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Summary

Markov processes offer a useful basis for modeling the progression of organisms through suc-
cessive stages of their life cycle. When organisms are examined intermittently in developmental
studies, likelihoods can be constructed based on the resulting panel data in terms of transition
probability functions. In some settings however, organisms cannot be tracked individually due to
a difficulty in identifying distinct individuals, and in such cases aggregate counts of the number of
organisms in different stages of development are recorded at successive time points. We consider
the setting in which such aggregate counts are available for each of a number of tanks in a devel-
opmental study. We develop methods which accommodate clustering of the transition rates within
tanks using a marginal modeling approach followed by robust variance estimation, and through
use of a random effects model. Composite likelihood is proposed as a basis of inference in both
settings. An extension which incorporates mortality is also discussed. The proposed methods
are shown to perform well in empirical studies and are applied in an illustrative example on the
growth of the Arabidopsis thaliana plant.
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1 INTRODUCTION

1.1 LITERATURE REVIEW

Multistate models are useful when studying chronic disease processes when the disease status can be
classified into meaningfully different states. In individuals with hepatitis C infection for example, the
extent of liver damage is quantified using a five point scale and we can define state 1 to correspond to
no fibrosis, states 2 to 4 to correspond to increasing degrees of fibrosis, with state 5 representing the
development of cirrhosis (Sweeting et al., 2006). In arthritis, the extent of joint damage can also be
viewed in this way because joints of affected individuals may pass through a sequence of states repre-
senting increasing joint damage until total joint destruction occurs (Gladman and Chandran, 2010). In
many instances of this sort the precise times that transitions are made between states are unavailable
because the state occupied can only be determined upon careful imaging assessments. The resulting
data is comprised of the assessment times and the states occupied at these times and is referred to as
panel data. Kalbfleisch and Lawless (1985) developed a computationally convenient Fisher-scoring
algorithm for obtaining maximum likelihood estimates of transition intensities for Markov processes
which is implemented in the msm package in R by Jackson (2011).

Multistate models are also useful for modeling the maturation process of organisms since their
lifecycle can typically be characterized by transitions through different stages of development (Borror
and White, 1970). When organisms are large and can be tagged or otherwise identified, the resulting
data has a similar format to panel data encountered in studies of disease processes. In many instances,
however, organisms under very study are small and contained in one or more large tanks, and while
each organism may be assessed periodically it can be difficult to identify individuals and hence track
them over time. In such cases the resulting observations typically take the form of repeated aggregate
count data. Such data were available in the study discussed in Munholland and Kalbfleisch (1991)
which investigated the lifecycle of a grasshopper Chorthippus parallelus. At each assessment time
the insects were classified into one of four instars (developmental stages) or as adults, but because
they were not labeled the resulting data took the form of aggregate counts of the number of insects
in the different maturation stages at each assessment time. In studies of plant growth, the individual
organisms (plants) can be tracked of course, but the data may simply be summarized and recorded
in aggregate form, resulting in the same type of repeated multinomial count data. This is the case
in the motivating growth study of the plant, Arabidopsis thaliana, which passes through a series of
developmental stages (Gouno et al., 2011).

Organisms within the same tank, or other container, will often exhibit more similar growth patterns
than organisms in different tanks due to a shared environmental condition. The resulting within-tank
clustering in growth patterns within tanks must be addressed when modeling the multistate processes
from several tanks. This can be achieved by the formulation of multivariate models with marginal
processes having desired properties, or through use of hierarchical model incorporating random ef-
fects. Zeng and Cook (2007) consider a marginal approach to dependence modeling for correlated
discrete-time Markov processes using odds ratios as dependence parameters and generalized estimat-
ing functions as a basis for inference. Diao and Cook (2014) described an approach for joint analysis
of two or more continuous-time Markov processes through use of copula functions which model the
dependence between absorption times across correlated progressive processes; likelihood functions
can be used in principle for fitting such fully specified models, but composite likelihood (Varin et al.,
2011) was proposed for computational convenience. Aalen (1987) discussed the role of random ef-
fects for modeling multiple Markov chains with unexplained heterogeneity between processes. Satten
(1999) developed a time-homogeneous conditionally Markov model for progressive continuous-time
disease processes under panel observation schemes in which random effects accommodated hetero-
geneity; minor variations of this model were used in Cook et al. (2004), Sutradhar and Cook (2008)
and O’Keeffe et al. (2013) to deal with clustered data of this sort. While these and other articles have
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dealt with clustered multistate processes, none to our knowledge have dealt with clustered and aggre-
gated multistate data from processes under intermittent observation. We address this here in terms of
both marginally Markov models and mixed Markov models using random effects.

