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Abstract

An all-or-nothing transform is an invertible function that maps s inputs to s outputs
such that, in the calculation of the inverse, the absence of only one output makes it im-
possible for an adversary to obtain any information about any single input. In this thesis,
we generalize this structure in several ways motivated by different applications, and for
each generalization, we provide some constructions. For a particular generalization, where
we consider the security of t input blocks in the absence of t output blocks, namely, t-all-
or-nothing transforms, we provide two applications. We also define a closeness measure
and study structures that are close to t-all-or-nothing transforms. Other generalizations
consider the situations where:

i) t covers a range of values and the structure maintains its t-all-or-nothingness property
for all values of t in that range;

ii) the transform provides security for a smaller, yet fixed, number of inputs than the
number of absent outputs;

iii) the missing output blocks are only from a fixed subset of the output blocks; and

iv) the transform generates n outputs so that it can still reconstruct the inputs as long
as s outputs are available.

In the last case, the absence of n − s + t outputs can protect the security of any t
inputs. For each of these transforms, various existence and non-existence results, as well
as bounds and equivalence results are presented. We finish with proposing an application
of generalization (iv) in secure distributed storage.
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Chapter 1

Introduction

1.1 Definitions

All-or-nothing transforms (AONTs) and their applications are the main focus of this thesis.
Hence, it is appropriate to start with a definition of an AONT; however, some terminology
needs to be established first.

Block ciphers are a family of ciphers that operate only on blocks of a fixed length, `.
To use a block cipher on a message M of length m, the message needs to be formatted
into a sequence, called the message sequence, of s blocks of size `, i.e., m1,m2, . . . ,ms. If
m is not a multiple of `, the message will be padded with symbols, to the next multiple of
`. Each of the mi’s, i ∈ {1, . . . , s}, is called a message block. To prevent identical blocks
either in one message or in two different messages being encrypted to identical ciphertext
blocks, a message sequence could be transformed to an intermediate sequence of blocks,
called the pseudo-message sequence, prior to encryption. A pseudo-message consists of s′

pseudo-message blocks of length `′, i.e., m′1,m
′
2, . . . ,m

′
s′ . In this setting, Rivest [38] defines

all-or-nothing transforms as follows.

Definition 1.1.1. [38] A mapping f from message sequences of s blocks to pseudo-message
sequences of s′ blocks, say from m1,m2, . . . ,ms to m′1,m

′
2, . . . ,m

′
s′, is an all-or-nothing

transform if it satisfies the following conditions:

- f is invertible, i.e., f−1 exists and maps the pseudo-message sequence to the message
sequence,

- both f and f−1 are efficiently computable, and

1



- if any of the pseudo-message blocks is missing, computing any function of any message
block is computationally infeasible.

An AONT can be deterministic, i.e., a message sequence is always mapped to the same
pseudo-message sequence, or randomized, i.e., each time the AONT is applied, the message
sequence is randomly mapped to a pseudo-message sequence from a set of pseudo-message
sequences.

Example 1.1.1 presents a variation of the package transform, introduced by Rivest [38],
as an AONT.

Example 1.1.1. Suppose M = (m1,m2, . . . ,ms) is the message, KPT is a random encryp-
tion key, EK(·) is a block cipher with key K, and h(·) is a cryptographic hash function.
For every message block mi, a pseudo-message block m′i, i ∈ {1, 2, . . . , s} is calculated as

m′i = mi ⊕ EKPT
(i).

Then the hash xi of each pseudo-message block is computed:

xi = h(m′i ⊕ i), i ∈ {1, 2, . . . , s}.

After computing the xi values, the last pseudo-message block, m′s+1, is computed by XORing
all s of xi values and the key, KPT :

m′s+1 = KPT ⊕
s⊕
i=1

xi.

It is easy to informally verify the AONT conditions for the package transform:

� Given the first s pseudo-message blocks, it is possible to compute xi’s, and then XOR
all the xi values with the last pseudo-message block to get the key, and finally, use
the key to obtain the message blocks.

� Both the package transform and its inverse are efficiently computable.

� If any of the m′i’s is missing, xi = h(m′i⊕ i) cannot be calculated. Therefore, the key
cannot be extracted, and it is impossible to compute any function of any message
block.

2



After applying the AONT, all the intermediate values, i.e., the pseudo-message blocks,
are encrypted using the original encryption key K. Each block of the ciphertext is the
encryption of a pseudo-message block, i.e., yi = EK(m′i), i ∈ {1, 2, . . . , s + 1}, and
y1, y2, y3, . . . , ys, ys+1 are sent to the receiver.

It should be noted that the unkeyed hash function could be substituted by any one-way
function.

As we previously mentioned, a block cipher can encrypt only plaintexts of a fixed
length, denoted by `. Thus, a message needs to be broken into blocks of length `. A
mode of operation is the method of linking these blocks. In electronic codebook (ECB)
mode of operation, each block is encrypted independent of the other blocks. Hence, all
identical blocks will be encrypted to identical ciphertexts if a deterministic encryption
method is used. This property may be helpful to the adversary if they have observed the
plaintext for some of the ciphertext blocks or if the plaintext has a low diversity of plaintext
blocks. Therefore, encrypting each block individually can be an unsafe practice, and other
modes of operation are used to link the message blocks in order to avoid such issues. The
problem with some modes of operation, e.g., cipher block chaining (CBC) and counter
(CTR) mode, is that decrypting one block of the ciphertext results in access to one block
of the message, which in most cases is undesirable and is considered unwanted information
leakage. AONTs were defined as a mode of operation by Rivest [38], originally in the
computational security setting, i.e., an attacker is assumed to be limited by computational
resources available and is not able to solve some instances of problems in a feasible time
period. At the time of AONTs’ introduction, brute-force attacks were mostly a big issue
when there was a restriction on the key length due to either hardware limitations or US
exporting regulations on cryptographic systems [15]. This constraint made it possible for
an adversary to deploy a brute-force attack to find the encryption key. In other words,
the original purpose of AONT was to provide a strong non-separable mode of operation
such that to learn about “even one message block”, one has to decrypt all the ciphertext
blocks [38]. Rivest defines a strong non-separable mode of operation as the following.

Definition 1.1.2. [38] A mode of encryption that transforms a sequence of message blocks

m1,m2, . . . ,ms

into a sequence of ciphertext blocks

c1, c2, . . . , cs′ ,

for s′ ≥ s, is strongly non-separable if obtaining even one message block requires decrypting

3



all ciphertext blocks.

AONTs are instances of strongly non-separable modes of operation because the third
AONT property is the condition for a mode of operation to be strongly non-separable,
as mentioned above. Such property guarantees the necessity of decrypting all ciphertext
blocks, which slows down brute-force attacks by a factor of the number of blocks.

Rivest [38] also provides various constructions with the AONT property. His work is
followed up in different directions by different researchers [6, 8, 42]. The early instances
of AONT will be discussed in detail along with the early extensions of Rivest’s work on
AONT in Section 1.4.

In addition to a mode of operation, an AONT can be considered as a secret-sharing
scheme, i.e., a scheme that distributes shares of a secret among a group of participants
such that only certain pre-defined subsets of shareholders are able to recover the secret.
Examples of such schemes include Shamir’s secret-sharing scheme [40], which maximizes
security of the secret at the cost of storage efficiency, as well as Rabin’s Information Disper-
sal Algorithm (IDA) [36], which sacrifices security to reduce the storage overhead. These
schemes will be discussed in detail in Section 1.4.

Although some of the original motivations of using AONTs, e.g., government-enforced
short keys, do not hold anymore, AONTs have been used by researchers for different
purposes: anti-jamming techniques, location anonymization, network coding, secure dis-
tributed storage [9,17,35,48,52], to name a few. This wide range of applications motivated
our research on AONTs in different levels, namely, defining AONTs with further proper-
ties, searching for instances of the new generalizations, analyzing their security, and using
them in potential applications.

The focus of this research is solely on unconditionally secure AONTs (in which the
adversary is given unlimited computational power), introduced by Stinson [42]. Hence, it
is necessary to define unconditionally secure AONTs, prior to discussing our contribution
to the topic. We first provide an informal introduction to unconditionally secure AONTs,
and present the formal definition in Section 1.6.

Let Σ be a finite set, let s be a positive integer, and let φ be a mapping from Σs to Σs,
i.e., (y1, y2, . . . , ys) = φ(x1, x2, . . . , xs) for (x1, x2, . . . , xs) ∈ Σs and (y1, y2, . . . , ys) ∈ Σs.
Then φ is an unconditionally secure AONT if it satisfies the following conditions:

1. φ is a bijection.

2. If any s − 1 of the output elements are fixed, then any one input element can take
on all possible values in Σ.
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Table 1.1: An example of an AONT from two input blocks x1 and x2 to two output blocks
y1 and y2.

x1 x2 y1 y2
a a c b
a b b c
a c a a
b a a c
b b c a
b c b b
c a b a
c b a b
c c c c

Note that, Σ can be equal to a finite field Fq, in particular F2` , where ` ≥ 1, in the
binary setting.

Based on this definition, from this point on, we will assume each message has s blocks,
unless it is stated otherwise. In other words, we will assume that the number of input
blocks is equal to the number of output blocks.

Example 1.1.2. The Table 1.1 shows an AONT over the alphabet Σ = {a, b, c} and for
s = 2, in table format. This AONT maps every pair of input elements to a pair of output
elements, and it can be observed that for any fixed value of either y1 or y2, all the symbols
for either x1 or x2 are distributed uniformly.

1.2 Contributions

In this thesis, we study generalizations of unconditionally secure AONTs, in terms of exis-
tence, constructions, bounds, and their security properties, we show how these structures
relate to other schemes, and we discuss the applications of some of these structures in
secure distributed storage, in order to demonstrate the accuracy of the following thesis
statement:

Generalizations of unconditionally secure all-or-nothing transforms and structures close
to them that facilitate more flexible parameters in diverse applications exist.
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1.3 Organization

The rest of this thesis is organized as follows. In the remaining sections of Chapter 1,
background information on early instances, extensions and analysis of AONTs, and the
applications of the AONTs will be discussed. In Chapter 2, we present the results of our
research about theoretical aspects of AONTs. These results consist of the generalization of
unconditionally secure AONTs to t-AONTs, as well as existence conditions and construc-
tions for specific values of t, i.e., t = 2, 3. Chapter 3 covers the study of close to AONT
structures, known as almost AONTs. Next, five more generalizations of AONTs, i.e., range
AONTs, strong AONTs, asymmetric AONTs, restricted AONTs, and rectangular AONTs
are presented in Chapter 4. Finally, Chapter 5 provides a summary of the previous chapters
as well as some open problems for future research.

1.4 Mathematical Background

In this section, we will cover the basic concepts needed for the following chapters. The
section begins with a brief overview of some cryptographic schemes and combinatorial
structures that are used in relation to AONTs in this research: Shamir’s secret shar-
ing scheme, ramp schemes, information dispersal schemes, resilient functions, orthogonal
arrays, split orthogonal arrays, mutually orthogonal Latin squares, transversal designs,
balanced incomplete block designs, and codes. The rest of this chapter will then discuss
some examples of AONTs provided by Rivest [38], the early theoretical studies of AONTs,
and some applications of AONTs.

1.4.1 Cryptography

1.4.1.1 Shamir’s Secret Sharing Scheme

A (t, n)-threshold scheme is a method of breaking a secret into n shares, such that:

1. any t-subset of the shares can be used to recover the secret,

2. any subset of fewer than t shares cannot reveal any information about the secret.

In particular, if any subset of shares, from a threshold scheme, that cannot recover
the secret does not yield any information about the secret, then the threshold scheme is
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perfect [7]. For a perfect threshold scheme, if the set of possible shares and the set of
possible secrets are of the same cardinality, then the threshold scheme is ideal [7].

In this chapter, “secret” is used in a broad context. Based on the capabilities of the
scheme and the application it can be a password, decryption key, a document, a photo, or
any other type of file.

Shamir’s secret sharing scheme (SSSS) [40] is an instance of a such scheme. This
scheme relies on polynomial interpolation and the fact that a polynomial of degree t − 1
over a finite field can be determined by any t distinct points on it, and any fewer number
of points are on the same number of polynomials. The following is the construction of a
(t, n)-secret sharing scheme given by Shamir [40].

Construction 1.4.1. Let σ ∈ Fq be the secret, and let a1, a2, . . . , at−1 be t − 1 random
elements from a finite field Fq, where q ≥ n+ 1. Form a polynomial P(x) as follows:

P(x) = σ +
t−1∑
i=1

aix
i.

Now evaluate P(x) at n distinct non-zero points, x1, x2, . . . , xn, and provide the shareholder
i with share (xi,P(xi)).

To recover the secret, t shares are gathered, and using polynomial interpolation, the
polynomial P(x) is reconstructed and evaluated at x = 0.

1.4.1.2 Rabin’s Information Dispersal Algorithm

Rabin [36] pointed out that Shamir’s secret sharing scheme requires all the shares to be
at least the same length as the secret. This overhead can be negligible for small secrets,
but for larger ones, it imposes a great storage cost on the shareholders. Rabin [36] then
introduced information dispersal algorithm (IDA) as a method of efficiently dispersing a file
(not necessarily a secret) over multiple servers. In this construction, the file is represented
as a vector of length m and with elements from Fq. The message is then divided into blocks
of length s1. To share each block of length s1, it is multiplied to an s1 by s2 matrix C, where
s1 ≤ s2, which is defined over Fq, where any s1 columns of C are linearly independent. To
guarantee this property in the matrix, Rabin [36] used Cauchy matrices. While the given
definition does not provide any level of security, in Chapter 2 we will discuss the security
of Cauchy matrices as an AONT.
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Based on the number of servers and the number of shares needed to reconstruct the
message, the overhead of this scheme can vary, but the ratio of total storage to original
document size remains close to 1 [36].

1.4.1.3 Ramp Schemes

Sometimes it is desired to have two different thresholds: one to protect the confidentiality
of the secret and another to guarantee its availability. For this purpose, an (`, t, n)-ramp
scheme is defined as follows.

Definition 1.4.1. An (`, t, n)-ramp scheme breaks the secret into n shares, such that
availability of u shares leads to:

1. no information regarding the secret, if u ≤ `,

2. complete reconstruction of the secret, if u ≥ t.

Figure 1.1 illustrates these properties. For any ` or fewer columns of the output, fixing
the values on those coordinates does not reveal any information about the inputs; on the
other hand, fixing any t or more of the output columns identifies the input uniquely .

n outputsm inputs

qm+`

rows

≥ t

≤ `

?

X

Figure 1.1: An (n, t, `)-ramp scheme applied on secret of length m
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Jackson and Martin [19] pointed out the fact that Rabin’s IDA can be considered as
a (0, t, n)-ramp scheme, where t is the number of shares needed to recover a secret in the
IDA. Hence, having access to t shares is guaranteed to provide the secret, but there are
no restrictions on the amount of information obtained from less than t blocks. Therefore,
to protect the security of the secret against groups of users with fewer than ` shares, one
can use an (`, t, n)-ramp scheme to distribute the document among the users. In order to
discuss the security of documents with respect to u shares, where u < t, it is useful to
define ideal ramp schemes.

In an (`, t, n)-ramp scheme with shares from Fq, the number of possible secrets can be
at most qt−` [44]. If the number of possible secrets in an (`, t, n)-ramp scheme is equal to
qt−` then the ramp scheme is an ideal ramp scheme [44]. This restriction in the definition
of an ideal ramp-scheme translates to the following behavior of such a scheme. In an ideal
(`, t, n)-ramp scheme, the number of possible secrets given u shares is:

1. qt−` if u ≤ `,

2. qt−u if ` < u < t, and

3. 1, if t ≤ u.

1.4.1.4 Resilient Functions

Resilient functions are another type of cryptographic scheme that we need to introduce in
this section. The properties of resilient functions have mostly been studied in the context of
their relation to some combinatorial structures, for example, codes and orthogonal arrays.
Therefore, we only define them here and leave additional discussion to later sections, after
we learn about orthogonal arrays. Resilient functions were originally defined over a binary
alphabet; however, a generalized definition over an alphabet X of size v is more appropriate
in this thesis.

Definition 1.4.2. Let s and n be positive integers and let X be a finite set of size v ≥ 2. A
function f : X n → X s is an (n, s, t, v)-resilient function ( (n, s, t, v)-RF for short) if fixing
any t of the n input symbols does not reveal any information about the output whenever
the remaining inputs are chosen independently and uniformly at random.
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1.4.2 Combinatorics

1.4.2.1 Orthogonal Arrays

Let A be an N by k array with entries from an alphabet X of size v. We will refer to
A as an (N, k, v)-array. Suppose the columns of A are labeled by the elements in the set
C = {1, . . . , k}. Let D ⊆ C, and define AD to be the array obtained from A by deleting
all the columns c /∈ D. We say that A is unbiased with respect to D if the rows of AD
contain every |D|-tuple of elements of X exactly N/v|D| times.

An orthogonal array, denoted by OAλ(s, k, v), is a (λvs, k, v)-array that is unbiased
with respect to any subset of s columns. Therefore, any subset of s columns contains every
s-tuple over X exactly λ times. Conventionally, the subscript λ is not written if λ = 1.

Example 1.4.1. The array presented below is an orthogonal array OA(2, 3, 2).

a a a
a b b
b a b
b b a

In particular, if X = Fq for a prime power q and the rows of A form a subspace of
(Fq)k, the orthogonal array is a linear orthogonal array [43, p. 225].

Theorem 1.4.2. The existence of an OAλ(s, k, v) implies the existence of an OAvλ(s −
1, k, v).

Proof. For any s − 1 columns in the OAλ(s, k, v), choose an arbitrary column from the
remaining k − s + 1 columns to form a set of s columns. The OAλ(s, k, v) is unbiased
with respect to these s columns, and each s-tuple appears λ times. Thus, for each symbol
in the added column, each (s − 1)-tuple appears λ times in the original s − 1 columns,
so the OAλ(s, k, v) is unbiased with respect to those s − 1 columns. Finally, since each
s-tuple appeared λ times in those s columns and there are v symbols in the alphabet, each
(s− 1)-tuple appears vλ times in the s− 1 columns.

Suppose λ = vr for some integer r. A large set of OAvr(t, n, v) consists of vn−r−t distinct
OAvr(t, n, v)’s, which together contain all vn possible n-tuples exactly once. The following
theorem by Stinson [41, Theorem 2.1] states that a resilient function is equivalent to a
“large set” of orthogonal arrays.
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Theorem 1.4.3. [41] The existence of an (n,m, t, v)-resilient function is equivalent to
the existence of a large set of OAqn−m−t(t, n, v).

Although the original theorem was stated for v = 2, the same argument can be used
for any positive integer value of v.

For s = 1, 2, it is easy to find constructions of orthogonal arrays for different values
of k [13, p. 113]; however, for s ≥ 3, most existing constructions are derived from Reed-
Solomon Codes (See Section 1.4.2.6).

1.4.2.2 Split Orthogonal Arrays

Levenshtein [25] defined split orthogonal arrays (SOAs) as follows. An SOA(t1, t2;n1, n2; v)
is a (vt1+t2 , n1 + n2, v) array, say A, that satisfies the following properties:

1. the columns of A are partitioned into two sets, of sizes n1 and n2, respectively, and

2. A is unbiased with respect to any t1+t2 columns in which t1 columns are chosen from
the first set of columns and t2 columns are chosen from the second set of columns.

Example 1.4.2. The array presented below is an orthogonal array SOA(1, 1; 1, 2; 2).

a a a
a b b
b a b
b b a

1.4.2.3 Mutually Orthogonal Latin Squares

To discuss mutually orthogonal Latin squares (MOLS), we first need to have the definition
of Latin squares and orthogonal Latin squares.

Definition 1.4.3. [43, p. 123] A Latin square of order v over a v-set X is a v × v array
L in which every cell contains an element of X , and each element of X appears exactly
once in each row and each column of L.

Definition 1.4.4. [43, p. 131] Suppose L1 and L2 are two Latin squares of order v with
entries from v-sets X and Y , respectively. L1 and L2 are orthogonal Latin squares if for
every x ∈ X and y ∈ Y, there is a unique cell (i, j) such that L1(i, j) = x and L2(i, j) = y.
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Example 1.4.3. [43, p. 132] Consider the following Latin squares of order 3, L1 and L2.

L1 =
a b c
b c a
c a b

and L2 =
a b c
c a b
b c a

To verify that they are orthogonal, we can construct a table with pairs of symbols as entries
and check that each pair appears exactly once. In each pair, the first symbol is from the
corresponding entry in L1 and the second one is from the corresponding entry in L2.

a, a b, b c, c
b, c c, a a, b
c, b a, c b, a

Definition 1.4.5. [43, p. 136] Suppose L1, L2, . . . , Ls are Latin squares of order v. They
are mutually orthogonal Latin squares if any pair of Latin squares Li and Lj, 1 ≤ i < j ≤
s, are orthogonal.

A set of s mutually orthogonal Latin squares of order v is denoted by sMOLS(v).

Theorem 1.4.4. [43, p. 140] The existence of sMOLS(v) is equivalent to the existence
of an OA(2, s+ 2, v).

Many results, including constructions and existence conditions, on MOLS can be found
in the Handbook of Combinatorial Designs [13] and Combinatorial Designs: Construction
and Analysis [43]. One of these results is MacNeish’s Theorem, stated below.

Theorem 1.4.5. [43] (MacNeish’s Theorem.) Suppose v = pα1
1 p

α2
2 · · · p

α`
` , where the

pi’s are distinct primes and αi ≥ 1 for 1 ≤ i ≤ `. Then there exist sMOLS(v), where

s =
`

min
i=1
{pαi

i − 1}.

From Theorem 1.4.4 and MacNeish’s Theorem, the following corollary can be concluded.

Corollary 1.4.6. Suppose v = pα1
1 p

α2
2 · · · p

α`
` , where the pi’s are distinct primes and αi ≥ 1

for 1 ≤ i ≤ `. Then there exists an OA(2, s, v), where

s =
`

min
i=1
{pαi

i + 1}.
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1.4.2.4 Transversal Designs

In Chapter 2, we will discuss an application which uses a certain type of combinatorial
structure, namely transversal designs. These combinatorial designs are closely related
to orthogonal arrays and mutually orthogonal Latin squares. We will continue with the
definition of transversal designs and then state the relationship between these three types
of designs in a theorem.

Definition 1.4.6. Let k ≥ s ≥ 2 and v ≥ 1. A transversal design s-TD(k, v) is a triple
(X ,G,B) such that the following properties are satisfied:

- X is a set of kv elements called points,

- G is a partition of X into k subsets of size v called design groups,

- B is a set of k-subsets of X called blocks,

- any design group and any block contain exactly one common point, and

- every s-tuple of points from s distinct design groups is contained in exactly one block.

Theorem 1.4.7. [43, 146] Suppose that n ≥ 2 and k ≥ 3. Then the existence of any one
of the following designs implies the existence of the other two designs:

1. k − 2 MOLS(v),

2. an OA(2, k, v),

3. a 2-TD(k, v).

Also, using the same formulation as the one used by Stinson [43], it can be shown that
an s-TD(k, v) is equivalent to an OA(s, k, v).

1.4.2.5 Balanced Incomplete Block Designs

A combinatorial design consists of a set X and one or more collections of its subsets
that satisfy certain “balance” conditions. Balanced incomplete block designs (BIBDs) are
defined as follows.
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Definition 1.4.7. Let v, b, r, k, and λ be positive integers. Consider a set of points, called
X , of size v and a family of b k-subsets of X , called blocks, denoted as B = {Bi : i =
1, 2, . . . , b}. The ordered pair (X ,B) is a balanced incomplete block design (BIBD) if

- each element x ∈ X appears in exactly r blocks:

for all x ∈ X , |{Bi : x ∈ Bi}| = r,

- each pair of distinct elements x1, x2 ∈ X occur together in exactly λ blocks:

for all x1, x2 ∈ X , x1 6= x2, |{Bi : {x1, x2} ⊆ Bi}| = λ.

A design with such parameters is called a (v, b, r, k, λ)-BIBD, or more concisely, a (v, k, λ)-
BIBD, since b and r are determined from the values of v, k, and λ.

Example 1.4.4. Let X = {a, b, c, d, e, f, g} and B = {B1, B2, B3, B4, B5, B6, B7}, such
that B1 = {a, b, c}, B2 = {a, d, e}, B3 = {a, f, g}, B4 = {b, d, g}, B5 = {b, e, f}, B6 =
{c, e, g},and B7 = {c, d, f}. Then (X ,B) is a (7, 7, 3, 3, 1)-BIBD, also known as the Fano
plane. Figure 1.2 depicts a graphical representation of the design, where each black disc on
a line (or circle) represents a point on a block.

Besides explicitly listing the elements of X and B, and the graphical representation, a
BIBD can be represented using an incidence matrix.

d

c
e

g

a

b f

Figure 1.2: Fano plane
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Definition 1.4.8. The incidence matrix M = {mij} of a (v, k, λ)-BIBD is a v× b matrix,
where each entry mij is defined as follows:

mij =

{
1 if xi ∈ Bj

0 if xi /∈ Bj.

If M is the incidence matrix of a (v, b, r, k, λ)-BIBD, then there are exactly k 1’s in
each column of M and exactly r 1’s in each row of M . Also, for each pair of rows ri and
rj, i 6= j in M , ri · rj = λ, where “ri · rj” denotes the inner product of ri and rj.

Example 1.4.5. Let x1 = a, x2 = b, · · · , x7 = g. Then the following matrix M is the
incidence matrix of the Fano plane in Example 1.4.4.

M =



1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 0 1
0 1 0 0 1 1 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1


As mentioned above, each row of M has three 1’s and there are three 1’s in each column
of M . Also, for each distinct pair of rows, their inner product is equal to 1.

The following lemma can be proven by counting the number of 1’s in the incidence
matrix of a (v, b, r, k, λ)-BIBD: once by counting the 1’s in all the rows and again by
counting the 1’s in the columns.

Lemma 1.4.8. In a (v, b, r, k, λ)-BIBD, the following equation holds:

vr = bk.

Note that a point forms λ pairs with each of the other v − 1 points. This number can
also be calculated by counting the number of pairs it forms in each of the k blocks where
it appears. Therefore, we have the following.

Lemma 1.4.9. In a (v, b, r, k, λ)-BIBD, the following equation holds:

(v − 1)λ = r(k − 1).
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Definition 1.4.9. A (v, k, λ)-BIBD is a symmetric balanced incomplete block design
(SBIBD) if v = b.

Example 1.4.6. In a Fano plane, we have v = b = 7, and therefore it is a (7, 3, 1)-SBIBD.

Remark 1.4.1. An SBIBD does not necessarily have a symmetric incidence matrix. Also,
from Lemma 1.4.8, it can be concluded that r = k in an SBIBD.

Theorem 1.4.10. Let M be the incidence matrix of a (v, k, λ)-SBIBD. Then, its comple-
ment, M c, is the incidence matrix of a (v, v − k, v − 2k + λ)-SBIBD.

For more instances and properties of BIBDs, see the Handbook of Combinatorial De-
signs [13] and Combinatorial Designs: Constructions and Analysis [43].

1.4.2.6 Coding Theory

Suppose Vq(n) is the set of all n-tuples over an alphabet of size q, say Σ. Then an [n,M ]
q-ary code is an M -subset of Vq(n). Any n-tuple in Vq(n) is a word, and any word that is
a member of the code is a codeword.

Definition 1.4.10. The Hamming distance of any two words is the number of coordinates
in which they differ.

In this thesis, distance between two codewords will refer to their Hamming distance,
unless stated otherwise.

Example 1.4.7. Consider the following words over V2(7):

a = (0000000),b = (1000111), c = (1010101),d = (0010010).

The distances between these words are:

d(a, a) = 0, d(a,b) = 4, d(a, c) = 4, d(a,d) = 2, d(b,b) = 0,

d(b, c) = 2, d(b,d) = 4, d(c, c) = 0, d(c,d) = 4, d(d,d) = 0.

Definition 1.4.11. The distance of a code is the minimum distance between any distinct
pair of codewords, and it is denoted by d.

