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Summary

When several types of recurrent events may arise, interest often lies in marginal modeling and
studying the nature of the dependence structure. In this paper, we propose a multivariate mixed-
Poisson model with the dependence between events accommodated by type-specific random ef-
fects which are associated through use of a Gaussian copula. Such models retain marginal features
with a simple interpretation, reflect the heterogeneity in risk for each type of event, and provide
insight into the dependence between the different types of events. Semiparametric inference is
proposed based on composite likelihood to avoid high dimensional integration. An application
to a study of nutritional supplements in malnourished children is given in which the goal is to
evaluate the reduction in the rate of several different kinds of infection.
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1 INTRODUCTION

1.1 OVERVIEW

In many chronic diseases individuals are at risk of several distinct types of potentially recurring events.
For example, individuals with asthma are at risk of different types of recurrent exacerbations which are
distinguished by the results of cellular analysis of sputum samples (Jayaram et al., 2006). Individuals
with the autoimmune disease systemic lupus erythematosus experience recurrent flares of symptoms
which may arise in respiratory, neurological, digestive, and other organ systems (Gladman et al.,
2002). In neurological studies, recurrent headaches can be sub-classified according to formal criteria
to better understand the nature of the underlying chronic condition (Silberstein et al., 2005). Lastly
in public health studies in developing countries, children are at risk of different kinds of recurrent
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infections (Lemaire et al., 2011) with the different infections leading to different risks for long-term
impairment and morbidities. A natural goal in all such settings is to carry out a marginal analysis
by estimating the rate of onset for each type of infection. Robust variance estimates can often be
obtained to account for the dependence between the different types of events if global statements are
desired about covariate effects. However, when the different types of events arise due to an underlying
condition (e.g. a compromised immune system due to malnutrition, exposure to contaminated areas,
etc.) it can be helpful to better understand the nature of the association between the different types of
events. This can be achieved by joint modeling of a multivariate recurrent event process.

Ng and Cook (1999) consider optimal estimating functions for dependence modeling and study
the mixed Poisson setting as a special case in the spirit of Nadeau and Lawless (1998). Cai and
Schaubel (2004) developed semi-parametric marginal models for multi-type recurrent events data
with a view to robust inference through use of sandwich variance estimates. Chen et al. (2012)
developed additive marginal models, proved the consistency of estimators, and derived their asymp-
totic distribution under a working independence assumption. Cook et al. (2010) proposed a bivariate
mixed Poisson model with a view to studying the impact of event dependent censoring. Mazroui et al.
(2013) also considered bivariate frailty models for two types of recurrent events and death based on
a piecewise-constant baseline hazard; methods of estimator and inference based on likelihood and
penalized likelihood were developed. While the methods and asymptotic theory developed in these
papers are typically given for the general setting of more than two types of events, only two distinct
types of events are considered most often in applications. Frequentist analyses based on flexible mul-
tivariate frailty models can be challenging to implement when there are more than two types of events,
particularly for semiparametric methods.

We propose a model based on a mixed-Poisson formulation and propose methods for fitting and
inference based on multivariate random effect distributions constructed via copula functions. This
structure is appealing in that it enables separate modeling of heterogeneity and dependence and offers
a natural basis for composite (e.g. “pairwise”) likelihood methods and consequent avoidance of the
computational burden of full likelihood based inference. We also investigate an even more computa-
tionally convenient two-stage estimation procedure based on pairwise likelihood in which marginal
models are fitted for each type of event at the first stage, and the dependence parameters are estimated
at the second stage. Large sample theory is developed for both of these approaches.

The remainder of the paper is organized as follows. In the next sub-Section we provide a brief
review of composite likelihood. In Section 2 we introduce notation, provide details on the model
formulation, and give the full and composite likelihoods. An expectation-maximization algorithm is
given in Section 3 for semiparametric analysis based on multiplicative rate function models; details
on variance estimation are given in Section 3 and the Appendix A. Section 4 reports on simulation
studies investigating the finite sample properties of the simultaneous and two-stage estimation proce-
dure based on pairwise composite likelihood and an application is given in Section 5 on a motivating
study on the effect of iron supplementation on the occurrence of different types of infections in mal-
nourished children. Concluding remarks are made in Section 6.

1.2 REVIEW OF COMPOSITE LIKELIHOOD

We let θ denote a p × 1 parameter of interest. In modeling multivariate data or in other settings
involving complex dependence structures, the full likelihood may be complex or too computation-
ally demanding to work with. As an alternative to full likelihood, Lindsay (1988) propose using a
composite likelihood defined as

CL(θ; y) =
J∏
j=1

Lj(θ; y)wj , (1)
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a weighted product of marginal or conditional likelihood contributions Lj(θ; y); this may be viewed
as an extension of the concept of pseudo-likelihood (Besag, 1974). Each term Lj(θ; y) is determined
by the selection of {A1, . . . , AJ}, a set of marginal or conditional events (Varin et al., 2011), where
Lj(θ; y) ∝ f(y ∈ Aj; θ). Varin (2008) provided the excellent review of composite likelihood in
different fields and classified composite likelihood contributions as based on conditional or marginal
likelihoods. Composite conditional likelihoods are based on the product of conditional densities given
conditions which the analyst specifies, whereas the latter is constructed from marginal densities.

As in ordinary likelihood, the composite likelihood score equations are based on unbiased esti-
mating functions under mild regularity conditions. The maximum composite likelihood estimator θ̂,
obtained by solving the p × 1 equation S(θ) = ∂ logCL(θ; y)/∂θ = 0, is therefore consistent for θ.
Then, √

n(θ̂ − θ) d−→ N(0,A−1(θ)B(θ)[A−1(θ)]′) (2)

as n → ∞, where A(θ) = E(−∂S(θ)/dθ′) and B(θ) = E(S(θ)S ′(θ)) are p × p matrices and
G(θ) = A′(θ)B−1(θ)A(θ) is the Godambe information matrix (Godambe, 1960).

2 LIKELIHOOD AND COMPOSITE LIKELIHOOD FORMULATION

2.1 NOTATION AND MODEL SPECIFICATION

Suppose individuals are at risk of J types of recurrent events and let Tijk denote the time of the kth
occurrence of the type j event for individual i in a sample of size n, k = 1, . . ., j = 1, . . . , J ,
i = 1, . . . , n; see Figure 1. We let Nij(t) record the cumulative number of type j events experi-
enced by individual i over (0, t] and let {Nij(u), 0 < u} denote the corresponding counting pro-
cess. Then ∆Nij(t) = Nij(t + ∆t−) − Nij(t

−) records the number of such events over [t, t + ∆t)
and lim∆t↓0 ∆Nij(t) = dNij(t) indicates whether a type j event occured at time t for individual
i. If Ni(s) = (Ni1(s), . . . , NiJ(s))′ then {Ni(u), 0 < u} is the multivariate counting process. A
p × 1 vector of fixed covariates, possibly unique for type j events, is denoted by Xij and we let
Xi = (X′i1, . . . ,X

′
iJ)′. The history for type j events is Hij(t) = {Nij(s), 0 ≤ s < t,Xij = xij} and

the full history of all types of events is written as Hi(t) = {Hi1(t), . . . , HiJ(t), 0 ≤ s < t}.

