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Summary

Interval-censored failure times arise when the status with respect to an event of interest is only
determined at intermittent examination times. In settings where there exists a sub-population of
individuals who are not susceptible to the event of interest, latent variable models accommodating
a mixture of susceptible and nonsusceptible individuals are useful. We consider such models for
the analysis of bivariate interval-censored failure time data with a model for bivariate binary sus-
ceptibility indicators and a copula model for correlated failure times given joint susceptibility. We
develop likelihood, composite likelihood, and estimating function methods for model fitting and
inference, and assess asymptotic-relative efficiency and finite sample performance. Extensions
dealing with higher-dimensional responses and current status data are also described.
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1 INTRODUCTION

1.1 BACKGROUND

Individuals with chronic conditions are routinely followed prospectively in registries in order to learn
about the disease course. In many settings, the progression status of each individual is only ascer-
tainable upon detailed clinical or radiological examination. Since individuals can only be assessed
at periodic examination times (e.g. when they attend a clinic) disease progression times are interval-
censored (Sun et al., 2006).

https://doi.org/10.1007/s12561-020-09270-7
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With complex disease processes, there may be two or more disease-related progression times
of interest. In registries of individuals with diabetes, for example, interest may lie in the onset of
diabetic retinopathy and diabetic nephropathy (Al-Kateb et al., 2008). Similarly, in systemic lupus
erythematosous, a particularly complex multifaceted autoimmune disease, attention may be directed
at the development of important neurological, cardiovascular, or renal complications (Gladman and
Urowitz, 1987). In the slightly different context of paired organ systems (e.g. vision, hearing), one
may wish to model progression for each organ of the system. Sun et al. (2019) develop models for
the time to blindness in the left and right eyes in a cohort of individuals with age-related macular
degeneration (AREDS Group, 1999). In children with otitis media, an inflammation of the inner ear,
tubes are inserted to drain fluid and mitigate risk of total hearing loss, so here interest lies in the time
to failure of tubes (Le and Lindgren, 1996).

Statistical methods have been developed in recent years for bivariate interval-censored failure
time data (Betensky and Finkelstein, 1999; Kim and Xue, 2002; Sun et al., 2006; Cook et al., 2008b),
and bivariate current status (Wang and Ding, 2000). The need to accommodate dependencies between
associated failure times may be (i) to advance scientific understanding, (ii) to facilitate joint statements
about two or more disease features, or (iii) simply to ensure valid inference.

Despite careful use of available data to characterize multivariate disease processes, residual un-
explained variability often remains between individuals. Mixture models are often adopted to model
this residual variation, with so-called “cure-rate” models particularly appealing if there appears to
be a sub-population of non-susceptible individuals. Following the early work by Farewell (1977) and
Farewell (1982) on mixture models for right-censored data, further developments have accommodated
nonparametric approaches to estimation of the failure time distribution (Taylor, 1995) and semipara-
metric models (Sy and Taylor, 2000; Peng and Dear, 2000; Peng, 2003). Chatterjee and Shih (2001)
proposed a bivariate model for modeling familial association in disease susceptibility and onset times
when failure times are subject to right-censoring. Kim (2016) considered inference for a cure rate
model with bivariate interval-censored data via an approximate likelihood.

We develop a bivariate cure rate model for interval-censored failure times and address the setting
where the event times are interval-censored. As in Chatterjee and Shih (2001), we use an odds ratio to
model the association between latent susceptibility indicators and a copula model for the dependence
between the failure times for events to which individuals are susceptible. This formulation enables
one to separately consider dependence in the susceptibility and dependence in the failure times among
individuals who are susceptible to the corresponding events. The three frameworks for inference
include maximum likelihood, composite likelihood and two-stage estimation, and the use of weighted
second-order estimating functions. The different methods are developed, implemented and compared
to provide a foundation for the further development of methods which may be best addressed using
one of these approaches.

The remainder of this paper is as follows. In the following subsection, we describe the data from
the University of Toronto Psoriatic Arthritis Cohort that motivates this work. In Section 2, we define
notation, formulate the marginal models and describe the association structure. Maximum likelihood
and a two-stage estimation procedure are described in Sections 3.1 and 3.2, respectively, and an
estimating function approach is developed based on weighted second-order estimating functions in
Section 3.3. It is well-known that the two-stage procedure will be less efficient but we study the
asymptotic relative efficiency of the estimators from the estimating function approach in Section 3.4.
The findings from simulation studies are reported on in Section 4.1 and an application involving the
incidence of damage in hand and foot joints in patients with psoriatic arthritis is given in Section 4.2.
Extensions to accommodate higher dimensional failure times and current status data are described in
Section 5 and general remarks are given in Section 6.
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1.2 JOINT DAMAGE IN THE EXTREMITIES IN PSORIATIC ARTHRITIS

The Center for Prognosis Studies in Rheumatic Disease maintains a registry of patients with psoriatic
arthritis, an autoimmune condition which features skin and joint involvement. The joint involvement
can be manifested as inflammation in and around the joints of the wrist, hand, knee, ankle, foot, lower
back, and neck; this inflammation may ultimately lead to damage in affected joints. Patients in the
clinical registry are followed according to a standard protocol in which clinic visits and radiographic
assessments are scheduled annually and biannually, respectively. At each clinic visit, patients are
assessed by a physician to determine the level of damage in each of 64 joints. The level of the
damage is measured according to a validated modified Steinbrocker scoring system (Rahman et al.,
1998) where a score of 0 represents no damage, and scores from 1 to 5 represent progressively more
advanced stages of damage; states 4 and 5 represent the most severe form of damage.

Due to the critical role of hands for functions of daily living (e.g. dressing, opening jars, typing,
etc.) and foot joints for maintaining full mobility, physicians are interested in the onset time distri-
bution for damage in the hand and foot joints; time here is measured from the time of diagnosis of
psoriatic arthritis. There is little information on how often patients develop damaged joints in these
locations, nor is there for the distribution of times to damage. The model we describe in the next
section facilitates joint modeling of the susceptibility for damage in these two locations, and for the
times to the development of damage in each location given joint susceptibility. We adopt a marginal
modeling approach so that inferences from the joint model can be carried out for the individual (e.g.
hand or foot) damage processes naturally following model fit, and so that the dependence parameters
are functionally independent of the parameters characterizing the marginal distributions.

To study this, we restrict attention to the 28 joints of the hands and 12 joints in the feet. Individuals
are considered damage-free in the hands when all hand joints are in state 0, but are considered to have
developed damage in the hands when one or more hand joint enters state 1; the time to the onset of
foot damage is similarly defined. Modeling the onset of damage in individual joints is possible in
principle but we do not consider this here since the focus is on the bivariate setting; extensions to
illustrate how this could be done are outlined in Section 5.1.

We consider data from a sample of n independent individuals labeled i = 1, . . . , n. We let Ti1
denote the time to the onset of damage in the hands and Ti2 the time to the onset of damage in the feet
for individual i, i = 1, . . . , n. Because individuals are only assessed periodically for joint damage,
Ti1 and Ti2 are interval-censored; that is, we only know the times of damage that lie between the
last negative assessment and the first positive assessment. Let Bij = [lij, rij] denote the censoring
interval for Tij and Bi = Bi1 × Bi2 be the censoring region for Ti = (Ti1, Ti2)′, where rij → ∞
if individual i was not known to experience the type j event resulting in right-censored event time.
Figure 1 contains a plot of the censoring regions for eight sample individuals in the clinical registry.
Of the 657 individuals in the sample there are 440 (67.0%) with ri1 <∞, 460 (70.0%) with ri2 <∞,
and 367 (55.9%) with both ri1 < ∞ and ri2 < ∞ which are the number of individuals known
definitively to have developed damage in the hand joints, foot joints, and both the hand and foot
joints, respectively. Out of the 657 individuals in the sample, 275 (41.9%) were female. The first,
second and third quartiles of the age distribution were 29, 39 and 50 years of age, respectively.