The remainder of this paper is organized as follows. In the next subsection, we describe a study of
the growth and development of Arabidopsis thaliana, a small plant in the mustard family. In Section 2
we define notation and construct the likelihood for clustered aggregate multistate data under a Markov
assumption. In Section 3 we review the marginal approach to dependence modeling of multistate pro-
cesses via copula functions, propose a computationally feasible composite likelihood, describe how
to compute robust variance estimates, and evaluate the methods by simulation. An alternative formu-
lation given in Section 4 in which a cluster-level random effect accommodates heterogeneity in the
transition intensities between clusters; simulation studies are also reported on there. Both the marginal
and the random effect approach are applied to data on the growth and development of Arabidopsis
thaliana in Section 5, where we present an extension to accommodate mortality. Concluding remarks
are given in Section 6.

1.2 DATA ON THE GROWTH OF Arabidopsis Thaliana

Arabidopsis thaliana is small flowering plant in the mustard family that is considered a model organ-
ism in plant biology because of relatively short life cycle and small genome. The plants pass through
seven distinct stages of development characterized by the model depicted in Figure 1. We consider a
laboratory cohort study discussed by Gouno et al. (2011) in which a total of 64 tanks, each containing
50 plants, were inspected every 3 days for 3 months. The states occupied at the assessment times
are recorded over the 3 month period but since the plants were not monitored continuously the exact
transition times between the stages (or states) are unknown. Moreover the data recorded consists only
of the total number of plants in each of the development stages at each assessment time for each tank.
We use the study reported in Gouno et al. (2011) to illustrate the methods we develop which yield
estimates of transition intensities and accommodate a within-tank dependence in growth rates based
only on the aggregate counts. Data from a sample tank is given in Table 5 of Gouno et al. (2011).

1 2 3 4 5 6 7

Figure 1: A 7-state progressive model for the developmental lifecycle of the flowering mustard plant
Arabidopsis thaliana.

2 AGGREGATE DATA WITH INDEPENDENT UNITS

2.1 NOTATION AND MODEL FORMULATION

In order to introduce the notation and computational issues of aggregate panel data, we first consider
strictly progressive independent processes with no covariates. The state space is {1, . . . , K} and we
assume that only k → k + 1 transitions are allowed directly, k = 1, . . . , K − 1. We let Zj(t) denote
the state occupied by individual j at time t and {Zj(s), 0 < s} denote their multistate process. If
Hj(t) = {Zj(s), 0 ≤ s < t} denotes the process history for individual j at time t, the k → k + 1
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transition intensity is defined as

λk(t|Hj(t)) = lim
4t↓0

P (Zj(t+4t−) = k + 1|Zj(t−) = k,Hj(t))

4t
, (1)

k = 1, . . . , K − 1 (Aalen et al., 2008). Under a Markov assumption the intensity in (1) does not
depend on the history Hj(t) other than through the state occupied at t−, in which case we write it
more compactly as λk(t). Let Λ(t) denote a K ×K transition intensity matrix with (k, k + 1) entry
λk(t), diagonal entries −λk(t), k = 1, . . . , K − 1, and zeros elsewhere. The K × K transition
probability matrix P (s, t), having (k, l) entry pkl(s, t) = P (Zj(t) = l|Zj(s) = k), is obtained by
product as integration (Cook and Lawless, 2018) as

P (s, t) =
∏
(s,t]

{1 + Λ(u)du} .

Under a time-homogeneous process (i.e. if λk(t) = λk, k = 1, . . . , K−1) we can write pkl(s, t) =
P (Zj(t) = l|Zj(s) = k) as

pkl(s, t) =


l∑

h=k

B(k, h, l) exp(−λh(t− s)), k ≤ l

0 k > l

(2)

where

B(k, h, l) =
l−1∏
u=k

λu

/ l∏
u=k
u6=h

(λu − λh), k ≤ h ≤ l , (3)

and B(h, h, h) = 1 provided λk 6= λl for all k 6= l = 1, . . . , K − 1 (Satten, 1999). The form of (2)
can lead to simplifications of the likelihood which are useful in the setting we discuss in Sections 3
and 4.

We assume here and throughout that the multistate processes begin in state 1 at t = 0 with
probability one. If assessments on individual j are carried out at times 0 = aj0 < aj1 < · · · <
ajRj

and the state occupied is recorded at these times, we obtain panel data {(Zj(ajr), ajr), r =
0, 1, . . . , Rj} for individual j. The likelihood for individual j can then be constructed as

R∏
r=1

K−1∏
k=1

K∏
l≥k

[pkl(aj,r−1, ajr)]
Njkl(ar)

where Njkl(ar) = I(Zj(aj,r−1) = k, Zj(ajr) = l).

