
Scaling Machine Learning Data
Repair Systems for Sparse Datasets

by

Omar Attia

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

c© Omar Attia 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

Supervisor(s): Ihab F. Ilyas
Professor, David R. Cheriton School of Computer Science
University of Waterloo.

Internal Member: M. Tamer Özsu
Professor, David R. Cheriton School of Computer Science
University of Waterloo.

Internal Member: Jimmy Lin
Professor, David R. Cheriton School of Computer Science
University of Waterloo.

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Machine learning data repair systems (e.g. HoloClean [37]) have achieved state-of-the-
art performance for the data repair problem on many datasets. However, these systems face
significant challenges with sparse datasets. In this work, the challenges presented by such
datasets to machine learning data repair systems are investigated. Dataset-independent
methods are presented to mitigate the effects of data sparseness. Finally, experimental
results are validated on a large, sparse real-world dataset: Census. Showing that the
problem size can be reduced by more than 70%, saving significant computational costs,
while still getting high accuracy data repairs (94.5% accuracy).

iv

Acknowledgements

I would like to start by sincerely thanking my advisor: Ihab Ilyas for his continuous
guidance and the numerous amazing opportunities he provided me. Meeting Ihab after his
talk in Alexandria 2017 was a turning point in my life. He believed in me and mentored
me -in work and in life- which was essential to enabling this work, and much more. I would
also like to thank Theodoros Rekatsinas for his valuable input and mentorship during the
inductiv days, and now in Apple.

To my parents Yousry and Hanaa: You have sacrificed the most for my future and
supported me through the darkest of times. There is nothing that I can do to repay you,
and I will forever be grateful to you.

To my brothers Abdulrahamn and Mahmoud, and my little sister Mariam, no matter
how far we are, you are always close to my heart.

I would also like to thank my dear friends: Amine Mhedhbi, and Aly Tarek for their
constant encouragement and support during the writing of this thesis. Abdelhameed Shal-
aby and Akram Mohamed for their companionship and always being there for me when I
needed it the most. Ahmed El Bagoury and Abdulrahman Ghanem for the long walks and
all the food. And the inductiv team: Mina Farid, Josh McGrath and Ryan Clancy for
their camaraderie and hard-work throughout the rough times.

Finally, I would also like to thank my readers: M. Tamer Özsu and Jimmy Lin for
taking the time to read my thesis and provide invaluable feedback.

v

Dedication

The Earth Is Not A Cold Dead Place 1

1https://www.youtube.com/watch?v=Ziw4yd5R0QI

vi

https://www.youtube.com/watch?v=Ziw4yd5R0QI

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Machine Learning for Data Repair . 2

1.2 Challenges for Machine Learning in Data Repair 3

1.3 Scaling Machine Learning Data Repair Systems for Sparse Datasets 6

1.4 Notes . 6

2 Background 7

2.1 Introduction . 7

2.2 The Data Repair Problem . 7

2.3 Integrity Constraints . 8

2.3.1 Functional Dependencies . 8

2.3.2 Conditional Functional Dependencies 9

2.3.3 Denial Constraints . 10

2.4 Information Measures As Correlations . 11

2.4.1 Mutual Information . 12

2.4.2 Normalized Directed Conditional Entropy 13

2.5 HoloClean . 14

vii

2.5.1 Paper Vs. Open-Source Code . 15

2.5.2 Pipeline . 15

3 Scaling Machine Learning Data Repair for Sparse Datasets 20

3.1 Introduction . 20

3.2 Slicing to Solve Data Sparseness . 22

3.2.1 Correlation Based Vertical Partitioning 22

3.2.2 Conditional Dependence Based Horizontal Partitioning 24

3.3 Improvements to Machine Learning Model and Feature Sparsity 26

3.3.1 Removing Pseudo-key Columns . 26

3.3.2 Removing Superfluous Rules . 27

3.3.3 Sparse Tensors . 29

3.4 General Implementation Improvements . 30

3.4.1 Concurrency . 30

3.4.2 Indexing . 31

3.4.3 Batching . 31

4 Dataset and Results 33

4.1 Introduction . 33

4.2 Dataset . 33

4.2.1 Description . 33

4.2.2 Pre-processing . 34

4.3 Experiments . 35

4.3.1 The Target Column: “reltohd” . 35

4.3.2 Improved HoloClean Pipeline . 36

5 Conclusion 40

References 42

viii

APPENDICES 47

A Dataset Description 48

A.1 Schema . 48

A.2 Rules . 53

ix

List of Tables

3.1 Example of workforce and education data table. 20

4.1 Column “reltohd” domain value distribution 36

4.2 Summary for data reduction output on the “reltohd” column 38

A.1 Breakdown of the variables (columns) in the Census dataset as received from
the source. 52

A.2 Breakdown of the rules (defined as denial constraints) in the Census dataset. 57

x

List of Figures

1.1 Breakdown of Training Data Problems. From [38] 3

2.1 Connection between Denial Constraints and the different classes of Integrity
Constraints. From [11] . 11

2.2 Relating information-theoretic quantities. From [44] 14

2.3 Overall HoloClean Pipeline for The Data Repair Problem 16

4.1 Overall Pipeline . 36

4.2 Discrete correlation measures between other columns and reltohd 39

xi

Chapter 1

Introduction

In an increasingly data-driven world, wrong and low-quality data can have massive adverse
effects on organizations and people alike. According to Gartner [30], low data quality is
the reason many organizations lose an average of $15 million per year. In other fields, like
health care, low data quality for medical records of a patient or drug information could
lead to bad health care decisions that would affect people’s lives and well-being.

Data repair is a challenging problem that has been studied extensively in the data
management literature (e.g. [8, 10, 12, 35]). The hardness of the problem in real-world
datasets is due to many factors: First, error types and causes in data vary (e.g. duplicates,
missing values, wrong values) and have many sources (e.g. mistakes in data entry, typos,
etc.). Second, repairing these errors in a data source requires understanding a lot of
context about the data. This usually requires some human involvement, which -among
other causes- affects the scalability of the solutions. Finally, various data quality problems
do not come piecemeal. The problems are usually interleaved and affect each other. Still,
many solutions were suggested, achieving excellent results on several classes of datasets.

Given the importance of the problem, its impact on businesses and lives, and the relative
success of the suggested solutions. Surprisingly, such solutions were not adopted widely in
the industry. One of the main reasons behind this is that these solutions do not work well
for many real-world datasets, specifically: large and sparse datasets.

This thesis explores the challenges facing state-of-the-art machine learning data repair
systems when applied to real-world, large, and sparse datasets. We suggest solutions to
address these problems and provide experimental results to quantify our findings on a new
dataset: Census.

1

1.1 Machine Learning for Data Repair

Previous work on data repair included rule-based approaches (e.g. [13, 9]). Rule-based
approaches encode the data quality signals and business requirements into a rich set of
rules that have expressive inference systems. Errors are then expressed in terms of rules
violations, and repairs can be made to make the dataset consistent with the rules (i.e.
no violations). These rule-based systems were severely limited and not widely adopted in
real-world scenarios. This is mainly due to their significant dependence on humans and
domain knowledge in the data quality process (e.g. [50, 13]). In many rule-based systems,
humans are needed to craft the rules (e.g. encoding business and data quality rules as
conditional functional dependencies in [9]), maintain the rules and keep them up-to-date
as data and requirements change, and design the model features and label data (e.g. [50]).
That significant dependence on humans drives up the costs and slows down the process.

Machine learning approaches (e.g. [37, 19, 26]) recently showed great progress in com-
parison to the rule-based approaches in solving data repair problems. This is due to three
main reasons:

1. Holistic Context: Machine learning systems can combine all signals and contexts
about data quality (e.g. rules, statistics). This leads to major improvements and
offers desirable features like:

• Increased Recall: Rule-based systems tend to have high precision but low
recall (i.e. they fix certain types of errors well but do not have high coverage for
many different types of errors). Machine learning models, on the other hand,
include holistic contexts and features about the data. This enables machine
learning systems to have a significantly higher recall with comparable precision
to rule-based systems.

• Generalisation: Learning-based systems can subsume rule-based systems by
including statistics and features about the rules and data interactions to the
model. For example, HoloClean [37] does this by including the normalized
rule violation counts as a feature for each cell. Also, learning systems tend to
generalize better to unseen data. The drawback here is that modern machine
learning systems usually require a lot of data to generalize well.

2. Rule Explosion and Maintenance: Machine learning systems avoid rule explo-
sion. In contrast, rule-based systems tend to include maintenance overhead for a
growing repository of rules. This usually requires much time, effort, and human

2

domain expertise that is hard to automate. Additionally, these rules often get out-
dated with time (e.g. policy changes or customer behaviour changes). While learning
systems tend to get better with time as the system is retrained with more updated
observations.

3. Probabilistic Semantics: Machine learning systems can communicate confidence
of repairs instead of the binary or certain quality semantics that rule-based systems
produce. This makes it easier to quantify the quality of cells and the confidence of
the system.

These three features gave machine learning data repair systems an edge over the rule-
based systems; Enabling a new class of state-of-the-art systems with a fraction of the cost
and time of traditional rule-based systems. For example, HoloClean [37] cites an average
F1 improvement of more than 2x on various datasets.

1.2 Challenges for Machine Learning in Data Repair

Figure 1.1: Breakdown of Training Data Problems. From [38]

Although machine learning systems have achieved state-of-the-art results for the data repair
problem. They are not without drawbacks. For machine learning approaches to perform
well and be widely adopted for structured data quality problems, they must solve three
hard problems:

3

1. Lack of Training Data for Building Supervised Models:
In many tasks, modern machine learning models (e.g. deep neural networks) require
a lot of labelled data during training to learn useful representations and generalize
well [28]. Figure 1.1 from a recent study by Dimensional Research1 [38] shows that
51% of the surveyed industry machine learning projects run into problems related to
lack of training data. The same study claims that most projects need over 100,000
data samples for training to perform well and be deployed with confidence.

Constructing these large labelled datasets usually requires significant human effort
to label the training data. Furthermore, these models tend to be very sensitive to
mistakes in the labelling process [40, 15]. Additionally, in the specific case of data
repair, the types of errors in the data are not known in advance, and the errors are
generally rare events in the dataset; Making it hard to learn the representation of
errors.

2. Data and Feature Sparseness:
Data and feature sparseness is a well-known problem in machine learning literature
in various settings [34, 41]. Despite this, modern machine learning techniques were
still able to achieve success in many tasks on unstructured data (e.g. images [22, 20],
audio [6, 33], and free text [53, 25]).

Structured data is fundamentally different from unstructured data in that it is very
sparse. Furthermore, structured data also often includes multiple modalities like
categorical, numerical, and textual data. For example, consider a table about prod-
ucts with N categorical columns (e.g. product type, availability, manufacturer, etc.).
Each column Ci has a domain size of |dom(Ci)|. It is easy to see that the number of
possible combinations of value-assignment for each row in this table is Πi=N

i=1 |dom(Ci)|.
For even the small values of N = 100 and |dom(Ci)| ∈ [10, 100], this space is huge.
However, we know from observation that only a small fraction of these possible com-
binations are valid. This means that the data space is very sparse.

3. Scaling Learning and Inference to Large Datasets:
Large datasets with millions of rows are considered the norm in real-world machine
learning and data repair projects. Hence, scaling the training and inference proce-
dures of machine learning approaches to these large datasets with reasonable cost
(i.e. time and computational resources) is essential for the success and wide adop-
tion of these techniques. However, modern machine learning solutions can be costly
computationally, and that cost increases as the expressiveness and the richness of

1https://dimensionalresearch.com

4

https://dimensionalresearch.com

features increase [43]. This makes applying these techniques to large datasets an
even more challenging task.

