
Deep-Learning Framework for Estimating 

Behind the Meter Solar Generation and 

Electric Vehicle Penetration Level and Time-

of-Use 

By 

 

Mohamed Hassan Abdalla 

 

 

 

A thesis 

presented to the University Of Waterloo 

in fulfilment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Electrical and Computer Engineering 

 

 

 

 

 

 

Waterloo, Ontario, Canada, 2020 

© Mohamed Hassan Abdalla 2020 

  



ii 
 

Author Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the 

thesis, including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

  



iii 
 

Abstract 

The continual increase in the adoption of rooftop solar/photovoltaic (PV) 

generation and electric vehicles (EVs) presents challenges, as well as opportunities, 

in distribution power systems. Without monitoring or control, the addition of PV 

generation and EV charging to distribution power systems can result in power 

stability, as well as power congestion issues. In this research, a deep-learning 

framework is presented in order to monitor and estimate the penetration level of PV 

generation and EV charging in distribution power systems. The proposed framework 

is also developed to predict the time-of-use of EV charging in order to enable 

scheduling for demand response programs. Additionally, the framework presented 

in this research is capable of estimating the generated solar power behind the meter 

for improving distribution system operational planning as well as power 

procurement plans. The framework identifies the houses that include PVs or EVs 

and monitor their behind the meter solar generation as well as the time-of-use of 

EVs, through the use of only existing smart meter data, and it can also be scaled to 

include other flexible appliances of interest. In order to improve the overall 

performance of the inference system and mitigate error propagation, the framework 

exploits various customized sub-models that are specifically built for each sub-

target. In this research, the framework was evaluated using real smart meter data 

from Pecan Street Dataport and achieved a promising 93-98% F-score across all its 

sub-models, which proves the feasibility and scalability of our approach. 

 

  



iv 
 

Acknowledgments  

First and foremost, all thanks and gratitude is to Allah, who is showering us with His 

countless blessings. 

I would also like to express my heartfelt gratitude and appreciation to my supervisor, 

Dr. Ramadan, for his continuous support, guidance and encouragement throughout 

my master’s program in both academics and non-academic matters.  

I would also like to express my gratitude to Abdulla Al Ghurair Foundation for 

Education (AGFE) for giving me this opportunity to pursue my master’s degree and 

for their generous support.  

My deepest thanks and endless appreciation to my parents, brothers and sister for 

their continuous support, love, care and encouragement.   

  



v 
 

Table of Contents 

 
List of Figures  ............................................................................................................................  vii 

List of Tables  ............................................................................................................................. viii 

List of Abbreviations  .................................................................................................................  ix 

Chapter 1 ....................................................................................................................................... 1 

1.1 Preamble ....................................................................................................................................... 1 

1.2 Motivation ..................................................................................................................................... 3 

1.3 Research Objectives ...................................................................................................................... 4 

1.4 Thesis Organization ....................................................................................................................... 5 

Chapter 2 ....................................................................................................................................... 6 

2.1 Preamble ....................................................................................................................................... 6 

2.2 Literature Review .......................................................................................................................... 6 

2.2.1 Penetration level and Time-of-Use Related Work ................................................................ 6 

2.2.1 Behind-the-Meter Solar Generation Estimation Related Work ................................................... 9 

2.3 Artificial Neural Network ............................................................................................................ 11 

2.4 Evolution of Deep-learning Neural Network .............................................................................. 15 

2.4.1 Early Work on Artificial Neural Networks ........................................................................... 15 

2.4.2 Convolution layers, weight sharing and pooling layers ...................................................... 16 

2.4.3 Artificial Neural Network Back-Propagation ....................................................................... 16 

2.4.4 The Need for Improvement of Artificial Neural Network ................................................... 17 

2.4.5 Improved Back-Propagation through Advanced Gradient Decent ..................................... 17 

2.4.6 Back-Propagation for Convolution Neural Networks ......................................................... 18 

2.4.7 The Fundamental Deep-learning Problem of Gradient Decent .......................................... 18 

2.4.8 Max-Pooling: toward Max-Pooling Convolution Neural Network ...................................... 19 

2.4.9 Long-Short-Term-Memory Recurrent Neural Network ...................................................... 20 

2.4.10 Recent Tricks for improving Deep Artificial Neural Network Performance ............................. 21 

2.5 Summary ..................................................................................................................................... 21 

Chapter 3 ..................................................................................................................................... 22 

3.1 Preamble ..................................................................................................................................... 22 

3.2 Data Requirements ..................................................................................................................... 23 

3.3 Appliance Ownership Inference and Penetration Level Estimation ........................................... 24 



vi 
 

3.4 Appliance Time-of-Use Inference ............................................................................................... 24 

3.5 Learning Models .......................................................................................................................... 25 

3.6 Balancing Training and Testing Samples for Learning Models.................................................... 27 

3.7 Results and Evaluation ................................................................................................................ 27 

3.7.1 Appliance Ownership Inference and Penetration Level Estimation Results ....................... 28 

3.7.2 Appliance Time-of-Use Inference Results ........................................................................... 32 

2.6 Summary ..................................................................................................................................... 35 

Chapter 4 ..................................................................................................................................... 36 

4.1 Preamble ..................................................................................................................................... 36 

4.2 Behind the Meter Solar Generation Estimation Approaches ..................................................... 36 

4.3 Auto-Regression Model .............................................................................................................. 38 

4.4 Data Requirements ..................................................................................................................... 40 

4.5 Behind the Meter Solar Generation Estimation Results ............................................................. 41 

2.7 Summary ..................................................................................................................................... 47 

Chapter 5 ..................................................................................................................................... 48 

References .................................................................................................................................... 50 

 

  



vii 
 

List of Figures 

Figure 1.1: Annual residential solar PV installation capacity ……………………………….…. 12 

Figure 1.2: Global EV stock over the years of 2010-2019 ………………………………….….. 12 

Figure 2.1: Feed-forward artificial neural network …………………………………….………. 22 

Figure 2.2: Non-linear neuron topology …………………………………………………..……. 22 

Figure 2.3: Graph of ReLU activation function …………………………………………..……. 24 

Figure 3.1 General structure of the inference framework ……………………………………….. 32 

Figure 3.2 One-day smart meter consumption data sample …………………………..………... 33 

Figure 3.3 Comparison between the reshaping effect of EV charging and PV generation on daily 

smart meter consumption graphs ……………………………………………………………..... 39 

Figure 3.4 Characteristics that define the EV charging signal ……...…………………...……... 39 

Figure 3.5 F-score evaluation results of the different learning models on appliance ownership 

inference targets ………………………………………………………………………………... 40 

Figure 3.6 Receiver Operating Characteristics evaluation of the different learning models on 

appliance ownership inference targets ………………………………………………………….. 41 

Figure 3.7 Confusion matrix result for the final appliance ownership inference sub-models 

……………………………………………………………………………………...…………… 42 

Figure 3.8 F-score evaluation results of the different learning models on appliance time-of-use 

inference targets ……………………………………………………………………………...…. 43  

Figure 3.9 Receiver Operating Characteristics evaluation of the different learning models on 

appliance time-of-use inference targets ……………………………………………………….... 44 

Figure 3.10 Confusion matrix result for the final appliance time-of-use inference sub-models 

…..………………………………………………………………………………………..……... 45 

Figure 4.1 Full-day prediction approach low MSE predicted days …………………………....... 53 

Figure 4.2 1021 prediction per day approach low MSE predicted days ……………………...…. 54 

Figure 4.3 Full-day prediction approach average MSE predicted days …………………….….. 55 

Figure 4.4 1021 prediction per day approach average MSE predicted days ………………..….. 56 

  



viii 
 

List of Tables 

Table 4.1: 1021 Prediction per day approach input ……………………………………….……. 47 

Table 4.2: Auto-correlation analysis between solar generation data and its past values at different 

time shifts ………………………………………………………………………………………. 48 

Table 4.3: Correlation analysis between solar generation data and preceding net meter data at 

different time shifts …………………………………..............................................……………. 49 

Table 4.4: Correlation analysis between solar generation data and succeeding net meter data at 

different time shifts …………………………………….………………………………….……. 49 

Table 4.5: MSE and R2 scores of the behind-the-meter solar generation estimation suggested 

approaches …………………………………………………………………………………...…. 56 

 

 

 

  



ix 
 

List of Abbreviations 

PV Photovoltaic 
EV Electric Vehicle 

GHG Greenhouse Gas 

DR Demand Response 

ToU Time-of-Use 

PAR Peak-to-Average Ratio 

RNN Recurrent Neural Network 

BRNN Bidirectional Recurrent Neural Network 

NILM Non-intrusive Load Monitoring 

VC Vehicle Controller 

HMM Hidden-Markov Model 

GRU Gate Recurrent Unit 
FIT Feed-in-Tariff 

ANN Artificial Neural Network 

ReLU Rectified Linear Unit 

GMDH Group Method of Data Handling 

CNN Convolution Neural Network  

BP Back-Propagation 

TDNN Time-Delay Neural Networks 
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm 

LSTM Long Short-Term Memory 
CECs Constant Error Carousels Units 

TTS Text-to-Speech 

BPTT Back-Propagation through Time 

RUS Random Under-Sampling 

KNN K-Nearest Neighbors 

SVM Support Vector Machine 

ROC Receiver Operating Characteristics 

AUC Area Under the Curve 

MSE Mean Square Error 

R2 Coefficient of Determination 

  



x 
 

 

 

 

 بسم الله الرحمن الرحيم

اللهم صلي و سلم على نبينا 

 محمد 

الحمد لله الذي بنعمته تتم 

 الصالحات



1 
 

Chapter 1 

Introduction 

 

 

1.1 Preamble 
 

The adoption of photovoltaic (PV) generation and electric vehicle (EV) 

penetration in our power system presents a chance to reduce carbon dioxide 

emissions and a step toward greener power consumption and generation. Now a day, 

advanced countries are subject to limit their CO2 emission per the rules of the Kyoto 

Protocol [1] [2]. Generally, with respect to internal combustion engine vehicles, EVs 

provide a reduction of 17-30% in greenhouse gases (GHG) and a 19-23% CO2 

reduction over their life cycle [3]. Additionally, if the charging energy source of EVs 

is a renewable energy source, e.g. PV generation, CO and CO2 emission caused by 

vehicles can be reduced by up to 85% [4] [5] Therefore, many countries view PV 

and EV adoption as a promising solution to reduce CO2 emission. As a result, such 

countries highly incentivize the implementation of rooftop PV generation as well as 

EV consumption with generous energy selling rates and added tax credits [2] [4] [5] 

[6] [7]. In turn, the number of homes with PV generation and/or EV consumption 

has been rapidly increasing [4] [6] [7] [8] [9] [10] [11] [12].   