We return to this example in Section 4.2.

2 NOTATION AND MODEL FORMULATION

Let Zij = 1 if individual i is susceptible to a type j event and Zij = 0 otherwise, j = 1, 2, and let
Xi = (1, Xi1, . . . , Xi,p−1)′ denote a p × 1 covariate vector. If g1: [0, 1] → (−∞,∞) is a monotonic
1-1 differentiable link function, a binary regression model for Zij|Xi is specified by setting g1(µij) =
X ′iβj where βj is a p × 1 vector of regression coefficients, j = 1, 2; we let β = (β′1, β

′
2)′. The
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Figure 1: Censoring regions for the time to joint damage in the hands and feet in a sample of eight
individuals from the University of Toronto Psoriatic Arthritis Cohort.

association between Zi1 and Zi2 given Xi can be modeled by the odds ratio

ψi =
P (Zi1 = 1, Zi2 = 1|Xi)P (Zi1 = 0, Zi2 = 0|Xi)

P (Zi1 = 1, Zi2 = 0|Xi)P (Zi1 = 0, Zi2 = 1|Xi)
, (1)

as in Lipsitz and Laird (1991). If g2: [0,∞)→ (−∞,∞) is a monotonic 1−1 differentiable function
and µij = E(Zij|Xi), j = 1, 2, a second-order regression model can be specified by setting g2(ψi) =
X ′iγ where γ is a vector of regression coefficients. The resulting joint distribution P (Zi|Xi; θ1) is
indexed by θ1 = (β′, γ′)′.

We let Tij > 0 denote the time of a type j event for individual i and let Tij → ∞ if Zij = 0.
The marginal distribution of Tij given (Zij = 1, Xi) is denoted by P (Tij ≥ tj|Zij = 1, Xi) =
Fj(tj|Xi;λj) and indexed by a qj × 1 finite dimensional parameter λj , j = 1, 2, with λ = (λ′1, λ

′
2)′.

This conditional distribution could take the form of any conventional location-scale model (Lawless,
2003), parametric proportional hazards model (Broström, 2012), or weakly parametric proportional
hazards models in which baseline hazard functions are piecewise-constant (Friedman et al., 1982);
we consider the later in Section 4.

We construct the bivariate survivor function

P (Ti1 ≥ t1, Ti2 ≥ t2|Zi = (1, 1)′, Xi) = F12(t1, t2|Xi) , t1, t2 ≥ 0 , (2)

using a copula function C(u1, u2;φ) where 0 ≤ uj ≤ 1, j = 1, 2, and φ is the dependence parameter
(Nelsen, 2006). Specifically the joint survivor function for Ti|Zi = (1, 1), Xi is indexed by θ2 =
(λ′, φ)′ and obtained by setting

F12(t1, t2|Xi; θ2) = C(F1(t1|Xi;λ1),F2(t2|Xi;λ2);φ) .

For the class of Archimedean copulas we can write

C(u1, u2;φ) = G−1(G(u1;φ) +G(u2;φ);φ) ,
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where G:[0, 1] → [0,∞] is a continuous, strictly decreasing and convex generator function with
G(1;φ) = 0. Within this family of models Kendall’s τ is computed as

τ = 1 + 4

∫ 1

0

G(u;φ)

G′(u;φ)
du . (3)

(Nelsen, 2006). Since the survivor function is monotonic in time (3) also characterizes the dependence
between Ti1 and Ti2 given Zi = (1, 1)′, Xi.

The joint model constructed here has the appealing feature that given Zi = (1, 0)′, Xi

P (Ti1 ≥ t1, Ti2 ≥ t2|Zi = (1, 0)′, Xi) = F12(t1, 0|Xi) = F1(t1|Xi) ,

and given Zi = (0, 1)′, Xi

P (Ti1 ≥ t1, Ti2 ≥ t2|Zi = (0, 1)′, Xi) = F12(0, t2|Xi) = F2(t2|Xi) .

We discuss the implications of relaxing this condition in Section 6. If Zi = (0, 0)′ then P (Ti1 ≥
t1, Ti2 ≥ t2|Zi = (0, 0)′, Xi) = 1 for any finite (t1, t2).

3 METHODS FOR ESTIMATION AND INFERENCE

We consider the setting where the failure status of individuals is only intermittently observed at as-
sessment times which are assumed to satisfy the sequential ignorability conditions of Hogan et al.
(2004) as described by Grüger et al. (1991). This assumption enables one to focus only on the cen-
soring intervals Bij = [lij, rij] whereby Tij ∈ Bij , j = 1, 2. The censoring region for Ti = (Ti1, Ti2)′

is then Bi = Bi1 × Bi2 and the observed data are denoted by Di = (Bi, Xi) for each individual i in
the sample of n individuals, i = 1, . . . , n.

Here, we consider the contributions to the likelihood given the latent susceptibility indicators. If
Zi = (1, 1) for example, then the expression P (Ti ∈ Bi|Zi = (1, 1), Xi; θ2) is

F12(li1, li2|Xi)−F12(li1, ri2|Xi)−F12(ri1, li2|Xi) + F12(ri1, ri2|Xi) .

Note however that P (Ti ∈ Bi|Zi = (1, 0), Xi; θ2) = 0 when δi2 = I(ri2 < ∞) = 1 since Ti2 → ∞
when Zi2 = 0, but otherwise (i.e. when ri2 <∞)

P (Ti1 ∈ Bi1, Ti2 > li2|Zi = (1, 0), Xi; θ2) = F1(li1|Xi)−F1(ri1|Xi) ;

the expressions for P (Ti ∈ Bi|Zi = (0, 1), Xi; θ2) for δi1 = 1 and δi1 = 0 are similarly obtained.
Finally, if Zi = (0, 0) then P (Ti ∈ Bi|Zi = (0, 0), Xi; θ2) = 0 if either ri1 < ∞ or ri2 < ∞, but
otherwise P (Ti ∈ Bi|Zi = (0, 0), Xi; θ2) = 1 since the event times are taken to be infinite in this
case.

Next, we consider estimation and inference based on maximum likelihood, composite likelihood
and two-stage estimation, and estimating functions in Sections 3.1, 3.2 and 3.3, respectively. We
investigate relative efficiency in Section 3.4.

