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Summary

Cohort studies of chronic diseases involve recruitment and longitudinal followup of affected indi-
viduals with a view to studying the effect of risk factors on disease progression and death. When
the time to withdrawal from the cohort is conditionally independent of the disease process the
primary consequence is a loss of information on the parameters of interest. This loss can some-
times be mitigated through the conduct of tracing studies in which a subsample of those lost to
follow up are contacted and some information is obtained on their disease and survival status.
We describe the use of selection models to sample individuals for tracing who will yield more
efficient estimators than those obtained by simple random sampling. Efficient sampling schemes
featuring cost constraints are also developed and shown to perform well. An application to data
from the University of Toronto Psoriatic Arthritis Cohort illustrates how to apply the method in a
real setting.
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1 INTRODUCTION

Considerable investments are being made in health research to support the conduct of large cohort
studies geared towards understanding the relationships between diverse features (e.g. exposure to
toxins, genetic and serological biomarkers) and disease incidence, progression, and mortality. Birth
cohorts are typically directed at measuring the impact of maternal exposures on neonatal and early life
outcomes (Kobayashi et al., 2016), whereas studies in infants and young children may be directed at
the impact of early diet and care on cognitive and physical development (Lakshman et al., 2015). The
Canadian Longitudinal Study on Aging (Raina et al., 2009) focuses on disease processes in later life;
50,000 individuals aged 45 to 85 were recruited and are to be followed for 20 years to gain insight into
the complex relationships between behaviour, biomarkers and disease incidence. The EPIC Norfolk
study (Riboli, 1992) and many others have broadly similar objectives. In other settings, attention
may be directed at diseased individuals and interest lies in studying the incidence of complications or
comorbidities in affected individuals; studies in diabetics are particularly ubiquitous (Early Treatment
Diabetic Retinopathy Study Research Group and others, 1991). While interest may lie primarily
in biomarkers and their effect on the development of complications from disease and the onset of
comorbidities, mortality rates may be appreciable and joint models incorporating survival times are
required for valid inferences. Multistate models offer a convenient and powerful framework for the
joint consideration of disease incidence, progression, and mortality.

We consider the setting in which individuals are recruited to an inception cohort and are fol-
lowed prospectively to learn about the disease process and identify risk factors for the occurrence
of disease complications and the development of comorbidities. Clinically important events are of-
ten self-evident (e.g. strokes, heart attacks, and death) but their observation times are subject to
right-censoring. Some complications, however, are asymptomatic and so will only be detected at
the time of clinical examination or radiographic assessment. For example, asymptomatic fractures
among individuals with osteoporosis are only detected upon x-ray (Kreiger et al., 1999), progres-
sion in retinopathy in diabetics is only detected upon examination by an ophthalmologist (Control
et al., 1993), and progression in fibrosis of the liver among individuals with hepatitis C infection is
only assessable by biopsy (Sweeting et al., 2006). In settings where interest lies in the development
of conditions or complications which are not self-evident, data become available at periodic clinic
visits; such data can be naturally analyzed using multistate models.

At the planning stage, it is natural to investigate the efficiency implications of different sample
sizes, planned durations of follow-up, and assessment schedules, which will depend on the form
of the underlying model and the parameter setting of interest. Albert and Brown (1991) consider
different sampling schemes and schedules for the assessments in a two-state process. Cook (2000)
assessed the impact of the assessment schedule on the precision of estimates of transition intensities
and occupancy probabilities; Lawless and Nazeri Rad (2015) studied this and more general three-
state processes. Mehtälä et al. (2011) consider sample size and the optimal scheduling of assessments
for time-homogeneous two-state Markov processes; Hwang and Brookmeyer (2003) consider similar
issues for progressive K−state processes. Unlike this work, here our focus is on a secondary design
issue which arises in longitudinal studies with attrition. In some such settings, it is possible to trace
individuals who are lost to follow-up to obtain information on their disease status. We develop a
framework for efficiently selecting individuals lost to follow-up for such a tracing study in order to
yield more efficient estimators of the key parameters of interest.

This work is motivated by a research program at the Centre for Prognosis Studies in the Rheumatic
Diseases at the University Health Network in Toronto, Canada. Individuals with psoriatic arthri-
tis have been recruited into the University of Toronto Psoriatic Arthritis Cohort since 1976. Upon
completing a detailed examination upon clinic entry individuals are scheduled for annual clinical as-
sessments and biannual radiographic assessment. A primary scientific objective is to estimate the
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incidence of arthritis mutilans, a severe form of arthritis, along with the effect of human leukocyte
antigen (HLA) markers.

Likelihood inference based on available data yield consistent but less efficient estimators when
data satisfy the sequential missing at random (SMAR) assumption (Hogan et al., 2004). The loss
of efficiency can be mitigated somewhat through the conduct of tracing studies whereby a subset
of the individuals who have withdrawn from the cohort are contacted to obtain information on their
survival and disease status (Farewell et al., 2003). Despite the considerable appeal of enhancing
information from such efforts, relatively little attention has been given to the design of tracing studies.
We address this here by sampling individuals who are lost to follow-up using selection models which
exploit information in the observed history prior to withdrawal from the cohort. Within a given
class of selection models, sampling probabilities can be chosen to increase efficiency of estimators
of parameters of primary interest (e.g. incidence rates for complications or comorbidities, marker
effects, etc.). Such models are appealing when resource constraints mean that not all individuals lost
to follow-up can be traced.

The remainder of the paper is organized as follows. In Section 2, we introduce notation for multi-
state models and the likelihood for panel data with attrition under a SMAR mechanism, define the
tracing selection model, and describe the idea of optimal selection for tracing. Asymptotic calcula-
tions demonstrating the efficiency gains from optimal tracing compared with simple random sampling
are also given. When the cost of securing information on disease progression status is different from
the cost of simply obtaining survival status, the cost implications of optimal tracing are also provided.
In Section 3, a more general optimization process is described with cost constraints, which leads to
different optimal selection models; the efficiency gains are also illustrated in this setting based on
asymptotic results. An application of the proposed methodology to data collected from a cohort study
conducted at the University of Toronto Psoriatic Arthritis Clinic is presented in Section 4 and general
remarks are given in Section 5.