Figure 1: Timeline diagrams for J different recurrent event processes and a common censoring time

The complete intensity function for a type j event for individual i is

lim
∆t↓0

P (∆Nij(t) = 1|Hi(t))

∆t
= λij(t|Hi(t)),
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j = 1, . . . , J , i = 1, . . . , n.
Suppose each individual in a sample of n independent individuals is to be followed over (0, A]

where A is an administrative censoring time. To accommodate possible early study withdrawal we
define a random censoring time C†i for individual i, assumed to be conditionally independent of the
event processes given Xi, and let Ci = min(C†i , A) be the net censoring time and Yi(s) = I(s ≤
Ci), i = 1, . . . , n. We then let dN̄ij(s) = Yi(s)dNij(s), dN̄i(s) = (dN̄i1(s), . . . , dN̄iJ(s))′, and
N̄ij(t) =

∫ t
0
dN̄ij(s) which is the number of type j events observed over (0, t]. We let H̄ij(t) =

{N̄ij(s), Yi(s), 0 ≤ s < t,Xij = xij} and define the observed history for type j events and H̄i(t) =
{H̄i1(t), . . . , H̄iJ(t), 0 ≤ s < t}.

We adopt a marginal model for each type of recurrent event based on a mixed Poisson process
where individual-level random effects act multiplicatively on a rate function to account for variation
in risk between individuals that is not explained by the available covariate. This framework also
accommodates a dependence between event counts over disjoint intervals (Lawless, 1987; Klein,
1992). If Uij is a random effect for type j events for individual i, let Ui = (Ui1, . . . , UiJ)′, i =
1, . . . , n. For a mixed Poisson process subject to independent right censoring, the intensity for a type
j events given Uij = uij is taken to be

lim
∆t↓0

P (∆N̄ij(t) = 1|H̄i(t),Ui = ui)

∆t
= uijYi(t)λj0(t;αj) exp(x′ijβj)

where ui is a realization of Ui, λj0(t;αj) denotes the baseline event rate function, and covariates are
assumed to have a multiplicative effect. This implies that {Nik(s), 0 < s} ⊥ U−ki |Uik where U−ki is
the vector of random effects excluding the element Uik. We let θj = (α′j,β

′
j)
′ and θ = (θ′1, . . . ,θ

′
J)′.

We assume that Ui are independent and identically distributed across the sample of n individuals.
We consider a log-normal distribution of Uij with E(Uij) = 1 and var(log(Uij)) = σ2

j . We let
Gj(uij;σj) denote the cumulative distribution function; let σ = (σ1, . . . , σJ)′.

Consider a J-dimensional random variable V = (V1, . . . , VJ)′ with Vj ∼ unif(0, 1), j = 1, . . . , J ,
and P (V1 < v1, . . . , VJ < vJ) = C(v1, . . . , vJ) the joint cumulative distribution function. A flexible
parametric joint model for V can be obtained by specifying the Gaussian copula (Nelsen, 2007) given
by

C(v1, . . . , vJ ;ρ) = Φ(Φ−1(v1) + . . . ,Φ−1(vJ)),

and the Gaussian copula density is written as

c(v1, . . . , vJ ;ρ) =
1√

detR
exp

−1
2

Φ−1(v1)
...

Φ−1(vJ)


′

(R−1 − I)

Φ−1(v1)
...

Φ−1(vJ)


 (3)

where Φ(·) is the cumulative distribution function of a standard normal random variable, R is a
correlation matrix with (j, k) component ρjk = corr(Vj, Vk|xi), and ρ = (ρ12, . . . , ρ(J−1)J).

The joint density of Ui is obtained using the probability integral transform and setting Vj =
G(uij;σj) and substituting it into (3). Then differentiating gives the joint density which can be written

dG(ui;φ) = c(G1(ui1;σ1), . . . , GJ(uiJ ;σJ);ρ) ·
J∏
j=1

dGj(uij;σj),

where the parameters of the multivariate random effect distribution is denoted by φ = (σ′,ρ′)′. We
let ψj = (θ′j, σj)

′ be the marginal parameters for process j, ψ = (ψ′1, . . . ,ψ
′
J)′ and Ω = (ψ′,ρ′)′

contain all parameters. The marginal likelihood for n independent multivariate counting processes is
then

L(Ω) =
n∏
i=1

∫ ∞
0

. . .

∫ ∞
0

{
J∏
j=1

Lij(θj|uij)

}
dG(ui;φ) (4)
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where the conditional likelihood Lij(θj|uij) is given by (Cook and Lawless, 2007)

Lij(θj|uij) =

Nij(Ci)∏
k=1

uijλj0(tijk;αj) exp(x′ijβj) exp

(
−
∫ ∞

0

uijYi(v)λj0(v;αj) exp(x′ijβj)dv

)
.

(5)
In the development here we are both describing the formation of the model and likelihood construction
for the parametric setting. Semiparametric models can be fitted where λj0(t) is not assumed to have
any parametric form, in this case we let dΛj0 denote the corresponding infinite dimensional parameter;
see Section 3.2.

3 ESTIMATION BASED ON COMPOSITE LIKELIHOOD

3.1 COMPOSITE LIKELIHOOD CONSTRUCTION

When the dimension of J is large, model fitting, construction of the full likelihood, and inference is
computationally challenging. We adopt composite likelihood methods to resolve the computational
difficulty. Thus instead of maximizing the full log-likelihood (4), a pairwise log-likelihood is used for
inference. In this case, we consider each pair of events to form a composite pairwise likelihood as

CL2(Ω) =
n∏
i=1

∏
(j,k)∈M

Lijk(ηjk)
wjk (6)

where
Lijk(ηjk) =

∫ ∞
0

∫ ∞
0

Lij(θj|uij)Lik(θk|uik)dGjk(uij, uik;φjk),

dGjk(uij, uik;φjk) = dGj(uij;σj)dGk(uik;σk)c(Gj(uij;σj), Gk(uik;σk); ρjk), (7)

ηjk = (ψj,
′ψ′k, ρjk)

′, φjk = (σj, σk, ρjk)
′ and M is the collection of J(J − 1) pairs of (j, k) of

event types. We note that wjk = 1/(J − 1) is chosen to make a single effective contribution to the
composite likelihood for data for each type of event from each individual.

For parametric analysis we optimize (6) and make use of the sandwich variance formula in (2) to
ensure valid inference. In this case the expectations are approximated empirically after substitution
of the maximum composite likelihood estimates.

3.2 A SEMIPARAMETRIC EM ALGORITHM FOR ESTIMATION WITH PAIRWISE LIKELIHOOD

When margins are specified semiparametrically even solving (6) directly is difficult due to the high
dimension of the parameters. Here we adopt an expectation-maximization algorithm in which we
treat random effects as missing data and the data on the event process as observed (Dempster et al.,
1977). We specify, in this case, λj0 = dΛj0 as an unspecified function and let θj = (dΛ′j0,β

′
j)
′.

Given random effects we decompose the complete pairwise composite log-likelihood in (6) into the
following parts as

logCL2(Ω) =
n∑
i=1

∑
(j,k)∈M

wjk
(

logLij(θj|uij) + logLik(θk|uik) + log dGjk(uij, uik;φjk)
)

(8)

where the first two terms are given by the log of (5) and the last term by the log of (7). In the E-step,
we take the conditional expectation of the complete pairwise composite log-likelihood given the data



Dependence modeling for multi-type recurrent events via copulas 6

on the corresponding pairs of processes. Here we define Hijk(t) = {Hij(s), Hik(s), 0 < s < t}′ as
the history of j and k types of events for an individual i. Then

E[logCL2(Ω)|Hijk(Ci); Ω̂
(r−1)

] =
n∑
i=1

∑
(j,k)∈M

wjk
{

E[logLij(θj|uij)|Hijk(Ci); Ω̂
(r−1)

] (9)

+ E[logLik(θk|uik)|Hijk(Ci); Ω̂
(r−1)

] + E[log dGjk(uij, uik;φjk)
)
|Hijk(Ci); Ω̂

(r−1)
]
}

where Ω̂
(r−1)

is an estimate of Ω at the (r − 1)st iteration. The estimating equation in the M-step at
the rth iteration (Klein, 1992) is