The Trade-off for Machine Learning Data Repair Systems
Solving the three problems at the same time is hard because they are interleaved. Con-
sequently, current machine learning approaches try to solve the first problem (Lack of
training data for building supervised models) by using some new techniques, including
self-supervised training procedures [37, 49, 4], weak-labelling [36], and data augmentation
methods [19]. However, the solution to the first problem using these techniques creates
a trade-off between the other two problems (Data sparsity and Scale on large datasets):
Solving the sparseness problem using traditional techniques makes it very hard to scale
these systems to large datasets. The sparseness problem is traditionally solved by using
rich features, and contextual representations [19, 49], as well as adding domain knowledge
and rules (e.g. constraints) to the model [2, 29, 37]

These solutions to the sparseness problem make certain homogeneity and density as-
sumptions on the data. This is done by utilizing schema information to encode information
about the structure. For instance, in HoloClean [37], the feature weights are learned on the
functional dependency level, not on the value level. Similarly, in [49], the attention weights
are learned on the positional encoding of the schema columns, not the values themselves.
The homogeneity assumptions enabled and encouraged constructing a single, large, and
global model on the entire dataset. This is because, under these homogeneity assumptions,
more data results in better model accuracy.

Although these assumptions and models worked well for many average-sized and relatively-
dense datasets, they still fail for large, sparse datasets. This is because the homogeneity
assumptions do not always hold for these datasets. This leads to having local statistics in
data islands that are different from the dataset’s global statistics—causing a global model
trained for the entire dataset to fail. Additionally, self-supervised training on the entire
dataset becomes very computationally expensive as the dataset becomes large. This is usu-
ally addressed using some sampling techniques (e.g. uniform sampling). However, these
sampling techniques perform poorly on sparse datasets due to the data’s heterogeneity and
sparseness.

5

1.3 Scaling Machine Learning Data Repair Systems

for Sparse Datasets

This thesis proposes methods to solve the outstanding problem of scaling machine learning
data repair systems to large and sparse datasets. The suggested solution consists of con-
structing multiple models per dataset, where each model is specialized in a specific part of
the data. We show that data partitioning techniques (correlation-based vertical partition-
ing and conditional dependence based horizontal partitioning) can build multiple sparse
models and enable efficient sampling for training these models. We then experimentally
show how these methods can be used to improve the performance of HoloClean on a new
dataset: Census.

The rest of this thesis is organized as follows: In Chapter 2, this work’s relevant back-
ground is presented. Chapter 3 presents a suite of solutions to reduce the effects of data
and model sparseness on machine learning data repair systems. Chapter 4 presents the
Census dataset and shows the results of implementing these solutions in HoloClean on the
Census dataset.

1.4 Notes

Notes and clarifications about the terminology used throughout this thesis:

• The name “HoloClean” is used throughout this work to refer to the open-source
implementation 2. This open-source implementation is primarily based on the same
principles as the original paper [37], but it has significant implementation changes.
Some of these implementation changes will be discussed in chapter 2.

• Throughout this work, we use the words “data cleaning”, “data repair” and “data
imputation” interchangeably, since this is the main focus of the HoloClean system.

2https://github.com/HoloClean/HoloClean

6

https://github.com/HoloClean/HoloClean

Chapter 2

Background

2.1 Introduction

This chapter presents relevant background on the data cleaning problem and how machine
learning can improve data quality. We also present some of the definitions and measures
that we will use in the following chapters. A comprehensive survey of data repair and even
more data quality problems can be found in the Data Cleaning book [21].

2.2 The Data Repair Problem

Concretely, the data repair problem can be presented as follows: Given a relational table
instance D defined over a set of attributes (also referred to as columns, or variables) R, an
optional set of integrity rules Σ, and a set of potentially wrong cells Ω. The data repair
problem is concerned with finding the “correct” value assignment for each cell in Ω.

Different approaches differ in how this correctness is defined. The rule-based systems
usually define it as a value with no violations to any rule in Σ. Some other approaches add
another constraint that the correction set is minimal in changes to the dataset. Machine
learning-based systems usually define correctness as a cost function to be optimized by
changing some learnable parameters.

7

2.3 Integrity Constraints

Integrity constraints (ICs) are an important part of the toolbox for many data management
problems. They found their first use in informing the database schema designs (e.g. using
functional dependencies to do schema normalization). However, more recently, different
kinds of integrity constraints have been used in data quality problems, especially data
repair, as they can determine potentially corrupt cells (i.e. the set Ω). They can also select
which values can be used for a specific cell (e.g. only include values that do not violate any
applicable rules to a specific cell). We focus on three types of constraints that have seen
much use in data repair problems: Functional Dependencies (FDs), Conditional Functional
Dependencies (CFDs), and Denial Constraints (DCs).

2.3.1 Functional Dependencies

A Functional Dependency (FD) is a constraint between two sets of attribute Y and X in
a relational schema R (i.e. two subsets of columns in a table) that defines a mathematical
function from X to Y . In other words, that the attribute subset Y is a function of the
attribute subset X . Concretely, the formal definition can be given as follows:

• Given a relation R, a set of attributes X in R is said to functionally determine
another set of attributes Y , also in R, (written X −→ Y) if, and only if, each X
value in R is associated with precisely one Y value in R; R is then said to satisfy
the functional dependency X −→ Y .

• Equivalently, the projection ΠX ,YR is a function, i.e. Y is a function of X , or the
values of Y are determined by the values of X .

• X is usually referred to as the determinant set and Y as the dependent set.

• A functional dependency X −→ Y is called trivial if Y is a subset of X .

From this definition, it can be seen how functional dependencies between two attributes
can be used to make data repair decisions about these two columns. For example, for a
functional dependency X −→ Y , where X and Y are single attributes in the same relational
table R, from definition ??, it follows that two tuples sharing the same values of X will
necessarily have the same values of Y . If the value assignment in one of the rows is
(X = x1, Y = y1) and another row has (X = x1, Y = y2); we can immediately tell that

8

there is at least one violation between these four cells. If we had the additional information
that only the Y = y2 cell assignment is wrong, we could confidently change the assignment
Y = y2 to match the first Y = y1. More generally, if the X attribute values are known (say
they are x), then the values for the Y attributes corresponding to x can be determined by
looking them up in any tuple of R containing x.

Functional dependencies have multiple properties, the most important ones are Arm-
strong’s Axioms given in the following definition. Concretely, for a functional dependency
X −→ Y , the following basic properties hold:

• Reflexivity: If Y is a subset of X , then X −→ Y .

• Augmentation: If X −→ Y , then XZ −→ YZ.

• Transitivity: If X −→ Y , and Y −→ Z then X −→ Z.

These three properties enable logical inference on a set of functional dependency rules.
That is, it enables creating more rules that are logically equivalent to the original set
but expressed differently. The closure of a set of functional dependencies F is the set of
all functional dependencies that are logically implied by F (through the application of
Armstrong’s Axioms or other correct properties).

2.3.2 Conditional Functional Dependencies

Conditional Functional Dependencies (CFDs) are a generalization of the functional de-
pendencies defined not only with two sets of attributes but also with conditional value
assignments. Formally, it is defined as follows:

A conditional functional dependency on a relation R is a pair (X −→ Y , Tp), where:

• X , Y are sets of attributes from attr(R)

• X −→ Y is a standard functional dependency, called the embedded FD.

• Tp is a tableau with all attributes in X ∪ Y , called the pattern tableau, where for
each A ∈ (X ∪Y) and each tuple t ∈ Tp, the following holds: t[A] ∈ (dom(A)∪{“ ′′})
where “ ” is an unnamed variable, refers to undefined value.

9

While functional dependencies apply to all the tuples in the relational table, conditional
functional dependencies can apply to tuples that match the provided value assignment.
For example, for a relational schema of three columns: R(Country, Zip, City), a usual
functional dependency that holds in many countries in the world would be Zip −→ City.
However, that is not necessarily the case in some countries in the world. In this case, if
we want to make this functional dependency only hold in the USA, we can write it as a
conditional functional dependency of the format [Country =′ USA′, Zip] −→ City. More
comprehensive examples and explanations can be found in [9]. Many of the properties
that hold for functional dependencies do hold for conditional functional dependencies too.
For example, Armstrong’s axioms hold for conditional functional dependencies with some
changes to account for the value assignment table.

Conditional functional dependencies can be used to make data repairs in a similar way
to that of functional dependencies [9], but they are even more useful because they contain
value assignments that can be used for inference directly.

2.3.3 Denial Constraints

Denial Constraints (DCs) [14, 5, 10] are a very general class of integrity constraints. The
reason they are so general is that they are expressed as conjunctive first-order logic predi-
cates. This makes them not only very expressive but also very easy to implement in SQL
using the usual comparison or Boolean operators. Concretely 1: A denial constraint on a
relation R is defined as follows:

∀ta, tb . . . tn ∈ R : ¬(p1 ∧ p2 ∧ . . . pm)

And pi : tx.A φ ty.B or pi : tx.A φ c

Where c is a value constant, and φ is any operator that takes in values and returns a
boolean true/false (e.g. =, 6=, ≤, ≥ . . .)

In other words, a denial constraint expresses that a set of predicates cannot be true
together for any combination of tuples in a relation, where each predicate expresses a
relationship between two cells or between a cell and a constant

Denial constraints also have a set of powerful inference rules like other constraint types.
For example, Armstrong’s Axioms hold for denial constraints with minor changes.

1DC definition from: https://hpi.de/fileadmin/user upload/fachgebiete/naumann/folien/SS17/DP 10 DCs.pdf

10

https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/SS17/DP_10_DCs.pdf

Figure 2.1: Connection between Denial Constraints and the different classes of Integrity
Constraints. From [11]

Figure 2.1 (obtained from [11]) shows a classification of different integrity constraints
based on two criteria: (i) single tuple level versus table level, and (ii) involvement of con-
stants in the constraint versus only column variables. As illustrated, denial constraints can
express other types of integrity constraints such as check constraints, functional dependen-
cies, and conditional functional dependencies.

In HoloClean, the user can specify the dataset’s integrity constraints (as Σ) expressed
as denial constraints (whether they were: check constraints, functional dependencies, con-
ditional functional dependencies, or any general denial constraint) to be used for error
detection (specification of Ω) and as features in the model. The original HoloClean paper
suggests a denial constraint relaxation procedure that relaxes one hard denial constraint
to multiple softer ones. The denial constraint featurizer then uses the soft constraints to
generate features for each cell. The feature value is simply the normalized count of the
denial constraint violations that the possible value causes when put in that cell. We refer
to the paper of the details of the relaxation procedure [37].

2.4 Information Measures As Correlations

In the context of inference systems on relational tables, it is often needed to determine the
information dependencies between columns. That is, decide what columns are needed to
predict or compute other columns.

In database terms, this is equivalent to discovering the existing functional dependencies
between the interesting columns from the data. This is often a hard problem to solve, and

11

a lot of work has been done to discover functional dependencies (a survey can be found in
[32]). However, these systems are usually expensive to compute, and they often overfit the
discovered rules to the data, especially when the data is already dirty.

Functional dependencies define a causal relationship from the determinant set to the
dependant set. However, since they can be expensive to discover, a more straightforward
proxy that is often used is to study the correlations between columns. We review two
information-theoretic measures used as generalized correlation measures: Mutual Infor-
mation and Normalized Conditional Entropy. These measures have probabilistic interpre-
tations and are often used to measure associations beyond the limitations of correlation
coefficients, like non-linear relationships and categorical variables.

2.4.1 Mutual Information

Mutual information (MI) (Also known as information gain) can be defined as follows:

Mutual information is a measure of the mutual dependence between two random vari-
ables. It quantifies the ”amount of information” obtained about one random variable by
observing the state of the other random variable. Formally, the mutual information of two
random variables X and Y is given by:

I(X;Y) = DKL(p(X,Y)(x, y)‖p(X)(x)p(Y)(y)) (2.1)

=
∑
y∈Y

∑
x∈X

p(X,Y)(x, y) log(
p(X,Y)(x, y)

p(X)(x)p(Y)(y)
) (2.2)

Where DKL is the Kullback–Leibler divergence.