2 MODEL FORMULATION AND THE DESIGN OF TRACING STUDIES

2.1 A MULTI-STATE MARKOV MODEL FOR DISEASE PROGRESSION

The K-state process depicted in Figure 1 offers a powerful framework for joint consideration of
disease complications, comorbidities, and death in progressive conditions. Let Z(t) represent which
state in the state space S = {1, 2, . . . , K} is occupied at time t since disease onset. We let {Z(s), 0 ≤
s} denote the corresponding stochastic process and write the complete process history as H(t) =
{Z(s), 0 ≤ s < t} which contains information on the times and types of transitions over [0, t). The
intensity of a transition from state j to state k at time t is

lim
∆t→0

P (Z(t+ ∆t−) = k|Z(t−) = j,H(t))

∆t
= λjk(t|H(t)) ,

for all j < k ∈ S. For Markov processes the transition intensities depend only on Z(t−) and we write
λjk(t|H(t)) = λjk(t).

The transition intensity matrix A(t) has entries λjk(t) for j < k ∈ S, −
∑

k 6=j λjk along the
diagonal, and zero elsewhere. The transition probability matrix P(s, t) has (j, k) entry [P(s, t)]jk =
P (Z(t) = k|Z(s) = j) and is obtained by solving the Kolmogorov forward differential equations
∂P(s, t)/∂t = P(s, t)A(t). For time-homogeneous processes, λjk(t) = λjk for all j < k ∈ S and so
A(t) = A; we may then obtain P(t) = exp(At) and exp(·) here denotes the matrix exponential (Cox
and Miller, 1965).

Multiplicative intensity-based models are used to characterize the effect of prognostic variables
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on the dynamics of the disease process. Modulated Markov models are obtained by specifying

λjk(t|X) = λjk0(t) exp(X ′βjk), j < k ∈ S,

where λjk0(t) is the baseline transition intensity, X = (X1, . . . , Xp)
′ represents a p× 1 covariate vec-

tor, and βjk = (βjk1, . . . , βjkp)
′ is a vector of regression coefficients specific to j → k transitions. We

let θ be the vector of parameters indexing all baseline intensity functions and regression coefficients;
for a time-homogeneous illness-death process K = 3 and θ = (λ′, β′)′ where λ = (λ120, λ130, λ230)′

and β = (β′12, β
′
13, β

′
23)′ is the vector of all regression coefficients.

1 2 3

K

K − 1● ● ●

Figure 1: A K-state progressive model with K − 1 transient states and one absorbing state

2.2 INTERMITTENT ASSESSMENT WITH DROPOUT

It is often not possible to monitor disease status continuously in cohort studies but rather only examine
individuals at periodic assessment times. Consider an inception cohort of individuals recruited and
examined at the time of disease onset (t = 0, say), and let Vj , j = 1, . . . , J represent common
planned assessment times measured from the time of disease onset; in this case VJ = τ is a common
administrative censoring time. To simplify the notation, we consider the contributions from a generic
individual and let Zj = Z(Vj) denote the state occupied at the jth assessment, where Z0 = Z(V0) =
Z(0) = 1. Let Z̄j = {Z0, Z1, . . . , Zj} denote the history of the process up to the jth assessment,
j = 0, 1, . . . , J ; Z̄J then represents the complete response vector we aim to observe.

Let Yj = I(Zj is observed) be a missing data indicator and Ȳj = {Y0, Y1, . . . , Yj} be the history
of the missing data process up to and including the jth assessment. Our focus here is on the loss of
data due to early withdrawal which corresponds to a monotone missing data pattern whereby Yj = 1
implies Y1 = · · · = Yj−1 = 1 and Yj = 0 implies Yj+1 = · · · = YJ = 0. Let C = max{j : Yj =
1, j = 0, . . . , J} record the last assessment at which the individual was observed so Z̄C represents the
observed part of the full response vector Z̄J . The likelihood function of the observed data (Z̄C , ȲJ , X)
from a single individual is

P (Z̄C , ȲJ | X; θ, γ) =
∑

ZC+1,...,ZJ

P (Z̄J | X; θ)P (ȲJ | Z̄J , X; γ)

=
∑

ZC+1,...,ZJ

[
J∏
j=1

P (Zj | Z̄j−1, X; θ)
C+1∏
j=1

P (Yj | Ȳj−1, Z̄J , X; γ)

]
(1)

where P (ȲJ | Z̄J ;X; γ) is the conditional probability of the missing data indicators ȲJ given the full
response vector Z̄J and covariate vectorX , parameterized in terms of γ. Note that if ZC = K then the
process has been observed to completion and the sum in (1) is degenerate. With a monotone SMAR
mechanism (Hogan et al., 2004), the probability of becoming lost to follow-up at a given assessment
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only depends on an individual’s disease status and covariates observed at the previous assessments,
that is

P (Yj|Ȳj−1, Z̄J , X; γ) = P (Yj|Yj−1 = 1, Z̄j−1, X; γ) .

So under a SMAR mechanism, we assume that whether an individual who is present at assessment
j (i.e. Yj = 1) is available at assessment j + 1 depends only on the data available at assessment j.
In the event that death occurs over (Vj, Vj+1), the individual will by definition not be present at visit
j + 1, but his/her vital status could still be ascertained, either from family members or other sources
(e.g. death registries/newspapers). We assume here that the probability that vital status is ascertained
is governed by a SMAR mechanism, in which case (1) can be factored as the product of two terms of
the form

P (Z̄C , ȲJ |X; θ, γ) =
C∏
j=1

P (Zj|Z̄j−1, X; θ)
C+1∏
j=1

P (Yj|Yj−1 = 1, Z̄j−1, X; γ),

where the first term involves only response parameters θ and the second term only missing data
parameters γ. If θ and γ are functionally independent then the withdrawal process is non-informative
and inference about θ can be based solely on the likelihood constructed using the first term,

L1(θ) =
C∏
j=1

P (Zj|Z̄j−1, X; θ) , (2)

where P (Zj|Z̄j−1, X; θ) = P (Zj|Zj−1, X; θ) under a Markov model. These imply that standard
likelihood methods based on the observed multistate data for the cohort, {Z̄C , X}, will result in
consistent estimation of θ when the loss-to-follow-up process is ignored. We use the subscript 1 on
this likelihood because we think of this data as arising from phase I of a two-phase study where phase
I involves routine approach to follow-up and data collection; additional data are obtained in phase II
by tracing selected individuals and we describe how this is done next.