2.2 LIKELIHOOD WITH AGGREGATE DATA OF INDEPENDENT PROCESSES

We now consider the setting in which n organisms contained in a tank are examined at a common set
of assessment times 0 = a0 < a1 < · · · < aR. We let Nkl(ar) =

∑n
j=1 I(Zj(ar−1) = k, Zj(ar) = l)

denote the number of organisms in state k at ar−1 and state l at ar for k ≤ l = 1, . . . , K. Table 1
displays the data in matrix form for a progressive K state Markov process for assessment times ar−1

and ar where the entries below the diagonal are zero.
In order to compute Nkl(ar) it is necessary to be able to track the organisms and link their data

at ar−1 and ar which requires being able to identify them individually. We consider here the case
in which this is not possible because identification of individuals is infeasible, or the data available
are summarized in terms of marginal frequencies for other reasons. In this case the entries in the
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interior of Table 1 (i.e. Nkl(ar)) are missing and we observe only the total number of individuals in
each state at each assessment time. That is at ar−1 we observe the number of individuals occupying
state k denoted by Mk(ar−1) =

∑K
l=kNkl(ar), k = 1, . . . , K, and at ar we observe the number of

individuals occupying state l denoted by Ml(ar) =
∑l

k=1Nkl(ar), l = 1, . . . , K. We let M(ar) =
(M1(ar), . . . ,MK(ar))

′ denote the vector of frequencies for the different stages of development (i.e.,
states) at ar and H̄(ar) = {M(as), s = 1, . . . , r − 1} the history of observed marginal frequencies at
ar, r = 1, . . . , R.

Table 1: Representation of the complete data on transition counts Nkl(ar) over (ar−1, ar) and the
corresponding marginal counts Mk(ar−1) and Mk(ar), k = 1, . . . , K at ar−1 and ar respectively.

N11(ar) N12(ar) · · · N1K(ar) M1(ar−1)
0 N22(ar) · · · N2K(ar) M2(ar−1)
· · · · · · · · · · · ·
0 · · · · · · MK−1(ar−1)
0 0 0 NKK(ar) MK(ar−1)

M1(ar) M2(ar) · · · MK(ar)

We construct the observed data likelihood by first writing the complete data likelihood in the case
where tracking is possible and making use of the Markov property that at the individual level the state
occupied at ar depends only on the state occupied at ar−1. We therefore need only consider the data
across consecutive assessment times, and build the joint probability of the data over all assessment
times as a product of the conditional probabilities of the data at ar given the data at ar−1, r = 1, . . . , R.
If Nk(ar) = (Nkk(ar), . . . , NkK(ar))

′ denotes the potential non-zero elements in the kth row, these
latent transition counts are multinomial with

Nk(ar)|Mk(ar−1) ∼ Multinom(Mk(ar−1); pkk(ar−1, ar), . . . , pkK(ar−1, ar))

for k = 1, . . . , K − 1 with the probabilities given by (2) and
∑K

l=k pkl(ar−1, ar) = 1.
Let N(ar) = (N ′1(ar), . . . , N

′
K(ar))

′ denote the full vector of latent counts in the interior of Table
1 and M(ar−1) = (M1(ar−1), . . . ,MK(ar−1))′ denote the vector of marginal counts at ar−1. Then
letting θk = log λk and θ = (θ1, . . . , θK−1)′, the observed data likelihood can be constructed as

L(θ) ∝
R∏
r=1

∑
N(ar)∈Nr

P (N(ar)|H̄(ar)); θ) =
R∏
r=1

K∏
k=1

P (Mk(ar)|M(ar−1); θ) (4)

where Nr = {N(ar) : Nk·(ar) = Mk(ar−1), N·l(ar) = Ml(ar),∀ (k, l)} is the set of latent transition
counts that are compatible with the margins of the table and Nk·(ar) =

∑K
l=kNkl(ar) and N·l(ar) =∑l

k=1Nkl(ar).

3 MARGINAL MODELS FOR CLUSTERED AGGREGATE DATA

3.1 COMPOSITE LIKELIHOOD FOR A MARGINAL MODEL

Having discussed likelihood construction in the simple case of the previous section involving indepen-
dent identical time-homogeneous Markov processes aggregated within a single tank, here we consider
the setting with multiple tanks where the developmental patterns of organisms are clustered within
tanks and there are tank-level covariates available. We consider the setting with a total of I tanks with
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ni individual organisms in tank i, i = 1, . . . , I . We let Xi denote a p × 1 tank-level covariate vector
for tank i, i = 1, . . . , I , and assume there are no covariates at the individual level. If {Zij(s), 0 < s}
is the multistate process and Hij(t) = {Zij(s), 0 ≤ s < t} is the history for individual j in tank i we
adopt a model with

lim
∆t↓0

P (Zij(t+ ∆t−) = k + 1|Zij(t−) = k,Hij(t))

∆t
= λk exp(x′iβ) (5)

for k = 1, . . . , K − 1. We let θ = (log λ1, . . . , log λK−1, β)′ denote the vector of parameters charac-
terizing the dynamics of the marginal processes.

