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ABSTRACT 

Climate change is one of the major concerns affecting society. Given the severe effects 
of global warming, efficient CO2 capture and storage (CCS) technologies have become an 
urgent necessity. One of the major challenges of CO2 disposal is the intensive energy 
consumption associated with current CO2 capture technologies. Chemical looping combustion 
(CLC) is an emerging technology that requires lower energy expenditure compared to other 
CO2 capture methods. The key is to use an oxygen carrier (OC), which avoids direct contact 
between air and a fossil fuel. OC development is thus key to improve CLC performance.  

Although numerous studies have been reported in the literature regarding OC 
development, the majority of these studies entail experimental investigations. Theoretical 
studies on this subject have been limited. As a result, the reaction mechanisms, the microscopic 
insights into the OC performance and the significant factors influencing OC performance are 
still not clear even for some of the most popular OCs such as NiO. In addition, multi-scale 
simulations combining density functional theory (DFT) analysis and microscopic modelling in 
this area are scarce.  

This study provides a comprehensive investigation of syngas adsorption and combustion, 
using NiO as the OC through developing multi-scale models those take into account the effects 
of oxygen vacancies and nearest neighbours. 

An analysis of the syngas adsorption principle on NiO while considering the neighbouring 
effects was considered first. In particular, this work described the adsorption principles of 
syngas (i.e. CO and H2) on a clean NiO (100) surface under single and multiple first nearest 
neighbouring effects using DFT analysis. The results showed that the adsorption stability of 
CO and H2 is mostly weakened by the first neighbour compared to the second, third and fourth 
neighbours. With the same species as nearest neighbours (i.e. uniform adsorption), syngas 
adsorption stability was reduced when the number of neighbours increased. However, when 
compared to uniform adsorption, the adsorption stability of CO and H2 was slightly stronger 
with neighbouring sites occupied with different species (hybrid adsorption). In addition, a 
lower degree of symmetry seemed to strengthen CO and H2 adsorption. Results from this DFT 
study showed that the adsorption stability of CO and H2 in the presence of neighbours is highly 
related to steric, hybrid and symmetry effects. This study is key for the development of a multi-
scale model for this system.  

Next, DFT calculations of syngas combustion with NiO were conducted to reveal the 
elementary reaction mechanisms: CO oxidation proceeds through a one-step mechanism while 
H2 oxidation proceeds through a three-step mechanism. Among them, H2 decomposition was 
proven to be the controlling step that dominated the overall syngas combustion process. These 
results were used to build a DFT-based mean-field (MF) multi-scale model, which verified the 
accuracy of the proposed reaction kinetics. The results from this multi-scale model showed 
that high temperatures and low pressures will lead to high CO2/H2O product ratios. The 
reaction kinetics obtained from this study were used to further analyze other factors that affect 
OC performance. 
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A theoretical analysis of the studied system was conducted to gain insights on the vacancy 
effects on syngas adsorption, syngas oxidation and oxygen migration. The adsorption analysis 
and the proposed reaction mechanisms showed that the presence of the defective sites benefit 
the syngas oxidation reactions. In particular, H2 oxidation changed from a 3-step process on a 
perfect surface (i.e. without vacancies) to a 2-step process on a defective surface. The CO 
oxidation reaction was shown to dominate the overall syngas oxidation process. In addition, 
the outward diffusion direction of oxygen migration was observed from the bulk side to the 
surface. The resulting reaction kinetics and the vacancy effects were validated against 
experimental data using the DFT-based MF multi-scale model.  

The neighbouring effects on syngas oxidation were studied next using DFT calculations. 
An analysis on the activation energy showed that CO oxidation is slightly weakened by the 
CO neighbours, but it is enhanced in the presence of H2 neighbours. Meanwhile, H2 
decomposition, hydrogen migration and H2O formation were mostly enhanced by their 
neighbours, with the exception of the three H2 neighbour configuration. In addition, the CO 
neighbours resulted in more significant changes in the reaction equilibrium. The resulting 
neighbouring effects on syngas adsorption and combustion were used to establish a DFT-based 
kinetic Monte Carlo (kMC) multi-scale model. The results from this model indicated that CO 
adsorption is the most sensitive step to neighbouring effects while CO oxidation is the least 
sensitive. OC conversion is enhanced by the neighbouring effects on CO adsorption and H2O 
formation. Moreover, the neighbouring effects on the H2 chemisorption weakened the OC 
conversion. The significant changes observed in OC conversion with and without neighbouring 
effects implied that this studied phenomena are key to predict a realistic OC performance. 