In other words, mutual information is a measure of the inherent dependence expressed
in the joint distribution of X and Y relative to the marginal distribution of X and Y under
the assumption of independence. From definition ??, equation 2.1 shows that the mutual
information can be viewed as comparing the “distance”2 between the joint distribution of
the variables and the product of their marginal distributions. It is also to see that mutual
information is non-negative and is symmetric.

Since mutual information measures how much knowing one variable reduces uncertainty
about the other, it can be used in some cases to make a statement about functional de-
pendencies between the columns. For example, if X and Y are independent, then knowing

2The general Kullback–Leibler divergence is not a proper distance, but is often treated as one although
it is not always symmetric, in the mutual information case it acts as distance.

12

X does not give any information about Y and vice versa, so their mutual information is
zero. At the other extreme, if X is a deterministic function of Y and Y is a deterministic
function of X (i.e. X −→ Y and Y −→ X), then all information conveyed by X is shared
with Y : knowing X fully determines the value of Y and vice versa.

2.4.2 Normalized Directed Conditional Entropy

First, we define Conditional entropy, and then show how it can be normalized to be a
correlation measure. Conditional entropy can be defined as follows:

The conditional entropy quantifies the amount of information needed to describe the
outcome of a random variable Y given that the value of another random variable X is
known. The conditional entropy of Y given X is:

H(Y |X) = −
∑

x∈X ,y∈Y

p(X,Y)(x, y) log(
p(X,Y)(x, y)

p(X)(x)
) (2.3)

However, if we want this quantity to behave as a normalized score, we need to change
the definition as follows:

H[0,1](Y |X) = −
∑

x∈X ,y∈Y

p(X,Y)(x, y) log|dom(Y)|(
p(X,Y)(x, y)

p(X)(x)
) (2.4)

The only difference is setting the log base to |dom(Y)| (i.e. the domain size of Y). This
ensures that H[0,1](Y |X) is always normalized in range [0, 1].

Conditional entropy can also be used to make a statement about functional depen-
dencies between the columns. For example, if Y is a deterministic function of X (i.e.
X −→ Y), then H(Y |X) is equal to zero. At the other extreme, if the column Y is inde-
pendent of X, then the uncertainty in Y does not change by knowing anything about X, so
it stays the same, equal to the individual entropy of the variable Y (i.e. H(Y |X) = H(Y)).

It is important to note that normalized conditional entropy on its own is not a direct
association measure. However, it can easily be turned into a one by subtracting H[0,1](Y |X)
from 1 to give the correlation measure meaning that we are used to.

13

Figure 2.2: Relating information-theoretic quantities. From [44]

The normalized directed conditional entropy correlation score is formally defined as:

NDCE(X −→ Y) = 1.0−H[0,1](Y |X) (2.5)

This correlation score is in the range [0, 1] and is not symmetric. This asymmetry
defines the direction of the functional dependency.

2.5 HoloClean

From the HoloClean official website3:

“HoloClean is a statistical inference engine to impute, clean, and enrich data. As a
weakly supervised machine learning system, HoloClean leverages available quality rules,
value correlations, reference data, and multiple other signals to build a probabilistic model
that accurately captures the data generation process and uses the model in a variety
of data curation tasks. HoloClean allows data practitioners and scientists to save the
enormous time they spend in building piecemeal cleaning solutions, and instead, effectively
communicate their domain knowledge in a declarative way to enable accurate analytics,
predictions, and insights from noisy, incomplete, and erroneous data.”

One of the most important principles behind HoloClean is integrating multiple quality
signals from various sources. This is done by treating all the various signals (e.g. quality

3http://www.holoclean.io

14

http://www.holoclean.io

rules, value correlations, textual similarity etc.) as different features for a machine learning
model. The final classification model can then be seen as a simple voter model that learns
how to weigh these different features to get the most probable decision, guided by a training
procedure that optimizes predicting the correct value out of a set of possible values.

2.5.1 Paper Vs. Open-Source Code

The HoloClean paper [37] presented the original inference problem as an inference problem
over a large scale factor graph. The paper was then implemented in DeepDive4 [52], a
system that facilitated the construction of these large scale factor graphs using DDLog
statements. That was complex and very expensive. The HoloClean open-source system5

kept many of the same principles of the paper but implemented the core inference compo-
nents as neural networks in PyTorch6.

This section presents some of the important implementation details. More details are
presented in the following chapters when needed.

2.5.2 Pipeline

In this part, a rundown of how HoloClean runs on a dataset is given. Figure 4.1 shows the
breakdown of steps. First, the dataset is given in terms of four components:

• Raw Data: The data that needs to be cleaned, in “.csv” format.

• Ground Truth: Optional. It can be used to evaluate the repair module or to detect
some of the errors.

• Unknown Cells: Optional, this is the list of cell ids that inference needs to run on.

• Constraints: Optional, this is a list of all integrity constraints, expressed as denial
constraints in the HoloClean DC grammar.

After the data is fully specified, HoloClean assigns a unique cell ID for each cell in the
raw data. The HoloClean pipeline consists of the following steps:

4http://deepdive.stanford.edu
5https://github.com/HoloClean/holoclean
6https://pytorch.org

15

http://deepdive.stanford.edu
https://github.com/HoloClean/holoclean
https://pytorch.org

Figure 2.3: Overall HoloClean Pipeline for The Data Repair Problem

1. Domain Generation:
In this step, all cells are given a domain of possible values. Domain generation serves
two purposes:

• Negative Sampling: For training data, the cells are expected to be mostly
clean. Domain generation adds values that are known to be wrong to the do-
main. These values are not randomly selected as in other applications of negative
sampling (e.g. Word2Vec). However, they are selected considering correlations
between columns and co-occurrences of values. This ensures that values selected
in a cell’s domain are, in some sense, the most likely (or confusing) values for
this cell. This increases the ability of the model to distinguish between confusing
values better.

• Domain Pruning: In test data (i.e. unknown cells), domain generation serves
as a way to limit the possible value for predictions of the model. This makes
the softmax classification step better at assigning probabilities to each of the
possible values because the softmax normalization is not done across a large
number of values.

Algorithm 2 shows a rough outline of the domain generation algorithm used in
the original HoloClean [37] paper (without most of the performance optimizations
included in the open-source implementation, except for excluding low-correlated
columns).

2. Featurization:
One of the most important principles of HoloClean is the ability to integrate various

quality signals like rules and value co-occurrence. This is done by encoding these
quality signals as features. Features are extracted for each possible value in the
domain of each cell. There are two main features that we need to focus on: co-
occurrence and denial constraint features.

16

• Co-occurrence feature: The co-occurrence feature captures relationships be-
tween values. It is defined between all column pairs. For example, if we have
dataset with three columns D(A,B,C) the co-occurrence feature vector for each
possible value in A would be: < cooc(A,A), cooc(A,B), cooc(A,C), cooc(B,B),
cooc(B,C), cooc(C,C) > (where cooc is defined in equation 2.6). Concretely,
within the dataset D, if we have the discrete columns C1 and C2, the cooc-
currence feature of between any two values v1 ∈ C1 and v2 ∈ C2 is defined
as:

cooc(v1, v2) = Pr[v2|v1] =
#(v1, v2) appear together inD

#v2 appears inD
(2.6)

Algorithm 1 computes the unnormalized co-occurrence statistic for the full
dataset.

Algorithm 1: Co-occurrence statistic computation

Input: ds: Dataset object that represents a relational table
Result: Co-occurrence count table of the schema: (column-1-name, value-1,

column-2-name, value-2, cooc-count)
1 for c1 in ds.columns do
2 for c2 in ds.columns do

/* Insert the co-occurrence counts for the two columns */

3 Execute-Update(
4 INSERT INTO cooc− table
5 SELECT ’c1.name’ as column-1-name, c1 as value-1, ”c2.name”, c2 as

value-2, count(*) as cooc-count
6 FROM ds.data-table
7 GROUP BY c1, c2
8)

9 end

10 end

Normalization of the output of algorithm 1 to the features as expressed in equa-
tion 2.6 is done by dividing the resulting count by the absolute count for each
value. As we can see from algorithm 1, featurizing the whole dataset D for all
values is quadratic in the number of columns.

• Denial constraint feature: The feature is constructed as the normalized count
of rule violations caused by each possible value in that cell. One important note
here is: The original HoloClean paper [37], a method is suggested in section

17

5.2 to relax a single hard integrity constraint (expressed as a denial constraint)
to multiple soft integrity constraints such that each of the new relaxed rules
contains one random variable. Each of the relaxed rules becomes a feature in
the model that has additional learnable weight. This makes it even more critical
to control the number of rules going into the system as this could potentially
increase the dimensionality of the feature space and, hence, increase sparsity.

Featurization is implemented under a unified interface. This makes adding more fea-
tures to HoloClean very easy.

3. Training:
Training is the step in which model parameters and weights are tuned to fit the data.
The model in the HoloClean open-source code is a simple linear layer with weight
tying across values. The cross-entropy loss function is used with the softmax output
to optimize the weights of the linear layer. The weights are then used to combine the
features and can be used to do feature importance analysis according to the assigned
weight by the model. For example, section 3.3.2 describes a method where rules can
be ranked according to the model weight. The model is implemented in PyTorch.

4. Inference:
After the model is trained, the same forward step of the model (with the softmax
classification) can run inference on the unknown cells with their features and possible
value domain as input. Resulting in a probability density function (PDF) over all
the domain values (i.e. each domain value receives a probability, and all domain
values would sum up to one. The Maximum A Posteriori (MAP) prediction can then
be applied simply by choosing the domain value with the highest probability as the
correct value. However, in many cases, especially for cells with a huge domain, the
highest probability can be low (e.g. < 0.001). In this case, we can use other measures
(like the entropy of the generated PDF) to assess the confidence in the predictions.

The output of this pipeline can be seen as a probabilistic dataset where each cell has a
domain and a probability density function over the possible values.

18

Algorithm 2: High-Correlation Domain Generation Algorithm. From [37]

Input: ds: Dataset object that represents a relational table, µ correlation
threshold, τ co-occurrence threshold

Result: domain values (i.e. repair candidates) of cells
1 for each cell c in ds do

/* Initialize domain for cell c */

2 R c←− φ for each cell c in ds do
3 Ac ←− Attribute of cell c
4 for each cell ĉ 6= c in c’s tuple do
5 Aĉ ←− Attribute of cell ĉ

/* Iterate only on highly correlated attributes */

6 if directed-correlation(from=Aĉ, to=Ac)
a ≥ µ then

7 continue
8 end
9 UAc ←− The domain of attribute Ac

10 vĉ ←− the value of cell ĉ
11 for each value v ∈ UAc ĉ 6= c in c’s tuple do
12 if normalized-co-occurrence(v, vĉ)

b ≥ τ then
13 Rc ←− Rc ∪ {v}
14 end

15 end

16 end

17 end

18 end
19 return repair candidates Rc for each c ∈ ds;

aThe “directed-correlation” is the normalized directed cross entropy correlation from equation 2.5
bThe “normalized-co-occurrence” function is defined in equation 2.6

19

Chapter 3

Scaling Machine Learning Data
Repair for Sparse Datasets

3.1 Introduction

Data sparseness is a frequent problem in real-life datasets that has multiple types and
causes. To show some of the sparseness types, consider the following example schema in
table 3. The table represents an example of data about individuals’ work and education
status in different parts of the world. The schema specifies a person in terms of education
enrollment status (EduStat), the last obtained degree (LastDeg), the current degree being
pursued (CurDeg), the employment status (EmpStat), the work or job being performed
by the person (Work), the hourly wage in a US dollar (HrWge), and location information
represented as country code (CC), zip code (ZC), and city (CT). The symbol ⊥ represents
a null value.

ID EduStat LastDeg CurDeg EmpStat Work HrWge CC ZC CT
t1 ⊥ College ⊥ Full Time Technician 30 A 12 X
t2 Full Time High School B.Sc. ⊥ ⊥ ⊥ A 12 X
t3 Part Time B.Sc. M.Sc. Part Time Barista 15 A 90 W
t4 ⊥ High School ⊥ ⊥ Houswife ⊥ B 54 Y
t5 Full Time Primary School High School ⊥ ⊥ ⊥ B 54 Z

Table 3.1: Example of workforce and education data table.

