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Abstract: Layaway allows economically disadvantaged budget-constrained consumers to
purchase expensive items through amortized payments and nominal program fees, as opposed
to using high-interest financing options such as credit cards and payday loans. We consider a
risk-averse retailer’s ordering decisions when offering a layaway program. We use the net loss
and total loss functions, found in the literature, to determine a risk-averse retailer’s optimal
order quantity under conditional value-at-risk (CVaR). We next analyze the effects of the model
parameters, retailer’s risk aversion, the market default rate, enrollment fee, cancellation fee and
so on, on the optimal order quantity decisions. We show that the optimal order quantity depends
on different loss functions and different demand distribution functions. Further, we show that
as market default rate increases or the retailer becomes more risk averse, then a rational retailer
will not offer a layaway program.

Keywords: Inventory; Risk-averse retailer; Layaway; Conditional value-at-risk (CVaR);
Order quantity

1 Introduction

Layaway programs allow economically disadvantaged budget-constrained consumers to purchase
expensive goods by dividing the total price of an item into several installments, instead of paying
the entire price at once. However, an item purchased via layaway is received by a consumer only
after the item is entirely paid. Layaway programs have been applied by various retailers such
as Walmart, Toys R Us, Sears, GameStop, Burlington Coat Factory, Marshalls, Baby depot and
Best Buy (Trae Bodge, 2017). According to a survey by AYTM (Ask Your Target Market) in
2012 (Pilon, 2012), 47% of those surveyed said they used layaway programs at stores; another 37%
of respondents said they were likely to use layaway when they intended to buy expensive goods;
47% of respondents said that an optional layaway program has definitely influenced their shopping
decision at a certain store; Females and those respondents over 34 were more interested in using
layaway services than others. According to Deloitte Touche Tohmatsu Limited (Deloitte, 2015),
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about 17% of surveyed US shoppers planned to make use of a layaway program during the holiday
season (November and December) in 2016; 17% of all shoppers represents a sizable opportunity for
retailers trying to grow sales. Retail stores report that layaway programs play a significant role
in holiday sales, which accounts for 40% or more of their annual sales; especially in recent years,
the economic dilemmas in the United States make it difficult for consumers to bear large purchase
costs (Casteele, 2017). Even though layaway is a large opportunity that retailers leverage, there
are very few studies that consider the impact of offering layaway on a retailer’s inventory decisions,
we are only aware of Dimitrov and Ceryan (2018).

There are also different layaway program formats, in terms of fees. For example, some retailers
charge a fixed fee no matter how much the items placed on layaway cost, while other retailers
charge a fixed percentage of the total items’ cost. For the remainder of this paper, we assume that
only a single item is placed on layaway by a consumer and that the consumer is charged a fixed
program fee (as we observe in Sears (Sears, 2018); K-Mart (Kmart, 2018); Walmart (Walmart,
2018). Next, the consumer selects the payment period length (under normal circumstances, the
payment period is between eight and twelve weeks). If the consumer does not want to buy the item
during the payment period, then the retailer cancels the consumer’s layaway program and returns
the consumer’s payments minus a fixed cancellation fee. If the consumer makes all of the agreed
payments on time, then the consumer receives the layaway item.

A natural question one may ask is:“why do consumers choose layaway programs?” There are
two main reasons for consumers’ choices. First, a financially constrained consumer can utilize a
layaway program to buy an expensive item (jewelry, electronics, and durable goods, just to name
some examples) even when that consumer cannot afford to purchase the item outright and does not
have access to credit (Kenton, 2019). Second, layaway allows consumers to avoid fees associated
with other forms of financing, e.g., credit cards or payday loans (Lynnette Khalfani-Cox, 2015).
While most retailers charge a fee for using their layaway program, this fee is less than the interest
or upfront fees charged by other lenders.

Offering a layaway program has a critical effect on the retailer decision maker. First, offering
a layaway program can expand a retailer’s market. The layaway program expands the retailer’s
market to economically disadvantaged and budget-constrained consumers. 10% of 18-24 year olds
say that layaway options are important factor for their purchasing decisions (Corralsolution, 2016).
In this way, retailers can seize the market of young people, cultivate their spending habits, and
win the loyalty of young consumers. Second, consumers need to pay off all the money before they
can pick up the purchased items. Thus, the retailer’s capital risk is lower in a layaway program,
relative to a credit program.

Even with the benefits to both consumers and retailers, the layaway program has multiple
drawbacks. These include, but are not limited to stochastic demand, the market default rate, and
retailer’s risk tolerance. We now discuss each of these drawbacks in turn.

Demand is stochastic due to consumer specific characteristics, retailer decisions, and item char-
acteristics. In particular: (1) The consumers’ purchase behavior is affected by their personal
situation, such as income, budget, and item valuation (Nelson, 1970); (2) The market demand
is also sensitive to the selling season (high and low-demand periods, e.g., swimwear), the item’s
price (Francis and Krishnan, 1999), layaway program’s enrollment fee and cancellation fee, and
other market factors. Collectively we say demand is stochastic due to the aforementioned market
characteristics.

A consumer may default on a layaway program, thus not finishing all layaway payments. The
market propensity to default greatly impacts the feasibility and profitability of a layaway program.
For example, if a consumer defaults on an item, then the retailer loses the opportunity to sell this
item at full price to another consumer between the time the item was initially put on layaway and
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the time the consumer defaults.
Dimitrov and Ceryan (2018) consider only risk-neutral retailers and use the expected profit

function to determine the optimal order quantity for the retailer. However, empirical studies on
newsvendor order quantities find that managers order quantities different than those determined
via risk-neutral newsvendor models (Fisher and Raman, 1996, Kahn, 1992, Schweitzer and Cachon,
2000). The deviation between the observed order quantity and order quantity maximizing expected
profit, is called “decision bias” in the newsvendor problem (Chen et al., 2007, Chen, 2015, Vipin
and Amit, 2019, Wang and Webster, 2009). Experimental results find that a combination of risk
factors collectively explains ordering decisions made in practice (Schweitzer and Cachon, 2000).
However, in our study, similar to what is done in the literature (Du et al., 2018, Xinsheng et al.,
2015, Xu et al., 2016), we focus on risk aversion only for model tractability. We acknowledge our
study is a needed first step to a fuller analysis of all risk factors that attribute to a retailer’s ordering
decisions when offering layaway.

As retailers with decision bias exist, in this paper we consider a risk-averse retailer. Retailers
often lack full information on market behaviors and usually have risk-averse behavior (Agrawal and
Seshadri, 2000). Along those same lines, if a retailer is highly risk averse, then the retailer may
choose to order a sufficient number of items to decrease the likelihood of running out of stock due
to very high demand. However, a retailer will have to pay additional costs for these additional
items that may end up being salvaged due to not being sold or being defaulted on, if sold under
the layaway program. From this perspective, minimizing downside risk may be more attractive
to risk-averse retailers. On the one hand a risk-averse retailer may want to order more than a
risk-neutral retailer; on the other hand, a risk-averse retailer may want to order less. In this paper,
we analyze these two counteracting forces.

Hence, the decision of the optimal inventory for the retailer depends on at least two market
factors, stochastic demand and market default rate, along with the risk attitude of the retailer. We
determine the optimal order quantity of a risk-averse retailer offering layaway faced with stochastic
demand. In particular, we answer the following research questions:

(1) How do different Conditional Value at Risk (CVaR) loss functions, defined in Section 4.2,
influence the retailer’s order quantity? When should a risk-averse retailer offer layaway?

(2) How does the degree of the retailer’s risk aversion, overage cost, underage cost, items cost,
and cancellation fee influence the optimal order quantity?

(3) What are the effects of the market’s layaway default rate on the retailer’s behavior in offering
a layaway program?

The rest of the paper is structured as follows. In Section 2, we review the related literature and
summarize the differences between our study and previous studies. Next, in Section 3, we describe
a layaway program and formalize the basic models of a risk neutral retailer offering layaway. In
Section 4, we derive the optimal ordering decisions under CVaR with different loss functions, net loss
and the total loss; In the same section, we analyze the optimal order quantity sensitivity to model
parameters. In Section 5, several numerical examples are given to illustrate the differences among
the models. We then present theoretical and practical insights before offering our conclusions.

2 Related Work

Although we are studying a new model characterized by retailers offering a layaway program, the
setup of our model is similar to minimization of CVaR in the newsvendor problem under stochastic
demand and a risk-averse retailer. Using the only paper in the operations management literature to
explicitly consider retailer inventory decisions when offering layaway (Dimitrov and Ceryan, 2018),
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our modeling and solution approaches are inspired by studies in two research streams. The first
stream is single period stochastic inventory decisions. The second stream is inventory decisions
under consumer returns. We next discuss each stream in turn.

The first stream, single period stochastic inventory decisions, referred to as the newsvendor
problem, has a long history with the first paper published in 1955 (Whitin, 1955). As a result,
there are multiple variants of the newsvendor problem (e.g, see Cachon and Kök (2007), Khang and
Fujiwara (2000), Khouja (1999), Li and Petruzzi (2017), Petruzzi and Dada (1999), Prasad et al.
(2011), Qin and Kar (2013) for additional details). In the version of the newsvendor we consider,
we include budget constraints on consumers. To our knowledge, is not common to have budget-
constrained consumers (Dimitrov and Ceryan (2018) considered consumer budget constraints) and
instead budget constraints are usually associated with the newsvendor (Moon and Silver, 2000,
Niederhoff, 2007, Shi and Zhang, 2010, Vairaktarakis, 2000, Zhang, 2010).

In the papers cited in the previous paragraph, the newsvendor (retailer) is assumed to be risk
neutral. However, in practice, retailers tends to be risk-averse (Davis and Hyndman, 2018, Xiao
and Yang, 2008, Yang et al., 2018, Zhou et al., 2018). In addition to accounting for a risk-averse
retailer, we also account for the same retailer offering a layaway program. As there is only one study
that considers a layaway program (Dimitrov and Ceryan, 2018), we now review recent work on the
risk-averse newsvendor. Eeckhoudt et al. (1995) find the optimal order quantity of a risk-averse
newsvendor. Following this line of study, additional studies applied CVaR, a way to model risk
aversion, to inventory models. Gotoh and Takano (2007) consider two types of CVaR measures in
the single-period newsvendor problem, and introduce the loss functions of net loss and total loss. Xu
and Chen (2007) consider the trade off between expected profit and CVaR using a weighted mean-
risk objective. Yang et al. (2009) use CVaR as the objective function to study the coordination of
supply chains combined with a risk-neutral supplier and a risk-averse retailer. Chen et al. (2009)
use CVaR to study both price and order quantity decisions for a risk-averse newsvendor. Xu and
Lu (2013) extend Chen et al.’s model to allow for emergency purchases when demand is greater
than the initial order quantity. Wu et al. (2014) also extend the work of Chen et al. (2009) by
considering price and inventory quantity competition simultaneously. Dai and Meng (2015) study a
risk-averse newsvendor making simultaneous ordering, pricing, and marketing decisions. For other
cases of using CVaR in inventory models, please refer to Abdel-Aal and Selim (2017), Choi and
Ruszczyński (2011), Tomlin and Wang (2005), Xu et al. (2017, 2015) for additional details. Most
papers in this stream of research focus on multi-item risk-averse newsvendor or different CVaR loss
functions, but do not consider layaway programs. The main features that distinguish our work from
previous work on using CVaR to model risk-aversion in newsvendor problems are: (1) we consider
that consumers can buy the items in two ways: immediately or via layaway; (2) we account for
consumer defaults during the layaway program, which is an important feature of a layaway program.

The second literature stream we consider is the consumer returns literature. In a layaway
program a consumer may default on payments, and will be charged a nominal cancellation fee, all
other money is returned. The fact that all money is returned except for a cancellation fee, makes
layaways seem related to returns, as indicated by Dimitrov and Ceryan (2018). Many recent studies
address inventory models associated with returns (see e.g., Choi and Guo (2017), Hu et al. (2014),
Letizia et al. (2018), Yang et al. (2017)). As we consider a risk-averse retailer, we focus on return
models with risk-aversion. Su (2009) studies consumer return policies and demand uncertainty
on a newsvendor model. Hsieh and Lu (2010) study a manufacturer’s return policy and two risk-
averse retailers’ decisions under a single-period setting with price-sensitive random demand. Yoo
(2014) studies the relationship between return policy and item quality in a supply chain with a
risk-averse supplier. Ohmura and Matsuo (2016) consider a mean-variance risk-aversion model
of a supply chain accepting returns; this work does not use a CVaR model, nor does it consider
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consumer budget constraints, something we capture in our paper. Mawandiya et al. (2018) present
a centralized production-inventory model when both retailer demand and remanufacturer returns
are random. However, the main features that distinguish our work from previous papers in retail
return polices is that in our paper, only consumers who purchase items through a layaway program
have the opportunity to default on (“return”) the item. Further, unlike usual returns, where the
returned item is “used” or of lower quality than a new item, a defaulted layaway item once returned
to regular inventory is new and no different than all other items.

To our best knowledge, no studies address a risk-averse retailer offering layaway. In this paper,
we consider a layaway program in which a risk-averse retailer sells an item with random demand
and makes inventory decisions in order to minimize Conditional Value-at-Risk (CVaR).

3 Model

In this section, we first introduce the layaway problem, and then we briefly summarize some basic
results of the risk-neutral retailer not offering and offering layaway. In particular, the symbols of
the parameters are redefined for later comparison with our risk-averse results.