Diao and Cook (2014) develop a model for correlated Markov processes which accommodate a
dependence between processes while retaining the marginal Markov property of individual processes.
For progressive processes, the dependence is accommodated by selecting a sojourn or entry time of
interest and using a copula function to induce a dependence between the corresponding times for
different processes within a cluster. We consider here the class of Archimedean copulas of the form

C(u1, u2, . . . , uni
; η) = G−1(G(u1; η) + · · ·+ G(uni

; η), η) ,

where G:[0, 1]→ [0,∞) is a continuous, strictly decreasing and convex generator function indexed by
a dependence parameter η with G(1; η) = 0. For the progressive process of Figure 1 we select the first
transition time (i.e. the entry time to state 2) as the time on which to base the dependence modelling.
Let Tij2 denote the entry time to state 2 for individual j in tank i and Ti2 = (T1i2, . . . , Tini2)′ denote
the vector of all state 2 entry times within tank (cluster) i, i = 1, . . . , I . We use the Clayton copula
(Nelsen, 2006) in this setting, with generator G(u; η) = η−1(u−η − 1) to model the dependence in the
state 2 entry times. A common dependence measure for copula models in the Archimedean family is
Kendall’s τ obtained here by

τ = 1 + 4

∫ 1

0

G(u; η)

G ′(u; η)
du .

The joint survivor function for F(ti2|xi; θ, η) = P (Tij2 ≥ tij2, j = 1, . . . , ni|xi; θ, η) is ob-
tained by taking the probability integral transform of Tij2 and linking all marginal survivor functions
Fij(tij2|xi) = exp(−λ1 exp(x′iβ)tij2) via the Clayton copula to obtain

F(ti2|xi; θ, η) =
(
F(ti12|xi; θ)−η + · · ·+ F(tini2|xi; θ)−η − (ni − 1)

)−1/η
. (6)

The key point is that since the individual processes are progressive, the association within tanks in
the entry times to state 2 will induce a within-tank association in the entry times to subsequent states.
Alternative approaches would be to model the association in the absorption times, as considered in
Diao and Cook (2014), or to model dependence in the sojourn time in a particular state.

Generalizing the notation from Section 2 we let Nijkl(air) = I(Zij(ai,r−1 = k, Zij(air = l))
denote the unobserved indicator of state k occupancy at ai,r−1 and l at air for individual j in tank i. We
also let Mil(air) =

∑ni

j=1

∑l
k=1 Nijkl(air), l = 1, . . . , K denote the marginal frequencies at air and

Mi(air) = (Mi1(air), . . . ,MiK(air))
′ denote the vector of marginal counts for tank i, i = 1, . . . , I .

We propose inference based on a composite likelihood obtained under two working independence
assumptions. The first is a working independence assumption between processes within tanks, which
is possible to adopt because of our use of a copula-based dependence model. Under this assumption
we have {Zij(s), 0 < s} as independent of {Zij′(s), 0 < s} for j 6= j′ = 1, . . . , ni, i = 1, . . . , I . As
a consequence of this working independence assumption no estimate of the dependence parameter
is obtained; we propose robust variance estimation to ensure valid inference. A second working
independence assumption comes from considering the multinomial frequencies of the states occupied
at each assessment time as being independent from the frequencies from the same tank at different
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assessment times. That is we use a working independence assumption that states that Mi(air) ⊥
Mi(ais) for s 6= r = 1, . . . , Ri. This is clearly violated in reality since there is a dependence induced
by the Markov property and the processes are progressive so there are constraints on the possible
states occupied at air imposed by the states occupied at ai,r−1. However this working independence
assumption is possible to adopt because the probability contributions for observations at air given the
data at ai0 correspond to legitimate probabilities in scenarios where data from the other time points
are not available. We therefore let

CLir(θ) ∝ P (Mi(air)|Mi1(ai0) = ni, xi; θ) (7)

be the component likelihood for cluster i containing ni individuals at each air, r = 1, . . . , Ri, i =
1, . . . , I . This is computed in the same way the contributions to (4) are computed. The overall
composite likelihood is then given by the product of the component likelihoods,

CL(θ) =
I∏
i=1

Ri∏
r=1

CLir(θ) . (8)

The estimating equations corresponding to the composite likelihood depicted in (8) are

S(θ) =
I∑
i=1

Si(θ) (9)

where Si(θ) =
∑Ri

r=1 Sir(θ) and Sir(θ) = ∂ logCLir(θ)/∂θ. Since the contributions CLir(θ) in (7)
are valid likelihood contributions, E{S(θ)} = 0 and the estimating function (9) will yield consistent
estimates. Under standard regularity conditions (White, 1982), we make use of the result