U
(r−1)
j (βj) =

n∑
i=1

∫ ∞
0

J∑
k=1,j 6=k

wjkȲi(s)W
(r−1)
ij (s;βj)dNij(s) (10)

where

W
(r−1)
ij (s;βj) =

(
xij −

R
(1,r−1)
j (s;βj)

R
(0,r−1)
j (s;βj)

)
,

and we set

R
(h,r)
j (s;βj) =

n∑
i=1

Ȳi(s)

[ J∑
k=1,j 6=k

wjkE[Uij|Hijk(Ci), Ω̂
(r)

]

]
exp(x′ijβj)x

h
ij. (11)

The calculation of E[Uij|Hijk(Ci), Ω̂
(r)

] is given as

E[Uij|Hijk(Ci); Ω̂
(r)

] =

∫∞
0

∫∞
0
uijP (Hijk(Ci)|uij, uik,xij,xik; θ̂

(r)

j , θ̂
(r)

k )dGjk(uij, uik; φ̂
(r)

jk )∫∞
0

∫∞
0
P (Hijk(Ci)|uij, uik,xij,xik; θ̂

(r)

j , θ̂
(r)

k )dGjk(uij, uik; φ̂
(r)

jk )
(12)

where P (Hijk(Ci)|uij, uik,xij,xik;θj,θk) = Lij(θj|uij)Lik(θk|uik) and θ̂
(r)

j , θ̂
(r)

k and φ̂
(r)

jk are the

estimates of θj,θk, andφjk at the r-th iteration, respectively. Let β̂
(r)

j denote the solution toU (r−1)
j (βj) =

0 in (10). The cumulative baseline rates are then estimated using the Breslow formula as

Λ̂
(r)
j0 (s) =

n∑
i=1

∫ ∞
0

J∑
k=1,j 6=k

wjkȲi(s)dNij(s)/R
(0,r−1)
j (s; β̂

(r)

j ). (13)

The maximization of (9) in semi-parametric setting can be easily carried out using the coxph function
in R with log((E[Uij|Hijk(Ci)] + E[Uik|Hijk(Ci)])/2) treated as an offset term. The variance of the
random effects and the dependence parameter are estimated by maximizing

n∑
i=1

∑
(j,k)∈M

wjkE[log dGjk(uij, uik;φjk)|Hijk(Ci), Ω̂
(r−1)

] (14)

using the standard optimization software such as the optim function in R. The E-step and M-step are
repeated iteratively until the following stopping rule is satisfied;

max

(
| logCL(Ω̂

(r+1)
)− logCL(Ω̂

(r)
)|

| logCL(Ω̂
(r)

)|

)
≤ 10−10, or max(|Ω̂

(r+1)
− Ω̂

(r)
|) ≤ 10−4.
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Under the regularity conditions (Godambe, 1960), we have

√
n(Ω̂−Ω)

d−→ N(0,A−1(Ω)B(Ω)[A−1(Ω)]′) (15)

as n→∞ and the asymptotic covariacne matrix is estimated by

Â−1(Ω̂)B̂(Ω̂)[Â−1(Ω̂)]′

In a semiparametric setting, the calculation of variance of infinite dimensional parameters leads to
the inverse of infinite dimensional information matrix. To overcome the difficulty of calculation,
we adopt the profile likelihood approach (Murphy and Van der Vaart, 2000) to obtain the variance
estimates. We first define the profile likelihood function

pln(γ) = max
Λ

1

n

n∑
i=1

qi(γ,Λ),

where γ = (β′,φ′)′ indicates the finite dimensional parameters, Λ = (Λ′10, . . . ,Λ
′
J0)′, and qi(γ,Λ) =∑

(j,k)∈M
wjk logCLijk(Ω) is the log of the observed pairwise likelihood, i = 1, . . . , n. Then, we can

calculate Â and B̂ at γ̂ by

Â[k, l] = −pln(γ̂ + hek + hel)− pln(γ̂ + hek − hel)− pln(γ̂ − hek + hel) + pln(γ̂ − hek − hel)

4h2
,

(16)
and

B̂[k, l] = −
n∑
i=1

1

4nh2
[qi(γ̂+hek, Λ̂γ̂+hek

)−qi(γ̂−hek, Λ̂γ̂−hek
)][qi(γ̂+hel, Λ̂γ̂+hel

)−qi(γ̂−hel, Λ̂γ̂−hel
)],

(17)
where ek is the kth coordinate vector and h is the increment in numerical differentiation. Here Λγ is
the cumulative baseline hazard function which maximizes the observed pairwise likelihood given γ.
The details of the variance estimation are presented in the Appendix A. The calculation of conditional
expectation in (12), (14), (16), and (17) requires to use numerical integration. To facilitate shared-
memory multi-processor, we implement the OpenMP (Open Multi-Processing) interface in C++ to
carry out numerical integration by Gaussian-Quadrature with 20 nodes for each dimension.

3.3 TWO-STAGE SEMIPARAMETRIC ESTIMATION WITH PAIRWISE LIKELIHOOD

The implementation of a two-stage estimation procedure can ease computation (Andersen, 2004; Zhao
and Joe, 2005). In the first stage, the parameters for each type of event, ψj = (θj, σj)

′, are estimated
under a working independence assumption. We also use the expectation-maximization algorithm
treating a random effect for each type as missing data to obtain ψ̂j. Given a random effect uij , the
complete likelihood function for each type is Lij(θj|uij). In the E-step, we obtain the conditional
expectation given the observed data for each type

E[logLij(θj|uij)|Hij(Ci), ψ̂
(r)

]

at the r-th iteration. In the M-step, the estimating equation (10) changes to

U
(r−1)
j (βj) =

n∑
i=1

∫ ∞
0

Ȳi(s)W
(r−1)
ij (s;βj)dNij(s)
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where R(h,r)
j (s;βj) in (11) becomes

R
(h,r)
j (s;βj) =

n∑
i=1

Ȳi(s)E[Uij|Hij(Ci), ψ̂
(r)

j ] exp(x′ijβj)x
h
ij.

We calculate E[Uij|Hij(Ci); ψ̂
(r)

j ] as

E[Uij|Hij(Ci); ψ̂
(r)

j ] =

∫∞
0
uijP (Hij(Ci)|uij,xij; θ̂

(r)

j )dGj(uij; σ̂
(r)
j )∫∞

0
P (Hij(Ci)|uij,xij; θ̂

(r)

j )dGj(uij; σ̂
(r)
j )

where P (Hij(Ci)|uij,xij;θ) = Lij(θj|uij). The estimated cumulative baseline rates are then ob-
tained as

Λ̂
(r)
j0 (s) =

n∑
i=1

∫ ∞
0

Ȳi(s)dNij(s)/R
(0,r−1)
j (s; β̂

(r)

j ).

The procedure is iterated until convergence. In the second stage, we solve the composite score func-
tion from the pairwise likelihood with respect to ρ plugging the estimates ψ̂ from the stage 1. Again,
we implement the expectation-maximization algorithm with random effects treated as missing data in
which we obtain the dependence parameter by maximizing the following estimating equation given
the the estimates of marginal parameters

n∑
i=1

∑
(j,k)∈M

wjkE[log dGjk(uij, uik;φjk)|Hijk(Ci), ρ̂
(r−1), ψ̂j, ψ̂k].

Zhao and Joe (2005) commented that two-stage estimation in composite likelihood is recommended
with a weak dependence. In a strong dependence case, the simultaneous estimation method gives
better estimates. The variance estimates in two-stage estimation are present in Appendix. The code
can be downloaded from https://github.com/joolee0918/Mfrailty.