3.1 Notation

We first introduce the notation we use in Table 1 to use as a reference later in the paper. We will
reintroduce the notation used inline, as we build the model.
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Table 1: Notation, notation and description is similar to that of Dimitrov and Ceryan (2018)

Term Meaning

r is the selling price for the item
fs is the layaway program enrollment fee
fc is the layaway program cancellation fee, this fee is paid only if the consumer

terminates the program before payment completion
v is the consumer’s valuation for the item
b is the consumer’s budget
θ is the consumer waiting disutility from receiving a layaway good
c is the purchase cost for the item
pI is the probability that a consumer purchases the item immediately
pL is the probability that a consumer purchases the item through the layaway program
q is the firm’s inventory
L is the length of the layaway period
α is the given confidence level α ∈ [0, 1)
ζ is the maximum tolerated loss by the retailer
s is the holdover value of a single item (may be negative or positive: positive means

holding cost, while negative means salvage value)
u is the shortage cost for a single unit of demand
O is the unit loss for order quantity great than the realized demand
U is the unit loss for order quantity less than the realized demand
V is the unit profit for a single item
π̂zy(x|q) is the profit for the retailer, z ∈ {R, R̄}, where R represents risk-averse condition

and R̄ represents risk-neutral condition, y ∈ {L, L̄}, where L represents offering
layaway and L̄ represents not offering layaway

πL is the expected profit for the risk-averse retailer who offers the layaway program
q∗zyx is the optimal order quantity for the retailer, z ∈ {R, R̄}, y ∈ {L, L̄}, x ∈ {T,N},

where T represents choose the total loss as the loss function and
T represents choose the net loss as the loss function

LR̄yT (x|q) is the total loss for the risk-neutral retailer, y ∈ {L, L̄}

3.2 Problem description

We now formally describe the layaway program. First, similar to Dimitrov and Ceryan (2018),
“we assume that consumer valuations and budgets are independently and uniformly distributed
between [0, 2v̄] and [0, 2b̄], respectively.” If a consumer’s valuation, v, for the item is greater than
the item price, r, i.e., v > r, and the consumer’s budget, b, is sufficiently high, b ≥ r, then the
consumer buys the item immediately. If a consumer’s budget is less than the item price, b < r,
but the budget satisfies the relations b ≥ r/L (L is the layaway program’s payoff length), and the
consumer’s discounted valuation is greater than the item price and the initial enrollment fee, fs,
i.e., θ·v > r + fs (θ is consumers’ temporal discount factor, as the layaway item is not received
immediately), the consumer then purchases the item through the layaway program. In practice,
consumers pay a down payment when entering a layaway program, however, for tractability, we
assume the down payment is zero and is instead subsumed into the enrollment fee, fs. If the
consumer purchases the item by the layaway program, but wants to suspend the program before
payment completion, they only need to pay a cancellation fee, fc, to the retailer and receive all
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previous payments in return. We denote the default rate for the market as δ, where δ < 1.
The Table 2 shows the operating parameters of layaway programs of some of today’s retailers,

along with what we consider in this paper.

Table 2: Practices of retailer’s layaway program

Vendor Down payment Enrollment fee Cancellation layaway period

Walmart
$10 or

Non $10
8/31/18

10% of the purchase -12/10/18

Kmart 10% of the purchase $5 $10 8 weeks

Sears
$10 or $5/8 week or $15/8 week or 8 weeks or
10% of the purchase $10/12 week $25/12 weeks 12 weeks

Our paper None Yes Yes Yes

As depicted in Figure 1, the black area represents the section of the market that purchases the
item immediately, formally the probability of buying immediately is:

pI =
(

1− r

2v̄

)(
1− r

2b̄

)
. (1)

The light gray area represents the section of the market that purchases of the item through the
layaway program, formally the probability of a layaway purchase is:

pL =

(
1− r + fs

2v̄θ

)( r
2b̄

)(L− 1

L

)
. (2)

The white area represents the probability that the consumer does not purchase the item, 1−pI−pL.

b

v

2v̄

2b̄

r

r

r+fs
θ

0
r/L

Figure 1: The probability of consumer’s purchases behavior.

3.3 The risk-neutral retailer’s decision

In this subsection, we determine the optimal order quantity of the risk-neutral retailer, when
offering and not offering a layaway program. We include this section to highlight the new modeling
perspective we take in the remainder of our paper.
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3.3.1 Not offering layaway

For completeness, we write the profit function of a risk-neutral retailer not offering layaway,
π̂R̄L̄(x|q), for any given order quantity, q, and market demand, x as:

π̂R̄L̄(x|q) = min{pI ·x, q}·r − (q − pI ·x)+·s− (pI ·x− q)+·u− c·q, (3)

where [Z]+ = max{Z, 0}, s is the holdover value of excess stock (may be negative or positive:
positive means holding cost, while negative means salvage value), and u is the shortage cost of not
being able to service a purchase request. Using classical results (Johnson and Montgomery, 1974,
Silver et al., 1998) we find that the optimal order quantity is:

q∗R̄L̄ = pIF
−1

(
r + u− c
r + u + s

)
. (4)

Where F (·) is the market demand cumulative distribution function, with a probability density
function of f(·).

3.3.2 Offering layaway

Dimitrov and Ceryan (2018) define the profit function for the risk neutral retailer when offering
layaway. For any given order quantity, q, the profit of a risk-neutral retailer offering layaway,
denoted as π̂R̄L, is:

π̂R̄L(x|q) =



pI ·x·r + pL·x·(fs + δ·fc + (1− δ)·r) if (pI + pL)·x≤q
−(q − (pI + pL)·x+ pL·δ·x)·s− c·q,

pI ·q·r
pI+pL

+ pL·q
pI+pL

·(fs + δ·fc + (1− δ)·r) if (pI + pL)·x>q
−((pI + pL)·x− q)·u− pL

pI+pL
·q·δ·s− c·q.

(5)

Let p′I = pI
pI+pL

, p′L = pL
pI+pL

, and r′ = p′I ·r+p′L·(fs+δ·fc+(1−δ)·r)−p′L·δ·s, with min{q, x(pI+

pL)} = q− (q−x(pI + pL))+ and (x(pI + pL)− q)+ = x(pI + pL)− q+ (q−x(pI + pL))+, the profit
function (5) can be written as:

π̂R̄L(x|q) = (r′ + u− c)·q − (r′ + u + s)·(q − x(pI + pL))+ − x(pI + pL)·u. (6)

Let O := c+ s, U := r′ + u− c, and V := r′ − c = U − u, we rewrite (6) as:

π̂R̄L(x|q) = V ·x(pI + pL)−O[q − x(pI + pL)]+ − U [x(pI + pL)− q]+. (7)

In regard to the demand distribution function, the risk-neural retailer’s optimal order quantity
can be obtained by solving ∂π

∂q = 0, as:

q∗R̄L = (pI + pL)F−1

(
U

O + U

)
, (8)

where the optimal order quantity for the risk neutral condition is similar to Dimitrov and Ceryan
(2018).
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4 Minimization of CVaR for the risk-averse retailer’s optimal or-
der quantity

As discussed in Section 1, retailers may be risk averse. In general, risk averse retailers are modeled as
rational individuals minimizing risk (Zhang et al., 2009). One common risk measure is conditional
value at risk (CVaR), which is a modification of the value at risk (VaR) (Rockafellar and Uryasev,
2000). In this section, we investigate retailer’s optimal order quantity under CVaR. First, we
formally introduce VaR and CVaR. Second, we define different loss functions to capture different
decision makers’ policies. For an optimistic decision maker, we choose the net loss function, which
accounts for the upside of decisions by including revenue; for the pessimistic decision maker, we
choose total loss, which only considers losses from operating, the pessimistic decision maker receives
no reward for revenues, as revenues are not losses. Then we analyze the optimal order quantity for
each case. We conclude this section by exploring the sensitivity of the optimal order quantity with
respect to model parameters.

4.1 The conditional value at risk (CVaR)

The Value at Risk (VaR) introduced in 1993 (G30, 1993) is used to measure the risk of a finan-
cial portfolio. Let Ψ`(x|q)(x) be the cumulative distribution function of the retailer’s loss, dis-
cussed in greater detail below. Given a fixed conditional level α, the α-VaR for the retailer is
Ψ−1
`(x|q)(α) (Rockafellar and Uryasev, 2002). However, VaR does not consider the tail risk (the dis-

tribution of Ψ`(x|q)(x|x > Ψ−1
`(x|q)(α))), and it lacks some important properties such as sub-additivity

and convexity; a risk measure having these properties ensures a lower risk tolerances value, α, cor-
responds to lower risk. However, as VaR lacks sub-additivity and convexity, cases where even if
α′ < α′′, may result in α′-VaR > α′′-VaR. An augmentation of VaR is conditional value at risk
(CVaR), the expected value of the tail of the loss distribution is computed. CVaR is a risk measure
that is sub-additive, positively homogeneous, monotonic, and translation invariant (Rockafellar and
Uryasev, 2002). Next, we apply results from finance, CVaR in particular, to inventory decisions
similar to Abdel-Aal and Selim (2017), Choi and Ruszczyński (2011), Ohmura (2014), Tomlin and
Wang (2005), Xu and Lu (2013), Xu et al. (2017, 2015), and we will analogously define CVaR for
the layaway problem.

Let `(x|q) denote the loss function associated with having realized demand of x, considered for
the remainder of this paper, given the retailer’s order quantity q. For example, in our setting if
the retailer makes an order of 10 items, but only sells 6, due to random demand, then the loss
is the 4 extra units ordered, if the demand is 15, then the loss is the opportunity cost of the 5
extra units of unmet demand. We now formally define the cumulative distribution of loss, `(x|q),
as Ψ`(x|q)(ς|q) := P{`(x|q) ≤ ς}.

Given some confidence level α ∈ [0, 1), the lower bound of ζ is ζα(q) ≡ min{ζ|P{`(ζ|q) ≤ ς} ≥
α} ≡ min{ζ|Ψ`(x|q)(ζ|q) ≥ α} ≡ Ψ−1

`(x|q)(α) = α-VaR (where appropriate, for space consideration,

we omit ζα(q) and only write ζ); at confidence level α, ζα(q) is the smallest number, such that the
probability that loss, `(x|q), exceeds ζα(q) is not larger than 1− α.

With the definition of α-VaR, we formally write Ψ`(x|q)(ζ|q) as:

Ψ`(x|q)(ζ|q) =

∫
`(x|q)≤ζ

f(x)dx, (9)

where f(x) is the probability density function of x. By the definition of a cumulative distribution
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function we know:
ζα(q) = min{ζ|Ψ`(x|q)(ζ|q) ≥ α} = Ψ−1

`(x|q)(α). (10)

CVaR is the mean loss value, conditional on loss exceeding the VaR value. For any specified
probability level α in [0,1), and fixed q, the α-CVaR is defined as:

Φα(q) =E[`(x|q)|`(x|q) ≥ ζα(q)]

= (1− α)−1

∫
`(x|q)≥ζα(q)

`(x|q)f(x)dx.
(11)

In order to minimize Φα(q), Rockafellar and Uryasev (2002) defined the following convex func-
tion, an affine transformation of Φα(q):

Pα(q, ζ) = ζ + (1− α)−1

∫
x∈R

[`(x|q)− ζ]+f(x)dx, (12)

where α ∈ [0, 1) reflects the degree of risk aversion for the retailer (the larger the α, the more
risk-averse the retailer). As Pα(q, ζ) is an affine transformation of Φα(q), minimizing Pα(q, ζ) is
equivalent to minimizing Φα(q) (Boyd and Vandenberghe, 2004).

4.2 Minimization of CVaR with different loss functions

In this subsection, we consider the risk-averse retailer offering and not offering layaway. We derive
the optimal ordering decisions under CVaR with two different loss functions, net loss and total loss.

4.2.1 Net loss CVaR minimization

First, we consider the net loss −π̂R̄L(x|q) as the loss function `(x|q) (see Gotoh and Takano (2007)):

`(x|q) = −π̂R̄L(x|q). (13)

The retailer considers all profit over the threshold ζ. Then, we rewrite the minimization of
equation (12) using definition (13) as:

min
q
Pα(q, ζ) = min

q
{ζ + (1− α)−1

∫
x∈R

[−π̂R̄L(x|q)− ζ]+f(x)dx}. (14)

Substituting (7) into (14), we have:

Pα(q, ζ) =ζ + (1− α)−1

[∫
x∈R

[−(V x(pI + pL)−O(q − x(pI + pL))+

−U (x(pI + pL)− q))+ − ζ]f(x)dx
]
.

(15)

We first compute the derivative of the net loss −πR̄L(x|q):

d(−πR̄L(x|q))
dq

=
d

dq
[

∫ q
pI+pL

0
[−(V x(pI + pL)−O(q − x(pI + pL)))]f(x)dx

+

∫ ∞
q

pI+pL

[−(V x(pI + pL)− U(x(pI + pL)− q))]f(x)dx]],

= O

∫ q
pI+pL

0
f(x)dx− U

∫ ∞
q

pI+pL

f(x)dx.

10



We now find the second order derivative of −πR̄L(x|q) with respect to q:

d2(−πR̄L(x|q))
dq2

=(O + U)f

(
q

pI + pL

)
1

pI + pL
> 0.

The second order derivative is non-negative, which means that the net loss function is convex in q.
Hence, there is a unique optimal order quantity, q∗, that minimizes (15).

Proposition 1. The risk-averse retailer’s optimal order quantity and maximum loss threshold
(q∗RLN , ζ∗RLN ) when offering layaway under the net loss loss function are:

q∗RLN = (pI + pL)
O + V

O + U
F−1

[
(1− α)U

O + U

]
+ (pI + pL)

U − V
O + U

F−1

[
αO + U

O + U

]
, (16a)

ζ∗RLN = (pI + pL)
O(U − V )

O + U
F−1

[
αO + U

O + U

]
− (pI + pL)

U(O + V )

O + U
F−1

[
(1− α)U

O + U

]
. (16b)

Proof: The derivation of all results is presented in Appendix A.
If we consider a risk-averse retailer not offering layaway, then the optimal order quantity, q∗

RL̄N
,

is found as the argmin of the following variant of (12), corresponding to loss `(x|q) = −π̂R̄L̄(x|q):

min
q
Pα(q, ζ) = min

q
{ζ + (1− α)−1

∫
x∈R

[−π̂R̄L̄(x|q)− ζ]+f(x)dx}. (17)

Corollary 1. If the risk-averse retailer does not offer layaway, and the retailer considers the net
loss loss function, then (17) has an optimal solution (q∗

RL̄N
, ζ∗

RL̄N
) of:

q∗RL̄N =
pIu

s + r + u
F−1

(
r + u− c+ α(s + c)

s + r + u

)
+
pI(r + s)

s + r + u
F−1

[
(r + u− c)(1− α)

s + r + u

]
, (18a)

ζ∗RL̄N =
pIu(s− c)
s + r + u

F−1

(
r + u− c+ α(s + c)

s + r + u

)
+

pI(r + s)(r + u− c)
s + r + u

F−1

[
(r + u− c)(1− α)

s + r + u

]
.

(18b)

Proof: The derivation of all results is presented in Appendix D.
Please note that the results in equation (18) are the same as those in Gotoh and Takano (2007),

but accounting for consumer budgets and valuation constraints. Discussion of our results is found
in Section 4.3.

4.2.2 The total loss CVaR minimization

In the previous section we present the optimal order quantities of a risk-averse retailer when offering
either layaway or no layaway, but only when considering net loss in determining optimal order
quantities. In this section we repeat the results from section 4.2.1, but with the total loss loss
function. The total loss loss function, based on profit function (7), is defined as:

LR̄L(x|q) = O[q − x(pI + pL)]+ + U [x(pI + pL)− q]+, (19)
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where O[q − x(pI + pL)]+ is the overage cost and U [x(pI + pL)− q]+ corresponds to the underage
cost. Note that LR̄L(x|q) does not consider lost revenue from sales, unlike (13).