20

We focus on two types of sparsity because they are crucial for the assumptions of
machine learning data cleaning models:

1. Column Non-Applicability:
In this case, not all columns apply to all rows. Resulting in cases where a null is
filled for the inapplicable cell. These non-applicable columns increase the sparsity of
the data and add computational costs in different parts of the pipeline. For example,
in table 3, the column “CurDeg” does not apply to t1 because the person is working
full time. A similar argument applies to the column “HrWge” with all non-working
records (t2, t4, and t5).

2. The Locality of Dependence Structure:
This is when the dependence structure between columns of the table does not hold
for all rows. These dependence structures between columns are usually encoded as
schema-level integrity constraints (e.g. functional dependencies). For example, in
table 3, we can spot this problem by inspecting the relationship between the three
location columns [CC, ZC, CT]. A traditional functional dependency that usually
exists for these types of columns is ZC −→ CT . In this table, we see that this is true,
but only for the case that CC = A. Although this type of constraint is easily captured
using conditional functional dependencies [9], the problem remains for correlations
and other statistics. These statistics are often used to define an approximate version
of these constraints (i.e. dependencies that hold with high probability in a given
dataset) [17]. For example, in the Census dataset, we can observe that it is unlikely to
have homogeneous correlations between columns across all horizontal slices (e.g. cities
or provinces). This is due to these provinces’ local properties (e.g. some provinces are
more agrarian versus industrial, which will affect the dependence between workforce
variables).

Current machine learning solutions for data repair make certain homogeneity and den-
sity assumptions on the data. This is done by utilizing schema information to encode
information about the structure of the attributes. For instance, in HoloClean [37], the
feature weights are learned on the functional dependency level, not on the value level. Sim-
ilarly, in [49], the attention weights are learned on the positional encoding of the schema
columns, not the values themselves. These assumptions and models work well for many
average-sized and relatively-dense datasets. However, as shown in the previous example,
homogeneity assumptions do not hold for sparse datasets. This leads to the performance
degradation of these systems on sparse datasets.

21

Furthermore, under these assumptions, the representation of machine learning models
becomes very sparse. For example, a feature tensor built with the assumption that all
features apply to all cells (i.e. first problem) will have many zeros for the non-applicable
features. This leads to computational problems that make the sparsity effect even worse
on these systems.

The rest of this chapter is organized as follows: section 3.2 presents solutions to column
non-applicability and locality of dependence structures, respectively. Section 3.3 will sug-
gest some solutions to the computational problems resulting from data sparsity in machine
learning models. Finally, section 3.4 presents general implementation improvements for
data pipelines that proved to be particularly useful during the experiments.

3.2 Slicing to Solve Data Sparseness

We can reduce data sparseness by conditionally partitioning the table horizontally and
vertically. The goal is to produce a different dense table for each repair target column,
where the assumptions of current machine learning models hold. We produce these dense
tables by partitioning the data. Data can be partitioned in two ways: Vertically and
horizontally. We present methods for each way and explain why these methods work to
solve the two data sparseness problems illustrated in the introduction.

3.2.1 Correlation Based Vertical Partitioning

Including more context columns for a target prediction task often has diminishing returns.
That is, not all columns are equally important for all data cleaning tasks. Vertical parti-
tioning refers to using only the relevant set of context columns C when running an inference
task for a target column t. In a standard machine learning setting, this is equivalent to the
process of feature selection. In general, feature selection is known to offer several benefits
to machine learning algorithms, including [45]:

1. Decrease model complexity, which leads to easier interpretability.

2. Decrease the training time of the model.

3. Decreasing feature-space sparsity (i.e. avoiding the curse of dimensionality).

4. Improving generalization by reducing variance (overfitting).

22

A feature selection method selects the most important features from a more extensive
set of features according to some measure of importance. A simple exhaustive search
algorithm would test each possible subset of features finding the one which minimizes the
final model error rate. This algorithm is O(2N), where N is the number of all possible
features to choose from, and hence, intractable for large numbers of possible features. We
refer to [45, 18] for a survey of other feature selection methods.

In this work, multiple correlation measures with the target variable are used to make
the feature selection. The correlation-based feature selection measures evaluate subsets of
features based on the following hypothesis: “Good feature subsets contain features highly
correlated with the classification, yet uncorrelated to each other” [45]. We can then sort
the attributes in descending order according to the correlation score, then use the top-k
attributes, or look for an obvious distinctive change in the observed correlation score (i.e.
The elbow method). Algorithm 3 illustrates the steps of correlation-based vertical parti-
tioning.

Algorithm 3: Correlation-based vertical partitioning for a target column.

Input: ds: Dataset object that represents a relational table
t: target column for cleaning
Ω: a set of correlation measures between the target column and context columns
k: number of top correlated columns to keep from each correlation measure
Result: C: set of most correlated columns, at most of size k, to be used as the

context for cleaning the target column t
/* Initialize C to be all attributes in ds except the target */

1 C ←− All attributes in ds except t
2 for ω in Ω do

/* Initialize list to store correlations */

3 corrωt ←− []
/* Iterate on all potential context columns compute the correlations */

4 for each column c in C do
5 corrωt.append((c, ω(t, c)))
6 end

/* Apply any top-k algorithm to get the highest correlated context columns */

7 SelectedContext←− TOP − k(corrωt, k)
/* Update C by taking the correlations */

8 C ←− C ∩ SelectedContext
9 end

10 return C

23

For categorical variables, mutual information, and normalized conditional entropy cor-
relation (as defined in chapter 2) have been used as measures of discrete correlations (e.g.
[18, 51, 31]). These metrics are already being used in data repair machine learning systems
to do similar tasks. For example, normalized conditional entropy correlation is already
being used in HoloClean [37] to determine the columns with the highest correlations to
include in the domain generation step.

This correlation-based vertical partitioning can significantly help with the problem of
column non-applicability for a specific target column. The assumption here is that columns
with high correlations do apply and provide useful information to predict the target column.
It is important to note that algorithm 3 makes a critical assumption about the correlations
measures used: Null values can not be used to infer any correlations from the data. That
is, when the values of a column pair are considered for a correlation computation, the only
records considered are the ones where values from both columns are non-null.

3.2.2 Conditional Dependence Based Horizontal Partitioning

The data homogeneity assumptions made by machine learning data repair systems results
in smaller and simpler models. For instance, in HoloClean [37], the feature weights are
learned on the functional dependency level, not on the value level. Similarly, in [49], the
attention weights are learned on the positional encoding of the schema columns, not the
values themselves. These simple models are easier to train in a self-supervised way with
little or no labelled data. However, in systems like HoloClean, these self-supervised models
were still trained to overfit the entire dataset to capture all possible correlations. Self-
supervised training on the entire dataset becomes very expensive computationally as the
dataset becomes large. This problem can be addressed in other machine learning appli-
cations using sampling techniques (e.g. stratified or uniform sampling). However, these
sampling techniques perform poorly on sparse datasets due to the data’s heterogeneity and
sparseness. For example, uniform sampling from a large sparse dataset is not guaranteed
to capture all islands’ different dependence information.

Datasets can often be split into logical partitions easily. The split referred to here is
where the values of one or more columns are projected out to create multiple datasets,
one for each value. For example, given a dataset with three attributes: D(A,B,C), if
column A has three values A ∈ {a1, a2, a3}, then we can generate three different datasets:
Da1(A = a1, B, C), Da2(A = a2, B, C) and Da3(A = a3, B, C) and then the imputation

24

pipeline is applied to each dataset separately. Algorithm 4 illustrates the steps.

Algorithm 4: Conditional dependence based horizontal partitioning.

Input:
ds: Dataset object that represents a relational table
c: column to use for horizontal partitioning
Result:
dsc: multiple datasets, each of which is projected on one of the values in column c
/* Initialize V to be the domain of column c (i.e. set of unique values in

column c) */

1 V ←− {v : v ∈ c}
/* Initialize dsc to the empty list to store all the horizontal partitions */

2 dsc ←− []
3 for v in V do
4 dsv ←− PROJECT (ds, c = v)
5 dsc.append(dsv)

6 end
7 return dsc

The PROJECT function is equivalent to applying the SQL query: “SELECT * FROM
ds WHERE c = v ”. Where c is the column used for horizontal partitioning and v is the
value for that column that is being projected.

This horizontal partitioning can boost the statistical signal in each partition because it
will not be mixed with signals from other irrelevant partitions. The horizontal partitioning
can also be viewed as partitioning to splits for a single tableau value of a conditional
functional dependency. For example, if we have a conditional functional dependency as
defined in chapter 2: (X −→ Y , Tp). If the tableau Tp only includes assignments for a few
domain values of X , then the rest of the domain of X does not have the X −→ Y rule.
So, by horizontally partitioning the dataset using different columns, the resulting datasets
should have a simpler, more local dependence structure, contributing to solving the second
problem mentioned above.

The combination of vertical and horizontal partitioning for a large and sparse dataset
effectively creates dense and homogeneous data islands where the models’ assumptions
hold. Furthermore, this combination enables efficient uniform sampling for training within
each island. This is because if the sampling is done per homogeneous dense island, a
small uniform sample from each island is enough to capture the necessary dependence
information, unlike the case where sampling is done over the entire sparse dataset, where

25

the sample will not include all information needed to capture the heterogeneity of the
dataset.

3.3 Improvements to Machine Learning Model and

Feature Sparsity

Data sparseness does not only violate the fundamental assumptions of machine learning
data repair systems. It also poses significant computational problems (memory and run-
time) to these machine learning systems. This is because these systems will often try
to construct high dimensional feature tensors with sizes directly affected by the dataset’s
sparseness. Resulting in extremely sparse feature tensors (i.e. the number of zero values�
the number of non-zero values). This section addresses the problem of feature and model
sparseness and suggests solutions to mitigate their effects. Some of these suggestions are
specific to HoloClean, while others are general and can be applied to other machine learning
data repair systems.

3.3.1 Removing Pseudo-key Columns

An attribute A of a dataset D is a pseudo-key if it has a relatively large number of unique
values. More concretely, if the following condition holds:

#unique values of A

|D|
> 1.0− ε (3.1)

Where |D| is the number of rows of the dataset D. We call the left-hand side of this
inequality the Pseudo-Key Ratio. For proper table keys, this ratio is equal to 1.0 since
the key is unique across all records in a table.

Pseudo-keys often cause many problems for machine learning data repair systems like
HoloClean [37] for three main reasons:

1. Pseudo-key attributes are not suitable to be a target for imputation:
This is because -by definition- pseudo-keys are almost unique per row, that is, no
other non-key attribute can predict them well. In other words, trying to predict a
pseudo-key attribute will result in a model with a high loss and hence, inaccurate
imputation.

26

2. Pseudo-key attributes are not suitable to be a context column:
Using the same reasoning from point 1, pseudo-key attributes do not have enough
statistical signal to be used as an accurate predictor for any other attribute. Fur-
thermore, keeping pseudo-keys in the context for predicting any column could lead
to adverse effects because machine learning models could easily overfit to pseudo-key
features, ignoring other useful features, leading to the model’s inability to generalize
to unseen examples.

3. Pseudo-key attributes lead to computational performance problems:

In particular, for operations that are quadratic in the number of the columns. For
example, computing the co-occurrence statistic as defined by equation 2.6 for all
columns is quadratic in the number of columns.

Removing pseudo-keys can be very helpful with many of the problems arising from
having sparse datasets. It is also important to note that computing the statistic in equation
3.1 is efficient and can be implemented to run concurrently for each column as the cost of
computing it per column is O(M logM), where M is the number of rows in the dataset
(assuming an implementation that is similar to that of a sort and group-by). So, for
operations that are quadratic in the number of columns, removing one pseudo-key column
can result in savings that are O(N) bigger than the cost of computing it, where N is the
number of columns in the dataset. This will also make the cost for constructing the feature
tensors less by removing columns that will not add additional signals.