Example 1.4.8. Consider the [7, 4] code with codewords as given in Example 1.4.7. The
distance of this code is 2, as the minimum distance between any two distinct codewords is
2, e.g., between b and c.
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Definition 1.4.12. For positive integers n and k with n ≥ k, and a prime power q, a code
C is a linear (n, k) code over Fq if it forms a k-dimensional subspace of Vq(n). Hence, C
contains qk codewords and for each two codewords u,v ∈ C their sum u + v ∈ C, where the
operations are done in Fq.

Definition 1.4.13. A generator matrix of an (n, k) linear code C is a matrix of n columns
and k linearly independent rows which form a basis of C, i.e., any linear combination of
rows of M is a codeword in C and any codeword in C is a linear combination of rows of M .

Example 1.4.9. Let

M =

(
1 0 0 0 1 1 1
1 0 1 0 1 0 1

)
.

M is a generator matrix for the linear code from Example 1.4.7. However, M is not the
only generator matrix for that code. For example the matrix below is another matrix that
generates the same code: (

1 0 0 0 1 1 1
0 0 1 0 0 1 0

)
.

If the probability of error or erasure is independent of a symbol’s location in a codeword,
a rearrangement of coordinates in the codewords does not change the properties of a
code. Two codes are equivalent if the codewords of one code can be obtained through
permutations of the coordinates of the other one.

In most cases, a linear (n, k) code can have different generator matrices, which generate
the same code. For each linear code, C, there is at least one code in the equivalence class
of C that has a generator matrix of the form [Ik | A(n−k)×k]. It is standard for a code
to be represented by a generator matrix of the form [Ik | A(n−k)×k] that generates either
the same code or an equivalent code. At the receiver’s end, because of the noise from
the environment the received words might not be equal to the transmitted codewords. To
detect and possibly correct the errors, linear codes use the parity check matrix, denoted
by H. The parity check matrix of an (n, k) linear code over Fq is an (n − k) × n matrix,
with entries from Fq, such that

GHT = 0k×(n−k)

and
HGT = 0(n−k)×k.

Any linear (n, k) q-ary code, C, has a dual code that is a linear (n, n − k) q-ary code
denoted by C⊥, and its codewords are the linear combinations of rows of H, the parity
check matrix of C. In other words, H generates C⊥ and G is the parity check matrix of C⊥.
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The following theorem shows how orthogonal arrays are related to linear codes and their
dual codes.

Theorem 1.4.11. [43, p. 231] C is a linear (n, k) q-ary code of distance d if and only if
C⊥ is an OAqn−k−d+1(d− 1, n, q).

In a linear code over Fq, the following inequality, known as the Singleton bound [47],
holds:

d ≤ n− k + 1.

If d = n− k+ 1, then the code is called a maximum distance separable (MDS) code. With
respect to an (n, k) code, C, with distance d the following statements are equivalent [27,
p. 319]:

1. C is an MDS code.

2. any k columns of the generator matrix of C are linearly independent.

3. any n− k columns of the parity check matrix of C are linearly independent.

Also, the equivalence of (n, k) MDS codes and linear OA(n, k, q)’s has been proved [27,
p. 329]. In an MDS code, even if up to n− k symbols of a codeword are lost, the message
can be still retrieved. The codes with the property that a message can be recovered despite
the absence of some symbols have been studied under the name of erasure codes [47]. While
error correcting codes can detect and correct up to bd−1

2
c errors at unknown coordinates,

erasure codes can recover more lost symbols utilizing the fact that the coordinates of
the lost symbols are known. This capability of erasure codes can be used in distributed
storage systems, where some of the servers, and consequently some symbols, may not be
available, yet the message (in this case, the file) should be recoverable. Reed-Solomon
codes are examples of erasure codes. The remainder of this section will briefly introduce
Reed-Solomon codes.

Reed-Solomon codes are used in various applications, such as digital audio record-
ing, digital communication, and distributed storage [37, 47]. McEliece and Sarwate [28]
demonstrated that a Shamir secret sharing scheme (mentioned in Section 1.4.1.1) can be
formulated as a special case of Reed-Solomon codes. To create a Reed-Solomon code of
length n and distance d, an element β of order n of a Galois field Fq is used to construct
a generator polynomial g(x) as follows:

g(x) =
d−1∏
i=1

(x− βi+a)
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for some non-zero integer a. The k = n − d + 1 cyclic shifts of the coefficients of the
polynomial g(x) can be used to create the generator matrix G of the code. A Reed-Solomon
code can also be constructed using polynomials up to a certain degree over a finite field, Fq,
where each codeword is constructed by evaluating a polynomial at n given field elements.
This is basically the approach that was used in Construction 1.4.1 to construct a Shamir
secret sharing scheme.

1.5 AONT Examples

As mentioned previously, Rivest [38] defined an AONT as a reversible transformation, from
a set of message blocks to a set of pseudo-message blocks, such that both the transform
and its inverse are “efficiently computable”, while obtaining any information about any
message block without the knowledge of all pseudo-message blocks is “computationally in-
feasible”. AONTs were originally desirable as a strongly non-separable mode of operation,
i.e., obtaining one block of plaintext is possible only if all ciphertext blocks are decrypted.
In the same work [38], “package transform”, “secret sharing schemes”, “Bear and Lion
schemes”, and an “FFT-like scheme” are presented as instances of an AONT. We already
explained the package transform in Example 1.1.1. Here we will briefly review secret
sharing, Bear, and Lion schemes and their AONT properties in the following subsections.
Finally, the error-propagation property of AONT is discussed and use of error-correcting
codes after applying the AONT and before the encryption of the output blocks is suggested
as a possible solution. Alternatively, the error-propagation property can be utilized with
a redundancy block of random data to detect corrupted ciphertext.

1.5.1 Secret Sharing Scheme

Rivest [38] cites Krawczyk’s work on secret sharing [23] as an instance of AONT. In his
scheme [23], Krawczyk combines Shamir’s secret sharing scheme [40] and Rabin’s informa-
tion dispersal scheme [36], i.e., first encrypting the data using a keyed encryption scheme,
and then sharing the encryption key using the former scheme and the encrypted data using
the latter scheme. The thresholds for the schemes can be set so that, without having all key
shares, it is impossible to reconstruct the key to decrypt the encrypted data. Therefore,
all participants need to contribute their key-shares and secret-shares.

Generally, if the threshold of a secret sharing scheme is equal to the number of shares,
i.e., the number of participants, then the scheme satisfies the AONT conditions established
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by Rivest [38]. For example, one needs all the shares of an (n, n)-Shamir secret sharing
scheme to reconstruct the secret: without having even one output block (a share), it is
impossible to obtain any information about the only input block (the secret); however,
the total storage cost is n times the cost of storing the secret. However, usually due to
the stronger conditions that the secret sharing schemes need to satisfy, they might not be
efficient. For instance, Shamir secret sharing requires all shares to be of the same length
as the secret.

1.5.2 Bear and Lion Schemes

Inspired by Luby and Rackoff’s three round Feistel structure [26], Anderson and Biham [2]
introduced BEAR and LION block ciphers. The BEAR scheme divides the message M of
length m into two parts, namely L and R, such that |L| = ` and |R| = m − `. Suppose
S : {0, 1}` → {0, 1}∗ is a stream cipher, i.e., a pseudo-random function which can generate
outputs of arbitrary length, and H : {0, 1}m−` × {0, 1}b → {0, 1}` is a keyed collision-free
cryptographic hash function, where b is the length of the key. The process of encrypting
each part is depicted in Figure 1.3. First, R is hashed using key K2 and the result is
XORed, depicted by ⊕, with L. Then, the outcome of the XOR operation is encrypted
using S and the encrypted value is XORed with R to compute the value R′. R′ is then
hashed using key K2 and the result is XORed with the XOR of L and the hashed value of
R from the first hash computation, and the result is L′.

To decrypt the ciphertext, one needs to start from the bottom and follow the steps back
to L and R. Regarding the AONT property of BEAR, it is clear that calculating either of
L or R requires availability of both L′ and R′.

The authors [2] then proved the security of the scheme against an adversary who has
access to one (plaintext, ciphertext) pair. They proved that if an oracle can find the key
of BEAR, using a plaintext-ciphertext pair, it can be used to efficiently and with high
probability find the seed of the stream cipher S, as well as preimages and collisions for the
hash function H. However, the scheme is not secure against an attacker who has aquired
many instances of (plaintext, ciphertext) pairs.

In contrast to BEAR, LION, presented in Figure 1.4, does not require a keyed hash
function, while providing the same level of security [2], so the hash functionH : {0, 1}m−` →
{0, 1}` is used, and |K1| = |K2| = `.

Finally, Anderson and Biham [2] introduce a four-round scheme, LIONESS, presented
in Figure 1.4, that is secure against an adaptive combined chosen plaintext and ciphertext

20



HK1

S

HK2

L R

⊕

⊕

⊕

L′ R′

Figure 1.3: BEAR scheme

attack, to which BEAR and LION are susceptible; however, the authors do not provide
any security proof.

1.6 Extended AONTs

The early theoretical work on AONTs was done by Stinson [42], Boyko [6], Canetti et
al. [8], and Dodis et al. [16]. In the remainder of this section, we will discuss these studies
in an increasing order of their relevance to this thesis.

To continue Rivest’s work [38] in computational security and random oracle model
(ROM), Boyko [6] defined semantic security and indistinguishability for AONT. The author
also showed that optimal asymmetric encryption padding (OAEP), originally introduced
by Bellare and Rogaway [5], satisfies the AONT properties. Boyko concluded by proving
that OAEP provides close to optimal security in ROM.

In another work branching from the original AONT definition, Canetti et al. [8] studied
AONTs to find a solution for the “partial key exposure” problem. This application will
be discussed in Section 1.7. The authors define an `-AONT as a randomized transform
T , computable in polynomial time, that maps an m-bit string to an s-bit string, where
s = sc + sp, the first sc bits are kept secret and the other sp bits are public, and T satisfies
the following conditions:
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1. The inverse of T is also computable in polynomial time.

2. If an adversary is given all but any ` bits of the secret bits of the output along with
all of the public portion, then the input is completely undetermined.

To construct such transforms, the authors use exposure-resilient functions (ERFs). An `-
ERF is a function computable in polynomial time that maps s bit inputs to m bit outputs,
such that its output is indistinguishable from random, as long as the adversary does not
have access to at least ` bits of the input. This definition of AONT was further studied
and developed by Dodis et al. [16], where the authors considered the adaptive security of
the aforementioned primitives: AONT and ERF.

Stinson [42] extended the definition of AONT and introduced unconditionally secure
AONTs. This thesis generalizes AONTs presented in that work [42] and in the uncondi-
tional security setting. Therefore, in the following chapters, by AONT we mean an uncon-
ditionally secure AONT, unless otherwise noted, and we will use the following definition of
an AONT due to Stinson [42], which defines AONTs using the entropy function H. For a
random variable X with possible outcomes σi, i ∈ {1, 2, . . . , n}, H(X) = −

∑n
i=1 Pσi logPσi ,

where Pσi is the probability of the random variable X taking on the value σi. Let
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X1, X2, . . . , Xs, Y1, Y2, . . . , Ys be 2s random variables with values from a finite set Σ. Then
X1, X2, . . . , Xs, Y1, Y2, . . . , Ys form an AONT if they satisfy the following conditions:

1. H(X1, X2, . . . , Xs | Y1, Y2, . . . , Ys) = 0,

2. H(Y1, Y2, . . . , Ys | X1, X2, . . . , Xs) = 0,

3. H(Xi | Y1, Y2, . . . , Yj−1, Yj+1, . . . , Ys) = H(Xi), for all i, j ∈ {1, 2, . . . , s}.

Remark 1.6.1. We note that the security achieved by the AONT depends on the probability
distribution defined on the input s-tuples. This will discussed in detail in Section 2.1 in a
more general setting.

Stinson [42] then defines a linear (s, q)-AONT over a finite field Fq to be an AONT,
where each of the s output elements is an Fq-linear combination of the s input elements.
Stinson [42] shows that the transform is given by y = xM−1, where M is an s by s matrix
with entries from Fq that only consists of non-zero elements, and x and y are row vectors
of length s. Then the inverses of s × s Hadamard matrices modulo p are introduced as
instances of linear (s, p)-AONTs, where p > 2 is prime and s is a multiple of 4. Also,
a construction for linear (s, q)-AONTs is given for prime powers q > 2, and any positive
integer s. Stinson [42] then proves the non-existence of linear (s, 2)-AONTs for s ≥ 2, and
presents J − I as the closest approximation to a linear AONT for even values of s (I is the
identity matrix, and J is the matrix with all entries equal to 1). The study of structures
close to AONT was continued in later work [14,31] and will be discussed further in Chapter
3. Finally, the equivalence between AONT and certain families of arrays and orthogonal
arrays is proven, and some existence results are provided.

We finish this section with an example of an unconditionally secure linear AONT.

Example 1.6.1. The matrix M−1 below is a (4, 3)-AONT. Checking the inverse matrix,
it can be verified that M does not have any singular 1 × 1 submatrices, i.e., zero entries.
Therefore, as proven by Stinson [42], fixing any 3(= s− 1) output elements does not yield
any information about any one input element.

M−1 =


1 2 2 2
2 1 0 0
2 0 1 0
2 0 0 1

 , M =


1 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 .
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1.7 Applications

Besides the theoretical study of AONTs, the all-or-nothing property of these structures
has been employed in various setups and to achieve different goals. In this section, we will
briefly review some of these applications of AONTs in different categories. This review
serves as a motivation for the work being presented in the following chapters, but it is not
a prerequisite for those chapters, nor it is a comprehensive survey on the applications of
AONTs.

1.7.1 Access Control

In remote storage systems, it is common for more than one user to have access to the
content; however, there is only one data provider. Suppose that the set of users who
require access to the data is dynamic, where some users will lose their access privileges,
while new users can join the group as well. In this setting, revoking a user’s access to older
and newer versions of the documents is a concern. To achieve this goal, Bacis et al. [3],
Chen et al. [11], Cheng et al. [12], and Wu et al. [51] have used AONTs in their schemes.

Chen et al. [11] present a hierarchical key assignment scheme, CloudHKA, for cloud
storage that provides a security model with different access levels and read operations for
the users and various access management controls for the data provider, including access
revocation. In particular, Chen et al. [11] utilize the AONT as a mode of operation. In their
model, the blocks of data, i.e., input elements, are preprocessed using an AONT prior to
being encrypted using a key that is derived from the access level keys. This preprocessing
solely helps to defend against the attacks on the encryption scheme, which is the same
purpose that Rivest [38] originally proposed AONTs.

Cheng et al. [12] and Bacis et al. [3] utilize the all-or-nothing property to reduce the
cost of revoking a user’s access to the data. Their schemes first apply an AONT on the
data so that all the blocks are interdependent. Then they encrypt the output blocks. To
revoke a user’s access to the data, they need to re-encrypt only one output block using
a new encryption key that is unknown to the user whose access is being revoked. The
interdependency between the blocks requires the data provider to recalculate all the blocks
after each revocation. To reduce this cost, Bacis et al. [3] introduce a hierarchical structures
on the blocks, and apply the AONT on groups of blocks, namely macro blocks.

In a slightly different setting, Wu et al. [51] proposed an access control scheme for
named data networking (NDN), a content-oriented architecture. The main components of
the scheme are AONTs and network coding. Each file on the network is segmented into
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shares stored on different nodes. To gain access to a file, a node receives the segments from
the nodes storing those segments and recovers the file. The proposed scheme applies an
AONT on the segments so that a user requires all the output blocks to learn about a file.
To restrict access to a file, the owner of the file should encrypt one output block and also
keeps the used AONT a secret. The encryption key and the AONTs are then provided to
the authorized users.

1.7.2 Secure Data Transfer

Guo et al. [17] studied the application of AONTs in providing security for wireless networks.
In particular, they suggested the use of linear AONTs for defending against wiretapping
attacks and detecting Byzantine attacks, i.e., passively wiretapping the network and alter-
ing the messages on the network, respectively. They applied AONTs on encrypted blocks
to defend against the attacks utilizing linearity of the AONTs. In their model, the source
node sends each output block to a neighboring node. Each node other than the source and
the sink forwards the sum of the blocks it has received. If all the nodes follow the protocol
honestly and the adversary can only control one communication line, then the AONT and
the encryption defend the network against wiretapping attacks and the error propagation
property of AONTs helps the receiver detect modifications to the blocks.

In a more recent work, Pham et al. [33] utilized unconditionally secure AONTs to share
the security of an unconditionally secure channel that uses optical encryption with a regular
channel that guarantees security in computational setting. In their model, they apply an
AONT on the message and then send one output block through the unconditionally secure
channel and the rest of it through the other channel. Even if an adversary learns about all
the output blocks sent over the regular channel, since they do not have access to the output
block that is sent via the unconditionally secure channel, they do not learn anything about
any of the message blocks. Although the authors analyze their scheme with an optical
encryption scheme as the unconditionally secure channel, their scheme can utilize any
unconditionally secure encryption method, such as one-time pad, and provide the same
level of security.

1.7.3 Secure Distributed Storage

With the advent of cloud computing/storage and popularity of outsourcing storage, the
security of the remotely stored data has become a concern. Hence, experts with different
backgrounds and research fields have studied a myriad of approaches and techniques to
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address various aspects of this concern. Many of the schemes designed for secure distributed
storage are based on earlier definitions of AONT. These schemes use AONTs as a pre-
processing step followed by a coding algorithm that encodes the output of the AONT to
shares, which will be distributed among servers.

Resch and Plank in [37] used AONT-RS, a combination of Reed-Solomon codes and
package transforms, to securely disperse a document over different servers. First, the
AONT is applied to the document, so that all of the k output blocks are needed to re-
construct the document. Then an erasure code, namely, a Reed-Solomon code, is used to
encode those k blocks into n blocks such that any k of these blocks will reconstruct the
output blocks of the AONT. Erasure codes help recovering the original message, even if
parts of the encoded data are lost. Subsequently, Chen et al. [10] introduced two adversar-
ial games and proved the computational security and privacy of AONT-RS in the random
oracle model.

Based on AONT-RS, Baldi et al. [4] developed AONT-LT. Their objective was to make
it possible to have different sizes of blocks, and more storage devices. To achieve this they
used a type of fountain code, namely, Luby transforms, in conjunction with a package
transform, as AONT. Fountain codes are a family of codes that encode data into a very
large number of codewords; for decoding, a receiver will collect codewords until the collected
codewords are sufficient to recover the message. Fountain codes can be considered to be a
type of erasure code because a lost codeword will not be collected by the receiver, but the
receiver will eventually collect enough codewords to decode the message.

In an extension of Stinson’s unconditionally secure AONTs, Karame et al. [21] intro-
duced bastion AONTs. Bastion AONT can be presented as an s×s matrix J−I, where J is
an all-one square matrix and I is the identity matrix, to hide information about any block
in the absence of any two blocks. This construction can be implemented only by XORs, so
it is fast and efficient. Suppose X = (x1, x2, . . . , xs) is the input, and Y = (y1, y2, . . . , ys) is
the output. Based on the XOR formulation of this construction by Stinson [42] the bastion
AONT can be computed as follows:

t =
s⊕
i=1

xi

yi = t⊕ xi
Karame et al. [21] then used this construction to distribute encrypted blocks on multiple
servers to prevent an adversary who has access to the long term key from obtaining infor-
mation regarding the encrypted data, as long as there are at least two servers to which the

26



adversary does not have access.

Based on the bastion AONTs, Kapusta and Memmi [20] devised the selective-AONT
scheme to store data confidentially on a remote server and a personal device. This scheme
keeps a small part of the data on the personal device, and the rest of the data is stored
on the remote server. This approach is interesting in that it uses the minimal number of
remote servers. Selective-AONT uses a combination of CBC mode of encryption, a block
cipher, and bastion AONT. The blocks of data are divided into private and public shares
and encrypted and interlinked using CBC mode of operation. Then the bastion AONT is
applied on the private shares and a portion of the public private shares.

In a more relevant work, Oliveira et al. [32] study the use of super-regular matrices1 in
information dispersal with regard to “fault-tolerance”, “recovery efficiency”, and computa-
tional complexity of recovery. Their constructions are equivalent to t-AONT [32], as they
use k × n matrices of rank k, where k < n, such that for any t < k, all t × t submatrices
of the original matrices are invertible.

1.7.4 Anti-jamming Techniques

In wireless networks, since the signals are transmitted through the air and the space around
us, it is usually infeasible to restrict adversaries’ access to the medium. Although cryp-
tographic tools can be used to achieve confidentiality, integrity, and authenticity, these
networks are susceptible to jamming attacks, through impacting the signals received by
the receiver by generating stronger signals or noises on the communication channel used
between the sender and receiver. Since the adversary requires a stronger signal to over-
shadow the sender’s signal, it is in the adversary’s interest to jam the minimum number of
packets possible that are required to prevent meaningful reconstruction of the packets at
the receiver’s end. Such attacks are known as selective jamming attacks.

Proaño and Lazos [34,35] introduced and developed AONT-based packet-hiding schemes
to protect the communication on a wireless network against an internal active attacker who
tries to selectively jam the network. In a related work, Lazos and Krunz [24] studied this
problem in a wireless mesh network setting. The proposed schemes apply an AONT on
the packets so that the adversary cannot identify and target certain packets in real time.
To selectively jam a packet, the attacker needs to collect all the sent packets, reconstruct
the original packets, and then decide whether or not to jam the signal for that packet;
however, the receiver has received the message if the adversary has not attacked the packet

1A matrix is super-regular if all its square submatrices are invertible.
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already. These schemes [24, 34, 35] consider the adversary to be incapable of jamming all
the packets due to insufficient power. However, the system as proposed is susceptible to
jamming attacks because the adversary needs to jam only one block out of each message
and the error-propagation property of AONTs, as mentioned by Rivest [38], will amplify
the attack to all blocks. If we assume that the adversary is reluctant to jam the whole
network, for example, to keep the attack undetected, then this model might be useful.

1.7.5 Defending Against Partial Key Exposure

For a cryptosystem, it is usual to study its security under the assumption that the keys
are completely unknown to the adversary, and whenever the adversary learns about the
key, it is considered to be full knowledge, thus, the system is compromised. In real-life
however, it is possible for an adversary to obtain partial knowledge of the key. Suppose an
adversary knows t bits of the encryption key. This knowledge might help the adversary to
decrypt the message or to obtain information about the corresponding plaintext, without
full knowledge of the key. It is undeniable that the partial knowledge of the key reduces
the key space, however, our concern here is shortcuts that do not involve key exhaustion
techniques and partial information regarding the plaintext.

Canetti et al. [8] studied the case where it is possible for an adversary to learn a portion
of the key. To protect the system against an adversary with partial knowledge of the secret
key, the authors propose the use of an AONT on the key. In their model, even if the
adversary knows up to t bits of the key, since a t-AONT is applied on the key, then the
adversary cannot learn anything about any bit of the derived key that is used for the
encryption. The only advantage the attacker has gained is that if they decide to conduct
an exhaustive search on the key domain, they know those fixed t bits, but they still need to
apply AONT on every single guess, and then try to decrypt the message using the derived
key.
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Chapter 2

t-AONTs

Generalizations of all-or-nothing transforms (AONTs) are desirable from two different as-
pects: theoretical, where generalizations open doors to new problems and present us with
better understanding of these structures; and applications, where they provide us with
more options and flexibility with the parameters. Based on Stinson’s [42] definition of
unconditionally secure AONTs and the definition of 2-AONTs from a collaboration with
Paolo D’Arco and Doug Stinson [14], Ian Goldberg and Doug Stinson and I [29] studied a
generalization of AONTs. This chapter mostly reports results from that work. This gen-
eralization of AONTs considers the security of t input elements in the absence of t output
elements, for t ≥ 1. The second part of this chapter focuses on results for t = 2. At the
end, two applications of t-AONTs are presented.

2.1 From 1 to t

As mentioned above, the first generalization of all-or-nothing-transforms presented in this
thesis concerns the size of input-element sets about which the adversary should not be able
to learn any information. We define a (t, s, v)-AONT to be a bijection from s input elements
to s output elements, such that in the absence of any t output elements, no information
can be obtained about any t input elements. Based on two different interpretations of this
definition, we define (t, s, v)-AONTs with perfect security and with weak security.

In general, we will assume that every input s-tuple occurs with a non-zero probability,
and since an AONT is a bijection, every output s-tuple occurs with a non-zero probability.
In the stronger security interpretation the probability that t inputs take on any t specified
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values, given the values of any s − t outputs, is the same as the a priori probability that
they take on the same values. In weak security any t inputs can take on any possible values
with a non-zero probability, given the values of any s− t outputs. More formally, we have
the following definitions.

Definition 2.1.1. Let
X1, . . . ,Xs,Y1, . . . ,Ys

be random variables taking on values in the finite set Σ of size v. These 2s random variables
define a (t, s, v)-AONT provided that the following conditions are satisfied:

1. H(Y1, . . . ,Ys | X1, . . . ,Xs) = 0.

2. H(X1, . . . ,Xs | Y1, . . . ,Ys) = 0.

3. For all X ⊆ {X1, . . . ,Xs} with |X | = t, and for all Y ⊆ {Y1, . . . ,Ys} with |Y| = t,
it holds that

H(X | {Y1, . . . ,Ys} \ Y) = H(X ). (2.1)

Condition 2.1 of Definition 2.1.1 can be satisfied if the input s-tuples occur with uniform
probability.on the set of all possible input s-tuples. Theorem 2.2.2 will prove this property.

The parameters t, s, and v are called the strength, size, and alphabet size of the AONT,
respectively.

Definition 2.1.2. Let
X1, . . . ,Xs,Y1, . . . ,Ys

be random variables taking on values in the finite set Σ of size v. These 2s random variables
define a weakly secure (t, s, v)-AONT provided that the following conditions are satisfied:

1. H(Y1, . . . ,Ys | X1, . . . ,Xs) = 0.

2. H(X1, . . . ,Xs | Y1, . . . ,Ys) = 0.

3. Given the values of any s− t outputs, any t inputs take on any possible values with
a non-zero probability.

Figure 2.1 illustrates the AONT property. Let all the vs possible inputs be listed on
the left half of the array, and the output corresponding to each input is listed in the right
half of the same row. In this setting, fixing any s − t coordinates of an output does not
yield any information, in the sense of weak security, about any t input coordinates.
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Figure 2.1: (t, s, v)-AONT: in array format

Example 2.1.1 presents a (2, 3, 3)-AONT and demonstrates how missing any pairs (from
y1, y2, and y3) of its output elements does not yield any information, in the sense of weak
security, about any pairs (from x1, x2, and x3) of its input elements.

Example 2.1.1. The Table 2.1 presents a (2, 3, 3)-AONT, over the alphabet {a, b, c}, by
listing the outputs y1, y2, and y3 for all possible values of input elements x1, x2, and x3.
Suppose an adversary learns that y2 = a. This knowledge allows them to exclude 18 possible
inputs, e.g., (a, a, b), (a, a, c), and (a, b, c); however, all combinations of values for any pair
of input elements are still possible. For example, all of the 9 possible values for the pair
(x2, x3) are highlighted in the table, and it can be verified that each combination of values
for that pair occurs exactly once.

Figure 2.2 depicts the behavior of a t-AONT. The area hatched in blue presents the
number of protected input blocks are protected upon the availability of that many output
blocks to the adversary.

As Stinson [42] and D’Arco et al. [14] mentioned, linear AONTs are desirable due to
their simplicity and efficiency; however, the study of general AONTs is still interesting
and useful, and some of the results apply to linear AONTs too. Therefore, we continue
with results on general AONTs, in Section 2.2, followed by the definition and properties of
linear AONTs in Section 2.3.
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Table 2.1: A (2, 3, 3)-AONT over the alphabet {a, b, c}

x1 x2 x3 y1 y2 y3
a a a a a a
a a b c c b
a a c b b c
a b a c b c
a b b b a a
a b c a c b
a c a b c b
a c b a b c
a c c c a a
b a a b c c
b a b a b a
b a c c a b
b b a a a b
b b b c c c
b b c b b a
b c a c b a
b c b b a b
b c c a c c
c a a c b b
c a b b a c
c a c a c c
c b a b c a
c b b a b b
c b c c a c
c c a a a c
c c b c c a
c c c b b b
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Figure 2.2: The behavior of a (t, s, v)-AONT for different numbers of available output
blocks.