Overall, the multi-scale models developed in this research revealed the adsorption 
principle and reaction mechanisms of the studied system, while also considering the critical 
influencing factors of vacancies and nearest neighbours. Electronic analyses were additionally 
conducted on each step in this investigation to further support the conclusions. The vacancies 
generally enhance the OC performance. The neighbouring effects, meanwhile, benefit the 
syngas oxidations but weaken the syngas adsorption process. The significant changes caused 
by the effects of vacancies and the nearest neighbours implied that it is critical to consider 
these effects to capture the OC performance. The developed multi-scale models related the 
electronic-distribution-based DFT results to the experimental observations at the macroscopic 
scale. Therefore, the challenge of validating the results from DFT analyses by the experimental 
observations were overcome. Additionally, the developed multi-scale models also estimated 
the reaction kinetics and their influencing factors under practical operating conditions. The 
proposed DFT-based kMC model provided a method to consider the dynamic effects caused 
by the changing surface environment. This multi-scale study served to fill some of the current 
gaps in the literature in this area.  

 

Key words: Chemical looping combustion; Oxygen carrier; Density functional theory; Kinetic Monte 

Carlo; Mean-field; Multi-scale simulation  
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  Introduction and Motivation 

1.1  Motivation 

With the continuous growth in human population, the demand for food, energy and 

fundamental living resources has significantly increased. According to Godfray et al.1, world 

hunger significantly affects more than 14% of the world population this century. It is also 

expected that by 2050, an increase of 70-100% in food supply will be required to meet the 

population’s demands. To circumvent this issue, industrial activities have increased to comply 

with global demands. The necessary rise in industrial production has brought severe 

environmental problems and the inevitable drop in non-renewable resources. The sustainability 

of the environment and resources is becoming a major global concern. In terms of industrial 

development, the production of valuable materials and products need to satisfy the increasing 

population demands; however, this needs to be performed in a sustainable fashion such that 

there is a balance between available resources and manufacture of valuable products. New 

materials and technologies are in urgent need to advance industrial development by 

considering environment and resource sustainability. Among all the studied aspects of 

industrial sustainability (IS), the continuous growth in CO2 emissions from fossil fuel 

combustion have attracted attention due to their environmental impact and global 

sustainability2-3.  

According to the International Energy Agency (IEA) report in 20204, fossil fuel accounted 

for almost 81% of the overall energy supply in 2016, as shown in Figure 1-1. Due to the current 

energy demands, fossil fuels are still not replaceable by renewables due to their relatively low 

costs and continuous development of efficient combustion 5-7. Nonetheless, the impact on the 

environment from the combustion process of fossil fuels has become one of the most severe 

problems. One of the most serious consequences of fossil fuel combustion is greenhouse gas 

effects. Among all the greenhouse gas emissions, CO2 represents almost 75% of greenhouse 
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gases. Furthermore, CO2 has relatively long residence times, i.e. it remains in the atmosphere 

for long periods of time8. Thus, technologies aimed at reducing CO2 emissions are key to 

achieve environmental and resource sustainability while satisfying the current energy 

requirements for industrial activities. One approach that can be considered to reduce CO2 

emissions to the atmosphere is through the deployment of technologies that can capture, store, 

manage and eventually utilize the CO2 produced from large stationary sources such as fossil-

fired power plants. The development of efficient CO2 capture systems engaged with the 

continuous production of power from fossil fuels is appealing since it could drive the 

sustainable development of fossil-fired energy technologies with near-zero emissions. 

 

Figure 1-1 Combustion of fossil fuels to the overall energy supply in 2018 

In general, CO2 disposal technologies usually sacrifice part of the overall system energy 

utilization efficiency to achieve the purpose of CO2 capture. 9-11. To reduce the energy penalty, 

Chemical Looping Combustion (CLC) has attracted attention in past decades due to the 

inherent CO2 separation that occurs in this process thus avoiding the need of additional capital 

and operational expenditures. This leads to a relatively low CLC energy costs compared to 

other carbon capture and storage technologies12. An indirect combustion of fuels is achieved 

using an oxygen carrier (OC) in CLC process, which minimizes the irreversible entropy during 

the combustion process. OCs act as an oxygen medium, preventing the direct contact between 

air and fossil fuels thereby reducing the energy costs of the CO2 disposal since energy intensive 

gas-gas separation process are avoided. Improving OC performance is, therefore, one of the 

key drivers for CLC development. More details of CLC technology are further discussed in 

section 2.1. 
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In the studies of OC development, certain properties of OCs are desired for specific 

applications of the CLC process such as high reactivity and long-term stability. 13 Though there 

are extensive experimental studies of OC development available in the literature, the 

computational reports are still comparably limited. Nowadays, computational studies are 

trending because they can accelerate materials’ screening and provide fine-scale insights that 

cannot be obtained from experiments. Among all the computational methods, Density 

functional theory (DFT) is one of the most popular calculation approaches used to provide 

atomic structural analysis and reaction kinetics based on the electron distribution of the system 

under consideration. Although DFT is widely used in materials’ development (e.g. catalyst 

design), the number of DFT analyses in OC development is relatively limited. The most studied 