3.3.2 Removing Superfluous Rules

We can apply similar reasoning from subsection 3.2.1 to the rules and integrity constraints:
Including more rules for a prediction task often has diminishing returns. That is, not all
rules are equally important for all data cleaning tasks. Hence, We need methods to prune
unimportant rules for the given data cleaning task with minimal effect on the system’s
cleaning performance.

There are multiple ways rules can be pruned with minimal effect on the data quality
system, and the method used will depend on the dataset and the other transformations
applied to it (e.g. vertical partitioning, sampling ... etc.). For example: If we apply
vertical partitioning from subsection 3.2.1, we only need to include the relevant rules for the
target vertical slice (which includes one target column and its selected features). Pruning

27

methods could also depend on the semantic meaning and nature of the rules themselves.
For example, if we limit the set of possible rules to first-order logic statements, presented
as denial constraints, we can use logical inference rules and systems to get a minimal set
of logically equivalent rules. However, this new minimal set might be smaller in number
but might be more complicated for humans to understand and maintain.

In this work, it is assumed that the set of rules (denoted hereafter as Σ) is minimal
for the dataset at hand. That is, all rules include only columns from the slice of data
of interest, and that the logical minimization is done or is ignored. Similar to subsection
3.2.1, the goal is to produce some measure of importance for each rule. We can then sort
the rules in descending order according to the importance score and use only the top-k
rules or look for an obvious distinctive change in the observed importance score (i.e. The
elbow method). This is very similar to algorithm 3.

Two heuristics are provided to rank the importance of a rule: The number of violations
and the model’s weight of the rule.

1. Ranking Rules By The Number of Violations:
In this simple heuristic, rules are ranked by the number of violating cells of that rule.
Checking a two tuple denial constraint violations is usually as simple as a self-join and
a few conditions (that correspond to first order logic predicates in the constraint) and
hence, it can be efficiently implemented. Concretely, for a rule r ∈ Σ, the violations
importance score is defined as:

Importance ScoreV iolations(r) = Absolute Number of Violating Cells of r (3.2)

The assumption behind this importance score is that some rules would have very few
violations, and so, they are safer to ignore because they do not have a strong quality
signal as other rules with more violations. One possible explanation is the following:
In a traditional rule-based data quality system, rules (not features) are the primary
way to communicate data quality signals to the system. So, human operators might
find themselves in a position where they have to add some rules to handle some
rare cases that are not representative of the dataset’s underlying error distribution.
These rules are expected to have very few violations and should be captured by this
importance score.

2. Ranking Rules By The Model Weight:
As mentioned in chapter 2, the HoloClean system [37] uses the normalized count of

28

violations of the rules as one of the features for the model to provide a signal about
the correctness of each data cell. Furthermore, each hard rule can be relaxed to
multiple soft rules, which are then used as features with a learnable weight.

Weights of the features in the model can be positive or negative, but in both cases, the
absolute value of the weight (when the features are normalized, not just counts) can
be used to indicate the level of importance the feature has, and hence the importance
of the rule that generated the feature.

By running HoloClean [37] using only the relaxed rules as features and then inspecting
the learnable weights assigned by the model, we can produce a relative importance
score for each rule. Assuming each rule r ∈ Σ produces a set of real normalized
features F = {f1, f2, . . . fK}, fi ∈ R, which are then assigned a corresponding set of
weights W = {w1, w2 . . . wK}, the model importance score is defined as:

Importance ScoreModelWeight(r) = AGG(∀fi∈F |wi|) (3.3)

Where |.| is the absolute value, and AGG is an aggregate function for a set of real
positive numbers that also produces a positive real number. For example, max, min, or
mean could all be applied.

3.3.3 Sparse Tensors

The representation of the machine learning models and features for data repair systems is
often very sparse (i.e. the number of zero values � the number of non-zero values). For
example, a feature tensor built with the assumption that all columns apply to all cells will
have many zeros for all the non-applicable cells. This leads to computational problems
that make the sparsity effect even worse on these systems.

Although this implementation detail works for many machine learning models and
systems, it was essential to improving the memory consumption of HoloClean. This is
because the feature tensor built for the HoloClean model is usually extremely sparse.
There are two additional reasons why the HoloClean tensors are very sparse:

• Tensor Padding: HoloClean uses a three dimensional feature tensor as input:
(#cells, #values, #features). That is, each cell has multiple possible values, and
each value has a feature vector describing it with respect to its context. The number
of possible values generated per cell is not constant, and this means that padding to

29

the maximum number of possible values must be used to make the tensor of consis-
tent shape; cells with huge domains will usually lead to out-of-memory tensors even
for the smaller cells included with it.

• Features Sparsity: One of the most important features in HoloClean is the co-
occurrence feature, and it is defined between all column pairs. For example, for
a dataset with three columns D(A,B,C) and a chosen target column A, the co-
occurrence feature vector for each possible value in A would be: < cooc(A,A),
cooc(A,B), cooc(A,C) > (where cooc is defined in equation 2.6), this way of fea-
turization could lead to many zeros because not all values for A will have non-zero
co-occurrences with all values from B and C. A similar argument can be made for
the denial constraint features. If the denial constraint does not apply to a certain
cell, the feature value is added with zero value. This creates many zero values that
are not informative.

Using sparse tensors incurs a computational performance cost, making the trade-off
between time and memory more pronounced. In many cases, it is acceptable to take more
time to run the task if the available memory is low. For example, savings in memory
consumption by implementing sparse tensors for HoloClean was 97% for the test dataset
presented in chapter 4, and it only caused a 30% slower model inference due to the imple-
mentation used in the sparse python library. 1

3.4 General Implementation Improvements

In this section, we provide some implementation details that made significant improvements
in the computational performance of HoloClean. These changes can also be seen as general
principles of implementing data pipelines since their benefits extend beyond just the case
of HoloClean implementation.

3.4.1 Concurrency

Concurrency refers to executing multiple, independent steps of an algorithm or a program
at the same time, instead of executing them sequentially. Modern commodity hardware
has multiple CPU cores and enough memory to enable this mode of execution. In simple

1https://github.com/pydata/sparse

30

https://github.com/pydata/sparse/

cases, the speed up from concurrent execution can be nearly linear with the number of
jobs. When implemented concurrently, I/O intensive operations like reading or writing to
disk (e.g. operations with many reads and writes to and from the database) tend to do
especially well because it increases the utilization of CPU cores when it is blocked on the
I/O.

For example, the process of computing the co-occurrence statistics for the entire dataset
is quadratic in the number of columns (as seen in chapter 2, algorithm 1). However, the
implementation of this algorithm can be optimized by observing that the co-occurrence
computation for each pair of columns is independent of all other column pairs. Hence, all
queries can be generated first and then executed concurrently. This simple change led to
a decrease in execution time for this algorithm by almost six folds (i.e. x6 faster code) in
some cases. Python’s multiprocessing module 2 was used to do this, and it is offered as a
part of the Python standard library.

3.4.2 Indexing

Since many operations in HoloClean are implemented as database operations (e.g. joins,
group by etc.). Indexing becomes a vital tool to make these database operations much
faster for larger datasets. For example, having indexes enables the database optimizer to
make smarter decisions about the algorithm it should use for a join query. Indexes incur
additional costs in the case of inserting new data since the new data must be inserted in
the data table and the built index to maintain the consistency between the table and the
index. So, it is more efficient if indexes are built after filling the tables with data; this way,
indexes can be built more efficiently using bulk-insert operations, which are much more
I/O efficient.

3.4.3 Batching

Modern machine learning models, especially deep learning models, are usually defined in
terms of tensor operations, and so they are usually implemented in one of the popular tensor
computation libraries (e.g. PyTorch 3, Tensorflow 4). These libraries provide high-level
abstractions and efficient low-level implementations of the most frequent operations that
take advantage of hardware acceleration, either by using graphics processing units GPUs

2https://docs.python.org/3/library/multiprocessing.html
3https://pytorch.org
4https://www.tensorflow.org

31

https://docs.python.org/3/library/multiprocessing.html
https://pytorch.org
https://www.tensorflow.org

or using special vector instructions on modern CPUs. In all cases, using these libraries
increases the development speed significantly and offers a homogeneous interface for all
tensor operations that could be used to define a machine learning model.

When using operations tensor processing libraries (like dot product or matrix multipli-
cation), it is important to know that the efficiency of execution heavily depends on whether
or not the input is “vectorized”. That simply means that the input is appropriately batched
instead of applying the operation on each input individually. Concretely, vectorization is a
word that refers to using Single Instruction Multiple Data (SIMD) operations. This means
that the same instruction is applied to multiple operands at the same time.

For example, if we want to compute the dot product between each pair of a set of
embedding row vectors V = {v1, v2 . . . vN}. Instead of computing each dot product for
each pair individually (i.e. vi, vj ∈ V −→< vi, vj >), we can express the same operation
as a matrix multiplication as follows: A = [v1; v2; . . . vN] (i.e. vertically stack all the row
vectors as rows of a matrix A), then the computation can be expressed as S =< A,AT >.
In many cases, this could lead to a code that is tens of times faster, depending on the
matrix’s size and the hardware being used.

32

Chapter 4

Dataset and Results

4.1 Introduction

This chapter presents a large, sparse dataset: Census and experimental results for the
suggested solutions in chapter 3, implemented using HoloClean [37]. The experiments
show that the suggested solutions resulted in a faster pipeline without sacrificing the data
cleaning performance.

4.2 Dataset

In this section, we introduce the Census dataset and some of the pre-processing steps
necessary to make running HoloClean [37] on it possible.

4.2.1 Description

The data were acquired in collaboration with a governmental agency in a developing coun-
try. It was the result of surveying more than 85,000 families for their income and work
conditions. A record is generated for each family member with their information, yielding
a total of 350669 records. The governmental agency conducted the survey as a part of the
2013 census and was then processed and manually checked and corrected against prede-
termined domain-specific rules. It is interesting to note that many columns are entirely
error-free. Out of the total 120 attributes, 66 attributes have mistakes when compared to

33

the provided ground truth. For example, the column ’reltohd’ (relation of family member
to the family head) has 1138 errors.

The dataset has the following components:

• Raw data :
A raw data file of 350,669 records in 120 columns.

• Ground truth :
The 350,669 records but manually verified in 120 columns.

• Constraints :
A set of 131 integrity constraints was provided with the dataset; they were used with
manual labelling to correct the mistakes in the raw data.

A complete enumeration of the dataset variables, their description, and the integrity
constraints (defined as denial constraints in the HoloClean DC grammar) are provided in
appendix A.

4.2.2 Pre-processing

All three components needed some pre-processing before they were ready for input to
HoloClean. The pre-processing steps are listed below:

1. Transform data format to CSV :
The provided datasets (raw and ground truth) were both provided in SPSS format
1. Extraction and transformation to Comma-Separated Values (CSV) format were
done before any other step. This was done using the python pandas library SPSS
function2.

2. Unify the raw data and the ground truth :
The raw data values were given in their textual representation, but the values in
ground truth were given in a categorical enumeration, and dictionaries were provided
to do the mapping. Unifying the data types and the value representation is essential
for HoloClean and enables easier debugging.

1https://www.ibm.com/products/spss-statistics
2https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read spss.html

34

https://www.ibm.com/products/spss-statistics
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_spss.html

3. Link the raw data and ground truth records :
The key given for the raw data table was different from the key given for the ground
truth table, making linking them difficult. Luckily, the raw data key is a computed
column from other clean id columns in the dataset. The keys were unified by applying
the same computation on the ground truth table, and the two datasets were linked.

4. Translate the constraints to HoloClean denial constraints grammar:
Since data quality rules were given in plain English, they needed translation to the
HoloClean denial constraint grammar. This enables HoloClean to use these rules as
features in the model.