2.2 Results on General AONTs

In this section, we present results on the relationships between “general” AONTs, that is
linear and non-linear AONTs, and three types of combinatorial structures: unbiased arrays,
orthogonal arrays (OAs), and resilient functions (RFs). See Section 1.4 for definitions.
Knowing these relations allows us to apply currently known properties of one structure to
the other related structures.

We start with a result that characterizes (t, s, v)-AONT in terms of unbiased arrays.

Theorem 2.2.1. A weakly secure (t, s, v)-AONT is equivalent to a (vs, 2s, v)-array that is
unbiased with respect to the following subsets of columns:

1. {1, . . . , s},

2. {s+ 1, . . . , 2s}, and

3. I ∪ {s+ 1, . . . , 2s} \ J , for all I ⊆ {1, . . . , s} with |I| = t and all J ⊆ {s+ 1, . . . , 2s}
with |J | = t.

Proof. Let A be the hypothesized (vs, 2s, v)-array on alphabet X , |X | = v. We construct
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φ : X s → X s as follows: for each row (x1, . . . , x2s) of A, define

φ(x1, . . . , xs) = (xs+1, . . . , x2s).

Being unbiased with respect to the first two subsets of columns indicates that φ is a
bijection, and being unbiased with respect to the third subset of columns is equivalent to
Condition (3) of Definition 2.1.2. Hence, the function φ is a weakly secure (t, s, v)-AONT.

Conversely, suppose φ is a weakly secure (t, s, v)-AONT. Let A be the array presenta-
tion of the AONT as depicted in Figure 2.1. The array’s rows consist of all vs 2s-tuples
(x1, . . . , x2s), where φ(x1, . . . , xs) = (xs+1, . . . , x2s). Then A is the desired (vs, 2s, v)-
array.

Theorem 2.2.2. If all input s-tuples are equally probable, then the unbiased array is a
perfectly secure AONT.

Proof. We prove this theorem by showing that values of any t inputs are independent of
any (s − t) outputs. Consider any arbitrary sub-list of t inputs, A, and any sub-list of
(s− t) outputs, B. Since there are vs rows, given any input t-tuple, σi = (σi1 , σi2 , . . . , σit),
there are vs−t rows where A = σi. Since all the vs rows are equiprobable, the probability
of any specified input t-tuple can be calculated as follows:

Pr[A = σi] =
vs−t

vs
= v−t.

Similarly, given any output (s − t)-tuple, σj = (σj1 , σj2 , . . . , σjs−t), there are vt rows with
B = σj, so the probability of any specified output (s− t)-tuple is

Pr[B = σj] =
vt

vs
= vt−s.

We also know that any input t-tuple and output (s− t)-tuple only appears together in one
row. Therefore,

Pr[A = σi ∧B = σj] =
1

vs
= v−s.

Hence, for any given input t-tuple and any given output (s− t)-tuple,

Pr[A = σi]Pr[B = σj] = v−tvs−t = v−s = Pr[A = σi ∧B = σj].

Therefore, any specified t inputs and any specified s− t outputs are independent, which is
what we intended to prove.
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In the rest of the thesis, the term (t, s, v)-AONT will be used in reference to an unbiased
array. Hence, it automatically provides weak security when every input s-tuple occurs with
positive probability, and if all the input s-tuples are equiprobable, then the array provides
perfect(or strong) security.

Theorem 2.2.1 immediately implies the following corollary by Wang et al. [50].

Corollary 2.2.3. A mapping φ : X s → X s is a (t, s, v)-AONT if and only if φ−1 is an
(s− t, s, v)-AONT.

Proof. Interchange the first s columns with the last s columns in the array representation
of the AONT.

An OA(s, 2s, v) is an array that is unbiased with respect to the three groups of column-
sets that were listed in Theorem 2.2.1, as well as many other groups. Therefore, the
following corollary immediately follows from Theorem 2.2.1.

Corollary 2.2.4. If there exists an OA(s, 2s, v), then there exists a (t, s, v)-AONT for all
t such that 1 ≤ t ≤ s.

We note that orthogonal arrays are equivalent to maximum distance separable (MDS)
codes. Hence, it is easy to construct (t, s, v)-AONTs whenever v is a prime power and
2s ≤ v. Cauchy matrices result in the same bound for linear AONTs, as will be discussed in
Theorem 2.4.1. In the case of v = 2, it has been previously shown by Stinson [42, Theorem
3.5] that there is no (1, s, 2)-AONT (linear or nonlinear) if s ≥ 2.

Corollary 2.2.4 presents a construction of AONTs from certain orthogonal arrays. The
next theorem addresses the construction of an orthogonal array from an AONT.

Theorem 2.2.5. Suppose there is a (t, s, v)-AONT. Then there is an OA(t, s, v).

Proof. We represent the (t, s, v)-AONT in its array presentation, which is a (vs, 2s, v)-array
denoted by A. Let R denote the rows of A that contain a fixed (s − t)-tuple in the last
s − t columns of A. Then |R| = vt. Delete all the rows of A not in R and delete the last
s columns of A and call the resulting array A′. Within any t columns of A′, we see that
every t-tuple of symbols occurs exactly once, since the rows of A′ are determined by fixing
s− t outputs of the AONT. Hence, A′ is an OA(t, s, v).
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a a c b
a b b c
a c a a
b a a c
b b c a
b c b b
c a b a
c b a b
c c c c

a a c b
b c b b
c b a b

−→
a a
b c
c b

Figure 2.3: Top: a (9, 4, 3)-array that is unbiased with respect to the following set of
columns: I = {1, 2}, O = {3, 4}, and {a, b : a ∈ I, b ∈ O}. Bottom: extracting an
OA(2, 1, 3) from the (9, 4, 3)-array.

Example 2.2.1. In Example 1.1.2, if the columns are not divided based on inputs and
outputs, it can be verified that the (1, 2, 3)-AONT introduced in Chapter 1 is equivalent to
an array with alphabet size three, four columns, and nine rows, i.e., a (9, 4, 3)-array, that is
unbiased with respect to any two columns. These are all the column combinations specified
in Theorem 2.2.1.

It should be noted that the array shown in Figure 2.3 is an OA(2, 4, 3) as well. However,
to illustrate the result of Theorem 2.2.5 on this example, we need to select the rows with a
fixed value, e.g., b, in the last column. It is easy to verify that the left two columns in those
three rows form an OA of strength 1, i.e., the left half of the array is unbiased with respect
to any single column. The process of obtaining the OA(1, 2, 3) is depicted in Figure 2.3.

Now consider the following classical bound on orthogonal arrays, which can be found
in the Handbook of Combinatorial Designs [13].

Theorem 2.2.6 (Bush Bound). If there is an OA(t, s, v), then

s ≤


v + t− 1 if t = 2, or if v is even and 3 ≤ t ≤ v

v + t− 2 if v is odd and 3 ≤ t ≤ v

t+ 1 if t ≥ v.
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The following corollaries are the direct results of fixing t to be 2 and 3 in Theorem
2.2.6.

Corollary 2.2.7. If there is a (2, s, v)-AONT, then s ≤ v + 1.

Corollary 2.2.8. If there is a (3, s, v)-AONT, then s ≤ v+2 if v ≥ 4 is even, and s ≤ v+1
if v ≥ 3 is odd.

Since the existence of an OA(t, s, v) is a necessary condition for the existence of a
(t, s, v)-AONT, the same inequality holds between the size of the AONT and its alphabet
size and strength.

Next, we show that any AONT, linear or nonlinear, gives rise to a resilient function.
This result is based on a characterization of resilient functions by Stinson [41], which was
stated in Theorem 1.4.3.

Theorem 2.2.9. Suppose there is a (t, s, v)-AONT. Then there is an (s, s−t, t, v)-resilient
function.

Proof. We use the same technique that was used in the proof of Theorem 2.2.5. Let A be
the (vs, 2s, v)-array representing the AONT. For any (s− t)-tuple x, let Rx be the rows of
A that contain x in the last s − t columns of A. Let Ax denote the array formed by the
rows in Rx and the first s columns of A. Theorem 2.2.5 showed that Ax is an OA(t, s, v).

Now, consider all vs−t possible (s − t)-tuples x. For each choice of x, we get an
OA(t, s, v). These vs−t orthogonal arrays together contain all vs s-tuples, since the array
A is unbiased with respect to the first s columns. Thus we have a large set of OA1(t, s, v).
Applying Theorem 1.4.3, this large set of OAs is equivalent to an (s, s − t, t, v)-resilient
function (note that m = s− t because vs−m−t = 1).

2.3 Linear t-AONTs

Let q be a prime power. An AONT with alphabet Fq is linear if each output element yi is
an Fq-linear function of the input elements x1, . . . , xs. For a linear AONT, we can write

y = φ(x) = xM−1 and x = φ−1(y) = yM, (2.2)

where M is an invertible s by s matrix with entries from Fq. Subsequently, when we refer
to a “linear AONT”, we mean the matrix M that transforms y to x, as specified in (2.2).
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The following lemma by D’Arco et al. [14] presents the properties of linear all-or-nothing
transforms in terms of the properties of the matrix M .

For I, J ⊆ {1, . . . , s}, define M(I, J) to be the |I| by |J | submatrix of M induced by the
columns in I and the rows in J . The following lemma characterizes linear all-or-nothing
transforms in terms of properties of the matrix M . This lemma can be considered to be a
generalization of a similar result for linear 1-AONTs by Stinson [42, Theorem 2.1].

Lemma 2.3.1. [14, Lemma 1] Suppose that q is a prime power and M is an invertible s by
s matrix with entries from Fq. Let X ⊆ {X1, . . . , Xs}, |X | = t, and let Y ⊆ {Y1, . . . , Ys},
|Y| = t. Then the function φ(x) = xM−1 satisfies Condition (3) with respect to X and Y
if and only if the submatrix M(I, J) is invertible, where I = {i : Xi ∈ X} and J = {j :
Yj ∈ Y}.

Proof. Let x′ = (xi : i ∈ I). We have x′ = yM(I, {1, . . . , s}). Now assume that yj is fixed
for all j 6∈ J . Then we can write x′ = y′M(I, J) + c, where y′ = (yj : j ∈ J) and c is a
vector of constants.

If M(I, J) is invertible, then x′ is completely undetermined, in the sense that x′ takes
on all values in (Fq)t as y′ varies over (Fq)t. On the other hand, if M(I, J) is not invertible,
then x′ can take on only (Fq)t

′
possible values, where rank(M(I, J)) = t′ < t.

Corollary 2.3.2. Suppose that q is a prime power and M is an invertible s by s matrix
with entries from Fq. Then y = xM−1 defines a (t, s, q)-AONT if and only if all t by t
submatrices of M are invertible.

Example 2.3.1. Consider a linear AONT with matrix M as follows: 1 1 1
1 2 2
1 0 1

 .

Note that the top right 2× 2 submatrix is singular.

If M−1 is used as a (2, 3, 3)-AONT to map the message (x1, x2, x3) to (y1, y2, y3), then
the following equations hold:

y1 + 2y2 = x2

y1 + 2y2 + y3 = x3

⇒ x3 − x2 = y3.
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Therefore, it is possible to calculate f(x2, x3) = x3 − x2, a function of t = 2 input
elements, if y3 is known, that is, in the absence of t = 2 output elements, y1 and y2, which
contradicts an AONT property.

Remark 2.3.1. Any invertible s by s matrix with entries from Fq defines a linear (s, s, q)-
AONT.

Corollary 2.3.3. Suppose that y = xM−1 defines a linear (t, s, q)-AONT. Then x = yM
defines a linear (s− t, s, q)-AONT.

The proof of Corollary 2.3.3 follows from Corollary 2.2.3.

Corollary 2.3.4. Suppose M is an invertible s by s matrix with entries from Fq. Then
y = xM−1 defines a linear (t, s, q)-AONT if and only if every (s− t) by (s− t) submatrix
of M is invertible.

Proof. From Corollary 2.3.3, y = xM is a linear (t, s, q)-AONT if and only if y = xM−1 is
a linear (s−t, s, q)-AONT. Therefore, from Lemma 2.3.1, y = xM is a linear (t, s, q)-AONT
if and only if every (s− t) by (s− t) submatrix of (M−1)−1 = M is invertible.

To summarize, we have proven the following.

Theorem 2.3.5. Suppose M is an invertible s by s matrix with entries from Fq. Then the
following are equivalent.

1. y = xM−1 is a linear (t, s, q)-AONT.

2. Every (s− t) by (s− t) submatrix of M−1 is invertible.

3. Every t by t submatrix of M is invertible.

2.4 Existence of Linear t-AONTs

As Corollary 2.3.2 indicated, the existence of a linear (t, s, q)-AONT is equivalent to the
existence of an invertible s× s matrix, with elements from Fq, having only invertible t× t
submatrices. Cauchy matrices are a family of matrices all of whose square submatrices,
including itself, are invertible. An s by s Cauchy matrix can be defined over Fq if q ≥
2s. Let a1, . . . , as, b1, . . . , bs be distinct elements of Fq. Let cij = (ai − bj)

−1, for 1 ≤
i ≤ s and 1 ≤ j ≤ s. Then C = (cij) is the Cauchy matrix defined by the sequence
a1, . . . , as, b1, . . . , bs.
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Example 2.4.1. Let s = 3 and q = 7. A 3× 3 Cauchy matrix over F7 can be constructed
as follows.

1 2 3
4 1

4−1
1

4−2
1

4−3
5 1

5−1
1

5−2
1

5−3
6 1

6−1
1

6−2
1

6−3

⇒

 1
3

1
2

1
1

1
4

1
3

1
2

1
5

1
4

1
3

 =

 5 4 1
2 5 4
6 2 5

 .

Cauchy matrices were briefly mentioned by Stinson [42] as a possible method of con-
structing AONTs. However, they are particularly relevant in light of the stronger defi-
nitions we are now investigating. To be specific, Cauchy matrices immediately yield the
strongest possible all-or-nothing transforms, as stated in the following theorem.

Theorem 2.4.1. Suppose q is a prime power and q ≥ 2s. Then there is a linear transform
that is simultaneously a (t, s, q)-AONT for all t such that 1 ≤ t ≤ s.

The following theorem proves the existence of AONTs, provided that an AONT with
larger value of s exists.

Theorem 2.4.2. If there exists a linear (t, s, q)-AONT with t < s, then there exists a
linear (t, s− 1, q)-AONT.

Proof. Let M be a matrix for a linear (t, s, q)-AONT. Consider all the s possible s− 1 by
s− 1 submatrices formed by deleting the first column and a row of M . We claim that at
least one of these s matrices is invertible. For, if they were all non-invertible, then M would
be non-invertible, by considering the cofactor expansion with respect the first column of
M .

We finish this subsection by showing that the existence of linear AONTs implies the
existence of certain linear resilient functions.

Suppose q is a prime power. An (n,m, t, q)-resilient function f is linear if f(x) = xMT

for some m by n matrix M defined over Fq. Now, applying Theorem 1.4.3 we result in the
following theorem.

Theorem 2.4.3. The existence of a linear (t, s, q)-AONT implies the existence of a linear
(s, s− t, t, q)-resilient function.

Proof. Suppose that the s by s matrix M over Fq gives rise to a linear (t, s, q)-AONT.
Then, from Lemma 2.3.1, every t by t submatrix of M is invertible. Construct an s by

40



t matrix M∗ by deleting any s − t rows of M . Clearly any t columns of M∗ are linearly
independent. Let C be the code generated by the rows of M∗ and let C ′ be the dual code
(i.e., the orthogonal complement of C). It is well-known from basic coding theory (e.g.,
see [27, Chapter 1, Theorem 10]) that the minimum distance of C ′ is at least t+ 1. Let N
be a generating matrix for C ′. Then N is an s− t by s matrix over Fq. Since N generates
a code having minimum distance at least t + 1, the function f(x) = xNT is a a (linear)
(s, s− t, t, q)-resilient function (for a short proof of this fact, see [45, Theorem 1]).

2.5 2-AONT

This section is comprised of the results for t = 2. The results are reported in categories
based on their type, i.e., theoretical or computational, while maintaining a chronological
order within the types. The exceptions to this pattern are the results based on the published
results of this section, by other researchers; these results will appear last.

We begin with an existence proof for (2, q − 1, q)-AONTs, for special prime values
p = q − 1.

Theorem 2.5.1. Suppose q = 2n, q− 1 is prime and s ≤ q− 1. Then there exists a linear
(2, s, q)-AONT over Fq.

Proof. Let α ∈ Fq be a primitive element and let M = (mr,c) be the s by s Vandermonde
matrix in which mr,c = αrc, 0 ≤ r, c ≤ s − 1. Clearly M is invertible, so we only need to
show that any 2 by 2 submatrix is invertible. Consider a submatrix M ′ defined by rows
i, j and columns i′, j′, where i 6= j and i′ 6= j′. We have

det(M ′) = αii
′+jj′ − αij′+ji′ ,

so det(M ′) = 0 if and only if αii
′+jj′ = αij

′+ji′ , which happens if and only if

ii′ + jj′ ≡ ij′ + ji′ mod (q − 1).

This condition is equivalent to

(i− j)(i′ − j′) ≡ 0 mod (q − 1).

Since q − 1 is prime, this happens if and only if i = j or i′ = j′. We assumed i 6= j and
i′ 6= j′, so we conclude that M ′ is invertible.

41



The above result requires that 2n − 1 is a (Mersenne) prime. The first few Mersenne
primes occur for

n = 2, 3, 5, 7, 13, 31, 61, 89, 107, 127.

At the time this thesis was written, there were 51 known Mersenne primes, the largest
being 282589933 − 1, which was discovered in December 2018 [1].

Example 2.5.1. Let n = 3, then q− 1 = 23− 1 = 7, the following Vandermonde matrix is
the inverse of a (2, 7, 8)-AONT (here F8 is constructed using x3 + x+ 1 as the irreducible
polynomial).

M−1 =



1 1 1 1 1 1 1
1 x x2 x+ 1 x2 + x x2 + x+ 1 x2 + 1
1 x2 x2 + x x2 + 1 x x+ 1 x2 + x+ 1
1 x+ 1 x2 + 1 x2 x2 + x+ 1 x x2 + x
1 x2 + x x x2 + x+ 1 x2 x2 + 1 x+ 1
1 x2 + x+ 1 x+ 1 x x2 + 1 x2 + x x2

1 x2 + 1 x2 + x+ 1 x2 + x x+ 1 x2 x


For a prime power q, if we ignore the requirement that a linear AONT is an invertible

matrix, then constructing q by q matrices with invertible 2× 2 submatrices is easy.

Theorem 2.5.2. For any prime power q, there is a q by q matrix defined over Fq such
that any 2 by 2 submatrix is invertible.

Proof. M = (mr,c) be the q by q matrix of entries from Fq defined by the rule mr,c = r+ c,
where the sum is computed in Fq. Consider a submatrix M ′ defined by rows i, j and
columns i′, j′, where i 6= j and i′ < j′. We have

det(M ′) = ij′ + ji′ − (ii′ + jj′),

so det(M ′) = 0 if and only if ii′ + jj′ = ij′ + ji′. This condition is equivalent to

(i− j)(i′ − j′) = 0,

which happens if and only if i = j or i′ = j′. We assumed i 6= j and i′ 6= j′, so we conclude
that M ′ is invertible.

We note that the above construction does not yield an AONT for q > 2, because the
sum of all the rows of the constructed matrix M is the all-zero vector and hence M is not
invertible.
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Example 2.5.2. Let q = 5, then using the construction from Theorem 2.5.2 we have

M =


0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3


It is easy to check that the the sum of all the rows is a row of zeros.

When enumerating (t, s, q)-AONTs, we would like to avoid counting different forms
of one construction, or what we call equivalent AONTs. Hence, we now discuss how to
determine if two linear AONT are “equivalent”. We define this notion as follows. Suppose
M and M ′ are linear (t, s, q)-AONT. We say that M and M ′ are equivalent if M can be
transformed into M ′ by performing a sequence of operations of the following type:

� row and column permutations,

� multiplying a row or column by a nonzero constant, and

� transposing the matrix.

In the following sections, we use this process to find inequivalent linear AONTs we
obtain from analytical or computational searches.

To restrict the computer search for (2, s, q)-AONTs to one equivalence class for each
AONT, we next define a standard form for linear AONTs. Suppose M is a matrix for
a linear (2, s, q)-AONT. There can be at most one zero in each row and column of M ;
otherwise, M has a 2 by 2 submatrix containing those zeros that is not invertible. Then
we can permute the rows and columns so that the 0’s comprise the first µ entries on the
main diagonal of M . If µ = 0, then we can multiply rows and columns by nonzero field
elements so that all the entries in the first row and first column consist of 1’s. If µ 6= 0,
we can multiply rows and columns by nonzero field elements so that all the entries in the
first row and first column consist of 1’s, except for the entry in the top left corner, which
is a 0. Such a matrix M is said to be of type µ standard form.

The following theorem proves an upper bound on the size, s, of the AONT for linear
AONTs with a prime power alphabet size.

Theorem 2.5.3. There is no linear (2, q + 1, q)-AONT for any prime power q > 2.
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Proof. Suppose M is a matrix for a linear (2, q + 1, q)-AONT defined over Fq. We can
assume that M is in standard form. Consider the q + 1 ordered pairs occurring in any
two fixed rows of the matrix M . There are q symbols, which result in q2 possible ordered
pairs. However, the pair consisting of two zeros is ruled out, leaving q2 − 1 ordered pairs.
For two such ordered pairs (i, j)T and (i′, j′)T , define (i, j)T ∼ (i′, j′)T if there is a nonzero
element α ∈ Fq such that (i, j)T = α(i′, j′)T . Clearly ∼ is an equivalence relation, and
there are q + 1 equivalence classes, each having size q − 1. We can only have at most one
ordered pair from each equivalence class, otherwise the 2 by 2 submatrix resulting from
those ordered pairs is not invertible. Hence, there are only q + 1 possible pairs that can
occur. Since there are q + 1 columns, it follows that, from each of these q + 1 equivalence
classes, exactly one will be chosen. Therefore, each row must contain exactly one 0 and
thus M is of type q + 1 standard form.

From the above discussion, we see that M has the following structure:

0 1 1 1 . . . 1 1
1 0
1 0
1 0
...

. . .

1 0
1 0


.

Now consider the lower right q by q submatrix M ′ of M . Any element of Fq can occur on
each column of M ′ at most once, otherwise M would have a singular 2 by 2 submatrix.
Since each column of M ′ has q entries, each element of Fq appears exactly once on each
column of M ′. The sum of all the elements of a finite field Fq is equal to 0, provided
that q > 2. Hence, the sum of all the rows in this matrix is an all-zero row. Therefore,
regardless of the configuration of the remaining entries, the sum of the last q rows of M
is the all-zero vector. Therefore, the matrix M is singular, which contradicts its being an
AONT.

Remark 2.5.1. [14, Example 16] Linear (2, 3, 2)-AONTs do not exist. This covers the
exception q = 2 in Theorem 2.5.3.

Theorem 2.5.3 and Remark 2.5.1 improve the bounds from Corollary 2.2.7, for linear
AONTs.

Theorem 2.5.4. If there is a linear (2, s, q)-AONT, then s ≤ q.
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2.6 Linear (2, q, q)-AONT

Theorem 2.5.3 and Remark 2.5.1 showed that, in linear AONTs, s ≤ v. Therefore, we next
obtain some structural conditions for linear (2, q, q)-AONT in standard form.

Lemma 2.6.1. Suppose M is a matrix for a linear (2, q, q)-AONT in standard form. Then
M is of type q or type q − 1.

Proof. Suppose that M is of type µ standard form, where µ ≤ q − 2. Then the last two
rows of M contain no zeroes. We proceed as in the proof of Theorem 2.5.3. The q ordered
pairs in the last two rows must all be from different equivalence classes. However, there
are only q − 1 equivalence classes that do not contain a 0, so we have a contradiction.

Therefore the standard form of a linear (2, q, q)-AONT looks like

M =



0 1 1 1 . . . 1 1
1 0
1 0
1 0
...

. . .

1 0
1 χ


,

where χ = 0 if and only if M is of type q and χ 6= 0 if and only if M is of type q − 1.

2.6.1 Computer Searches for Small Linear (2, q, q)-AONT

For the rest of this section, we will focus on linear (2, q, q)-AONTs in standard form.
Suppose M is a matrix for such an AONT. Define a linear ordering on the elements in the
alphabet Fq. If M also has the additional property that the entries in columns 3, . . . , q of
row 2 are in increasing order (with respect to this linear order), then we say that M is
reduced. Thus, the term “reduced” means that M is a linear (2, q, q)-AONT that satisfies
the following additional properties:

� the diagonal of M consists of zeroes,

� the remaining entries in the first row and first column of M are ones, and
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Table 2.3: Number of reduced and inequivalent linear (2, q, q)-AONT, for prime powers
q ≤ 11

q reduced (2, q, q)-AONT inequivalent (2, q, q)-AONT
3 2 1
4 3 2
5 38 5
7 13 1
8 0 0
9 0 0
11 21 1

� the entries in columns 3, . . . , q of row 2 of M are in increasing order.

We implemented and executed exhaustive search algorithms that searched for reduced
(2, q, q)-AONT, for all prime powers q ≤ 11. The results are presented in Table 2.3.

One perhaps surprising outcome of our computer searches is that there are no linear
(2, q, q)-AONT in type q standard form for q = 8, 9; however, it is easy to find examples of
linear (2, q − 1, q)-AONT for q = 8, 9.

For the prime orders 3, 5, 7, 11, it turns out that there exists a reduced (2, q, q)-AONT
having a very interesting structure, which we define here. Let M be a matrix for a reduced
(2, q, q)-AONT. Let τ ∈ Fq. We say that M is τ -skew-symmetric if, for any pair of cells
(i, j) and (j, i) of M , where 2 ≤ i, j ≤ q and i 6= j, it holds that mij +mji = τ . Notice that
this property implies that the matrix M contains no entries equal to τ because the only
zero entries are located on the main diagonal. Another way to define the τ -skew-symmetric
property is to say that M1 +M1

T = τ(J − I), where M1 is formed from M by deleting the
first row and column, J is the all-ones matrix and I is the identity matrix.

Our computer searches show that there is a (q − 1)-skew-symmetric reduced (2, q, q)-
AONT for q = 3, 5, 7, 11, as well as τ -skew-symmetric examples with various other values
of τ .

Example 2.6.1. A 2-skew-symmetric reduced linear (2, 3, 3)-AONT: 0 1 1
1 0 1
1 1 0

 .

46



Example 2.6.2. A linear (2, 4, 4)-AONT, defined over the finite field F4 = Z2[x]/(x2 +
x+ 1): 

0 1 1 1
1 0 1 x
1 x 0 x+ 1
1 1 x 0

 .

Example 2.6.3. A 4-skew-symmetric reduced linear (2, 5, 5)-AONT:
0 1 1 1 1
1 0 1 2 3
1 3 0 1 2
1 2 3 0 1
1 1 2 3 0


Example 2.6.4. A 6-skew-symmetric reduced linear (2, 7, 7)-AONT:

0 1 1 1 1 1 1
1 0 1 2 3 4 5
1 5 0 3 4 2 1
1 4 3 0 5 1 2
1 3 2 1 0 5 4
1 2 4 5 1 0 3
1 1 5 4 2 3 0


.

Example 2.6.5. A linear (2, 8, 9)-AONT, defined over the finite field F9 = Z3[x]/(x2 + 1):

0 1 1 1 1 1 1 1
1 0 1 2 x x+ 1 x+ 2 2x
1 1 0 2x+ 1 x+ 1 x+ 2 2 x
1 2x x 0 x+ 2 2 2x+ 1 x+ 1
1 x+ 2 2 x 0 1 2x 2x+ 1
1 x+ 1 x+ 2 2x 2x+ 1 0 1 2
1 x x+ 1 1 2 2x+ 1 0 x+ 2
1 2 2x+ 1 x+ 1 1 2x x 0


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Example 2.6.6. A 10-skew-symmetric reduced linear (2, 11, 11)-AONT:

0 1 1 1 1 1 1 1 1 1 1
1 0 1 2 3 4 5 6 7 8 9
1 9 0 7 8 1 3 2 5 4 6
1 8 3 0 2 5 6 1 9 7 4
1 7 2 8 0 6 1 3 4 9 5
1 6 9 5 4 0 8 7 3 1 2
1 5 7 4 9 2 0 8 1 6 3
1 4 8 9 7 3 2 0 6 5 1
1 3 5 1 6 7 9 4 0 2 8
1 2 6 3 1 9 4 5 8 0 7
1 1 4 6 5 8 7 9 2 3 0


2.6.2 Additional Results on Linear AONT

Lastly, we will consider the existence of (t, s, q)-AONTs for different values of s and q, for
the particular case of t = 2.