3.1 MAXIMUM LIKELIHOOD

Here, we partition θ = (β′, γ′, λ′, φ)′ in terms of θ1 = (β′, γ′)′, the parameter vector governing the
distribution of Zi|Xi, and θ2 = (λ′, φ)′, the parameter vector governing the distribution of Ti|Zi, Xi.
Since Zi is latent in general, the observed data likelihood contribution for individual i is

Li(θ) ∝
∑
zi∈Z

P (Zi = zi|Xi; θ1)P (Ti ∈ Bi|Zi = zi, Xi; θ2) , (4)
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where Z = {(0, 0), (0, 1), (1, 0), (1, 1)} is the sample space for Zi. While (4) could be maximized di-
rectly an expectation-maximization algorithm (Dempster et al., 1977) is particularly appealing when
fitting finite mixture models. If Zi were known, the complete data likelihood contribution from indi-
vidual i is

Li(θ) ∝
∏
zi∈Z

[P (Zi = zi|Xi; θ1)P (Ti ∈ Bi|Zi = zi;Xi, θ2)]I(Zi=zi) . (5)

If Si1(Zi|Xi; θ1) = ∂logP (Zi|Xi; θ1)/∂θ1 and Si2(Ti ∈ B|Zi, Xi; θ2) = ∂logP (Ti ∈ Bi|Zi, Xi; θ2)/∂θ2

are the complete data score functions, the contributions to the observed data score functions for θ1

and θ2 from individual i are

Si1(θ) = E{Si1(Zi|Xi; θ1)|Di; θ}
Si2(θ) = E{Si2(Ti ∈ Bi|Zi, Xi; θ2)|Di; θ}

(6)

respectively, where the expectation is with respect to Zi|Di based on

P (Zi = zi|Di; θ) =
P (Ti ∈ Bi|Zi, Xi; θ2)P (Zi|Xi; θ1)∑
zi∈Z P (Ti ∈ Bi|Zi, Xi; θ2)P (Zi|Xi; θ1)

.

We let Si(θ) = (S ′i1(θ1),S ′i2(θ2))′ and Si(θ) = (S ′i1(θ), S ′i2(θ))′ be the full complete and observed
data score vectors satisfying

Si(θ) =
∑
zi∈Z

P (Zi = zi | Di; θ)Si(θ) .

If θr is the estimate of θ at the rth iteration, then θr+1 is obtained by solving

S1(θ1; θr) =
n∑
i=1

E{S1(Zi|Xi; θ1)|Di; θ
r} = 0 ,

S2(θ2; θr) =
n∑
i=1

E{S2(Ti ∈ Bi|Zi, Xi; θ2)|Di; θ
r} = 0 .

These steps are repeated iteratively until |θr+1 − θr| < ε where ε is a specified convergence criterion.
The observed information matrix can be obtained based on Louis (1982) who showed that

Ii(θ) = E [Ji(θ)|Di]− E [Si(θ)S ′i(θ)|Di] + Si(θ)S
′
i(θ) ,

where Ji(θ) = −∂Si(θ)/∂θ′ is the block-diagonal complete data information matrix. The observed
information matrix I(θ) for the full sample is then given by I(θ) =

∑n
i=1 Ii(θ).

3.2 COMPOSITE LIKELIHOOD AND TWO-STAGE ESTIMATION

The joint model of Section 2 lends itself to a two-stage estimation procedure in the spirit of Shih and
Louis (1995). To this end, we consider a different partition for θ as (α′1, α

′
2)′, where α1 = (β′, λ′)′

parameterizes the marginal event type-specific processes and α2 = (γ′, φ)′ contains the dependence
parameters.

The “working independence” composite likelihood used for stage 1 estimation is

L1(α1) =
n∏
i=1

Li1(α1) ∝
n∏
i=1

2∏
j=1

Lij1(α1) , (7)
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where Lij1(α1) is proportional to

[µijP (Tij ∈ Bij|Zij = 1, Xi)]
δij [µijP (Tij ∈ Bij|Zij = 1, Xi) + 1− µij](1−δij) ,

and δij = I(rij < ∞) indicates whether individual i is known to have experienced a type j event,
j = 1, 2. Let α̃1 = (β̃′, λ̃′)′ denote the value of α1 maximizing (7). At stage 2 the dependence
parameter α2 is estimated by inserting α̃1 into the observed data likelihood (4) to obtain

Li2(α̃1, α2) ∝
∑
zi∈Zi

P (Zi = zi|Xi; β̃, γ)P (Ti ∈ Bi|Zi = zi, Xi; λ̃, φ) , (8)

and maximizing

L2(α̃1, α2) =
n∏
i=1

Li2(α̃1, α2) ,

with respect to α2 to obtain α̃2. We let θ̃ = (α̃′1, α̃
′
2)′ denote the estimate from this two-stage proce-

dure.
If S̄i1(α1) = ∂ logLi1(α1)/∂α1 and S̄i2(α) = ∂ logLi2(α̃1, α2)/∂α2, we can write S̄i(θ) =

(S̄ ′i1(α1), S̄ ′i2(α))′. Standard estimating function theory (Boos and Stefanski, 2013) gives
√
n(θ̃ − θ)→ MVN(0, Ā−1(θ)B̄(θ)

[
Ā−1(θ)

]′
) ,

where Ā(θ) = E{−∂S̄i(θ)/∂θ} and B̄(θ) = E{S̄i(θ)S̄ ′i(θ)}. The matrices Ā(θ) and B̄(θ) are esti-
mated empirically by

Ā(θ̃) = −n−1

n∑
i=1

∂S̄i(θ)

∂θ′

∣∣∣∣
θ=θ̃

and B̄(θ̃) = n−1

n∑
i=1

S̄i(θ)S̄
′
i(θ)

∣∣∣∣
θ=θ̃

which can be used to obtain robust sample variance estimates.

3.3 WEIGHTED SECOND-ORDER ESTIMATING EQUATIONS

Here, we describe a set of weighted second-order estimating functions which have the form of ex-
pected complete data estimating functions one would use if Zi was known. Given their use of second-
order moments, they may be expected to yield more efficient estimators than the two-stage estimators
of Section 3.2. Moreover, they introduce the opportunity to consider robustness and efficiency trade-
offs through specification of different component matrices. In what follows we partition θ as (θ′1, θ

′
2)′

as in Section 3.1.
The estimating function we propose for θ1 is of the form U1(θ) =

∑n
i=1 Ui1(θ) with

Ui1(θ) =
∑
zi∈Z

P (Zi = zi|Di; θ)

[
H ′i1(θ1) Σ−1

i1 (θ1)

(
Zi − µi
Wi1 − ωi1

)]
, (9)

where Zi = (Zi1, Zi2)′, µi = E(Zi|Xi; β) = (µi1, µi2)′, Wi1 = Zi1Zi2 and ωi1 = E(Wi1|Xi; θ1). The
derivative matrix is given by

Hi1(θ1) =

(
∂µi/∂β

′ 0
∂ωi1/∂β

′ ∂ωi1/∂γ
′

)
,

and

Σi1(θ1) =

(
cov(Zi|Xi) cov(Zi,Wi1|Xi)

cov(Wi1, Z
′
i|Xi) var(Wi1|Xi)

)
,
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which may be viewed as a complete data 3× 3 covariance matrix. The term in square brackets in (9)
has the form of a second-order estimating function developed by Prentice and Zhao (1991) for fitting
marginal regression models to correlated binary data, but (9) differs in that it is a weighted sum of
such terms since (Z ′i,Wi1)′ is unknown.

The set of estimating functions for θ2 has a similar form and is given by U2(θ) =
∑n

i=1 Ui2(θ)
where

Ui2(θ) =
∑
zi∈Z

P (Zi = zi|Di; θ)

[
H ′i2(θ2) 4i Σ−1

i2 (θ2)

(
Yi − ηi
Wi2 − ωi2

)]
, (10)

Yik = I(Tik ∈ Bik), Yi = (Yi1, Yi2)′, ηi = E(Yi|Zi, Xi;λ),Wi2 = Yi1Yi2 and ωi2 = E(Wi2|Zi, Xi; θ2).
The matrices are given by

Hi2(θ2) =

(
∂ηi/∂λ

′ 0
∂ωi2/∂λ

′ ∂ωi2/∂φ

)
, 4i =

zi1 0 0
0 zi2 0
0 0 zi1zi2

 ,

and

Σi2(θ2) =

(
cov(Yi|Zi, Xi) cov(Yi,Wi2|Zi, Xi)

cov(Wi2, Y
′
i |Zi, Xi) var(Wi2|Zi, Xi)

)
.