Let D = {Z̄C , ȲJ , X, C,∆} represent the observed phase I data obtained from the regular follow-
up process where ∆ = I(C = J) indicates that follow-up was complete. Individuals with incomplete
follow-up (i.e. with ∆ = 0) are eligible to be selected for a phase II tracing study which we take to
be conducted at time VJ . Let R = 1 indicate that an eligible individual is selected for tracing which
happens according to the selection model

P (R = 1|D,∆ = 0) = P (R = 1|Z̄C , X, C,∆ = 0; ρ) , (3)

indexed by ρ. We presume that individuals who are traced furnish information on the state occu-
pied at VJ but alternative formulations may be considered in which retrospective data are collected.
Conditional on the phase I data, the likelihood contribution from phase II is then[

P (ZJ |R,D)RP (R|D)
]1−∆

=
[
P (ZJ |R, Z̄C , ȲJ , X, C,∆)RP (R|Z̄C , ȲJ , X, C,∆; ρ)

]1−∆

.

We assume
P (ZJ |R, Z̄C , ȲJ , X, C,∆) = P (ZJ |Z̄C , X; θ) , (4)

so the disease status at the time of tracing (ZJ ) is conditionally independent of the attrition time and
tracing selection outcome given the observed responses. This enables us to write the above likelihood
as a product of a term involving response parameters θ only and a term involving selection model
parameters ρ only. If parameters θ and ρ are functionally independent, then we can restrict attention
to the partial likelihood pertaining to θ from a traced individual, which takes the form

L2(θ) = P (ZJ |Z̄C , X; θ)R(1−∆) . (5)
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We can then augment the likelihood L1(θ) in (2) by incorporating data from the tracing study and use

L(θ) = L1(θ)L2(θ) . (6)

The incorporation of extra information obtained from the tracing study through L2(θ) enables one to
enhance the efficiency of estimation for θ. We discuss next how tracing can be done to ensure a large
gain in efficiency for parameters of key interest.

2.3 OPTIMAL DESIGNS FOR TRACING

Now consider a sample of size n where we use the subscript i to label individuals, i = 1, . . . , n. Let
Di = {Z̄iC , ȲiJ , Xi, Ci,∆i} denote the observed data from individual i from the regular follow-up
process in phase I and D = {Di, i = 1, . . . , n} denote the phase I data. Then, we write L1(θ) =∏n

i=1 Li1(θ) where Li1(θ) =
∏Ci

j=1 P (Zij|Z̄i,j−1, Xi; θ) as in (2) and let θ̃ be the MLE of θ obtained
by maximizing the likelihood L1(θ) from the phase I data. The observed information matrix from
phase I is

I1(θ̃) =
n∑
i=1

Ii1(θ̃) =
n∑
i=1

(
−∂

2 logLi1(θ)

∂θ∂θ′

) ∣∣∣
θ=θ̃

.

If Li2(θ) = P (ZiJ |Z̄iC , Xi; θ)
Ri(1−∆i) is the contribution from individual i from (5), then conditioning

on their phase I data, their contribution to the expected information matrix from tracing is

I†i2(θ, ρ) = E

[
− ∂2 logLi2(θ)

∂θ∂θ′

∣∣∣Di,∆i = 0

]
which over all n individuals gives expected information matrix

I†2(θ, ρ) =
n∑
i=1

(1−∆i)P (Ri = 1|Z̄iC , Xi, Ci,∆i = 0; ρ)

×
K∑

ZiJ=1

[
P (ZiJ | Z̄iC , Xi; θ) ·

(
− ∂2 logP (ZiJ |Z̄iC , Xi; θ)

∂θ∂θ′

)]
under the assumption in (4). Consider a hybrid information matrix defined as the sum of the observed
information matrix from the phase I data, and the expected information matrix arising from a phase
II tracing study, given by

IH(θ̃, ρ) = I1(θ̃) + I†2(θ̃, ρ) . (7)

We propose to use (7) with θ replaced by the estimate θ̃ from phase I to set the value of ρ for the
selection model. If interest lies in making inference for a particular parameter θk, for example, the
so-called “optimal” tracing selection parameters ρopt may be obtained by minimizing [I−1

H (θ̃, ρ)]kk,
the (k, k) element of the inverse of (7), subject to a constraint on π = P (R = 1|∆ = 0), the overall
proportion of individuals lost to follow-up who are traced. This can be implemented by minimizing[

I−1
H (θ̃, ρ)

]
kk

+ ζ
[ ∑
i:∆i=0

P (Ri = 1|Di,∆i = 0; ρ)/(n− ∆̇)− π
]

(8)

with respect to ρ to get ρopt, where ζ is a Lagrange multiplier, the first term in square brackets
is the empirical expectation of the selection probabilities averaging over the observed data with
∆̇ =

∑n
i=1 ∆i, and the entire term in square brackets is a constraint which ensures the expected

proportion of individuals lost to follow-up to be traced is satisfied. The delta method may be used to
consider situations when estimation of a function g(θ) is the focus. The optimal criteria in (8) can be
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generalized to involve any linear function h(·) of the elements of IH(θ̃, ρ). In particular, analogs of
A-optimality and C-optimality (Emery and Nenarokomov, 1998) can be achieved, but we do not pur-
sue this here as we focus on the case the tracing study is conducted with a specific scientific question
in mind.