Given a prime power q and a positive integer t, we define

St(q) = {s : there exists a linear (t, s, q)-AONT}.

Accordingly,

S2(q) = {s : there exists a linear (2, s, q)-AONT}.

From Remark 2.3.1, we have that 2 ∈ S2(q), so S2(q) 6= ∅. Also, from Theorem 2.5.3,
Remark 2.5.1 and Theorem 2.4.2, there exists a maximum element in S2(q), which we will
denote by M2(q). Hence, based on Theorem 2.4.2, we know that a linear (2, s, q)-AONT
exists for all s such that 2 ≤ s ≤M2(q).

In order to find M2(q) for some small values of q, we used an exhaustive computer
search. In this algorithm, we confined our attention to reduced (2, q, q)-AONTs, as defined
in Section 2.6. We have already showed that any linear (2, q, q)-AONT of type q standard
form is equivalent to a reduced (2, q, q)-AONT. But it is possible that two reduced (2, q, q)-
AONT could be equivalent. We next describe a useful process to test for equivalency of
reduced (2, q, q)-AONT.
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1. Pick two distinct rows r1, r2. Interchange rows 1 and r1 of M and in-
terchange rows 2 and r2 of M . Then interchange columns 1 and r1 and
interchange columns 2 and r2 of the resulting matrix.

2. Multiply columns 2, . . . , q by constants to get (0 1 1 · · · 1) in the first
row.

3. Multiply rows 2, . . . , q by constants to get (011 · · · 1)T in the first column.

4. Permute columns 3, . . . , q so the entries in row 2 in these columns are in
increasing order (there is a unique permutation π that does this).

5. Apply the same permutation π to rows 3, . . . , q.

6. Transpose M and apply the first five steps to the transposed matrix.

Figure 2.4: Generating the reduced (2, q, q)-AONT that are equivalent to a given reduced
(2, q, q)-AONT, M

The idea is to start with a specific reduced (2, q, q)-AONT, say M . Given M , we can
generate all the reduced (2, q, q)-AONT that are equivalent to M . After doing this, it is a
simple matter to examine any other reduced (2, q, q)-AONT, say M ′ and see if it occurs in
the list of reduced (2, q, q)-AONT that are equivalent to M .

The algorithm presented in Figure 2.4 generates all the reduced (2, q, q)-AONT that
are equivalent to M . After executing the first five steps, we have a list of q2 − q reduced
(2, q, q)-AONT, each of which is equivalent to M (this includes M itself). After transposing
the original matrix, we repeat the same five steps, which gives q2− q additional equivalent
AONT. The result is a list of 2q2 − 2q equivalent AONT, but of course there could be
duplications in the list.

2.6.3 Updated Results

Based on the results mentioned in this chapter, Wang et al. [50] subsequently proved the
existence of linear (2, p, p)-AONTs for all prime values of p, using the following construction.

Construction 2.6.2. [50, Construction 2.8] For a prime p, the p × p matrix M−1 is
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constructed as follows.

mij =


0, if i = j

1, if i > 0, j = 0
1
i−j , otherwise

(2.3)

Wang et al. [50, Theorem 2.3] also proved the non-existence of linear (2, q, q)-AONTs of
type q − 1, where q is a prime power. Remark 2.6.1 is a direct result of this non-existence
result and Lemma 2.6.1.

Remark 2.6.1. [50] For any prime power q, only linear (2, q, q)-AONTs of type q may
exist.

We finish this chapter by summarizing our knowledge of linear 2-AONTs as the following
theorem.

Theorem 2.6.3. These three statements regarding upper and lower bounds on M2(q) are
true:

1. bq/2c ≤M2(q) ≤ q for all prime powers q.

2. M2(q) ≥ q − 1 if q − 1 is a Mersenne prime.

3. M2(p) = p if p is a prime.

Proof. For the first statement, we first note that for any prime power q and positive integer
s ≤ q/2, Cauchy matrices are instances of linear (2, s, q)-AONTs, so bq/2c ≤ M2(q).
Theorem 2.5.3, on the other hand, states that M2(q) ≤ q. Therefore, bq/2c ≤M2(q) ≤ q.

As discussed in Theorem 2.5.1, Vandermonde matrices can be used to achieve (2, q −
1, q)-AONTs, for Mersenne prime values of q − 1.

The third statement is directly derived from Construction 2.6.2 by Wang et al. [50].

2.7 Applications

This section discusses two applications of t-AONTs, namely,

1. an extension of Rivest’s package transform, and

2. a new hash-based group signature scheme.
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2.7.1 Extended Package Transform

As we discussed in Chapter 1, Rivest’s package transform [38] was the first instance of
using AONTs as a block cipher mode of operation. Hence, it is interesting to consider
the performance of extended AONTs in this application. To use an unconditionally secure
t-AONT as a package transform, the following scheme, presented in Algorithm 1, can be
used. Suppose EK is a semantically secure secret-key encryption scheme with key K.

Algorithm 1 Extended Package Transform

1: Divide the message into s− 1 blocks: m1,m2, . . . ,ms−1
2: Choose a random key K
3: Set xi to EK(mi) for 1 ≤ i ≤ s− t
4: Set xi to mi for s− t+ 1 ≤ i ≤ s− 1
5: Set xs to K
6: Apply a (t, s, v)-AONT to the s-tuple (x1, x2, . . . , xs), to get the output blocks
m′1, . . . ,m

′
s (v is the size of an alphabet that includes all possible ciphertexts.)

7: Output m′i for 1 ≤ i ≤ s

Now we provide an informal justification of security for this scheme. Please note that
this scheme is not information theoretically secure. Using the scheme above, we cannot
learn any information about any t input blocks (i.e., the xi’s) if we are missing t or more
m′i’s. Hence, we cannot learn the key K nor any groups of t of the xi’s and in particular
we will not be able to learn anything about the key K and the last t− 1 of the xi’s, which
were not encrypted in Algorithm 1. The first s − t of the xi’s are encrypted mi’s using a
secure encryption scheme, so it is not a problem if the adversary can determine the values
of these xi’s.

The extended package transform can be used as a mode of operation. In this process,
m′1,m

′
2, . . . ,m

′
s are created using the extended package transform. Then each m′i is en-

crypted using a secret key K ′ to obtain the ciphertext block yi, for 1 ≤ i ≤ s. Figure 2.5
shows the process of applying extended package transform on a message for t = 1. This is
roughly equivalent to Rivest’s package transform scheme.

If the extended package transform is used as a mode of encryption, then any s − t
of the m′i’s do not yield any information about any t xi’s. In particular, if t of the m′i’s
are missing, no information can be obtained about xs−t+1, xs−t, . . . , xs. Note that all the
other xi blocks are encrypted using K, but K is stored in xs and is therefore unknown.
Therefore, if an attacker is using an exhaustive key search to learn the message, they need
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to decrypt at least s − t + 1 blocks to check whether the tested key is equal to K ′. In
other words, their search is slowed down at least by a factor of s − t + 1. For t = 1, this
scheme performs similarly to Rivest’s package transform [38]. Since only s− t of the mi’s
need to be encrypted, increasing t reduces the number of encryptions required; however,
the security of the scheme is weakened at the same time because it must be assumed that
the adversary can access at most s− t of the s output blocks.

xs = K m′s EK′ ys

ms−1 xs−1 m′s−1 EK′ ys−1

m2 EK x2

...
...

m′2 EK′ y2

m1 EK x1 m′1 EK′ y1

mi+1 xi+1

...
...

m′i+1 EK′ yi+1

mi EK xi m′i EK′ yi

i = s− t

AONT

Plaintext

K ′ = shared key

Figure 2.5: Different stages of extended package transform as a mode of encryption for a
block cipher E
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2.7.2 A New Hash-based Group Signature Scheme

In a joint work with Masoumeh Shafieinejad [39], we used AONTs in the context of hash-
based group signature schemes. We will finish this chapter by briefly describing this ap-
plication of t-AONTs.

In hash-based signatures, the signer has a set of signing key elements, and the public
verification keys are the hashes of those values. There is a bijection, ψ, from the set of
possible messages to a family of subsets of these elements. To sign a message, the signer
releases the message with its corresponding subset of signing key elements, using ψ. The
verification process uses another bijection, ψ′, from the set of possible messages to a family
of subsets of hashed signing key elements. Both bijections have the same domain, and
for any possible message m, ψ′(m) is equal to the set that contains the hashed elements
of ψ(m). To verify a signature on message m, one needs to check whether the hash of
the released elements matches ψ′(m). A group signature allows any group member to
anonymously sign a message on behalf of the group. A group signature scheme may allow
an authorized group of openers to violate the anonymity property and identify the signer
of signature.

This signature scheme uses a t-TD(s, n) (see Section 1.4.2 for the definition) to dis-
tribute secret signing keys among the nt users and opening keys among the s openers. Each
point in the design represents a signing-key element. The secret signing keys correspond
to the blocks in the transversal designs and the opening keys are distributed according to
the design groups. In this scheme, a signature requires at least t elements.

Recall that in a t-TD(s, n), any group and any block intersect at exactly one point, and
every t points from t distinct design groups is contained in exactly one block. Therefore,
each opener has the key corresponding to at most one signature element and each signature
can be identified by one or more groups of t openers, depending on the number of signing
key elements released for a signature. However, a group of t′ openers, where t′ < t, can
use their opening keys to reduce the set of potential signers for a signature from nt to
nt−t

′
. Shamir secret sharing scheme and AONTs were considered to prevent openers from

obtaining this information [39].

Consider each opener’s key as an input block and use a (t, s, v)-AONT on opening keys.
The result is s output blocks, such that any subset of s− t of these blocks does not reveal
any information about any t-subset of the group designs, yielding no information about the
signer. For t < n/2, this method can be used to increase the number of openers required
to identify the signer from t to at least n − t and at most n openers. It also prevents
any coalition of fewer than n− t openers to obtain any information about the signer. The
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advantage of this method to secret sharing is that it does not require any extra storage,
and the total storage cost remains the same.

u1

Gsk1 : (α1, β1, γ1, δ1)

u2

Gsk2 : (α1, β2, γ2, δ2)

u3

Gsk3 : (α1, β3, γ3, δ3)

u4

Gsk4 : (α2, β1, γ2, δ3)

u5

Gsk5 : (α2, β2, γ3, δ1)

u6

Gsk6 : (α2, β3, γ1, δ2)

u7

Gsk7 : (α3, β1, γ3, δ2)

u8

Gsk8 : (α3, β2, γ1, δ3)

u9

Gsk9 : (α3, β3, γ2, δ1)

α1 → K ⇒ {1, 2, 3}
α2 → K ⇒ {4, 5, 6}
α3 → K ⇒ {7, 8, 9}

β1 → K ⇒ {1, 4, 7}
β2 → K ⇒ {2, 5, 8}
β3 → K ⇒ {3, 6, 9}

γ1 → K ⇒ {1, 6, 8}
γ2 → K ⇒ {2, 4, 9}
γ3 → K ⇒ {3, 5, 7}

δ1 → K ⇒ {1, 5, 9}
δ2 → K ⇒ {2, 6, 7}
δ3 → K ⇒ {3, 4, 8}

α3, δ2 → K

u7 signed the
message

No information
about the signer

α3, δ2 → K

u7 signed the
message

AONT
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The diagram above presents the application of a 2-AONT on the group opening keys
of the signature scheme. As the diagram shows, each user of the signature scheme is given
a set of secret values, Gski. The signer can derive the signing key from these secret values.
x→ K denotes that secret value x is used in the derivation of a key K. Note that without
an AONT, in the presented setting, only two openers are required to identify the signer,
but if the group opening keys, Gok’s, are transformed using a 2-AONT, openers cannot
learn anything about the signer, if they are missing at least 2 output blocks; however, if
they have all the output blocks, they can correctly identify the signer.
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Chapter 3

Almost AONT

In this chapter, we will focus on linear transforms that satisfy the condition (3) for some,
but not necessarily all, pairs of X ,Y . In particular, we will explore the parameter sets for
which the t by t submatrices of invertible matrices cannot all be invertible. For example,
there is no s by s Cauchy matrix over F2 if s > 1. In fact, Stinson [42] showed that there is
no linear (1, s, 2)-AONT if s > 1. This is because every entry of M must equal 1 (in order
that the 1 by 1 submatrices of M are invertible), but then M itself is not invertible. This
motivates trying to determine how close we can get to a (1, s, 2)-AONT, or more generally,
to a (t, s, 2)-AONT, for a given t, 1 ≤ t ≤ s. This will be particularly relevant in the case
where φ is a binary linear transform. More specifically, suppose q = 2r for some r ≥ 1 and
M is defined over the subfield F2 (so M is a 0 - 1 matrix). This could be desirable from an
efficiency point of view, because the only operations required to compute the transform are
exclusive-ors of bit-strings. Hence it is a reasonable and interesting problem to study how
close we can get to an AONT with regards to the number of invertible t by t submatrices.

The content of this chapter are from collaborations with Paolo D’Arco [14] and Doug
Stinson [14, 31]. To present our results, first, we introduce measures for evaluating the
closeness of an invertible matrix to an AONT. Then, we study the linear transforms over
F2 and then F3 as almost AONT structures. We will give optimum results for t = 1;
much of the rest of this chapter will study the case where t = 2. Our study includes both
theoretical and computational results.
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3.1 Closeness to AONT

As we stated above, the focus of this chapter is on the linear transforms that satisfy
the AONT condition for as many submatrices as possible. Therefore, to quantify the
“closeness” of a linear transform M to an all-or-nothing transform we consider the ratio
of the number of invertible t by t square submatrices to the total number of t by t square
submatrices. Hence, for an s by s invertible matrixM with elements in Fq and for 1 ≤ t ≤ s,
we define

Nt(M) = number of invertible t by t submatrices of M

and

Rt(M) =
Nt(M)(

s
t

)2 .

We refer to Rt(M) as the t-density of the matrix M . For example, if M is a linear t-AONT,
then Rt(M) = 1. For 1 ≤ t ≤ s, we also define

Nt,q(s) = max{Nt(M) : M is an s by s invertible matrix over Fq}

Rt,q(s) = max{Rt(M) : M is an s by s invertible matrix over Fq}.

Rt,q(s) denotes the maximum t-density of any s by s invertible matrix with elements in Fq.

The following example offers a more tangible understanding of almost AONT structures.

Example 3.1.1. Consider the following 3 by 3 matrix over F2:

M =

 1 1 1
1 0 1
1 1 0

 .

M is an invertible matrix, and there are nine 1 by 1 submatrices of M and seven of them
are invertible, i.e., non-zero. Therefore, R1(M) = 7

9
.

Finally, for a fixed set of invertible matrices, we refer to the maximum number of
invertible t by t submatrices in and maximum t-density of a matrix in that set by Nt and
Rt, respectively.

57



3.2 Linear Transforms over F2

To study the linear almost AONTs over F2, we begin by reviewing the invertible 2 × 2
binary matrices.

Fact 3.2.1. A 2 by 2 0 - 1 matrix is invertible if and only if it is one of the following six
matrices: (

1 1
1 0

) (
1 1
0 1

) (
0 1
1 1

) (
1 0
1 1

) (
1 0
0 1

) (
0 1
1 0

)
.

Example 3.2.1 shows how R2,2(s) is calculated for a 3 by 3 matrix from Example 3.1.1.

Example 3.2.1. Consider the following 3 by 3 matrix:

M =

 1 1 1
1 0 1
1 1 0

 .

There are nine 2 by 2 submatrices of M and seven of them are seen to be invertible,
from Fact 3.2.1. The only non-invertible 2 by 2 submatrices are M({1, 3}, {1, 2}) and
M({1, 2}, {1, 3}). Finally, M itself is invertible. Hence, R2(M) = 7/9.

In the next step, we will find the value of R1,2(s), using the following lemmas.

Lemma 3.2.2. Suppose M = Js − Is, where Is denotes the s by s identity matrix and Js
denotes the s by s matrix in which every entry is equal to one. Then M is invertible over
F2 if and only if s is even.

Proof. If s is even, then it is easy to check that M−1 = M . If s is odd, then observe that
the sum of all the columns of M yields the zero-vector, so the columns of M are linearly
dependent.

Lemma 3.2.3. Suppose M is an s by s 0 - 1 matrix with at most s− 1 zero entries. Then
M is invertible over F2 if and only if the zero entries occur in s− 1 different rows and in
s− 1 different columns.

Proof. If M has at most s− 2 zero entries, then there must exist at least two columns of
M that do not contain a zero entry. These two columns are identical, so they are linearly
dependent.
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Now, suppose that M has exactly s − 1 zero entries. If there are at least two zero
entries in a specific column of M , then there must exist at least two columns of M that
do not contain a zero entry, and therefore, M is not invertible. A similar conclusion holds
if there exist at least two zero entries in a specific row of M . Therefore, we can restrict
our attention to the case where the zero entries occur in s− 1 different rows and in s− 1
different columns. We will show that M is invertible in this case.

By permuting rows and columns,which does not affect invertibility, if necessary, we can
assume that M = (mij) has the form

M =


1 1 1 1 . . . 1
1 0 1 1 . . . 1
1 1 0 1 . . . 1
...

...
...

...
. . .

...
1 1 1 1 . . . 0

 . (3.1)

It is easy to see that the s by s matrix M is invertible by verifying the following formula
for M−1:

M−1 =

(
a 1T

1 I

)
,

where 1 is a column vector consisting of s− 1 ones, I is an s− 1 by s− 1 identity matrix,
and a = s mod 2.

The following result is an immediate corollary of Lemma 3.2.3.

Theorem 3.2.4. For all s ≥ 1, we have R1,2(s) = 1− (s− 1)/s2.

It was shown by Stinson [42] that R1,2(s) ≥ 1− (1/s) when s is even. This was based
on using the matrix Js − Is as a transform and Lemma 3.2.3. Theorem 3.2.4 is a slight
improvement, and it holds for all values of s.

Example 3.2.2. Consider the 4 by 4 matrix given by (3.1):

M =


1 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
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Here, we can verify using Lemmas 3.2.2 and 3.2.3 that R1,2(M) = 13/16, R2,2(M) =
24/36 = 2/3 and R3,2(M) = 9/16.

In fact, it is possible to compute all the values Rt(M) for the s by s matrix M given

in (3.1). There are
(
s
t

)2
submatrices N of M of dimensions t by t. From the structure of

M , and from Lemmas 3.2.2 and 3.2.3, we see that a t by t submatrix N is invertible if and
only if one of the following conditions holds:

1. N contains t− 1 zero entries, or

2. t is even and N contains t zero entries.

If we can count the number of submatrices of this form, then we can compute Rt(M). The
following lemmas do this.

Lemma 3.2.5. The s by s matrix M given in (3.1) has exactly
(
s−1
t−1

)
(1 + (s− t+ 1)(s− t))

submatrices that contain exactly t− 1 zero entries.

Proof. We divide the desired submatrices into two sets and count the number of submatri-
ces in each set separately. First, consider all the submatrices with t−1 zeros that intersect
with the first row: there are

(
s−1
t−1

)
ways to choose the other t rows, and for each one there

are s− t+1 ways to choose the columns. Hence, there are
(
s−1
t−1

)
(s− t+1) such submatrices

that include elements from the first row.

Next, we count all the submatrices with t− 1 zeros that do not intersect with the first
row. There are

(
s−1
t−1

)
ways to choose the zeros, fixing t − 1 rows and t − 1 columns. For

each choice of t− 1 zeros, there are s− t ways to choose the other row and s− t ways to
choose the other column. Thus, there are

(
s−1
t−1

)
(s− t)(s− t) submatrices with t− 1 zeros

that do not intersect with the first row.

Therefore, an s by s matrix of the form 3.1 in total has(
s− 1

t− 1

)
((s− t)(s− t) + (s− t+ 1)) =

(
s− 1

t− 1

)
((s− t+ 1− 1)(s− t) + (s− t+ 1))

=

(
s− 1

t− 1

)
((s− t+ 1)(s− t)− (s− t) + (s− t) + 1)

=

(
s− 1

t− 1

)
(1 + (s− t)(s− t+ 1))

t by t submatrices with t− 1 zeros.
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Lemma 3.2.6. The s by s matrix M given in (3.1) has exactly
(
s−1
t

)
submatrices that

contain exactly t zero entries.

Proof. The submatrices should have t zeros, and each zero fixes a row and a column.
Therefore, we only need to choose t zeros out of s − 1 zeros. Hence, M has

(
s−1
t

)
such

submatrices.

From Lemma 3.2.5 and Lemma 3.2.6, we obtain the following theorem.

Theorem 3.2.7. Let M be the s by s matrix given in (3.1) and let 1 ≤ t ≤ s− 1. If t is
odd, then

Nt(M) =

(
s− 1

t− 1

)
(1 + (s− t+ 1)(s− t)).

If t is even, then

Nt(M) =

(
s− 1

t

)
+

(
s− 1

t− 1

)
(1 + (s− t+ 1)(s− t)).

Theorem 3.2.7 also provides (constructive) lower bounds on Rt,2(s) for all values of
t ≤ s. We do not claim that these bounds are necessarily good asymptotic bounds, however.
Even for t = 2, we get R2,2(M)→ 0 as s→∞, since

(
s−1
t−1

)
(1 + (s− t + 1)(s− t)) ∈ θ(s3)

and
(
s
t

)2 ∈ θ(s4). This suggests looking for constructions which will yield constant lower
bounds on R2,2(s). On the other hand, good upper bounds on R2,2(s) can help evaluate
the constructions. Therefore, we will continue with some upper bounds R2,2(s), followed
by different construction methods and some results.

3.2.1 Upper Bounds for R2,2(s)

We first establish an easy upper bound for R2,2(s). This bound is a consequence of the
following lemma.

Lemma 3.2.8. Any 2 by s 0 - 1 matrix contains at most s2/3 invertible 2 by 2 submatrices.

Proof. Let N be any 2 by s 0 - 1 matrix. Consider the 2 by 1 submatrices of N . Suppose

there are a0 occurrences of

(
0
0

)
, a1 occurrences of

(
0
1

)
, a2 occurrences of

(
1
0

)
, and

a3 occurrences of

(
1
1

)
. Of course a0 + a1 + a2 + a3 = s. From Fact 3.2.1, the number of
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invertible 2 by 2 submatrices in N is easily seen to be a1a2 + a1a3 + a2a3. This expression
is maximized when a0 = 0, a1 = a2 = a3 = s/3, yielding 3(s/3)2 = s2/3 invertible 2 by 2
submatrices if we allow ai’s to be rational numbers.

Theorem 3.2.9. For any s ≥ 2, it holds that

R2,2(s) ≤
2s

3(s− 1)
.

Proof. From Lemma 3.2.8, in any two rows of M there are at most s2/3 invertible 2 by
2 submatrices. Now, in the entire matrix M , there are

(
s
2

)
ways to choose two rows, and

there are
(
s
2

)2
submatrices of order 2. This immediately yields

R2,2(s) ≤
(
s
2

)
( s

2

3
)(

s
2

)2 =
2s

3(s− 1)
.

Example 3.2.3. When s = 3, we only get the trivial upper bound R2,2(3) ≤ 1 from
Theorem 3.2.9. Consider the matrix

M0 =

 0 1 1
1 0 1
1 1 0

 .

It is clear from the proof of Theorem 3.2.9 that all nine 2 by 2 submatrices of M0 are
invertible, and M0 is the only 3 by 3 matrix with this property. However, M0 is not itself
invertible, so we can conclude that R2,2(3) ≤ 8/9. Example 3.2.1 shows that R2,2(3) ≥ 7/9.

In fact, we can show that R2,2(3) = 7/9. Suppose that R2,2(3) = 8/9. Let M be a 3 by 3
matrix such that R2,2(M) = 8/9. Then we can assume that the first two rows of M contain
three invertible 2 by 2 submatrices, the first and third rows of M contain three invertible
2 by 2 submatrices, and the last two rows of M contain two invertible 2 by 2 submatrices.
By permuting columns, the first two rows of M look like:(

0 1 1
1 0 1

)
.

In order that the first and third rows contain three invertible 2 by 2 submatrices, the third
row must be 101 or 110. In the first case, the last two rows of M contain no invertible 2 by
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2 submatrices, and in the second case, the last two rows of M contain three invertible 2 by 2
submatrices, but in this case M = M0. We conclude that R2,2(3) < 8/9, so R2,2(3) = 7/9.

Example 3.2.4. When s = 4, we get R2,2(4) ≤ 8/9 from Theorem 3.2.9. Consider the
matrix M = J4 − I4. M is invertible from Lemma 3.2.2. It is easy to check that 30 of the
2 by 2 submatrices of M are invertible. Therefore, R2,2(4) ≥ 5/6.

We can in fact show that R2,2(4) = 5/6, as follows. Suppose R2,2(4) > 5/6. Then there
is a 4 by 4 0 - 1 matrix M having at least 31 invertible 2 by 2 submatrices. There are six
pairs of rows in M , and 31 > 6× 5, so there is at least one pair of rows that contains six
invertible 2 by 2 submatrices. But this contradicts Lemma 3.2.8, where it is shown that the
maximum number of 2 by 2 submatrices in two given rows is at most 42/3 = 16/3 < 6.

We next present a generalization of Theorem 3.2.9 that leads to an improved upper
bound on R2,2(s). The proof of Theorem 3.2.9 was based on upper-bounding the number
of invertible 2 by 2 submatrices in any two rows of an s by s matrix M . Here we instead
determine an upper bound on the number of invertible 2 by 2 submatrices in any four
rows of M . (It turns out that considering three rows at a time yields the same bound as
Theorem 3.2.9, so we skip directly to an analysis of four rows at a time.)

Label the vectors in {0, 1}4 in lexicographic order as follows: b0 = (0, 0, 0, 0), b1 =
(0, 0, 0, 1), b2 = (0, 0, 1, 0), b3 = (0, 0, 1, 1), . . . , b15 = (1, 1, 1, 1). For 1 ≤ i, j ≤ 15, define
cij to be the number of invertible 2 by 2 submatrices in the 4 by 2 matrix

(
bTi bTj

)
. Let

C = (cij); note that C is a 15 by 15 symmetric matrix with zero diagonal such that every
off-diagonal element is a positive integer. This matrix C is straightforward to compute and
it is presented in Figure 3.1.

Now define z = (z1, . . . , z15) and consider the following quadratic program Q:

Maximize 1
2
zCzT

subject to
∑15

i=1 zi ≤ 1 and zi ≥ 0, for all i, 1 ≤ i ≤ 15.

We have the following result.

Theorem 3.2.10. For any integer s ≥ 4, it holds that

R2,2(s) ≤
γs

3(s− 1)
,

where γ denotes the optimal solution to Q.
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C =



0 1 1 1 1 2 2 1 1 2 2 2 2 3 3
1 0 1 1 2 1 2 1 2 1 2 2 3 2 3
1 1 0 2 3 3 2 2 3 3 2 4 5 5 4
1 1 2 0 1 1 2 1 2 2 3 1 2 2 3
1 2 3 1 0 3 2 2 3 4 5 3 2 5 4
2 1 3 1 3 0 2 2 4 3 5 3 5 2 4
2 2 2 2 2 2 0 3 5 5 5 5 5 5 3
1 1 2 1 2 2 3 0 1 1 2 1 2 2 3
1 2 3 2 3 4 5 1 0 3 2 3 2 5 4
2 1 3 2 4 3 5 1 3 0 2 3 5 2 4
2 2 2 3 5 5 5 2 2 2 0 5 5 5 3
2 2 4 1 3 3 5 1 3 3 5 0 2 2 4
2 3 5 2 2 5 5 2 2 5 5 2 0 5 3
3 2 5 2 5 2 5 2 5 2 5 2 5 0 3
3 3 4 3 4 4 3 3 4 4 3 4 3 3 0



.