4 SIMULATION STUDIES

Simulation studies are conducted to evaluate the performance of estimators from the joint models
introduced in Section 2. We consider three different types of infections (J=3). For a random-
ized treatment, we let Xi1 the indicator of treatment where Xi1 = 1 having treatment otherwise
Xi = 0 where P (Xi1 = 1) = 0.5. We also consider a continuous variable Xi2 which was gen-
erated from the normal distribution, N(5, 1). We generate the data over the interval (0, 1] with an
independent random censoring Ci. We assume that Ci follows an exponential distribution with rate
− log(0.9) and − log(0.7) indicating 10% and 30% censoring, respectively. Each event times fol-
low Weibull distribution with the survival function F(t;λ, α) = exp(−(t/λ)α). We set (λ1, α1) =
(0.667, 1.00), (λ2, α2) = (0.639, 1.25), (λ3, α3) = (0.630, 1.50) and we set the coefficients β11 =
β21 = β31 = log(0.8), β12 = β22 = β32 = log(1.1). We consider the Gaussian copula with log-normal
margins for random effects where E(Uij) = 1 and Var(log(Uij)) = σ2

j . We set the frailty parameters
as σ2

1 = σ3
2 = σ3

3 = 0.16, and the association parameters as (ρ12, ρ13, ρ23) = (0.25, 0.25, 0.25), and
(ρ12, ρ13, ρ23) = (−0.30,−0.50, 0.30). We generate 1000 samples with 300 and 500 individuals. For
each data set, parametric and semi-parametric analyses are carried out based on the pairwise like-
lihood, and two-stage procedure based on the pairwise likelihood in Section 3. The empirical bias
(EBIAS), average asymptotic (large sample) standard error (ASE), empirical standard error (ESE)
and empirical coverage probability (ECP) are evaluated for all parameter estimates and reported in
reported in Table 1, Table 2, and Table 3. The average of number of each type of events (NAVE) is
also reported.
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Table 1: Frequency properties of estimators obtained by fitting a Weibull-model using the pair-
wise likelihood with the censoring rate 10% and 30%, and (ρ12, ρ13, ρ23) = (0.25, 0.25, 0.25) and
(ρ12, ρ13, ρ23) = (−0.30, 0.50, 0.30); the sample size is 300 and 500, and nsim = 1000

(ρ12, ρ13, ρ23) = (0.25, 0.25, 0.25) (ρ12, ρ13, ρ23) = (−0.30,−0.50, 0.30)

n cen% TYPE PARAM EBIAS ESE ASE ECP EBIAS ESE ASE ECP

300 10%

1

log(λ1) 0.027 0.260 0.245 0.939 0.023 0.256 0.245 0.932
log(α1) 0.001 0.040 0.039 0.951 0.002 0.038 0.039 0.953
β11 0.005 0.096 0.094 0.949 0.005 0.099 0.094 0.930
β12 0.004 0.049 0.046 0.939 0.004 0.048 0.046 0.941
σ2

1 -0.005 0.047 0.050 0.968 -0.003 0.044 0.050 0.970

2

log(λ2) 0.011 0.202 0.189 0.925 0.007 0.200 0.187 0.921
log(α2) 0.001 0.039 0.037 0.922 -0.001 0.036 0.037 0.949
β21 -0.001 0.089 0.089 0.950 0.002 0.088 0.089 0.951
β22 0.002 0.048 0.044 0.921 0.001 0.048 0.044 0.925
σ2

2 -0.001 0.043 0.046 0.971 -0.003 0.041 0.045 0.975

3

log(λ3) 0.000 0.150 0.150 0.946 0.002 0.152 0.150 0.945
log(α3) -0.001 0.034 0.034 0.950 0.000 0.035 0.034 0.944
β31 0.002 0.083 0.085 0.947 -0.004 0.085 0.085 0.958
β32 0.000 0.043 0.043 0.951 0.001 0.043 0.043 0.953
σ2

3 -0.002 0.042 0.042 0.958 -0.001 0.039 0.042 0.972

Copula
ρ12 0.016 0.214 0.235 0.969 0.000 0.212 0.243 0.962
ρ13 0.021 0.215 0.224 0.954 -0.004 0.196 0.223 0.958
ρ23 0.012 0.204 0.208 0.956 0.017 0.189 0.208 0.964

300 30%

1

log(λ1) 0.020 0.278 0.260 0.933 0.014 0.270 0.259 0.945
log(α1) 0.000 0.039 0.041 0.959 0.000 0.039 0.041 0.960
β11 0.003 0.104 0.099 0.947 0.008 0.104 0.099 0.943
β12 0.003 0.053 0.049 0.929 0.002 0.051 0.049 0.945
σ2

1 -0.004 0.050 0.054 0.968 -0.002 0.050 0.054 0.966

2

log(λ2) 0.016 0.207 0.199 0.944 0.021 0.210 0.199 0.932
log(α2) 0.000 0.038 0.038 0.951 0.000 0.038 0.038 0.956
β21 -0.001 0.095 0.095 0.947 0.000 0.100 0.095 0.936
β22 0.004 0.049 0.047 0.941 0.005 0.050 0.047 0.925
σ2

2 -0.003 0.046 0.049 0.968 -0.001 0.046 0.055 0.970

3

log(λ3) -0.004 0.171 0.160 0.921 -0.006 0.160 0.160 0.951
log(α3) 0.001 0.037 0.036 0.939 -0.001 0.036 0.036 0.945
β31 -0.005 0.092 0.091 0.951 -0.004 0.090 0.091 0.941
β32 -0.001 0.049 0.045 0.921 -0.002 0.046 0.045 0.944
σ2

3 -0.003 0.044 0.046 0.967 0.000 0.044 0.049 0.966

Copula
ρ12 0.020 0.239 0.256 0.954 0.010 0.231 0.268 0.967
ρ13 0.028 0.238 0.246 0.950 0.015 0.215 0.246 0.957
ρ23 0.020 0.210 0.229 0.966 0.017 0.214 0.228 0.966

(Continues)
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Table 1. (Continued)

(ρ12, ρ13, ρ23) = (0.25, 0.25, 0.25) (ρ12, ρ13, ρ23) = (−0.3, 0.5, 0.3)

n cen% TYPE PARAM EBIAS ESE ASE ECP EBIAS ESE ASE ECP

500 10%

1

log(λ1) 0.025 0.203 0.191 0.935 0.013 0.198 0.191 0.940
log(α1) -0.001 0.030 0.031 0.952 0.000 0.030 0.031 0.954
β11 0.003 0.076 0.073 0.948 0.002 0.077 0.073 0.933
β12 0.004 0.038 0.036 0.944 0.002 0.038 0.036 0.943
σ1 -0.002 0.036 0.040 0.970 0.001 0.035 0.039 0.962

2

log(λ2) 0.014 0.151 0.145 0.939 0.012 0.153 0.145 0.930
log(α2) 0.001 0.028 0.028 0.952 0.001 0.029 0.028 0.948
β21 0.001 0.071 0.069 0.940 0.000 0.073 0.069 0.930
β22 0.003 0.035 0.034 0.943 0.003 0.036 0.034 0.931
σ2 0.000 0.033 0.036 0.966 0.000 0.032 0.036 0.973

3

log(λ3) 0.005 0.126 0.115 0.930 0.011 0.122 0.116 0.937
log(α3) 0.002 0.027 0.027 0.936 0.000 0.027 0.027 0.939
β31 0.002 0.068 0.066 0.944 0.002 0.068 0.066 0.943
β32 0.001 0.036 0.033 0.929 0.002 0.034 0.033 0.928
σ2