OC using DFT analysis are Fe-based OCs 14-16 followed by Cu-based OCs17. Ni-based OCs are 

one of the most popular OCs in CLC; however, only a limited number of DFT studies for NiO 

has been reported 18. As a result, the reaction mechanisms and the significant influencing 

factors of fossil fuel combustion using NiO as OC have not been investigated and reported in 

the open literature.  

Typically, the adjacent structural properties have significant effects on the adsorption and 

reaction sites in heterogeneous system, which is reflected by the changes observed in the 

material properties (e.g. the reaction activity). 19-22  It is therefore necessary to consider aspects 

such as the surface oxygen vacancies and the nearest neighbours in the CLC process (e.g. 

neighbouring adsorbed species) since the adjacent properties are expected to considerably 

affect the OC performance. Currently, only a few theoretical reports of surface oxygen 

vacancies are available in the literature, most of which have been focused on the CH4 oxidation 

process16 23. Those studies have indicated that the oxygen vacancies significantly enhance OC 

performance. Consequently, the vacancy effects have not been fully explored in the theoretical 

studies. Regarding the effects of the nearest neighbours, to the author’s knowledge, there are 

no computational studies considering this factor currently available within the area of OC 

development.  

Outcomes from DFT analysis are mostly energetic results and atomic structural 

characteristics, which can be difficult to validate using experimental observations. A multi-

scale modelling approach can thus be used to relate the reaction kinetics obtained from the 
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DFT analysis to the larger temporal and spatial evolution of the system, which enables a direct 

comparison with the experimental observations. A mean-field (MF) model can be constructed 

based on the reaction kinetics obtained from the DFT analysis, in order to predict the dynamic 

properties of the system, i.e. coverages of the surface species, within a reasonable time range 

(e.g. 1 min), which can be used to verify the proposed reaction kinetics from DFT analysis. 24 

The MF model, however, assumes homogeneous distribution for all the surface species, i.e. 

the effect of adjacent adsorbed species such as nearest neighbours are not taken into account.25 

To investigate the effects of the nearest neighbours, kinetic Monte Carlo (kMC) models can be 

built to account for the temporal evolution of the neighbouring effects by integrating these 

effects into the rates of the possible events (i.e. elementary reactions) based on the reaction 

mechanisms. DFT-based kMC multi-scale models have shown great potential of bridging the 

energy-based reaction kinetics with the measured statistical properties of the system. 26-27 

However, the only DFT-based kMC scheme reported for OC development was proposed by 

Andersson et al.28 and focused on the multi-scale integration of the CH4 reforming process 

using Fe2O3 as OC. However, no neighbouring effects are considered in this work. Therefore, 

DFT-based kMC multi-scale models that take into account the effects of the nearest neighbours 

are not available in the open literature. The lack of multi-scale theoretical reports in OC 

development makes it difficult to relate the microscopic phenomena to experimental 

observations, thus imposing a limitation towards the commercial development of this 

technology. 

1.2 Research Objectives 

In order to contribute to the aforementioned gaps in the literature for OC development, 

this Ph.D. study presents a systematic multi-scale modelling framework of syngas combustion 

with NiO as OC. This research will take into account neighbouring and vacancy effects in the 

system, thus advancing our understanding of these aspects in OC development. The reaction 

kinetics are revealed in the studied system while taking into consideration the aforementioned 

effects. Multi-scale models can be developed to validate the obtained reaction kinetics and 
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microscopic phenomena via comparison to the experimental observations at conditions that 

CLC processes are typically operated. The specific objectives of this thesis are as follows: 
• Perform a DFT analysis to reveal the principle of syngas adsorption in consideration of 

the neighbouring effects on NiO and provide an electron distribution analysis that 

theoretically supports the specific insights gathered from DFT. 

• Provide insights into the syngas combustion on NiO by developing a DFT-based MF 

model for the validation of the reaction mechanisms and property predictions of the 

system (e.g. product selectivity) under practical operating conditions (e.g. inlet 

composition, temperature and pressure). 

• Investigate the vacancy effects on the adsorption and reaction mechanisms of syngas on 

a defective NiO surface, i.e. a surface that has an oxygen vacancy in the surface layer. 