As the overall cost of residential PV installation continues to fall, the US 

residential solar market, for example, experienced a record of annual installation 

capacity [9]. Fig. 1.1 shows the annual residential solar PV installation capacity over 

the years of 2010-2019 according to [9]. At the same time, sales of EVs have topped 

2.1 million globally in 2019, surpassing the annual sales record and boosting global 

EV stock in 2019 [12]. Fig. 1.2 shows the global EV stock over the years of 2010-

2019 according to [12]. 
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Fig.  1.1 Annual residential solar PV installation capacity [9] 

 

Fig.  1.2 Global EV stock over the years of 2010-2019 [12] 

Aside from the environmental advantages of this increase, EVs charging and PV 

generation greatly reshape the residential consumption, and hence the net 

consumption. At high penetration levels, without accurate knowledge of the amount 

of EVs and PV generation in the system, the efficiency of power system operational 

planning will be reduced due to over/underestimation of the net load in the system 

throughout the day. Such poor planning can, in the case of underestimation of the 

net load, result in serious power congestion problems overloading the assets of the 
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distribution system and calling for high-cost distribution power assets upgrade. On 

the other hand, it could impair our ability to forecast the demand accurately and 

provide an adequate supply at the appropriate time, resulting in voltage fluctuation 

beyond acceptable limits and mal-functioning of voltage-regulation and protection 

devices [13] [14] [15] [16] [17].  

For example, according to [2], a Nissan Leaf EV driving an average of 18,129 

km/year consumes what corresponds to 74% of the average one-person residential 

electricity consumption per year in the US. As a result, uncontrollable EV charging 

could increase the peak demand significantly. An unplanned peak demand increase 

of such level would certainly overload distribution system assets reducing their life 

expectancy and require installations of higher capacity assets [13] [14] [15]. 

According to [2], to supply this uncontrollable EV charging, 82 of 1 GW additional 

nuclear power plant units would be required in the US for instance. However, as a 

flexible load, scheduled EV charging flattens the peak demand [2] [17] and in the 

same analysis [2] can afford 70% EV penetration without additional power plants in 

the US, hence, not requiring assets upgrades in the distribution power system.   

On the supply side, while solar PV generation presents operational benefits for 

distribution system utilities in addition to the environmental merits [18] [19] [20], 

the invisibility of behind-the-meter solar generation impair the accurate forecasting 

of the net demand as well as efficient short-term operational power system planning. 

Additionally, if not properly monitored, increased residential behind-the-meter solar 

generation risks voltage fluctuation beyond acceptable limits, increased system 

losses and malfunctioning of protection devices [29] [21] [22] [23] [24]. 

For proper scheduling of flexible loads, such as EV charging, as well as accurate 

PV generation monitoring, the utilities must be able to observe the penetration level 

as well as the time-of-use of flexible loads. Additionally, proper monitoring of 

residential behind-the-meter solar generation is required. 

1.2 Motivation 
 

In light of the above, an accurate estimation of the amount of PV generation and 

EV penetration level in the system is crucial for efficient power system operational 
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planning as well as accurate demand forecasting. Additionally, to avoid possible 

power congestion and the need to upgrade existing power distribution assets, EV 

charging must be scheduled. To support the scheduling of flexible loads, such as 

EVs, as part of the movement toward intelligent and decentralized demand response 

(DR) operation with a high level of comfort for end-customers, one must be able to 

estimate ownership information of such flexible loads as well as their time-of-use 

(ToU), e.g. EVs time of charge [25], [26]. This estimated information can be used 

to balance the on-peak and off-peak demand more efficiently and minimize the peak-

to-average ratio (PAR) [27], [28]. Estimation of the amount of PV generation and 

EV penetration in the system, as well as the EVs’ time of charge or any other flexible 

load’s ToU, could be achieved by either intrusive or non-intrusive load monitoring.  

To achieve such estimation using intrusive load monitoring, additional power 

meters must be installed for every new EV and PV generation system. Although such 

method will yield accurate results, the additional hardware requirements make 

intrusive load monitoring unreasonably complicated and expensive. Unlike intrusive 

load monitoring, non-intrusive load monitoring requires no additional hardware but 

rather obtains the required estimations from the existing aggregated house 

consumption smart meters’ measurement using inference models. Nevertheless, an 

accurate inference model with high performance typically requires prior 

behaviouristic information about each customer, appliance ownership information, 

high-resolution consumption data, or on-site training, which complicate the 

scalability of such approaches. Therefore, it seems that a model that doesn’t require 

any prior information about the customers’ life-style or their appliance ownership 

information, that is suitable to accurately predict PV generation and flexible loads’ 

ToU from existing low-resolution smart meter data with no on-site training 

requirement is needed. The proposed model would facilitate the operational power 

distribution system planning and DR programs without any hardware requirements. 

1.3 Research Objectives  
 

The main objective of this research is to develop a deep-learning-based 

framework that is capable of accurately estimating the amount of PV generation and 

EV penetration level in the system, as well as EVs’ time of charge as an example of 
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ToU prediction of flexible loads. The proposed framework must only utilize the 

already existing low-resolution, aggregated smart meter consumption data as its 

input, and achieve high inference scores on each sub-target. The objectives of this 

work are as follows:  

• Introducing a model that is able to accurately monitor PV generation and EV 

penetration level status in the distribution system with no additional hardware 

requirement 

• Enabling a scalable data-driven algorithm for flexible appliances ToU 

inference using only the already existing low-resolution aggregated smart meter 

consumption data. Unlike algorithms that require periodic surveys for appliance 

ownership information or the installation of specialized instrumentation for on-site 

training, the framework introduced in this study is able to recognize the appliance 

signature from the aggregated net consumption and infer the ToU by utilizing its 

WaveNet inspired sub-models and bidirectional recurrent neural network (BRNN) 

sub-model. 

• Introducing an accurate behind-the-meter solar generation estimation model 

that utilizes net smart meter data to estimate the solar generation of invisible 

residential PV systems      

1.4 Thesis Organization 
 

The rest of the research is organized as follows. Chapter 2 discusses related 

studies including literature on non-intrusive load monitoring (NILM) and energy 

disaggregation as well as a brief background on deep-learning and deep-learning 

architectures. The proposed penetration level and ToU inference model and its 

building sub-models blocks are introduced and evaluated in chapter 3. Chapter 4 

presents our behind-the-meter solar generation estimation model and its 

performance on unseen real data. Chapter 5 concludes the research. 
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Chapter 2 

Literature Review and Background 

 

 

 

2.1 Preamble 
 

As the adoption of PVs and EVs has been rapidly increasing, many studies 

have addressed the consequences of this increase and the possible solutions. In this 

section, we discuss what has been presented in the literature in terms of the 

operational challenges introduced by the high penetration level of PVs and EVs, the 

presented solutions by DR programs and ToU inference, as well as the state of the 

art NILM and energy disaggregation solutions. After that, we briefly discuss deep-

learning and artificial neural networks as the base learning model for deep-learning. 

2.2 Literature Review 
 

2.2.1 Penetration level and Time-of-Use Related Work 
 

Nowadays, the adoption of roof-top PV generation and EVs is rapidly 

increasing [4] [6] [7] [8] [9] [10] [11] [12]. As a result, many studies have discussed 

the consequences of high PV and EV penetration levels of our distribution power 

system [2], [29].  The study at [29] discussed how roof-top PV generation poses 

operational challenges to our distribution power system when it is not properly 

monitored. Such challenges include but are not limited to impacting the quality of 

demand forecast and the ability to provide an adequate supply at the appropriate 

time. This in turn can lead to power congestion, voltage fluctuation, protection 

devices malfunctioning, and so forth. On the other hand, Chang et al. in his analysis 

in [2] explained that at high EV penetration levels, EV charge could make the peak 
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demand higher beyond our power distribution assets capacities if left unscheduled. 

To support the scheduling of EV charge or other flexible loads, ToU inference is 

essential.  

Various studies that investigated DR and EVs can be found in the literature. In 

[30], E. S. Parizy et al. present a heuristic DR for scheduling the consumption of 

flexible loads for each customer in order to reduce PAR. While [31] discussed EV 

coordinated charging, the authors in [32] discussed the statistical modelling of EV 

uncoordinated charging. A method for controlling EV charging using vehicle 

controller agents (VC) for minimizing the charging cost has been studied in [33]. F. 

Rassaei et al. [27] introduced an algorithm for decentralized DR of EVs usage to 

shape the daily consumption and minimize the peak demand. While DR studies have 

discussed the scheduling of flexible appliances, most of these studies require costly 

smart meter upgrades to enable the monitoring of flexible loads and control their 

ToU.  

In light of the importance of ToU inference, various predictive models that take 

the aggregate power time series data as its input and infer appliances’ ToU, either 

directly or as a result of energy disaggregation, have been suggested. In this context, 

energy disaggregation refers to NILM or extracting the consumption of individual 

appliances from the aggregated power time-series. [34], [35] and [36] are well-

known surveys in the field of NILM. Many NILM suggested inference models that 

are based on variations of Hidden-Markov model (HMM) or non-machine-learning 

models [37] [38] [39] [40]. In [37], a power disaggregation model based on Factorial 

HMM is presented as a NILM tool. The model is built on the assumption that only 

one device can change at a time. It also assumes that there is no correlation between 

the power consumption of different household appliances.  

