The recall is the same as sensitivity. F measure is the harmonic average of the
precision and recall and considers both of them. According to all the previously mentioned
metrics and also F-measure, which is the trade-off between recall and precision, the results
show that for each individual class, ResNet-101 outperforms the other models and has
better grading results for IIITD with imbalanced data.

Table 4.3: The metrics of the implemented models

CNN VGG-16 Inception v3 ResNet-101 ResNet-101 with SVM
Accuracy EC 0.95 0.84 0.78 0.86 0.75

MC 0.63 0.83 0.83 0.87 0.86
NC 0.60 0.67 0.76 0.87 0.65
PMC 0.95 0.95 0.89 0.93 0.95

Precision EC 0.71 0.91 0.87 0.87 0.88
MC 0.89 0.93 0.82 0.89 0.90
NC 1 0.84 0.73 0.91 0.97
PMC 0.87 0.85 0.87 0.90 0.85

Recall EC 0.95 0.84 0.78 0.86 0.75
MC 0.63 0.83 0.83 0.87 0.86
NC 0.6 0.67 0.76 0.87 0.65
PMC 0.95 0.95 0.89 0.93 0.95

Sensitivity EC 0.95 0.84 0.78 0.86 0.75
MC 0.63 0.83 0.83 0.87 0.86
NC 0.6 0.67 0.76 0.87 0.65
PMC 0.95 0.95 0.89 0.93 0.95

Specificity EC 0.93 0.99 0.98 0.98 0.98
MC 0.97 0.97 0.92 0.96 0.96
NC 1 0.99 0.98 0.99 1
PMC 0.84 0.83 0.88 0.90 0.83

F-measure EC 0.82 0.87 0.82 0.87 0.81
MC 0.74 0.88 0.83 0.88 0.88
NC 0.75 0.75 0.74 0.89 0.78
PMC 0.91 0.89 0.88 0.91 0.89
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Figure 4.7: The confusion matrix of the implemented models. (a). The confusion matrix
of the CNN model. (b). The confusion matrix of the Inception v3 model. (c). The
confusion matrix of the ResNet-101 model. (d). The confusion matrix of the VGG-16
model. (e). The confusion matrix of the ResNet-101 feature extractor and SVM classifier
model.
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Figure 4.8: The Receiver Operator Characteristic (ROC) curve of the implemented mod-
els. (a). The ROC of the CNN model. (b). The ROC of the VGG-16 model. (c). The
ROC of the Inception v3 model. (d). The ROC of the ResNet-101 model. (e). The ROC
of the ResNet-101 feature extractor and SVM classifier model. class 0 = early cataract
(EC), class 1 = mature cataracrt (MC), class 2 = no cataract (NC), class 3 = pre-mature
cataract (PMC)
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Chapter 5

Discussion and conclusion

In this project, a framework is presented to diagnose and categorize different degrees of
cataracts using incomplete facial photographs captured by the smartphone camera. The
current study aims to distinguish between the normal and the cataractous lenses in the
captured images. After detecting cataracts, the system will grade the severity of the
cataract. Therefore, based on the priority, we should focus on a model with more TPs and
fewer FPs. It is always a priority to distinguish cataracts earlier; therefore, we do not want
to miss the cataract cases. Thus, choosing a model with fewer FPs for the Normal group
and more TPs for the Normal cases is preferable.

Moreover, when the cataract reaches the mature and pre-mature stages, based on the
patient’s symptoms and how much the patient has vision loss, the cataractous lens can be
a surgery candidate. Thus, we need a model with fewer FPs for pre-mature cataracts and
a more significant number of TPs. Accordingly, we go for the model with the ROC cure
closer to the top left corner for the pre-mature and mature cataract.

One of the differences between the proposed methodology in the current study and
the recent similar cataract grading systems [43, 53] is that in the very recent related
works, an external device is attached to the camera in the smartphones and simulates
a portable slit-lamp to monitor the human crystal lens. Although this device captures
good-quality images similar to slit-lamps in the clinics, patients’ access to such equipment,
especially in rural regions, can be a big challenge. The current study’s main objective
was to propose a smartphone-based method and offer an inexpensive and practical self-
diagnosing automated approach that can compete with the expensive attachable slit-lamp
device.