Let θ̂ denote the final estimates obtained based on the augmented likelihood (6) once the tracing
study is completed. The asymptotic variance of θ̂ is thus asvar(

√
n
(
θ̂ − θ)

)
= I−1(θ, γ, ρ) where

I(θ, γ, ρ) = E
[
− ∂2 logLi(θ)

∂θ∂θ′

]
= E

[
Ii1(θ)

]
+ E

[
(1−∆i)I†i2(θ, ρ)

]
. (9)

The above expectation is taken with respect to the phase II tracing information by first conditioning
on the phase I (incomplete) data and then taking the unconditional expectation. Note that to determine
ρopt in applications, as in the analysis of Section 4, we use (8); but for the calculation of the asymptotic
relative efficiency that follow, we use (9) in lieu of IH(θ̃, ρ) in (8) for computational efficiency; the
results agree extremely well with the more computationally demanding results based on (8).

2.4 ASSESSING THE EFFICIENCY GAINS FROM “OPTIMAL” TRACING

We now study the properties of estimators obtained following the proposed tracing procedure, high-
lighting the efficiency gains over selection models involving simple random sampling (SRS). We con-
sider a time-homogeneous illness-death model and assume a binary covariate X with P (X = 1) =
0.25 modulating the 1→ 2 transition intensity, which gives a parameter vector θ = (λ120, λ130, λ230, β12)′.
For an inception cohort, without loss of generality, we consider the period of observation [0, τ ] with
τ = 1. We let N12(τ) indicate that a 1 → 2 transition occurred over [0, τ ]. We set β12 = log 1.5 and
the values of the baseline intensities to satisfy the following constraints:

(i) P2 = P (N12(τ) = 1|X = 0) = λ120/(λ120 +λ130){1− exp[−(λ120 +λ130)τ ]} = {0.25, 0.75};
(ii) λ230/λ130 = 1.5; and

(iii) P3 = P (Z(τ) = 3|X = 0) = {0.1, 0.5}.

We assume the progression status is assessed intermittently at J = 5 equally spaced scheduled
assessments over [0, τ ]. For the dropout process, we set the dropout indicator Y0 = 1 at baseline (e.g.
time V0) for all individuals and generate Yj given (Yj−1, Zj−1) sequentially for j = 1, 2, . . . , J . As
described in Section 2.2, P (Yj = 1|Yj−1 = 0) = 0 and P (Yj = 1|Yj−1 = 1, Zj−1 = K) = 1. For the
SMAR mechanism, we set logitP (Yj|Yj−1 = 1, Z̄j−1, X; γ) = γ0+γ1I(Zj−1 = 2), that is the odds of
drop-out at a given assessment depends on the disease status at the previous assessment. The value of
the parameters (γ0, γ1) are set to achieve an overall percentage of dropout of P (∆ = 0) = {0.4, 0.8}
and an odds ratio of dropout for individuals with previous disease status Zj−1 = 2 vs Zj−1 = 1 to be
exp(γ1) = 2.

We adopt the following model for the selection of individuals for tracing

logitP (R = 1|ZC , X,∆ = 0; ρ) = ρ0 + ρ1I(ZC = 2) + ρ2X + ρ3I(ZC = 2)X (M1)

where X is the same binary covariate related to the 1 → 2 transition. To illustrate the magnitude
of potential efficiency gains from tracing as well as influential factors, we compare the asymptotic
variance of estimates of response parameters based on an optimal design versus a simple random
sampling (SRS) design (which is equivalent to setting the tracing model parameters to be ρsrs =
(ρ0, 0, 0, 0)). The optimal tracing parameter ρopt results in the minimal asymptotic relative efficiency

ARE(θ̂k) =
[I−1(θ, γ, ρopt)]kk
[I−1(θ, γ, ρsrs)]kk

, (10)
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(a) P (∆ = 0) = 0.4 (b) P (∆ = 0) = 0.8

(c) P (∆ = 0) = 0.4 (d) P (∆ = 0) = 0.8

Figure 2: Asymptotic relative efficiency (10) of the estimator β̂12 (top panels) and log(λ̂230/λ̂130) (bot-
tom panels) with a tracing study under an optimal design versus a SRS design of the same expected
size; P2 = P (N12(τ) = 1 | X = 0), P3 = P (Z(τ) = 3 | X = 0), λ230/λ130 = 1.5, β12 = log 1.5

subject to a pre-specified proportion of tracing π = P (R = 1|∆ = 0).
As expected, the optimal tracing designs lead to more precise estimates than the SRS designs

across all scenarios. This is depicted in Figure 2 for the estimation of covariate effect β12 (top two
panels) and log(λ230/λ130) (bottom two panels). Across all parameter configurations considered, the
gain in efficiency increases with the probability of dropout P (∆ = 0). The magnitude of the gain
in efficiency also varies as a function of the parameters of the disease process (as represented by
the multiple curves in each panel) and the marginal tracing probability π. While these relationships
are complex and dependent on properties of the disease process, we describe some general trends
apparent in the present examples. When interest lies in estimating the covariate effect modulating the
1→ 2 transition (β12), the smaller the percentage of progression by the administrative censoring time
τ (e.g. P2), the greater the gain in efficiency achieved by the optimal tracing scheme relative to the
SRS approach. This is due to the fact that the optimal design for estimation of β12 prioritizes tracing
progression-free individuals (ZC = 1) over those who have already progressed (ZC = 2) as the
former may potentially provide new information on the 1 → 2 transition directly; this can be seen in
panels (a) and (b) of Figure 2 when contrasting the solid (P2 = 0.25) and dashed (P2 = 0.75) lines of
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the same colours with the fixed P3. This trend is much clearer for estimating the relative risk of death
log(λ230/λ130) as shown in Figure 2 (c), (d) . The percentage of death observed by the administrative
censoring time (i.e. P3) also has some impact on the estimation of a covariate effect on progression,
β12. The lower P3 is (e.g. 0.1 versus 0.5) the bigger the gain in efficiency by adopting the optimal
design for tracing, although such a difference is only appreciable when the percentage of progression
is high (P2 = 0.75) as shown in Figure 2 (a), (b). Interestingly, P3 seems to have a different impact on
efficiency gain for the estimation of the relative risk of death log(λ230/λ130). When the drop-out rate
is high (P (∆ = 0) = 0.8), Figure 2 (d) shows slightly greater benefit of the optimal tracing scheme
over SRS as the percentage of death P3 increases, but such a pattern is only noticeable if percentage
of tracing is low to moderate (e.g. π < 0.4).