Figure 3.1: The objective function C for the quadratic program

Proof. Let M be any s by s 0 - 1 matrix. Consider any four rows of M , say the first four
rows without loss of generality, and denote the resulting 4 by s submatrix by M ′. For
0 ≤ i ≤ 15, suppose there are ai columns of M ′ that are equal to bTi . The number N of
2 by 2 invertible submatrices of M ′ is equal to 1

2
aCaT , where a = (a1, . . . , a15) (we can

ignore a0 because a zero column does not give rise to any invertible submatrices). If we
now define zi = ai/s for all i, then we obtain

N =
1

2
aCaT =

s2

2
zCzT ≤ γs2.

There are
(
s
4

)
ways to choose four rows from M . The total number of occurrences of

invertible 2 by 2 submatrices obtained is at most
(
s
4

)
γs. However, each invertible 2 by 2

submatrix is included in exactly
(
s−2
2

)
sets of four rows, so the total number of invertible

2 by 2 submatrices is at most (
s
4

)
γs2(

s−2
2

) .
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The total number of 2 by 2 submatrices is
(
s
2

)2
, so we obtain the upper bound

R2,2(s) ≤
(
s
4

)
γs2(

s−2
2

)(
s
2

)2 =
γs

3(s− 1)
. (3.2)

3.2.1.1 Computational Results

In general, it can be difficult to find (globally) optimal solutions for quadratic programs.
We were able to solve our quadratic program Q using the BARON software [46] on the
NEOS server (http://www.neos-server.org/neos/). The result is that γ = 15/8 and an
optimal solution is given by z7 = z11 = z13 = z14 = 1/4, and zi = 0 if i 6∈ {7, 11, 13, 14}.
It is interesting to observe that this solution corresponds to the given set of four rows
containing only columns consisting of three 1’s and one 0. In fact, when s = 4, this
provides an alternative proof of Example 3.2.4.

Applying Theorem 3.2.10, we immediately obtain the following improved upper bound.

Corollary 3.2.11. For any s ≥ 4, it holds that

R2,2(s) ≤
5s

8(s− 1)
.

This upper bound is asymptotically equal to 5/8, which is an improvement over the
asymptotic upper bound of 2/3 obtained from Theorem 3.2.9.

It is of course possible to generalize this approach, by considering ρ rows at a time. The
coefficient matrix C will have 2ρ − 1 rows and columns. If γρ denotes the solution to the
related quadratic program, then we obtain the following generalization of Theorem 3.2.10.

Theorem 3.2.12. For any integers 2 ≤ ρ ≤ s, it holds that

R2,2(s) ≤
4γρ

ρ(ρ− 1)
× s

s− 1
. (3.3)

Proof. The equation (3.2) becomes the following:

R2,2(s) ≤
(
s
ρ

)
γρs

2(
s−2
ρ−2

)(
s
2

)2 =
4γρ

ρ(ρ− 1)
× s

s− 1
.
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The difficulty in obtaining improved bounds using this approach is that the optimal
solutions γρ of the quadratic programs are hard to compute.

3.2.2 Computational Constructions

This subsection covers the different computational methods we employed to search for
invertible matrices over F2 with high R2 values.

3.2.2.1 Exhaustive Search

The first search algorithm utilizes the quadratic programming formulation of 2-AONTs
given by D’Arco et al. [14], presented earlier in Section 3.2.1.

The matrix C is defined such that cij is the number of invertible 2×2 submatrices formed
by considering binary representations of i and j as two rows. Thus, the main diagonal of
C is all zeros. Since the trace of C equals 0 and C is not an all-zero matrix, it has both
positive and negative eigenvalues. Therefore, the matrix C is not positive/negative semi-
definite for any value of s. According to Vavasis [49, p. 81], the QP problem for such
matrices is NP-hard, in general. Consequently, an exhaustive search algorithm was used
to search for an instance of invertible s × s matrices with the maximum possible number
of invertible 2 × 2 submatrices, for 4 ≤ s ≤ 9. The algorithm used a branch-and-bound
technique that branches by iterating over different possible combinations for each row, in
nested loops, and bounds the search as soon as the rows of the matrix become linearly
dependent.

3.2.3 Exhaustive Search

In total, there are 2n
2

different binary n × n matrices; however many of them can be
skipped because either they are not invertible, or a permutation of their rows and columns
has already been considered. In the search algorithm, each for loop iterates over the
possible values for a row. At each iteration, if a row is a linear combination of the rows
above it, that row will not be considered, i.e., the search will be bounded by this linear
dependency check. Besides, since any permutation of rows and columns does not affect
either the singularity, or the number of invertible 2× 2 submatrices of a matrix, we want
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to enumerate as few matrices of each class as possible. Therefore, the search algorithm
only generated matrices in which each row has at least as many 1’s as the number of 1’s in
the row above it. Also, if two rows have the same number of 1’s, the row, representing a
smaller number in binary, should appear higher. These two rules enabled us to search only
a 1/s! fraction of the search domain. Finally, we partially restricted column permutations
by fixing all the 1’s in the first row to be the right-most coordinates. This constraint helped
the algorithm to skip repeated computations over different permutations of the first row,
for a fixed number of 1’s.

Example 3.2.5. Let s = 4. Then following the bounding constraints in the backtrack
algorithm search, the first row can only be chosen from: (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1),
and (1, 1, 1, 1). Suppose (0, 0, 1, 1) is the chosen as the first row, then neither (0, 0, 0, 1),
(0, 0, 1, 0), (0, 1, 0, 0), nor (1, 0, 0, 0) can be chosen as the second row because their weights
are smaller than that of the first row. Now, if the second row is (1, 0, 0, 1), then the third row
cannot be (0, 1, 1, 0) as it represents 6 in binary which is smaller than 9, which is represented
by the second row; also, it cannot be (1, 0, 1, 0) because it is a linear combination of the
first two rows.

To be able to use the algorithm for the case when s = 9, another restriction was added:
for the first 5 rows, if two coordinates in a row have different values, but in all the rows
above them, those coordinates were identical, in this row the value 0 should appear on the
left side of the value 1. Since the order of rows and columns does not impact the existence
the existence of a linear AONT, and the other combination will present at another iteration,
this restriction imposes no loss of generality.

The computations for 4 ≤ s ≤ 8 were executed on one node on a server of the Cheriton
School of Computer Science, linux.cs.uwaterloo.ca, with a 64 bit AMD CPU, having
a 2.6 GHz clock rate. We also attempted to use the same algorithm distributed over 256
processors on grex.westgrid.ca. But 14 of those processes did not terminate by the end
of the 96 hour time limit. The search domain, corresponding to those processes, was dis-
tributed again among 266 processes. In total, the whole computation took approximately
10000 CPU hours.

Some information about the resulting matrices is provided below. Also, the pseudocode
in Algorithm 1 illustrates the general algorithm used in the processes. For the s = 9
case, different iterations of the second for loop were distributed among 256 processes on
grex.westgrid.ca, two iterations per process.

Table 3.1 presents the number of 1’s, their density, and minimum weight of a row in
the resultant matrices, along with the values for s, N2(s), and R2,2(s).
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Algorithm 2 Exhaustive search(d, i, x, comb)// Matrix C is available globally

1: soln: An array containing the best answer during the current function call.
2: N : Highest number of invertible 2 by 2 submatices at the current function call
3: bj is the binary presentation of j in s bits
4: if d = 0 then
5: x← 0
6: Initialize comb to an array of all 0’s
7: for i : 1→ 2s − s do
8: comb[1] = i
9: (x, soln)← Exhaustive search (d+ 1, i, 0, comb)

10: if x > N then
11: N ← x
12: soln← comb
13: end if
14: end for
15: else
16: for j : i+ 1→ 2s − s+ d do
17: comb[d] = j
18: y ← x
19: if weight(i) ≤ weight(j) then
20: Add bj to the matrix as a row.
21: if all the rows are linearly independent then
22: for k : 1→ d do
23: y ← y + C[comb[k]][j]
24: end for
25: if d < s then
26: (y, soln)← Exhaustive search (d+ 1, j + 1, y, comb)
27: if y > N then
28: N ← y
29: soln← comb
30: end if
31: end if
32: end if
33: Remove bj from the matrix
34: end if
35: end for
36: return (N, soln)
37: end if
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Table 3.1: N2,2(s) and R2,2(s) submatrices for s = 3, . . . , 9.

s N2,2(s) R2,2(s) 1’s in the matrix density of 1’s Min weight of a row

3 7 0.7̄ 7 0.7̄ 2

4 30 0.83̄ 12 0.75 3

5 70 0.7 17 0.68 3

6 150 0.6̄ 25 0.694̄ 4

7 287 ≈ 0.651 35 ≈ 0.714 5

8 485 ≈ 0.618 47 ≈ 0.734 5

9 783 ≈ 0.604 55 ≈ 0.679 6

3.2.4 Search for Cyclic Matrices

Based on the idea of constructing almost 2-AONTs using cyclotomy in [14] and [53], and
also due to computational limitations of enumerating all possible matrices, we decided to
limit the search to cyclic matrices. The algorithm for this search iterates over different
possible values for the first row of the matrix, and each of the other rows will be generated
by applying a cyclic shift to the row above.

In order to search all the invertible s× s cyclic matrices for the one with the greatest
R2(s) value, it suffices to iterate through all possible permutations for the first row. This
is because the order of rows does not affect the value of R2(s). It also guarantees that the
first row can be substituted by any of its cyclic shifts. Hence, only one representative of
each class of rows, resulting by shifting the first row, need to be examined. For each choice
of the first row, the number of invertible 2× 2 submatrices generated by that row and any
of its shifts are counted and multiplied by s/2, in order to compute the total number of
invertible 2× 2 submatrices for that cyclic matrix. The algorithm keeps the row resulting
in the best ratio found so far, and reports that row at the end of the search.

The cyclic search program, for 3 ≤ s ≤ 36, was sequentially executed on a node on
linux.cs.uwaterloo.ca in about 14 hours. Table 3.2 demonstrates the results of the
cyclic search and the exhaustive search, as far as possible, for the sake of comparison.

As Table 3.2 shows, that s = 2, s = 4, and s = 7 are the only cases, as far as we can
compare, where both algorithms generate similar results.
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3.2.5 Search for Almost Cyclic Matrices

As previously mentioned, a cyclic search may fail to find some solutions near the optimal
solution. This limitation can be attributed to the restriction on the matrices to be cyclic.
Since being cyclic is not an intrinsic property of AONTs, the condition can be relaxed so
that the search considers matrices that are almost cyclic and have large 2-density. To do
so, we developed a modification of the adjusting step by Zhang et al. [53] (their algorithm
will be presented in Subsection 3.2.8). The algorithm searches the matrices that are cyclic
or off-by-one from being cyclic, i.e., a cyclic matrix with one entry altered from 0 to 1 or
from 1 to 0, from the matrix with the maximum 2-density.

The search algorithm enumerates the matrices in the same method that the cyclic search
does; however, it does not consider the independence of the rows as a necessary condition
if the rank of the resultant matrix is n − 1. Instead, the algorithm tries flipping each of
the entries in the last row of the matrix, one at a time, and checks the independence of
the rows and the number of invertible 2× 2 submatrices of each of the new matrices. The
2-densities of these matrices are then compared, first among themselves and then to best
2-density found so far. It should be noted that any entry can be moved to the last row
without changing the values of the other entries through cyclic shifts of the rows1 followed
by cyclic shifts of the columns; therefore, it is sufficient to flip entries only in the last row
of the matrix because the matrix is cyclic.

The computations were executed sequentially, on a node on linux.cs.uwaterloo.ca,
in about 16 hours.

Table 3.3 compares the results of cyclic search to those of cyclic search with adjusting
step. It can be seen from the table that the adjusting step improves the results in 15
out of 27 cases, and for the case s = 8 the algorithm performs as well as the exhaustive
search. The rate of improvement is the most significant for s = 3, where the adjusting step
improves the result by more than 130%. This rate decreases to less than 1% for s = 28,
where flipping one entry increases the number of invertible 2× 2 submatrices by 499.

1Rows and columns are shifted as a whole, not the entries in them.
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Table 3.2: Performance of cyclic matrices as almost AONTs for s = 2, . . . , 36 and q = 2.

s 1’s / row 1 Frq Max Cyc N2 Max Cyc R2 N2(s) R2(s)

2 1 0.5 1 1 1 1

3 1 0.3̄ 3 0.3̄ 7 0.7̄

4 3 0.75 30 0.83̄ 30 0.83̄

5 3 0.6 65 0.65 70 0.7

6 5 0.83̄ 135 0.6 150 0.6̄

7 5 ≈ 0.714 287 ≈ 0.651 287 ≈ 0.651

8 5 0.625 468 ≈ 0.597 485 ≈ 0.619

9 7 0.7̄ 765 ≈ 0.590 783 ≈ 0.604

10 7 0.7 1215 0.6 – –

11 7 ≈ 0.636 1716 ≈ 0.567 – –

12 9 0.75 2502 ≈ 0.574 – –

13 9 ≈ 0.692 3510 ≈ 0.577 – –

14 9 ≈ 0.643 4557 ≈ 0.550 – –

15 11 0.73̄ 6210 ≈ 0.563 – –

16 11 ≈ 0.688 8040 ≈ 0.558 – –

17 13 ≈ 0.765 10030 ≈ 0.542 – –

18 13 0.72̄ 12933 ≈ 0.552 – –

19 13 ≈ 0.684 16017 ≈ 0.548 – –

20 15 0.75 19510 ≈ 0.540 – –

21 15 ≈ 0.714 24045 ≈ 0.545 – –

22 15 ≈ 0.681 28831 ≈ 0.540 – –

23 17 ≈ 0.739 34385 ≈ 0.537 – –

24 17 ≈ 0.708 41124 ≈ 0.540 – –

25 17 0.68 48100 ≈ 0.534 – –

26 19 ≈ 0.731 56433 ≈ 0.534 – –

27 19 ≈ 0.704 65934 ≈ 0.535 – –

28 19 ≈ 0.679 75726 ≈ 0.530 – –

29 21 ≈ 0.724 87638 ≈ 0.532 – –

30 21 0.7 100485 ≈ 0.531 – –

31 21 ≈ 0.677 113863 ≈ 0.527 – –

32 23 ≈ 0.719 130128 ≈ 0.529 – –

33 23 0.6̄9 147213 ≈ 0.528 – –

34 25 ≈ 0.735 165087 ≈ 0.525 – –

35 25 ≈ 0.714 186445 ≈ 0.527 – –

36 25 ≈ 0.694 208530 ≈ 0.525 – –
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Table 3.3: Comparing the performance of cyclic matrices and almost cyclic matrices as
almost AONTs for s = 2, . . . , 28 and q = 2.

s Cyc N2 Cyc R2 Adj Cyc N2 Adj Cyc R2

2 1 1 1 1

3 3 0.3̄ 7 0.7̄

4 30 0.83̄ 30 0.83̄

5 65 0.65 69 0.69

6 135 0.6 148 ≈ 0.658

7 287 ≈ 0.651 287 ≈ 0.651

8 468 ≈ 0.597 485 ≈ 0.619

9 765 ≈ 0.590 781 ≈ 0.603

10 1215 0.6 1215 0.6

11 1716 ≈ 0.567 1777 ≈ 0.587

12 2502 ≈ 0.574 2503 ≈ 0.575

13 3510 ≈ 0.577 3510 ≈ 0.577

14 4557 ≈ 0.550 4707 ≈ 0.568

15 6210 ≈ 0.563 6210 ≈ 0.563

16 8040 ≈ 0.558 8040 ≈ 0.558

17 10030 ≈ 0.542 10288 ≈ 0.556

18 12933 ≈ 0.552 12933 ≈ 0.552

19 16017 ≈ 0.548 16017 ≈ 0.548

20 19510 ≈ 0.540 19746 ≈ 0.547

21 24045 ≈ 0.545 24045 ≈ 0.545

22 28831 ≈ 0.540 28905 ≈ 0.542

23 34385 ≈ 0.537 34584 ≈ 0.540

24 41124 ≈ 0.540 41124 ≈ 0.540

25 48100 ≈ 0.534 48364 ≈ 0.537

26 56433 ≈ 0.534 56544 ≈ 0.535

27 65934 ≈ 0.535 65934 ≈ 0.535

28 75726 ≈ 0.530 76225 ≈ 0.533
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3.2.5.1 Random Constructions

We investigate the expected number of invertible 2 by 2 submatrices in a random s by s 0 -
1 matrix M . Suppose every entry of M is chosen to be a 1 with probability ε, independent
of the values of all other entries. Using Fact 3.2.1, it is easy to see that a specified 2 by 2
submatrix is invertible with probability

4ε3(1− ε) + 2ε2(1− ε)2 = 2ε2(1− ε)(2ε+ 1− ε) = 2ε2(1− ε2).

This function is maximized by choosing ε =
√

2/2. The expected number of invertible 2

by 2 submatrices in M is 1
2

(
s
2

)2
(leading to an expected 2-density of 0.5). This method

does not immediately yield an almost AONT because it seems difficult to ensure that the
constructed matrix is itself invertible. However, the “adjusting step” method by Zhang
et al. [53] (see Subsection 3.2.8 for more details) can be applied to flip some entries of M
such that the resulting matrix is invertible. Even without using the adjusting step, random
construction proves to be a useful method to achieve high R2 values for small values of s.

3.2.6 Theoretical Constructions

Besides the random construction, we studied theoretical constructions, namely, a recursive
method, SBIBDs, and cyclotomy, for invertible matrices with high R2 values. In the
following subsections we will discuss these constructions in detail.

3.2.6.1 Recursive Constructions

We start by investigating the recursive construction of almost AONTs. Specifically, we
analyze a type of doubling construction in a particular case. We begin with the (2, 4, 2)-
almost AONT from Example 3.2.4. Recall that this AONT arises from the matrix J4 − I4
and it achieves the optimal result R2(4) = 5/6. We might try to use this matrix to
construct a (2, 8, 2)-almost AONT. There are various ways in which we could try to do
this; we present one method which leads to a reasonably good outcome. Consider the
matrix

M =

(
J4 − I4 J4 − I4
J4 − I4 J4

)
.
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Table 3.4: 2 by 2 invertible submatrices of M

i, j a0, a1, a2, a3 # invertible submatrices
1 ≤ i < j ≤ 4 a1 = 2, a2 = 2, a3 = 4 20
5 ≤ i < j ≤ 8 a1 = 1, a2 = 1, a3 = 6 13

1 ≤ i ≤ 4, 5 ≤ j ≤ 8, j 6= i+ 4 a1 = 2, a2 = 1, a3 = 5 17
1 ≤ i ≤ 4, j = i+ 4 a0 = 1, a1 = 1, a3 = 6 6

We first need to show that M is invertible. We show that det(M) = 1 as follows. Consider
a matrix of the form

M =

(
A B
C D

)
,

where A,B,C,D are square submatrices and CD = DC. In this case, it is known that
det(M) = det(AD −BC).

In our construction, we have CD = DC = 3J4, so this formula can be applied. We
have A = B = C = J4 − I4 and it is easy to check that BC = I4, AD = J4. Therefore
AD −BC = J4 − I4 and det(M) = det(AD −BC) = det(J4 − I4) = 1.

Next, we proceed to compute the number of 2 by 2 invertible submatrices of M . We
do this by looking at pairs of rows of M , say row i and row j, and computing the relevant
numbers a0, a1, a2, a3 in each case (where we are using the notation from the proof of
Lemma 3.2.8). We tabulate the results in Table 3.4.

The number of occurrences of the four cases enumerated in Table 3.4 is (respectively)
6, 6, 12 and 4. Therefore,

N2(M) = 6× 20 + 6× 13 + 12× 17 + 4× 6 = 426.

Finally, we compute

R2(M) =
426(
8
2

)2 =
426

784
= 0.5434.

Summarizing, we have the following.

Theorem 3.2.13. N2,2(8) ≥ 426 and R2,2(8) ≥ 0.5434.

It is interesting to note that this recursive construction yields a better result than the
direct constructions considered previously. For example, if M = J8 − I8, then we only get
that N2 ≥ 364. Also, Theorem 3.2.7 (with s = 8, t = 2) only yields N2 ≥ 322.
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3.2.6.2 Constructions from Symmetric BIBDs

We next give a construction that potentially achieves similar behavior as the random con-
struction, using symmetric balanced incomplete block designs (SBIBDs). As we mentioned
in Section 1.4, a (v, k, λ)-balanced incomplete block design (BIBD) is a pair (X,B), where
X is a set of v points and B is a collection of k-subsets of X called blocks, such that every
pair of points occurs in exactly λ blocks. Denote b = |B|. If b = v, the BIBD is called a
symmetric BIBD (SBIBD).

Suppose (X,B) is a (v, k, λ)-BIBD. Denote X = {xi : 1 ≤ i ≤ v} and B = {Bj : 1 ≤
j ≤ b}. The incidence matrix of (X,B) is the v by b 0 - 1 matrix M = (mij) where mij = 1
if xi ∈ Bj, and mij = 0 if xi 6∈ Bj.

Lemma 3.2.14. Suppose M is the incidence matrix of a symmetric (v, k, λ)-BIBD. Then
M is invertible over F2 if and only if k is odd and λ is even.

Proof. It is well-known [13] that det(M) is an integer and

(det(M))2 = k2(k − λ)v−1.

Reducing modulo 2, we see that det(M) ≡ 1 mod 2 if and only if k is odd and λ is even.

Theorem 3.2.15. Suppose M is the incidence matrix of a symmetric (v, k, λ)-BIBD where
k is odd and λ is even. Then

R2(M) =
k2 − λ2(

v
2

) . (3.4)

Proof. First, since k is odd and λ is even, M is invertible over F2 by Lemma 3.2.14.
Consider two rows of M and define a0, a1, a2, a3 as in the proof of Theorem 3.2.9. Using
the fact that M is the incidence matrix of a symmetric (v, k, λ)-BIBD, it is not hard to see
that a0 = v − 2k + λ, a1 = a2 = k − λ and a3 = λ. Then we can compute

a1a2 + a1a3 + a2a3 = 2λ(k − λ) + (k − λ)2 = k2 − λ2.

From this, we have N2(M) =
(
v
2

)
(k2 − λ2) and (3.4) is easily derived.

Now we try to figure out the best result that could possibly be obtained from Theorem
3.2.15. Suppose k ≈ cv. Then from the equation λ(v− 1) = k(k− 1), we see that λ ≈ c2v.
Substituting into (3.4), we get R2(M) ≈ 2(c2 − c4). Now we of course have 0 ≤ c ≤ 1,
and the function 2(c2 − c4) is maximized when c =

√
2/2. In this case, we would get
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R2(M) ≈ 1/2, more-or-less matching the random construction from Section 3.2.5.1. We
have also guaranteed that the matrix M is invertible. Of course, we would require a suitable
SBIBD in order to get close to this bound.

We consider some examples to illustrate the application of Theorem 3.2.15.

Example 3.2.6. It is known [13] that there is a (31, 21, 14)-SBIBD. Noting that 21 is odd
and 14 is even, the incidence matrix of this design is invertible over F2 by Lemma 3.2.14.
Observe that 21/31 is quite close to

√
2/2, so we expect a good result. Applying Theorem

3.2.15, we get

R2(M) =
212 − 142(

31
2

) =
49

93
≈ 0.5269.

Example 3.2.7. There also exists a (40, 27, 18)-SBIBD (see [13]). Noting that 27 is odd
and 18 is even, the incidence matrix of this design is invertible over F2 by Lemma 3.2.14.
Applying Theorem 3.2.15, we get

R2(M) =
272 − 182(

40
2

) =
27

52
≈ 0.5192.

Example 3.2.8. A (4m− 1, 2m− 1,m− 1)-SBIBD is called a Hadamard design. If m is
odd, then λ = m − 1 is even. Certainly k = 2m − 1 is odd, so the incidence matrix M is
invertible, by Lemma 3.2.14. These SBIBDs are known to exist for infinitely many (odd)
values of m, e.g., whenever 4m − 1 ≡ 3 mod 8 is a prime or a prime power (see [13]).
From the incidence matrix of such a BIBD, we obtain

R2(M) =
(2m− 1)2 − (m− 1)2(

4m−1
2

) ≈ 3

8
.

Example 3.2.9. Here we make use of a classic result based on difference sets. Suppose
q = 4t2 + 9 is prime and t is odd. In this situation, it was shown by E. Lehmer that
the quartic residues modulo q, together with 0, form a difference set which generates a
(q, (q + 3)/4, (q + 3)/16)-SBIBD (e.g., see [13, p. 116]). If we complement this design
(i.e., we replace all 0’s by 1’s and all 1’s by 0’s in the incidence matrix), the result is
a (q, 3(q − 1)/4, 3(3q − 7)/16)-SBIBD. This SBIBD will have k odd and λ even, so its
incidence matrix M is invertible, by Lemma 3.2.14. The first example is obtained when
t = 5, yielding

R2,2(109) ≥ 329

654
.
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Asymptotically, from (3.4), we obtain

R2(M) ≈ 63

128

if there exist sufficiently large primes q of the desired form. However, it is a famous
unsolved conjecture that there exist infinitely many primes of the form x2 + 9 [18], so we
are not in a position to claim that this asymptotic result holds.

The following theorem generalizes Example 3.2.7.

Theorem 3.2.16. Suppose m is a positive integer and s = 3m+1−1
2

. Then

R2,2(s) ≥
40× 32m−3

(3m+1 − 1)(3m − 1)
.

Proof. The points and hyperplanes of the m-dimensional projective geometry over F3 yield
a ((3m+1 − 1)/2, (3m − 1)/2, (3m−1 − 1)/2)-SBIBD. If we complement this design, we get a
((3m+1 − 1)/2, 3m, 2× 3m−1)-SBIBD. This design has k odd and λ even, so we can apply
Theorem 3.2.15. The result is that

R2,2

(
3m+1 − 1

2

)
≥ (3m)2 − (2× 3m−1)2( 3m+1−1

2
2

) =
40× 32m−3

(3m+1 − 1)(3m − 1)
.

Now we examine the asymptotic behavior of the result proven in Theorem 3.2.16. The
SBIBD has k ≈ 2v/3 and λ ≈ 4v/9. It then follows from (3.4) that

R2(M) =
k2 − λ2(

v
2

) ≈ 2

((
2

3

)2

−
(

4

9

)2
)

=
40

81
.

Therefore, we obtain the following corollary.

Corollary 3.2.17. It holds that lim sups→∞R2,2(s) ≥ 40/81.

We note that 40/81 ≈ 0.494. So there is a gap between our upper and lower asymptotic
bounds on 2-density, which are respectively 0.625 (from Corollary 3.2.11) and 0.494 (and
of course the lower bound only has been proven to hold within a certain infinite class of
examples).
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3.2.6.3 Constructions using Cyclotomy

We now look at constructions using cyclotomy. Let p = 4f + 1 be prime, where f is even,
and let ν ∈ Fp∗ be a primitive element. Let C0 = {ν4i : 0 ≤ i ≤ f − 1}; this is the
unique subgroup of Fp∗ having order f . The multiplicative cosets of C0 are Cj = νjC0, for
j = 0, 1, 2, 3. These cosets are often called cyclotomic classes.

We now construct a p by p 0 - 1 matrix M ′ = (mij) from C0. The rows and columns
of M ′ are indexed by Fp, and mij = 1 if and only if j − i ∈ C0. Note that the ith row of
M ′ is the incidence vector of i + C0. Finally, define M to be the complement of M ′ (i.e.,
replace all 1’s by 0’s and vice versa).

We will now compute the number of invertible 2 by 2 submatrices of M . Consider rows
i1 and i2 of M . It is obvious that the number of invertible 2 by 2 submatrices contained
in these two rows is the same as the number of invertible 2 by 2 submatrices contained in
rows 0 and d, where d = i1 − i2. We can compute this number if we can determine the
number nd of columns c such that m0c = mdc = 1. It is clear that

nd = |C0 ∩ (d+ C0)|.

However,
|C0 ∩ (d+ C0)| = |d−1C0 ∩ (1 + d−1C0)|.

Now, d−1C0 = Cj, for some j, 0 ≤ j ≤ 3, so

nd = |Cj ∩ (1 + Cj)|

for this particular value of j. This quantity is a cyclotomic number of order 4 and is
denoted by (j, j).

We will make use of the following theorem from [22].