3 -0.002 0.029 0.033 0.975 0.000 0.029 0.033 0.971

Copula
ρ12 0.016 0.164 0.177 0.956 0.004 0.160 0.179 0.960
ρ13 0.018 0.153 0.169 0.967 0.003 0.154 0.170 0.964
ρ23 0.022 0.137 0.158 0.969 0.018 0.142 0.157 0.971

500 30%

1

log(λ1) 0.022 0.207 0.202 0.932 0.029 0.213 0.203 0.931
log(α1) 0.001 0.032 0.032 0.946 -0.001 0.032 0.032 0.952
β11 0.002 0.081 0.077 0.933 0.000 0.078 0.077 0.950
β12 0.004 0.039 0.038 0.939 0.005 0.041 0.038 0.933
σ1 0.000 0.039 0.043 0.968 0.001 0.038 0.042 0.975

2

log(λ2) 0.016 0.165 0.155 0.930 0.005 0.158 0.155 0.951
log(α2) 0.000 0.030 0.030 0.945 0.001 0.030 0.030 0.944
β21 0.002 0.074 0.074 0.954 0.002 0.072 0.074 0.953
β22 0.003 0.039 0.037 0.932 0.001 0.037 0.037 0.949
σ2

2 0.001 0.037 0.039 0.962 0.001 0.035 0.039 0.968

3

log(λ3) 0.007 0.132 0.124 0.937 0.005 0.133 0.124 0.926
log(α3) 0.001 0.028 0.028 0.941 0.001 0.028 0.028 0.950
β31 0.002 0.073 0.071 0.947 0.001 0.074 0.071 0.936
β32 0.001 0.037 0.035 0.942 0.001 0.037 0.035 0.939
σ2

3 -0.001 0.033 0.036 0.972 -0.001 0.031 0.036 0.970

Copula
ρ12 0.009 0.177 0.192 0.964 -0.012 0.171 0.193 0.971
ρ13 0.028 0.171 0.184 0.960 -0.001 0.161 0.186 0.968
ρ23 0.019 0.159 0.173 0.961 0.020 0.156 0.171 0.961
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Table 2: Frequency properties of estimators obtained by fitting a semiparametric model using the
pairwise likelihood and two-stage pairwise estimation method based on the pairwise likelihood with
the censoring rate 10% and 30%, and (ρ12, ρ13, ρ23) = (0.25, 0.25, 0.25); the sample size is 300 and
500, and nsim = 1000

Pairwise Likelihood Two-stage Pairwise Likelihood

n cen% TYPE (NAVE†) PARAM EBIAS ESE ASE ECP EBIAS ESE ASE ECP

300 10%
1 (623)

β11 0.002 0.095 0.094 0.948 0.002 0.095 0.094 0.947
β12 -0.001 0.048 0.046 0.943 -0.001 0.048 0.046 0.942
σ2

1 -0.009 0.051 0.050 0.963 -0.009 0.051 0.049 0.964

2 (722)
β21 -0.003 0.089 0.089 0.948 -0.003 0.089 0.089 0.949
β22 -0.001 0.047 0.044 0.940 -0.001 0.047 0.044 0.942
σ2

2 -0.005 0.047 0.045 0.969 -0.005 0.047 0.045 0.973

3 (821)
β31 -0.003 0.083 0.085 0.946 -0.003 0.083 0.085 0.948
β32 0.000 0.042 0.043 0.952 0.000 0.042 0.043 0.951
σ2

3 -0.005 0.045 0.042 0.956 -0.005 0.045 0.041 0.956

Copula
ρ12 0.009 0.242 0.241 0.952 0.008 0.240 0.241 0.954
ρ13 0.015 0.238 0.246 0.942 0.014 0.237 0.231 0.943
ρ23 0.004 0.223 0.212 0.942 0.004 0.221 0.212 0.944

300 30%
1 (552)

β11 0.000 0.103 0.099 0.945 0.000 0.103 0.099 0.948
β12 -0.001 0.051 0.049 0.941 -0.001 0.051 0.049 0.940
σ2

1 -0.010 0.056 0.053 0.961 -0.010 0.056 0.053 0.967

2 (631)
β21 -0.004 0.094 0.095 0.953 -0.004 0.094 0.095 0.954
β22 0.000 0.048 0.047 0.939 0.000 0.048 0.047 0.938
σ2

2 -0.006 0.049 0.049 0.973 -0.007 0.049 0.049 0.973

3 (709)
β31 -0.006 0.092 0.091 0.948 -0.006 0.092 0.091 0.949
β32 -0.001 0.047 0.045 0.931 -0.001 0.047 0.045 0.929
σ2

3 -0.006 0.047 0.045 0.964 -0.006 0.047 0.045 0.967

Copula
ρ12 0.011 0.264 0.264 0.940 0.010 0.260 0.266 0.943
ρ13 0.020 0.261 0.262 0.934 0.019 0.259 0.256 0.937
ρ23 0.012 0.231 0.237 0.955 0.011 0.230 0.238 0.958

500 10%
1 (1035)

β11 0.000 0.076 0.073 0.942 0.000 0.076 0.073 0.943
β12 0.002 0.037 0.036 0.948 0.002 0.037 0.036 0.947
σ1 -0.005 0.040 0.039 0.967 -0.005 0.040 0.039 0.969

2 (1202)
β21 -0.001 0.069 0.069 0.950 0.000 0.069 0.069 0.951
β22 0.000 0.035 0.035 0.943 0.000 0.035 0.035 0.943
σ2 -0.002 0.037 0.035 0.947 -0.002 0.036 0.035 0.950

3 (1364)
β31 -0.001 0.069 0.066 0.938 -0.001 0.069 0.066 0.939
β32 0.001 0.035 0.033 0.936 0.001 0.035 0.033 0.953
σ2

3 -0.004 0.031 0.032 0.970 -0.004 0.031 0.032 0.969

Copula
ρ12 0.008 0.184 0.180 0.941 0.007 0.182 0.180 0.969
ρ13 0.006 0.172 0.172 0.947 0.005 0.171 0.172 0.950
ρ23 0.013 0.152 0.159 0.962 0.013 0.152 0.159 0.969

500 30%
1 (917)

β11 0.000 0.082 0.077 0.934 0.000 0.082 0.077 0.934
β12 0.000 0.039 0.038 0.946 0.000 0.039 0.038 0.946
σ1 -0.003 0.043 0.042 0.970 -0.003 0.043 0.042 0.969

2 (1050)
β21 0.000 0.074 0.073 0.949 0.000 0.074 0.074 0.949
β22 0.001 0.038 0.037 0.945 0.001 0.038 0.037 0.944
σ2

2 -0.002 0.039 0.038 0.955 -0.002 0.039 0.038 0.957

3 (1179)
β31 0.000 0.073 0.071 0.946 0.000 0.073 0.071 0.947
β32 0.001 0.035 0.035 0.955 0.001 0.035 0.035 0.954
σ2

3 -0.004 0.036 0.035 0.963 -0.004 0.036 0.035 0.963

Copula
ρ12 -0.001 0.202 0.195 0.942 -0.002 0.200 0.195 0.969
ρ13 0.009 0.188 0.186 0.951 0.008 0.187 0.186 0.957
ρ23 0.007 0.176 0.175 0.955 0.006 0.175 0.175 0.963

† NAVE is the average number of events per individual over the course of observation.
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Table 3: Frequency properties of estimators obtained by fitting a semiparametric model using the
pairwise likelihood and two-stage pairwise estimation method based on the pairwise likelihood with
the censoring rate 10% and 30%, and (ρ12, ρ13, ρ23) = (−0.30,−0.50, 0.30); the sample size is 300
and 500, and nsim = 1000