We now use the total loss LR̄L(x|q) as the loss function `(x|q) (Gotoh and Takano, 2007):

`(x|q) = LR̄L(x|q). (20)

The retailer wants to reduce total loss, which now is only the overage and underage costs. We
rewrite minimizing equation (12) with `(x|q) = LR̄L(x|q), defined in (20), as:

min
q
Pα(q, ζ) = ζ + (1− α)−1

∫
x∈R

[LR̄L(x|q)− ζ]+ f(x)dx. (21)

Proposition 2. If the retailer is risk-averse under α-CVaR with α ∈ [0, 1), then (21) has an
optimal solution (q∗RLT , ζ∗RLT ) where:

q∗RLT = (pI + pL)
O

O + U
F−1

[
(1− α)U

O + U

]
+ (pI + pL)

U

O + U
F−1

[
αO + U

O + U

]
, (22a)

ζ∗RLT = (pI + pL)
OU

O + U
F−1

[
αO + U

O + U

]
− (pI + pL)

UO

O + U
F−1

[
(1− α)U

O + U

]
. (22b)

Proof: The derivation of all results is presented in Appendix B.
We now consider the total loss of a risk-averse retailer not offering layaway. The loss function

for such a retailer is:

LR̄L̄(x|q) := (c+ s)[q − x·pI ]+ + (r + u− c)[x·pI − q]+, (23)

where (c + s)[q − x·pI ]+ is the overage cost and (r + u − c)[x·pI − q]+ is the underage cost. The
risk-averse retailer determines the optimal order quantity, q∗

RL̄T
, as the argmin of equation (12)

with `(x|q) = LR̄L̄(x|q) is represented as:

min
q
Pα(q, ζ) = min

q
{ζ + (1− α)−1

∫
x∈R

[LR̄L̄(x|q)− ζ]+f(x)dx}. (24)

Corollary 2. If a risk-averse retailer does not offer layaway, and the retailer considers the total
loss as the loss function, then (24) has an optimal solution (q∗

RL̄T
, ζ∗

RL̄T
) of:

q∗RL̄T =
pI ·(r + u− c)
r + u + s

F−1

(
r + u− c+ α(c+ s)

r + u + s

)
+
pI(c+ s)

r + u + s
F−1

[
(r + u− c)(1− α)

s + r + u

]
, (25a)

ζ∗RL̄T =
pI(r + u− c)(c+ s)

s + r + u

(
F−1

(
r + u− c+ α(c+ s)

r + u + s

)
+ F−1

[
(r + u− c)(1− α)

s + r + u

])
. (25b)

Proof: The derivation of all results is presented in Appendix E.
Similar to equation (18), equation (25) may be reproduced using the work of Gotoh and Takano

(2007) while accounting for consumer budgets and valuations.

4.3 Discussion of risk-averse retailer decisions

In equations (16a) and (22a) the first term corresponds to the case where the retailer’s order
quantity exceeds total demand from sales and layaway, i.e., q > (pI + pL)x. The second term is the
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case where the retailer’s order quantity is less than the market demand. (pI +pL)F−1 [·] represents
the realized demand for sales and layaway. The terms O+V

O+U and O
O+U represent the fraction of the

total cost due to overage, for the net loss function and the total loss function, respectively. Similarly,
U−V
O+U and U

O+U represent the fraction of the total cost due to underage, for the net loss function and
the total loss function, respectively. Compare the first term of equations (16a) and (22a), we find
that the optimistic decision maker orders more quantity than the pessimistic decision maker, when
q > (pI +pL)x. Compare the second term of equations (16a) and (22a), we find that the optimistic
decision maker orders less quantity than the pessimistic decision maker, when q < (pI + pL)x.

As a benchmark, we also consider inventory decisions under CVaR when not offering layaway.
Using the notation outlined in our paper, we replicate the result of Gotoh and Takano (2007), and
it is presented in equations (18) and (25).

The equations (16a) and (22a) show that a risk-averse retailer’s optimal order quantity is con-
tingent on the value of the inverse of the demand cumulative distribution function at two points:

(1) F−1
[

(1−α)U
O+U

]
and (2) F−1

[
αO+U
O+U

]
. We note that, when α = 0 (the retailer is risk-neutral), the

two points become the same point: F−1
[

U
O+U

]
, and the expression for the optimal order quantity

changes to the risk-neutral condition given in (8). The risk neutral result is consistent with the
results of Dimitrov and Ceryan (2018). Similar to the offering layaway case, when we set α = 0,
the expression in (18a) and (25a), the expression for the optimal order quantity changes to the
risk-neutral condition given in (4).

4.4 Sensitivity analysis for order quantity and profit

In this section, we first analyze how the optimal order quantity for both a risk-neutral and a risk-
averse retailer who offer layaway, q∗L, changes with various parameters. We calculate the partial
derivative of q∗L with respect to each parameters. We conclude this section by investigating how a
risk averse retailer’s expected profit changes with the default rate.

Proposition 3. 1) The optimal order quantity of a risk-neutral retailer, q∗
R̄L

increases with u
and fc, and decreases with c, s and δ.

2) The optimal order quantity of a risk-averse retailer who considers the net loss as the loss
function, q∗RLN increases with u, and decreases with c, and s.

3) The optimal order quantity of a risk-averse retailer who consider the total loss as the loss
function, q∗RLT increases with u and fc, and decrease with c, s and δ.

The derivations of Proposition 3 are presented in Appendix C. We summarize the sign of the
partial derivative of each optimal solution q∗ with respect to parameters r, α, u, fc, fs, c, s and
δ in Table 3. For completeness, we present the sensitivity results of the model parameters for a
risk-averse retailer not offering layaway, and we also compare our results with Gotoh and Takano
(2007).
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Table 3: Sign of partial derivative of each condition; where c-b-c denotes case-by-case. Gotoh and
Takano (2007) does not allow s to be negative.

∂q∗

∂r
∂q∗

∂α
∂q∗

∂u
∂q∗

∂c
∂q∗

∂s
∂q∗

∂fs
∂q∗

∂fc
∂q∗

∂δ

Total loss CVaR layaway c-b-c c-b-c + - - c-b-c + -
Net loss CVaR layaway c-b-c c-b-c + - - c-b-c c-b-c c-b-c
Risk neutral layaway c-b-c 0 + - - c-b-c + -
Total loss CVaR no layaway c-b-c c-b-c + - -
Total loss CVaR Gotoh + c-b-c + - +
Net loss CVaR no layaway c-b-c c-b-c + - -
Net loss CVaR Gotoh c-b-c c-b-c + - +

From Table 3, we see that the partials of the optimal order quantity with respect to c, s, and u
are the same as those of the risk-neutral condition. The optimal order quantity is increasing with
the shortage cost, u. As u increases, the greater the retailer’s revenue loss, leading to larger orders
by the retailer. For completeness, we compare our results to those of Gotoh and Takano (2007)
who consider a retailer not offering layaway. One key difference between the work of Gotoh and
Takano (2007) and our paper is that the authors consider demand that is independent of price,
while in our paper, by definition of pI , even if layaway is not offered demand will decrease as price
increases. It is this key modeling difference that explains the difference in the partial of optimal
order quantity, q∗, with respect to selling price, r, our Total loss CVaR no layaway and Total loss
CVaR Gotoh. One addition, though minor difference, between our model and that of Gotoh and
Takano (2007) is that the authors only consider a salvage value, s, that is non-negative, we allow
for s being any value, and when there is positive salvage, we have the value as negative, leading to
opposite signs in ∂q∗

∂s . In addition, the optimal order quantity is decreasing with the unit cost, c. As
c increases, the retailer’s profit decreases and loss increases, in both loss functions. However, those
sensitive to r, α, fs, fc, and δ are loss-function dependent. The one exception is the cancellation
cost, fc, and default rate, δ, for the total loss function. For these two parameters, the sensitivity
of the optimal order quantity with respect to fc and δ is the same as the risk-neutral case. This
follows from the definition of the two loss functions. In the total loss function, fc and δ appear only
in the definition of U , thus allowing us to quickly determine the monotone relationships between
the optimal order quantity and those two parameters. However, as fc and δ appear in V , within
the integral of equation (15), the relationship is not as clear. For the remaining parameters we
find that for a general demand distribution, the relationship is no longer clear. For example, for
α ∈ [0, 1), the optimal order quantity q∗ may be decreasing or increasing with the parameter α,
which depends on the market demand probability density function f(x). For example, starting
with the optimal order quantity equation (22a) for the retailer who uses the total loss as the loss
function, we have:

∂q∗RLT
∂α

= (pI + pL)
∂

∂α

[
O

O + U
F−1

(
(1− α)U

O + U

)
+

U

O + U
F−1

(
αO + U

O + U

)]

= (pI + pL)
OU

(O + U)2

 1

f
(
F−1

(
αO+U
O+U

)) − 1

f
(
F−1

(
(1−α)U
O+U

))
 , (26)

from equation (26), we can see that the sign of the
∂q∗RLT
∂α is the same as the sign of

[
1

f(F−1(αO+U
O+U ))

−

14



1

f
(
F−1

(
(1−α)U
O+U

))]. If f(x) is increasing, then if follows from αO+U
O+U > (1−α)U

O+U that F−1
(
αO+U
O+U

)
>

F−1
(

(1−α)U
O+U

)
, implying

∂q∗RLT
∂α < 0; otherwise, if f(x) is decreasing, we have

∂q∗RLT
∂α > 0. Therefore,

the optimal order quantity under layaway depends not only on different loss functions but also on
different market demand probability density functions. Next, we will show how the expected profit
of retailers varies with consumers’ default rate.

A rational retailer maximizes expected profit, regardless if layaway is offered. However, when
offering layaway, consumers’ default rates directly affect the retailer’s expected profit. The retailer
may end up losing revenue due to consumer defaults. Therefore, when a retailer chooses whether
to offer a layaway program, the consumer’s default rate is an important decision parameter. Thus,
we investigate how a risk averse retailer’s expected profit changes with the market default rate.

Proposition 4. For any given and fixed confidence level α and the order quantity, q, the expected
profit for the retailer who offers layaway, πL(δ|α, q), is a monotone decreasing function of the
market default rate, δ.

The proof of Proposition 4 is found in Appendix F. From Proposition 4, we know that the higher
the market default rate, the lower the expected profit of the retailer. In particular, if δ = 0, i.e.,
layaway consumers always finish the layaway program, then the retailer has the highest expected
profit relative to any other default rates, assuming all other problem parameters are held constant.
When δ = 1, all layaway consumers will default during the layaway period, the retailer will achieve
the least possible expected profit, again assuming all other parameters do not change.

Corollary 3. For fixed α ∈ [0, 1), there exists a threshold value, δ∗(α) ∈ [0, 1], such that a risk-
averse retailer is better off offering layaway if the market default rate, δ, is less than δ∗(α), and
not offering layaway otherwise.

The proof of Corollary 3 is found in Appendix G. In the remainder of this paragraph we assume
that α is fixed and present a proof-sketch of Corollary 3. From Proposition 4, we know that the
expected profit when offering layaway, πL, is strictly decreasing with the default rate δ. In addition,
πL̄ is constant in δ. Therefore, the expected profit when offering layaway, πL, will equal the expected
profit when not offering layaway, πL̄, at most once at δ∗(α). This means for δ < δ∗(α) the retailer
is better off offering layaway, and is worse off when δ > δ∗(α).

5 Numerical illustrations and insights

In this section, we perform numerical studies to illustrate how the optimal order quantity and the
expected profit change with model parameters, only for those listed as case-by-case in Table 3. For
comparison purposes, we compare six cases: (1) a risk-neutral retailer offering a layaway program,
similar to Dimitrov and Ceryan (2018); (2) a risk-neutral retailer not offering layaway, similar to
a risk-neutral newsvendor; (3) and (4) a risk-averse newsvendor not offering layaway, using the (3)
net-loss and (4) total-loss loss functions; (5) and (6) a risk-averse newsvendor not offering layaway,
using the (5) net-loss and (6) total-loss loss functions. The parameter values we consider cannot
be unbounded due to parameter relationships derived from our analytical results. In particular,
we must ensure the probability of purchase is non-negative. At the end of the section we present
theoretical and practical insights of our paper.
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5.1 The optimal order quantity changes with parameters

For a general demand distribution, it is not clear how the optimal order quantity changes with each
of the model parameters. To clarify the relationship between q∗ and the variables in the different
loss functions, several numerical results are presented below. In the literature, consumer demands
are modeled using an exponential distribution (see Abdel-Malek and Areeratchakul (2007), Afshar-
Nadjafi (2016), Rossi et al. (2014)). We assume that demand obeys the exponential distribution
with a parameter of λ = 1. Further, we assume the retailer has a confidence level α = 0.8 of the
CVaR. For all other parameters we use the same values as the numerical study of Dimitrov and
Ceryan (2018), the item per unit price is r = 10, the per unit item cost is c = 5, the enrollment
fee is fs = 0.2, the cancellation fee is fc = 0.5, the mean of consumer’s valuation for the item is
v̄ = 10, the mean of consumer’s budget is b̄ = 10, the discount factor is θ = 0.8, the default rate is
δ = 0.2, the length of the layaway period is L = 8, the salvage value of a single item is s = −2, and
the shortage cost is u = 4.

We first discuss why in some cases the trend of the net loss and the total loss is reversed. When
comparing the two loss functions, see Section 4.2, the signs of r, fc, fs and δ are different (follows
from (7), (19)). The opposite signs, for the two loss functions, lead to opposite behavior in the order
quantity with an increase in r, fc, fs, and δ. Consider r in the next example. If x(pI + pL)− q > 0,
the coefficient of r in the net loss function is − (p′I + p′L(1− δ)) ·q < 0, but in the total loss function
the coefficient of r is (p′I + p′L(1− δ)) · (x(pI + pL)− q) > 0. Furthermore, when we analyze the
sensitivity of the cancellation fee, fc, the enrollment fee, fs, the default rate, δ, and the length
of layaway period, L, we find that only when layaway is offered will the retailer’s profit change,
otherwise the profit is constant. In the figures in this section, we use R to denote a risk-averse
retailer, and R̄ a risk-neutral retailer. We also use L and L̄ to denote the presence of a layaway
program and no layaway program, respectively. Finally we use T and N to denote the total and
net loss loss functions, respectively. All plots are denoted with a subscript indicating which one
of six scenarios we consider, the first is the retailer’s risk attitude, then if layaway is offered and
finally the type of loss function used, only if the retailer is risk averse.

As depicted in Figure 2a, as α tends to 1, the risk averse retailer’s optimal order quantity,
regardless of whether layaway is offered, and regardless of which loss function is used, q∗Ryx tends

to infinity, where R represents risk averse condition, y ∈ {L, L̄} and x ∈ {T,N}. The behavior of
q∗Ryx follows from the optimal order quantity equations. From (16a) we find that αO+U

O+U tends to 1

as α tends to 1; similarly from (18a) we find that r+u−c+α(s+c)
s+r+u tends to 1 as α tends to 1. In turn,

lim
d→1

F−1(d)→∞ for the exponential distribution, thus the observed limiting behavior of Figure 2a

is expected. As confidence level, α, trends to 1, i.e., the retailer is more sensitive to risk, and as
such the optimal order quantity quickly increases.