4.3 Experiments

The goal of this section is to show how some of the suggestions that we provided in chapter
3 can be applied to the test dataset described in section 4.2 to run HoloClean’s data repair
pipelines in a much faster time with much less memory. It is important to note here that,
although we choose only one target column (“reltohd”) to focus our investigation on, the
same steps can be applied to any other target column since none of them is specific to this
column. Subsection 4.3.1 explains the other reasons this column was selected in particular.

4.3.1 The Target Column: “reltohd”

The “reltohd” column encodes the record’s relationship to the head of the family. The
column was selected for multiple reasons. First, it is the column with the highest number
of errors (1138 errors). Second, it has an important semantic meaning for this dataset
about workforce and income; the head of the family in that country is often the main
worker and breadwinner. Finally, it is involved in many rules with other columns like
marriage, age, and education (25 rules).

The column has a domain of eleven values, illustrated with their absolute and normal-
ized counts in table 4.1, ordered by counts in descending order. The low number of unique
values makes it easier to test many of the ideas presented in chapter 3 on regular hardware
like a laptop with small memory due to features tensor size because we can use the entire
set of eleven values as the cell domain for HoloClean.

35

(a) Steps 1-4: Data Reduction Pipeline

(b) Step 5: HoloClean Pipeline

Figure 4.1: Overall Pipeline

Domain Value Absolute Count Normalized Count

1 son/daugther 182550 52.05%
2 head 85392 24.35%
3 spouse 66812 19.05%
4 niece/nephew 6879 1.96%
5 father/mother 2880 0.82%
6 daughter/son-in-law 2864 0.81%
7 brother/sister 1810 0.51%
8 other relatives 1208 0.34%
9 brother wife 157 0.044%
10 no relation 113 0.032%
11 baby sitter 4 0.0011%

Table 4.1: Column “reltohd” domain value distribution

4.3.2 Improved HoloClean Pipeline

Initially, when trying to run HoloClean out of the box on the full dataset to repair the
column “reltohd”, the code fails (after 4+ hours) because of memory problems during the
co-occurrence statistic computation step. The runs were made on a laptop with eight cores
and 16 GB of RAM. Using some of the suggestions from the previous chapters, we present
a simple pipeline, which was able to run the HoloClean repair pipeline successfully on the
test dataset. The pipeline is illustrated in figure 4.1.

36

1. Eliminate pseudo-key columns:
Pseudo-key attributes are defined in section 3.3.1. The statistic of equation 3.1 was
computed for all columns. The highest two columns (’caseser’, and ’fam unique number’)
had a score of 25% unique. That means they have approximately 88,000 unique val-
ues. Plus, both columns are obvious to be some identifier that can not be used for
imputation purposes. So, both of these columns were excluded from the dataset.

2. Partition the data vertically:
Next, we consider only context columns that are needed for the task at hand, that
is, imputing the column “reltohd”. To do that, we use correlation-based feature
selection, since all our variables are categorical, we use two discrete measures of cor-
relation: Mutual Information, and Normalized Conditional Entropy Correlation (as
defined in chapter 2). Normalized Conditional Entropy Correlation is already being
used in HoloClean to determine the columns with the highest correlations to include
in the co-occurrences for the domain generation step. Mutual Information was used
as a secondary measure of correlation to exclude further columns. We show columns
with highest correlations (expressed as both normalized conditional entropy and mu-
tual information) in figure 4.2. We can see that there is a sharp drop in both corre-
lation measures after including 60 columns. For this experiment, we took the top 60
out of 120 columns in both correlation measures and got the intersection of these two
sets. This resulted in only 35 context columns to be included for predicting “reltohd”.
For reference, the 35 columns are: (“bir yr”, “contr type”, “crecact”, “crempst”,
“crestabl”, “crhlthins”, “croccup”, “crsectot”, “crsocins”, “crstabl”, “crwrkdur”,
“crwrkhrs wek”, “crwrkm”, “dsready”, “ecact 2d”, “edu enrol”, “educ class comp”,
“educ st”, “educ stage comp”, “employees no”, “expan”, “fam ser gov”, “firsten-
try yr”, “mar st”, “person number”, “proccup”, “prwrk”, “respondant”, “rsn ntdsr wrk”,
“scoccup”, “sex”, “wg basic”, “wg basic prd”, “work”, “wrkchang”).

3. Filter out the unnecessary rules after vertical partitioning:
Once vertical partitioning is done, it is straightforward to see that only constraints
that include “reltohd” and any of the other columns from above should be included,
while all other denial constraints should be excluded. This resulted in retaining only
25 denial constraints out of the 131 rules initially given.

4. Partition the data horizontally:
The simplest solution for horizontal partitioning is random sampling. For this ex-
periment, we randomly selected only 100,000 “reltohd” cells to be used for training
while retaining the rest for testing. Another possible way would be to break down
the dataset with the “gov” column, obtaining 27 smaller datasets.

37

5. Run the standard HoloClean pipeline:
After these changes to the dataset, it becomes much easier to run the standard
HoloClean pipeline of the following stages: (Domain Generation, Featurization [with
co-occurrence and denial constraints], Training, Inference). The overall run-time for
this pipeline was less than 2 hours with the reduced dataset and constraints.

6. Evaluate the model using the provided ground truth data:
The HoloClean model was able to suggest repairs for the “reltohd” column with
94.5% accuracy (out of 1138 errors in the column, the model was able to suggest
changes that agree with the ground truth for 1076 cells, and suggested changes that
disagree with the ground truth for 62 cells).

A summary of the data reduction results is available in table 4.3.2.

#Columns #Training Cells #Rules

1 70.83%(120 −→ 35) 71.46%(350k −→ 100k) 80.9%(131 −→ 25)

Table 4.2: Summary for data reduction output on the
“reltohd” column

38

0 20 40 60 80 100 120
Other columns

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Co
nd

iti
on

al
 E

nt
ro

py
 w

ith
 re

lto
hd

(a) Normalized Conditional Entropy Correlation

0 20 40 60 80 100 120
Other columns

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ut

ua
l I

nf
or

m
at

io
n

wi
th

 re
lto

hd

(b) Mutual Information

Figure 4.2: Discrete correlation measures between other columns and reltohd

39

Chapter 5

Conclusion

Despite machine learning data repair systems achieving state-of-the-art performance for
the data repair problem on many datasets, these systems face significant challenges with
sparse datasets. The major challenge is the data-homogeneity assumptions made by these
models, which do not hold for sparse datasets. Previous solutions suggested training large
global models with rich features on the full data. However, large, sparse datasets suffer
from two main problems that violate these data-homogeneity assumptions: Column Non-
Applicability and Locality of Dependence Structure—rendering the previous solutions less
useful.

This work presented a solution that consists of constructing multiple different models
per dataset, where each model is trained and used only on a specific part of the data. Data
partitioning techniques can be used to construct islands of homogeneous data, where local
models can be trained efficiently using standard sampling techniques. The correlation-
based vertical partitioning (using mutual information and normalized conditional entropy)
can solve the Column Non-Applicability problem. Conditional dependence based horizon-
tal partitioning is suggested to solve the Locality of Dependence Structure problem. Fur-
thermore, multiple implementation improvements (e.g. Removing Pseudo-key Columns,
Removing Pseudo-key Columns, and using sparse tensors) were suggested to mitigate the
effects of data and feature sparseness. For example, sparse tensors were suggested to reduce
the memory requirement of HoloClean for the Census dataset by 97%.

Using HoloClean [37] as an instance of machine learning data repair systems, exper-
imental results showed how the suggested methods could improve the performance on a
new dataset: Census. Census is a sparse dataset with more than 120 columns about in-
come and work data. While the vanilla HoloClean implementation fails on this dataset

40

(running out of memory after 4+ hours of run time), the suggested methods show that we
can reduce the problem size by more than 70%, saving expensive computations, while still
getting high accuracy data repairs (94.5% accuracy).

41

References

[1] Constantin F Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani,
and Xenofon D Koutsoukos. Local causal and markov blanket induction for causal
discovery and feature selection for classification part i: Algorithms and empirical
evaluation. Journal of Machine Learning Research, 11(1), 2010.

[2] Eric E Altendorf, Angelo C Restificar, and Thomas G Dietterich. Learning from sparse
data by exploiting monotonicity constraints. arXiv preprint arXiv:1207.1364, 2012.

[3] Gökhan BakIr, Thomas Hofmann, Bernhard Schölkopf, Alexander J Smola, and Ben
Taskar. Predicting structured data. MIT press, 2007.

[4] Joshua Batson and Loic Royer. Noise2self: Blind denoising by self-supervision. arXiv
preprint arXiv:1901.11365, 2019.

[5] Leopoldo Bertossi. Database repairing and consistent query answering. Synthesis
Lectures on Data Management, 3(5):1–121, 2011.

[6] Michael J Bianco, Peter Gerstoft, James Traer, Emma Ozanich, Marie A Roch, Sharon
Gannot, and Charles-Alban Deledalle. Machine learning in acoustics: Theory and
applications. The Journal of the Acoustical Society of America, 146(5):3590–3628,
2019.

[7] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. Efficient denial constraint dis-
covery with hydra. Proceedings of the VLDB Endowment, 11(3):311–323, 2017.

[8] Philip Bohannon, Wenfei Fan, Michael Flaster, and Rajeev Rastogi. A cost-based
model and effective heuristic for repairing constraints by value modification. In Pro-
ceedings of the 2005 ACM SIGMOD international conference on Management of data,
pages 143–154, 2005.

42

[9] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-
etsidis. Conditional functional dependencies for data cleaning. In 2007 IEEE 23rd
international conference on data engineering, pages 746–755. IEEE, 2007.

[10] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using
tuple deletions. Information and Computation, 197(1-2):90–121, 2005.

[11] Xu Chu, Ihab F Ilyas, and Paolo Papotti. Discovering denial constraints. Proceedings
of the VLDB Endowment, 6(13):1498–1509, 2013.

[12] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. Improving data
quality: Consistency and accuracy. In VLDB, volume 7, pages 315–326, 2007.

[13] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid, Ihab F Ilyas,
Mourad Ouzzani, and Nan Tang. Nadeef: a commodity data cleaning system. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, pages 541–552, 2013.

[14] Wenfei Fan and Floris Geerts. Foundations of data quality management. Synthesis
Lectures on Data Management, 4(5):1–217, 2012.

[15] Benôıt Frénay and Michel Verleysen. Classification in the presence of label noise: a
survey. IEEE transactions on neural networks and learning systems, 25(5):845–869,
2013.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[17] Zhihan Guo and Theodoros Rekatsinas. Learning functional dependencies with sparse
regression. arXiv preprint arXiv:1905.01425, 2019.

[18] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of machine learning research, 3(Mar):1157–1182, 2003.

[19] Alireza Heidari, Joshua McGrath, Ihab F Ilyas, and Theodoros Rekatsinas. Holode-
tect: Few-shot learning for error detection. In Proceedings of the 2019 International
Conference on Management of Data, pages 829–846, 2019.

[20] MD. Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga. A
comprehensive survey of deep learning for image captioning. ACM Comput. Surv.,
51(6), February 2019.

43

[21] Ihab F. Ilyas and Xu Chu. Data Cleaning. Association for Computing Machinery,
New York, NY, USA, 2019.

[22] Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng, and Rong
Qu. A survey of deep learning-based object detection. IEEE Access, 7:128837–128868,
2019.

[23] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian. Met-
ric functional dependencies. In 2009 IEEE 25th International Conference on Data
Engineering, pages 1275–1278. IEEE, 2009.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[25] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep learning for
named entity recognition. IEEE Transactions on Knowledge and Data Engineering,
2020.

[26] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Madden,
Mourad Ouzzani, Michael Stonebraker, and Nan Tang. Raha: A configuration-free
error detection system. In Proceedings of the 2019 International Conference on Man-
agement of Data, pages 865–882, 2019.

[27] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. Discovering dependencies with
reliable mutual information. Knowledge and Information Systems, pages 1–31, 2020.