The derivative matrix Hi2(θ2) and covariance matrix Σi2(θ2) are analogous to those of (9) but their
precise forms are determined by the specification of the copula function for the failure times. If Zi
were known, the matrix 4i would ensure that the appropriate elements of this estimating function
contribute information about the parameters in the marginal failure time distributions and association
parameters; as Zi is unknown we again take the conditional expectation over the possible values of
Zi.

Letting Ui(θ) = (U ′i1(θ), U ′i2(θ))′ the estimating equations are defined by setting
∑n

i=1 Ui(θ) = 0
which can be solved for θ directly, or iteratively in the spirit of the EM algorithm of Section 3.1. In
the latter case if θr is an estimate at the rth iteration we insert it into P (Zi|Di; θ) in (9) and (10)
and simultaneously solve the respective equations for θr+1

1 and θr+1
2 , respectively. As is the case

with the EM algorithm this iterative procedure is repeated until |θr+1 − θr| < ε for some specified
convergence criterion ε. Algorithms for implementing GEE2 could be exploited for estimation of θ1 at
each step by the creation of a dataframe for a pseudo-sample containing multiple lines per individual
corresponding to each possible realization of Zi with weights based on P (Zi|Di; θ

r). For (10), the
derivative and covariance matrices are unique to this setting since the moments are determined by
the copula function and the observation times so specialized coding is required. A similar situation
is described by Kor et al. (2013) and Zhong and Cook (2016) for interval-censored data and Tolusso
and Cook (2009) for current status data. Note that when solving the set of estimating equations in the
complete data setting, robustness may be achieved if a diagonalHi(θ) matrix is used since in this case
one is not attempting to draw any information about the marginals from the association. To simplify
calculations, we use diagonal Hi(θ) and Σi(θ) matrices in our simulations and in the application that
follows.

Subject to correct specification of the conditional moments, (9) and (10) are unbiased estimating
functions, so the estimators θ̆1 and θ̆2 solving the corresponding estimating equations are consistent,
with θ̆ = (θ̆′1, θ̆

′
2)′ having an asymptotic normal distribution

√
n(θ̆ − θ)→ N(0, ¯̄A−1(θ) ¯̄B(θ)[ ¯̄A−1(θ)]′) , (11)

with ¯̄A(θ) = E [−∂Ui(θ)/∂θ′] and ¯̄B(θ) = E [Ui(θ)U
′
i(θ)]. Again in a given sample we obtain

estimates
¯̄A(θ̆) = −n−1

n∑
i=1

∂Ui(θ)

∂θ′

∣∣∣∣
θ=θ̆

and ¯̄B(θ̆) = n−1

n∑
i=1

Ui(θ)U
′
i(θ)

∣∣∣∣
θ=θ̆

which can be used for inference.
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3.4 A STUDY OF ASYMPTOTIC RELATIVE EFFICIENCY

Here, we investigate the asymptotic relative efficiency of the maximum likelihood estimator and the
estimator based on the estimating function approach of Section 3.3 where the large sample variance is
given in (11). We consider a single binary covariate Xi1 with P (Xi1 = 1) = P (Xi1 = 0) = 0.5 and
adopt a logit link for the binary regression model so g1(µ) = log(µ/(1 − µ)). We set βj1 = log 1.5
and solved for βj0 so that P (Zij = 1|Xi1 = 1; βj) = 0.66, j = 1, 2. We considered values of logψ
ranging from 0 to log 3 in increments of 0.1. For the event times, we take Tij ⊥ Xi | Zij and specify

P (Tij ≥ t|Zij = 1, Xi;λj) = exp(−(λj1t)
λj2) ,

where λj = (λj1, λj2)′. We let λj2 = 1 and determine λj1 such that P (Tij < 1|Zij = 1, Xi) = 0.9
for j = 1, 2 where 1 is an administrative censoring time. A Clayton copula is used for the bivariate
failure time distribution with Kendall’s τ set to 0.3 or 0.6. To generate the censoring intervals we let
{Ni(s), 0 < s} denote a counting process for the assessments which arise from a Poisson process with
rate ρ = 10 giving an average of 10 visits over (0, 1]. For the model to be fitted, a piecewise-constant
hazard was adopted for each component failure time model, with cut-points at 0.12 and 0.3 chosen to
ensure roughly an equal number of expected events in each interval.

In this framework, we evaluate the (i) expected information matrix based on the observed data
likelihood (4) asE{−∂2 logL(θ)/∂θ′∂θ}where L(θ) =

∏
i=1 Li(θ), and (ii) the asymptotic covariate

of the estimator θ̆ from the estimating function approach by evaluating ¯̄A−1(θ) ¯̄B(θ)[ ¯̄A−1(θ)]′/n based
on Section 3.3. Figure 2 contains plots of the asymptotic standard errors of the estimators for selected
parameters for a sample of n = 20, 000 as a function of the odds ratio ψ. We select β11, λ11, ψ and
τ and plot the results for the maximum likelihood estimator and estimator based on the estimating
functions for τ = 0.3 and 0.6.

The plots reveal that the estimators based on the estimating function approach are highly efficient
with asymptotic standard errors tracking those from maximum likelihood estimation very well. There
is generally little trend in the precision as a function of ψ with the greatest trend for the estimation of
ψ itself. Moreover, the asymptotic standard error of the estimator of Kendall’s τ is most sensitive to
τ .

4 EMPIRICAL STUDIES AND APPLICATION

4.1 SIMULATION STUDIES

Here, we report on simulation studies conducted to gain insight into the finite sample performance
of the three methods of analysis introduced in Section 3. We again consider a binary covariate Xi ∼
Bern(0.5) and logit link giving

logit(P (Zij = 1|Xi; βj)) = βj0 + βj1Xi , j = 1, 2 .

We set βj1 = log 1.5 and P (Zij = 1|Xi = 1; βj) = 0.66 and consider logψ = log 1.5 and log 3. For
the event times, we specify

P (Tij ≥ t|Zij = 1, Xi;λj) = exp(−(λj1t)
λj2) ,

with λj2 = 1, j = 1, 2 and specify λj1 such that P (Tij < A|Zij = 1, Xi) = 0.9 where A is the
administrative censoring time; we set A = 1 without loss of generality. In the application, interest
primarily lies in the effect of covariates on susceptibility, rather than the actual time of damage, so
while the developments in Section 3 allow for this dependence, we assume Ti ⊥ Xi|Zi here. We
use a Clayton copula for the bivariate failure time distribution with Kendall’s τ set to 0.3 or 0.6. Let
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Figure 2: Plot of the asymptotic standard errors for selected parameters based on maximum likelihood
and the estimating functions of Section 3.3 with τ = 0.3 and τ = 0.6; sample size n = 20, 000.

{Ni(s), 0 < s} denote the counting process for the assessments which we take to be a Poisson process
with rate ρ = 10 and 20 to correspond to an average of 10 and 20 visits over (0, 1], respectively. In the
analyses, a piecewise-constant baseline hazard was adopted for each component failure time model
with cut-points at 0.12 and 0.3 chosen to ensure roughly an equal expected number of failure times in
the respective intervals.