Figure 2b shows the influence of the item’s price on the retailer’s optimal order quantity. We
can see that as the price increases, the optimal order quantity of both risk-neutral retailer and
the risk-averse retailer (modeled by the total loss function) first increases and then decreases. The
reason why the optimal order quantity first increases is that a low selling price can satisfy more
consumers, including low budget consumers. However, as the price increases, the lower budget
consumers cannot afford the item, thus the optimal order quantity will decrease.
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(a) confidence level α (b) selling price r

Figure 2: Sensitivity of the optimal order quantity, q, for different layaway and risk-preference
scenarios, with respect to (a) α and (b) r

As shown in Figure 3a, the optimal order quantity decreases as the enrollment fee increases.
We note that this figure does not contradict the result in Table 3 as for a lower purchase price and
lower default rate the order quantity initially increases then decreases, though slightly (Please see
Figure 22, in Appendix I). As shown in Figures 3b and 3c, we see that as consumers’ valuations,
v̄, and layaway length, L, increase, the optimal order quantity of both risk-neutral retailer and
the risk-averse retailer also increase. Furthermore, we can see from Figure 3b that as the length
of layaway period increases the optimal order quantity increases with diminishing returns. This
observation follows from the fact that as length of layaway period increases the budget a consumer
needs to purchase the item using layaway decreases, see equation (2). However, eventually the
market will reach saturation, thus diminishing returns. We also can see from Figure 3c that more
consumers with high valuations may purchase the product when layaway is available; this follows
naturally from the fact that under a layaway program budget constrained consumers with high
valuations may purchase the product.

Figure 3d shows that, as the average consumer budget, b̄, increases, the optimal order quantity
first decreases and then, after a discontinuity, increases. This follows from the following obser-
vations: prior to the discontinuity only layaway purchases will be observed, and the probability
of a layaway purchase decreases with the average consumer budget. Once immediate purchases
are observed, after the discontinuity, the probability of an immediate purchase increases with the
average consumer budget.
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(a) enrollment fee fs (b) the length of layaway period L

(c) the mean of consumer’s valuation v̄ (d) the mean of consumer’s budget b̄

Figure 3: Sensitivity of the optimal order quantity, q, for different layaway and risk-preference
scenarios, with respect to (a) fs, (b) L, (c) v̄, and (d) b̄

5.2 Expected profit changes with parameters

We next analyze how expected profit changes with each of the model parameters. Please note that
we only set fs = 5, and fc = 4 in Figure 4a. These parameters ensure that the expected profit of
offering layaway is greater than the expected profit of not offering layaway. In Figure 4a we can
find that as the retailer’s risk level, α, tends to 1, there is a threshold risk level, α̃, that makes the
expected profit from offering layaway, regardless of the loss function, equal to not offering layaway.
If the risk level is less than the threshold, α < α̃, the retailer is better off offering layaway, otherwise,
α > α̃ the retailer is better off not offering layaway.

As shown in Figure 4b, we can see that as the selling price increases, the expected profit for all
cases initially increases then decreases. A low selling price will attract most potential consumers
to purchase the product either directly or via the layaway program. However, as the selling price
increases fewer consumer will be able to purchase the product, even through a layaway program.
An additional observation is that the selling price that maximizes profit is to the right, i.e., it is
higher, when offering layaway, than when not offering layaway.
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(a) confidence level α (b) selling price r

Figure 4: Sensitivity of the expected profit, π, for different layaway and risk-preference scenarios,
with respect to (a) α (b) r

As depicted in Figure 5a, as the layaway enrollment fee increases, the expected profit initially
increases then decreases. The observed behavior follows from the fact that with an enrollment
fee sufficiently low, all consumers with low budgets and sufficiently high valuations of the product
will purchase the item. However, as the enrollment fee continues to increase only consumers with
higher budgets and higher valuations of the item will be only the ones participating in the layaway
program. In fact, as derived from Equation (2), if fs > 2v̄θ − r then there will be no layaway
purchases.

As shown in Figure 5b, we can see that as the payoff period, L, increases the expected profit
monotonically decrease with diminishing returns. The observed behavior follows from the fact that
as L increases more purchases will be made using layaway with diminishing returns (see Figure 3b).
As more of the retailer’s sales are from layaway consumers, the retailer will face more defaults,
leading to lower profits.

Figure 5c displays the relationship between expected profit and consumers’ expected valuation.
We note that the relationship is only defined for valuations greater than or equal to the price,
thus we start at v̄ ≥ 5 ( Price in our numerical study is set to 10). Considering only cases where
layaway is not offered, as consumer valuation grows eventually all consumers will purchase the
product, and there will be no consumers remaining to purchase, thus explaining the observed
diminishing returns. Moving to the case where layaway is offered, the expected profit first increases
with consumers’ expected valuation, v̄, and then decreases. The expected profit will first increase
because as consumer valuation increases more low budget consumers will purchase through layaway.
Eventually as more consumers purchase via layaway more consumers will also default leading to a
decrease in profit from the defaulting consumers.

As shown in Figure 5d, we note that there is a discontinuity in the relationship at the point
where consumers purchasing immediately appear, when consumer’s budgets are less than the item
price, only layaway purchases will occur and the retailer’s profit is negative. A negative expected
profit simply means that the retailer will not be in business. However, if item cost, salvage value,
and default rate are reduced, then expected profits become positive when only layaway is offered
(Please see Figure 23, in Appendix I). Once immediate purchases are made, the expected profit
increases with diminishing returns, follows from the fact pI and pL increase with diminishing returns
as average consumer budget increases.
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(a) enrollment fee fs (b) the length of layaway period L

(c) the mean of consumer’s valuation v̄ (d) the mean of consumer’s budget b̄

Figure 5: Sensitivity of the expected profit, π, for different layaway and risk-preference scenarios,
with respect to (a) fs, (b) L, (c) v̄, and (d) b̄

5.3 Theoretical contributions and practical contributions

As discussed in the introduction, our work is driven by a layaway program offered by retailers to
help economically disadvantaged budget constrained consumers to purchase expensive goods. The
theoretical contributions of our paper are as follows. We first reformulate the profit function pro-
posed by Dimitrov and Ceryan (2018) resulting in a simpler form (c.f. (8)). Second, we incorporate
two models of a risk-averse retailer into the layaway newsvendor problem, net loss and total loss,
we derive the functional forms for each loss function. Next, we determine optimal order quantities
under two models of a risk-averse newsvendor and show optimal order quantities respond differ-
ently to parameter changes in the two models. Moreover, our paper shows, similar to Dimitrov and
Ceryan (2018), that there is a critical market default rate prior to which a retailer is better off offer-
ing layaway, and after which the retailer is worse off offering layaway, assuming model parameters
remain unchanged.

As previously discussed, retailers tend to be risk averse when making decisions. So far in this
paper we derived and discussed the optimal ordering decisions of a risk averse retailer. We now
summarize our practical contributions. First, we find that the qualitative properties of Dimitrov
and Ceryan (2018) hold for a risk-averse retailer, something not obvious from the current literature.
Second, we find that for a given retailer, the risk-preferences are fixed, there exists a critical market
default rate below which the retailer is better off offering layaway, and above which the retailer
is better off not offering layaway. An immediate implication is a retailer must conduct a market
study to understand the market default rate and evaluate if the estimated default rate is worth
the risks associated with a layaway program. The market default rate may be learned via a pilot
program or randomized multi-store trials. Third, manufacturers may want to work with either
risk-neutral or highly risk-averse retailers as those types of retailers will order more than retailers
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with moderate risk-aversion, see Figure 2a. Note that extremely risk-averse retailers may be hard
to find as expected profits plummet as α tends to one. Fourth, as the layaway period increases
the number of consumers participating in the layaway program will increase, due to low payments
each payment period. However, the optimal order quantity increases and expected profit decreases
as the layaway period increases. This suggests, that there is a maximal layaway length beyond
which the retailer should not consider extending the layaway period length. Practically, a retailer
may determine this layaway length via market studies and pilot programs. Fifth, if the retailer is
extremely risk averse (e.g, α close to 1), the retailer’s expected profit will decrease quickly, and
is likely better off not offering layaway, potentially explaining why “small” retailers do not offer
layaway, and only major retailers offer such programs. Usually larger retailers have more capital
and are likely to behave more closely to risk-neutral due to a wealth effect (Cox and Sadiraj, 2006).
Finally, through our additional numerical studies, found in Appendix H, the insights we provided
qualitatively hold for cases where demand is non-uniform and when there is correlation between
consumer valuations and consumer budgets.

6 Conclusions and future work

The results developed in this paper provide insights for retailers offering a layaway program. In
particular, we take into account retailer’s risk tolerance which constitutes a departure from previous
studies. From our derivation, we find that the risk neutral case (Dimitrov and Ceryan, 2018) is only
a special case of risk aversion. Our research provide reference for decision makers of a wider class
of risk tolerance. Moreover, we consider consumer behavior in our model. We explore consumer
valuations and consumer budgets that are independent and relevant, respectively. We also focused
on the impact of the market default rate on the risk-averse retailer’s decision-making of offering
layaway program. We derived the optimal order quantities for a risk-averse retail, modeled using
conditional value at risk (CVaR), offering layaway with randomly distributed consumer valuations
and budgets. Initially, we construct mathematical models for the retailer’s expected profit when
facing stochastic market demand. Next, we used CVaR, and two common loss functions found in the
literature, to study the optimal order quantity decisions made by a risk-averse retailer. We choose
the net loss function to capture the optimistic decision makers’ policies, and choose the total loss
function to capture the pessimistic decision makers’ polices. We conducted sensitivity analysis to
associated parameters such as item cost, overage cost, shortage cost, cancellation fee, market default
rate, and the retailer’s risk aversion coefficient on the decision variables. We moved to numerical
studies to illustrate the impact of the parameters on the optimal order quantity of the risk-neutral
and risk-averse retailer, in the situations when layaway is and is not offered. Furthermore, we
examined the effects of the degree of the retailer’s risk aversion and the consumer’s default rate on
the retailer’s expected profit.

This study has limitations and presents opportunities for future research. First, in this paper,
we condensed multiple layaway periods into a single period. However, in practice, retailers usually
make dynamic decisions. Though we provide insights into the layaway case, it is still unclear if/how
a multi-period setting impacts the expected profit and optimal order quantities of risk-neutral and
risk-averse retailers. In particular, a multi-period model must account for past decisions when
making current and future decisions. Accounting for past, present, and future decisions will make
the analytical derivations of this paper not trivial in the multi-period setting. Second, we consider
consumer valuations and budgets are independently and uniformly distributed. In fact, this is just a
simplifying assumption that facilitated our analysis, and is not necessarily realistic. Although we use
numerical analysis to study two forms of correlation between uniformly distributed valuations and
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budgets, general distributions and relationships are still analytically unaddressed. For tractabiltiy
we made an array of simplifying assumptions; for example, we assumed only risk aversion is present
in our model, however empirical research shows that real-world ordering decisions are explained
using a menu of risk factors. If retailer data is made available, then we may numerically determine
the retailer’s optimal order quantities using data analytics. As we have no industry partner in our
study, we are not able to take a data-driven approach. Third, we only consider a single item, we
assume the down payment is zero and instead subsumed into the enrollment fee. However, if we
consider multiple items, the results may change and the zero down payment assumption is not longer
made without loss of generality. When we consider the down payment is the percentage of purchase
price, as we consider only a single item, the percentage of purchase price is equivalent to a fixed
down payment. Percentage down payment will however impact our analysis if we consider multiple
items, which we do not in this study and is a limitation of the study that needs consideration in
future studies.
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A Proof of proposition 1

Proof. We consider three cases so as to evaluate the net loss CVaR function in (15).
Case 1: ζ ≤ −V x
If the net loss is greater than ζ for any demand x, then equation (15) becomes:

Pα(q, ζ) =ζ + (1− α)−1

[∫ q
pI+pL

0
[− (V x(pI + pL)−O (q − x(pI + pL)))− ζ] f(x)dx

+

∫ ∞
q

pI+pL

[−(V x(pI + pL)− U (x(pI + pL)− q))− ζ] f(x)dx

]
.

(27)

Given (27), we now compute the first-order derivative of Pα(q, ζ), i.e., ∂
∂ζPα(q, ζ) = 0 and

∂
∂qPα(q, ζ) = 0.

∂

∂ζ
Pα(q, ζ) =

∂

∂ζ

[
ζ + (1− α)−1

[∫ q
pI+pL

0
[− (V x(pI + pL)−O (q − x(pI + pL)))− ζ] f(x)dx

+

∫ ∞
q

pI+pL

[− (V x(pI + pL)− U (x(pI + pL)− q))− ζ] f(x)dx

]]
= 0,

∂

∂q
Pα(q, ζ) =

∂

∂q

[
ζ + (1− α)−1

[∫ q
pI+pL

0
[− (V x(pI + pL)−O (q − x(pI + pL)))− ζ] f(x)dx

+

∫ ∞
q

pI+pL

[− (V x(pI + pL)− U (x(pI + pL)− q))− ζ] f(x)dx

]]
= 0.

We get:

q∗ = (pI + pL)F−1

(
U

O + U

)
,

ζ∗ = −V q∗.
(28)

Case 2: −V q < ζ < Oq
If ζ is greater than −V q, ζ is less than Oq, and −π̂(x|q) = ζ, then equation (14) becomes:

Pα(q, ζ) =ζ + (1− α)−1

[∫ O·q−ζ
(O+V )(pI+pL)

0
[− (V x(pI + pL)

−O (q − x(pI + pL)))− ζ] f(x)dx

+

∫ ∞
ζ+q·U

(U−V )(pI+pL)

[− (V x(pI + pL)− U (x(pI + pL)− q))− ζ] f(x)dx

]
.

(29)

Given (29), we now compute the first-order derivative of Pα(q, ζ) (i.e., ∂
∂ζPα(q, ζ) = 0 and
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D

−π̂(x|q)

Oq

q
pI+pL

case1.ζ ≤ −V q

case2.− V q < ζ < Oq

case3.Oq ≤ ζ

ζ

ζ

0

O·q−ζ
(O+V )(pI+pL)

ζ+q·U
(U−V )(pI+pL)

−V q
ζ

Figure 6: Three cases in minimization of net loss CVaR.

∂
∂qPα(q, ζ) = 0),

∂

∂ζ
Pα(q, ζ) =

∂

∂ζ

[
ζ + (1− α)−1

[∫ O·q−ζ
(O+V )(pI+pL)

0
[− (V x(pI + pL)

−O (q − x(pI + pL)))− ζ] f(x)dx

+

∫ ∞
ζ+q·U

(U−V )(pI+pL)

[− (V x(pI + pL)− U (x(pI + pL)− q))− ζ] f(x)dx

]

=1 + (1− α)−1

[
−F

(
O·q − ζ

(O + V )(pI + pL)

)
+ F

(
ζ + q·U

(U − V )(pI + pL)

)
− 1

]
.