To relax the assumptions in HMM-based models such as that of [37], the authors 

of [38] utilized correlation studies to cluster correlated loads into “super devices” 

using a normalized cross-correlation measure at first. The consumption of “super 

devices” would then be disaggregated from the total consumption using Factorial-

Hidden-Markov Model. After that, the consumption of each load would be obtained 

using a table for the level of consumption of each load in the “super device” cluster 

for each time sample. 
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D. Piga et al. [39] formulated the NILM problem as a least-square error 

minimization problem with the assumption that household appliances’ consumption 

is piecewise constant overtime. The suggested algorithm in [39] requires the time-

of-use probability of each appliance, which is behavioural specific and could differ 

from one customer to another. It also assumes that only one appliance can change 

its operation state at each time instant. 

A pulse-to-appliance association algorithm for load disaggregation is suggested 

in [40]. In their study, the authors focused on processing the aggregated load power 

signal and extracting the pulses of the different appliances. The pulses are then 

matched with appliances based on various features: the existence of spikes, variance, 

time of use, neighbouring pulses, … etc. The algorithm requires the customers to 

register every appliance and its tabulated power value. It also relies on some 

behaviouristic parameters that would change from one customer to another based on 

their consumption behaviour, e.g. time of use probability, the sequence of 

operations, … etc. Not to mention that the algorithm relies on parameters that need 

to be calibrated for each house, which requires monitoring the consumption of each 

individual appliance for a specific period of time. 

On the other hand, various machine-learning-based models were suggested as 

NILM solutions. Basu et al. [41] discussed the performance of multiple classifiers 

such as Bayesian classifiers and decision trees. In [42], a deep-learning energy 

disaggregation algorithm using Gate Recurrent Units (GRU) recurrent neural 

network (RNN) is proposed. The algorithm was built on the UK DALE dataset using 

a specified number of appliances (maximum of 20 appliances). Liu et al. [43] 

investigated the use of transfer learning to utilize pre-trained image classification 

models for NILM, based on the voltage and current trajectories. In [26] Afzalan et 

al. suggested a dense neural network for ToU inference from aggregated power time-

series given appliance ownership information.  

These models have been built based on customer-specific behaviouristic 

parameters that require on-site training, appliance ownership information, or high-

resolution power time-series data (1 Hz or more) which complicate the scalability of 

such models for ToU inference. However, in this study, we present a high-

performance model that takes existing low-resolution smart meter data as its only 
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input and predicts/monitors the penetration level of EVs and PV generation in the 

system, the time of charge of EVs as a tool for the scheduling of EV charging and it 

can be scaled to predict the ToU of other flexible appliances. In addition, while the 

majority of NILM studies are aimed at helping electricity customers reduce their 

consumption and save on electricity bills, the algorithm introduced in this research 

is aimed at presenting a tool for utility providers to monitor the penetration level of 

EVs and PV generation in the system, as well as assisting the scheduling of flexible 

appliances’ consumption for DR purposes. 

2.2.1 Behind-the-Meter Solar Generation Estimation Related Work 
 

The adoption of roof-top solar generation can be driven by and associated with 

different factors. Some studies have focused on factors that are associated with the 

country or region in question, e.g. government incentive policies, environmental 

awareness and peer effect [6] [7] [8] [44] [45] [46] [47]. Other studies explored 

factors associated with the individual electricity customer, e.g. age, education level, 

income and house ownership [48] [49] [50] [51] [52].  

Regardless of the dominating factor, the residential PV market continues to 

grow rapidly over the years [6] [7] [8] [9] [10]. For example, the U.S. solar market 

installed 3.6 GW of solar PV in the first quarter of 2020, setting the record for the 

largest amount of solar PV energy installation in a first-quarter by more than 1 GW 

over the second largest. Moreover, the Solar Energy Industries Association estimates 

that the U.S. market will install an additional 110 GW of solar energy from 2020 to 

2025 [9].  

The high penetration level of residential PV presents environmental benefits 

as well as operational opportunities for the utilities [18] [19] [20]. However, the lack 

of visibility of behind-the-meter solar generation could potentially pose many 

operational challenges. A significant amount of intermittent behind-the-meter solar 

generation reshapes the net load pattern [20]. At the same time, an accurate forecast 

of the net load is crucial for the scheduling of short-term power system operations 

as well as efficient power procurement plans. Additionally, if not accurately 

monitored, invisible solar generation can result in voltage fluctuation, increased 

system losses, and malfunctioning of voltage regulation and protection devices [29] 

[21] [22] [23] [24].  
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A residential customer with rooftop solar generation is commonly part of one 

of two policies: the feed-in-tariff (FIT) policy or the net metering policy. In the net 

metering policy, residential customers sell their excess solar energy to the utility at 

a retail value and it only requires one bi-directional smart meter while the FIT policy 

requires two meters. In this part of the research, we focus on behind-the-meter solar 

generation estimation of customers following the net metering policy.  

Various studies explored the estimation of behind-the-meter solar generation 

following an unsupervised approach [22] [53] [54] [55]. In [22], Kabir et al. 

introduced an unsupervised algorithm combining an HMM regression model with a 

physical PV system performance model for disaggregating net load measurement 

into solar generation and electric load. The algorithm iterates between calculating 

the electric load using the estimated solar generation through the PV performance 

model and estimating the PV system parameters using the predicted electric load 

through the HMM regression model. Although the model is robust for 

disaggregating PV generation from the net load, it does not have a mechanism for 

identifying houses or consumption days without PV generation which potentially 

reduces the overall performance.  

On the other hand, other studies suggested using supervised machine learning 

approaches [23] [56] [57] [58]. Shaker et al. [23] presented a supervised data-driven 

approach for estimating the total behind-the-meter solar generation of a certain area 

using the solar generation of monitored “representative sites”. The model requires 

three to four months of on-site metered solar generation data from each customer 

house to determine the most appropriate representative sites using a suggested K-

means+PCA approach. The study suggests metering the solar generation of these 

representative sites and utilizing the solar generation data of these sites to estimate 

the total generation of the area using a supervised regression model.  

In another study by Shaker et al. [24], the authors suggested using a fuzzy 

model. After selecting the “representative sites” using the procedure mentioned 

above, fuzzy numbers associated with each area are developed using possible 

normalized simultaneous variations on the solar generation patterns from one site to 

another. After that, the suggested model is able to calculate a fuzzy number 

associated with the real-time total solar generation of the area using the metered solar 
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generation data from the representative sites and the developed variation fuzzy 

numbers.  

In a study done by Padullaparthi et al. [29], the proposed approach is capable 

of estimating behind-the-meter PV capacity as well as estimating the capacity of the 

battery used by customers following the FIT policy. The approach exploits the 

energy balance in the residential building by tracking the maximum energy fed to 

the utility and the solar irradiance at that time to calculate the PV capacity.  

Even though various studies have investigated approaches toward bringing 

visibility to behind-the-meter solar generation of net-metered customers, the 

suggested approaches require on-site training for some period of time for each new 

customer with PV generation, assume that all the houses have solar generation and 

that the solar generation is daily without considering PV panels mal-functioning or 

maintenance days, require high smart meter data resolution (≤1Hz), or unable to 

accurately estimates the solar generation for cloudy days or cope with the 

degradation of PV panels over time. 

The deep-learning framework introduced in this research is capable of 

estimating the solar generation of behind-the-meter PVs of individual customers 

following the net metering policy. The framework is capable of identifying 

consumption days including PV generation from days without PV generations, as 

well as accurately estimating the solar generation at each minute of the day. It is 

capable of estimating the solar generation at different weather conditions and does 

not require on-site training or high-resolution smart meter data (≤1Hz). 

2.3 Artificial Neural Network 
 

An artificial neural network (ANN) is the connection of various non-linear 

units together in what is called a network. Each non-linear unit (i.e. neuron) will 

perform a weighted sum of it is inputs and pass the result through a non-linear 

function called the ‘activation function’ (e.g. logistic, sigmoid, ReLU, … etc.). 
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Fig.  2.1 Feed-forward artificial neural network 

As shown in Fig. 2.1, ANNs consist of three types of layers: 

 Input Layer: 

Each input node collects one feature/dimension of the input data and 

passes it to the first hidden layer. 

 Hidden Layer: 

Each hidden unit computes a weighted sum of the result from the 

previous layer’s units and passes the sum through a selected Activation 

Function. 

 Output Layer: 

Each output unit computes a weighted sum of the results from the last 

hidden layer’s units and passes the sum through a threshold function 

(possibly non-linear). 

 

Fig.  2.2 Non-linear neuron topology 
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Fig. 2.2 shows the basic topology of a single neuron. As mentioned above, 

each neuron passes a sum of multiplication of learnable parameters called ‘weights’ 

with its inputs through an activation function. Examples of common activation 

functions are listed below:  

 Logistic Function: 

𝑓(𝑥) =
𝐿

1 + 𝑒−𝑘(𝑥−𝑥0)
 (2.1) 

Where L is the curve maximum value, x0 is the midpoint of the S 

curve and k is the steepness of the curve.  

 Sigmoid Function: 

𝑓(𝑥) =
𝑒𝑥

𝑒𝑥 + 1
=

1

1 + 𝑒−𝑥
 (2.2) 

Note that the sigmoid is a special case of a logistic function 

where L = 1, x0 = 0 and k = 1.  

 Tanh Function: 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2.3) 

 

 Rectified Linear Unit (ReLU) Function: 

𝑓(𝑥) = max(0, 𝑥) (2.4) 

ReLU or the rectifier function is an activation function defined as the 

positive part of it is input. Fig. 2.3 shows the graph of the ReLU function. 

More detail about ReLU activation functions benefits and applications can 

be found in section 2.4.12. 
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Fig.  2.3 Graph of ReLU activation function 

The theory behind ANNs is that with enough hidden units an ANN can model 

any function. However, one challenge of ANN is regularization. Since only the 

number of inputs and outputs is known, the hidden structure number of layers and 

the number of units in each layer are arbitrary design parameters. On the one hand, 

with very few units, the network might have too few parameters to learn complex 

functions. On the other hand, with too many units, the network might be over-

parameterized and hence will not be able to learn a generalized model. Nevertheless, 

various regularization methods have been introduced in the literature (see section 

2.4).  