Theorem 3.2.18. [22, Theorem 1] Suppose p = 4f+1 is prime and f is even. Let ν ∈ Fq
be a primitive element. Let p = α2 + β2, where α ≡ 1 mod 4 and νf ≡ α/β mod p. Then
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the cyclotomic numbers (j, j) (0 ≤ j ≤ 3), are as follows:

(0, 0) = A0 =
p− 11− 6α

16
=

4f − 10− 6α

16

(1, 1) = A1 =
p− 3 + 2α− 4β

16
=

4f − 2 + 2α− 4β

16

(2, 2) = A2 =
p− 3 + 2α

16
=

4f − 2 + 2α

16

(3, 3) = A3 =
p− 3 + 2α + 4β

16
=

4f − 2 + 2α + 4β

16
.

Remark 3.2.1. A prime p ≡ 1 mod 4 can be expressed as the sum of two squares in a
unique manner. If p = α2 + β2, then one of α, β is odd and the other is even. So without
loss of generality we can take α to be odd and β to be even. In this way, α and β are
determined up to their signs. The condition α ≡ 1 mod 4 now determines α uniquely, and,
similarly, νf ≡ α/β mod p determines β uniquely.

Now we can compute the number of 2 by 2 submatrices contained in rows i1 and i2 of
M . Again we define a0, a1, a2, a3 as in the proof of Theorem 3.2.9. Recalling that M is the
complement of M ′, we have

a1 = a2 = f − (j, j)

and
a3 = p− 2f + (j, j) = 2f + 1 + (j, j),

where (i1 − i2)−1C0 = Cj. Thus we obtain

a1a2 + a1a3 + a2a3 = 5f 2 + 2f − (j, j)(4f + 2 + (j, j)).

As we consider all
(
p
2

)
pairs {i1, i2} with i1 6= i2, we see that (j, j) takes on each of the

four possible values Ai (1 ≤ i ≤ 4) one quarter of the time. Therefore, the total number
of invertible 2 by 2 submatrices in M is(

p

2

) 3∑
i=0

(
5f 2 + 2f − Ai(4f + 2 + Ai)

4

)
=

(
p

2

)
252f 2 + 168f + 25− 3α2 − 2β2 − 6α

64
,

where the last line is obtained by applying the formulas given in Theorem 3.2.18.
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Table 3.5: Examples from Cyclotomy

p f α β N2(M) R2(M)
17 3 1 4 9962 0.53860
97 5 9 −4 10831020 0.49962

193 5 −7 12 170314008 0.49613
241 7 −15 4 414228390 0.49527
401 3 1 −20 3177945050 0.49408
433 5 17 −12 4320175230 0.49388
449 3 −7 20 4995836216 0.49388

Example 3.2.10. Suppose p = 17 = 4 × 4 + 1. Then ν = 3 is a primitive element.
Since 17 = 12 + 42, we have α = 1 and β ∈ {4, 13}. We compute 34 ≡ 13 mod 17. Since
1/4 ≡ 13 mod 17, we have β = 4. The cyclotomic classes are

C0 = {1, 13, 16, 4},
C1 = {3, 5, 14, 12},
C2 = {9, 15, 8, 2},
C3 = {10, 11, 7, 6}.

The cyclotomic numbers can now be computed from Theorem 3.2.18; they are

(0, 0) = A0 =
17− 11− 6

16
= 0,

(1, 1) = A1 =
17− 3 + 2− 4× 4

16
= 0,

(2, 2) = A2 =
17− 3 + 2

16
= 1,

(3, 3) = A3 =
17− 3 + 2 + 4× 4

16
= 2.

The total number of invertible 2 by 2 submatrices in M is 9962.

It remains to consider the invertibility of the matrices M constructed above. The
matrices in question are cyclic. Suppose a p by p cyclic 0 - 1 matrix M has as its initial
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row the vector (m0, . . . ,mp−1). We associate with this vector the polynomial

m(x) =

p−1∑
i=0

mix
i ∈ Z2[x].

It is easy to see that M is invertible if and only if gcd(m(x), xp − 1) = 1. In this case, the
inverse m−1(x) of m(x) is defined in the quotient ring Z2[x]/(xp − 1). The cyclic matrix
whose first row is determined by m−1(x) will in fact be the inverse of M . Therefore, to
determine the invertibility of M , we just need to do a gcd computation.

Example 3.2.11. Let p = 17. From Example 3.2.10, we have C0 = {1, 13, 16, 4}. The
first row of M is

1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0,

which corresponds to the polynomial

m(x) = 1 + x2 + x3 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x14 + x15.

The inverse of m(x) mod x17 − 1 is

m−1(x) = 1 + x+ x3 + x4 + x5 + x6 + x7 + x10 + x11 + x12 + x13 + x14 + x16.

By Dirichlet’s Theorem, there are an infinite number of primes p ≡ 1 mod 8. However,
we do not have a theoretical criterion to determine if a given matrix M in this class of
examples is invertible. Therefore, we cannot prove that there are an infinite number of
examples of this type. However, by computing gcds, as described above, we determined all
the invertible matrices M of order less than 500 that can be constructed by this method.
Some data about these matrices is presented in Table 3.5. Another observation is that, if
this is in fact an infinite class, then it can be shown that the density of these examples
approaches 63/128 ≈ 0.492 as f approaches infinity.

3.2.7 Values and Bounds on N2,2(s) for Small s

We summarize our upper and lower bounds on N2,2(s) for s ≤ 12 in Table 3.6. For the cases
s = 5, 6, 7, 8, we have exact values of N2,2(s) that are obtained from exhaustive computer
searches. For s = 9, our lower bound is obtained from a partial (uncompleted) exhaustive
search. For s = 10, 11, 12, the lower bounds come from randomly constructed matrices.
All these matrices are published in a technical report [30].
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Table 3.6: Values and Bounds on N2,2(s) for small s

s N2,2(s) justification
2 N2,2(2) = 1 Fact 3.2.1
3 N2,2(3) = 7 Example 3.2.3
4 N2,2(4) = 30 Example 3.2.4
5 N2,2(5) = 70 exhaustive search ( [14, Example 36])
6 N2,2(6) = 150 exhaustive search ( [14, Example 37])
7 N2,2(7) = 287 exhaustive search ( [14, Example 38])
8 N2,2(8) = 485 exhaustive search ( [14, Example 39])
9 N2,2(9) ≥ 783 [14, Example 40]
10 N2,2(10) ≥ 1194 [14, Example 41]
11 N2,2(11) ≥ 1744 [14, Example 42]
12 N2,2(12) ≥ 2448 [14, Example 43]

3.2.8 Updated Results

Based on and subsequent to our results [14], Zhang et al. [53] proved the existence of
almost 2-AONTs with maximum R2,2 values or “invertible binary matrices with maximum
number of 2-by-2 invertible submatrices” [53], in their own words. The authors introduced
a different quadratic programming model and using that model they proved that 0.5 is an
asymptotic upper bound for the ratio of the number of invertible 2 by 2 submatrices to
the total number of 2 by 2 submatrices in an invertible binary matrix. Then, they [53]
extended our random construction (which we presented in Section 3.2.5.1) to prove the
lower bound. Recall that the difficulty is to prove existence of a random matrix that is
invertible. This problem can be solved by means of an “adjusting step” that alters entries
on the diagonal of the matrix.

The upper and lower bounds can be combined to yield Theorem 3.2.19.

Theorem 3.2.19. lim
s→∞

R2,2(s) = 0.5.

Zhang et al. [53] then presented a method of constructing invertible binary matrices
with high R2,2 values. Their construction is comprised of two steps: “main step” and
“adjusting step”. The main step is very similar to our construction using cyclotomy (see
Section 3.2.6.3 for details) except that they use cyclotomic classes of order 7 instead of
order 4. The result is a cyclic binary matrix with high R2,2 values, namely, asymptotically
equal to 1200/2401. Then, the adjusting step assures the invertibility of the matrix by
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flipping some entries on the main diagonal of the matrix. Therefore, the matrix may not
be cyclic at the end, but it is invertible.

3.3 Linear Transforms over F3

In this section, we extend the alphabet and consider invertible matrices with entries from
F3, i.e., elements of {0, 1, 2}. For the case of t = 1, the following construction by Stinson [42]
works for any prime power q ≥ 2.

Construction 3.3.1. Let x be a non-zero element in Fq such that x 6= −1. We define M
to be as follows:

M =


x x x · · · x
x x+ 1 x · · · x
x x x+ 1 · · · x
...

...
...

. . .
...

x x x · · · x+ 1

 .

To prove the invertibility of M , we subtract the first row from all the other rows. Using
the cofactor expansion of the new matrix with respect to its first column, we can see that
the determinant of M is equal to x 6= 0.

Since all elements of M are non-zero, M is a (1, s, q)-AONT. Hence, we now mostly
focus on the case of t = 2. We use various computational methods of finding invertible
matrices over F3 with high 2-density.

3.3.1 Random Construction

First, we will consider the random construction of such matrices. In this case, there are
(32 − 1)(32 − 3) = 48 invertible 2× 2 matrices, as listed below.(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
,

(
2 0
0 2

)
,

(
0 2
2 0

)
,

(
2 2
2 0

)
,

(
2 2
0 2

)
,

(
2 0
2 2

)
,

(
0 2
2 2

)
,

(
1 1
1 2

)
,

(
1 1
2 1

)
,(

1 2
1 1

)
,

(
2 1
1 1

)
,

(
2 2
2 1

)
,

(
2 2
1 2

)
,

(
2 1
2 2

)
,

(
1 2
2 2

)
,

(
1 0
0 2

)
,
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(
0 1
2 0

)
,

(
0 2
1 0

)
,

(
2 0
0 1

)
,

(
0 1
1 2

)
,

(
0 1
2 1

)
,

(
0 2
1 1

)
,

(
1 1
0 2

)
,(

1 1
2 0

)
,

(
1 0
1 2

)
,

(
1 0
2 1

)
,

(
1 2
0 1

)
,

(
1 2
1 0

)
,

(
2 0
1 1

)
,

(
2 1
0 1

)
,(

2 1
1 0

)
,

(
0 2
2 1

)
,

(
0 2
1 2

)
,

(
0 1
2 2

)
,

(
2 2
0 1

)
,

(
2 2
1 0

)
,

(
2 0
2 1

)
,(

2 0
1 2

)
,

(
2 1
0 2

)
,

(
2 1
2 0

)
,

(
1 0
2 2

)
,

(
1 2
0 2

)
,

(
1 2
2 0

)
A random 2 × 2 matrix A = {ai,j} that is generated by randomly assigning its entries to
0, 1, and 2, with the following probabilities

Pr(ai,j = 1) = α, Pr(ai,j = 2) = β, Pr(ai,j = 0) = γ, α + β + γ = 1

is therefore invertible with probability

f(α, β, γ) = 2(α2γ2 + β2γ2) + 4(α3γ + β3γ)

+ 4(α3β + β3α) + 12(α2βγ + β2αγ) + 4αβγ2.
(3.5)

To maximize f we use the Lagrange multiplier method. First, define g as follows:

g(α, β, γ, λ) = f(α, β, γ)− λ(1− α− β − γ)

= 2(α2γ2 + β2γ2) + 4(α3γ + β3γ)

+ 4(α3β + β3α) + 12(α2βγ + β2αγ)

+ 4αβγ2 − λ(1− α− β − γ).

(3.6)

Computing all four partial derivatives of g, we get

∂g

∂α
= 4αγ2 + 12α2γ + 12α2β + 4β3 + 24αβγ + 12β2γ + 4βγ2 − λ (3.7)

∂g

∂β
= 4βγ2 + 12βγ + 12β2α + 4α3 + 24αβγ + 12α2γ + 4αγ2 − λ (3.8)

∂g

∂γ
= 4α2γ + 4β2γ + 4α3 + 4β3 + 12α2β + 12β2α + 8αβγ − λ (3.9)

∂g

∂λ
= −α− β − γ + 1 = 0. (3.10)
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Table 3.7: Highest N2(M) and R2(M) found for random matrices Ms×s over F3 where
s ∈ {3, . . . , 13}.

s N2 R2 0 Frq 1 Frq 2 Frq

3 9 1 0.2̄ 0.4̄ 0.2̄

4 34 0.94̄ 0.25 0.25 0.5

5 86 0.86 0.20 0.48 0.32

6 185 0.82̄ 0.16̄ 0.4̄ 0.38̄

7 343 0.7̄ ≈ 0.204 ≈ 0.388 ≈ 0.408

8 591 ≈ 0.754 ≈ 0.156 ≈ 0.391 ≈ 0.453

9 965 ≈ 0.745 ≈ 0.173 ≈ 0.395 ≈ 0.432

10 1479 ≈ 0.730 0.18 0.43 0.39

11 2189 ≈ 0.724 ≈ 0.190 ≈ 0.397 ≈ 0.413

12 3090 ≈ 0.709 ≈ 0.188 ≈ 0.382 ≈ 0.431

13 4306 ≈ 0.708 ≈ 0.172 ≈ 0.402 ≈ 0.426

We used Maple to solve ∂g
∂α

= 0, ∂g
∂β

= 0, ∂g
∂γ

= 0, ∂g
∂λ

= 0, and the only solution that

maximizes g, and therefore f , and which satisfies α, β, γ ∈ [0, 1] is α = β =
√

6/6, γ =
1−
√

6/3, λ = 8/3, from which we obtain g(
√

6/6,
√

6/6, 1−
√

6/3, 8/3) = 2/3.

For each value of s, 3 ≤ s ≤ 13, 10000 random matrices with elements chosen randomly
from aforementioned distribution were generated. For each value of s, the number of in-
vertible 2× 2 submatrices was counted for any of the resulting invertible random matrices.
The invertible matrices, found by the random search, with the maximum number of in-
vertible 2× 2 submatrices are reported in our work with Stinson [31]. Table 3.7 shows the
largest number of invertible 2× 2 submatrices found, in the invertible random matrices.

3.3.2 Exhaustive Search and Search for Cyclic and Almost Cyclic
Matrices

Similar to the q = 2 case, the exhaustive search algorithms, as well as the algorithms
for finding cyclic and almost cyclic matrices, were used to generate the ternary invertible
matrices with the maximum number of invertible 2 × 2 submatrices. The algorithms are
the same as those described in the previous section, only modified to fit the q = 3 case.
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Figure 3.2: The value of function f for different values of α and γ

Specifically, the linear independence of the rows of the matrix cannot be checked by means
of boolean functions any more. In the exhaustive search, eliminating search branches
based on the permutations of columns is limited. In the search for cyclic and almost cyclic
matrices on the other hand, in addition to cyclic shifts of each row, multiples of all its
cyclic shifts, including the row itself, were also omitted from the search.

The algorithms were executed on a node on linux.cs.uwaterloo.ca, for 3 ≤ s ≤ 5
for the exhaustive search and 3 ≤ s ≤ 20 for the other two. The exhaustive search for
s = 6 was computed on 160 virtual cores of a (Tick) node on RIPPLE server. Tables 3.8
and 3.9 present the results.

Table 3.8 shows, that in most cases, the frequencies of 0’s, 1’s, and 2’s of the cyclic
matrices found by the search do not exactly follow the results of the probabilistic analysis.
To explain this difference, it is required to consider the behavior of function f . Figure 3.2
demonstrates that the value of function f is mostly sensitive to the changes in the value
of γ, rather than changes in the values of α or β. This explains why the frequency of 0’s
in the cyclic matrices is around 20%, yet the frequencies of 1’s and 2’s vary considerably.

Comparing the results provided in Table 3.9 to those provided in Table 3.3, it can be
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seen that applying the adjusting step improves the results of cyclic search less often and by
smaller values for the q = 3 case as it does for the q = 2 case. While changing one entry of
the binary cyclic matrices can improves the value of N2 in 10 cases out of first 20 cases and
by up to 236, this technique only changes N2 in only 3 cases out of the first 20 cases in the
ternary cyclic matrices. That the ternary matrices have more flexibility than the binary
ones and the maximum value of N2 is naturally higher for them can be explanations for
this difference in the performance of this technique on the two different sets of matrices.

The next observation concerns the behavior of R2 for the cyclic matrices and R2(s).
In the binary case, the results of the exhaustive search algorithm show that the R2(s)
decreases to about 0.6 as soon as s reaches 9. However, the maximum cyclic R2 values,
that were closely following R2(s), approach 0.52, which is consistent with the result by
Zhang et al. [53], that the upper limit of R2(s) converges to 0.5, as we increase s. This
result is also consistent with the expected value of R2 when we set the frequency of 1 to
be
√

2/2 [14]. Although there is not enough data for the ternary case, the results do not
rule out the possibility of R2 converging to 2/3 when q = 3.

Finally, we will discuss the effect of the adjusting step. As mentioned in Section 2, the
relative impact of one adjusting step is reduced as s grows. The effect of multiple adjusting
steps is open to be studied. Also, the patterns of cyclic matrices that cannot be improved
by one adjusting step, i.e., cyclic matrices with the highest R2 among all the matrices in
the neighborhood of being 1 entry away from that matrix, can be further investigated.
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Table 3.8: Highest N2(M) and R2(M) found for cyclic matrices Ms×s over F3 where s ∈
{3, . . . , 20} versus N2,3(s) and R2,3(s) for s = 3, . . . , 6.

s Cyc N2 Cyc R2 0 Frq 1 Frq 2 Frq N2(s) R2(s) 1 Frq 2 Frq

3 9 1 0.3̄ 0.6̄ 0 9 1 0.6̄ 0

4 34 0.94̄ 0.25 0.5 0.25 34 0.94̄ 0.625 0.125

5 90 0.9 0.2 0.6 0.2 90 0.9 0.56 0.24

6 189 0.84 0.16̄ 0.5 0.3̄ 195 0.86̄ 0.527̄ 0.27̄

7 357 ≈ 0.810 ≈ 0.143 ≈ 0.571 ≈ 0.286 – – – –

8 600 ≈ 0.765 0.25 0.5 0.25 – – – –

9 1008 0.7̄ 0.2̄ 0.3̄ 0.4̄ – – – –

10 1550 ≈ 0.765 0.2 0.3 0.5 – – – –

11 2288 ≈ 0.756 0.1̄8 0.4̄5 0.3̄6 – – – –

12 3264 ≈ 0.749 0.16̄ 0.583̄ 0.25 – – – –

13 4498 ≈ 0.739 ≈ 0.154 ≈ 0.466 ≈ 0.385 – – – –

14 6069 ≈ 0.733 ≈ 0.214 ≈ 0.357 0≈ .429 – – – –

15 8085 0.73̄ 0.2 0.53̄ 0.26̄ – – – –

16 10456 ≈ 0.726 ≈ 0.188 ≈ 0.566 0.25 – – – –

17 13413 ≈ 0.725 0.177 ≈ 0.471 ≈ 0.353 – – – –

18 16839 ≈ 0.719 0.16̄ 0.38̄ 0.4̄ – – – –

19 20938 ≈ 0.716 ≈ 0.211 0.421 0.368 – – – –

20 25840 ≈ 0.716 0.2 0.5 0.3 – – – –
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Table 3.9: Comparing the performance of cyclic matrices and almost cyclic matrices as
almost AONTs for s = 2, . . . , 20 and q = 3.

s Cyc N2 Cyc R2 Adj Cyc N2 Adj Cyc R2

3 9 1 9 1.0

4 34 0.94̄ 34 0.94̄

5 90 0.9 90 0.9

6 189 0.84 189 0.84

7 357 ≈ 0.810 357 ≈ 0.810

8 600 ≈ 0.765 608 ≈ 0.776

9 1008 0.7̄ 1008 0.7̄

10 1550 ≈ 0.765 1550 ≈ 0.765

11 2288 ≈ 0.756 2288 ≈ 0.756

12 3264 ≈ 0.749 3264 ≈ 0.749

13 4498 ≈ 0.739 4498 ≈ 0.739

14 6069 ≈ 0.733 6080 ≈ 0.734

15 8085 0.73̄ 8085 0.73̄

16 10456 ≈ 0.726 10482 ≈ 0.728

17 13413 ≈ 0.725 13413 ≈ 0.725

18 16839 ≈ 0.719 16839 ≈ 0.719

19 20938 ≈ 0.716 20938 ≈ 0.716

20 25840 ≈ 0.716 25840 ≈ 0.716
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Chapter 4

More Generalizations of
All-or-Nothing Transforms

In Chapter 2, we discussed t-AONTs as a generalization of AONTs, followed by a study of
structures close to 2-AONTs in Chapter 3. In this chapter, we introduce four additional
generalizations of t-AONTs. Similar to the approach taken in Chapter 2, both weak and
perfect security can be considered for all the generalizations in this chapter; however, we
only provide the definitions for perfect security. Also, we consider the unbiased array
representation of each of these generalizations. As was the case in Chapter 2, if all the
input s-tuples are equiprobable, the unbiased array representations provide perfect security.
Further, weak security is achieved for any probability distribution of the inputs (provided
each input occurs with non-zero probability).

4.1 Range AONTs

As observed through different examples of AONTs, the existence of a (t, s, q)-AONT implies
that of a (t, s − 1, q)-AONT as shown in Theorem 2.4.2, as well as an (s − t, s, q)-AONT
as mentioned by Wang et al. [50]. In Chapter 2, we showed that a t-AONT guarantees the
perfect security of any t input blocks in the absence of any t output blocks; however, as
soon as the adversary learns about more than s−t elements, no security can be guaranteed,
unless the AONT is also a (t − 1)-AONT. If the t-AONT structure is a (t − 1)-AONT as
well, the adversary’s knowledge of one additional output leaves any t − 1 input elements
undetermined. In order to prevent total loss of guaranteed security upon the knowledge of
“one more” output element, we define range AONTs.
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known output blocks

protected input blocks

t2

t1

s

s− t2 s− t1 s

Figure 4.1: The behavior of a ([t1, t2], s, v)-rangeAONT for different numbers of available
output blocks.

Definition 4.1.1. Suppose s, t1, and t2 are positive integers, where t1 ≤ t2 ≤ s. Let

X1, . . . ,Xs,Y1, . . . ,Ys

be random variables taking on values in a finite set Σ of size v. These 2s random variables
define a ([t1, t2], s, v)-rangeAONT provided that the following conditions are satisfied:

1. H(Y1, . . . ,Ys | X1, . . . ,Xs) = 0.

2. H(X1, . . . ,Xs | Y1, . . . ,Ys) = 0.

3. For all X ⊆ {X1, . . . ,Xs} with |X | = t such that t1 ≤ t ≤ t2, and for all Y ⊆
{Y1, . . . ,Ys} with |Y| = s− t, it holds that

H(X | {Y1, . . . ,Ys} \ Y) = H(X ). (4.1)

Accordingly, a (t, s, v)-AONT is a ([t1, t2], s, v)-rangeAONT when t1 = t2 = t.

Figure 4.1 depicts the behavior of a ([t1, t2, s, v])-AONT. The area hatched in blue
presents the number of protected input blocks are protected upon the availability of that
many output blocks to the adversary.
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If we consider the array representation of the a ([t1, t2], s, v)-rangeAONT, similar to the
(t, s, v)-AONT representation in Figure 2.1, for any integer t, t1 ≤ t ≤ t2, fixing any s− t
coordinates of an output, does not yield any information about any t input coordinates.

The following is a straightforward generalization of Theorem 2.2.1.

Theorem 4.1.1. [14] A ([t1, t2], s, v)-rangeAONT is equivalent to a (vs, 2s, v) array that
is unbiased with respect to the following sets of columns:

1. {1, . . . , s},

2. {s+ 1, . . . , 2s},

3. I ∪ J , for any sets I and J where I ⊆ {1, . . . , s}, |I| = t and t1 ≤ t ≤ t2, J ⊆
{s+ 1, . . . , 2s}, and |J | = s− t.

Note that, when t1 = t2 in Theorem 4.1.1, we obtain Theorem 2.2.1. The following
result is an immediate generalization of Corollary 2.2.4.

Theorem 4.1.2. Suppose there exists an OA(s, 2s, v). Then there exists a ([t1, t2], s, v)-
rangeAONT for all t1 and t2 such that 1 ≤ t1 ≤ t2 ≤ s.

In particular, if the range AONT maintains providing the guaranteed security as long
as the adversary does not have access to at least one output element, we call it a strong
AONT.

Definition 4.1.2. A ([t1, t2], s, v)-rangeAONT is a (t, s, v)-strong AONT if t1 = 1 and
t2 = t.

The following theorem is the direct result from combining Theorem 4.1.2 and Definition
4.1.2.

Corollary 4.1.3. Suppose there exists an OA(s, 2s, v). Then there exists a (t, s, v)-strong
AONT for all t, 1 ≤ t ≤ s.

Therefore, for a (t, s, q)-strong AONT, if the adversary is missing i output elements,
1 < i ≤ t, obtaining one extra output element only makes it possible to compute functions
of i input elements.

Similar to the case of AONTs and t-AONTs, we can define linear range AONTs, as a
range AONT such that each output element is a linear function of the input elements. We
write a linear range AONT in the form of y = xM−1 and its inverse as x = yM , where M
is an s× s matrix. Using Lemma 2.3.1 for all values of t1 ≤ t ≤ t2 results in the following
corollary.
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Corollary 4.1.4. Suppose that q is a prime power and M is an invertible s by s matrix
with entries from Fq. M is a ([t1, t2], s, q)-rangeAONT if and only if, for any value of t,
where t1 ≤ t ≤ t2, all t by t submatrices of M are invertible.

As mentioned in Chapter 2, all t×t submatrices of an s×s Cauchy matrix are invertible,
for t ∈ {1, 2, . . . , s}. Hence, any s × s Cauchy matrix over Fq is a linear ([t1, t2], s, q)-
rangeAONT, for all 1 ≤ t1 ≤ t2 ≤ s, and also a (t, s, q)-strong AONT for 1 ≤ t ≤ s.
However, it is known that, in a Cauchy matrix, q ≥ 2s.

For fixed positive integers t1, t2, and any prime power q, define

SR(t1, t2, q) = {s : there exists a linear ([t1, t2], s, q)-rangeAONT}.

Cauchy matrices are evidence that b q
2
c ∈ SR(t1, t2, q), so SR(t1, t2, q) is not empty. Also,

from Theorem 2.5.3, Remark 2.5.1 and Theorem 2.4.2, there exists a maximum element in
SR([t1, t2], q), which we will denote by MR([t1, t2], q).

Since we know the behavior of the relation between s and q at the extremes of options
for t1 and t2, i.e., t1 = t2 = 1, and t1 = 1, t2 = s, we studied intermediate values of t1
and t2 to achieve a better understanding of this relation in between the extreme cases,
as allowed by our computational resources. To this end, we conducted a computer search
for ([1, 2], s, q)-, ([1, 3], s, q)-, and ([2, 3], s, q)-rangeAONTs. The results of our computer
search are presented in the following examples. It can be observed that whenever t1 = 1,
the matrices do not have any zero entries because any 1 by 1 submatrix needs to be
invertible.

Example 4.1.1. A linear ([1, 2], 3, 4)-rangeAONT: 1 1 1
1 2 3
1 3 2


Example 4.1.2. A linear ([1, 2], 5, 7)-rangeAONT:

1 1 1 1 1
1 2 3 4 5
1 3 4 5 6
1 4 5 6 2
1 5 6 2 4


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Example 4.1.3. A linear ([1, 2], 7, 8)-rangeAONT:

1 1 1 1 1 1 1
1 2 3 4 5 6 7
1 3 4 5 6 7 2
1 4 5 6 7 2 3
1 5 6 7 2 3 4
1 6 7 2 3 4 5
1 7 2 3 4 5 6


Example 4.1.4. A linear ([1, 3], 3, 4)-rangeAONT: 1 1 1

1 2 3
1 3 2


Example 4.1.5. A linear ([1, 3], 4, 7)-rangeAONT:

1 1 1 1
1 2 3 4
1 5 6 2
1 6 5 3


Example 4.1.6. A linear ([1, 3], 5, 9)-rangeAONT:

1 1 1 1 1
1 2 3 4 5
1 3 8 5 7
1 4 5 8 6
1 8 6 7 2


Remark 4.1.1. Any linear (s− 1, s, q)-AONT is an ([s− 1, s], s, q)-rangeAONT.