Setting ∂
∂ζPα(q, ζ) = 0, we find:

1 + (1− α)−1

(
F

(
ζ + q·U

(U − V )(pI + pL)

)
− 1

)
= (1− α)−1F

(
O·q − ζ

(O + V )(pI + pL)

)
. (30)

∂

∂q
Pα(q, ζ) =

∂

∂q

[
ζ + (1− α)−1

(∫ O·q−ζ
(O+V )(pI+pL)

0
[− (V x(pI + pL)

−O (q − x(pI + pL)))− ζ] f(x)dx

+

∫ ∞
ζ+q·U

(U−V )(pI+pL)

[− (V x(pI + pL)− U (x(pI + pL)− q))− ζ] f(x)dx

)]
,
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∂

∂q
Pα(q, ζ) =(1− α)−1 ∂

∂q

∫ O·q−ζ
(O+V )(pI+pL)

0
[− (V x(pI + pL)

−O (q − x(pI + pL)))− ζ] f(x)dx+ (1− α)−1 ∂

∂q

∫ ∞
ζ+q·U

(U−V )(pI+pL)

[

− (V x(pI + pL)− U (x(pI + pL)− q))− ζ] f(x)dx.

(31)

We first calculate the integral of the first term in (31),

(1− α)−1 ∂

∂q

∫ O·q−ζ
(O+V )(pI+pL)

0
[−V x(pI + pL) +O (q − x(pI + pL))− ζ] f(x)dx

=(1− α)−1 ∂

∂q

∫ O·q−ζ
(O+V )(pI+pL)

0
[−V x(pI + pL) +O (q − x(pI + pL))− ζ]xF (x)

=(1− α)−1

[
∂

∂q
[− (V x(pI + pL)−O (q − x(pI + pL)))− ζ]F (x)|

O·q−ζ
(O+V )(pI+pL)

0

+(O − V )(pI + pL)

∫ O·q−ζ
(O+V )(pI+pL)

0
f(x)dx

]

=(1− α)−1OF

(
O·q − ζ

(O + V )(pI + pL)

)
,

(32)
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and then we calculate the integral of the second term in (31),

(1− α)−1 ∂

∂q

∫ ∞
ζ+q·U

(U−V )(pI+pL)

[− (V x(pI + pL)− U (x(pI + pL)− q))− ζ] f(x)dx

=(1− α)−1 ∂

∂q

∫ ∞
ζ+q·U

(U−V )(pI+pL)

[− (V x(pI + pL)− U (x(pI + pL)− q))− ζ] dF (x)

=(1− α)−1 ∂

∂q

[∫ ∞
ζ+q·U

(U−V )(pI+pL)

(U − V )x(pI + pL)dF (x)

+

∫ ∞
ζ+q·U

(U−V )(pI+pL)

(−Uq − ζ)dF (x)

]

=(1− α)−1 ∂

∂q

[
E(x)− (U − V )(pI + pL)

∫ ζ+q·U
(U−V )(pI+pL)

0
xdF (x)

+(−Uq − ζ)

(
1− F

(
ζ + q·U

(U − V )(pI + pL)

))]
=(1− α)−1 ∂

∂q

[
E(x)− (ζ + q·U)F

(
ζ + q·U

(U − V )(pI + pL)

)
+ (U − V )(pI + pL)

∫ ζ+q·U
(U−V )(pI+pL)

0
f(x)dx

+(−Uq − ζ)

(
1− F

(
ζ + q·U

(U − V )(pI + pL)

))]
=(1− α)−1

[
−U

(
1− F

(
ζ + q·U

(U − V )(pI + pL)

))]
,

(33)

combining the above two results, we obtain:

∂

∂q
Pα(q, ζ) =

∂

∂q

[
ζ + (1− α)−1

[∫ O·q−ζ
(O+V )(pI+pL)

0
[− (V x(pI + pL)

−O (q − x(pI + pL)))− ζ] f(x)dx

+

∫ ∞
ζ+q·U

(U−V )(pI+pL)

[− (V x(pI + pL)− U (x(pI + pL)− q))− ζ] f(x)dx

]]

=(1− α)−1

[
OF

(
O·q − ζ

(O + V )(pI + pL)

)
− U

(
1− F

(
ζ + q·U

(U − V )(pI + pL)

))]
=(1− α)−1

[
OF

(
O·q − ζ

(O + V )(pI + pL)

)
+ UF

(
O·q − ζ

(O + V )(pI + pL)

)
−U

[
F

(
O·q − ζ
O + V

)
+ 1− F

(
ζ + q·U

(U − V )(pI + pL)

)]]
=(1− α)−1

[
(O + U)F

(
O·q − ζ

(O + V )(pI + pL)

)
− U(1− α)

]
.

(34)
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Setting ∂
∂qPα(q, ζ) = 0, we get:

q∗ =
ζ

O
+

(O + V )(pI + pL)

O
F−1

[
(1− α)

U

O + U

]
,

(35)

we also find:

(1− α)−1F

(
O·q − ζ

(O + V )(pI + pL)

)
=

U

O + U
. (36)

According to the (34) and (36), we derive:

1 + (1− α)−1F

(
ζ + q·U

(U − V )(pI + pL)

)
− (1− α)−1 =

U

O + U
,

(1− α) + F

(
ζ + q·U

(U − V )(pI + pL)

)
− 1 = (1− α)

U

O + U
,

q∗ =
(U − V )(pI + pL)

U
F−1

[
αO + U

O + U

]
− ζ

U
. (37)

Therefore, according to the (35) and (37), we determine the optimal order quantity and maxi-
mum loss threshold as:

q∗RLN = (pI + pL)
O + V

O + U
F−1

[
(1− α)U

O + U

]
+ (pI + pL)

U − V
O + U

F−1

[
αO + U

O + U

]
,

ζ∗RLN = (pI + pL)
O(U − V )

O + U
F−1

[
αO + U

O + U

]
− (pI + pL)

U(O + V )

O + U
F−1

[
(1− α)U

O + U

]
.

(38)

Case 3: Oq ≤ ζ
If ζ is greater than Oq, then equation (14) becomes:

Pα(q, ζ) =(1− α)−1 ∂

∂q

∫ ∞
ζ+q·U

(U−V )(pI+pL)

[−(V x(pI + pL)

−U (x(pI + pL)− q))− ζ] f(x)dx.

(39)

Carrying out analysis similar to Case 2, we show that:

∂

∂q
Pα(q, ζ) =(1− α)−1 ∂

∂q

[∫ ∞
ζ+q·U

(U−V )(pI+pL)

[U (x(pI + pL)− q)− ζ] f(x)dx

]

=(1− α)−1

[
−U

(
1− F

(
ζ + q·U

(U − V )(pI + pL)

))]
< 0.

(40)

Therefore, there is no optimal order quantity for this case.

B Proof of proposition 2

Proof. We consider three cases to determine the optimal order quantity for a risk averse retailer
using the total loss CVaR function (21).
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Case 1: ζ ≤ 0
If the total loss is greater than ζ, then equation (21) becomes:

Pα(q, ζ) =ζ + (1− α)−1

[∫ q
pI+pL

0
[O (q − x(pI + pL))− ζ] f(x)dx

+

∫ ∞
q

pI+pL

[U (x(pI + pL)− q)− ζ] f(x)dx

]
.

(41)

Given (41), we now compute the first-order derivative of Pα(q, ζ), i.e., ∂
∂ζPα(q, ζ) = 0 and

∂
∂qPα(q, ζ) = 0.

We get:

q∗ = (pI + pL)F−1

(
U

O + U

)
,

ζ∗ = 0.

(42)

D

L(q, x)

Oq

q
pI+pL

case1.ζ < 0

case2.0 ≤ ζ < Oq

case3.Oq ≤ ζ

ζ

ζ

ζ

0

O·q−ζ
O(pI+pL)

ζ+q·U
U(pI+pL)

Figure 7: Three cases in minimization of total lost CVaR.

Case 2: 0 < ζ < O · q
If the ζ is greater than 0, ζ is less than Oq, and L(x|q) = ζ, then equation (21),

∫
x∈R[L(x|q)−

ζ]+f(x)dx, becomes:

Pα(q, ζ) =ζ + (1− α)−1

[∫ O·q−ζ
O(pI+pL)

0
[O (q − x(pI + pL))− ζ] f(x)dx

+

∫ ∞
ζ+q·U

U(pI+pL)

[U (x(pI + pL)− q)− ζ] f(x)dx

]
.

(43)
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Given (43), we now compute the first-order derivative of Pα(q, ζ):

∂

∂ζ
Pα(q, ζ) =

∂

∂ζ

[
ζ + (1− α)−1

[∫ O·q−ζ
O(pI+pL)

0
[O (q − x(pI + pL))− ζ] f(x)dx

+

∫ ∞
ζ+q·U

U(pI+pL)

[U (x(pI + pL)− q)− ζ] f(x)dx

]]

=1 + (1− α)−1

[
−F

(
O·q − ζ

O(pI + pL)

)
+ F

(
ζ + q·U

U(pI + pL)

)
− 1

]
.

Setting ∂
∂ζPα(q, ζ) = 0, we find:

1 + (1− α)−1F

(
ζ + q·U

U(pI + pL)

)
− (1− α)−1 = (1− α)−1F

(
O·q − ζ

O(pI + pL)

)
. (44)

∂

∂q
Pα(q, ζ) =

∂

∂q

[
ζ + (1− α)−1

[∫ O·q−ζ
O(pI+pL)

0
[O (q − x(pI + pL))− ζ] f(x)dx

+

∫ ∞
ζ+q·U

U(pI+pL)

[U (x(pI + pL)− q)− ζ] f(x)dx

]]
,

∂

∂q
Pα(q, ζ) =(1− α)−1 ∂

∂q

∫ O·q−ζ
O(pI+pL)

0
[O (q − x(pI + pL))− ζ] f(x)dx

+ (1− α)−1 ∂

∂q

∫ ∞
ζ+q·U

U(pI+pL)

[U (x(pI + pL)− q)− ζ] f(x)dx. (45)

We first calculate the integral of the first term in (45),

(1− α)−1 ∂

∂q

∫ O·q−ζ
O(pI+pL)

0
[O (q − x(pI + pL))− ζ] f(x)dx

=(1− α)−1 ∂

∂q

[∫ O·q−ζ
O(pI+pL)

0
[O (q − x(pI + pL))− ζ] dF (x)

]

=(1− α)−1 ∂

∂q

[
(O (q − x(pI + pL))− ζ)F (x)|

O·q−ζ
O(pI+pL)

0 +O(pI + pL)

∫ O·q−ζ
O(pI+pL)

0
f(x)dx

]

=(1− α)−1OF

(
O·q − ζ

O(pI + pL)

)
,

(46)
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and then we calculate the integral of the second term in (45),

(1−α)−1 ∂

∂q

∫ ∞
ζ+q·U

U(pI+pL)

[U (x(pI + pL)− q)− ζ] f(x)dx

= (1− α)−1 ∂

∂q

[∫ ∞
ζ+q·U

U(pI+pL)

Ux(pI + pL)dF (x) +

∫ ∞
ζ+q·U

U(pI+pL)

[−Uq − ζ] dF (x)

]

= (1− α)−1 ∂

∂q

[
E(x)− U

∫ ζ+q·U
U(pI+pL)

0
x(pI + pL)dF (x) + (−Uq − ζ)

(
1− F

(
ζ + q·U

U(pI + pL)

))]

= (1− α)−1

[
−U

[
1− F

(
ζ + q·U

U(pI + pL)

)]]
,

(47)
combining the above two results, we obtain:

∂

∂q
Pα(q, ζ) =(1− α)−1 ∂

∂q

∫ O·q−ζ
O(pI+pL)

0
[O (q − x(pI + pL))− ζ] f(x)dx

+ (1− α)−1 ∂

∂q

∫ ∞
ζ+q·U

U(pI+pL)

[U (x(pI + pL)− q)− ζ] f(x)dx

=(1− α)−1OF

(
O·q − ζ

O(pI + pL)

)
+ (1− α)−1

[
−U

[
1− F

(
ζ + q·U

U(pI + pL)

)]]
=(1− α)−1

[
OF

(
O·q − ζ

O(pI + pL)

)
+ UF

(
O·q − ζ

O(pI + pL)

)
− U

[
F

(
O·q − ζ

O(pI + pL)

)
+1− F

(
ζ + q·U

U(pI + pL)

)]]
=(1− α)−1

[
(O + U)F

(
O·q − ζ

O(pI + pL)

)
− U(1− α)

]
.

(48)

Setting ∂
∂qPα(q, ζ) = 0, we get:

q∗ =
ζ

O
+ (pI + pL)F−1

[
(1− α)

U

O + U

]
.

(49)

We also find that

(1− α)−1F

(
O·q − ζ

O(pI + pL)

)
=

U

O + U
. (50)

According to the (44) and (50), we derive:

1 + (1− α)−1F

(
ζ + q·U

U(pI + pL)

)
− (1− α)−1 =

U

O + U
,

(1− α) + F

(
ζ + q·U

U(pI + pL)

)
− 1 = (1− α)

U

O + U
,

q∗ = (pI + pL)F−1

[
αO + U

O + U

]
− ζ

U
. (51)
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Therefore, according to the (49) and (51), we determine the optimal order quantity and maxi-
mum loss threshold as:

q∗RLT = (pI + pL)
O

O + U
F−1

[
(1− α)U

O + U

]
+ (pI + pL)

U

O + U
F−1

[
αO + U

O + U

]
,

ζ∗RLT = (pI + pL)
OU

O + U
F−1

[
αO + U

O + U

]
− (pI + pL)

UO

O + U
F−1

[
(1− α)U

O + U

]
.

(52)

Case 3: Oq ≤ ζ
If the ζ is greater than Oq, then equation (21) becomes:

Pα(q, ζ) = (1− α)−1 ∂

∂q

[∫ ∞
ζ+q·U

U(pI+pL)

[U (x(pI + pL)− q)− ζ] f(x)dx

]
. (53)

Carrying out analysis similar to Case 2, we show that:

∂

∂q
Pα(q, ζ) = (1− α)−1 ∂

∂q

[∫ ∞
ζ+q·U

U(pI+pL)

[U(x(pI + pL)− q)− ζ] f(x)dx

]

= U

[
F

(
ζ + q·U

U(pI + pL)

)
− 1

]
< 0.

(54)

Therefore, there is no optimal order quantity for this case.