√
I(θ̂ − θ)→ N(0,A−1(θ)B(θ)

[
A−1(θ)

]′
)

where A(θ) = −E{∂Si(θ)/∂θ′} and B(θ) = E{Si(θ)S ′i(θ)} are p × p matrices which are elements
of the robust sandwich variance. Note that since Si(θ) =

∑Ri

r=1 Sir(θ) the matrix B(θ) contains
elements E{Sir(θ)S ′ir(θ)} which deals with the clustering in the transition times within tanks, and
E{Siq(θ)S ′ir(θ)} with q < r which deals with dependence between the aggregate counts from the
same tank at different assessment times; thus this robust variance addresses both of the dependencies
that are neglected in the two working independence assumptions. The matricesA(θ) and B(θ) can be
estimated empirically by

Â(θ) = −I−1

I∑
i=1

∂Si(θ)

∂θ′

∣∣∣∣
θ=θ̂

and

B̂(θ) = I−1

I∑
i=1

Si(θ)S
′
i(θ)

∣∣∣∣
θ=θ̂

.

and confidence intervals for elements of θ can be obtained using standard errors obtained from the
square root of the corresponding diagonal entries of Â(θ̂)−1B̂(θ̂)[Â(θ̂)−1]′.

3.2 A SIMULATION STUDY OF THE MARGINAL DEPENDENCE MODEL

Here we consider a strictly progressive 5-state process with all individuals starting at state 1 with
probability one. We conceptualize a specified period of interest [0, 1] without loss of generality and
set λ1 such that P (Zij(1) = 1|Zij(0) = 1) = 0.135 so that we would expect 13.5% of the organisms
to still be in state 1 at the end of the period of interest. We set λk = 1.1k−1λ1, k = 2, 3, 4, so that
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the sojourn times in higher numbered states become shorter until the absorbing state is entered. The
data are generated such that the entry times to state 2 are exponential with rate λ1 but correlated with
the other state 2 entry times within the same cluster according to a Clayton copula model given in (6)
with the dependence parameter set to give Kendall’s τ = 0.1 or 0.2. The entry time to state 3 is the
sum of the entry time of state 2 and an independent sojourn time in state 2, and because the former
are associated within tanks, a within-tank dependence is induced for the entry times to state 3. In a
similar fashion we simulate the sojourn time in state 3 as an independent exponential random variable
with hazard λ3 and add that to the entry time to state 3 to get the entry time to state 4, and proceed
similarly for the simulation of the absorption time. The correlations induced in the state entry times
for clusters with xi = 0 are 0.091 and 0.177 (state 2), 0.055 and 0.102 (state 3), 0.043 and 0.084 (state
4), 0.031 and 0.065 (state 5) for τ = 0.1 and 0.2 respectively. We consider settings with ni = 10
or 30 individuals per cluster, Ri = 4 common assessment times at 0.25, 0.50, 0.75 and 1.0 for each
cluster, i = 1, . . . , I with I = 25, 50 or 100 clusters. The design effect 1 + (ni − 1)corr(Tij2, Tij′2)
represents the variance inflation due to within-cluster dependence (Donner and Klar, 2000) which are
given here for the state 2 entry times by approximately 1.82 and 2.59 for clusters of size 10 and 3.64
and 6.13 for clusters of size 30 for τ = 0.1 and 0.2 respectively. These represent substantial design
effects and cover a range of plausible values for many applications.

The simulation results displayed in Table 2 are based on nsim = 500 simulated samples. We
see that the empirical biases (EBIAS) are all close to zero, the average robust standard errors (ASE)
agree well with the empirical standard errors (ESE), and the recent empirical coverage (ECP%) is well
within the acceptable range to be compatible with the nominal level. The naive standard error based
on reliance of the working independence assumptions (i.e. cov(

√
I(θ̂ − θ)) = Â(θ̂)) is considerably

smaller than the robust standard error demonstrating the need for the robust variance estmate. As one
would expect that the standard error decreases as the number of organisms per cluster (ni) increases
for a set value of τ , as well as when the number of clusters increases for a given cluster size and
within-cluster association. We also observe the anticipated increase in variation in the estimates when
the association is increased by specifying a larger value of Kendall’s τ .