The results presented in Tables 1 and 2 are from the analysis of 500 simulated samples of n =
1000 individuals each with an average of 10 and 20 visits, respectively; we comment here on the
results of Table 1. We see that empirical biases of all methods are negligible, there is excellent
agreement between the empirical and average robust standard errors, and the empirical coverage
probability are close to the nominal 95% level. The estimators from the two-stage procedure are
less efficient than those from maximum likelihood, but the estimators from the weighted estimating
equation approach are remarkably efficient, consistent with the findings from the asymptotic study of
Section 3.4. Findings from Table 2 are similar with smaller standard errors as expected.
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Table 1: Empirical performance of estimators for 500 simulations with 1000 individuals per simula-
tion under a three-piece piecewise constant hazards bivariate mixture model with E{Ni(A)} = 10
where A = 1 is the administrative censoring time.

ψ = 1.5 ψ = 3

τ = 0.3 τ = 0.6 τ = 0.3 τ = 0.6

EBIAS ESE ASE ECP EBIAS ESE ASE ECP EBIAS ESE ASE ECP EBIAS ESE ASE ECP

MAXIMUM LIKELIHOOD

β10 0.005 0.141 0.143 94.9 <0.001 0.126 0.124 95.4 0.003 0.140 0.137 94.3 -0.002 0.128 0.128 94.5
β11 0.017 0.168 0.167 94.9 0.014 0.164 0.162 94.1 0.011 0.158 0.160 96.4 0.010 0.156 0.156 95.3
β20 0.010 0.139 0.142 96.8 0.009 0.128 0.135 97.0 0.004 0.138 0.141 96.6 -0.004 0.126 0.126 96.2
β21 0.015 0.158 0.159 95.3 0.012 0.153 0.157 95.9 0.021 0.156 0.157 95.3 0.020 0.153 0.156 95.0
logψ 0.002 0.205 0.206 95.0 -0.020 0.224 0.219 95.7 0.016 0.204 0.205 96.4 -0.008 0.205 0.206 94.8
log λ11 -0.013 0.116 0.114 93.1 -0.011 0.102 0.105 95.0 -0.011 0.115 0.112 93.4 -0.010 0.104 0.105 94.6
log λ12 -0.014 0.117 0.115 94.1 -0.011 0.108 0.104 93.7 -0.021 0.117 0.114 93.5 -0.016 0.106 0.105 94.5
log λ13 -0.002 0.186 0.188 96.3 <0.001 0.156 0.153 94.8 0.001 0.172 0.174 95.1 0.004 0.145 0.142 93.2
log λ21 -0.009 0.109 0.111 95.2 -0.011 0.099 0.100 95.3 -0.007 0.113 0.112 93.9 -0.010 0.102 0.100 93.9
log λ22 -0.015 0.119 0.118 94.7 -0.007 0.106 0.104 94.9 -0.021 0.115 0.116 96.4 -0.011 0.099 0.102 96.7
log λ23 -0.007 0.175 0.173 93.9 -0.012 0.153 0.151 93.9 -0.010 0.169 0.167 93.2 -0.006 0.143 0.146 95.0
log φ <0.001 0.183 0.185 96.1 0.005 0.114 0.118 95.7 0.002 0.182 0.182 94.0 0.012 0.113 0.115 95.3

WEIGHTED ESTIMATING EQUATIONS

β10 0.006 0.145 0.144 95.0 < 0.001 0.128 0.130 95.4 0.003 0.140 0.140 96.2 -0.002 0.129 0.128 94.6
β11 0.017 0.168 0.163 94.4 0.014 0.165 0.157 93.6 0.011 0.159 0.159 95.6 0.010 0.156 0.156 95.2
β20 0.008 0.137 0.136 96.0 0.007 0.129 0.132 96.6 0.003 0.138 0.142 96.6 0.004 0.126 0.128 96.2
β21 0.014 0.157 0.162 97.0 0.012 0.153 0.157 96.2 0.022 0.156 0.159 95.4 0.020 0.153 0.157 95.4
logψ 0.002 0.206 0.200 94.8 -0.017 0.226 0.215 95.8 0.015 0.205 0.201 94.4 -0.007 0.207 0.202 95.6
log λ11 -0.014 0.121 0.123 93.4 -0.012 0.112 0.107 94.4 -0.013 0.120 0.120 93.2 -0.011 0.115 0.117 93.4
log λ12 -0.016 0.118 0.120 94.6 -0.012 0.112 0.113 95.0 -0.021 0.118 0.119 95.8 -0.019 0.113 0.114 95.6
log λ13 -0.004 0.191 0.188 94.2 0.001 0.164 0.164 94.2 0.003 0.172 0.174 94.2 0.006 0.148 0.150 95.8
log λ21 -0.010 0.114 0.114 93.8 -0.014 0.111 0.108 94.8 -0.009 0.117 0.114 93.8 -0.010 0.111 0.107 93.0
log λ22 -0.014 0.120 0.121 95.0 -0.006 0.111 0.113 96.4 -0.021 0.117 0.119 96.6 -0.012 0.104 0.103 96.7
log λ23 -0.003 0.173 0.174 95.0 -0.007 0.159 0.157 94.2 -0.008 0.171 0.176 94.4 -0.005 0.147 0.151 95.2
log φ -0.011 0.184 0.185 96.2 -0.009 0.115 0.115 95.4 -0.006 0.183 0.179 95.8 0.002 0.112 0.111 95.4

TWO-STAGE

β10 0.023 0.185 0.183 95.2 0.023 0.185 0.184 95.0 0.017 0.169 0.170 96.7 0.018 0.170 0.170 96.4
β11 0.026 0.184 0.184 94.4 0.026 0.184 0.184 94.6 0.018 0.161 0.167 96.1 0.017 0.162 0.167 96.0
β20 0.014 0.155 0.157 96.6 0.022 0.170 0.176 96.0 0.013 0.157 0.159 96.5 0.015 0.172 0.175 96.6
β21 0.018 0.160 0.157 94.6 0.019 0.159 0.162 96.6 0.027 0.165 0.169 95.3 0.027 0.165 0.171 94.4
logψ 0.001 0.205 0.205 95.8 -0.040 0.270 0.261 96.6 0.023 0.213 0.216 96.7 -0.011 0.221 0.221 96.0
log λ11 -0.021 0.131 0.127 94.6 -0.021 0.131 0.125 93.6 -0.020 0.131 0.132 95.3 -0.019 0.128 0.123 94.4
log λ12 -0.024 0.128 0.131 96.0 -0.024 0.128 0.132 95.8 -0.029 0.127 0.123 93.7 -0.030 0.128 0.132 95.6
log λ13 -0.020 0.223 0.215 93.8 -0.020 0.223 0.217 93.8 -0.012 0.208 0.205 94.9 -0.013 0.209 0.216 94.6
log λ21 -0.013 0.123 0.123 95.4 -0.019 0.124 0.126 95.0 -0.013 0.124 0.123 95.1 -0.018 0.125 0.125 95.0
log λ22 -0.017 0.125 0.132 95.8 -0.013 0.127 0.132 96.4 -0.026 0.126 0.123 93.6 -0.022 0.117 0.132 96.8
log λ23 -0.008 0.194 0.205 95.8 -0.017 0.214 0.219 96.4 -0.016 0.202 0.206 96.7 -0.020 0.216 0.217 95.2
log φ -0.029 0.190 0.203 96.6 -0.042 0.136 0.151 96.0 -0.026 0.185 0.195 96.9 -0.034 0.120 0.138 96.6
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Table 2: Empirical performance of estimators for 500 simulations with 1000 individuals per simula-
tion under a three-piece piecewise constant hazards bivariate mixture model with E{Ni(A)} = 20
where A = 1 is the administrative censoring time.