Since the images in the IIITD dataset were collected with the smartphone cameras and
are not captured in a constrained condition; factors such as camera rotation, variations
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due to rotation, translation, blurriness, the distance between subject and camera, and not
having a complete facial view in the images made the eye region extraction and cataract
grading a challenging task. Hence, to deal with the unconstrained condition, the total face
view was regenerated. Then, the eye regions were extracted with an accuracy rate of 97%.
The eye region detection method implemented in this study could deal acceptably with
the non-frontal poses in the images.

The extracted eye regions were utilized for training a designed CNN network. Also,
in the next procedure, transfer learning and pre-trained models were used. In this step,
three different pre-trained models (VGG-16, ResNet-101, and Inception v3) were selected,
fine-tuned, and compared. The comparison shows that the ResNet-101 fine-tuned model
has the best outcome and can classify cataracts with reasonable accuracy.

Comparing Inception v3 and ResNet-101 with VGG-16, big advancements were made
in the architecture of ResNets and Inception v3 leading to boosts in accuracy and perfor-
mance. Since the training process in deep neural networks is time-consuming, and these
models are prone to overfitting, the residual learning framework in ResNets (short for
Residual Networks) has improved the training of significantly deeper networks than those
used previously. Using the residual mapping technique in ResNets solves the problem
of saturation and degradation in neural networks caused by an increase in the networks’
depth. Therefore, ResNet-101 can be used to address many problems. ResNet-101 is easier
to optimize and achieve higher accuracy when we increase the depth, producing better
results than previous networks. Looking at the average accuracy in ResNet-101 in the
current study admits this claim.

Putting the improvement in the performance and accuracy of the ResNets aside, the
time per epoch for ResNet-101 is the most among the three implemented pre-trained net-
works. The number of total parameters for ResNet-101 is more than the other implemented
networks. On the other hand, compared with pre-trained ResNet-101, the proposed four-
layer CNN in the current study has fewer parameters, and in some levels of cataracts, it
was compatible with ResNet-101. Since CNN is a lighter model, therefore, in future works,
more investigation is required to evaluate whether the ResNet-101 or the four-layer CNN
with some modifications can be a better candidate for smartphone-based cataract grading
loaded on a cloud platform.

In order to compare and evaluate the classifier in the ResNet-101, the extracted features
by the ResNet-101 were fed to SVM classifier. The experimental results indicated that the
end-to-end ResNet-101 yields better classification accuracy when compared to ResNet-101
with SVM classifier. Two reasons have been discussed in depth in this section. As the first
reason, the number of images in each class was not balanced, and pre-mature cataracts
images have the most number among all classes. In comparison with ResNet-101, SVM
could not handle the imbalanced data. According to the confusion matrix for ResNet-101
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combined with the SVM classifier, the accuracy rate for each class is not balanced, and
it is biased toward the pre-mature cataract class with the most number of images. The
confusion matrix for the end-to-end ResNet-101 shows that the end-to-end ResNet-101
could better handle the imbalanced number of images than SVM.

As another disadvantage for the SVM classifier, SVM performs better when there is a
clear margin of separation between classes. For the cataracts stages considered in the cur-
rent cataract grading study, the margin between pre-mature cataracts and mature cataracts
is not clear and separable enough. It is also hard to distinguish between normal and early
cataracts cases. All these reasons caused the ResNet-101 network to better grade the
cataracts stages with the efficient features extracted by the convolutional layers of the
end-to-end ResNet-101.

In conclusion, this study shows the capability and advantage of using an end-to-end
pre-trained ResNet-101 over an end-to-end four-layer CNN model, pre-trained ResNet-101
with the SVM classifier and three other fine-tuned pre-trained networks for automated
cataract grading..