4 MODELING WITH-CLUSTER DEPENDENCE VIA RANDOM EFFECTS

4.1 DEPENDENCE MODELING THROUGH LATENT VARIABLES

Dependence in growth rates within tanks can also be addressed through modeling the between-tank
variation using hierarchical models. We consider the a conditionally time-homogeneous multiplica-
tive intensity Markov model of Satten (1999) and let Ui be a scalar random effect for tank i with
E(Ui) = 1, var(Ui) = φ, and distribution function G(Ui;φ) = P (Ui < ui;φ). We further as-
sume Ui ⊥⊥ Ui′ for i 6= i′ = 1, . . . , I . Given (xi, ui) the time-homogeneous transition intensities for
individual j in cluster i is defined as

lim
∆t↓0

P (Zij(t+ ∆t−) = k + 1|Zij(t−) = k, Ui = ui, Xi = xi)

∆t
= uiλk exp(x′iβ)

for k = 1, . . . , K − 1, j = 1, . . . , ni, and i = 1, . . . , I . We again let θ = (λ1, . . . , λK−1, β)′

but note that in this formulation these parameters have different interpretations than in Section 3
since they have a direct interpretation only given Ui = ui here. The marginal likelihood is obtained
by integrating the joint likelihood for the aggregate data and the random effect with respect to the
latent random effect. Maximum likelihood estimates are obtained by maximizing with respect to
ψ = (θ′, φ)′. We describe how this can be carried out first for the case where individual-level data are
available and then consider the case with aggregation.
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For our strictly progressive process we can make use of (2) to accommodate the cluster-level
random effect and covariate and write

P (Zij(air) = sijr|Zij(ai,r−1) = sij,r−1;ui, xi) =

sijr∑
h=sij,r−1

B(sij,r−1, h, sijr) exp(−uiλhex
′
iβ4air)

where 4air = air − ai,r−1 is the lag between the (r − 1)st and rth assessment times for tank i and
sijr represents the state occupied by individual j in tank i at time air; the function B(·, ·, ·) is defined
as in (3).

With individual level panel data, the conditional likelihood contribution for cluster i given (ui, xi)
can be written as

Lci(θ) ∝
ni∏
j=1

Ri∏
r=1

P (Zij(aijr) = sijr|Zij(aij,r−1) = sij,r−1;ui, xi) . (10)

Based on the form of (2) we can rewrite (10) as

Lci(θ) ∝
ni∏
j=1

 sij1∑
h0=sij0

sij2∑
h1=sij1

· · ·
sijRi∑

hRi−1=sij,Ri−1

{
Ri∏
r=1

B(sij,r−1, hr−1, sijr) exp(−uiλhr−1e
x′iβ∆air)

} .

We can then get the marginal probabilities for cluster i by averaging over the random effect as

Li(ψ) ∝
∫ ∞

0

Lci(θ)dG(ui;φ) .

A closed-form of the marginal likelihood is obtainable if there exists a Laplace transform vφ(·) for
the random effect distribution, but not otherwise.

When data are aggregated at the cluster level we must again marginalize over the complete tables
as in (7). This summation is infeasible here because even for progressive models the number of
possible realizations of individual paths increases at a prohibitive rate with the number of assessment
times and the cluster size. We therefore consider an alternative approach, again based on a composite
likelihood. Specifically we consider a contribution for the counts of transitions over (0, air] given ui
in cluster i, as in Section 3.

4.2 COMPOSITE LIKELIHOOD CONSTRUCTION

Here we consider composite likelihood contributions from cluster i based on data at times ai0 = 0
and air for r = 1, . . . , Ri. For a particular time air in cluster i we write

Lcir(θ) ∝
ni∏
j=1

P (Zij(air) = sijr|Zij(ai0) = sij0;ui, xi) (11)

where

P (Zij(air) = sijr|Zij(ai0) = sij0;ui, xi) =

sijr∑
h=sij0

B(sij0, h, sir) exp(−uiλhex
′
iβ∆air) . (12)

Taking the expectation of (11) with respect to the random effect and taking the product of all such
terms for r = 1, . . . , Ri gives a joint probability and composite likelihood for the panel data setting
which can be written as

Li(θ) ∝
Ri∏
r=1

Lcir(θ)
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where
Lir(ψ) =

∫ ∞
0

Lcir(θ)dG(ui;φ) . (13)

If vφ(·) is the Laplace transform of the random effect distribution, a closed-form for the integral is
obtained by replacing each exponential factor by the Laplace transform to obtain

Lir(ψ) ∝
si1r∑

h1=si10

si2r∑
h2=si20

· · ·
sinir∑

hni=sini0

ni∏
j=1

B(sij0, hi, sijr) · vφ
(∑ni

j=1 λhi exp(x′iβ)∆air

)
. (14)

When data are aggregated and only marginal totals are available at each assessment time, an ob-
served data composite likelihood is obtained by summing (14) over all possible matrices of transition
counts between ai0 and air to give a contribution

Li(ψ) ∝
Ri∏
r=1

∑
N(air)∈Nir

Lir(ψ) (15)

for each cluster i where Ni1l(air) =
∑ni

j=1 I(Zij(air) = l|Zij(ai0) = 1) and

Nir = {Ni(air) : Ni1·(air) = ni, Ni·l(air) = Mil(air),∀ l} .