Pairwise Likelihood Two-stage Pairwise Likelihood

n cen% TYPE (NAVE†) PARAM EBIAS ESE ASE ECP EBIAS ESE ASE ECP

300 10%
1 (623)

β11 0.004 0.096 0.094 0.938 0.004 0.097 0.094 0.939
β12 -0.002 0.047 0.047 0.942 -0.002 0.047 0.047 0.943
σ2

1 -0.006 0.050 0.050 0.962 -0.006 0.050 0.050 0.960

2 (722)
β21 -0.005 0.090 0.089 0.948 -0.005 0.090 0.089 0.947
β22 -0.004 0.045 0.044 0.938 -0.004 0.045 0.044 0.938
σ2

2 -0.006 0.046 0.045 0.963 -0.006 0.046 0.045 0.963

3 (819)
β31 -0.002 0.084 0.085 0.956 -0.002 0.084 0.085 0.955
β32 0.001 0.042 0.043 0.954 0.001 0.042 0.043 0.954
σ2

3 -0.004 0.043 0.042 0.959 -0.004 0.043 0.041 0.958

Copula
ρ12 -0.026 0.231 0.243 0.945 -0.025 0.230 0.243 0.944
ρ13 -0.018 0.212 0.228 0.963 -0.017 0.210 0.227 0.942
ρ23 0.012 0.207 0.213 0.959 0.011 0.206 0.214 0.959

300 30%
1 (553)

β11 0.006 0.103 0.099 0.949 0.006 0.103 0.099 0.949
β12 -0.002 0.051 0.049 0.954 -0.002 0.051 0.049 0.955
σ2

1 -0.008 0.056 0.054 0.954 -0.008 0.056 0.053 0.954

2 (631)
β21 -0.001 0.099 0.095 0.937 -0.001 0.099 0.095 0.938
β22 0.001 0.049 0.047 0.931 0.001 0.049 0.047 0.933
σ2

2 -0.006 0.050 0.049 0.970 -0.006 0.050 0.049 0.969

3 (709)
β31 -0.004 0.090 0.091 0.941 -0.004 0.090 0.091 0.941
β32 -0.001 0.045 0.045 0.951 -0.001 0.045 0.045 0.951
σ2

3 -0.003 0.048 0.046 0.964 -0.003 0.048 0.045 0.964

Copula
ρ12 -0.005 0.255 0.270 0.945 -0.004 0.253 0.267 0.947
ρ13 0.005 0.232 0.253 0.935 0.006 0.230 0.262 0.969
ρ23 0.016 0.236 0.234 0.944 0.015 0.234 0.233 0.964

500 10%
1 (1037)

β11 -0.001 0.077 0.073 0.927 -0.001 0.077 0.073 0.925
β12 -0.001 0.037 0.036 0.948 -0.001 0.037 0.036 0.949
σ1 -0.004 0.039 0.039 0.963 -0.004 0.039 0.039 0.966

2 (1202)
β21 -0.001 0.070 0.069 0.943 0.000 0.070 0.069 0.942
β22 0.001 0.036 0.034 0.937 0.001 0.036 0.034 0.935
σ2 -0.005 0.036 0.035 0.964 -0.005 0.036 0.035 0.967

3 (1365)
β31 0.000 0.067 0.066 0.945 0.000 0.067 0.066 0.945
β32 0.002 0.033 0.033 0.951 0.002 0.033 0.033 0.949
σ2

3 -0.003 0.031 0.033 0.961 -0.003 0.031 0.033 0.961

Copula
ρ12 -0.015 0.185 0.184 0.951 -0.015 0.183 0.184 0.952
ρ13 -0.019 0.166 0.173 0.958 -0.018 0.164 0.173 0.958
ρ23 0.008 0.160 0.160 0.945 0.007 0.160 0.160 0.945

500 30%
1 (919)

β11 -0.002 0.079 0.077 0.944 -0.002 0.079 0.077 0.945
β12 0.002 0.039 0.038 0.943 0.002 0.039 0.038 0.944
σ1 -0.004 0.042 0.042 0.968 -0.005 0.042 0.042 0.968

2 (1049)
β21 -0.002 0.072 0.074 0.951 -0.002 0.072 0.074 0.949
β22 0.000 0.035 0.037 0.962 0.000 0.035 0.037 0.962
σ2

2 -0.001 0.040 0.038 0.954 -0.002 0.040 0.038 0.953

3 (1180)
β31 -0.001 0.076 0.071 0.931 -0.001 0.076 0.071 0.932
β32 0.000 0.036 0.037 0.948 0.000 0.036 0.035 0.947
σ2

3 -0.004 0.035 0.035 0.968 -0.004 0.035 0.035 0.967

Copula
ρ12 -0.024 0.199 0.200 0.958 -0.024 0.196 0.199 0.961
ρ13 -0.021 0.183 0.193 0.947 -0.019 0.181 0.190 0.948
ρ23 0.019 0.181 0.173 0.938 0.019 0.180 0.173 0.938

† NAVE is the average number of events per individual over the course of observation.
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The empirical biases are small for all estimates of parameters and empirical standard errors and
average estimated standard errors are in good agreement. The empirical coverage probability are
close to the nominal confidence level of 95%. Comparing parametric and semi-parametric model, we
find that all estimates and standard errors are very close between two models. However, to protect
from the model misspecification, a semi-parametric model may be recommended despite the more
intensive computational burden. The standard errors of estimators of marginal parameters are very
close between the pairwise simultaneous and two-stage model. When the sample size increases, the
variance of the estimators decrease. We note that the variances of the estimators increase as the cen-
soring rate is higher. We report the average of computation time in seconds in Table 4 with the sample
size 300 and 500. The two-stage pairwise likelihood estimation method is less computationally inten-
sive. In this simulation studies, we only consider three types of events in which pair-wise likelihood
approach is feasible. However, if more than three events are analyzed two-stage methods are easy to
implement.

Table 4: The average of computation time (in seconds) for fitting a semiparametric model using
the pairwise likelihood and two-stage pairwise estimation method based on the pairwise likelihood
with the censoring rate 10% and 30%, and (ρ12, ρ13, ρ23) = (0.25, 0.25, 0.25) (ρ12, ρ13, ρ23) =
(−0.30, 0.50,−0.30); the sample size is 300 and 500, and nsim = 1000

Pairwise Likelihood Two-stage Pairwise Likelihood

n ρ cen% time (sec) time (sec)