C Proof of proposition 3

C.1 Proof of case 1

Proof. We first compute the sensitivity analysis of the optimal order quantity for the risk neutral
retailer who offers layaway.

q∗R̄L = (pI + pL)F−1

(
U

O + U

)
.
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∂q∗
R̄L

∂r
= (pI + pL)

∂

∂r

[
F−1

(
U

O + U

)]
+

[
F−1

(
U

O + U

)]
∂

∂r
(pI + pL)

=(pI + pL)
1

f
(
F−1

(
U

O+U

)) O

(O + U)2
·

p′I + r ·


(
− 1

2v̄ (1− r
2b̄

)− (1− r
2v̄ ) 1

2b̄

)
(pI + pL)

(pI + pL)2

−

(
− 1

2v̄ (1− r
2b̄

)− (1− r
2v̄ ) 1

2b̄
−
(

1
2v̄θ ( r

2b̄
)− (1− r+fs

2v̄θ )( 1
2b̄

)
)

(L−1
L )
)
·pI

(pI + pL)2


+ (fs + δ·fc + (1− δ)·r − δ·s) ·

−
(

1
2v̄θ ( r

2b̄
)− (1− r+fs

2v̄θ )( 1
2b̄

)
)

(L−1
L )·(pI + pL)

(pI + pL)2

−

(
− 1

2v̄ (1− r
2b̄

)− (1− r
2v̄ ) 1

2b̄
−
(

1
2v̄θ ( r

2b̄
)− (1− r+fs

2v̄θ )( 1
2b̄

)
)

(L−1
L )
)
·pL

(pI + pL)2

+ (1− δ)p′L


+

[
F−1

(
U

O + U

)]
·
[
− 1

2v̄
(1− r

2b̄
)− (1− r

2v̄
)

1

2b̄
−
(

1

2v̄θ
(
r

2b̄
)− (1− r + fs

2v̄θ
)(

1

2b̄
)

)
L− 1

L

]
,

∂q∗
R̄L

∂α
= (pI + pL)

∂

∂α

[
F−1

(
U

O + U

)]
= 0,

∂q∗
R̄L

∂u
= (pI + pL)

∂

∂u

[
F−1

(
U

O + U

)]
= (pI + pL)

O

(O + U)2

O + V

f
(
F−1

(
U

O+U

)) > 0,

∂q∗
R̄L

∂c
= (pI + pL)

∂

∂c

[
F−1

(
U

O + U

)]
= −(pI + pL)

1

(O + U)

1

f
(
F−1

(
U

O+U

)) < 0,

∂q∗
R̄L

∂s
= (pI + pL)

∂

∂s

[
F−1

(
U

O + U

)]
= −(pI + pL)

Op′Lδ

(O + U)2

1

f
(
F−1

(
U

O+U

)) < 0,

∂q∗
R̄L

∂fs
=(pI + pL)

∂

∂fs

[
F−1

(
U

O + U

)]
+

[
F−1

(
U

O + U

)]
∂

∂fs
(pI + pL)

=(pI + pL)
1

f
(
F−1

(
U

O+U

)) O

(O + U)2
·
[
p′L −

1

2v̄θ
(
r

2b̄
)(
L− 1

L
)
(fs + δ·(fc − r − s))PI

(pI + pL)2

]

−
[
F−1

(
U

O + U

)]
1

2v̄θ
(
r

2b̄
)(
L− 1

L
),

∂q∗
R̄L

∂fc
= (pI + pL)

∂

∂fc

[
F−1

(
U

O + U

)]
= (pI + pL)

1

f
(
F−1( U

O+U )
) Op′L·δ

(O + U)2
> 0,
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∂q∗
R̄L

∂δ
= (pI + pL)

∂

∂δ

[
F−1

(
U

O + U

)]
= −(pI + pL)

1

f
(
F−1

(
U

O+U

))O (p′L·(r − fc) + p′L·s)
(O + U)2

< 0.

According to the above analysis, we find that the optimal order quantity of a risk-neutral
retailer, q∗

R̄L
increases with u and fc, and decreases with c, s and δ.

C.2 Proof of case 2

Proof. In this subsection, we compute the sensitivity analysis of the optimal order quantity for the
risk averse retailer who offers layaway and chooses the net loss as the loss function.

q∗RLN = (pI + pL)
O + V

O + U
F−1

[
(1− α)U

O + U

]
+ (pI + pL)

U − V
O + U

F−1

[
αO + U

O + U

]
.

Setting a1 = (1−α)U
O+U , a2 = αO+U

O+U , we get:

∂q∗RLN
∂α

= (pI + pL)
∂

∂α

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
= (pI + pL)

[
−(O + V )U

(O + U)2

1

f (F−1(a1))
+

(U − V )O

(O + U)2

1

f(F−1 (a2))

]
,

∂q∗RLN
∂r

=

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
∂

∂r
(pI + pL)

+ (pI + pL)
∂

∂r

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
=

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
·
[
− 1

2v̄
(1− r

2b̄
)− (1− r

2v̄
)

1

2b̄
− 1

2v̄θ
(
r

2b̄
)(
L− 1

L
) + (1− r + fs

2v̄θ
)(

1

2b̄
)(
L− 1

L
)

]
+ (pI + pL)·

(
U − V

(O + U)2

(
F−1(a1)− F−1(a2)

)
+

1

f (F−1(a1))

(1− α)O(O + V )

(O + U)3

+
1

f(F−1(a2))

(1− α)O(U − V )

(O + U)3

)
·

[
p′I + r · (

(− 1
2v̄ (1− r

2b̄
)− (1− r

2v̄ ) 1
2b̄

)(pI + pL)

(pI + pL)2

−
(− 1

2v̄ (1− r
2b̄

)− (1− r
2v̄ ) 1

2b̄
− ( 1

2v̄θ ( r
2b̄

)− (1− r+fs
2v̄θ )( 1

2b̄
))(L−1

L ))·pI
(pI + pL)2

)

+ (fs + δ·fc + (1− δ)·r − δ·s) ·

(
−( 1

2v̄θ ( r
2b̄

)− (1− r+fs
2v̄θ )( 1

2b̄
))(L−1

L ))·(pI + pL)

(pI + pL)2

−
− 1

2v̄ (1− r
2b̄

)− (1− r
2v̄ ) 1

2b̄
− ( 1

2v̄θ ( r
2b̄

)− (1− r+fs
2v̄θ )( 1

2b̄
))(L−1

L ))·pL
(pI + pL)2

)
+ (1− δ)p′L

]
,
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∂q∗RLN
∂u

= (pI + pL)
∂

∂u

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
= (pI + pL)

[
O + V

(O + U)2

(
F−1(a2)− F−1(a1)

)
+

(1− α)O

(O + U)3

(
O + V

f (F−1(a1))
+

U − V
f (F−1(a2))

)]
> 0,

∂q∗RLN
∂c

= (pI + pL)
∂

∂c

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
= (pI + pL)

[
−(O + V )(1− α)

(O + U)2

1

f (F−1(a1))
− (U − V )(1− α)

(O + U)2

1

f (F−1(a2))

]
< 0,

∂q∗RLN
∂s

=(pI + pL)
∂

∂s

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
=(pI + pL)[

(U − V )(1− p′Lδ)
(O + U)2

(
F−1(a1)− F−1(a2)

)
− O + V

(O + U)

1

f(F−1(a1))

[
(1− α)p′Lδ

(O + U)
+
U(1− α)p′Lδ

(O + U)2

]
− U − V

(O + U)

1

f(F−1(a2))

[
(1− α)(U +Op′Lδ)

(O + U)2

]
< 0,

∂q∗RLN
∂fs

=(pI + pL)
∂

∂fs

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
+

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
∂

∂fs
(pI + pL)

=(pI + pL)

[
(U − V )

(O + U)2

(
F−1(a1)− F−1(a2)

)
+
O(1− α)

(O + U)3

(
O + V

f(F−1(a1))
+

U − V
f(F−1(a2))

)]
·[

p′L −
1

2v̄θ
(
r

2b̄
)(
L− 1

L
)
(fs + δ·(fc − r − s))PI

(pI + pL)2

]
−
[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
1

2v̄θ
(
r

2b̄
)(
L− 1

L
),

∂q∗RLN
∂fc

=(pI + pL)
∂

∂fc

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
=(pI + pL)

[
p′Lδ(U − V )

(O + U)2

(
F−1(a1)− F−1(a2)

)
+
O(1− α)p′Lδ

(O + U)3
(

O + V

f (F−1(a1))
+

U − V
f (F−1(a2))

)

]
,
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∂q∗RLN
∂δ

=(pI + pL)
∂

∂δ

[
O + V

O + U
F−1(a1) +

U − V
O + U

F−1(a2)

]
=(pI + pL)

[
(U − V )(p′L·(r − fc) + p′L·s)

(O + U)2

(
F−1(a2)− F−1(a1)

)
− O + V

(O + U)

1

f(F−1(a1))

O(1− α) (p′L·(r − fc) + p′L·s)
(O + U)2

− U − V
(O + U)

1

f(F−1(a2))

O(1− α)(p′L·(r − fc) + p′L·s)
(O + U)2

]
.

According to the above analysis, we find that the optimal order quantity of a risk-averse retailer
who considers the net loss as the loss function, q∗RLN increases with u, and decreases with c and s.

C.3 Proof of case 3

Proof. In this subsection, we compute the sensitivity analysis of the optimal order quantity for the
risk averse retailer who offers layaway and chooses the total loss as the loss function.

q∗RLT = (pI + pL)
O

O + U
F−1

[
(1− α)U

O + U

]
+ (pI + pL)

U

O + U
F−1

[
αO + U

O + U

]
,

∂q∗RLT
∂r

=

[
O

O + U
F−1(a1) +

U

O + U
F−1(a2)

]
∂

∂r
(pI + pL)

+ (pI + pL)
∂

∂r

[
O

O + U
F−1(a1) +

U

O + U
F−1(a2)

]
=

[
O

O + U
F−1(a1) +

U

O + U
F−1(a2)

] [
− 1

2v̄
(1− r

2b̄
)− (1− r

2v̄
)

1

2b̄
− 1

2v̄θ
(
r

2b̄
)(
L− 1

L
)

+(1− r + fs
2v̄θ

)(
1

2b̄
)(
L− 1

L
)

]
+ (pI + pL)·[(

O

(O + U)2
(F−1(a2)− F−1(a1)) +

1

f(F−1(a1))

(1− α)O2

(O + U)3
+

1

f(F−1(a2))

(1− α)OU

(O + U)3

)

·

p′I + r ·


(
− 1

2v̄ (1− r
2b̄

)− (1− r
2v̄ ) 1

2b̄

)
(pI + pL)

(pI + pL)2

−

[
− 1

2v̄ (1− r
2b̄

)− (1− r
2v̄ ) 1

2b̄
−
(

1
2v̄θ ( r

2b̄
)− (1− r+fs

2v̄θ )( 1
2b̄

)
)

(L−1
L )
]
·pI

(pI + pL)2


+ (fs + δ·fc + (1− δ)·r − δ·s) ·

(
−( 1

2v̄θ ( r
2b̄

)− (1− r+fs
2v̄θ )( 1

2b̄
))(L−1

L ))·(pI + pL)

(pI + pL)2

−
− 1

2v̄ (1− r
2b̄

)− (1− r
2v̄ ) 1

2b̄
− ( 1

2v̄θ ( r
2b̄

)− (1− r+fs
2v̄θ )( 1

2b̄
))(L−1

L ))·pL
(pI + pL)2

)
+ (1− δ)p′L

]
,
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∂q∗RLT
∂α

= (pI + pL)
∂

∂α
[

O

O + U
F−1(

(1− α)U

O + U
) +

U

O + U
F−1(

αO + U

O + U
)]

= (pI + pL)
OU

(O + U)2

 1

f
(
F−1(αO+U

O+U )
) − 1

f
(
F−1( (1−α)U

O+U )
)
 ,

∂q∗RLT
∂u

= (pI + pL)
∂

∂u

[
O

O + U
F−1(a1) +

U

O + U
F−1(a2)

]
= (pI + pL)

O

(O + U)2

[
F−1(a2)− F−1(a1)

]
+

(1− α)O

(O + U)3

[
O

f (F−1(a1))
+

U

f (F−1(a2))

]
> 0,

∂q∗RLT
∂c

=(pI + pL)
∂

∂c

[
O

O + U
F−1(a1) +

U

O + U
F−1(a2)

]
=(pI + pL)

[
− 1

(O + U)

(
F−1(a2)− F−1(a1)

)
− O(1− α)

(O + U)2

1

f (F−1(a1))

−U(1− α)

(O + U)2

1

f(F−1(a2))

]
< 0,

∂q∗RLT
∂s

=(pI + pL)
∂

∂s

[
O

O + U
F−1(a1) +

U

O + U
F−1(a2)

]
=(pI + pL)

[
−
U +Op′Lδ

(O + U)2

(
F−1(a2)− F−1(a1)

)
− O

(O + U)

1

f (F−1(a1))

[
(1− α)p′Lδ

(O + U)
+
U(1− α)p′Lδ

(O + U)2

]
− U

(O + U)

1

f (F−1(a2))

[
(1− α)(U +Op′Lδ)

(O + U)2

]]
< 0,

∂q∗RLT
∂fs

=(pI + pL)
∂

∂fs

[
O

O + U
F−1(a1) +

U

O + U
F−1(a2)

]
+

[
O

O + U
F−1(a1) +

U

O + U
F−1(a2)

]
∂

∂fs
(pI + pL)

=(pI + pL)

[
O

(O + U)2

(
F−1(a2)− F−1(a1)

)
+
O(1− α)

(O + U)3

(
O

f (F−1(a1))
+

U

f (F−1(a2))
)

]
·[

p′L −
1

2v̄θ
(
r

2b̄
)(
L− 1

L
)
(fs + δ·(fc − r − s))PI

(pI + pL)2

]
− [

O

O + U
F−1(a1) +

U

O + U
F−1(a2)]

1

2v̄θ
(
r

2b̄
)(
L− 1

L
),
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∂q∗RLT
∂fc

=(pI + pL)
∂

∂fc

[
O

O + U
F−1(a1) +

U

O + U
F−1(a2)

]
=(pI + pL)

[
Op′L·δ

(O + U)2
(F−1(a2)− F−1(a1))

+
O

(O + U)

1

f (F−1(a1))

O(1− α)p′L·δ
(O + U)2

+
U

(O + U)

1

f (F−1(a2))

O(1− α)p′L·δ
(O + U)2

]
> 0,

∂q∗RLT
∂δ

=(pI + pL)
∂

∂δ

[
O

O + U
F−1(a1) +

U

O + U
F−1(a2)

]
=(pI + pL)

[
−
O (p′L·(r − fc) + p′L·s)

(O + U)2

(
F−1(a2)− F−1(a1)

)
− O

(O + U)

1

f (F−1(a1))

O(1− α) (p′L·(r − fc) + p′L·s)
(O + U)2

− U

(O + U)

1

f (F−1(a2))

O(1− α) (p′L·(r − fc) + p′L·s)
(O + U)2

]
< 0.