While ANN in its simplest form consists of three layers (an input layer, a 

single hidden, and an output layer), a network with multiple hidden layers is capable 

of learning complex problems by extracting more complex features from the original 

input features that would facilitate solving the problem. Models that consist of 

multiple hidden layers are often referred to as deep-learning models. The 

connections between these units of every layer can be forward, backward or both. 

Moreover, the units could be fully connected or partially connected with each other. 

Each different arrangement or architecture makes a different type of deep-learning 

model.  
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2.4 Evolution of Deep-learning Neural Network 
  

To cover the basics of deep-learning neural networks’ different topologies, 

concepts and layers, this section briefly covers the evolution of deep-learning models 

throughout the years of deep-learning research.  

2.4.1 Early Work on Artificial Neural Networks  
 

Early versions of ANNs can be traced to the 1940s. McCulloch et al. [59] 

present a simple neuron model as a summing and thresholding component. However, 

this model didn’t have learning associated with it. Simple ANNs that can be trained 

have been introduced in the following decades. Rosenblatt [60] introduced the 

“perceptron” model; a two-layer network consisting of an input layer and an output 

node with additional bias.  

Since the basic form of supervised ANNs is essentially a variant of linear 

regression models, one could argue that ANNs go back to the 1800s. 

In the research done by Hubel et al. [61] in 1962, simple and complex cells 

were found in cats’ visual cortex. While simple cells fire in response to specific 

visual inputs such as edges, complex cells respond to more spatial invariant inputs. 

This finding inspired later award-winning deep ANNs architecture. 

While works on networks with one hidden layer preceded the Group Method 

of Data Handling (GMDH) (e.g. [62]), GMDH trained networks as presented in [63] 

[64] [65] and [66] (1961-1971) were perhaps the earliest deep-learning models. In 

the GMDH trained network, the network number of layers is increased gradually and 

trained using a training set. After that, the unnecessary additional layers are pruned 

using a separate validation set. As a result, the number of layers in a network differs 

based on the learnt target. Various applications of GMDH trained networks can 

found in the literature, e.g. [64], [67], [68] and [69].  
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2.4.2 Convolution layers, weight sharing and pooling layers 
 

Another early ANN that deserved to be labelled as a deep ANN is the 

Neocognitron introduced by Fukushima in 1979 [70] [71] [72]. It incorporated the 

neurophysiological findings of section 2.4.1 and introduced the weight-sharing 

concept of convolution neural networks (CNN). In CNN units, weights are shared 

through the network as a weight vector (also known as a filter) that is gradually 

shifted through the input array (e.g. the pixels of an image). The resulted array of 

this process can then be used as an input of later CNN units and so forth. As a result 

of this weight sharing mechanism, only a few learnable parameters are necessary for 

each convolution layer.  

In addition, Neocognitron introduced down-sampling layers, currently known 

as pooling layers. In the pooling layers, the units have fixed weights in which the 

output is insensitive to small changes in the input. For example, the output could be 

the maximum value of the input vector (i.e. max pooling). 

However, Fukushima’s Neocognitron weights are not trained using back-

propagation but rather set using local, winner-take-all, unsupervised learning rules. 

In addition, the down-sampling layers in the Neocognitron mainly used spatial 

averaging rather than the current commonly used max-pooling layer.  

2.4.3 Artificial Neural Network Back-Propagation 
 

Error minimization of non-linear, differentiable, multi-stage ANN systems 

through gradient descent has been used in the literature since the 1960s, e.g. [73], 

[74], [75] and [76]. However, the systems introduced in the 1960s back-propagated 

derivatives using standard Jacobian matrix from layer to another without clearly 

addressing direct links between consecutive layers or efficiency improvement due 

to the sparsity of the network.  

According to [77], the first description of back-propagation of error in 

discrete, possibly sparsely connected, ANN-like network was first discussed in a 

1970 master’s thesis [78]. On the other hand, the first ANN application of efficient 

back-propagation (BP) was in the 1980s [79], after which several studies have been 

published in the application of BP to ANNs, e.g. [80], [81], [82] and [83].  
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In general, the back-propagation algorithm is an iterative algorithm for getting 

the gradient efficiently. For each training sample (one can also use a batch gradient) 

forward propagation is performed by computing the output of the training sample. 

After that, the current output units’ error is computed. Then the hidden units’ error 

is computed. Finally, the network weights are updated. 

2.4.4 The Need for Improvement of Artificial Neural Network 
 

Regardless of the efficiency of back-propagation, by the late 1980s, it was 

clear that back-propagation by itself is not sufficient. As a result, most ANNs 

applications consisted of networks with very few hidden layers, as there seemed to 

be no practical advantage of deeper networks. Many deep-learning scientists were 

convinced by the Universal Approximation Theorem [84] which suggests that a 

three-layer ANN is capable of modelling any possible decision function for mapping 

continuous input into a finite set of classes at any desired level of accuracy. 

However, the theorem does not state the number of required units. In general, while 

the number of required hidden units to cover the desired decision function could be 

exponential, using more layers reduces the required number of hidden units to 

achieve a generalizing network. 

In addition, while several methods were introduced to deal with extended time 

lag in RNNs, e.g. Focused back-propagation that is based on decay factors in RNNs 

[85] [86], Time-Delay Neural Networks (TDNNs) [87] and their adaptive extension 

[88], and other methods [89] [90] [91], each method had its own major drawback 

[79]. As a matter of fact, specific benchmark problems that are used for the 

evaluation of these methods can be solved more rapidly by “randomly guessing RNN 

weights until a solution is found” [92].  

 

 

2.4.5 Improved Back-Propagation through Advanced Gradient 

Decent 
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Studies have proposed various improvements of steepest decent through back-

propagation. While Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) [93] 

[94] [95] [96] and least-square methods [97] [98] [99] are computationally expensive 

for large ANNs, partial BFGS [100] [101], conjugate gradient [102] [103], and other 

methods [104] [105] are sometimes useful fast options.  

To improve the speed of back-propagation convergence, [106] suggests the 

use of momentum. Additionally, ad-hoc constants are added to the slope of 

linearized activation functions [107]. On the other hand, the non-linearity of the 

slope is signified [108].  

R-prop back-propagation variant [109] takes into account the sign of the error 

derivatives, as well as iRprop+ [110], which was successfully applied to RNNs. 

Based on the ANN structure, local gradient normalization can be achieved 

[111] using a Hessian approach [112] or other efficient approaches [113].  

Many additional tricks related to improving ANNs have been introduced in 

the literature, e.g. [114], [115], [116], [117] and [118] 

2.4.6 Back-Propagation for Convolution Neural Networks 
 

A Neocognitron-like, weight-sharing, convolution layered network had back-

propagation applied to it in 1989 [119] [120] [121]. The GPU-based CNN plus max-

pooling layered network is currently an essential component of many modern, 

award-winning, computer vision neural networks. This research was also the 

introduction of the MNIST data set of handwritten digits [119], which is currently 

the most famous benchmark data set for machine learning. In the 1990s, CNNs 

achieved good results on the MNIST data set [120] and on fingerprint recognition 

[122]; as a result, similar CNNs were used commercially in this decade. 

 

2.4.7 The Fundamental Deep-learning Problem of Gradient Decent 
 

In 1991, Hochreiter [123] formally identified why deep feedforward ANNs or 

RNNs are hard to train using back-propagation: typical networks experience the 

famous problem of vanishing or exploding gradients. In this problem, with typical 
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activation functions, the propagated cumulative error signals decay or explode 

exponentially with the number of layers. This is also known as the long time lag 

problem. The problem encouraged many researchers in that decade, e.g. [124], [125] 

and [126]. Over the years, many solutions to the vanishing or exploding gradients 

have been explored:  

 A deep learner that overcomes the problem using unsupervised pre-

training for stacks of RNNs [127] [128] which facilitate consequent 

supervised training using back-propagation has been introduced. As for 

feedforward ANNs, similar results can be attained using Auto-

Encoders [129] and Deep Belief Networks [130].  

 Long-Short-Term-Memory (LSTM) networks overcome the problem 

through a special mechanism that is unsusceptible to the problem, see 

section 2.4.9. 

 The computational capabilities of today’s GPUs allow propagating the 

error a few further layers within a reasonable time when compared to 

the machines of the 1990s.  

 Hessian-free optimization can overcome the problem for feedforward 

ANNs and RNNs [113] [131] [132] [133] [134].  

2.4.8 Max-Pooling: toward Max-Pooling Convolution Neural 

Network 
 

Inspired by the Neocognitron, the Cresceptron [135], which adapts its training 

topology, utilized max-pooling layers instead of the winner-take-all method in the 

Neocognitron. In max-pooling layers, the previous layer’s units’ activations are 

partitioned into small rectangular arrays. Each array is then replaced by the 

activation of its maximally active unit.  

When max-pooling is combined with CNNs in alternating convolution and 

max-pooling layers, a network similar to Cresceptron is formed. However, unlike 

Cresceptron max-pooling CNNs are trained using back-propagation. Advantages of 

max-pooling CNNs were pointed out at a later date [136]. Max-pooling CNNs are 
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becoming pivotal to many modern, award-winning deep ANNs architecture, e.g. 

[137] and [138]. 

2.4.9 Long-Short-Term-Memory Recurrent Neural Network 
 

LSTM RNNs [137] [139] [140] have performed very well in deep-learning 

benchmark problems and were able to overcome the vanishing or exploding gradient 

problem without prior unsupervised learning. Moreover, LSTM-based networks 

have the ability to learn targets without local sequence predictability solving very 

complex targets [141].  