300 (0.25, 0.25, 0.25) 10% 409.659 273.671
30% 434.067 290.511

(-0.30, 0.50, -0.30) 10% 437.675 295.806
30% 487.316 328.956

500 (0.25, 0.25, 0.25) 10% 727.007 485.660
30% 766.560 518.123

(-0.30, 0.50, -0.30) 10% 713.243 483.049
30% 724.884 491.380

5 RECURRENT INFECTIONS IN A PEDIATRIC TRIAL OF IRON SUPPLEMENTA-
TION

Malnutrition in children in low-income countries has been identified as a cause of immune deficiency
and susceptibility to infectious diseases since activation of the immune system in response to in-
fection requires additional energy. Examples infectious disease due to malnutrition are opportunistic
pathogens and fungus, noma, respiratory, intestinal infections, tuberculosis, measles and other chronic
infections (Ambrus, 2004; Schaible and Stefan, 2007). Iron deficiency, which is also prevalent in
developing countries, causes anemia and the deficiency of red blood cells. Lemaire et al. (2011) con-
ducted a study to examine the efficacy of iron-containing micro-nutrient powder (iron MNP) on the
risk of infectious diseases to malnourished children. In a randomized clinical trial, 268 Bangladeshi
children, aged 12-24 month, and moderate-to-severe malnourished with a hemoglobin concentration
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between 70 and 110 g/L, were recruited for two-phase, 12/2007-06/2008 and 07/2008-01/2009, re-
spectively. Iron MNP were provided to 136 children daily for 2 months and the remaining children
were provided placebo powder. The primary endpoint was the occurrence of infectious diseases such
as diarrhea, dysentery, vomiting, lower respiratory tract infections (LRTIs), coughing, sneezing and
fever. During the 2 months intervention period, the incidence of infectious disease was assessed every
other day, whereas after the intervention period, it was assessed weekly. Given this data, interest lies
on how to examine the effect of treatment on the incidence of multiple diseases which are caused by
malnutrition and iron deficiency. An analysis based on a composite score is feasible (Lemaire et al.,
2011), however it leads to losing information on distinct episodes. Often interest lies in a treatment
effect on specific disease, however, since the lack of nutrition directly or indirectly affects the immune
system, the different types of infections in consequence of malnutrition may be associated. Therefore
somewhat related diseases should be considered together. In the analysis of this data, we consider
three types of events including digestive disorders including diarrhea, dysentery, and vomiting, LRTI,
and other infections. The number of events of digestive disorders is 323, that of LRTI 513, and other
infections has a total number of 100 events.
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Figure 2: Digestive disorders, lower respiratory tract infections, and other infections event plots for
phase 1 and phase 2 showing the onset and the duration of episodes

Figure 2 displays digestive disorders, respiratory infections, and other infections data for each
individual with two-phase where lines represent a period of diseases. Due to the possible correlations
between these events, the joint analysis should be performed to take into account for the dependence.
We include three covariates; iron supplement as a treatment, phase, and a hemoglobin level which is a
binary covariate having 1 if the hemoglobin level is less than 9.1 g/L. We conduct pairwise likelihood
and two-stage pairwise likelihood analysis in application.

The results are summarized in Table 5. We observe the iron supplements do not have significant
effects on the occurrence of all three types of events. The iron supplements reduce the occurrence of
digestive disorders (RR : 0.82; 95% CI : (−0.44, 0.04), p = 0.101 with pairwise likelihood) and
LRTI (RR : 0.85; 95% CI : (−0.35, 0.01), p = 0.062 with pairwise likelihood) whereas it increases
the onset of other infections (RR : 1.41; 95% CI : (−0.04, 0.73), p = 0.083 with pairwise likeli-
hood). We note that the change of phase from 1 to 2 significantly increases the occurrence of all type
of events; phase 2 represents the winter period so that viral gastroenteritis increases onset of digestive
disorders (RR : 1.45; 95% CI : (0.13, 0.61), p = 0.003 with pairwise likelihood). Also the onset
of LRTI may increases due to seasonal factors (RR : 1.95; 95% CI : (0.47, 0.87), p < 0.001 with
pairwise likelihood). The other infections have also significantly higher onset for the winter period
(RR : 2.66; 95% CI : (0.56, 1.39), p < 0.001 with pairwise likelihood). The level of hemoglobin
does not affect the onset of all three types of events. Digestive disorders and other infections show het-
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Table 5: Joint analysis of three types of infections based on a semiparametric model; digestive dis-
order, lower respiratory infections (LRTI) and other infections including an iron supplement, phase,
and hemoglobin level (Hb) as covariates with lognormal marginal distribution for random effects and
Gaussian copula functions.

Semiparametric Pairwise Likelihood Two-stage PW Likelihood

TYPE Covariate EST SE p EST SE p

COEFFICIENTS

Digestive disorder
Iron -0.202 0.123 0.101 -0.204 0.123 0.100
Phase 0.368 0.123 0.003 0.369 0.123 0.003
Hb 0.020 0.132 0.877 0.020 0.133 0.883

LRTI
Iron -0.169 0.091 0.062 -0.170 0.091 0.062
Phase 0.669 0.101 < 0.001 0.669 0.101 < 0.001
Hb -0.052 0.104 0.618 -0.051 0.104 0.623

Other infections
Iron 0.341 0.197 0.083 0.340 0.198 0.086
Phase 0.979 0.212 < 0.001 0.980 0.212 < 0.001
Hb -0.106 0.240 0.660 -0.103 0.241 0.669

RANDOM EFFECTS

(σ2
1, σ

2
2, σ

2
3) 0.166, 0.045, 0.119 0.158 0.046 0.109

(0.100) (0.001) (0.105) (0.078) (0.001) (0.069)

DEPENDENCE PARAMETERS

(ρ12, ρ13, ρ23) -0.329 -0.738 0.411 -0.324 -0.715 0.384
(0.535) (0.148) (0.532) (0.532) (0.150) (0.418)

erogeneity where σ̂2
1 = 0.17, σ̂2

3 = 0.12 with pairwise likelihood whereas LRTI has small variance of
random effects (σ̂2

2 = 0.05). From the estimates of dependence parameters, digestive disorders have
a strong negative association with other infections (ρ̂13 = −0.74 with pairwise likelihood). There is a
negative association between digestive infections and LRTI (ρ̂12 = −0.33), and a positive association
between LRTI and other infections (ρ̂23 = 0.41 with pairwise likelihood).

Figure 3 shows the estimated cumulative baseline rates of each episode under the pairwise likeli-
hood. The disorders of digestion for the placebo group having hemoglobin level less than 9.1 g/L have
approximately 1.15 events occurrence for the period 12/2007-06/2008 (phase 1). The expected num-
ber of events of LRTI for the same group is approximately 1.5 which is higher incidence compared to
the onset of digestive disorders. The other infections have less than 0.2 events for these group.

6 DISCUSSION

We propose the use of a multivariate random effects distribution to model heterogeneity in the risk of
several types of recurrent events based on a mixed Poisson model formulation. The joint distribution
of the random effects is constructed via a Gaussian copula model which means that the measures of
overdispersion for each type of event are functionally independent and that the dependence structure
is quite general. Semiparametric estimation is carried out using a composite likelihood expectation-
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Figure 3: Plots of estimated cumulative baseline rates of digestive disorders, LRTI, and other infec-
tions for the pairwise likelihood analysis using the joint model

maximization algorithm; an even more computationally efficient two-stage estimation procedure is
also developed which simply uses a working independence assumption at the first stage. Large sample
variance estimates are derived for both approaches and are shown to be valid in finite samples in
empirical studies. The approach is particularly appealing for use in settings with many different types
of events. We note that a marginal distribution of Uij can be a log-normal distribution, a gamma
distribution, and etc. However, the provided code includes a log-normal distribution since it has a
closed form in E-step in EM algorithm as shown in Appendix B.

This general approach can be naturally extended to accommodate multi-type interval-censored
recurrent event data of the sort studied by Chen et al. (2005) where the exact event times are unavail-
able but the interval of event times of each type is known. The fact that this method is implemented
using an expectation-maximization algorithm means that it can also be generalized to accommodate
settings where the event types are partially missing; see Chen and Cook (2009).

An alternative framework for analyzing multi-type recurrent events is via marginal methods and
estimating functions (e.g. Cai and Schaubel, 2004). While this can be appealing because it is based on



Lee J and Cook RJ 17

partially specified models it does not lend itself naturally to prediction. Fully specified models, even
when fitted under composite likelihood, can ensure prediction of future events of any type or all types,
exploits the history of the joint processes which should yield more accurate and precise predictions
of features of the recurrent event processes (Fredette and Lawless, 2007).