[28] G Marcus. Deep learning: A critical appraisal. arxiv 2018. arXiv preprint
arXiv:1801.00631, 2019.

[29] Renqiang Min and Sanjay Purushotham. Knowledge based factorized high order sparse
learning models, September 8 2016. US Patent App. 15/049,983.

[30] Susan Moore. How to create a business case for data quality improvement, 2018. Follow
these 5 steps to effectively design a compelling data quality improvement business case.

[31] Xuan Vinh Nguyen, Jeffrey Chan, Simone Romano, and James Bailey. Effective global
approaches for mutual information based feature selection. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 512–521, 2014.

44

[32] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional de-
pendency discovery: An experimental evaluation of seven algorithms. Proceedings of
the VLDB Endowment, 8(10):1082–1093, 2015.

[33] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter, Shuo-Yiin Chang, and Tara
Sainath. Deep learning for audio signal processing. IEEE Journal of Selected Topics
in Signal Processing, 13(2):206–219, 2019.

[34] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, and Xi-cheng Lu. A systematic review of
structured sparse learning. Frontiers of Information Technology & Electronic Engi-
neering, 18(4):445–463, Apr 2017.

[35] Vijayshankar Raman and Joseph M Hellerstein. Potter’s wheel: An interactive data
cleaning system. In VLDB, volume 1, pages 381–390, 2001.

[36] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. Snorkel: Rapid training data creation with weak supervision. In
Proceedings of the VLDB Endowment. International Conference on Very Large Data
Bases, volume 11, page 269. NIH Public Access, 2017.

[37] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. Holoclean: Holistic
data repairs with probabilistic inference. arXiv preprint arXiv:1702.00820, 2017.

[38] Dimensional Research. Artificial intelligence and machine learning projects are ob-
structed by data issues. global survey of data scientists, ai experts and stakeholders,
2019.

[39] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural net-
works, 61:85–117, 2015.

[40] V. Sheng, Rahul Tada, and Abhinav Atla. An empirical study of class noise impacts
on supervised learning algorithms and measures.

[41] Nino Shervashidze and Francis Bach. Learning the structure for structured sparsity.
IEEE Transactions on Signal Processing, 63(18):4894–4902, 2015.

[42] Alexander Statnikov, Nikita I Lytkin, Jan Lemeire, and Constantin F Aliferis. Al-
gorithms for discovery of multiple markov boundaries. Journal of Machine Learning
Research, 14(Feb):499–566, 2013.

45

[43] Neil C Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F Manso. The
computational limits of deep learning. arXiv preprint arXiv:2007.05558, 2020.

[44] Wikipedia contributors. Conditional entropy — Wikipedia, the free encyclopedia,
2020. [Online; accessed 4-October-2020].

[45] Wikipedia contributors. Feature selection — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Feature_selection&oldid=
976256335, 2020. [Online; accessed 8-September-2020].

[46] Wikipedia contributors. Functional dependency — Wikipedia, the free encyclopedia,
2020. [Online; accessed 4-October-2020].

[47] Wikipedia contributors. Mutual information — Wikipedia, the free encyclopedia,
2020. [Online; accessed 4-October-2020].

[48] Wikipedia contributors. Structured prediction — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Structured_prediction&
oldid=965415307, 2020. [Online; accessed 9-September-2020].

[49] Richard Wu, Aoqian Zhang, Ihab Ilyas, and Theodoros Rekatsinas. Attention-based
learning for missing data imputation in holoclean. Proceedings of Machine Learning
and Systems, pages 307–325, 2020.

[50] Mohamed Yakout, Ahmed K Elmagarmid, Jennifer Neville, Mourad Ouzzani, and
Ihab F Ilyas. Guided data repair. arXiv preprint arXiv:1103.3103, 2011.

[51] Yiming Yang and Jan O Pedersen. A comparative study on feature selection in text
categorization. In Icml, volume 97, page 35. Nashville, TN, USA, 1997.

[52] Ce Zhang. Deepdive: A data management system for automatic knowledge base
construction. 2015.

[53] Lei Zhang, Shuai Wang, and Bing Liu. Deep learning for sentiment analysis: A survey.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1253,
2018.

[54] Juan Zhao, Yiwei Zhou, Xiujun Zhang, and Luonan Chen. Part mutual information
for quantifying direct associations in networks. Proceedings of the National Academy
of Sciences, 113(18):5130–5135, 2016.

46

https://en.wikipedia.org/w/index.php?title=Feature_selection&oldid=976256335
https://en.wikipedia.org/w/index.php?title=Feature_selection&oldid=976256335
https://en.wikipedia.org/w/index.php?title=Structured_prediction&oldid=965415307
https://en.wikipedia.org/w/index.php?title=Structured_prediction&oldid=965415307

APPENDICES

47

Appendix A

Dataset Description

This appendix has a detailed description of the two components of the Census dataset:
The schema, and the constraints.

A.1 Schema

This section presents the list of 120 columns used in the original dataset with their de-
scriptions. The variable definitions used below were given with the dataset and sometimes
are not very clear.

Variable name Variable definition

1 year year2013
2 period round
3 rakam tattb3ya vist number
4 group no group number
5 urban urban/rural
6 psu no number of the sampling unit
7 fam ser fram serial number of the family in the frame
8 fam1 ser psu serial number of the family in primary sampling unit
9 fam unique number serial number of the family in the sample
10 gov gov

Continued on next page

48

Variable name Variable definition

11 qism qism
12 shiakha shiakha
13 fam ser sh serial number of the family in shiakha
14 fam ser gov serial number of the family in governorates
15 person number person number
16 reltohd Relation to HHH
17 sex sex
18 birth mth Month of birth
19 bir yr Year of birth
20 age age
21 edu enrol Education Enrollment
22 educ st Education level
23 educ lastcetif last Certificate and specialization
24 mar st Maritalstatus
25 crwrkm Did you work during last week at least 1hr(market def.)
26 crwrkm supp engage in any work
27 crwrkm agr activities to earn money Agriculture
28 crwrkm cattle activities to earn money cattle
29 crwrkm dairy activities to earn money Dairy products
30 crwrkm fuel activities to earn money fuel Collection
31 crwrkm vegi activities to earn money Vegetables
32 crwrkm sewing activities to earn money Sewing
33 crwrkm Handcraft activities to earn money Handicraft
34 crwrkm housek activities to earn money House keeping
35 crwrkm paidcraft activities to earn money Paid craft
36 crwrkm selling activities to earn money Selling
37 crwrkm maketing activities to earn money marketing
38 crwrkm constr activities to earn money constructing
39 crwrkm fishing activities to earn money fishing
40 crwrkm learningting activities to earn money learning craft
41 everwork ever worked before
42 crwrks agri family consumption Agriculture(subsistence
43 crwrks cattle family consumption cattle
44 crwrks dairy family consumption Dairy products

Continued on next page

49

Variable name Variable definition

45 crwrks fuel family consumption fuel Collection
46 dsr to wrk Want to work
47 ready to wrk ready to work
48 rsn ntdsr wrk reason of unwillingness to work
49 srch seek for work
50 srch gov Attempts to find work governmental office
51 srch pri Attempts to find work private office
52 srch comp Attempts to find work recruitment competition
53 srch direct Attempts to find work employer directly
54 srch wrkplace Attempts to find work work place
55 srch adv1 Attempts to find work Publish advertisement
56 srch adv2 Attempts to find work Submit at advertisement
57 srch friends Attempts to find work Ask friends
58 srch employer Attempts to find work Contact with employer
59 srch contractor Attempts to find work Contact with contractor
60 srch wait Attempts to find work waiting in a gathering place
61 srch bus Attempts to find work own business
62 srch credit Attempts to find work financial resources
63 srch other Attempts to find work other
64 rsn ntsrch Why not search
65 expan Expansion factor
66 responce Response yes/no
67 NO1 male 6-14
68 NO3 male 15-64
69 NO4 male 65+
70 NO5 male unemp worked bef.
71 NO6 male unemp.
72 NO7 male out LF
73 NO8 male out manpower
74 NO9 male total
75 NO10 female 6-14
76 NO12 female 15-64
77 NO13 female 65+
78 NO14 female unemp worked bef.

Continued on next page

50

Variable name Variable definition

79 NO15 female unemp.
80 NO16 female out LF
81 NO17 female out manpower
82 NO18 female total
83 NO19 total 6-14
84 NO21 total 15-64
85 NO22 total 65+
86 NO23 total unemp worked bef.
87 NO24 total unemp.
88 NO25 total out LF
89 NO26 total out manpower
90 NO27 total total
91 respondant Respondant
92 firstentry yr year of start working
93 crempst employment status
94 crestabl working in an establishment
95 employees no Number of Employees
96 crecact economic activity
97 crsectot working sector
98 croccup Current job
99 crwrkdur job duration in years,0 less than 1 yr
100 prwrk Yes/No Previous job
101 proccup describe Previous job
102 scoccup Yes/No second job
103 crwrkhrs wek working Hours in week
104 crwrkhrs working Hours in week (second job)
105 rsnlt35 reason work hr¡35hr
106 wrkchang Yes/No change your work
107 crstabl work Stability
108 crsocins social insurance coverage
109 crhlthins health insurance coverage
110 contr type legal contract type
111 wg basic prd Basic wage period
112 wg basic Basic wage amount

Continued on next page

51

Variable name Variable definition

113 wg avdaily average daily wage irregular emp
114 ecact 2d 2 digit level Economic Act code
115 unemp typ type of unemployment
116 unemp lst occ last occupation
117 unemp lseco last economic activity
118 unemp prd unemployment period
119 probleme problem
120 ecact str2 level Economic Act code

Table A.1: Breakdown of the variables (columns) in the
Census dataset as received from the source.

52

A.2 Rules

The rules were provided as a part of the dataset and were translated to the Denial Con-
straints notation below. The notation defines six first order predicates (’EQ’ for equality
check, ’IQ’ for inequality check, ’LT’ for numerical less than check, ’GT’ for numerical
greater than check, ’LTE’ for numerical less than or equal check, ’GTE’ for numerical
greater than or equal check). In addition, a special value of ’NULL’ represents the lack of
value in a certain cell.

For example, the first rule: t1&EQ(t1.reltohd,’head’)<(t1.age,17) is a check con-

straint that involves one tuple, and can be read as: ”For any tuple, t1, if it has a ’reltohd’
equal to ’head’, its ’age’ can not be less than 17”.