The basic concept of LSTM is as follows. Constant Error Carousels units 

(CECs) use the identity function as an activation function and have a connection to 

itself with a constant weight of one. Since the derivative of the identity function is a 

constant (= 1), the back-propagated errors would not vanish or explode but stay the 

same. To learn non-linear behaviours, CECs are connected to various non-linear 

adaptive units. The changes in the weights of these units are often the result of back-

propagated error far in time through the CECs units. As a result, CECs allow LSTM-

based networks to learn the importance of events that happened thousands of time-

steps ago, while standard RNNs have failed the case of minimal time lag of 10 steps 

[77]. 

LSTMs are said to be neuro-physiologically plausible to a certain extent 

[142]. Various previously unsolvable deep-learning targets have been learnt using 

LSTM, e.g. arithmetic operations on continuous input streams, robust storage of high 

precision real numbers across extended time intervals and recognition of temporally 

extended patterns in noisy input sequences [137] [139]. In addition, LSTMS 

significantly outperformed standard RNNs in problems that require knowledge of 

the rules of regular languages that can be described by deterministic Finite State 

Automata [143] [144] [145] [146] [148].  

Recently, LSTM-based RNNs have won various pattern recognition 

competitions and set the records for various large and complex benchmark data sets, 

e.g. [149], [150] and [151].  
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2.4.10 Recent Tricks for improving Deep Artificial Neural Network 

Performance  
 

Dropout layers randomly disregard some hidden units during the training to 

improve the generalization of the network [152] [153]. Some deep-learning 

scientists view dropout layers as an ensemble method in which various data models 

are trained at the same time [154]. A deterministic approximation of dropout layers 

called fast dropout [155] was adapted for RNNs for faster training and evaluation 

[156]. Dropout layers are closely related to a technique that is neuro-physiologically 

plausible, in which noise is added to the neurons during the training to achieve a 

perturbation-resistant network [157] [158] [159] [160] [161].  

ReLU activation function has been widely adopted in various deep-learning 

applications [162] [163]. In fact, ReLU has outperformed sigmoidal activation on 

various benchmarks [164] and helped in setting the record for on several other 

benchmarks [165] [166].  

In our framework, we exploit the aforementioned tricks with our WaveNet 

inspired models (which essentially a form of 1-D CNN) and LSTM BRNN. 

2.5 Summary 
 

In this chapter, we discussed a literature review of related work for both 

penetration and ToU estimation and behind-the-meter solar estimation. 

Additionally, ANNs and the evolution of deep learning have been discussed. 
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Chapter 3 

Penetration Level and Time-of-Use Estimation  

 

 

 

3.1 Preamble 
 

In this chapter, we discuss the framework used to infer the PV generation and 

EV penetration level and estimate the ToU of EV as an example of flexible appliance 

ToU inference. After that, we will discuss the evaluation of this framework on 

unseen real data. The framework takes a full day worth of 1-minute resolution smart 

meter data of the targeted houses as its input. Based on the daily smart meter data, it 

first predicts whether or not there was any PV generation, EV consumption, or 

consumption of any other flexible appliance in question. After that, the model infers 

the ToU using specified sub-models. The inference is made by recognizing the 

power usage signature of the targeted appliances, EVs and PV generation in this 

case, from the aggregated power usage of the target house. The framework is 

illustrated in Fig. 3.1. The building components of this framework as well as the 

results on unseen real data are discussed in detail in the following sections.    

 

Fig.  3.1 General structure of the inference framework 
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3.2 Data Requirements 
 

The data used for model training and evaluation purposes consisted of:  

1) aggregated smart meter power time-series sampled at 1-minute 

resolution,  

2) information about the ownership of targeted power signature (PVs and 

EVs) for each house,  

3) data from sub-meters at the level of targeted appliances. 

 Recently, with the demand for publicly available consumption data, datasets 

that satisfy such requirements are available for hundreds of houses [167]. Fig. 3.2 

shows an example of a one-day data sample that is used for model training. 

 

Fig.  3.2 One-day smart meter consumption data sample  

Once the model is trained, it can be employed for inference on new data (out 

of the training data). The only required characteristic of the new data, for which the 

trained model is to make an inference, is as follows: aggregated smart meter power 

time-series sampled at 1-minute resolution. Such data are already available using the 

vastly adopted smart meters.   
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3.3 Appliance Ownership Inference and Penetration Level 

Estimation 
 

Given the time-series of aggregated smart meter power measurement for the 

daily consumption of house i on day n as Pi,n(t) (t ∈ [1,1440]), where t is in minutes, 

the objective is to recognize the signature of the target j (PV, EV or other flexible 

loads ) in aggregated smart meter data and estimate whether it has been used during 

this day yi,n,j. yi,n,j has the following binary form:  

𝑦𝑖,𝑛,𝑗 = {
1, 𝑖𝑓𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑗𝑤𝑎𝑠𝑢𝑠𝑒𝑑
0, 𝑖𝑓𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑗𝑤𝑎𝑠𝑛𝑜𝑡𝑢𝑠𝑒𝑑

 (3.1) 

The inferred yi,n,j can then be used to estimate the penetration level in a city or 

a neighbourhood. Given yi,j of I houses the penetration level αj of target j in these 

houses can be calculated as follows: 

𝛼𝑗 =
∑ 𝑦𝑖,𝑗
𝐼
𝑖=1

𝐼
 (3.2) 

Where yi,j is obtained after monitoring yi,n,j for several days and can be used 

for targeting houses with appliance j for DR programs. On the other hand, αj can be 

used for monitoring purposes. 

3.4 Appliance Time-of-Use Inference 
 

Given the predicted yi,n,j and the time-series of aggregated smart meter power 

measurement for the daily consumption of house i on day n as Pi,n(t) (t ∈ [1,1440]), 

where t is in minutes, the objective is to recognize the consumption signature of the 

targeted appliance j and estimate the ToU vector Γi,n,j as {γ1, γ2, …, γm, …, γM}, where 

M represents the number of time bins in a day. On the other hand, γm is a binary 

variable that is defined as follows:  

𝛾𝑚 = {
1, 𝑖𝑓𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑗𝑤𝑎𝑠𝑢𝑠𝑒𝑑𝑖𝑛𝑡ℎ𝑒𝑡𝑖𝑚𝑒𝑏𝑖𝑛𝑚
0, 𝑖𝑓𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑗𝑤𝑎𝑠𝑛𝑜𝑡𝑢𝑠𝑒𝑑𝑖𝑛𝑡ℎ𝑒𝑡𝑖𝑚𝑒𝑏𝑖𝑛𝑚

 (3.3) 

The inferred Γi,n,j can be used to verify if house i has used appliance j in their 

assigned time bin of the day in accordance with a DR program. In this study, we 

suggest that a separate sub-model should be trained for each time bin to provide 

flexibility in model selection and improve overall inference framework performance. 

In addition, even though ToU sub-models follow the appliance ownership inference, 
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training these sub-models against misclassified yi,n,j increases the robustness of these 

sub-models and reduces error propagation throughout the inference framework as 

explained in section 3.7.  

3.5 Learning Models 
 

Even though various learning models have been evaluated for each sub-

model, two main deep-learning models achieved the best performance and were 

chosen for our inference framework because of their capability to relate different 

time samples and “learn through time”: 

 WaveNet 

 

First introduced by Google [168] as a fully probabilistic autoregressive model 

in which the predictive distribution for each sample depends on all previous samples. 

It was introduced as an audio generative model for text-to-speech applications (TTS) 

where it outperformed other similar models. It is the ability to model long-term 

temporal dependencies that allowed the WaveNet model to generate speech audio 

with naturalness never achieved before in the field of TTS. It utilizes causal 

convolution to preserve the order of the data and model the p(xt+1 | x1, …, xt). Even 

though the model usually requires many layers, it is relatively faster when compared 

to recurrent models because it does not have any recurrent connections. Where l 

represents the number of layers and F represents the filter length, the receptive field 

R can be computed as follows:  

𝑅 = 𝑙 + 𝐹 − 1  (3.4) 

WaveNet utilizes a gated activation unit for which the output z can be defined 

as follows: 

𝑧 = tanh(𝑊𝑓,𝑘 ∗ 𝑥) ⊙ σ(𝑊𝑔,𝑘 ∗ 𝑥) (3.5) 

Where σ (.) is a sigmoid function, ⊙ donate element-wise multiplication, * is 

a convolution operator, g and f donate filter and gate, respectively, and W is a 

learnable convolution filter. 
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 Bidirectional Recurrent Neural Network 

 

M. Schuster et al. [169] introduced BRNN to overcome the limitations of 

regular RNN where the output at any time step can only be related to inputs of 

current and previous time steps but not future time steps. BRNN forms recurrent 

connections in both forward and backward directions for which back-propagation 

through time (BPTT) can be used to update the weights. In this research, we used 

the Long Short-Term Memory (LSTM) variation of BRNN. 

The LSTM variation models the temporal dependency using a forget gate and 

an update gate. The first step in the model is to calculate the forget Ωf at any time 

step t. For that, the model uses the information of the previous time step ht-1, the 

current time sample xt and the gate’s weight and bias values:  

𝛺𝑓 = σ(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (3.6) 

Where Wf and Uf, donate weight of the input and recurrent connection, 

respectively, and bf donate the bias. The output is between ‘0’ and ‘1’. A Ωf value of 

‘0’ means completely forget the information and ‘1’ means completely store the 

information.  

The second step is to calculate the new information to be stored in the cell 

state. This is done in two stages. The first stage is calculating the update gate Ωu 

which is similar to the forget gate but it decides which information to be updated:  

𝛺𝑢 = σ(𝑊𝑢𝑥𝑡 + 𝑈𝑢ℎ𝑡−1 + 𝑏𝑢) (3.7) 

The second stage is calculating a vector of new candidate values C`t that could 

be added to the state cell using the tanh layer: 

𝐶`𝑡 = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (3.8) 

The third step is to update the memory cell state Ct:  

𝐶𝑡 =𝛺𝑓 ∗ 𝐶𝑡−1 + 𝛺𝑢 ∗ 𝐶`𝑡 (3.9) 

Finally, the output gate activation vector ot and the current hidden state vector 

ht are calculated as follows: 

𝑜𝑡 = σ(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (3.10) 

 

ℎ𝑡 =𝑜𝑡 ∗ tanh(𝐶𝑡) (3.11) 
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3.6 Balancing Training and Testing Samples for Learning 

Models 
 

As deep-learning is all about associations and learning patterns from training 

samples, imbalanced training samples degrades the performance of the learning 

model [170]. As a result, since the nature of the ToU data are of an imbalanced type 

in which the number of OFF samples is more than the ON samples, balancing the 

data is essential.  