(a) Optimal Design for Estimation of β121
(b) Expected Cost under Designs for Estimation

of β121

(c) Optimal Design for Estimation of
log(λ230/λ130)

(d) Expected Cost under Designs for Estimation
of log(λ230/λ130)

Figure 3: Optimal tracing design (left-hand panels) and expected cost (right-hand panels) under an
optimal vs a SRS design for the estimation of β12 (top panels) and log(λ230/λ130) (bottom panels),
with P2 = 0.25 and P3 = 0.1, λ230/λ130 = 1.5, β12 = log 1.5, P (∆ = 0) = 0.8, and cost ratio
ξ = Cd/Cs = 100

In summary, efficiency gains for the estimation of both covariate effect on progression β12 and
relative risk of death log(λ230/λ130) are primarily driven by observing instances of disease progres-
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sion, e.g P2. The percentage of death P3 has some additional impact depending on which quantity is
of interest for estimation. Slightly larger gains in efficiency for the estimation of β12 can be obtained
when P3 is low, because as P3 increases the likelihood of gaining information about progression at
the time of tracing decreases. However, when interest lies in estimating log(λ230/λ130), observation
of death events could be more valuable and so larger gains in efficiency are achieved by the proposed
approach when the probability of death is higher.

Figure 3 focuses on the setting with P2 = 0.25, P3 = 0.1, and P (∆ = 0) = 0.8 (e.g. the solid
red line in the right-hand panels of Figure 2), again considering estimation of β12 and log(λ230/λ130)
in the top and bottom panels respectively. The left-hand panels contain plots of the joint probability
P (R = 1, ZC , X|∆ = 0) against the marginal probability of tracing π under an optimal design. As
will be discussed in Section 3, it is generally reasonable to assume that the cost of tracing individuals
for vital status (Cs) is substantially lower than that of assessing disease status (Cd), so ξ = Cd/Cs ≥ 1.
In the right-hand panels of Figure 3, we fix ξ = 100 and observe that the expected cost of the proposed
optimal tracing scheme (solid line) is greater than that of a SRS tracing scheme (dashed line) for the
estimation of β12, whereas it is lesser for the estimation of log(λ230/λ130). This follows directly
from the patterns exhibited in the left-hand panels: the optimal tracing scheme for β12 preferentially
selects individuals with ZC = 1 (more expensive) over those with ZC = 2 (less expensive), while the
optimal scheme for log(λ230/λ130) prioritizes individuals with ZC = 2 over those with ZC = 1. It
is interesting to note that for the latter case, the optimal design not only leads to substantial gains in
efficiency, but is also more economical than the SRS design of the same size. In addition, the optimal
scheme for β12 sequentially draws upon individuals with (ZC = 1, X = 1), (ZC = 1, X = 0),
(ZC = 2, X = 1), and (ZC = 2, X = 0); preferring the former subgroups to the exclusion of the
latter, as the marginal probability of selection for tracing (π) increases. However, this is not true to
the same extent in the optimal scheme for log(λ230/λ130); in this case, the proposed tracing scheme
allows for the optimal equilibrium to be identified, which would not otherwise be possible. The results
of extensive simulation studies (not shown) demonstrate excellent agreement between the asymptotic
and empirical efficiency gains.

2.5 A TRACING SELECTION MODEL INCORPORATING THE TIME OF STUDY WITHDRAWAL

When constructing selection models for tracing it is desirable to balance the inclusion of key factors
with the need for parsimony in order to minimize the computational burden at the optimization step
of the selection model. Here, we illustrate the potential gains in efficiency from adopting a more
general class of selection models compared to (M1), which included only the information on the state
occupied at the last assessment (denoted ZC) and a binary covariate X . Specifically, here we consider
a selection model of the form

logitP (R = 1|ZC , X,∆ = 0; ρ) = ρ0 + ρ1I(ZC = 2) + ρ2X + ρ3I(ZC = 2)X + ρ4D (M2)

to allow tracing selection probabilities to further depend onD = τ−VC , the time from loss-to-follow-
up to tracing. Since the tracing selection model in (M1) is nested in (M2), greater efficiency gains
may be realized under the latter model. The benefit of including time since loss-to-follow-up in the
tracing selection model is most appreciable for the estimation of relative risk of death with, versus
without, progression given by log(λ23/λ13). A summary of results comparing asymptotic efficiency
gains under these two tracing selection models is presented in the left-hand columns of Table 1 under
the heading “Size Constraint”; we defer the discussion of the right-hand side under the heading “Cost
Constraint” to Section 3.2. Here, we find the efficiency gains can be appreciable for both β12 and
log(λ230/λ130). We also see a non-monotonic trend in relative efficiency of “optimal” versus simple
random sampling when viewed as a function of the marginal selection probability for tracing, which
are similar to the trends of the red solid curves in Figure 2 (b), (d).
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Table 1: Asymptotic relative efficiency (10) of estimators (optimal versus SRS tracing design) under
tracing selection models in (M1) and (M2); with P2 = 0.25 and P3 = 0.1, λ230/λ130 = 1.5, β12 =
log 1.5, P (∆ = 0) = 0.8

Size Constraint (πa) Cost Constraint (ξb)

Estimand Tracing Model 0.05 0.25 0.50 5 20 100
β12 M1 0.908 0.803 0.838 0.836 0.852 0.951

M2 0.881 0.787 0.811 0.795 0.800 0.918

log(λ23/λ13) M1 0.620 0.571 0.721 0.664 0.487 0.418
M2 0.543 0.570 0.719 0.664 0.487 0.418

a π = P (R = 1 | ∆ = 0) is the marginal probability of selection for tracing
b ξ = Cd/Cs is the relative cost of determining disease status compared to survival status

3 DESIGN WITH A BUDGETARY CONSTRAINT

3.1 FORMULATION OF THE OPTIMIZATION PROBLEM

In general, the cost associated with tracing individuals known to be diseased before loss-to-follow-up
(i.e. those with ZC = 2) is lower than that for individuals without the disease (i.e. ZC = 1); in
this section, we exploit this fact to design optimal tracing schemes subject to more realistic budget
constraints. For the former group, the only information that we can learn is the survival status at the
time of tracing, but for the latter group, disease status may also be ascertained for individuals who
are still alive at tracing. Let Cs and Cd denote the cost for tracing survival status and disease status,
respectively, and let ξ = Cd/Cs be the cost ratio; we assume ξ ≥ 1 in general.