ψ = 1.5 ψ = 3

τ = 0.3 τ = 0.6 τ = 0.3 τ = 0.6

EBIAS ESE ASE ECP EBIAS ESE ASE ECP EBIAS ESE ASE ECP EBIAS ESE ASE ECP

MAXIMUM LIKELIHOOD

β10 0.012 0.133 0.137 95.9 0.007 0.121 0.124 95.2 0.014 0.127 0.128 95.3 0.011 0.118 0.120 94.3
β11 0.007 0.155 0.157 95.2 0.006 0.152 0.153 95.3 0.005 0.148 0.147 94.4 0.004 0.144 0.142 94.0
β20 0.013 0.130 0.134 96.2 0.013 0.123 0.123 93.9 0.008 0.127 0.125 92.6 0.003 0.118 0.119 95.3
β21 0.008 0.153 0.153 95.4 0.009 0.153 0.153 95.9 0.016 0.152 0.156 97.0 0.016 0.152 0.153 96.0
logψ 0.003 0.180 0.181 96.6 -0.013 0.192 0.194 95.0 0.024 0.185 0.187 97.0 0.007 0.188 0.189 96.7
log λ11 -0.008 0.098 0.102 94.8 -0.007 0.090 0.089 93.2 -0.005 0.094 0.096 96.7 -0.003 0.088 0.090 95.9
log λ12 -0.013 0.106 0.109 96.2 -0.010 0.093 0.095 94.1 -0.010 0.099 0.097 93.3 -0.008 0.091 0.093 95.3
log λ13 -0.011 0.162 0.164 95.3 -0.008 0.139 0.136 93.7 -0.010 0.152 0.151 94.2 -0.009 0.130 0.129 95.0
log λ21 -0.008 0.097 0.099 95.0 -0.006 0.087 0.087 93.8 -0.012 0.094 0.092 94.0 -0.006 0.088 0.090 96.1
log λ22 -0.005 0.104 0.102 94.1 -0.004 0.092 0.092 94.7 -0.006 0.105 0.104 95.1 -0.006 0.092 0.092 95.3
log λ23 -0.008 0.153 0.154 94.7 -0.012 0.136 0.136 95.5 -0.018 0.150 0.152 95.2 -0.012 0.127 0.130 95.8
log φ -0.003 0.150 0.151 96.7 0.006 0.096 0.098 95.3 <0.001 0.145 0.150 96.7 0.005 0.092 0.092 95.3

WEIGHTED ESTIMATING EQUATIONS

β10 0.009 0.133 0.132 95.8 0.006 0.123 0.122 95.4 0.012 0.128 0.128 96.4 0.008 0.119 0.119 95.7
β11 0.007 0.154 0.155 95.6 0.005 0.152 0.153 95.2 0.006 0.147 0.154 95.8 0.004 0.145 0.152 96.1
β20 0.013 0.131 0.130 95.6 0.014 0.127 0.122 94.2 0.007 0.128 0.129 96.0 0.002 0.119 0.119 95.9
β21 0.009 0.155 0.155 96.8 0.010 0.154 0.153 96.6 0.016 0.151 0.155 96.8 0.015 0.152 0.152 95.9
logψ 0.004 0.181 0.183 95.2 -0.012 0.194 0.196 96.4 0.022 0.186 0.190 97.0 0.008 0.188 0.189 94.9
log λ11 -0.006 0.101 0.098 94.6 -0.005 0.097 0.093 95.0 -0.005 0.097 0.097 94.5 -0.004 0.094 0.092 94.3
log λ12 -0.011 0.107 0.105 94.4 -0.009 0.101 0.098 94.0 -0.009 0.102 0.103 94.6 -0.007 0.097 0.097 94.5
log λ13 -0.008 0.161 0.157 93.2 -0.006 0.142 0.137 94.2 -0.007 0.152 0.151 94.0 -0.005 0.135 0.131 94.7
log λ21 -0.008 0.102 0.097 93.6 -0.008 0.096 0.093 93.4 -0.012 0.097 0.097 94.6 -0.007 0.095 0.092 95.3
log λ22 -0.005 0.106 0.104 95.8 -0.007 0.099 0.098 94.2 -0.002 0.107 0.103 93.8 -0.005 0.099 0.097 95.5
log λ23 -0.008 0.157 0.155 93.6 -0.013 0.145 0.136 93.4 -0.017 0.152 0.152 93.2 -0.009 0.130 0.132 95.5
log φ -0.010 0.150 0.152 95.4 -0.005 0.097 0.096 95.6 -0.007 0.146 0.149 96.4 -0.003 0.093 0.093 95.7

TWO-STAGE

β10 0.011 0.145 0.143 96.4 0.011 0.146 0.144 96.0 0.021 0.147 0.146 96.8 0.021 0.147 0.144 96.4
β11 0.008 0.156 0.158 96.4 0.008 0.156 0.158 96.2 0.008 0.153 0.158 96.8 0.008 0.153 0.159 96.8
β20 0.021 0.147 0.146 95.6 0.032 0.167 0.163 95.0 0.016 0.147 0.147 96.0 0.010 0.141 0.144 96.2
β21 0.011 0.158 0.160 96.8 0.016 0.161 0.163 96.8 0.018 0.153 0.156 97.0 0.016 0.154 0.158 96.4
logψ -0.002 0.181 0.190 95.6 -0.029 0.218 0.226 96.8 0.029 0.190 0.204 96.8 0.002 0.196 0.210 95.6
log λ11 -0.007 0.105 0.103 95.4 -0.007 0.105 0.104 95.6 -0.009 0.101 0.104 95.0 -0.009 0.101 0.104 94.4
log λ12 -0.011 0.113 0.111 95.0 -0.011 0.113 0.112 95.4 -0.013 0.111 0.111 95.4 -0.013 0.111 0.112 94.4
log λ13 -0.007 0.175 0.175 94.6 -0.007 0.176 0.178 95.2 -0.014 0.177 0.177 94.4 -0.014 0.178 0.177 94.6
log λ21 -0.011 0.110 0.105 94.0 -0.015 0.108 0.106 93.6 -0.016 0.105 0.104 95.2 -0.010 0.104 0.104 95.2
log λ22 -0.009 0.113 0.113 95.4 -0.016 0.116 0.115 95.4 -0.006 0.117 0.112 94.0 -0.009 0.109 0.112 95.4
log λ23 -0.014 0.180 0.178 95.4 -0.029 0.197 0.191 94.0 -0.024 0.180 0.179 96.4 -0.011 0.172 0.178 96.0
log φ -0.021 0.150 0.153 97.4 -0.023 0.189 0.182 95.6 -0.019 0.148 0.155 96.7 -0.020 0.157 0.162 95.8
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4.2 CO-OCCURRENCE OF DAMAGE IN THE EXTREMITIES IN PSORIATIC ARTHRITIS

We consider data from n = 657 patients, each assessed at multiple visits to determine the level of
radiological damage in the two disease processes (i.e. hands and feet). Every joint is considered
to be at state 0 at the time of disease onset. In the regression model we include sex as a covariate
with male as the reference level. After inspecting the quantiles of the distribution of the assessment
times, we consider a piecewise-constant hazards model with a single cut-point at 5 years post-onset
so the hazard is constant over the interval [0, 5) and [5,∞). We apply maximum likelihood, two-stage
estimation, and the estimating equations approach of Section 3 and report the results in Table 3.