The data samples have been balanced using Random Under-Sampling (RUS) 

sampling technique. The data samples are balanced by randomly discarding 

instances from the majority class. Even though various advanced sampling 

techniques have been introduced in the literature, the RUS sampling technique is 

known for its practical performance in the field of predictive learning [171]. 

3.7 Results and Evaluation 
 

After pre-processing, a dataset of 21,438 smart meter consumption days from 

74 different buildings, primarily located in New York, California and Austin, was 

obtained from Pecan Street [167] and used for model training and evaluation. The 

data were pre-processed for missing data and measurement errors. A small number 

of consumption days with measurement errors and missing measurement was 

removed from our analysis for simplicity; however, in the case of limited data 

samples, methods such as interpolation and regression could be used reasonably. 

From these samples, 9,335 consumption days included PV generation and 3500 

included EV charging, 1717 of these samples included both PV generation and EV 

charging. The samples have been used to train and evaluate the appliance ownership 

inference and penetration level estimation using PV generation and EV charging as 

our targeted power signatures. The samples also allowed for the evaluation and 

training of the time of use inference framework for predicting the time of charge 

during the consumption day. To prevent the sub-models from developing any 

unwanted bias toward any class of the population of the dataset, a stratified sampling 

technique was used in selecting the training and testing data for each sub-model. 

Using stratified sampling ensured a balanced distribution of the various classes over 
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the dataset. The result of the evaluation of the predictive models is discussed in the 

following sub-sections. 

 

3.7.1 Appliance Ownership Inference and Penetration Level 

Estimation Results 
 

Using the Pecan Street database [167], the consumption days were labelled 

for whether they included PV generation, EV charging or both based on the available 

sub-meter data. After cleaning and labelling the data, splitting the data into training 

and testing (80%-20% split), and normalizing the data, several predictive models 

were trained and compared to achieve the best sub-model for every one of our two 

targets: detecting PV generation and detecting EV charging in daily consumption 

smart meter data. To this end, we investigated K-Nearest Neighbors (KNN) model, 

Support Vector Machine (SVM) model, Artificial Neural Network (ANN), our 

WaveNet inspired model and Bidirectional Recurrent Neural Network model 

(BRNN). 

The complexity of each learning sub-model was designed to be proportionate 

to the complexity of the targeted problem. For instance, the complexity of the sub-

models built to detect PV generation during daily consumption is lower than the 

complexity of the models built to detect EV charging. This is because, in general, 

PV generation reshapes the daily consumption more significantly when compared to 

EV charging making it easier to detect, see Fig. 3.3 (a) and (b). The complexity of 

the learning models can be increased by adjusting the number of layers or the number 

of neurons in each layer in a deep learning model, or choosing a more complex 

kernel in an SVM model, driving the model to learn more complex features to solve 

the targeted problem. Fig 3.4 shows the inherent features of EV charging signals that 

should be learnt by the predictive models for accurate inference.  
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(a) 

 

(b) 

Fig.  3.3 Comparison between the reshaping effect of EV charging and PV generation on daily smart meter consumption graphs: 
(a) daily consumption with EV charging, (b) daily consumption with PV generation 

 

Fig.  3.4 Characteristics that define the EV charging signal 



30 
 

To provide a comparison between the performance of the different learning 

models, Fig. 3.5 shows the F-score values achieved by the four learning models in 

detecting both PV generation and EV charging using varying model architectures. 

As shown in Fig. 3.5 (a) and (b), all the tested robust models achieved relatively high 

performance on detecting PV generation when compared to detecting EV charging. 

Nevertheless, due to the temporal dependency of the targets, our WaveNet inspired 

model and BRNN outperformed all other models. As shown in Fig. 3.5 (a), our 

WaveNet inspired model achieved a 98.3% F-score result in detecting PV 

generation. In addition, on the target of detecting EV charging during the 

consumption day, Fig. 3.5 (b) shows that our WaveNet inspired model achieved a 

94.3% F-score, making the WaveNet models our choice for both the PV and EV 

ownership inference sub-models. 

  
(a) (b) 

Fig.  3.5 F-score evaluation results of the different learning models on appliance ownership inference targets: (a) performance of 
PV models, (b) performance of EV models. 

To support the aforementioned inference models analysis, Fig. 3.6 (a) and (b) 

present the Receiver Operating Characteristics (ROC) evaluation of the five models 

on both the PV and EV targets.  Fig. 3.6 (a) and (b) show that our WaveNet model 

and BRNN model achieved consistently high Area Under the Curve (AUC) on both 

the PV and EV targets. Fig. 3.6 also shows that our WaveNet model was the top-

performing model on both the PV generation and EV charging targets by 0.996 and 

0.979 AUC score (AUC=1 is the perfect classification score) on both targets 

respectively. 
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(a) 

 

(b) 

Fig.  3.6 Receiver Operating Characteristics evaluation of the different learning models on appliance ownership inference 
targets: (a) performance of PV models, (b) performance of EV models. 

Fig. 3.7 (a) and (b) show the confusion matrix for our final WaveNet sub-

models on both the PV and EV targets respectively. On the PV target, our WaveNet 

PV sub-model correctly classified 1,813 positive test samples which represent 97.1% 

of the total true positive test samples, and correctly classified 1,856 negative test 

samples which represent 99.4% of the total true negative test samples, as can be 

inferred from Fig. 3.7 (a). On the other hand, our WaveNet EV sub-model correctly 

classified 661 of both positive and negative test samples which represents 94.3% of 
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test samples of both classes, as shown in Fig. 3.7 (b). Notice that the data samples 

have been balanced using the RUS sampling technique as discussed in section 3.6. 

  
(a) (b) 

Fig.  3.7 Confusion matrix result for the final appliance ownership inference sub-models: (a) PV sub-model, (b) EV sub-model 

Using these inference sub-models for monitoring the daily consumption of 

each house in a specific area for several days allows for very accurate PV and EV 

penetration level estimation as the accuracy would increase by averaging the results 

over those several days. 

3.7.2 Appliance Time-of-Use Inference Results 
 

The consumption days that included EV charging from the Pecan Street 

database [167] have been labelled for ‘OFF-Peak’ and ‘ON-Peak’ charging as our 

two time-bins (M=2) for testing our appliance ToU inference framework. To provide 

flexibility in model selection and improve the overall inference framework 

performance, a sub-model was trained for each time-bin. After the EV sub-model 

classifies a consumption day as ‘included EV charging’, the consumption day is fed 

to the ToU inference sub-models to determine the time of charge. However, to 

increase the robustness of the overall inference framework and reduce error 

propagation, ToU sub-models have been trained and tested against days that do not 

include EV charging. 

As the complexity of detecting the ToU of EV charging is indeed more than 

detecting EV charging during the day, the learning models have been modified to 
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account for the complexity increase. Fig. 3.8 (a) and (b) show the F-score result 

achieved by the different learning models on detecting ‘ON-Peak’ and ‘OFF-Peak’ 

EV charging, respectively. As shown in Fig. 3.8 (a), while all the tested learning 

models achieved over 80% F-score on the ‘ON-Peak’ EV charging target, our ‘ON-

Peak’ WaveNet model achieved 92.7% F-score outperforming other learning 

models. On the ‘OFF-Peak’ EV charging target, we selected the BRNN model as 

our ‘OFF-Peak’ sub-model since it achieved the best F-score with 93.7%. Fig. 3.9 

(a) and (b) present the ROC evaluation of the different learning models on both the 

‘ON-Peak’ and ‘OFF-Peak’ EV charging targets. As shown in Fig. 3.9 (a), our 

WaveNet ‘ON-Peak’ sub-model achieved a 0.981 AUC score. At the same time, our 

BRNN ‘OFF-Peak’ sub-model achieved a 0.977 AUC score, as shown in Fig. 3.9 

(b). 

  
(a) (b) 

Fig.  3.8 F-score evaluation results of the different learning models on appliance time-of-use inference targets: (a) performance 
of ON-Peak models, (b) performance of OFF-Peak models. 
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(a) 

 

(b) 

Fig.  3.9 Receiver Operating Characteristics evaluation of the different learning models on appliance time-of-use inference 
targets: (a) performance of ON-Peak models, (b) performance of OFF-Peak models. 

The confusion matrix results of both final sub-models are shown in Fig. 3.10 

(a) and (b). On the ‘ON-Peak’ EV charging target, our WaveNet ‘ON-Peak’ sub-

model correctly classified 426 positive ‘ON-Peak’ EV charging samples, which 

represent 89.1% of the total true positive samples. On the other hand, the same sub-

model classified 461 negative samples correctly representing 96.2% of the true 

negative samples. On the ‘OFF-Peak’ EV charging target, our ‘OFF-Peak’ BRNN 

sub-model correctly classified 397 positive samples and 373 negative samples which 
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represent 96.6% of the true positive samples and 90.8% of the true negative samples, 

respectively, as shown in Fig. 3.10 (b). 

 

  
(a) (b) 

Fig.  3.10 Confusion matrix result for the final appliance time-of-use inference sub-models: (a) PV sub-model, (b) EV sub-model 

2.6 Summary 
 

In this chapter, our framework for penetration level estimation and ToU 

inference was explained. Additionally, we discussed the data required for our model 

training and evaluation. After that, we discussed the details of both our appliance 

ownership and penetration level estimation models and ToU inference models. 