Provide insights into the oxygen bulk migration process that contributes to the oxygen 

supply. Establish a DFT-based MF model using reaction kinetics developed on the 

defective surfaces to further validate the insights gained from this phenomena. 

• Reveal the effects of nearest neighbours on the syngas oxidation using NiO. To 

accomplish this goal, a DFT-based kMC model is developed that accounts for the 

dynamic neighbouring effects caused by the changing surface environment. The proposed 

multi-scale model will be used to validate the insights gained from this process and to 

predict the properties of the studied system under practical operating conditions. 

1.3 Research Contributions 

This PhD study contributed to the body of work in OC development as follows: 
• The neighbouring effects from the specific neighbour configurations are provided for the 

OC development to fill in this gap in the literature. It is shown that taking the effects of 

first nearest neighbours into consideration on the syngas adsorption is critical to 

accurately predict OC performance. The DFT analysis shows that adsorption stability is 

affected by the hybrid, steric and symmetry effects caused by the nearest neighbours. The 

increasing number of neighbours presents to weaken the adsorption stability of both CO 
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and H2. Particularly, the first loaded neighbour suppresses syngas adsorption the most 

significantly. A highly symmetric neighbour configuration tends to increase the 

adsorption energy, whereas the hybrid nearest neighbours result in higher adsorption 

stability compared to the uniform nearest neighbours.  

• The elementary reaction mechanism for syngas combustion on NiO is established. A 

DFT-based MF model is developed based on the obtained reaction kinetics to verify the 

accuracy of the DFT calculations and estimate the reaction kinetics under practical 

operating conditions. An electron distribution analysis is provided to further support the 

outcomes of this study. H2 decomposition is proven to be the controlling step of syngas 

oxidation on a perfect NiO surface. 

• The vacancy effects on syngas adsorption and oxidation with NiO are investigated for OC 

development. The reaction mechanism of the studied system on a defective NiO surface 

are revealed and validated through a DFT-based MF multi-scale model. An electronic 

distribution analysis is performed to further support the insights into the vacancy effects. 

Surface vacancies are proven to enhance the syngas oxidation process. 

• The effects of first nearest neighbours of syngas combustion on the NiO surface are 

provided. A DFT-based kMC multi-scale model is developed to investigate the 

neighbouring effects on both syngas adsorption and combustion in a dynamic surface 

environment. The neighbouring effects are observed to significantly enhance the syngas 

oxidation by NiO, and are therefore critical to adequately capture OC performance. This 

model fills in the gap by providing a tool that predicts the OC performance as affected by 

the temporal evolution of the first nearest neighbours in a changing surface environment.  

1.4 Outline 

The remainder of this thesis is organized as follows: 

Chapter 2 presents an overview of CLC and OC development, multi-scale modelling, 

DFT, and microscopic modelling (i.e. the MF and kMC methods). The literature gaps within 



 

7 

the theoretical studies of OC development are identified to motivate the development of this 

study. 

Chapter 3 provides a comprehensive insight into the syngas adsorption on the NiO 

surface. Neighbouring effects are considered to investigate adsorption stability. The hybrid 

effects, symmetry effects and steric effects are emphasized to explain the syngas adsorption 

affected by the nearest neighbours. An electronic analysis is performed to further support the 

DFT calculations.  

Chapter 4 presents a theoretical study that reveals the reaction mechanism of syngas 

combustion by NiO as OC. The resulting reaction kinetics are used to develop a MF model. 

The DFT-based MF model predicts the performance of the studied system under practical 

operating conditions. Validation of the DFT-based MF model was performed and also shows 

the predictability properties of the proposed reaction mechanism. An electronic analysis is 

performed in this part of the research to further validate the DFT results. 

Chapter 5 investigates one of the critical factors affecting the OC performance: oxygen 

vacancies. A comprehensive analysis of both adsorption and reactions is provided. The 

relevant oxygen migration in the bulk is also studied to provide insights into the oxygen supply 

from NiO. A DFT-based MF model is employed, which considers the vacancy effects on the 

reaction kinetics. In addition, the DFT-based MF model is validated in this section to show the 

accuracy of the DFT results. An electronic analysis is conducted to support the DFT outcomes.  

Chapter 6 provides a systematic analysis of the neighbouring effects on OC performance. 

An explicit investigation of reaction mechanisms in the presence of different neighbour 

configurations was performed. The resulting neighbouring effects on reactions and absorption, 

obtained from Chapter 1, are employed to establish a kMC model. The proposed multi-scale 

model was validated using experimental observations available in the literature and evaluated 

under the practical operating conditions. An electronic analysis is also provided to support the 

outcomes from this study.  