To acknowledge the difference between the environment in which the eye clinician oper-
ates and the environment in which the IIITD dataset has been obtained, the eye clinician
will review the medical history and symptoms and perform an eye examination to diag-
nose the cataract. The clinician may conduct several tests, including visual acuity test,
slit-lamp examination, retinal exam. This comprehensive eye examination includes pupil
dilation [93]. It means eye drops such as Tropicamide will be utilized to widen the pupil. In
a visual acuity test, the eye clinician uses the Snellen chart to measure how well the patient
can read a series of letters with progressively smaller letters. In slit-lamp examination, a
microscope called slit-lamp is utilized. The microscope uses an intense line or slit of light
to illuminate the cornea, iris, lens, the space between the iris and cornea and examine the
eye’s anterior structure under magnification [93]. Therefore, we have a controlled illumina-
tion in the room with the established equipment. This test helps the clinician detect any
opacification in the lens and any abnormalities in the eye’s anterior section. In the retinal
exam, while the eye is dilated, the clinician sees the back of the eye using the slit lamp, an
ophthalmoscope, or both. The clinician looks for any sign of opacification and cataract.
The specialist will also examine the retina and the optic nerve head.

Cataracts have some symptoms that the eye clinician looks for them. Besides the
patient’s history during his or her previous visits, these symptoms can be beneficial for
diagnosing cataracts. These symptoms are blurry and double vision, sensitivity to light, or
glare. The patient may also have trouble seeing in bright sunlight, indoor lights, and driving
at night. Also, they experience frequent changes in eyeglass or contact lens prescription
and a decrease in visual acuity. All these above-mentioned eye examinations, equipment,
and symptoms are determining and beneficial in precise cataracts grading operated by the
eye clinicians in the clinics.
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The IIITD dataset in the current study is periocular images. In these images, the
ocular region includes the eyebrow, pupil, sclera vasculature, iris, and pupil. The IIITD
dataset is captured in two pre-and post- cataracts surgery sessions by a smartphone camera
in uncontrolled illumination, complex background, and geometric distortions. The images
had challenges, including translation, rotation, and blurriness. Therefore, compared to the
medical offices for cataract grading, the IIITD dataset does not have controlled illumination
with controlled orientation and distance between the camera and the subject. All these
unconstrained conditions make the smartphone-based cataract grading a challenging task
and prone to various errors.

Solving the IIITD dataset’s unconstrained condition, a few changes can be applied to
the photo capturing step. In future studies, to obtain images with similar parameters such
as facial poses, the distance between the camera and the face, and controlled illumination,
we can use a chin rest, and the eye clinician can make the facial pose and orientation
consistent by asking the patient to put the chin on the chin rest and look at the camera in
the specific distance. All this equipment is located in an individual room with controlled
illumination in the clinic. We can get more similar images and decrease the uncontrolled
variations and parameters in the face detection and cataract grading process. Reducing the
unconstrained condition can also help us obtain standard images and reduce the number
of eliminations due to noise and non-standard photo capturing situation. A larger dataset
can significantly increase the output classification accuracy in the proposed automated
cataract grading system.

There are some other challenges with the IIITD dataset. In the following, the solutions
for these challenges are discussed as suggestions for future studies.

According to the literature, it is well established that the pupil size decreases with aging
[94, 95]. From an investigation of pupil size measurements conducted on 222 subjects from
20 years of age to 89 , it was ended in that there was a considerable reduction in pupil
size with age in both light and dark illuminations [94, 95]. It is essential to be noted
that age-related changes in pupil size can be an experimental artifact in investigations of
other aspects of aging of visual functions such as cataracts [94, 95]. Therefore, in cataract
grading using the proposed method in this study, we will have a smaller pupil size in the
images as the age increases in the subjects; therefore, the number of FPs and FNs will
increase in the proposed model for those images. In the eyeball, the iris muscles control
the pupil size. Using some medicines can influence the muscles that control the pupils and
prevent the reduction of the pupil size. Therefore, as a suggestion for future work, to solve
the reduced pupil size in the images, the optometrists or the ophthalmologists can dilate
the pupil before capturing the image. It can help us get a better view of the lens through
the pupil for cataract grading.