Moreover, the chosen deep learning models have been covered as well as the data 

balancing techniques used in this research. Finally, the evaluation of the presented 

framework on real unseen data was discussed.  
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Chapter 4 

Behind-the-Meter Solar Generation Estimation 

 

 

 

4.1 Preamble 
 

In this chapter, we discuss our behind-the-meter solar generation inference 

approaches and their evaluation on unseen data. We explore two different 

approaches for this target. The approaches make use of our penetration level and 

appliance ownership estimation sub-models to identify consumption days that 

include PV generation from those which does not, to overcome the common 

assumption in other state-the-art behind-the-meter solar generation approaches. Both 

approaches introduced in this research require only the low-resolution net metering 

data as their inputs. The approaches utilize state-of-the-art supervised deep-learning 

models that have been trained and evaluated on real consumption data to address the 

problem of behind-the-meter solar generation estimation. The visibility of residential 

solar generation obtained from applying these approaches facilitates efficient 

distribution power system planning, accurate net load forecasting and competent 

demand response programs.  

4.2 Behind the Meter Solar Generation Estimation 

Approaches 
 

The goal here is to estimate the power generated from a residential PV system 

that is hidden behind the main smart meter and not being monitored by a separate 

smart meter. In other words, given the time-series of aggregated smart meter power 

measurement for the daily consumption of house i on day n as Pi,n(t) (t ∈ [1,1440]), 

where t is in minutes, and the predicted yi,n,PV binary variable from our appliance 

ownership sub-model the objective is to recognize the PV generation signature 
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during the day and estimate Pi,n,PV(t) using a regression model. Where Pi,n,PV(t) is the 

time-series of the power generated using the hidden PV system in the house i on day 

n. We achieve this objective using two approaches:  

 Full-Day Prediction Approach 

In this approach, the model will take full-day net smart meter data as its input 

and predict the PV generation as follows: 

𝑃𝑖,𝑛,𝑃𝑉(𝑡) = {
𝑃𝑖,𝑛,𝑃𝑉(𝑡)̂ , 4: 00𝑎𝑚 ≤ 𝑡 ≤ 9: 00𝑝𝑚

0, 𝑡 < 4: 00𝑎𝑚𝑜𝑟𝑡 > 9: 00𝑝𝑚
 

 

(4.1) 

Where 𝑃𝑖,𝑛,𝑃𝑉(𝑡)̂  is the predicted PV generation during the day time by the 

regression model using Pi,n(t) of the day time as its only input. On the night time, PV 

generation prediction is limited to 0 as the generation of the photovoltaic cells in 

solar panels require sunlight to generate electricity. The day time is chosen to be the 

time between 4:00 am and 9:00 pm (1021 minute) to account for the whole year at a 

wide range of locations.   

 1021 Prediction per Day Approach 

In this approach, the model will perform a minute-by-minute PV generation 

prediction using the last five minutes of predicted PV generation and five minutes 

of smart meter data as its input. In other words, to predict 𝑃𝑖,𝑛,𝑃𝑉(𝑡)̂  it requires the 

following as its input: 

 

Table 4.1 1021 Prediction per day approach input 

𝑃𝑖,𝑛(𝑡 − 2) 𝑃𝑖,𝑛(𝑡 − 1) 𝑃𝑖,𝑛(𝑡) 𝑃𝑖,𝑛(𝑡 + 1) 𝑃𝑖,𝑛(𝑡 + 2) 

𝑃𝑖,𝑛,𝑃𝑉(𝑡 − 5)̂  𝑃𝑖,𝑛,𝑃𝑉(𝑡 − 4)̂  𝑃𝑖,𝑛,𝑃𝑉(𝑡 − 3)̂  𝑃𝑖,𝑛,𝑃𝑉(𝑡 − 2)̂  𝑃𝑖,𝑛,𝑃𝑉(𝑡 − 1)̂  

 

The model utilizes the previous 5 minutes of PV generation predictions to 

estimate the next minute PV generation. This type of regression model is called an 

auto-regression model. Such models are used commonly as an effective solution for 

time-series forecasting problems. 
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4.3 Auto-Regression Model 
 

Auto-regressive models, in general, predict the future behaviour of a process 

based on its past behaviour. Auto-regressive models are commonly used when there 

is a strong correlation between the past values and the future values of the process 

in question. To determine if the problem of behind-the-meter solar generation 

estimation fits this profile, we performed an auto-correlation analysis between the 

solar PV generation data and its past values at different time shifts, see Table 4.2. 

Additionally, we performed the correlation analysis between solar generation data 

and the net smart meter data shifted for both future and past time instants, see Table 

4.3 and Table 4.4. 

Table 4.2 Auto-correlation analysis between solar generation data and its past values at different time shifts 

 

P(i,n,PV) 
(t) 

P(i,n,PV) 
(t-1) 

P(i,n,PV) 
(t-2) 

P(i,n,PV) 
(t-3) 

P(i,n,PV) 
(t-4) 

P(i,n,PV) 
(t-5) 

P(i,n,PV) 
(t-6) 

P(i,n,PV) 
(t-7) 

P(i,n,PV) 
(t-8) 

P(i,n,PV) 
(t-9) 

P(i,n,PV) 
(t-10) 

P(i,n,PV) 
(t) 

1 0.975239 0.954386 0.942048 0.933344 0.926313 0.920335 0.915469 0.911727 0.908337 0.90535 

P(i,n,PV) 
(t-1) 

0.975239 1 0.975239 0.954385 0.942048 0.933344 0.926313 0.920335 0.915468 0.911727 0.908337 

P(i,n,PV) 
(t-2) 

0.954386 0.975239 1 0.975239 0.954385 0.942048 0.933344 0.926312 0.920334 0.915468 0.911727 

P(i,n,PV) 
(t-3) 

0.942048 0.954385 0.975239 1 0.975239 0.954385 0.942047 0.933344 0.926312 0.920334 0.915468 

P(i,n,PV) 
(t-4) 

0.933344 0.942048 0.954385 0.975239 1 0.975239 0.954385 0.942047 0.933343 0.926312 0.920334 

P(i,n,PV) 
(t-5) 

0.926313 0.933344 0.942048 0.954385 0.975239 1 0.975239 0.954385 0.942047 0.933343 0.926312 

P(i,n,PV) 
(t-6) 

0.920335 0.926313 0.933344 0.942047 0.954385 0.975239 1 0.975239 0.954385 0.942047 0.933343 

P(i,n,PV) 
(t-7) 

0.915469 0.920335 0.926312 0.933344 0.942047 0.954385 0.975239 1 0.975239 0.954385 0.942047 

P(i,n,PV) 
(t-8) 

0.911727 0.915468 0.920334 0.926312 0.933343 0.942047 0.954385 0.975239 1 0.975239 0.954384 

P(i,n,PV) 
(t-9) 

0.908337 0.911727 0.915468 0.920334 0.926312 0.933343 0.942047 0.954385 0.975239 1 0.975239 

P(i,n,PV) 
(t-10) 

0.90535 0.908337 0.911727 0.915468 0.920334 0.926312 0.933343 0.942047 0.954384 0.975239 1 
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Table 4.3 Correlation analysis between solar generation data and preceding net meter data at different time shifts 

 
P(i,n,PV) 

(t) 
P(i,n)  

(t) 
P(i,n) 
 (t-1) 

P(i,n) 
 (t-2) 

P(i,n) 
 (t-3) 

P(i,n) 
 (t-4) 

P(i,n) 
 (t-5) 

P(i,n)  
(t-6) 

P(i,n)  
(t-7) 

P(i,n)  
(t-8) 

P(i,n)  
(t-9) 

P(i,n,PV) 
(t) 

1 0.948818 0.927848 0.912916 0.903941 0.897408 0.892097 0.887564 0.883956 0.881258 0.878635 

P(i,n)  
(t) 

0.948818 1 0.980421 0.963389 0.952893 0.945353 0.939175 0.933865 0.92925 0.925287 0.921525 

P(i,n)  
(t-1) 

0.927848 0.980421 1 0.980421 0.963389 0.952893 0.945353 0.939175 0.933865 0.92925 0.925287 

P(i,n)  
(t-2) 

0.912916 0.963389 0.980421 1 0.980421 0.963389 0.952893 0.945353 0.939175 0.933865 0.92925 

P(i,n)  
(t-3) 

0.903941 0.952893 0.963389 0.980421 1 0.980421 0.963389 0.952893 0.945353 0.939175 0.933865 

P(i,n)  
(t-4) 

0.897408 0.945353 0.952893 0.963389 0.980421 1 0.980421 0.963389 0.952893 0.945353 0.939175 

P(i,n)  
(t-5) 

0.892097 0.939175 0.945353 0.952893 0.963389 0.980421 1 0.980421 0.963389 0.952893 0.945353 

P(i,n)  
(t-6) 

0.887564 0.933865 0.939175 0.945353 0.952893 0.963389 0.980421 1 0.980421 0.963389 0.952893 

P(i,n) 
 (t-7) 

0.883956 0.92925 0.933865 0.939175 0.945353 0.952893 0.963389 0.980421 1 0.980421 0.963389 

P(i,n)  
(t-8) 

0.881258 0.925287 0.92925 0.933865 0.939175 0.945353 0.952893 0.963389 0.980421 1 0.980421 

P(i,n)  
(t-9) 

0.878635 0.921525 0.925287 0.92925 0.933865 0.939175 0.945353 0.952893 0.963389 0.980421 1 

 

Table 4.4 Correlation analysis between solar generation data and succeeding net meter data at different time shifts 

  
P(i,n,PV) 

(t) 
P(i,n) 

(t) 
P(i,n) 
(t+1) 

P(i,n) 
(t+2) 

P(i,n) 
(t+3) 

P(i,n) 
(t+4) 

P(i,n) 
(t+5) 

P(i,n) 
(t+6) 

P(i,n) 
(t+7) 

P(i,n) 
(t+8) 

P(i,n) 
(t+9) 

P(i,n,PV) 
(t) 

1 0.951858 0.936481 0.915433 0.903146 0.89465 0.887895 0.882278 0.877539 0.873888 0.87065 

P(i,n) 
(t) 

0.951858 1 0.978502 0.959799 0.948364 0.940118 0.933338 0.927512 0.922494 0.918261 0.914268 

P(i,n) 
(t+1) 