Suppose we have a fixed budget for conducting the tracing study where we plan to trace the
survival status among all the selected individuals first, and then the disease status among those who
were disease-free at their last assessment and are alive at tracing. Based on a Poisson sampling process
with a tracing selection model, the expected cost of tracing is

Ċ(ρ;Cs, ξ) = nP (∆ = 0)
∑
ZJ ,D

P (D|∆ = 0)P (R = 1 | D,∆ = 0; ρ)

× P (ZJ |R,D,∆ = 0; θ)Cs

[
1 + ξI(ZJ 6= K,ZC = 1)

]
.

Note that the right side of this equation depends on the parameter ρ in the tracing selection model,
whereas the expected number of individuals eligible for tracing, nP (∆ = 0), and the distribution of
observed data among the eligible individuals, P (D|∆ = 0), are known after collection of phase I
data. In addition, under the assumption (4) the probability P (ZJ |R,D,∆ = 0; θ) can be estimated
by P (ZJ | Z̄C , X; θ̃) where θ̃ is the MLE obtained from phase I. This implies that if one is interested
in precise estimation of θk, for a given fixed total budget B, cost Cs and ratio ξ, we can optimize the
selection model by minimizing [

I−1
H (θ̃, ρ)

]
kk

+ ζ
[
Ċ(ρ;Cs, ξ)−B

]
(11)

which is like (8) but with a cost constraint in place of a constraint simply on the expected sample size.
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3.2 EFFICIENCY GAINS FROM OPTIMAL TRACING WITH COST CONSTRAINTS

The study setting here parallels that of Section 2.4, with the exception that the constraint is imposed
on the budget rather than the size of the sample selected for tracing. We set the maximum budget
B = Ċ(ρ;Cs, ξ = 1) to equal the expected cost of tracing all eligible individuals when ξ = 1. The
budget constraint in (11) then becomes

Ċ(ρ;Cs, ξ)−B ∝
∑
ZJ ,D

P (D|∆ = 0)P (R = 1 | D,∆ = 0; ρ)

× P (ZJ |R,D,∆ = 0; θ)(ξ − 1)I(ZJ 6= K,ZC = 1)],

which only depends on the cost ratio ξ and the selection parameter ρ. We consider values of ξ from 1
to 200 and the same values of (θ′, γ′)′ as in Section 2.4, where θ = (λ′, β′)′ .

(a) P (∆ = 0) = 0.4 (b) P (∆ = 0) = 0.8

(c) P (∆ = 0) = 0.4 (d) P (∆ = 0) = 0.8

Figure 4: Asymptotic relative efficiency (10) of estimators for biomarker effect β̂12 (top panels) and
log(λ̂230/λ̂130) (bottom panels) with a tracing study under an optimal design versus a SRS design of
the same expected cost; P2 = P (N12(τ) = 1 | X = 0), P3 = P (Z(τ) = 3 | X = 0), λ230/λ130 =
1.5, β12 = log 1.5; cost ratio ξ = Cd/Cs is the relative cost of determining disease status compared to
survival status

Figure 4 displays the patterns of relative efficiency exhibited by the optimal tracing selection



Moon NC, Zeng L and Cook RJ 13

probabilities under a cost constraint under the selection model (M1), which are similar to those ob-
served under the size constraint in the previous section (see Figure 2). In fact, in some sense this cost
constraint amounts to a transformation of the size constraint. That is, due to the choice of budget
constraint B, setting ξ = 1 implies that all eligible individuals may be traced (e.g. π = P (R =
1|∆ = 0) = 1); thus, the left-most points in each panel of Figure 4 correspond to the right-most
points in the analogous panels of Figure 2. On the other hand, as ξ → ∞, the cost of tracing indi-
viduals with ZC = 1 becomes prohibitively expensive, and limξ→∞ P (R = 1|∆ = 0, ZC = 1) = 0.
Thus, if individuals with ZC = 1 furnish more informations upon tracing, as is the case for β12

(see Figure 5 (a)), then limξ→∞ P (R = 1|∆ = 0) = 0. On the other hand, if the optimal scheme
prioritizes tracing individuals with ZC = 2, as is the case for log(λ230/λ130) (see Figure 5 (b)) ,
limξ→∞ P (R = 1|∆ = 0) = P (ZC = 2|∆ = 0). Although the plots in Figures 4 and 5 only extend
to ξ = 200, the limits in the relative efficiency gain and the percentage of eligible individuals that can
be traced under a fixed budget are apparent.

(a) Optimal Design for Estimation of β12
(b) Optimal Design for Estimation of

log(λ230/λ130)

Figure 5: Optimal tracing design under a fixed budget constrain for the estimation of β12 (left panel)
and log(λ230/λ130) (right panel), with P2 = 0.25 and P3 = 0.1, λ230/λ130 = 1.5, β12 = log 1.5,
P (∆ = 0) = 0.8.