To improve the proposed model, due to the wide range of existing CNN architectures,
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more models with fewer layers can be tested in the future to solve the problem of multi-class
cataracts diagnosis.

Moreover, since each model was performing well in the grading of a specific cataract
severity level, to improve the accuracy and cover this problem, the ensemble learning
technique can be used in future works. Ensemble methods aggregate multiple classifiers
to get better predictive performance than could be achieved from any individual classifier.
Ensembles can reach better results when some significant diverse models are available.
Many ensemble techniques aim to increase diversity among the models they combine.
Instead of constructing one learner from one training data and suggesting various versions
of an algorithm, the more practical idea is to combine various strong and week learning
algorithms. Then, the most popular strategies can be utilized for aggregating the outputs
of the base learners, which is finding out the majority vote in a classification task and
finding the mean in the regression task. This method can be considered as the next step
for future works.

In the next step, to build and launch a smartphone-based cataract grading application
based on the proposed model in the current study, using a cloud platform and uploading
the proposed model to the cloud is one way for online applications. Then the clients can
upload the images they captured by their smartphone and get the cataract grading result.
The program will determine whether the client has cataracts or not and if it is yes, it will
determine the cataracts level and its severity in four levels of early cataracts, pre-mature
cataracts, and mature cataracts.

For cataract grading and passing the uploaded image as the input into the ResNet-101,
the images go through several steps, and it is resized from an initial size of 3456× 4608 to
227 × 227. Therefore, it has resized significantly enough, and it is ready to be used as the
input for the grading process. Because the input image size is small enough for uploading,
it seems that further compressions are not required. More required compressions must
be investigated after future implementations, using a cloud platform, and uploading the
proposed model to the cloud as the future works.
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[3] I. José. Facial mapping (landmarks) with dlib + python. https://
towardsdatascience.com/facial-mapping-landmarks-with-dlib-python-160abcf7d672,
Accessed = 2020-11-11, Jun 2018.

[4] E. Amor. 4 cnn networks every machine learning engineer should know.
https://www.topbots.com/important-cnn-architectures/#:~:text=The%
20most%20straightforward%20way%20of,Relu%20activation%20function%
20from%20AlexNet., Accessed = 2020-11-11, February 2020.

[5] Raimi K. Illustrated: 10 cnn architectures. https://towardsdatascience.com/
illustrated-10-cnn-architectures-95d78ace614d, Accessed = 2020-11-11, July
2019.

[6] I. Shaheen, A. Tariq, F. Khan (Eds), M. Jan, and Alam M. Survey analysis of
automatic detection and grading of cataract using different imaging modalities. In
Applications of Intelligent Technologies in Healthcare, EAI/Springer Innovations in
Communication and Computing, page 35. Springer, 2019.

[7] H. Hashemi, E. Hatef, A. Fotouhi, A. Feizzadeh, and K. Mohammad. The prevalence
of lens opacities in tehran: the tehran eye study. Ophthalmic epidemiology, 16(3):187,
2009.

[8] C. Cedrone, F. Culasso, M. Cesareo, R. Mancino, F. Ricci, G. Cupo, and L. Cerulli.
Prevalence and incidence of age-related cataract in a population sample from priverno,
italy. Ophthalmic Epidemiology, 6(2):95, 1999.

49

https://towardsdatascience.com/facial-mapping-landmarks-with-dlib-python-160abcf7d672
https://towardsdatascience.com/facial-mapping-landmarks-with-dlib-python-160abcf7d672
https://www.topbots.com/important-cnn-architectures/#:~:text=The%20most%20straightforward%20way%20of,Relu%20activation%20function%20from%20AlexNet.
https://www.topbots.com/important-cnn-architectures/#:~:text=The%20most%20straightforward%20way%20of,Relu%20activation%20function%20from%20AlexNet.
https://www.topbots.com/important-cnn-architectures/#:~:text=The%20most%20straightforward%20way%20of,Relu%20activation%20function%20from%20AlexNet.
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d
https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d


[9] T. Li, T. He, X. Tan, S. Yang, J. Li, Z. Peng, H. Li, X. Song, Q. Wu, F. Yang, et al.
Prevalence of age-related cataract in high-selenium areas of china. Biological trace
element research, 128(1):1, 2009.