0.936481 0.978502 1 0.978416 0.959762 0.948328 0.940083 0.933304 0.927479 0.922462 0.918231 

P(i,n) 
(t+2) 

0.915433 0.959799 0.978416 1 0.978456 0.959799 0.948363 0.940117 0.933338 0.927512 0.922494 

P(i,n) 
(t+3) 

0.903146 0.948364 0.959762 0.978456 1 0.978456 0.959799 0.948363 0.940117 0.933338 0.927512 

P(i,n) 
(t+4) 

0.89465 0.940118 0.948328 0.959799 0.978456 1 0.978456 0.959799 0.948363 0.940117 0.933338 
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P(i,n) 
(t+5) 

0.887895 0.933338 0.940083 0.948363 0.959799 0.978456 1 0.978456 0.959799 0.948363 0.940117 

P(i,n) 
(t+6) 

0.882278 0.927512 0.933304 0.940117 0.948363 0.959799 0.978456 1 0.978456 0.959799 0.948363 

P(i,n) 
(t+7) 

0.877539 0.922494 0.927479 0.933338 0.940117 0.948363 0.959799 0.978456 1 0.978456 0.959799 

P(i,n) 
(t+8) 

0.873888 0.918261 0.922462 0.927512 0.933338 0.940117 0.948363 0.959799 0.978456 1 0.978456 

P(i,n) 
(t+9) 

0.87065 0.914268 0.918231 0.922494 0.927512 0.933338 0.940117 0.948363 0.959799 0.978456 1 

 

As shown in Table 4.2, there is a very high correlation between the solar data 

and its past values presenting a possibility for building a good auto-regression 

model. Additionally, there is also a significant correlation between solar data and the 

early shifted time instants smart meter data values, in both the future and the past, as 

shown in Table 4.3 and Table 4.4. As a result of these preliminary analyses, the 1021 

prediction per day auto-regressive approach, as explained in section 4.2, was 

explored. 

4.4 Data Requirements 
 

To train and evaluate potential regression models for the suggested 

approaches, one must find a dataset that fulfills the following requirements: 

1) Daily net smart meter data containing PV generation of several residential 

houses over a long period of time to cover different weather conditions as 

well as different consumption patterns. 

2) Metered daily generation data of the solar PV panels connected to the net 

meter for each house along the same period of the available net meter data. 

The Pecan Street database [167] presents a suitable dataset for training and 

evaluating potential regression models. After preprocessing and cleaning the data 

and dealing with the outliers (measurement errors), the dataset used for training and 

evaluating our behind-the-meter solar generation models consisted of 9,350 

consumption days of net smart meter data, as well as solar PV generation data, of 33 

different houses, each house is metered for more than half a year.  
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The dataset has been restructured for training and evaluating potential 

regression models for the two explored behind-the-meter solar generation estimation 

approaches.  

4.5 Behind the Meter Solar Generation Estimation Results 
 

The samples of the consumption days that have been predicted to contain PV 

generation by our PV appliance ownership model, which achieved a 98.3% F-score 

result, would then be restructured for our two approaches to estimate the solar 

generation during the day. To compare both approaches we have trained various 

WaveNet based regression models and chose the best performing model for each 

approach. The choice of WaveNet based models is due to their unique architecture 

that enables efficient learning of temporal dependencies. In addition, the WaveNet 

based models achieved significantly high results on our appliance ownership targets 

as well as ToU inference targets.  

After training the chosen learning models for both approaches, we evaluated 

both approaches on the same testing data in order to justly compare their 

performances. The mean square error (MSE) and the coefficient of determination, 

also known as R-squared (R2), were chosen to be our error metrics in the following 

analysis of the two approaches as they are commonly used in related literature.  

The MSE can be defined as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)

2

𝑛

𝑖=1

 (4.2) 

Where n is the number of samples, Yi is the true value and 𝑌�̂� is the predicted 

value.  

The R2 is a statistical measure that represents the proportion of the dependent 

variable variance that is explained by an independent variable in a regression model 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 (4.3) 

Where RSS is the residual sum of squares and TSS is the total sum of squares 

and are defined as follow:  
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𝑅𝑆𝑆 =∑(𝑌𝑖 − 𝑌�̂�)
2

𝑛

𝑖=1

 (4.4) 

 

𝑇𝑆𝑆 =∑(𝑌𝑖 − �̅�)2
𝑛

𝑖=1

 (4.5) 

Where �̅� is the mean of the observed data.  

Fig. 4.1 (a) and (b) show the estimated PV generation for two test 

consumption days that achieved low MSE on the full-day prediction approach.  

As shown in Fig. 4.1, the full-day prediction approach model was able to 

estimate the solar generation accurately regardless of the large variance in the 

consumption signal due to other electrical appliances usage. 

  



43 
 

 

(a) 

 

(b) 

Fig.  4.1 Full-day prediction approach low MSE predicted days: (a) MSE= 0.043, (b) MSE= 0.063 

On the other hand, Fig. 4.2 shows the result of estimating the PV generation 

of two test days that achieved low MSE using the 1021 prediction per day approach.  
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(a) 

 

(b) 

Fig.  4.2 1021 prediction per day approach low MSE predicted days: (a) MSE= 0.041, (b) MSE= 0.046  

As shown in Fig. 4.2, the 1021 prediction per day approach model achieved a very 

low MSE on estimating the intermittent solar generation of cloudy days as the one 

shown in Fig. 4.2 (a). Cloudy days solar generation estimation represents a tough 

problem as the solar generation is affected by the clouds’ movement as it limits the 

amount of sunlight reaching the solar panels resulting in a high variance intermittent 

solar generation.  

 Fig. 4.3 (a) and (b) show two different days with an average MSE score for 

the full-day prediction approach model. As shown in the figure, the model 
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performance is degraded with higher variance solar generation, i.e. cloudy days, as 

contrary to the 1021 prediction per day approach model. 

 

(a) 

 

(b) 

Fig.  4.3 Full-day prediction approach average MSE predicted days: (a) MSE= 0.439, (b) MSE= 0.44 

Conversely, Fig. 4.4 (a) and (b) present two average MSE scoring 

consumption days for which the PV generation has been estimated using the 1021 

prediction per day approach model. Due to high variance in the electric consumption 

as a result of the different electrical appliances usage in those two days, the 

estimations of the 1021 prediction per day approach model is not as accurate as it 

were on the two day shown in Fig 4.2. 
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(a) 

 

(b) 

Fig.  4.4 1021 prediction per day approach average MSE predicted days: (a) MSE= 0.673, (b) MSE= 0.675 

Nevertheless, both approaches achieved a low average MSE score on the 

unseen test data. Table 4.5 shows the average normalized MSE and R2 result of both 

approaches.   

Table 4.5 MSE and R2 scores of the behind-the-meter solar generation estimation suggested approaches 

 MSE R2 

Full-day prediction approach 0.00199 0.98 

1021 prediction per day approach 0.00014 0.72 
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2.7 Summary 
 

In this chapter, we discussed our suggested approaches to the problem of 

behind-the-meter solar generation estimation. We also presented the analysis that 

led to exploring the 1021 prediction per day approach. After that, the characteristics 

of the data required to train and evaluate our suggested approaches potential 

regression models have been discussed. Finally, we present the result of our 

suggested approaches for estimating the behind-the-meter solar generation on 

unseen real data. In conclusion, although both approaches achieved a low average 

MSE score, each one had it is own advantages and disadvantages. While the full-day 

approach achieved a better result on estimating the hidden PV generation regardless 

of the coexistence of high variance electrical consumption appliances which 

degraded the performance of the 1021 prediction per day approach, the 1021 

prediction per day approach achieved a significantly better result on estimated the 

solar generation on cloudy days when compared to the full-day prediction approach. 
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Chapter 5 

Conclusion 

 

 

 

In this study we introduced a framework for estimating the penetration level 

of PV generation and EVs in a monitored area; in addition to predicting EVs time of 

charge given aggregated smart meter data as an application of our framework for 

flexible appliance time-of-use inference as well as estimating the behind-the-meter 

solar generation. The framework obtains its estimations using existing smart meter 

low-resolution data as its only input without the need for any on-site training or 

appliance ownership information. The framework infers the appliance ownership 

information in its early sub-models and uses the information in its consequent 

penetration level estimation, flexible appliances’ ToU inference and behind-the-

meter solar generation estimation.  

 The framework exploits various sub-models for every sub-target, breaking 

down the inference question into smaller binary classification inquires, in addition 

to the regression sub-target, each sub-model is designed and customized for its 

specific sub-target and trained to mitigate error propagation from precedent sub-

models. The sub-models are built of WaveNet inspired learning models and a 

Bidirectional Recurrent Neural Network model. Upon receiving new daily smart 

meter consumption data, the framework’s early sub-models infer whether this daily 

consumption included PV generation and/or EV charging as part of its appliance 

ownership inference. Subsequently, this inferred information is used for penetration 

level estimation, enabling accurate ToU inference and estimating the generated solar 

power behind the existing smart meters. After that, the framework’s later sub-models 

infer the ToU vector of flexible appliances which can be used in demand response 

(DR) and demand-side-management programs. In addition, the framework’s behind-

the-meter solar generation estimation model can be utilized for improving the power 

procurement plans of distribution power companies. The framework has been tested 

on real smart meter data obtained from the Pecan Street database [167] and achieved 
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an F-score classification result between 93% to 98% across all its sub-models which 

proves the feasibility and scalability of our approach. 

 Finally, the work presented in this study can be extended in various ways. 

First, further studies can be done on a ToU enabled DR that takes into account the 

flexible appliance use history of customers to minimize the peak-to-average ratio 

(PAR) while maintaining a high level of comfort for end-customers. Alternatively, 

a forecasting framework that utilizes appliance penetration level estimation for 

improving its forecasting capabilities can be investigated. Nevertheless, even though 

both our presented approaches to tackle the target of behind the meter solar 

estimation achieved low mean square error (MSE), each approach showed 

advantages over the other. Therefore, more studies are required to determine an 

optimum solution to this problem.  
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