To compare the two selection models (M2) and (M1), the right-hand columns of Table 1 contain
the asymptotic relative efficiencies under both models with the cost constraints. We see that using
either of these two models results in appreciable efficiency gains, where the gain decreases as the
cost ratio ξ increases from 5 to 100 for β12 but it increases as ξ increases for log(λ23/λ13). These
are consistent with the red solid curves showed in Figure 4 (b), (d). We also see the efficiency gains
under (M2) are greater than those under (M1) for the estimation of β12 in most cases and they are
very similar for log(λ230/λ130). This is because for the latter, the optimal tracing scheme prioritizes
tracing individuals with ZC = 2, and the optimal selection probability of those is 1 under the settings
considered here. As the cost for tracing disease status becomes more expensive (e.g. ξ increases), the
optimal selection probability for individuals with ZC = 1 quickly approaches 0. As a consequence
the time from loss-to-follow-up to tracing has very little room to influence the selection probabilities
under the optimal design, leading to comparable results under the two selection models.
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4 APPLICATION TO UNIVERSITY OF TORONTO PSORIATIC ARTHRITIS COHORT

STUDY

Scientists at the University of Toronto Psoriatic Arthritis Clinic have created and maintained a reg-
istry of individuals with psoriatic arthritis which continues to be an invaluable resource in deepening
understanding of the progression of psoriatic arthritis and related comorbidities. A scientific question
of primary interest is in estimating the incidence of arthritis mutilans in individuals with psoriatic
arthritis, and estimating the effect of the marker HLA-B27 on the disease progression taking into
account the full disease process including death.

Psoriatic
Arthritis

1

Death

3

Arthritis
Mutilans

2

Figure 6: Multistate diagram for the onset of arthritis mutilans and death in individuals with psoriatic
arthritis

The cohort we focused on consists of 870 individuals with psoriatic arthritis and they are sched-
uled to come to the clinic for assessments on an annual basis. We take December 2016 as the end
of phase I follow-up, and use the patients records until then as phase I data. While variability arises
in practice, this protocol informs the decision to view individuals who have not been seen for 2+
years as being lost to follow-up; this leads to 72% of the cohort being eligible for tracing. In total,
152 (17.5%) are observed to develop arthritis mutilans, 147 deaths are recorded (16.9%), including
36 among individuals whose disease progressed. Further, 56 individuals (6.4%) are positive for the
HLA-B27 marker. Phase-I maximum likelihood estimates were obtained using the R package msm
(Jackson, 2011). We assume the visit times are uninformative and that data are missing sequentially
at random. The proposed approach is applied to demonstrate possible optimal designs for a tracing
study conducted in January 2017.

Table 2 reports the optimal tracing probabilities P (R = 1|ZC , X,∆ = 0) arising from selection
model (M1) under the constraint of a fixed sample size or cost, respectively. It is apparent that if
interest lies in estimating β12 one should first select all individuals who were not observed to progress
before they withdrew from the study in phase I (i.e. ZC = 1) and then individuals who have pro-
gressed (i.e. ZC = 2), as long as the fixed sample size permits; this trend also holds when the budget
is constrained. On the other hand, when interest lies in estimating log(λ230/λ130), it always priori-
tizes individuals known to have progressed (e.g. with ZC = 2) under both the sample size and budget
constraints, since only survival status, which is less expensive, needs to be determined. We also con-
sidered using tracing selection model (M2), which leads to very similar gains in efficiency as when
using model (M1). We did not report the optimal tracing probability here as they vary continuously
with respect to time since loss-to-follow-up, D = τ − VC . For the psoriatic arthritis cohort, the pro-
posed optimal tracing study design can lead to gains in efficiency of 10-30% relative to using a SRS
design.
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Table 2: Optimal selection probabilities by strata based on model (M1) for tracing psoriatic arthri-
tis/mutilans cohort

Size Constraint p Cost Constraint

Strata (ZC , X) p Strata (ZC , X)

πa (1, 0) (1, 1) (2, 0) (2, 1) REb ξc (1, 0) (1, 1) (2, 0) (2, 1) RE(%)

β12 5% 0 0.95 0 0 71.1 3 0.54 1 0 0 85.4
25% 0.25 1 0 0 76.2 5 0.34 1 0 0 80.1
50% 0.57 1 0 0 84.0

log(λ23/λ13) 5% 0 0 0.37 0 89.7 3 0.55 0 1 1 87.3
25% 0.12 0 1 1 80.5 5 0.37 0 1 1 82.4
50% 0.43 0 1 1 87.1

Stratum size 495 33 84 14 495 33 84 14

a π = P (R = 1|∆ = 0) is the marginal probability of selection for tracing
b RE is the relative efficiency of adopting the proposed tracing design as opposed to SRS (%)
c ξ = Cd/Cs is the relative cost of determining disease status compared to survival status

5 DISCUSSION

In this article, we consider the framework of an inception cohort study with regularly scheduled
assessments. We consider the implications of loss to follow-up and the idea of conducting a tracing
study to track down individuals who have withdrawn to obtain updated information on their health;
this is planned at the end of phase I of a study. We discuss the utility of attempts to optimally select
individuals lost to follow-up for the tracing study in order to maximize the value of the information
gained. In our multistate setting, the optimization may be carried out with a view to maximizing the
precision of transition intensities, state occupancy probabilities, or the effects of fixed (e.g. genetic)
markers on disease progression. Less focused criteria can also be employed which minimize functions
of information matrices. We have focused on progressive processes, but settings with reversible or
alternating processes are also common and the methods can in principle be extended to deal with
these types of data. Due to the complexity of the function to be optimized (e.g. the inverse of the
information matrix), we suggest that care be taken to select several plausible initial values for the ρ
vector to ensure the global minimum is identified. For example, when some of the strata induced by
the tracing selection model are small, it is advisable to set ρ corresponding to tracing all and none of
the individuals in the strata as initial values; this is due to the fact that variation in the corresponding ρ
values are unlikely to have a large effect on the target of optimization, which may make optimization
challenging.