According to the above analysis, we find that the optimal order quantity of a risk-averse retailer
who considers the total loss as the loss function, q∗RLT increases with u and fc, and decreases with
c, s and δ.

C.4 Proof of case 4

Proof. In this subsection, we compute the sensitivity analysis of the optimal order quantity for the
risk averse retailer who does not offers layaway and chooses the total loss as the loss function.

q∗RL̄T =
pI ·(r + u− c)
r + u + s

F−1

(
r + u− c+ α(c+ s)

r + u + s

)
+
pI(c+ s)

r + u + s
F−1

[
(r + u− c)(1− α)

s + r + u

]
,

∂q∗
RL̄T

∂r
=F−1

(
r + u− c+ α(s + c)

s + r + u

)
1

4v̄b̄(r + s + u)2

[
c
(
−r2 − 2r(s + u) + 2b̄(2v̄ + s + u)+

2v̄(s + u)) + 2r3 + r2(−2(v̄ + b̄) + 3s + 4u) + 2r(s + u)(u − 2(v̄ + b̄)) + 4v̄sb̄−

2v̄u(s + u)− 2b̄u(s + u) ]− pI ·(r + u− c)
r + u + s

1

f
(
F−1

(
r+u−c+α(s+c)

s+r+u

)) (α− 1)(c+ s)

(r + s + u)2
+

F−1

[
(r + u− c)(1− α)

s + r + u

]
(c+ s)

(
r2 + 2r(s + u)− 2b̄(2v̄ + s + u)− 2v̄(s + u)

)
4v̄b̄(r + s + u)2

−

pI(c+ s)

s + r + u

1

f
(
F−1

[
(r+u−c)(1−α)

s+r+u

]) (α− 1)(c+ s)

(r + s + u)2

41



∂q∗
RL̄T

∂α
=
pI ·(r + u− c)
r + u + s

1

f
(
F−1

(
r+u−c+α(s+c)

s+r+u

)) c+ s

r + s + u
−

pI(c+ s)

r + u + s

1

f
(
F−1

[
(r+u−c)(1−α)

s+r+u

])−c+ r + u

r + s + u

∂q∗
RL̄T

∂u
=

(c+ s)(r − 2v̄)(r − 2b̄)

4v̄b̄(r + s + u)2
F−1

(
r + u− c+ α(s + c)

s + r + u

)
−

pI ·(r + u− c)
r + u + s

1

f
(
F−1

(
r+u−c+α(s+c)

s+r+u

)) (α− 1)(c+ s)

(r + s + u)2
+

−
(c+ s)

(
1− r

2v̄

) (
1− r

2b̄

)
(r + s + u)2

F−1

[
(r + u− c)(1− α)

s + r + u

]
−

pI(c+ s)

r + u + s

1

f
(
F−1

[
(r+u−c)(1−α)

s+r+u

]) (α− 1)(c+ s)

(r + s + u)2

∂q∗
RL̄T

∂c
=−

(
1− r

2v̄

) (
1− r

2b̄

)
r + s + u

F−1

(
r + u− c+ α(s + c)

s + r + u

)
+

pI ·(r + u− c)
r + u + s

1

f
(
F−1

(
r+u−c+α(s+c)

s+r+u

)) α− 1

r + s + u
+

(
1− r

2v̄

) (
1− r

2b̄

)
r + s + u

F−1

[
(r + u− c)(1− α)

s + r + u

]
−

pI(c+ s)

r + u + s

1

f
(
F−1

[
(r+u−c)(1−α)

s+r+u

]) 1− α
r + s + u

∂q∗
RL̄T

∂s
=−

(
1− r

2v̄

) (
1− r

2b̄

)
(−c+ r + u)

(r + s + u)2
F−1

(
r + u− c+ α(s + c)

s + r + u

)
−

pI ·(r + u− c)
r + u + s

1

f
(
F−1

(
r+u−c+α(s+c)

s+r+u

)) (α− 1)(c− r − u)

(r + s + u)2
−

(r − 2v̄)(r − 2b̄)(c− r − u)

4v̄b̄(r + s + u)2
F−1

[
(r + u− c)(1− α)

s + r + u

]
−

pI(c+ s)

r + u + s

1

f
(
F−1

[
(r+u−c)(1−α)

s+r+u

]) (1− α)(−c+ r + u)

(r + s + u)2

According to the above analysis the optimal order quantity, q∗
RL̄T

, change with respect to each
model parameter is determined case by case.
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C.5 Proof of case 5

Proof. In this subsection, we compute the sensitivity analysis of the optimal order quantity for the
risk averse retailer who does not offers layaway and chooses the net loss as the loss function.

q∗RL̄N =
pIu

s + r + u
F−1

(
r + u− c+ α(s + c)

s + r + u

)
+
pI(r + s)

s + r + u
F−1

[
(r + u− c)(1− α)

s + r + u

]

∂q∗
RL̄N

∂r
=F−1

(
r + u− c+ α(s + c)

s + r + u

)
u
(
2 (u + s) (−v̄ + r − b̄) + 4v̄b̄+ 3r2 − 4r(v̄ + b̄)

)
4v̄b̄ (u + s + r)2

− pIu

s + r + u

1

f
(
F−1

(
r+u−c+α(s+c)

s+r+u

)) (α− 1)(c+ s)

(r + s + u)2
+ F−1

[
(r + u− c)(1− α)

s + r + u

]
·

2 (s + r)2 (−v̄ + r − b̄) + u
(
2s(−v̄ + r − b̄) + 4v̄b̄+ 3r2 − 4r(v̄ + b̄)

)
4v̄b̄ (u + s + r)2 −

pI(r + s)

s + r + u

1

f
(
F−1

[
(r+u−c)(1−α)

s+r+u

]) (α− 1)(c+ s)

(r + s + u)2

∂q∗
RL̄N

∂α
=

pI ·u
r + u + s

1

f
(
F−1

(
r+u−c+α(s+c)

s+r+u

)) c+ s

r + s + u
−

pI(r + s)

r + u + s

1

f
(
F−1

[
(r+u−c)(1−α)

s+r+u

])−c+ r + u

r + s + u

∂q∗
RL̄N

∂u
=

(r − 2v̄)(r + s)(r − 2b̄)

4v̄b̄(r + s + u)2
F−1

(
r + u− c+ α(s + c)

s + r + u

)
−

pI ·u
r + u + s

1

f
(
F−1

(
r+u−c+α(s+c)

s+r+u

)) (α− 1)(c+ s)

(r + s + u)2
+

−

(
1− r

2v̄

)
(r + s)

(
1− r

2b̄

)
(r + s + u)2

F−1

[
(r + u− c)(1− α)

s + r + u

]
−

pI(r + s)

r + u + s

1

f
(
F−1

[
(r+u−c)(1−α)

s+r+u

]) (α− 1)(c+ s)

(r + s + u)2

∂q∗
RL̄N

∂c
=

pI ·u
r + u + s

1

f
(
F−1

(
r+u−c+α(s+c)

s+r+u

)) α− 1

r + s + u
−

pI(r + s)

r + u + s

1

f
(
F−1

[
(r+u−c)(1−α)

s+r+u

]) 1− α
r + s + u
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∂q∗
RL̄N

∂s
=−

u
(
1− r

2v̄

) (
1− r

2b̄

)
(r + s + u)2

F−1

(
r + u− c+ α(s + c)

s + r + u

)
−

pI ·u
r + u + s

1

f
(
F−1

(
r+u−c+α(s+c)

s+r+u

)) (α− 1)(c− r − u)

(r + s + u)2
−

u(r − 2v̄)(r − 2b̄)

4v̄b̄(r + s + u)2
F−1

[
(r + u− c)(1− α)

s + r + u

]
−

pI(r + s)

r + u + s

1

f
(
F−1

[
(r+u−c)(1−α)

s+r+u

]) (1− α)(−c+ r + u)

(r + s + u)2

According to the above analysis the optimal order quantity, q∗
RL̄N

, change with respect to each
model parameter is determined case by case.

D Proof of Corollary 1

Proof.

min
q
Pα(q, ζ) = ζ + (1− α)−1

∫
x∈R

[−π̂NL(x|q)− ζ]+ f(x)dx. (55)

We consider three cases so as to evaluate the problem of (55).
Case 1: ζ ≤ −(r − c)q
If ζ is less than or equal to −(r − c)q, then equation (55) becomes:

Pα(q, ζ) =ζ + (1− α)−1

[∫ q
pI

0
[−(pI ·x·r − (q − pI ·x)·s− c·q)− ζ] f(x)dx

+

∫ ∞
q
pI

[− (q·r − (pI ·x− q)·u− c·q)− ζ] f(x)dx

]
.

(56)

Given (56), we now compute the first-order derivative of Pα(q, ζ), i.e., ∂
∂ζPα(q, ζ) = 0 and

∂
∂qPα(q, ζ) = 0. We get:

q∗ = pIF
−1

(
r + u− c
s + r + u

)
,

ζ∗ = −(r − c)pIF−1

(
r + u− c
s + r + u

)
.

(57)

Case 2: −(r − c)q < ζ < (s + c)q
If ζ is greater than −(r − c)q, and less than (s + c)q, and −π̂(x|q) = ζ, then equation (55)

becomes:

Pα(q, ζ) =ζ + (1− α)−1

[∫ qc+qs−ζ
pI (s+r)

0
[−(pI ·x·r − (q − pI ·x)·s− c·q)− ζ]f(x)dx

+

∫ ∞
qr+qu+ζ−cq

pIu

[−(q·r − (pI ·x− q)·u− c·q)− ζ] f(x)dx

]
.

(58)
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D

−π̂NL(x|q)

(s + c)q

q
pI

case1.ζ ≤ −(r − c)q

case2.− (r − c)q < ζ < (s + c)q

case3.(s + c)q ≤ ζ

ζ

ζ

0

qs+cq−ζ
pI(r+s)

qr+qu+ζ−cq
pIu

−(r − c)q
ζ

Figure 8: Three cases in minimization of net loss CVaR without layaway.

Given (56), we now compute the first-order derivative of Pα(q, ζ):

∂

∂ζ
Pα(q, ζ) =

∂

∂ζ

(
ζ + (1− α)−1

[∫ qc+qs−ζ
pI (s+r)

0
[− (pI ·x·r − (q − pI ·x)·s− c·q)

−ζ] f(x)dx+

∫ ∞
qr+qu+ζ−cq

pIu

[− (q·r − (pI ·x− q)·u− c·q)− ζ] f(x)dx

])

=1 + (1− α)−1

[
−F

(
qs− ζ + cq

pI(r + s)

)
+ F

(
qr + qu + ζ − cq

pIu

)
− 1

]
,

Setting ∂
∂ζPα(q, ζ) = 0, we find that

1 + (1− α)−1

[
F

(
qr + qu + ζ − cq

pIu

)
− 1

]
= (1− α)−1F

(
qs− ζ + cq

pI(r + s)

)
. (59)

∂

∂q
Pα(q, ζ) =(1− α)−1

[
∂

∂q

∫ qs−ζ+cq
pI (r+s)

0
[−(pI ·x·r − (q − pI ·x)·s− cq)

−ζ] f(x)dx+
∂

∂q

∫ ∞
qr+qu+ζ−cq

pIu

[−(q·r − (pI ·x− q)·u− cq)− ζ] f(x)dx

]
.

(60)
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We first calculate the integral of the first term in (60),

(1− α)−1 ∂

∂q

∫ qs−ζ+cq
pI (r+s)

0
[−(pI ·x·r − (q − pI ·x)·s− cq)− ζ] f(x)dx

=(1− α)−1 ∂

∂q

∫ qs−ζ+cq
pI (r+s)

0
[− (pI ·x·r − (q − pI ·x)·s− cq)− ζ] dF (d)

=(1− α)−1(s + c)F

(
qs− ζ + cq

pI(r + s)

)
,

(61)

and then we calculate the integral of the second term in (60),

(1− α)−1 ∂

∂q

∫ ∞
qr+qu+ζ−cq

pIu

[− (q·r − (pI ·x− q) ·u− cq)− ζ] f(x)dx

=(1− α)−1 ∂

∂q

∫ ∞
qr+qu+ζ−cq

pIu

[− (q·r − (pI ·x− q)·u− c·q)− ζ] dF (x)

=(1− α)−1

[
−(r + u− c)

(
1− F

(
qr + qu + ζ − cq

pIu

))]
,

(62)

combining the above three results, we obtain:

∂

∂q
Pα(q, ζ) =(1− α)−1 ∂

∂q

∫ qs−ζ+cq
pI (r+s)

0
[− (pI ·x·r − (q − pI ·x)·s− cq)

−ζ] f(x)dx+
∂

∂q

∫ ∞
qr+qu+ζ−cq

pIu

[−(q·r − (pI ·x− q)·u− cq)− ζ]f(x)dx]

=(1− α)−1

[
(s + r + u)F

(
qs− ζ + cq

pI(r + s)

)
− (r + u− c)(1− α)

]
,

(63)

Setting ∂
∂qPα(q, ζ) = 0, we get:

q∗ =
ζ

s + c
+
pI(r + s)

s + c
F−1

[
(r + u− c)(1− α)

s + r + u

]
.

(64)

We also find:

0 = (1− α)−1

[
(s + r + u)F

(
qs− ζ + cq

pI(r + s)

)
− (r + u− c)(1− α)

]
,

(s + r + u)F

(
qs− ζ + cq

pI(r + s)

)
= (r + u− c)(1− α), (65)

According to the (59) and (65), we derive:

(1− α) +

(
F

(
qr + qu + ζ − cq

pIu

)
− 1

)
=

(r + u− c)(1− α)

s + r + u
,
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F

(
qr + qu + ζ − cq

pIu

)
− α =

(r + u− c)(1− α)

s + r + u
,

F

(
qr + qu + ζ − cq

pIu

)
=
r + u− c+ α(s + c)

s + r + u
,

q∗ =
pIu

r + u− c
F−1

(
r + u− c+ α(s + c)

s + r + u

)
− ζ

r + u− c
, (66)

ζ = (pIu)F−1

(
r + u− c+ α(s + c)

s + r + u

)
− (r + u− c)q∗, (67)

q∗ =
ζ

s + c
+
pI(r + s)

s + c
F−1

[
(r + u− c)(1− α)

s + r + u

]
, (68)

q∗ =
pIu

s + c
F−1

(
r + u− c+ α(s + c)

s + r + u

)
− r + u− c

s + c
q∗

+
pI(r + s)

s + c
F−1

[
(r + u− c)(1− α)

s + r + u

]
,

(69)

q∗ =
pIu

s + r + u
F−1

(
r + u− c+ α(s + c)

s + r + u

)
+
pI(r + s)

s + r + u
F−1

[
(r + u− c)(1− α)

s + r + u

]
, (70)

ζ =
pIu(s− c)
s + r + u

F−1

(
r + u− c+ α(s + c)

s + r + u

)
+
pI(r + s)(r + u− c)

s + r + u
F−1

[
(r + u− c)(1− α)

s + r + u

]
.