[10] GE. Nam, K. Han, SG. Ha, BD. Han, D. H. Kim, Y. H. Kim, YG. Cho, K. Hand Park,
and BJ. Ko. Relationship between socioeconomic and lifestyle factors and cataracts
in koreans: The korea national health and nutrition examination survey 2008–2011.
Eye, 29(7):913, 2015.

[11] R. Varma, M. Torres, Los Angeles Latino Eye Study Group, et al. Prevalence of lens
opacities in latinos: the los angeles latino eye study. Ophthalmology, 111(8):1449,
2004.

[12] J. M. Yu, D. Q. Yang, H. Wang, J. Xu, Q. Gao, L. W. Hu, F. Wang, Y. Wang, Q. C.
Yan, J. S. Zhang, et al. Prevalence and risk factors of lens opacities in rural populations
living at two different altitudes in china. International journal of ophthalmology,
9(4):610, 2016.

[13] S. R. Flaxman, R. RA Bourne, S. Resnikoff, P. Ackland, T. Braithwaite, M. V. Ci-
cinelli, A. Das, J. B. Jonas, J. Keeffe, J. H. Kempen, et al. Global causes of blindness
and distance vision impairment 1990–2020: a systematic review and meta-analysis.
The Lancet Global Health, 5(12):e1221, 2017.

[14] H. Hashemi, R. Pakzad, A. Yekta, MR. Aghamirsalim, M. Pakbin, S. Ramin, and
M. Khabazkhoob. Global and regional prevalence of age-related cataract: a compre-
hensive systematic review and meta-analysis. Eye, page 1, 2020.

[15] C. Xu, X. Zhu, W. He, Y. Lu, X. He, Z. Shang, J. Wu, K. Zhang, Y. Zhang, X. Rong,
et al. Fully deep learning for slit-lamp photo based nuclear cataract grading. In
International Conference on Medical Image Computing and Computer-Assisted Inter-
vention, volume 11767, page 513, Shenzhen, China, 2019. Springer.

[16] J. V. Forrester, A. D. Dick, P. G. McMenamin, F. Roberts, and E. Pearlman. Anatomy
of the eye and orbit, chapter 1, pages 32–34. Elsevier Health Sciences, UK, 2015.

[17] S. Bassnett, Y. Shi, and G. FJM. Vrensen. Biological glass: structural determinants
of eye lens transparency. Philosophical Transactions of the Royal Society B: Biological
Sciences, 366(1568):1250, 2011.

[18] K. L. Moreau and J. A. King. Protein misfolding and aggregation in cataract disease
and prospects for prevention. Trends in molecular medicine, 18(5):273, 2012.

[19] D. Allen and A. Vasavada. Cataract and surgery for cataract. British Medical Journal,
333(7559):128, 2006.

50



[20] B. Philipson. Changes in the lens related to the reduction of transparency. Experi-
mental eye research, 16(1):29, 1973.

[21] JF. Aliancy, N. Mamalis, H. Kolb (Eds.), E. Fernandez, and R. Nelson. Crystalline
lens and cataract. In Webvision: The Organization of the Retina and Visual System
[Internet]. University of Utah Health Sciences Center, Salt Lake City (UT), 2017.

[22] PJ. Foster, TY. Wong, D. Machin, GJ. Johnson, and SKL. Seah. Risk factors for
nuclear, cortical and posterior subcapsular cataracts in the chinese population of sin-
gapore: the tanjong pagar survey. British journal of ophthalmology, 87(9):1112, 2003.

[23] C. M. Mangione, R. S. Phillips, M. G. Lawrence, J. M. Seddon, E. J. Orav, and
L. Goldman. Improved visual function and attenuation of declines in health-related
quality of life after cataract extraction. Archives of ophthalmology, 112(11):1419, 1994.

[24] M. C. Leske, L. T. Chylack, and S. Y. Wu. The lens opacities case-control study: risk
factors for cataract. Archives of ophthalmology, 109(2):244, 1991.