Example 4.1.7. A linear ([2, 3], 3, 3)-rangeAONT, using a (2, 3, 3)-AONT construction: 0 1 1
1 0 1
1 1 0


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Example 4.1.8. A linear ([2, 3], 5, 7)-rangeAONT:
0 1 1 1 1
1 0 1 2 4
1 1 0 4 2
1 2 4 0 1
1 4 2 1 0


Example 4.1.9. A linear ([2, 3], 6, 11)-rangeAONT:

0 1 1 1 1 1
1 0 1 2 3 4
1 1 4 9 0 10
1 2 0 8 6 1
1 6 3 5 4 0
1 8 2 0 5 9


As we observed in Section 2.5, other than q = 4, whenever q is a prime power but not

a prime, the exhaustive search did not find any (2, q, q)-AONTs of type q, for q = 8, 9, 16.
From Remark 2.6.1, we know that type q is the only type possible. However, for range
AONTs, there are different cases, e.g., ([1, 2], 7, 8)-rangeAONT from Example 4.1.3 and
([1, 3], 5, 9)-rangeAONT from Example 4.1.6, where prime power values of q are the smallest
alphabet size where a range AONT exists for fixed values of t1, t2, and s.

4.2 Asymmetric AONTs

Let Is and Js be the identity matrix of size s and an s × s square matrix of all ones,
respectively. Stinson [42] studied the AONT properties of Js − Is as a linear (1, s, 2)-
AONT, and its properties as an almost (2, s, 2)-AONT were further discussed by D’Arco
et al. [14] and mentioned in Section 3.2. However, Karame et al. [21] took a slightly
different approach to utilize this construction in distributed storage, and they named their
scheme bastion AONT. In this section, we will discuss this new perspective on AONT and
work on a generalization of AONTs based on it.

Instead of considering the security of 1 (or 2) input elements in the absence of 1 (or 2)
output elements, Karame et al. [21] consider the security of a single input element in the
absence of any pair of output elements. In order to achieve this goal for an even number
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of elements, s, they use bastion AONT, which is a linear mapping over F2` represented by
matrix M = M−1 = Js − Is. In the analysis of their scheme, Karame et al. [21] use the
results by Stinson [42]. Stinson [42] observed that computing

y = x(Js − Is)

and
x = y(Js − Is)

is equivalent to calculating the following exclusive-OR (XOR) operations:

r =
s⊕
i=1

xi, and yi = r ⊕ xi,

and

r′ =
s⊕
i=1

yi, and xi = r′ ⊕ yi,

respectively. Stinson [42] then showed that the computational complexity of either trans-
form includes s− 1 XOR operations to calculate r or r′, followed by s XOR operations to
calculate the yi’s or xi’s. Therefore, in total it takes 2s − 1 XOR operations to compute
either the s input elements or the s output elements from the others.

Informally, it can be observed that if any pair of yi’s are missing, each of the xi’s can
take as many values as the yi’s can take.

Generalizing bastion AONT, we define an asymmetric (ti, to, s, v)-AONT as follows.

Definition 4.2.1. Suppose s, ti, and to are three positive integers, where ti ≤ to ≤ s. Let

X1, . . . ,Xs,Y1, . . . ,Ys

be random variables taking on values in a finite set Σ of size v. These 2s random vari-
ables define an asymmetric (ti, to, s, v)-AONT ((ti, to, s, v)-AsymAONT) provided that the
following conditions are satisfied:

1. H(Y1, . . . ,Ys | X1, . . . ,Xs) = 0.

2. H(X1, . . . ,Xs | Y1, . . . ,Ys) = 0.

3. For all X ⊆ {X1, . . . ,Xs} with |X | = ti, and for all Y ⊆ {Y1, . . . ,Ys} with |Y| = to,
it holds that

H(X | {Y1, . . . ,Ys} \ Y) = H(X ). (4.2)

96



known output blocks

protected input blocks

ti

s

s− to s

Figure 4.2: The behavior of a (ti, to, s, v)-AsymAONT for different numbers of available
output blocks.

Based on this definition, a (t, s, v)-AONT is equivalent to a (t, t, s, v)-AsymAONT.

Figure 4.2 shows this behavior. The area hatched in blue indicates the number of
input blocks which are protected upon the availability of that many output blocks to the
adversary.

If the output elements of a (ti, to, s, v)-AsymAONT are Fq-linear functions of the input
elements, it is a linear (ti, to, s, q)-AsymAONT. In particular, a bastion AONT is a linear
(1, 2, s, q)-AsymAONT for even values of s, where q is a power of 2. We will discuss linear
AsymAONTs in detail in the next subsection.

In the array representation of a (ti, to, s, q)-AsymAONT, fixing any to output coordi-
nates does not yield any information about any ti input coordinates.

The following is a straightforward generalization of Theorem 2.2.1.

Theorem 4.2.1. [14] Let ti ≤ to ≤ s. A (ti, to, s, v)-AsymAONT is equivalent to a
(vs, 2s, v) array that is unbiased with respect to the following sets of columns:

1. {1, . . . , s},

2. {s+ 1, . . . , 2s},

3. I ∪ J , for any sets I and J where I ⊆ {1, . . . , s}, |I| = ti, J ⊆ {s + 1, . . . , 2s},
|J | = s− to, and ti ≤ to.
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Note that, when ti = to in Theorem 4.2.1, we obtain Theorem 2.2.1.

The following result is an immediate generalization of Corollary 2.2.4.

Theorem 4.2.2. Let ti ≤ to ≤ s. Suppose there exists an OA(s, 2s, v). Then there exists
a (ti, to, s, v)-AsymAONT for all ti and to such that 1 ≤ ti ≤ to ≤ s.

From the definition of split orthogonal arrays from Subsection 1.4.2.2, we can obtain
the following theorem.

Theorem 4.2.3. Suppose there exists a (ti, to, s, v)-AsymAONT. Then there exists an
SOA(ti, s− to, s, s, v).

Proof. In the array representation of a (ti, to, s, q)-AsymAONT, if we set n1 = s, n2 =
s, t1 = ti, and t2 = s − to, then fixing any subset of t2 output coordinates does not yield
any information about any t1 input coordinates. Hence, the array is unbiased with respect
to any s − to + ti columns where ti columns are chosen from the first set of columns and
s − to columns are chosen from the second set of columns. Therefore the array is an
SOA(ti, s− to, s, s, v).

4.2.1 Linear Asymmetric AONTs

If we focus on linear AsymAONTs and use the same definitions for I, J , and M(I, J) as
we used for previous linear AONTs, the following theorem holds.

Lemma 4.2.4. Suppose that q is a prime power and M is an invertible s by s matrix with
entries from Fq. Let X ⊆ {X1, . . . , Xs}, |X | = ti, let Y ⊆ {Y1, . . . , Ys}, |Y| = to, and let
ti ≤ to ≤ s. Then the function φ(x) = xM−1 satisfies (??) with respect to X and Y if and
only if the submatrix M(I, J) is of rank ti, where I = {i : Xi ∈ X} and J = {j : Yj ∈ Y}.

Proof. Let x′ = (xi : i ∈ I). We have x′ = yM(I, {1, . . . , s}). Now assume that yj is fixed
for all j 6∈ J . Then we can write x′ = y′M(I, J) + c, where y′ = (yj : j ∈ J) and c is a
vector of constants. If M(I, J) is of rank ti, then x′ is completely undetermined, in the
sense that x′ takes on all values in (Fq)ti as y′ varies over (Fq)to . On the other hand, if
t′ = rank(M(I, J)) < ti, then x′ can take on only (Fq)t

′
possible values.

Corollary 4.2.5. Suppose that q is a prime power, ti ≤ to ≤ s, and M is an invertible s
by s matrix with entries from Fq. M is a (ti, to, s, q)-AsymAONT if and only if all ti by to
submatrices of M are of rank ti.
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Bastion AONTs only exist for even values of s because for odd values of s the transform
is not invertible. Using the matrix representation, we can construct its odd counterpart,
i.e., (1, 2, s, 2)-AsymAONTs, for odd values of s.

Construction 4.2.6. Let s be an odd integer and let the matrix M−1 be an s× s matrix
with a left bottom Js−1 − Is−1 submatrix and 1’s along the first row and last column. For
example, for s = 5, M−1 is

M−1
5×5 =


1 1 1 1 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1

 .

A matrix with the suggested structure is invertible and its inverse is an s× s matrix with
a right top Is−1 submatrix and 1’s along the last row and first column. Hence

M5×5 =


1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 1 1 1 1

 .

Similar to bastion AONT, this transform can also be represented by XOR functions. If
(x1, x2, . . . , xs) and (y1, y2, . . . , ys) are the input elements and output elements, respectively,
the transformation can be computed as follows.

1. for 1 ≤ i ≤ s− 1, yi = x1 ⊕ xi+1, and

2. ys =
⊕s

i=1 xi.

The inverse is computed as follows.

1. x1 =
⊕s

i=2 yi , and

2. for 2 ≤ i ≤ s, xi = x1 ⊕ yi−1.

Theorem 4.2.7. Any s by s matrix that is generated using Construction 4.2.6 is a (1, 2, s, 2)-
AsymAONT.
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Proof. To show that such matrices are (1, 2, s, 2)-AsymAONT, we need to show: 1) they
are invertible and 2) all their 1 by 2 submatrices have ranks greater than zero. Since the
construction provides the inverse of the matrices, we know they are invertible. A matrix
generated using Construction 4.2.6 has at most one 0 in each row. Hence, all its 1 by 2
submatrices are of rank 1.

Computation of the transform and its inverse requires 2s−2 and 2s−3 XOR operations,
respectively. Hence, this construction maintains both the security and the efficiency of
bastion AONT for the odd values of s.

Remark 4.2.1. The construction given by Stinson [42] and used by Karame et al. [21] and
Construction 4.2.6 prove the existence of (1, 2, s, 2)-AsymAONTs, for any positive integers
s ≥ 2. The same transform can be applied on n bits, n > 0, instead of one bit as an
element, to obtain a (1, 2, s, 2n)-AsymAONTs. Therefore, (1, 2, s, 2n)-AsymAONTs exist
for any integer s > 1 and n > 0.

Next, we show that the construction presented by Stinson [42] and used by Karame et
al. [21] works for another set of parameters, namely (2, s− 1, s, 2)-AsymAONT, as long as
s is even. Before that, we provide a construction that covers the same parameters for odd
values of s as well.

Construction 4.2.8. Let Bs = (bi,j) be the s× s matrix constructed as follows:

1. Start with an s× s all-zeros matrix.

2. Set the entries along the main diagonal, the last row, and the last column to 1.

3. Set b1,2 = 1 and bs,s = 0.

The matrix As is defined as follows:

As =

{
Bs if 2 - s,
Js − Is if 2 | s.

For s = 5, 6, the As matrices are

A5 =


1 1 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 0

 and A6 =


0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

 .
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We now prove the asymmetric-AONT properties of As.

Theorem 4.2.9. For any odd integer s ≥ 5, As is a (2, s− 1, s, 2)-AsymAONT.

Proof. To prove the invertibility of As for odd values of s, consider the process of Gaussian
elimination happening from the top row down towards the last row, with the entries along
the main diagonal used as the pivots. The row reduction operation for the first row affects
only the last row, by turning the first two entries of the last row to 0’s and its last entry to
1. The row reduction on the second row does not change any rows because the second row
is the only row, other than the first row, with a 1 in the second column. From the third
to the second from the last row, the operation only changes the values of 1’s underneath
the pivot to 0’s. It also flips the value of the right bottom entry. After the second from
last row reduction operation, the value of the right bottom entry is 1, and since s − 3 is
even, after the row reduction on the second from the last row, the bottom right entry has
the value 1. Therefore, As is a full rank matrix.

Now to prove that any 2× (s−1) submatrix has rank two, we show that at least two of
(0, 1)T , (1, 0)T , and (1, 1)T occur as columns in any such submatrix. First, consider the first
s−1 rows of the matrix. For any (s−1)-subset of columns, the subset must either intersect
the main diagonal at two entries, or it is guaranteed to intersect the main diagonal at one
entry and includes the last column. In the former case, any two rows will have exactly one
(0, 1)T and one (1, 0)T , and for the latter case, any two rows will contain either of (0, 1)T or
(1, 0)T , and (1, 1)T ; hence, the submatrix has rank 2. Now, let us consider the submatrices
formed by the last row and any other row. The 2 × s submatrix created by these rows
has at least one copy of each of (0, 1)T , (1, 0)T , and (1, 1)T . Therefore the any 2 by (s− 1)
submatrix contains at least two of those columns. Hence again, the rank of the submatrix
is 2.

Remark 4.2.2. As shown in Example 3.2.1, (2, 3, 2)-AONTs do not exist, which means
(2, 2, 3, 2)-AsymAONTs do not exist. Therefore, we start our analysis of (2, s − 1, s, 2)-
AsymAONTs from s = 5.

Theorem 4.2.10. For any even integer s ≥ 4, As is a (2, s− 1, s, 2)-AsymAONT.

Proof. The invertibility of As for even values of s, over F2 is already proven by Stinson [42].
Regarding the rank of 2× (s− 1) submatrices, it can be observed that any choice of s− 1
columns will contain at most s − 2 copies of (1, 1)T and at least one of (0, 1)T or (1, 0)T .
Therefore, the rank of the submatrix is exactly 2, and As is an AsymAONT.

Corollary 4.2.11. For all integers s ≥ 4, As is a (2, s− 1, s, 2)-AsymAONT.
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Another approach to construct asymmetric AONTs is to use t-AONTs or other asym-
metric AONTs. The following statements will present various such constructions.

Lemma 4.2.12. If ti ≤ to ≤ s, the existence of a linear (ti, to, s, q)-AsymAONT implies
the existence of a linear (ti, to, s− 1, q)-AsymAONT.

Proof. Let M be a matrix for a linear (ti, to, s, q)-AsymAONT. Since M is invertible, if we
calculate its determinant using the cofactor expansion of M with respect to its first row,
at least one of the (s − 1) × (s − 1) submarices is invertible. Regarding the asymmetric
AONT property, any ti × to submatrix of M , including those in the invertible submatrix,
are of rank ti. Hence, the invertible submatrix is a (ti, to, s− 1, q)-AsymAONT.

Lemma 4.2.13. If ti ≤ to ≤ s, then the existence of a linear (ti, to, s, q)-AsymAONT
implies the existence of a linear (ti, t

′
o, s, q)-AsymAONT for any t′o ≥ to.

Proof. Consider the matrix representation of the linear (ti, to, s, q)−AONT. Every ti × t′o
submatrix is rank ti, because all its ti × to submatrices are of rank ti.

Corollary 4.2.14. Suppose to ≤ s. Then the existence of a linear (t, s, q)−AONT implies
the existence of a linear (t, to, s, q)-AsymAONT for any to ≥ t.

Lemma 4.2.15. If ti ≤ to ≤ s, then the existence of a linear (ti, to, s, q)-AsymAONT
implies the existence of a linear (t′i, to, s, q)-AsymAONT for any t′i ≤ ti.

Proof. Suppose there is a way to obtain information about t′i input elements in the absence
of to input elements. This will contradict the condition (4.2).

Corollary 4.2.16. Assume ti ≤ s. Then the existence of a linear (t, s, q)−AONT implies
the existence of a linear (ti, t, s, q)-AsymAONT for any ti ≤ t.

Lemma 4.2.17. The existence of a linear (ti, to, s, q)-AsymAONT does not necessarily
imply the existence of a linear (ti, s, q)-AONT.

Proof. The statement will be proven by a counterexample. Consider the linear (2, 3, 4, 2)-
AsymAONT presented by the following matrix

1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0

 .

While every 2× 3 submatrix of the matrix above is of rank 2, (2, s, 2)-AONTs do not exist
if t > 2, as stated in Theorem 2.5.4.
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Theorem 4.2.18. In a linear (ti, to, s, q)-AsymAONT, s ≤ (to − ti + 1)(qti − 1)/(q − 1).

Proof. Fix any ti rows of the matrix corresponding to the inverse of the AsymAONT.
There are qti possible ti-tuples for any given column. However, the AsymAONT condition
requires that any ti by to submatrix must be of rank ti. We can replace an all-zero ti-tuple
with any other ti-tuple, and it does not impact the invertibility of any ti by to submatrix.
Hence, we can assume that there is no all-zero ti-tuple among the columns of the chosen
ti rows. Therefore, we are left with qti − 1 possible combinations for columns. For any
two ti-tuples, a and b, define a ∼ b if there is a nonzero element α ∈ Fq such that a = αb.
Clearly ∼ is an equivalence relation, and there are (qti − 1)/(q − 1) equivalence classes,
each of size q − 1.

Now we use proof by contradiction to show that in the ti by s submatrix, the number
of columns from each equivalence class is upper-bounded by to − ti + 1. If there are at
least to − ti + 2 columns from an equivalence class in the ti × s submatrix, it is possible
to choose to − ti + 2 of those columns together with any other ti − 2 columns. Since the
latter set of ti − 2 columns does not contribute more than ti − 2 to the rank, and all the
equivalent columns contribute at most 1, the rank of the ti × to submatrix formed by all
the selected columns cannot have a rank greater than ti−1, which is a contradiction to the
AsymAONT property of the matrix. Therefore, each column can appear at most to− ti+1
times.

Therefore, there are (qti − 1)/(q − 1) equivalent classes, and members of each can ap-
pear at most to − ti + 1 times. Hence, the matrix cannot have more than (to − ti +
1)(qti − 1)/(q − 1) columns.

Theorem 4.2.19. Suppose ti = 2. Then

s ≤ max{1 + (to − 2)(q + 1), 2 + (to − 1)(q − 1)}.

Proof. We divide the proof into two cases. Consider a 2 by s submatrix and let a0 be the
number of (0, 0)T columns in this submatrix.

case (1) Suppose a0 ≥ 1 for some 2 by s submatrix. We claim that this submatrix contains
at most to − a0 − 1 columns from any one equivalence class Ci, as introduced in the
proof of Theorem 4.2.18. This follows because to − a0 columns from one equivalence
class, together with the a0 columns of 0’s, would yield a submatrix having rank
1. Excluding the column of two 0’s, there are q + 1 possible equivalence classes of
columns. Therefore,

s ≤ a0 + (to − a0 − 1)(q + 1) ≤ 1 + (to − 2)(q + 1).
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case (2) Suppose a0 = 0 for every 2 by s submatrix. There can be at most one 0 in each
column of the s by s matrix, so there are at most s occurrences of 0 in the entire
matrix. Therefore, there must be two rows that contain a total of at most two 0’s.
We focus on this 2 by s submatrix.

Let the number of zeros in this 2 by s submatrix be denoted by a; we have noted
that a ≤ 2. In the s − a columns that do not contain a 0, there are at most to − 1
columns from any equivalence class Ci. Note that we have excluded two Ci’s, i.e.,
(∗, 0)T and (0, ∗)T , so

s ≤ a+ (to − 1)(q − 1) ≤ 2 + (to − 1)(q − 1).

Since one of the two cases must hold, we have

s ≤ max{1 + (to − 2)(q + 1), 2 + (to − 1)(q − 1)}.

We note that
1 + (to − 2)(q + 1) < (to − 1)(q + 1)

and
2 + (to − 1)(q − 1) < (to − 1)(q + 1),

so
max{1 + (to − 2)(q + 1), 2 + (to − 1)(q − 1)} < (to − 1)(q + 1).

Hence the bound from Theorem 4.2.19 is an improvement on Theorem 4.2.18 when ti = 2.

Remark 4.2.3. For positive integers ti and s, where ti ≤ s , and a prime power q, Is, the
s× s identity matrix, is a (ti, s, s, q)-AsymAONT.

Table 4.1: Examples of bounds by Theorems 4.2.18 and 4.2.19.

ti q Upper bound for s Justification
2 2 to + 1 for to = 2, 3, and 3to − 5 for to ≥ 3 Theorem 4.2.19
2 3 2to for to = 2, 3, and 4to − 7 for to ≥ 4 Theorem 4.2.19
2 4 3to − 1 for to = 2, 3, 4, and 5to − 9 for to ≥ 4 Theorem 4.2.19
3 3 13(to − 2) Theorem 4.2.18
3 4 40(to − 2) Theorem 4.2.18
3 5 121(to − 2) Theorem 4.2.18
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Let To(ti, s, q) = {to : a (ti, to, s, q)-AsymAONT exists}. From Remark 4.2.3, we know
that To(ti, s, q) is not empty because s ∈ To(ti, s, q). From Definition 4.2.1, we know that
all elements of To are greater than or equal to ti. Hence, there exists a minimum value in
this set, which we denote as µo(ti, s, q).

In particular, if µo(ti, s, q) = ti, then there exists a (ti, s, q)-AONT. Accordingly, for
fixed values of t, s, and v, µo(t, s, q) − t can be used as another measure, i.e., besides the
t-density of a transform, of showing how close can we get to a (t, s, q)-AONT.

4.2.2 Computational Results

In order to examine the bound presented in Theorem 4.2.19, and Table 4.1, we used a
non-exhaustive computer search. The results are presented in Examples 4.2.1 to 4.2.17.

Example 4.2.1. A linear (2, 4, 6, 2)-AsymAONT:
0 1 1 1 1 1
1 0 0 0 1 1
1 0 0 1 0 1
1 0 0 1 1 0
1 0 0 1 1 1
1 0 1 0 0 1

 .

Example 4.2.2. A linear (2, 5, 8, 2)-AsymAONT:

0 1 1 1 1 1 1 1
1 0 0 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 0 0 1 1 0 1
1 0 0 0 1 1 1 0
1 0 0 0 1 1 1 1
1 0 0 1 0 0 1 1
1 0 1 0 0 0 1 1


.
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Example 4.2.3. A linear (2, 6, 10, 2)-AsymAONT:

0 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1
1 0 0 0 0 1 0 1 1 1
1 0 0 0 0 1 1 0 1 1
1 0 0 0 0 1 1 1 0 1
1 0 0 0 0 1 1 1 1 0
1 0 0 0 0 1 1 1 1 1
1 0 0 0 1 0 0 1 1 1
1 0 0 1 0 0 0 1 1 1
1 0 1 0 0 0 0 1 1 1


.

Example 4.2.4. A linear (2, 7, 12, 2)-AsymAONT:

0 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1 1 1 1
1 0 0 0 0 0 1 0 1 1 1 1
1 0 0 0 0 0 1 1 0 1 1 1
1 0 0 0 0 0 1 1 1 0 1 1
1 0 0 0 0 0 1 1 1 1 0 1
1 0 0 0 0 0 1 1 1 1 1 0
1 0 0 0 0 0 1 1 1 1 1 1
1 0 0 0 0 1 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 1 1 1
1 0 0 1 0 0 0 0 1 1 1 1
1 0 1 0 0 0 0 0 1 1 1 1



.

Example 4.2.5. A linear (2, 3, 6, 3)-AsymAONT:
0 1 1 1 1 1
1 0 1 1 2 2
1 1 0 2 1 2
1 1 2 0 2 1
1 2 1 2 0 1
1 2 2 1 1 0

 .
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Example 4.2.6. A linear (2, 3, 6, 3)-AsymAONT:
0 1 1 1 1 1
1 0 1 1 2 2
1 1 0 2 1 2
1 1 2 0 2 1
1 2 1 2 0 1
1 2 2 1 1 0

 .

Example 4.2.7. A linear (2, 3, 6, 3)-AsymAONT:
0 1 1 1 1 1
1 0 1 1 2 2
1 1 0 2 1 2
1 1 2 0 2 1
1 2 1 2 0 1
1 2 2 1 1 0

 .

Example 4.2.8. A linear (2, 4, 8, 3)-AsymAONT:

0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 2
1 0 1 1 0 0 2 1
1 0 1 2 1 2 0 0
1 1 0 1 0 2 0 2
1 1 0 2 2 0 1 0
1 1 2 0 0 1 2 0
1 2 1 0 2 0 0 2


.
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Example 4.2.9. A linear (2, 5, 10, 3)-AsymAONT:

0 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 1 1 1 2
1 0 0 1 1 0 0 1 2 1
1 0 0 1 2 1 2 2 0 0
1 0 1 0 1 2 0 2 0 2
1 0 1 2 0 0 2 0 1 1
1 1 0 0 1 2 2 0 1 0
1 1 0 2 0 0 1 2 2 0
1 1 1 0 2 0 2 1 2 2
1 1 2 1 0 2 0 0 0 1


.

Example 4.2.10. A linear (2, 6, 12, 3)-AsymAONT:

0 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1 2
1 0 0 1 1 1 0 0 0 1 2 1
1 0 0 1 1 2 1 1 2 0 0 0
1 0 1 0 1 1 0 2 1 2 0 2
1 0 1 0 2 1 1 0 2 0 1 1
1 0 1 0 2 2 2 1 0 2 2 0
1 0 1 2 0 2 0 2 2 1 1 0
1 0 2 1 2 0 1 2 0 0 2 2
1 0 2 2 0 2 1 0 1 2 0 1
1 1 0 0 2 2 0 2 1 0 2 1
1 1 0 1 0 1 2 2 0 2 1 0



.
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Example 4.2.11. A linear (2, 7, 14, 3)-AsymAONT:

0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1 1 1 1 1 1 2
1 0 0 0 1 1 1 0 0 0 1 1 2 1
1 0 0 0 1 1 2 1 1 2 0 2 0 0
1 0 0 1 0 1 1 0 2 1 2 0 0 2
1 0 0 1 0 2 1 2 0 2 1 2 1 0
1 0 0 1 1 0 2 2 1 0 2 0 1 1
1 0 0 1 2 2 0 0 1 1 0 2 2 1
1 0 1 0 0 2 1 1 1 0 2 0 2 0
1 0 1 0 1 2 0 2 0 2 2 1 0 2
1 0 1 0 2 0 1 0 2 2 0 0 1 1
1 0 1 1 2 0 2 0 0 1 1 1 0 0
1 0 1 2 0 0 2 2 2 0 0 2 0 2
1 0 2 2 1 2 0 1 0 1 0 0 1 0



.

Example 4.2.12. A linear (2, 3, 8, 4)-AsymAONT:

0 1 1 1 1 1 1 1
1 0 1 1 2 2 3 3
1 1 0 2 1 3 2 3
1 1 2 0 3 1 3 2
1 2 1 3 0 3 1 2
1 2 3 1 3 0 2 1
1 3 2 3 1 2 0 1
1 3 3 2 2 1 1 0


.
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Example 4.2.13. A linear (2, 4, 8, 4)-AsymAONT:

0 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 2 2 2
1 0 1 1 0 0 2 1 2 3
1 0 1 2 1 2 0 3 0 1
1 0 1 3 2 1 3 0 1 0
1 1 0 1 0 2 3 0 3 2
1 1 0 2 3 0 2 2 1 0
1 1 2 0 0 1 0 3 1 3
1 2 1 0 3 0 1 0 3 1
1 2 3 1 2 3 2 3 1 1


.

Example 4.2.14. A linear (2, 5, 12, 4)-AsymAONT:

0 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 1 1 1 2 2 2
1 0 0 1 1 0 0 1 3 1 3 3
1 0 0 1 2 1 2 3 0 3 0 1
1 0 0 2 1 2 1 3 2 0 1 0
1 0 1 0 1 0 3 2 0 3 1 2
1 0 1 0 3 3 2 0 1 1 0 3
1 0 1 1 0 3 0 2 2 0 2 1
1 1 0 0 2 3 3 0 2 0 3 2
1 1 0 2 3 0 2 2 0 0 2 3
1 1 0 3 0 1 0 2 3 3 1 0
1 1 1 1 0 0 1 3 0 2 3 0



.

Example 4.2.15. A linear (2, 3, 8, 5)-AsymAONT:

0 1 1 1 1 1 1 1
1 0 0 1 1 2 2 3
1 1 1 0 0 2 3 2
1 1 2 1 2 0 4 4
1 1 4 2 3 1 2 0
1 2 1 3 4 3 4 1
1 3 2 4 1 4 3 1
1 4 3 2 1 3 0 2


.
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Example 4.2.16. A linear (2, 3, 12, 5)-AsymAONT:

0 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 2 2 2 3 3
1 0 1 1 0 0 1 3 3 4 4 4
1 0 1 2 1 2 3 0 0 3 1 2
1 0 1 3 2 3 0 1 2 0 2 1
1 0 2 2 3 3 4 3 4 2 0 0
1 1 0 1 0 2 4 0 4 1 2 3
1 1 0 3 3 4 0 2 3 4 1 0
1 1 2 0 2 0 3 4 2 3 0 4
1 1 3 4 1 3 2 2 4 3 4 1
1 2 3 0 3 4 1 4 0 0 4 2
1 3 4 1 2 4 3 0 1 0 3 0


Example 4.2.17. A linear (2, 3, 9, 7)-AsymAONT:

0 1 1 1 1 1 1 1 1
1 0 0 1 1 2 2 3 3
1 0 1 0 2 1 3 2 4
1 0 2 2 3 3 5 5 0
1 1 0 2 0 5 6 1 5
1 1 1 3 3 0 0 4 6
1 1 2 0 6 4 1 0 3
1 1 3 1 4 3 4 2 2
1 2 1 6 4 4 5 6 1


.