We have assumed a time-homogeneous Markov model with regularly scheduled assessment times.
Tracing studies can of course be designed for non-homogeneous Markov models using piecewise-
constant baseline intensities. The regularity of scheduled assessments makes it reasonably straight-
forward to determine which individuals are lost to follow-up and therefore eligible for tracing. In
settings where assessment times are less regular and left to the discretion of patients, it is more chal-
lenging to define the set of individuals who are lost to follow-up and eligible for tracing. One can
discretize time in such settings and declare individuals not seen in several potential periods as lost
to follow-up. We also assumed a progressive disease process in which all states can only be entered
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once. It is well-known that transition intensities involving recurring states are more poorly estimated
under panel observation schemes (Lange and Minin, 2013; Ma et al., 2016). Moreover, when as-
sessments are far apart in time (relative to dynamic features of the process of interest) estimates of
transition intensities are less efficient compared to when the assessments are closer in time; the effect
of widely spaced assessment times is smaller on other features such as state occupancy probabilities.
These issues pertain to the conduct of tracing studies for non-progressive processes so one should
expect a smaller gain in efficiency from “optimally” tracing individuals for in reversible processes.

The likelihood we constructed presumes that individuals selected for tracing do, in fact, furnish
the required information. With respect to survival status, death records can be searched and so this can
be acquired independently of family engagement, but it may ultimately not be possible to determine
even survival status for individuals who have moved away. In such situations, the realized gain in
precision may be less than anticipated. Information on progression status, which is more dependent
on individual participation, may not be readily available because of initial refusals, or may require
a number of attempts to secure data. In such cases it may be necessary to build and integrate more
elaborate models for the tracing process which characterize the data acquisition process. Interestingly,
even if a SMAR mechanism governs attrition, data may become missing not at random if the individ-
uals responding to tracing comprise a biased subset of those selected for tracing. Thus if tracing is
incompletely executed, modeling the success of the tracing process may be important to make suitable
adjustments to the likelihood. Data on the outcome of each attempt to contact individuals should be
recorded to facilitate fitting of models for the response process in tracing studies. Similar modeling
exercises have been done in settings where the tracing selection mechanism is non-ignorable due to
truncation in the cohort using likelihood and pseudo-likelihood approaches (Titman et al., 2011).

ACKNOWLEDGEMENTS

This research was supported by an Alexander Graham Bell Canada Graduate Scholarship to N. Moon,
Discovery Grants from the Natural Science and Engineering Research Council of Canada to L. Zeng
(RGPIN 115928) and R. J. Cook (RGPIN 155849) and from the Canadian Institutes for Health Re-
search to R. J. Cook (FRN 13887). R. J. Cook is a Canada Research Chair in Statistical Methods for
Health Research. The authors would like to thank Drs. Dafna Gladman, Vinod Chandran and Lihi
Eder of the Centre for Prognosis Studies in Rheumatic Diseases for helpful discussions.

REFERENCES

Albert, P. S. and Brown, C. H. (1991). The design of a panel study under an alternating Poisson
process assumption. Biometrics, 47(3):921–932.

Control, D., Group, C. T. R., et al. (1993). The effect of intensive treatment of diabetes on the
development and progression of long-term complications in insulin-dependent diabetes mellitus. N
Engl J Med, 1993(329):977–986.

Cook, R. J. (2000). Information and efficiency considerations in planning studies based on two-state
Markov processes. Journal of Statistical Research, 34:161–178.

Cox, D. R. and Miller, H. D. (1965). The Theory of Stochastic Processes. CRC Press, Boca Raton,
FL.

Early Treatment Diabetic Retinopathy Study Research Group and others (1991). Fundus photographic
risk factors for progression of diabetic retinopathy: Etdrs report number 12. Ophthalmology,
98(5):823–833.



Moon NC, Zeng L and Cook RJ 17

Emery, A. F. and Nenarokomov, A. V. (1998). Optimal experiment design. Measurement Science and
Technology, 9(6):864–876.

Farewell, V. T., Lawless, J. F., Gladman, D. D., and Urowitz, M. B. (2003). Tracing studies and
analysis of the effect of loss to follow-up on mortality estimation from patient registry data. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 52(4):445–456.

Hogan, J. W., Roy, J., and Korkontzelou, C. (2004). Handling drop-out in longitudinal studies. Statis-
tics in Medicine, 23(9):1455–1497.

Hwang, W.-T. and Brookmeyer, R. (2003). Design of panel studies for disease progression with
multiple stages. Lifetime Data Analysis, 9(3):261–274.

Jackson, C. H. (2011). Multi-state models for panel data: the msm package for r. Journal of Statistical
Software, 38(8):1–29.

Kobayashi, S., Sata, F., Sasaki, S., Braimoh, T. S., Araki, A., Miyashita, C., Goudarzi, H., Kobayashi,
S., and Kishi, R. (2016). Combined effects of ahr, cyp1a1, and xrcc1 genotypes and prenatal
maternal smoking on infant birth size: Biomarker assessment in the Hokkaido study. Reproductive
Toxicology, 65:295–306.

Kreiger, N., Tenenhouse, A., Joseph, L., Mackenzie, T., Poliquin, S., Brown, J. P., Prior, J. C., and
Rittmaster, R. S. (1999). Research notes: The Canadian multicentre osteoporosis study (CaMos):
Background, rationale, methods. Canadian Journal on Aging/La Revue canadienne du vieillisse-
ment, 18(03):376–387.

Lakshman, R., Whittle, F., Hardeman, W., Suhrcke, M., Wilson, E., Griffin, S., and Ong, K. K.
(2015). Effectiveness of a behavioural intervention to prevent excessive weight gain during infancy
(the baby milk trial): study protocol for a randomised controlled trial. Trials, 16(1):1.

Lange, J. M. and Minin, V. N. (2013). Fitting and interpreting continuous-time latent Markov models
for panel data. Statistics in Medicine, 32(26):4581–4595.

Lawless, J. F. and Nazeri Rad, N. (2015). Estimation and assessment of Markov multistate models
with intermittent observations on individuals. Lifetime Data Analysis, 21(2):160–179.

Ma, J., Thabane, L., Beyene, J., and Raina, P. (2016). Power analysis for population-based longitu-
dinal studies investigating gene-environment interactions in chronic diseases: A simulation study.
PloS One, 11(2):e0149940.
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