The overall composite likelihood is obtained by multiplying contributions of the form (15) over all I
clusters to obtain L(ψ) =

∏I
i=1 Li(ψ) and robust variance estimates can be derived as in Section 3.2

based on the elementary estimating functions given by Si(ψ) = ∂ logLi(ψ)/∂ψ.

4.3 A SIMULATION STUDY FOR THE RANDOM EFFECT MODEL

Here we consider a strictly progressive process with all individuals starting at state 1. We set λ1 such
that P (Zij(1) = 1|Zij(0) = 1) = 0.135 and set the other baseline intensities as λk = 1.1k−1λ1,
k = 2, 3, 4 to reflect more rapid progression through the latter stages as before. The random effect Ui
is gamma distributed with E(Ui) = 1 and var(Ui) = φ and we consider φ = 0.4 and 0.8 to represent
modest and larger degrees of between cluster variation. To assess the effect of cluster size, as in
Section 3.2 we let nj = 10 or 30 and consider I = 25, 50 and 100 clusters. We again consider Ri = 4
with common follow-up assessments at air = 0.25r, r = 1, . . . , 4. The results are displayed in Table
3 for nsim = 500 simulations. We see that the bias is generally small for the log intensities but can
be more substantial for log φ for the setting with I = 25; this may be a finite sample bias as it is
much smaller when I = 50 and 100. The ESE and ASE are in alignment and the empirical coverage
probabilities are well within the nominal level. As the number of clusters I increases and the number
per cluster ni = n increases, we see the anticipated decrease in the standard errors.

5 A DEVELOPMENTAL STUDY OF Arabidopsis thaliana

Gouno et al. (2011) provided data from one tank of the 64 tanks of Arabidopsis thaliana in a laboratory
based study. The plants are sorted into different clusters according to their origin, with 50 plants in
each cluster. The data are recorded every 3 days for 3 months giving a total of 32 assessments per
cluster.

So far we have restricted attention to progressive processes depicted in Figure 1 but a key feature
of this dataset is that the plants may die at any time from the different stages. To accommodate the fact
that individuals may die during the process between any assessment times as depicted in Figure 2 we
introduce a transition intensity from state k to the dead state D denoted λkd; we constrain λkd = λd,
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k = 1, . . . , 7 so that the time of of death is treated as independent of the stage of development. The
likelihood for the marginal and random effect approaches can be constructed in a similar way as in
Sections 3.1 and 4.2 with death intensities taken into account. Specifically, the composite likelihood
for the marginal approach is modified to

CL(θ†) =
I∏
i=1

Ri∏
r=1

P (Mi(air)|Mi1(ai0) = ni, xi; θ
†) (16)

where θ† = (θ′, θd)
′ with θd = log λd. For the random effect model we define the likelihood as

L(ψ†) =
I∏
i=1

Ri∏
r=1

∑
N(air)∈Nir

∫ ∞
0

Lcir(θ†)dG(ui;φ) (17)

where ψ† = (θ′, θd, φ)′ and the probabilities in Lcir(θ†) are computed based on the 8-state model in
Figure 2.

1 2 3 4 5 6 7

D

Figure 2: An 8-state progressive model for the developmental lifecycle of the flowering mustard plant
Arabidopsis thaliana incorporating mortality.

Table 4: Estimates from fitting the marginal model under the composite likelihood for transitions be-
tween the developmental stages of Arabidopsis thaliana based on the data from a single tank reported
in Gouno et al. (2011).

EST SE 95% CI

log λ1 -3.53 0.10 (-3.73, -3.34)
log λ2 -1.91 0.20 (-2.30, -1.52)
log λ3 -3.75 0.12 (-3.99, -3.51)
log λ4 -2.08 0.12 (-2.33, -1.84)
log λ5 -1.04 0.22 (-1.47, -0.61)
log λ6 -3.26 0.24 (-3.73, -2.80)
log λd -6.38 0.16 (-6.70, -6.07)

Table 4 shows the estimates of the transition intensity of the one tank in Gouno et al. (2011).
Time points 12 and 13 in Gouno et al. (2011) are not consistent with the count of the time points
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thereafter, hence we drop these points assuming there is a recording error. To assess the goodness
of fit of our proposed model in Table 4, we compare our parametric estimates of the state entry time
distributions with nonparametric estimates obtained by the pooled-adjacent violators algorithm (Ayer
et al., 1955) under a working independence assumption. Let Si = {air, r = 0, 1, . . . , ni} denote the
set of assessment times from tank i and S =