Table 3: Estimates and standard errors from fitting a two-piece piecewise constant hazards bivariate
mixture model for the onset of damage in the hands and feet based on the three methods of Section 3.

ML Two-Stage WGEE

EST. SE EST. SE EST. SE

Parameters for Zi|Xi

β10 1.622 0.191 1.656 0.203 1.518 0.184
β11 -0.361 0.252 -0.367 0.258 -0.355 0.237
β20 1.938 0.245 1.690 0.212 1.681 0.199
β21 -0.559 0.281 -0.487 0.240 -0.492 0.241
logψ 2.133 0.351 2.051 0.314 2.023 0.294

Parameters for Ti|Zi, Xi

logλ11 -0.924 0.199 -0.851 0.211 -0.778 0.215
logλ12 -1.520 0.080 -1.566 0.209 -1.512 0.117
logλ21 -0.855 0.184 -0.623 0.131 -0.618 0.124
logλ22 -1.719 0.088 -1.403 0.231 -1.503 0.126
logφ 0.487 0.186 0.444 0.237 0.495 0.163

The results in Table 3 show broad agreement between the three methods of analysis in terms of the
magnitude of the effects. For the maximum likelihood method, there is a trend towards females having
lower risk of being susceptible to damage in hand joints compared to males (OR= exp(−0.361) =
0.70; 95% CI: 0.43, 1.14; p = 0.151), but this lower susceptibility for females is statistically signifi-
cant for the foot joints (OR= exp(−0.559) = 0.57; 95% CI: 0.32, 0.99; p = 0.047). Moreover, based
on maximum likelihood estimates, the odds ratio characterizing the association between the suscepti-
bility indicators for the hand and foot joints is strong at 8.44 with a 95% CI (3.23, 13.65) suggesting
that those who develop damage in the hands are also at high risk of damage in the foot joints.

We now turn to the interpretation of the parameters of the failure time component of the model.
From Table 3, we can see there is a lower hazard for damage onset after the first five years following
disease onset. Moreover, among individuals who are susceptible to damage in both locations the
association in the damage onset times in the hands and feet is estimated τ̂ = 0.45 with a 95% CI
(0.21, 0.69); thus the onset times of damage in the two extremities are moderately correlated.

To explore the extent and nature of the information in the association parameters in this dataset
we plot the profile relative likelihood functions for ψ and φ in Figure 3 and give a contour plot of the
profile relative likelihood for (ψ, φ)′ in Figure 4. For the latter, for example, if we write θ = (α′1, α

′
2)′
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(a) Profile relative likelihood plot of ψ (b) Profile relative likelihood plot of φ

Figure 3: One-dimensional profile relative likelihood plots of φ and ψ for onset of damage in the
hands and feet.

Figure 4: Two-dimensional profile relative likelihood contour plot of φ and ψ for onset of damage in
the hands and feet.

as in Section 3.2 where α1 = (β′, λ′)′ and α2 = (γ, φ)′ with γ = logψ, then if α̃1(α2) is the value
maximizing (4) for fixed α2, the profile relative likelihood is given by

PRL(α2) =
L(α̃1(α2), α2)

L(α̂1, α̂2)
,

and the p−level relative likelihood contours are obtained by solving for α2 = (γ, φ) satisfying
PRL(α2) = p for p = 0.20, 0.40, 0.60 and 0.80. The approach is similar for the single parame-
ter profile relative likelihood plots where the functions can be plotted directly. We can see that despite
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the fact that ψ measures the dependence between two latent variables, the (profile) likelihood is rela-
tively well behaved for this parameter. Likewise, despite the fact that φ is relevant only for individuals
who are susceptible for both interval-censored events, the profile likelihood suggests it is reasonable
to base inference on φ or alternatively Kendall’s τ . In summary, the contour of the profile likeli-
hood for (ψ, φ) does not suggest an identifiability or estimability problem for these parameters and it
appears that the dependence parameter estimates are not highly correlated.

(a) Hand joint damage (b) Foot joint damage

Figure 5: Estimates of the marginal probability of damage in the hands (panel (a)) and feet (panel
(b)) joints based on the fitted model with a piecewise constant hazard along with a nonparametric
estimate obtained by the pooled adjacent violators algorithm.

Finally to check to see if the marginal features of the fitted model are calibrated with the raw
data, we plot the estimated cumulative distribution functions in Figure 5 from the fitted model with
piecewise-constant hazards (averaging over the latent susceptibility indicator and the covariate gen-
der) along with nonparametric estimates of the marginal onset time distributions for the hand and foot
joints (Turnbull, 1976). The estimates of the marginal cumulative sub-distribution functions from the
fitted model are obtained by noting

P (Tij < t) = 1− EXi
{1− µij + µijFj(t)} , j = 1, 2 ,

evaluating the functions at the maximum likelihood estimates, and computing the expectation with
respect to Xi based on the sample covariate distribution. That is, we plot

P̂ (Tij < t) = 1− 1

n

n∑
i=1

{1− µ̂ij + µ̂ijF̂j(t)} ,

where µ̂ij = exp(η̂ij)/(1 + exp(η̂ij)) and η̂ij = β̂j0 + β̂j1Xi. Again, we see good agreement which
we take to mean the model is offering a reasonable fit to the data.
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5 SOME EXTENSIONS

5.1 DEALING WITH HIGHER DIMENSIONAL DATA

In some settings, interest may lie in modeling multivariate interval-censored data with large J while
accommodating nonsusceptibility and studying the association between the marginal processes. This
would be the case if the damage process was modeled at the individual joint level in the psoriatic
arthritis data, for example. In this case, the multivariate binary model for the susceptibility indicators
naturally extends, where one may let

ψijk =
P (Zij = 1, Zik = 1|Xi)P (Zij = 0, Zik = 0|Xi)

P (Zij = 1, Zik = 0|Xi)P (Zij = 0, Zik = 1|Xi)

denote the pairwise odds ratio for type j and k susceptibility indicators and omit higher orders of
dependence. These odds ratios may be different for each possible pair j and k but we note that while
there are several models that can be considered, there are constraints on the admissible odds ratios
with multivariate binary data (Liang et al., 1992). A second order regression model may be specified
by setting logψijk = v′ijkγ where vijk is a vector of parameters associated with event types j and k
for individual i, i = 1, . . . , n.

For the failure times, we can likewise let τjk denote Kendall’s τ for the association between Tij
and Tik given Zij = Zik = 1. A multivariate Gaussian copula function (Nelsen, 2006) is natural to use
in this setting since under this model the pairwise dependencies may differ. The likelihood, two-stage
and estimating function approaches of Section 3 may all be employed to deal with higher dimensional
failure time models. The risk of misspecifying the dependence structure seems greater with a higher
dimensional response, so the possible robustness of the two-stage and estimating function approaches
make them appealing. In particular, if we let α1 = (β′, λ′)′ where now β = (β′1, . . . , β

′
J)′ is a pJ × 1

vector and λ = (λ′1, . . . , λ
′
J)′ is a

∑J
j=1 qj × 1 vector, then (7) becomes

Li1(α1) ∝
J∏
j=1

Lij1(α1) ,

which can be maximized by separate maximization of the J functions. With a Gaussian copula, (8)
will be more difficult to compute and the maximization will be over a higher dimension association
parameter, but in principle the same steps can be carried out as in Section 3.2.