Rule Denial Constraint

1 t1&EQ(t1.reltohd,’head’)<(t1.age,17)
2 t1&EQ(t1.reltohd,’spouse’)<(t1.age,18)
3 t1&EQ(t1.reltohd,’son/daugther’)>(t1.age,60)
4 t1&EQ(t1.reltohd,’daughter/son-in-law’)<(t1.age,18)
5 t1&EQ(t1.reltohd,’daughter/son-in-law’)>(t1.age,60)
6 t1&EQ(t1.reltohd,’brother/sister’)<E(t1.age,10)
7 t1&EQ(t1.reltohd,’brother/sister’)>E(t1.age,80)
8 t1&EQ(t1.reltohd,’brother wife’)<(t1.age,8)
9 t1&EQ(t1.reltohd,’brother wife’)>(t1.age,63)
10 t1&EQ(t1.reltohd,’ather/mother’)<(t1.age,43)
11 t1&EQ(t1.mar st,’married’)<(t1.age,18)
12 t1&EQ(t1.edu enrol,’enrolled now’)>E(t1.age,50)
13 t1&EQ(t1.educ st,’preparatory’)<E(t1.age,13)
14 t1&EQ(t1.educ st,’general secondary’)<E(t1.age,16)
15 t1&EQ(t1.educ st,’tech. sec.’)<E(t1.age,16)
16 t1&EQ(t1.educ st,’above intermaediate’)<E(t1.age,18)
17 t1&EQ(t1.educ st,’university’)<E(t1.age,20)
18 t1<(t1.age,6)&IQ(t1.dsr to wrk,’NULL’)
19 t1<(t1.age,6)&IQ(t1.ready to wrk,’NULL’)
20 t1<(t1.age,6)&IQ(t1.rsn ntdsr wrk,’NULL’)
21 t1<(t1.age,6)&IQ(t1.srch,’NULL’)
22 t1<(t1.age,6)&IQ(t1.respondant,’NULL’)

Continued on next page

53

Rule Denial Constraint

23 t1<(t1.age,6)&IQ(t1.crempst,’NULL’)
24 t1<(t1.age,6)&IQ(t1.crestabl,’NULL’)
25 t1<(t1.age,6)&IQ(t1.employees no,’NULL’)
26 t1<(t1.age,6)&IQ(t1.crecact,’NULL’)
27 t1<(t1.age,6)&IQ(t1.crsectot,’NULL’)
28 t1<(t1.age,6)&IQ(t1.croccup,’NULL’)
29 t1<(t1.age,6)&IQ(t1.crwrkdur,’NULL’)
30 t1<(t1.age,6)&IQ(t1.crwrkhrs wek,’NULL’)
31 t1<(t1.age,6)&IQ(t1.rsnlt35,’NULL’)
32 t1<(t1.age,6)&IQ(t1.wrkchang,’NULL’)
33 t1<(t1.age,6)&IQ(t1.crstabl,’NULL’)
34 t1<(t1.age,6)&IQ(t1.crsocins,’NULL’)
35 t1<(t1.age,6)&IQ(t1.crhlthins,’NULL’)
36 t1<(t1.age,6)&IQ(t1.contr type,’NULL’)
37 t1<(t1.age,6)&IQ(t1.wg basic prd,’NULL’)
38 t1<(t1.age,6)&IQ(t1.wg basic,’NULL’)
39 t1<(t1.age,6)&IQ(t1.wg avdaily,’NULL’)
40 t1<(t1.age,6)&IQ(t1.scoccup,’NULL’)
41 t1<(t1.age,6)&IQ(t1.prwrk,’NULL’)
42 t1<(t1.age,6)&IQ(t1.proccup,’NULL’)
43 t1<(t1.age,6)&IQ(t1.unemp typ,’NULL’)
44 t1<(t1.age,6)&IQ(t1.unemp lst occ,’NULL’)
45 t1<(t1.age,6)&IQ(t1.unemp lseco,’NULL’)
46 t1<(t1.age,6)&IQ(t1.unemp prd,’NULL’)
47 t1&EQ(t1.reltohd,’spouse’)&EQ(t1.mar st,’never married’)
48 t1&EQ(t1.reltohd,’spouse’)&EQ(t1.mar st,’contract married’)
49 t1&EQ(t1.reltohd,’spouse’)&EQ(t1.mar st,’divorced’)
50 t1&EQ(t1.reltohd,’spouse’)&EQ(t1.mar st,’widowed’)
51 t1&EQ(t1.reltohd,’daughter/son-in-law’)&EQ(t1.mar st,’never married’)
52 t1&EQ(t1.reltohd,’daughter/son-in-law’)&EQ(t1.mar st,’contract married’)
53 t1&EQ(t1.reltohd,’daughter/son-in-law’)&EQ(t1.mar st,’divorced’)
54 t1&EQ(t1.reltohd,’brother wife’)&EQ(t1.mar st,’never married’)
55 t1&EQ(t1.reltohd,’brother wife’)&EQ(t1.mar st,’divorced’)
56 t1&EQ(t1.reltohd,’ather/mother’)&EQ(t1.mar st,’never married’)

Continued on next page

54

Rule Denial Constraint

57 t1&EQ(t1.reltohd,’ather/mother’)&EQ(t1.mar st,’contract married’)
58 t1&EQ(t1.reltohd,’ather/mother’)&EQ(t1.mar st,’divorced’)
59 t1&EQ(t1.edu enrol,’no enrolled’)&EQ(t1.educ st,’primary’)
60 t1&EQ(t1.edu enrol,’no enrolled’)&EQ(t1.educ st,’preparatory’)
61 t1&EQ(t1.edu enrol,’no enrolled’)&EQ(t1.educ st,’general secondary’)
62 t1&EQ(t1.edu enrol,’no enrolled’)&EQ(t1.educ st,’azhar secondary’)
63 t1&EQ(t1.edu enrol,’no enrolled’)&EQ(t1.educ st,’tech. sec.’)
64 t1&EQ(t1.edu enrol,’no enrolled’)&EQ(t1.educ st,’above intermaediate’)
65 t1&EQ(t1.edu enrol,’no enrolled’)&EQ(t1.educ st,’university’)
66 t1&EQ(t1.edu enrol,’no enrolled’)&EQ(t1.educ st,’above university’)
67 t1&EQ(t1.edu enrol,’less than 6 years’)&EQ(t1.rsn ntdsr wrk,’student’)
68 t1&EQ(t1.edu enrol,’no enrolled’)&EQ(t1.rsn ntdsr wrk,’student’)
69 t1&EQ(t1.edu enrol,’completed’)&EQ(t1.rsn ntdsr wrk,’student’)
70 t1&EQ(t1.edu enrol,’enrolled but not finished’)&EQ(t1.rsn ntdsr wrk,’student’)
71 t1&EQ(t1.dsr to wrk,’no’)&IQ(t1.ready to wrk,’NULL’)
72 t1&EQ(t1.dsready,’1’)&EQ(t1.rsn ntdsr wrk,’NULL’)
73 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch,’NULL’)
74 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch gov,’NULL’)
75 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch pri,’NULL’)
76 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch comp,’NULL’)
77 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch direct,’NULL’)
78 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch wrkplace,’NULL’)
79 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch adv1,’NULL’)
80 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch adv2,’NULL’)
81 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch friends,’NULL’)
82 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch employer,’NULL’)
83 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch contractor,’NULL’)
84 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch wait,’NULL’)
85 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch bus,’NULL’)
86 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch credit,’NULL’)
87 t1&EQ(t1.ready to wrk,’NULL’)&IQ(t1.srch other,’NULL’)
88 t1&IQ(t1.notsrch,’1’)&IQ(t1.rsn ntsrch,’NULL’)
89 t1&EQ(t1.work,’2’)&IQ(t1.crempst,’NULL’)
90 t1&EQ(t1.rsnlt35,’NULL’)<(t1.crwrkhrs wek,35)

Continued on next page

55

Rule Denial Constraint

91 t1&EQ(t1.crsectot,’government’)&EQ(t1.crempst,’self-employed’)
92 t1&EQ(t1.crempst,’NULL’)&IQ(t1.wg basic prd,’NULL’)
93 t1&EQ(t1.crempst,’NULL’)&IQ(t1.wg basic,’NULL’)
94 t1&EQ(t1.crempst,’NULL’)&IQ(t1.wg avdaily,’NULL’)
95 t1&EQ(t1.crstabl,’seasonal’)&IQ(t1.wg basic,’NULL’)
96 t1&EQ(t1.crstabl,’casual’)&IQ(t1.wg basic,’NULL’)
97 t1&EQ(t1.crstabl,’NULL’)&IQ(t1.wg basic,’NULL’)
98 t1&EQ(t1.crstabl,’seasonal’)&IQ(t1.wg basic prd,’NULL’)
99 t1&EQ(t1.crstabl,’casual’)&IQ(t1.wg basic prd,’NULL’)
100 t1&EQ(t1.crstabl,’NULL’)&IQ(t1.wg basic prd,’NULL’)
101 t1&EQ(t1.work,’2’)&IQ(t1.prwrk,’NULL’)
102 t1&IQ(t1.proccup,’NULL’)&EQ(t1.prwrk,’NULL’)
103 t1&EQ(t1.srchwrk,’0’)&IQ(t1.unemp typ,’NULL’)
104 t1&EQ(t1.srchwrk,’0’)&IQ(t1.unemp lst occ1,’NULL’)
105 t1&EQ(t1.srchwrk,’0’)&IQ(t1.unemp prd,’NULL’)
106 t1&EQ(t1.srchwrk,’0’)&IQ(t1.unemp lseco1,’NULL’)
107 t1<(t1.star unemp,6)&EQ(t1.unemp typ,’never worked’)
108 t1&EQ(t1.person number,’1’)&IQ(t1.reltohd,’head’)
109 t1&EQ(t1.reltohd,’spouse’)&EQ(t1.sex,’male’)
110 t1&EQ(t1.reltohd,’spouse’)&IQ(t1.mar st,’married’)
111 t1&IQ(t1.educ stage comp,’NULL’)<(t1.age,6)
112 t1&EQ(t1.educ stage comp,’preb’)<(t1.age,12)
113 t1&EQ(t1.educ stage comp,’general secondary’)<(t1.age,15)
114 t1&EQ(t1.educ stage comp,’azhar secondary’)<(t1.age,15)
115 t1&EQ(t1.educ stage comp,’tech. sec.’)<(t1.age,15)
116 t1&EQ(t1.educ stage comp,’above intermaediate’)<(t1.age,18)
117 t1&EQ(t1.educ stage comp,’university’)<(t1.age,18)
118 t1&EQ(t1.educ stage comp,’above university’)<(t1.age,22)
119 t1&EQ(t1.educ stage comp,’primary’)>(t1.educ class comp,6)
120 t1&EQ(t1.educ stage comp,’preb’)>(t1.educ class comp,3)
121 t1&EQ(t1.educ stage comp,’general secondary’)>(t1.educ class comp,3)
122 t1&EQ(t1.educ stage comp,’azhar secondary’)>(t1.educ class comp,3)
123 t1&EQ(t1.educ stage comp,’tech. sec.’)>(t1.educ class comp,5)
124 t1&EQ(t1.educ stage comp,’above intermaediate’)>(t1.educ class comp,4)

Continued on next page

56

Rule Denial Constraint

125 t1&EQ(t1.educ stage comp,’university’)>(t1.educ class comp,6)
126 t1&EQ(t1.edu enrol,’less than 6 years’)&IQ(t1.educ stage comp,’NULL’)
127 t1&EQ(t1.edu enrol,’no enrolled’)&IQ(t1.educ stage comp,’NULL’)
128 t1&EQ(t1.edu enrol,’completed’)&IQ(t1.educ stage comp,’NULL’)
129 t1&EQ(t1.edu enrol,’less than 6 years’)&IQ(t1.educ class comp,’NULL’)
130 t1&EQ(t1.edu enrol,’no enrolled’)&IQ(t1.educ class comp,’NULL’)
131 t1&EQ(t1.edu enrol,’completed’)&IQ(t1.educ class comp,’NULL’)

Table A.2: Breakdown of the rules (defined as denial
constraints) in the Census dataset.

57

	List of Tables
	List of Figures
	Introduction
	Machine Learning for Data Repair
	Challenges for Machine Learning in Data Repair
	Scaling Machine Learning Data Repair Systems for Sparse Datasets
	Notes

	Background
	Introduction
	The Data Repair Problem
	Integrity Constraints
	Functional Dependencies
	Conditional Functional Dependencies
	Denial Constraints

	Information Measures As Correlations
	Mutual Information
	Normalized Directed Conditional Entropy

	HoloClean
	Paper Vs. Open-Source Code
	Pipeline

	Scaling Machine Learning Data Repair for Sparse Datasets
	Introduction
	Slicing to Solve Data Sparseness
	Correlation Based Vertical Partitioning
	Conditional Dependence Based Horizontal Partitioning

	Improvements to Machine Learning Model and Feature Sparsity
	Removing Pseudo-key Columns
	Removing Superfluous Rules
	Sparse Tensors

	General Implementation Improvements
	Concurrency
	Indexing
	Batching

	Dataset and Results
	Introduction
	Dataset
	Description
	Pre-processing

	Experiments
	The Target Column: ``reltohd''
	Improved HoloClean Pipeline

	Conclusion
	References
	APPENDICES
	Dataset Description
	Schema
	Rules