Table 4.2 demonstrates the maximum values of s for which an asymmetric AONT was
found by a computer search, for some fixed values of ti, to, and q. The computer search
forced a fix first row and column on the matrices. Hence the results are not necessarily the
maximum values possible. It should be noticed that as the alphabet size and to increase,
the search takes more time and some processes were terminated before they can search the
entire search domain, even with the given restriction on the first row and column. These
instances are distinguished by the ∗ near the reported value of s.
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Table 4.2: Lower bounds for s for (2, to, s, q)-AsymAONTs

ti to q max. value of s Upper bound from Thrm. 4.2.19

2 4 2 6 7
2 5 2 8 10
2 6 2 10 13
2 7 2 12 16
2 8 2 14 19
2 3 3 6 6
2 4 3 8 9
2 5 3 10 13
2 6 3 12 17
2 7 3 14 21
2 3 4 8 8
2 4 4 10∗ 11
2 5 4 13∗ 16
2 3 5 8∗ 10
2 4 5 12∗ 14
2 3 7 9∗ 14

4.3 Restricted t-AONT

The generalization presented in this section is an obvious generalization of `-restricted
AONTs (due to Pham et al. [33]) to `-restricted t-AONT. Pham et al. [33] introduced
R-restricted AONTs as a structure with fewer constraints than regular AONT. Therefore,
they are more likely to exist. Pham et al. [33] introduced the following definition for an
R-restricted AONT.

Definition 4.3.1. Let R be a fixed t-subset of {1, 2, . . . , s} and let

X1, . . . ,Xs,Y1, . . . ,Ys

be random variables taking on values in a finite set Σ of size v. These 2s random variables
define an R-restricted AONT provided that the following conditions are satisfied:

1. H(Y1, . . . ,Ys | X1, . . . ,Xs) = 0.

2. H(X1, . . . ,Xs | Y1, . . . ,Ys) = 0.
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3. For Y = {Yi : i ∈ R}, it holds that

H(Xi | {Y1, . . . ,Ys} \ Y) = H(Xi) (4.3)

for all i ∈ {1, 2, . . . , s}.

In particular, if R = {1, 2, . . . , `}, the AONT is called an `-restricted AONT. An R-
restricted AONT is linear if each output is a linear combination of the inputs.

Pham et al. [33] use these structures in a setting where there is an unconditionally
secure communication channel, with a limited bandwidth, as well as a channel that can
be observed by the adversary. In this setting, a portion of the message is sent through
the secure channel, while the rest is transmitted over the regular one. Pham et al. [33]
design the security of their system based on the adversary’s lack of access to the portion
of the message sent over the secure channel. Since the sender knows which parts are sent
over the secure channel, they do not need to guarantee the security of any input block in
the absence of any output block. They only need to prove that it is impossible for the
adversary to gain any information about any block, in the absence of the blocks sent over
the secure channel.

The above definition can be generalized and extended in various ways. A trivial gen-
eralization considers the security of any t blocks, where t ≤ |R|, in the absence of all the
blocks in R, i.e., the blocks sent over the secure channel. Our generalization uses a stronger
assumption and considers the security of any t ≤ |R| input blocks provided that the ad-
versary can learn at most all the output blocks except for t of the blocks sent over the
secure channel. Of course, if there are exactly t blocks sent over the secure channel, then
the adversary is assumed to have access to none of them, and these two generalizations are
equivalent.

The generalization with the stronger assumption leads to the following new definition
of an R-restricted (t, s, v)-AONT.

Definition 4.3.2. Let R ⊆ {1, 2, . . . , s}, let t ≤ |R|, and let

X1, . . . ,Xs,Y1, . . . ,Ys

be random variables taking on values in the finite set Σ of size v. These 2s random variables
define an R-restricted (t, s, v)-AONT provided that the following conditions are satisfied:

1. H(Y1, . . . ,Ys | X1, . . . ,Xs) = 0.
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known output blocks

protected input blocks

t

s

s

R: sent over the secure channel

t

Figure 4.3: The behavior of a R-restricted (t, s, v)-AONT for different numbers of available
output blocks.

2. H(X1, . . . ,Xs | Y1, . . . ,Ys) = 0.

3. For all X ⊆ {X1, . . . ,Xs} with |X | = t, and for any Y ⊆ {Yi, i ∈ R}, with |Y| = t,
it holds that

H(X | {Y1, . . . ,Ys} \ Y) = H(X ). (4.4)

The array representation of an R-restricted (t, s, v)-AONT is an array with 2s columns
and vs rows such that fixing all the output coordinates except for t output coordinates in
R does not yield any information about any t input coordinates.

Figure 4.3 presents the behavior of these structures. The area hatched in blue indicates
the number of input blocks which are protected upon the availability of that many output
blocks to the adversary.

The following is a straightforward generalization of Theorem 2.2.1.

Theorem 4.3.1. [14] Suppose s is a positive integer, R ⊆ {1, 2, · · · , s}, and t is an
integer such that 1 ≤ t ≤ |R|. An R-restricted (t, s, v)-AONT is equivalent to a (vs, 2s, v)
array that is unbiased with respect to the following sets of columns:

1. {1, . . . , s},
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2. {s+ 1, . . . , 2s},

3. I ∪ J , for any sets I and J where I ⊆ {1, . . . , s}, |I| = t, J ⊆ {s + 1, . . . , 2s},
|J | = s− t, and |R′ \ J | = t, where R′ = {i+ s : i ∈ R}.

The following result is an immediate generalization of Corollary 2.2.4.

Theorem 4.3.2. Suppose there exists an OA(s, 2s, v). Let R ⊆ {1, 2, · · · , s} (this order
can be achieved through a permutation of the columns). Then there exists an R-restricted
(t, s, v)-AONT for all t, 1 ≤ t ≤ |R|.

Suppose Y = {1, 2, . . . , `}, for ` ≥ t. Then using the result from Lemma 2.3.1, the
following corollary describes the restricted AONT property in the matrix representation of
linear restricted AONTs.

Corollary 4.3.3. Suppose that q is a prime power, t ≤ `, and M is an invertible s by s
matrix with entries from Fq. M is a {1, 2, . . . , `}-restricted (t, s, q)-AONT if and only if,
all t by t submatrices of M that are contained in the first ` rows of M are invertible.

As mentioned earlier, this relaxation of conditions allows for restricted AONTs with
parameters which would not yield an AONT. For instance, while Theorem 2.5.3 and our
search results from Chapter 2 showed that (2, 6, 5)-AONT and (2, 9, 9)-AONT do not exist,
Examples 4.3.1 and 4.3.2 present {1, 2}-restricted AONTs for these parameters, respec-
tively.

Example 4.3.1. A linear {1, 2}-restricted (2, 6, 5)-AONT:
0 1 1 1 1 1
1 0 1 2 3 4
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
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Example 4.3.2. A linear {1, 2}-restricted (2, 9, 9)-AONT:

0 1 1 1 1 1 1 1 1
1 0 1 α α2 α3 α4 α5 α6

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.

Specifically for ` = t, Corollary 4.3.3 indicates that any t columns of the t by s subma-
trix, formed by the first t rows, are linearly independent. To construct such t by n matrices,
we can use the parity check matrix of maximum distance separable (MDS) codes (see Sec-
tion 1.4.2 for details). For example, triply extended Reed-Solomon codes [27, p. 323] can
be used to construct {1, 2, 3}-restricted (3, 2n + 2, 2n)-AONTs as shown by Theorem 4.3.4
and doubly extended Reed-Solomon codes [27, p. 323] can be utilized in the construction
of {1, 2, . . . , t}-restricted (t, q+ 1, q)-AONT as Theorem 4.3.5 states. The other s− t rows
of the matrix need to be chosen such that the entire matrix is invertible.

Theorem 4.3.4. Let n be a positive integer and let q = 2n. Then a {1, 2, 3}-restricted
(3, 2n + 2, 2n)-AONT exists.

Proof. Let ω1, ω2, . . . , ωq−1 be distinct elements in the finite field Fq. The following matrix
is the parity check matrix of a (q+2, q) triply extended Reed-Solomon code over Fq [27, Ch.
11, Theorem 10].

H =

 1 1 · · · 1 1 0 0
ω1 ω2 · · · ωq−1 0 1 0
ω2
1 ω2

2 · · · ω2
q−1 0 0 1


Any three columns for H are linearly independent. Hence, we only need to construct the
next q− 1 rows of the AONT such that the resulting matrix is invertible. This goal can be
achieved by choosing rows with an entry of 1 on the main diagonal and 0’s elsewhere. Since
any three columns of the parity check matrix are linearly independent, the final matrix is
a {1, 2, 3}-restricted (3, q + 2, q)-AONT.

If we use the dual code of the code used in Theorem 4.3.4, we can also construct a
{1, 2, . . . , q − 1}-restricted (q − 1, q + 2, q)-AONT.
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Theorem 4.3.5. Let q be a prime power and let t ≤ q + 1. Then a {1, 2, . . . , t}-restricted
(t, q + 1, q)-AONT exists.

Proof. For any value of k, we can construct a doubly extended Reed-Solomon code of length
q+1 and dimension k [27, Ch. 11, Theorem 9]. The parity check matrix of this code can be
extended by k rows such that the final matrix is invertible. Since any q− k+ 1 columns of
the parity check matrix are linearly independent, the final matrix is a {1, 2, . . . , q− k+ 1}-
restricted (q − k + 1, q + 1, q)-AONT.

4.4 Rectangular AONT

Before discussing the use of AONTs in information dispersal, we need to discuss confiden-
tiality and availability of threshold schemes, in general, for distributing files. To distribute
files among several storage devices, we divide each file into fragments, called shares, and
store each share on a different storage device. To securely distribute files, our scheme
requires the following properties.

1. The data stored on certain subsets of the storage devices are sufficient to recover the
original file, which we call availability condition. In threshold secret sharing schemes,
these subsets are referred to as authorized sets.

2. The data stored on certain subsets of the storage devices is not sufficient to obtain
any information about the original file, which we call confidentiality condition. In
threshold secret sharing schemes, these subsets are referred to as forbidden sets.

For instance, for a (t, n)-threshold scheme with uniformly distributed shares, the avail-
ability condition is that at least t storage devices are contributing their shares. Any other
subset of the participating storage devices, i.e., any subset of t−1 or fewer storage devices,
satisfies the confidentiality condition. For an (`, t, n)-ramp scheme, these conditions are
participation of at least t storage devices and participation of at most ` storage devices,
respectively. The availability and confidentiality conditions together may cover all possible
subsets, as they do in threshold schemes, or they may not cover some subsets. For example,
in ramp schemes, all the subsets with more than ` and fewer than t shares are not covered
by either of the conditions. If we consider security from an information theoretic aspect,
the confidentiality condition for AONTs is satisfied only if the adversary does not have
access to any output block, and the availability condition requires a user to know all the
output blocks.
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From the definitions, it is obvious that the availability condition and the confidentiality
condition cannot be satisfied simultaneously. Based on the behavior of these conditions in
ramp schemes and AONTs, we know that it is possible for some subsets not to satisfy either
of the conditions. However, the possibility of an adversary gaining access to such subsets
of shares is not ruled out. This scenario is very important when we are using AONTs, as
it covers the entire power set of shares minus the empty set and the set of all shares.

For Shamir secret sharing, ramp schemes, and AONTs, since the availability and con-
fidentiality conditions are determined by the number of shares available, the conditions
are described by thresholds, which we will call availability threshold and confidentiality
threshold, respectively. In the following subsections, we will discuss different parameters
and properties of AONTs that impact the the availability threshold, and the system’s
behavior in between these two thresholds.

4.4.1 Availability Threshold and Rectangular AONTs

It is possible for certain servers to be permanently or temporarily unavailable due to
network issues, damage, etc. For the purpose of information dispersal, it is important
to consider the unavailability of a few servers at the time of retrieval. Therefore, the
availability threshold needs to be extended. We consider a transformation from s input
blocks to n output blocks, where n ≥ s, that satisfies the following conditions:

1. the s input blocks determine all n output blocks.

2. any s output blocks can recover all the s input blocks.

3. any s− t output blocks do not yield any information about any t input blocks.

Oliveira et al. [32] introduced matrices with such properties and provided a brief for-
mulation of them as all-or-nothing transforms. In this section, we study these structures
as general and linear AONTs. To achieve this goal, we define rectangular all-or-nothing
transforms as follows.

Definition 4.4.1. Suppose s, n, and t are three positive integers, where t ≤ s ≤ n. Let

X1, . . . ,Xs,Y1, . . . ,Yn

be random variables taking on values in a finite set Σ of size v. These s + n random
variables define a (t, s, n, v)-recAONT provided that the following conditions are satisfied:
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known output blocks

protected input blocks

t

s

s− t s n

Figure 4.4: The behavior of a (t, s, n, v)-recAONT for different numbers of available output
blocks.

1. H(Y1, . . . ,Yn | X1, . . . ,Xs) = 0.

2. For any s-subset Ys ⊆ {Y1, . . . ,Yn}, H(X1, . . . ,Xs | Ys) = 0.

3. For all X ⊆ {X1, . . . ,Xs} with |X | = t, and for all Y ⊆ {Y1, . . . ,Yn} with |Y| =
n− s+ t, it holds that

H(X | {Y1, . . . ,Yn} \ Y) = H(X ). (4.5)

For n = s, this generalization of the AONT definition matches Definition 2.1.2 for
t-AONT, from Chapter 2.

The behavior of rectangular AONTs is shown in Figure 4.4. The area hatched in blue
indicates the number of input blocks which are protected upon the availability of that
many output blocks to the adversary.

The following is a straightforward generalization of Theorem 2.2.1.

Theorem 4.4.1. A (t, s, n, v)-recAONT is equivalent to a (vs, s+n, v) array that is unbi-
ased with respect to the following sets of columns:

1. {1, . . . , s}
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2. any J ⊆ {s+ 1, . . . , s+ n} where |J | = s

3. I ∪ J , for any sets I and J where I ⊆ {1, . . . , s}, |I| = t, J ⊆ {s+ 1, . . . , s+ n} and
|J | = s− t.

Note that, when n = s in Theorem 4.4.1, we obtain Theorem 2.2.1.

The following result is an immediate generalization of Corollary 2.2.4.

Theorem 4.4.2. Suppose there exists an OA(s, s+n, v) where n ≥ s. Then there exists a
(t, s, n, v)-recAONT for all t, 1 ≤ t ≤ s.

Recall from Section 1.4.2 that an OA(2, k, v) is equivalent to k−2 mutually orthogonal
Latin squares (MOLS) of order v. Many results on MOLS can be found in the Handbook
of Combinatorial Designs [13]. These results also provide constructions of recAONT with
s = 2 for alphabet sizes that are not required to be a prime power.

For example, we consider k = 5. It is well-known that an OA(2, 5, v) exists for all
v ≥ 4, v 6= 6, 10 [13, p. 126]. Hence we have the following existence result for recAONT.

Corollary 4.4.3. Suppose v ≥ 4, v 6= 6, 10. Then there exists a (t, 2, 3, v)-recAONT for
t = 1, 2.

We now observe that OA(2, k, v) are equivalent to certain recAONT.

Theorem 4.4.4. An OA(2, k, v) is equivalent to a (1, 2, k − 2, v)-recAONT.

Proof. Applying Theorem 4.4.2 with s = 2, t = 1, it follows that existence of an OA(2, k, v)
implies the existence of a (1, 2, k − 2, v)-recAONT. For the converse, we observe that the
array representation of a (1, 2, k − 2, v)-recAONT is unbiased with respect to any two
columns, and hence it is also the array representation of an OA(2, k, v).

The following result due to Bill Martin (private communication) is straightforward.

Theorem 4.4.5. Suppose there exists a (t, s, n, v)-recAONT. Then there exists an SOA(t, s−
t; s, n; v).

Proof. From Theorem 4.4.1 we know that a (t, s, n, v)-recAONT is equivalent to a (vs, s+
n, v)-array, that is unbiased with respect to I∪J , for any sets I and J where I ⊆ {1, . . . , s},
|I| = t, J ⊆ {s + 1, . . . , s + n} and |J | = s − t. If we set n1 = s, n2 = n, t1 = t, and
t2 = s − t, then from the definition of split orthogonal arrays (see 1.4.2.2), such an array
is an SOA(t, s− t; s, n; v).
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Hence, from a design theoretic perspective, rectangular AONTs are structures between
orthogonal arrays and split orthogonal arrays, in the sense that existence of a suitable
orthogonal array implies the existence of a certain recAONT, which in turn implies the
existence of a certain split orthogonal array.

Similar to the other types of AONT structures discussed so far, a recAONT is linear if
its outputs are a linear combination of its inputs. Note that we write a linear recAONT in
the form y = xN , where N is an s by n matrix that satisfies certain properties, as given
in the following theorem.

Lemma 4.4.6. Suppose that q is a prime power and N is an s by n matrix with entries
from Fq. Then φ(x) = xN , defines a linear (t, s, n, q)-recAONT if and only if the following
conditions are satisfied:

1. every s by s submatrix of N is invertible, and

2. every (s− t) by (s− t) submatrix of N is invertible.

Proof. Clearly property 1 in Definition 4.4.1 is satisfied if and only if every s by s submatrix
of N is invertible. We prove that property 2 holds if and only if every (s − t) by (s − t)
submatrix of N is invertible.

Let N ′ be a matrix consisting of any s columns of N . Then y′ = xN ′ is a (t, s, v)-AONT.
Therefore, from Corollary 2.3.4, any (s− t) by (s− t) submatrix of N ′ is invertible.

4.5 Application

In Section 4.4, we introduced the confidentiality and availability thresholds. Then we
discussed the behavior of the scheme when fewer than the confidentiality threshold or more
than the availability threshold are available. Now, we focus on the behavior of different
AONTs when the number of available shares is smaller than availability threshold and
greater than the confidentiality threshold. The behavior of the scheme between these two
thresholds is of interest because, under certain circumstances, it could be possible for an
adversary to gain access to a set of shares that satisfy neither the confidentiality condition
nor the availability condition, yet it is important to know what can the adversary infer
from those shares. Since, in rectangular AONTs the availability threshold is s, i.e., the
same as corresponding square AONTs, we only consider square AONTs.
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In a (t, s, v)-AONT, the availability of fewer than s − t shares does not provide any
information about any t blocks of the message. However, this scheme does not guaran-
tee any security regarding more than t blocks or when there are more than s − t shares
are available. Informally, using a (t, s, v)-AONT introduces one extra threshold between
the confidentiality and availability thresholds, which considers the security of parts of
the message. This particular threshold can be extended through range AONTs. In a
([t1, t2], s, v)-rangeAONT, for any t1 ≤ t ≤ t2, the guarantees from a (t, s, v)-AONT are
provided. Hence, the behavior of the scheme is known for the availability of fewer than
the confidentiality threshold shares, any number of shares from t1 to t2, and more than the
availability threshold shares. In strong AONTs, this range is extended to all the values
from the confidentiality threshold to the availability threshold.

In a (ti, to, s, v)-AsymAONT, the availability of fewer than s−to shares does not provide
any information about any ti blocks of the message. Similar to a (t, s, v)-AONT, this scheme
does not guarantee any security for more than ti input blocks or when more than s − to
shares are available. In an R-restricted (t, s, v)-AONT, as long as t shares in R are not
available, no information can be obtained about any t blocks of the message. Generally, it
is possible to apply extensions similar to those applied on (t, s, v)-AONTs to define range
and strong versions of asymmetric AONTs and restricted AONTs. Such extensions would
enforce the behavior on all possible to values and all possible choices of R.

4.5.1 Information Dispersal using AONTs

In a linear (t, s, n, q)-recAONT, any s output elements can be used to recover all the input
blocks. Therefore, these AONTs can be used as an erasure code. This transform will take
s blocks as input and output n blocks. Therefore, any set of s outputs can retrieve the
original blocks, and any coalition of s − t or fewer parties cannot gain any information
about any t input-blocks.

To distribute a document F using a (t, s, n, q)-recAONT, we break the document into
s blocks, F = (x1, x2, . . . , xs). Then we apply the rectangular AONT on these blocks to
get n output blocks (y1, y2, . . . , yn). Each output block yi is stored on a separate server,
Si, for 1 ≤ i ≤ n. To recover the file from these devices, the user needs to collect s distinct
yi values and compute the inverse of the AONT for those blocks to obtain the xi’s.

Figure 4.5 depicts how the output blocks are distributed over servers after an AONT
is applied on the input blocks.

To discuss the confidentiality of this scheme, we need to assume that the adversary
can access at most s − t of the n shares. Thus, suppose that an adversary confiscates
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s − t shares, ȳ1, ȳ2, . . . , ȳs−t, and that the adversary has access to t blocks of a document
F̄ consisting of the s blocks x̄1, x̄2, . . . , x̄s. Due to the AONT property of the transform,
the adversary cannot verify, even probabilistically, that the confiscated shares correspond
to the t file blocks.

AONT AONT−1

...
...

...
...

Any s shares

Sn

S1

S2

S3

...

X

x1

x2

xs

X

x1

x2

xs

Y

y1

y2

y3

ys

Ȳ

ȳ1

ȳ2

ȳs

Figure 4.5: Using a (t, s, n, q)-recAONT to distribute a file, X, over n servers,
(S1, S2, . . . , Sn), and recovering X from the shares.
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Chapter 5

Conclusion

5.1 Summary

Let M be a message that is represented by s blocks/symbols that are chosen from an
alphabet of size v. An all-or-nothing transform (AONT) is a bijection that maps these s
blocks to s output blocks such that obtaining information about any single input block
requires all the output blocks. We have presented five generalizations of unconditionally
secure all-or-nothing transforms in Chapter 2 and Chapter 4, namely:

� (t, s, v)-AONTs guarantee that the adversary cannot obtain any information about
any t input blocks, as long as t or more output blocks are missing. This behavior is
shown in Figure 2.2.

� ([t1, t2], s, v)-rangeAONTs guarantee that the adversary cannot obtain any informa-
tion about any t input blocks, as long as t or more output blocks are missing, for any
t1 ≤ t ≤ t2. Figure 4.1 presents the behavior of this transform. Specifically, if t1 is 1
and t2 is t, the ([1, t], s, v)-rangeAONT is called a (t, s, v)-strong AONT.

� (ti, to, s, v)-AsymAONTs guarantee that the adversary cannot obtain any information
about any ti input blocks, as long as to or more output blocks are missing. Figure
4.2 shows this behavior.

� R-restricted (t, s, v)-AONTs guarantee that the adversary cannot obtain any infor-
mation about any t input blocks, as long as t or more of the output blocks sent over
a secure channel are not available to them. The set of blocks that are transmitted
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using the secure channel is denoted by R. Figure 4.3 presents the behavior of these
structures.

� (t, s, n, v)-recAONTs create n output blocks and guarantee that any s output blocks
can reconstruct the entire input and the adversary cannot obtain any information
about any t input blocks, as long as n−s+ t or more output blocks are missing. The
behavior of rectangular AONTs is shown in Figure 4.4.

For each of these definitions, we studied the relationship between the AONT structures
and other combinatorial structures, for instance orthogonal arrays and unbiased arrays,
and we provided instances that are found using computer searches or constructed based
on their relationship with other structures. We showed that Cauchy matrices can be used
to construct all these transforms. Furthermore, we obtained bounds on parameters that
indicate the nonexistence of some of these structures. Some of these bounds where shown
to be tight or close to tight by ourselves and others, using computational and theoretical
results.

For t-AONTs in particular, we presented two applications: in extended package trans-
form and in a hash-based group signature scheme, in Chapter 2. Also, we ended Chapter 4
with a discussion on the application of (t, s, n, v)-recAONTs in secure distributed storage.

In Chapter 3, we studied almost (t, s, v)-AONT structures, where the transform may
fail to protect the security of some sets of t input blocks in the absence of all sets of t output
blocks. We defined the ratio of the number of protected sets of t input blocks to the number
of all possible sets of t input blocks, as a measure of closeness to a (t, s, v)-AONT. Then we
provided examples of such structures using theoretical constructions and computational
results. Finally, we introduced bounds on this closeness measure for different parameter
sets, specifically for t = 2.

In summary, we introduced five generalizations of all-or-nothing transforms and showed
their application in three different schemes. The use of these transforms allowed us to uti-
lize the schemes with more flexible parameter sets. In doing so, we studied the relationship
between all-or-nothing transforms and different combinatorial structures, including orthog-
onal arrays, split orthogonal arrays, and error-correcting codes. We also faced many other
interesting problems, which we are going to present in the following section.

5.2 Future Research

Further research on AONTs may be concerned with different aspects of the topic. Some
interesting problems that are motivated this research are provided below:
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� In this thesis, the main purpose of using computer searches was to find instances
of the transforms studied; however, a comprehensive list of instances of a set of
parameters goes beyond the scope of this thesis. To find more instances of some
types of these all-or-nothing transforms, more elaborate and customized algorithms
are needed. For instance, with the exception of a few cases in range AONTs and
asymmetric AONTs, we mostly focused on the case where t = 2. Many properties of
t-AONTs for t > 2 remain to be explored.

� The security of unconditionally all-or-nothing transforms and all the generalizations
follows directly from their definition. However, if we step back to computational
AONTs and consider Rivest’s package transform, there is no proof of security pro-
vided in the literature. Similarly, the extended package transform, which we intro-
duced in Section 4.5, is also discussed in an informal manner. Formal security proofs
for these protocols would be of interest. However, we note that formal proofs of secu-
rity have been provided for certain instances of AONTs in the computational setting.
For example, the security of optimal asymmetric encryption padding (OAEP) [5] as
an AONT is studied by Boyko [6].

� This thesis introduced several generalizations of unconditionally secure AONTs, and
we focused mainly on the theoretical aspects of the problem. However, this focus on
the theory does not mean that the application side of the topic is not significant. To
facilitate research on applications of these transforms, it is important and helpful to
study and design efficient constructions and implementations of these structures for
parameter sets that cover real-life requirements.

� Wang et al. [50] showed that, for prime power values of q, (2, φ(q), q)-AONTs exist,
where φ(·) is the Euler’s totient function. However, using a search algorithm, we
found (2, q − 1, q)-AONTs for all prime powers smaller than 16. This observation
motivates the question about the existence of (2, q−1, q)-AONTs for all prime powers.

� Throughout the thesis, some of the provided results only apply to linear AONTs.
However, the validity of these results for the general case, where both linear and
non-linear AONTs are concerned, needs to be studied. The tightness of s ≤ v + 1
bound for (2, s, v)-AONTs, Theorem 2.4.2, Lemmas 4.2.13 and 4.2.15, and Corollaries
4.2.14 and 4.2.16 are examples of such results.

� In Chapter 2, we stated that if all the input s-tuples are equiprobable, then an unbi-
ased array is a perfectly secure AONT. The study of the converse of this statement
is also an interesting question: If an unbiased array is a perfectly secure AONT, can
we say that all input s-tuples must be equally probable?
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� In our research, we mostly considered the AONT mapping publicly known and avail-
able to the adversary. The security of different generalizations of AONTs under a
weaker condition where the adversary does not know about the mapping used can
be studied. Wu et al. [51] have used 1-AONTs in this setting.

� In Chapter 2, we used the reduced form of an AONT to distinguish equivalent
AONTs. This computational method allowed us to expedite our search. However,
an interesting linear algebraic question concerns the characteristics shared between
two equivalent linear AONTs. In particular, is there a set of properties of matrices
that can uniquely identify a class of equivalent linear AONTs?
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[32] Paulo F. Oliveira, Lúısa Lima, Tiago TV Vinhoza, João Barros, and Muriel Médard.
Coding for trusted storage in untrusted networks. IEEE Transactions on Information
Forensics and Security, 7(6):1890–1899, 2012.

[33] Hai Pham, Rainer Steinwandt, and Adriana Suárez Corona. Integrating classical
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