The estimating equation approach of Section 3.3 extends very naturally. In (9), the vector Wi1

would consist of all J !/((J − 2)! 2) pairwise products of the elements in Zi and ωi1 would be of
the same dimension. The dimensions of Hi1(θ1) and Σi1(θ1) would likewise increase but the basic
structure of (9) covers the higher dimensional case, and (10) is modified naturally as well.

5.2 ANALYSIS OF BIVARIATE CURRENT STATUS DATA

Current status data represents a special case of the intermittent observation scheme of Section 3
where individuals are examined only once, yielding disease onset times that are either left- or right-
censored. Here, we let Cij denote the examination time for individual i for event type j and sup-
pose we observe Yij = I(tij < Cij), j = 1, 2. The data from a sample of size n then takes the
form {(Cij, Yij), j = 1, 2, Xi, i = 1, . . . , n}. In the absence of a nonsusceptible subpopulation, the
pooled adjacent violators algorithm (PAVA) may be used to obtain the maximum likelihood estimate
of the survivor function or onset time distribution (Ayer et al., 1955). Lam and Xue (2005) and Cook
et al. (2008a) describe an EM algorithm for fitting mixture models accommodating a nonsusceptible
fraction to univariate current status data. Here, we consider the use of this algorithm in the two-
stage approach of Section 3.2; in stage 1 we use the PAVA in an EM algorithm in order to estimate
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Fj(t) = P (Tj ≥ t|Zij = 1) and βj in model for P (Zij = 1|Xi; βj), j = 1, 2, and in stage 2 the
association parameters are estimated. The details of the algorithm are as follows.

Let α1 = (β′,Fj(·), j = 1, 2)′ denote the parameters which are estimated in the first stage as
before, where here this includes the infinite dimensional survivor function estimates for the two failure
times. The complete date composite (independence) likelihood in stage 1, treating Zi as observed,
can be written

L1(α1) ∝
n∏
i=1

2∏
j=1

(
[1−Fj(Cij)]µij

)zijyij( [Fj(Cij)µij]zij [1− µij]1−zij
)1−yij

giving

logL1(α1) =
n∑
i=1

2∑
j=1

{
zijlogµij + (1− zij)log(1− µij)

+ zij [yijlog(1−Fj(Cij)) + (1− yij)logFj(Cij))]
}
.

(12)

With αr1 the estimates at the rth iteration of the EM algorithm, we define

Q1ij(βj;α
r
1) = ηrijlogµij + (1− ηrij)log(1− µij)

Q2ij(Fj(·);αr1) = ηrij [yijlog(1−Fj(Ci)) + (1− yij)logFj(Ci)]

as the elementary contributions to the functions to be optimized, where

ηrij = P (Zij = 1|Yij = 0, Di;α
r
1) =

[
F rj (Cij)

]
µrij[

F rj (Cij)
]
µrij + (1− µrij)

, j = 1, 2 .

To consider nonparametric estimation of the survivor functions we let C(j1) < C(j2) < · · · < C(jKj)

denote theKj unique ordered inspection times for the type j event, and djk =
∑n

i=1 I(Cij = C(jk))Yij
denote the total number of individuals found to be positive atC(jk). The PAVA can be used to optimize

Q2j(Fj(·);αr1) =
n∑
i=1

Q2ij(Fj(·);αr1)

at each step of an EM algorithm. Specifically, the number of individuals estimated to be at risk
at the kth inspection time for process j at the rth iteration is estimated to be ∆̂r

jk =
∑n

i=1 I(Cij =

C(jk))(Yij+(1−Yij)ηrij). An isotonic regression of (dj1/∆̂
r
j1, . . . , djK/∆̂

r
jK)′ with weights (∆̂r

j1, . . . , ∆̂
r
jK)′

gives the updated estimate

F̂ (r+1)
j (C(jk)) = max

u≤k
min
v≥k

(∑v
l=u

∑n
i=1 djk∑v

l=u ∆̂r
jk

)
.

Upon obtaining estimates from all component marginal distributions in stage 1, the estimates are sub-
stituted into (4) as before, and estimates of the association parameters can be obtained by maximizing
the version of (8) based on the Gaussian (or other multivariate) copula. Such methods can be useful
in the study of the joint susceptibility and co-development of two or more chronic diseases using
baseline data from large cohort studies. Incorporation of survey weights may also be warranted if
complex sampling designs are employed for selection of individuals.
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6 DISCUSSION

In this paper, we have developed flexible methods for modeling bivariate interval-censored data which
accommodates the possibility that some individuals will be nonsusceptible to one or more of the
conditions of interest. This framework enables one to decompose dependence measures into one
component for susceptibility and one component for the dependence in the failure times given joint
susceptibility. There are numerous applications where this framework can yield useful insight into
disease processes. In diabetes, some individuals do not experience significant complications, some
develop nephropathy, some develop retinopathy, and some develop both. In settings where genes play
a role in susceptibility for the different complications the mover-stayer formulation seems appropriate,
particularly when assessment and censoring times are random and making definitive classification of
individuals difficult. The model may also be used in the analysis of data from family studies when
interest lies in modeling within-family dependence to gain insight into the genetic basis for disease
(Laird and Lange, 2006). Here, it may be quite natural to examine the effect of genetic markers on the
susceptibility indicators and model the aggregation in terms of odds ratios (Liang and Beaty, 1991).

There are several directions for further development of the proposed model and approaches to
estimation and inference. First, one could consider estimating the joint densities of the failure times
using local likelihood (Hjort and Jones, 1996; Li et al., 1997). Braun and Stafford (2016) describe
how to obtain smooth estimates of multivariate failure time distributions based on interval-censored
data; this approach will not yield parsimonious measures of dependence between the marginal failure
times, but the density estimates can be used to estimate any desired features of the joint distribution.
Alternatively, smoothed estimates of baseline hazard functions could be obtained via local likelihood
(Betensky et al., 1999). This approach would be most easily done using a two-stage estimation pro-
cedure of Section 3.2 and could be adopted for estimation of the baseline hazard if covariates were
considered in the failure time model component.

We introduced the idea of extending the model and methods to deal with multivariate processes
and these extensions may be useful for settings where the components have different marginal dis-
tributions as described here, but also for the setting where the marginal distributions are the same
but dependence arises because of clustering. These models can be fitted in the likelihood approach
by introducing constraints (i.e. βj = β and Fj(t) = F(t), j = 1, . . . , J). The two-state estima-
tion procedure could likewise be adapted by imposing these constraints in the first stage but more
involved adaptations would be required for the estimating function approach. These modifications,
however, are relatively straightforward and the subject of ongoing research with a view to application
to modeling the onset of damage in individual joints in individuals affected with arthritis. Finally,
we have indicated that we aim to model covariate effects on the latent susceptibility indicators but
model the onset time distribution to deal with the variable duration of follow-up of individuals in the
motivating study. If there is interest in modeling covariate effects on the failure times, parametric or
semiparametric proportional hazards models can be considered for the failure times given susceptibil-
ity indicators; having several options for the framework for estimation is appealing given each such
extension will raise different computational and inferential challenges.
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