ACKNOWLEDGEMENTS

The authors thank Dr. Stanley Zlotkin and Dr. Mathieu Lemaire for collaboration on the iron sup-
plementation study and permission to use the data here and Jerry Lawless for comments on an earlier
version of this manuscript. This research was supported by grants from the Natural Sciences and
Engineering Research Council of Canada (RGPIN 155849) and the Canadian Institutes for Health
Research (FRN 13887). Richard Cook is a Canada Research Chair in Statistical Methods for Health
Research.

CONFLICT OF INTEREST

The authors declare no potential conflict of interests.

REFERENCES

Ambrus, J. (2004). Nutrition and infectious diseases in developing countries and problems of acquired
immunodeficiency syndrome. Experimental Biology and Medicine, 229(6):464–472.

Andersen, E. (2004). Composite likelihood and two-stage estimation in family studies. Biostatistics,
5(1):15–30.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the
Royal Statistical Society. Series B, pages 192–236.

Cai, J. and Schaubel, D. (2004). Marginal means/rates models for multiple type recurrent event data.
Lifetime Data Analysis, 10(2):121–138.

Chen, B. and Cook, R. (2009). The analysis of multivariate recurrent events with partially missing
event types. Lifetime Data Analysis, 15(1):41.

Chen, B., Cook, R., Lawless, J., and Zhan, M. (2005). Statistical methods for multivariate interval-
censored recurrent events. Statistics in Medicine, 24(5):671–691.

Chen, X., Wang, Q., Cai, J., and Shankar, V. (2012). Semiparametric additive marginal regression
models for multiple type recurrent events. Lifetime Data Analysis, 18(4):504–527.

Cook, R. and Lawless, J. (2007). The Statistical Analysis of Recurrent Events. Springer Science &
Business Media.

Cook, R., Lawless, J., and Lee, K. (2010). A copula-based mixed poisson model for bivariate recurrent
events under event-dependent censoring. Statistics in Medicine, 29(6):694–707.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society. Series B, pages 1–38.

Fredette, M. and Lawless, J. (2007). Finite-horizon prediction of recurrent events, with application to
forecasts of warranty claims. Technometrics, 49(1):66–80.



Dependence modeling for multi-type recurrent events via copulas 18
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APPENDIX A: CALCULATION OF THE VARIANCE ESTIMATES IN TWO-STAGE

ESTIMATION

In (15), A(Ω) and B(Ω) are as follows in two-stage estimation. We first let

mpljn(ζ) =
n∑
i=1

1

n
mqji (ζ,Λ)

where ζ = (β′j, σj)
′, and mqji (ζ,Λ) = log

∫∞
0
Lij(θj|uij)dGj(uij;σj). We let A =

(
A1

A2

)
, where

A1 =


A1,1 0 · · · 0 0

0 A1,2 0
...

...
... 0

. . . ...
...

0 · · · · · · A1,J 0

 with

A1,j [k, l] = max
Λj0

1

n

mpljn(ζ + hek + hel)−mpljn(ζ + hek − hel)−mpljn(ζ − hek + hel) +mpljn(ζ − hek − hel)
4h2

,

j = 1, . . . , J , and

A2[k, l] = max
Λ

1

n

pln(γ + hek + hel)− plMn (γ + hek − hel)− plMn (γ − hek + hel) + plMn (γ − hek − hel)
4h2

,

j = 1, . . . , J .

Likewise, we can write B =

(
B1

B2

)
, where B1 =


B1,1 0 · · · 0 0

0 B1,2 0
...

...
... 0

. . . ...
...

0 · · · · · · B1,J 0

 with

B1,j(k, l) =
1

4nh2

n∑
i=1

[mqji (ζ + hek,Λζ+hek
)−mqji (ζ − hek,Λζ−hek

)]

× [mqji (ζ + hel,Λζ+hel
)−mqji (ζ − hel,Λζ−hel

)],

and

B2(k, l) =
1

4nh2

n∑
i=1

[qi(γ + hek,Λγ+hek
)− qi(γ − hek,Λγ−hek

)]

× [qi(γ + hel,Λγ+hel
)− qi(γ − hel,Λγ−hel

)].

APPENDIX B: THE CONDITIONAL SCORE VECTOR

The conditional score vector ∂Lij(θj|uij)/∂θj for βj, dΛj0(·) from the complete data pairwise likeli-
hood (8) is given as

∂Lij(θj|uij)
∂βj

=
n∑
i=1

{
Nij(Ci)xij − uij

∫ ∞
0

Ȳi(v)xij exp(x′ijβj)dΛj0(v)
}
,

∂Lij(θj|uij)
∂dΛj0(tjk)

=
1

dΛj0(tjk)
−

n∑
i=1

uijȲi(tjk) exp(x′ijβj),
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where tjk is the kth time of type j event occurrence.

In (8), log dG(uij, uik;φjk) is given as

log dG(uij , uik;φjk) =

n∑
i=1

[
3

2
log(uij)−

log2(uij)

2σ2
j

− log(σj)−
σ2
j

8
+

3

2
log(uik)−

log2(uik)

2σ2
k

− log(σk)−
σ2
k

8

−
log(1− ρ2

jk)

2
−
ρ2
jk(σ

2
j + σ2

k)

8(1− ρ2
jk)

+
ρjkσjσk
4(1− ρ2

jk)

−
ρ2
jk

2(1− ρ2
jk)

{
log2(uij)

σ2
j

+ log(uij) +
log2(uik)

σ2
k

+ log(uik)

}

+
ρjk

1− ρ2
jk

{
log(uij) log(uik)

σjσk
+
σk log(uij)

2σj
+
σj log(uik)

2σk

}]
.

The components of the conditional score vector ∂ log dG(uij, uik;φjk)/∂φjk are given as follows.

∂ log dG(uij , uik;φjk)

∂σj
= − n

σj
− nσj

4(1− ρ2
jk)

+
nρjkσk

4(1− ρ2
jk)

+
n∑
i=1

log2(uij)

(1− ρ2
jk)σ

3
j

−
n∑
i=1

ρjk log(uij) log(uik)

(1− ρ2
jk)σ

2
jσk

+
ρjk

1− ρ2
jk

n∑
i=1

{
−σk log(uij)

2σ2
j

+
log(uik)

2σk

}
,

∂ log dG(uij , uik;φjk)

∂σk
= − n

σk
− nσk

4(1− ρ2
jk)

+
nρjkσj

4(1− ρ2
jk)

+
n∑
i=1

log2(uik)

(1− φ2
0)σ

3
k

−
n∑
i=1

φ0 log(uij) log(uik)

(1− φ2
0)σjσ

2
k

+
ρjk

1− ρ2
jk

n∑
i=1

{
−σj log(uik)

2σ2
k

+
log(uij)

2σj

}
,

and

∂ log dG(uij , uik;φjk)

∂ρjk
=

nρjk
1− ρ2

jk

−
nρjk(σ

2
j + σ2

k)

4(1− ρ2
jk)

2
+
nσjσk(1 + ρ2

jk)

4(1− ρ2
jk)

2

−
ρjk

(1− ρ2
jk)

2

n∑
i=1

{
log2(uij)

σ2
j

+
log2(uik)

σ2
k

+ log(uij) + log(uik)

}

+
1 + ρ2

jk

(1− ρ2
jk)

2

n∑
i=1

{
log(uij) log(uik)

σjσk
+
σk log(uij)

2σj
+
σj log(uik)

2σk

}
.

In two-stage estimation, log dG(uij;σj) is given as

log dG(uij;σj) =
n∑
i=1

[
3

2
log(uij)−

log2(uij)

2σ2
j

− log(σj)−
σ2
j

8

]
.

The conditional score function for σj from log dG(uij;σj) is given as

∂ log dG(uij;σj)

∂σj
= − n

σj
+

log2(uij)

σ3
j

−
σ3
j

4
,

for j = 1, 2, . . . , J .
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