(71)

Therefore, according to the (64) and (66), we get the optimal order quantity and maximum loss
threshold as:

q∗NL =
pIu

s + r + u
F−1

(
r + u− c+ α(s + c)

s + r + u

)
+
pI(r + s)

s + r + u
F−1

[
(r + u− c)(1− α)

s + r + u

]
,

ζNL =
pIu(s− c)
s + r + u

F−1

(
r + u− c+ α(s + c)

s + r + u

)
+
pI(r + s)(r + u− c)

s + r + u
F−1

[
(r + u− c)(1− α)

s + r + u

]
.

(72)
Case 3: (s + c)q ≤ ζ
If the ζ is greater than (s + c)q, then (55) becomes:

Pα(q, ζ) =(1− α)−1

[∫ ∞
qr+qu+ζ−cq

pIu

[− (q·r − (pI ·x− q)·u− cq)− ζ

]
f(x)dx. (73)

Carrying out analysis similar to Case 2, we show that:

∂

∂q
Pα(q, ζ) =(1− α)−1 ∂

∂q

[∫ ∞
qr+qu+ζ−cq

pIu

[− (q·r − (pI ·x− q)·u− c·q)− ζ] f(x)dx

]

=(1− α)−1

[
−(r + u− c)

(
1− F

(
qr + qu + ζ − cq

pIu

))]
< 0.

(74)
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Therefore, there is no optimal order quantity for this case.

E Proof of Corollary 2

Proof. We consider three cases so as to evaluate the problem of (24).
Case 1: ζ < 0
If ζ is less than 0, then we may substitute (23) into (24) to find:

Pα(q, ζ) =ζ + (1− α)−1

[∫ q
pI

0
[(c+ s)(q − x·pI)− ζ] f(x)dx

+

∫ ∞
q
pI

[(r + u− c)(x·pI − q)− ζ] f(x)dx

]
.

(75)

Given (75), we now compute the first-order derivative of Pα(q, ζ), i.e., ∂
∂ζPα(q, ζ) = 0 and

∂
∂qPα(q, ζ) = 0. We get:

q∗ = pIF
−1

(
r + u− c
s + r + u

)
,

ζ∗ = −(r − c)pIF−1

(
r + u− c
s + r + u

)
.

(76)

D

L(x|q)

(c+ s)q

q
pI

case1.ζ < 0

case2.0 ≤ ζ < (c+ s)q

case3.(c+ s)q ≤ ζ

ζ

ζ

ζ

0

(c+s)·q−ζ
pI(c+s)

(r+u−c)·q+ζ
pI ·(r+u−c)

Figure 9: Three cases in minimization of total lost CVaR.

Case 2: 0 ≤ ζ < (c+ s)q
If the ζ is greater than or equal to 0, ζ is less than or equal to (c + s)q, and L(x|q) = ζ, then

equation (24), becomes:

Pα(q, ζ) =ζ + (1− α)−1

[∫ (c+s)·q−ζ
pI (c+s)

0
[(c+ s)(q − x·pI)− ζ] f(x)dx

+

∫ ∞
(r+u−c)·q+ζ
pI ·(r+u−c)

[(r + u− c)(x·pI − q)− ζ] f(x)dx

]
.

(77)

Given (77), we now compute the first-order derivative of Pα(q, ζ), i.e., ∂
∂ζPα(q, ζ) = 0 and
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∂
∂qPα(q, ζ) = 0.

∂

∂ζ
Pα(q, ζ) =

∂

∂ζ

[
ζ + (1− α)−1

[∫ (c+s)·q−ζ
pI (c+s)

0
[(c+ s)(q − x·pI)− ζ

]
f(x)dx

+

∫ ∞
(r+u−c)·q+ζ
pI ·(r+u−c)

[(r + u− c)(x·pI − q)− ζ]f(x)dx]

]

=1 + (1− α)−1

[
−F

(
(c+ s)·q − ζ
pI(c+ s)

)
+ F

(
(r + u− c)·q + ζ

pI ·(r + u− c)

)
− 1

]
.

Setting ∂
∂ζPα(q, ζ) = 0, we find:

1 + (1− α)−1

(
F

(
(r + u− c)·q + ζ

pI ·(r + u− c)

)
− 1

)
= (1− α)−1F

(
(c+ s)·q − ζ
pI(c+ s)

)
. (78)

∂

∂q
Pα(q, ζ) =

∂

∂q

[
ζ + (1− α)−1

(∫ (c+s)·q−ζ
pI (c+s)

0
[(c+ s)(q − x·pI)− ζ] f(x)dx

+

∫ ∞
(r+u−c)·q+ζ
pI ·(r+u−c)

[(r + u− c)(x·pI − q)− ζ] f(x)dx

)]
.

(79)

We first calculate the integral of the first term in (79),

(1− α)−1 ∂

∂q

∫ (c+s)·q−ζ
pI (c+s)

0
[(c+ s)(q − x·pI)− ζ] f(x)dx

=(1− α)−1 ∂

∂q

∫ (c+s)·q−ζ
pI (c+s)

0
[(c+ s)(q − x·pI)− ζ] dF (x)

=(1− α)−1(c+ s)F

(
(c+ s)·q − ζ
pI(c+ s)

)
,

(80)

and then we calculate the integral of the second term in (79),

(1− α)−1 ∂

∂q

∫ ∞
(r+u−c)·q+ζ
pI ·(r+u−c)

[(r + u− c)(x·pI − q)− ζ] f(x)dx

=(1− α)−1

[
−(r + u− c)(1− F

(
(r + u− c)·q + ζ

pI ·(r + u− c)

)]
,

(81)

combining the above two results, we obtain:

∂

∂q
Pα(q, ζ) =(1− α)−1(c+ s)F

(
(c+ s)·q − ζ
pI(c+ s)

)
+ (1− α)−1

[
−(r + u− c)(1− F

(
(r + u− c)·q + ζ

pI ·(r + u− c)

)]
=(1− α)−1

[
(r + u− s)F

(
(c+ s)·q − ζ
pI(c+ s)

)
− (r + u− c)(1− α)

]
.

(82)
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Setting ∂
∂qPα(q, ζ) = 0, we get:

q∗ =
ζ

c+ s
+ pI ·F−1

[
(r + u− c)(1− α)

r + u + s

]
.

(83)

We also find:

0 = (1− α)−1

[
(r + u + s)F

(
(c+ s)·q − ζ
pI(c+ s)

)
− (r + u− c)(1− α)

]
,

(r + u + s)F

(
(c+ s)·q − ζ
pI(c+ s)

)
= (r + u− c)(1− α). (84)

According to the (78) and (84), we get:

(1− α) +

(
F

(
(r + u− c)·q + ζ

pI ·(r + u− c)

)
− 1

)
=

(r + u− c)(1− α)

(r + u + s)
,

F

(
(r + u− c)·q + ζ

pI ·(r + u− c)

)
=
r + u− c+ α(c+ s)

r + u + s
,

q∗ =
pI ·(r + u− c)
r + u− c

F−1

(
r + u− c+ α(c+ s)

r + u + s

)
− ζ

r + u− c
, (85)

ζ = pI ·(r + u− c)F−1

(
r + u− c+ α(c+ s)

r + u + s

)
− (r + u− c)·q∗, (86)

q∗ =
pI ·(r + u− c)
r + u + s

F−1

(
r + u− c+ α(c+ s)

r + u + s

)
+
pI(c+ s)

r + u + s
F−1

[
(r + u− c)(1− α)

s + r + u

]
,

(87)

ζ =
pI(r + u− c)(c+ s)

s + r + u
F−1

(
r + u− c+ α(c+ s)

r + u + s

)
+
pI(c+ s)(r + u− c)

s + r + u
F−1

[
(r + u− c)(1− α)

s + r + u

]
.

(88)

Therefore, according to the (83) and (85), we determine the optimal order quantity and maxi-
mum loss threshold as:

q∗RL̄T =
pI ·(r + u− c)
r + u + s

F−1

(
r + u− c+ α(c+ s)

r + u + s

)
+
pI(c+ s)

r + u + s
F−1

[
(r + u− c)(1− α)

s + r + u

]
,

ζRL̄T =
pI(r + u− c)(c+ s)

s + r + u

(
F−1

(
r + u− c+ α(c+ s)

r + u + s

)
+ F−1

[
(r + u− c)(1− α)

s + r + u

])
.

(89)

Case 3: (c+ s)q ≤ ζ
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If the ζ is greater than or equal to (c+ s)q, then equation (24) becomes:

Pα(q, ζ) =(1− α)−1

[∫ ∞
(r+u−c)·q+ζ
pI ·(r+u−c)

[(r + u− c)(x·pI − q)− ζ] f(x)dx

]
. (90)

Carrying out analysis similar to Case 2, we show that:

∂

∂q
Pα(q, ζ) =(1− α)−1 ∂

∂q

[∫ ∞
(r+u−c)·q+ζ
pI ·(r+u−c)

[(r + u− c)(x·pI − q)− ζ] f(x)dx

]

=(1− α)−1

[
−(r + u− c)(1− F

(
(r + u− c)·q + ζ

pI ·(r + u− c)

)]
< 0.

(91)

Therefore, there is no optimal order quantity for this case.

F Proof of proposition 4

Proof. For any given α, taking the first order partial derivative of retailer’s expected profit πL(q)
with respect to δ, we have:

∂

∂δ
πL(q) =

∂

∂δ

[
(r′ + u− c)·q − E [X(pI + pL)] ·u

−(r′ + u + s)·
∫ q

0
(q − x(pI + pL)) f(x)dx

]
=q·p′L·(fc − r)− p′L(fc − r)·

∫ q

0
(q − x(pI + pL)) f(x)dx

=p′L·(fc − r)·
(
q −

∫ q

0
(q − x(pI + pL))f(x)dx

)
< 0.

(92)

Where the inequality follows from the assumption that fc − r < 0 (the layaway cancellation fee is
less than the selling price).

G Proof of Corollary 3

Proof. Consider any fixed confidence level, α. From Proposition 4 we know that πRL(q∗) is de-

creasing in δ, i.e., ∂πRL(q∗)
∂δ < 0. For any retailer not offering layaway, πRL̄(q∗) is constant in δ,

i.e.,
∂πRL̄(q∗)

∂δ = 0. Putting the two previous observations together we may say that πRL(q∗) crosses
πRL̄(q∗) once, on δ ∈ R, let δ× be such that πRL(q∗)|δ× = πRL̄(q∗)|δ× . As only δ ∈ [0, 1] is valid for
our setting, for any δ× < 0, we say δ∗ = 0; for any δ× > 1, we say δ∗ = 1; otherwise, δ∗ = δ×.

H Correlation between valuation and budget and different distri-
butions

In this section, first, we consider consumer valuations and budgets to be dependent. We show
that the relationship between optimal order quantity and expected profit are qualitatively the
same regardless if valuations and budgets are dependent or independent. Second, we assume that
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consumer valuations and budgets are independent and obey normal distributions, which differs
from our results in Section 5 where we assume an exponential demand distribution.

Case 1: In this case we assume that consumer budgets, b, and valuations v are dependently and
uniformly distributed between [0, 20] and [0, 2b], respectively. Our numerical results are depicted
in Figures 10–13.
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(b) selling price r

Figure 10: Sensitivity of the optimal order quantity, q, for different layaway and risk-preference
scenarios, with respect to (a) α and (b) r
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(b) the length of payoff period L

Figure 11: Sensitivity of the optimal order quantity, q, for different layaway and risk-preference
scenarios, with respect to (a) fs and (b) L
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Figure 12: Sensitivity of the expected profit, π, for different layaway and risk-preference scenarios,
with respect to (a) α and (b) r
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Figure 13: Sensitivity of the expected profit, π, for different layaway and risk-preference scenarios,
with respect to (a) fs and (b) L

Case 2: In this case, we consider a linear relationship between the consumer’s budgets, b, and
valuations, v. We assume that b is uniformly distributed between [0, 20] and v = a + m · b, where
a and m are constants. In this simulation, we assume that a = 2 and m = 2.
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Figure 14: Sensitivity of the optimal order quantity, q, for different layaway and risk-preference
scenarios, with respect to (a) α and (b) r
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Figure 15: Sensitivity of the optimal order quantity, q, for different layaway and risk-preference
scenarios, with respect to (a) fs and (b) L
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Figure 16: Sensitivity of the expected profit, π, for different layaway and risk-preference scenarios,
with respect to (a) α and (b) r
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Figure 17: Sensitivity of the expected profit, π, for different layaway and risk-preference scenarios,
with respect to (a) fs and (b) L

The relationship between optimal order quantity and expected profit with respect to model
parameters (α, r, fs and L) found by our numerical exploration, is depicted in Figure 14−17. We
find that for different correlations between consumer valuation and budget, for different parameters,
the optimal order quantity and expected profit trends are the same, respectively.

Case 3: In this case we assume that consumer budgets, b, and valuations, v are independent
and normal distributed between N(20, 5) and N(20, 5), respectively.
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(a) confidence level α (b) selling price r

Figure 18: Sensitivity of the optimal order quantity, q, for different layaway and risk-preference
scenarios, with respect to (a) α and (b) r

(a) enrollment fee fs (b) the length of payoff period L

Figure 19: Sensitivity of the optimal order quantity, q, for different layaway and risk-preference
scenarios, with respect to (a) fs and (b) L

(a) confidence level α (b) selling price r

Figure 20: Sensitivity of the expected profit, π, for different layaway and risk-preference scenarios,
with respect to (a) α and (b) r
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(a) enrollment fee fs (b) the length of payoff period L

Figure 21: Sensitivity of the expected profit, π, for different layaway and risk-preference scenarios,
with respect to (a) fs and (b) L

Compared with the uniform distribution in our paper, as depicted in Figure 18−21 considering
the normal distribution, with the change of each parameter, the retailer’s optimal order quantity
and expected profit exhibit the same change trends as we found in Section 5.

I Additional numerical illustrations

As shown in Figure 22, we can see that when we assume that r = 5, and δ = 0.001, as the enrollment
fee increases, the optimal order quantity initially increases and then decreases.

Figure 22: Sensitivity of the optimal order quantity, q, for different layaway and risk-preference
scenarios, with respect to fs

As shown in Figure 5d, we find that when only layaway purchases are made, the retailer’s
profit is negative. However, negative expected profits mean that a retailer will not operate in such
environment. We show that there is a setting in which a retailer will want to only sell using layaway:
in order to obtain a positive expected profit as shown in Figure 23, we set c = 3, s = −1, and
δ = 0.000000000000000000000000001.
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Figure 23: Sensitivity of the expected profit, π, for different layaway and risk-preference scenarios,
with respect to b̄
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