⋃I
i=1 Si denote the set of all assessment times with

elements S = {ur, r = 0, 1, . . . , R} where 0 = u0 < u1 < · · · < uR are the ordered times. This
nonparametric estimate was obtained by constructing a dataset of “pseudo-individuals” where we let
mr denote the total number of individuals who were assessed at time ur across all tanks, yr denote
the number of those who had experienced the event of interest by ur, and mr − yr as the number
who had not. An isotonic regression of (y1/m1, . . . , yR/mR) with weights (m1, . . . ,mR) gives the
nonparametric estimate

F̂ (ur) = max
u≤r

min
v≥r

( ∑v
h=u yl∑v
h=umr

)
. (18)

which is an estimate of the cumulative distribution function for the event of interest. Due to the
competing risk of death here we define the events as entry to developmental state k, or death, and let
T †k denote the corresponding time. Figure 3 gives the nonparametric estimates of the corresponding
cumulative distribution function for T †k along with the corresponding estimate from the parametric fit
for k = 6 and 7. We see good agreement between the fitted values from the proposed model and the
nonparametric estimates.

Figure 3: Nonparametric estimates of state entry time distributions obtained by the pooled adjacent
violators algorithm plotted with parametric estimates (and 95% confidence limits represented by the
dashed lines) obtained from the marginal model via composite likelihood; Fk(t) = P (T †k ≤ t),
k = 6, 7.

We were not able to obtain the data for the 64 clusters of plants mentioned in Gouno et al. (2011)
so we used the estimates obtained for the one tank for which the data was provided and specified
the inestimable parameters τ for the marginal model and φ for the random effect model. We then
simulated clustered data based on the estimates in Table 4 with τ = 0.2 for the marginal model, and
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φ = 0.8 for the random effect model for the purpose of demonstrating our methods. We simulate data
from 100 clusters with 25 organisms per cluster and assumed that the aggregate counts were recorded
every 12 days. Estimates from fitting both the robust marginal method and the random effect model
by composite likelihood are presented in Table 5.

Table 5: Estimates from fitting the marginal model with robust variance estimation and the random
effect model via two-way composite likelihood for the 100 clusters of plants simulated with 25 plants
in each cluster.

Marginal Model Random Effect Model

EST SE 95% CI EST SE 95% CI

log λ1 -3.56 0.05 (-3.65, -3.46) -3.54 0.12 (-3.78, -3.31)
log λ2 -1.91 0.04 (-1.99, -1.84) -1.78 0.14 (-2.06, -1.50)
log λ3 -3.75 0.03 (-3.81, -3.69) -3.73 0.11 (-3.94, -3.51)
log λ4 -2.07 0.04 (-2.15, -1.98) -1.77 0.13 (-2.02, -1.53)
log λ5 -1.09 0.06 (-1.20, -0.98) -1.39 0.14 (-1.65, -1.13)
log λ6 -3.27 0.04 (-3.35, -3.19) -2.94 0.11 (-3.14, -2.73)
log λd -6.37 0.06 (-6.50, -6.24) -5.14 0.16 (-5.45, -4.84)
log φ - - - -0.76 0.43 (-1.60, 0.09 )

6 DISCUSSION

We have described a composite likelihood-based method for the analysis of clustered aggregate devel-
opmental data. The computational feasibility of this approach hinges on the progressive nature of the
process which is characteristic of most growth cycles, and the fact that all organisms were observed
from the start of the first stage. Use of composite likelihood greatly reduces the size of the sample
space that must be marginalized over to compute the probabilities based on the marginal frequencies.

Marginal models and random effect models were used to accommodate clustering of rates within
tanks. Estimation of the parameters under the marginal formulation did not involve estimation of the
dependence parameter of the copula as this was more of a nuisance parameter in the present setting.
In principle, however, one could consider relaxing the working independence assumption within tanks
to estimate this parameter as well. We have also restricted attention to time homogeneous transition
intensities but this can be relaxed easily to accommodate piecewise constant functions. The plots
of the state entry time distributions based on the available data exhibited good agreement with the
nonparametric estimates using the pooled adjacent violators algorithm and so models with exponential
sojourn times appear reasonable for the data at hand.

In some settings it may be feasible to tag organisms to enable tracking of individuals, but this may
incur a cost. If it is possible, it may be of interest to consider the cost-benefit of tracking individual
organisms (Jiang and Cook, 2018). In a completely different setting this issue arises in school-based
studies of health knowledge, attitudes and behaviour among youth. Here tracking of individuals may
require greater effort to get ethics approvals in comparison to repeat cross-sectional studies, which
offer data more like the aggregate data in our setting. However school-based studies also feature
immigration and emigration which mean any models based on marginal aggregate summaries must
accommodate the fact that some new students may have entered the school and some may have left;
such data may be available from school administrators.
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