[25] PK. Nirmalan, A. L. Robin, J. Katz, JM. Tielsch, RD. Thulasiraj, R. Krishnadas,
and R. Ramakrishnan. Risk factors for age related cataract in a rural population of
southern india: the aravind comprehensive eye study. British journal of ophthalmology,
88(8):989, 2004.

[26] S. Krishnaiah, K. Vilas, B. R. Shamanna, G. N. Rao, R. Thomas, and D. Balasub-
ramanian. Smoking and its association with cataract: results of the andhra pradesh
eye disease study from india. Investigative ophthalmology & visual science, 46(1):58,
2005.

[27] T. N. Kim, J. E. Lee, E. J. Lee, J. C. Won, J. H. Noh, K. S. Ko, B. D. Rhee,
and D. J. Kim. Prevalence of and factors associated with lens opacities in a korean
adult population with and without diabetes: the 2008–2009 korea national health and
nutrition examination survey. PLoS One, 9(4):e94189, 2014.

[28] RJW. Truscott. Age-related nuclear cataract—oxidation is the key. Experimental eye
research, 80(5):709, 2005.

[29] L. Guo, J. J. Yang, L. Peng, J. Li, and Q. Liang. A computer-aided healthcare system
for cataract classification and grading based on fundus image analysis. Computers in
Industry, 69:72, 2015.

[30] Y. Xu, X. Gao, S. Lin, D. W. K. Wong, J. Liu, D. Xu, C. Y. Cheng, C. Y. Cheung, and
T. Y. Wong. Automatic grading of nuclear cataracts from slit-lamp lens images using
group sparsity regression. In International Conference on Medical Image Computing
and Computer-Assisted Intervention, volume 8150, page 468, Nagoya, Japan, 2013.
Springer.

51



[31] H. Al Hajj, M. Lamard, P. H. Conze, S. Roychowdhury, X. Hu, G. Maršalkaitė,
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APPENDICES

This chapter provides a complementary explanation for VGG-16 , ResNet and Inception
as three deep convolutional network architecture designs.

.1 VGG-16

By the developments made by the proposed networks for ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) classification, CNNs made another jump in the per-
formance and were starting to get deeper and deeper. The most straightforward way was
increasing the number of layers and the network size. VGG-16 was one of the VGG (Visual
Geometry Group) inventions, which consists of 13 convolutional and three fully-connected
layers. Similar to AlexNet, they are carrying the Relu activation function. Figure 1 illus-
trates the architecture of the VGG-16 [4].

Figure 1: The architecture of the VGG-16 network [4].

In continuous to the previous networks, VGG-16 stacked the layers together but utilized
a smaller size of filters (2×2 and 3×3). It has 138M parameters and needs about 500MB
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of storage memory. As the next architecture, the VGG group designed a deeper variant
called VGG-19 [4].

.2 ResNet

In 2015, the ILSVRC challenge winner was Kaiming He et al., who developed the residual
network (ResNet). The new proposed network could achieve an astounding top-5 error
rate under 3.6%. For this purpose, an extremely deep CNN composed of 152 layers was
utilized. As a novelty, the skip connections were the key to train such a deep network.
The feeding signal into the layer was also added to the layer’s output placed a bit higher
up the stack. Figure 2 illustrates the architecture of the ResNet [4].

Figure 2: The architecture of the ResNet network [4].

ResNets are created out of something called a residual block. Figure 3 presents the
residual block in ResNet network [4].

.3 Inception v3

Inception v3 is capable of detecting objects at different scales. It implements convolution
operation, using different sized kernels, to capture variations at different scales. Moreover,
a deep network may delete some features which could be useful for decoding, on the other
hand shallow networks may not learn high level abstractions, while Inception module allows
network choose proper convolutional operations and hamper the effects of network depth.
In fact, this module lets the CNN to automatically choose the right filter size (in some few
layers). Figure 4 illustrates the architecture of the Inception v3 network.
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Figure 3: A residual block [4].

Figure 4: Inception v3 network [5].
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