Chapter 7 presents the conclusions of this study. Future research studies are also outlined 

at the end of this chapter. 
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 Background and Literature Review 

CLC has great potential as an energy supply, which achieves an environmentally friendly 

and sustainable use of fossil fuel. OC development has been one of the key aspects investigated 

during the last decades to improve CLC performance. However, most of the studies of OC 

development are experimental reports, i.e. only a limited number of theoretical studies in this 

area are available in the literature. Multi-scale modelling involving fine and coarse scale 

phenomena is expected to provide valuable guidance for OC development, since they can 

predict microscopic phenomena and be used for validation purposes (e.g. against experimental 

reports). In addition, these models can be used to perform computer aided materials design and 

guide expensive and costly experimental studies in this area. The information presented in 

section 2.1 and section 2.2 has been published. 29 

This chapter presents an overview on the current state-of-the art studies on OC, in 

particular those involving theoretical studies of OC development as a support for the main 

motivation for this study. This chapter will first provide a general introduction to the CLC 

process and OC development in sections 2.1 and 2.2, respectively. Section 2.3 outlines the 

multi-scale coupling methods and a detailed description of the multi-scale simulation scenario 

used in this study. The principles behind DFT, MF and kMC are discussed in sections 2.4 and 

2.5. A literature review on the computational studies of OC development is also provided in 

these two sections. Section 2.6 summarized the gaps in the literature that motivate this study.  

2.1 Chemical looping combustion 

Fossil fuel combustion is currently irreplaceable as the major energy resource in the 

world. The inevitable issue of CO2 emissions caused by fossil fuel combustion has become a 

focus of industrial sustainability. Therefore, technologies to reduce greenhouse emissions, 

especially CO2, are key to curbing global warming. As displayed in Figure 2-1, CO2 disposal 

technologies are usually classified as pre-combustion, which reduces carbon capacity of fuels 

before combustion occurs; post-combustion, where the flue gases generated after combustion 

are cleaned; and oxy-fuel combustion, which makes use of pure O2 as the oxidizer. Post-
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combustion is a relatively mature commercial technology that favours low-pressure processes. 
8, 30 However, the energy penalty of CO2 separation while adopting post-combustion 

technologies (e.g. amine-based solvents) is from 25﹪ to 40﹪31. The post-combustion process 

has the challenge of the ambient pressure and low CO2 concentration in a large amount of gas 

stream, i.e. in the post-combustion process CO2 partial pressure is usually less than 0.15 atm32. 

Pre-combustion technologies can significantly reduce the energy consumption associated with 

CO2 capture, particularly in systems that operate at high pressures. However, low temperatures 

are usually required to maintain the high efficiency of this process. According to a previous 

study33, the energy penalty of the net plant efficiency in IGCC (Integrated Gasification 

Combined Cycle) plant with pre-combustion technology is from 7% to 9.5%. Compared to the 

pre and post combustion technologies, oxy-combustion usually adopts a recirculation process, 

which lowers the energy penalty through the separation of O2 from the air before combustion. 

Despite its benefits, this technology is still intensive and requires significant energy demands, 

mostly in the separation of O2 from the air. Despite the advances in these technologies, their 

mutual process of energy-intensive gas-gas separation generally lead to the decrease in the 

efficiency of the overall system energy utilization. 31 Chemical looping technology is therefore 

attracting attention due to its ability to separate CO2 with minimum energy consumption. 34 

 

Figure 2-1 An overview of CO2 capture technologies 
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The key concept in CLC is to process the fossil fuel combustion by introducing oxygen 

intermediates such that the CO2 stream produced by the combustion is highly concentrated. 

The gas-gas separation process generally required for CO2 disposal is avoided, and therefore 

the CLC process can achieve the energy supply from fossil fuel combustion with low energy 

cost. 35-37 

CLC has the in-situ CO2 separation property, which makes the fuel combustion and CO2 

separation process to occur in a one-step scheme. The intermediate oxidation via metal-oxide 

(CuO) was proposed by Lewais and Gilliand in 1954 to convert CO to pure CO2 while 

prohibiting the inert gas (mainly N2) within the air from mixing with the CO2 flue gas. 38 Later, 

Richter and Knoche proposed a two-reactor scheme by allowing the intermediate contact of 

fuel with oxygen. 39 This resulted in a decrease in the irreversible entropy production during 

the fuel combustion process. 39 The formal term, CLC, was not introduced until 1987 by Ishida 

et al. 40, who showed that CLC could be realized with high thermal efficiency. In a subsequent 

report, Ishida et al. (1994) combined the high energy efficiency CLC process with its inherent 

CO2 separation property. 41 This relatively mature combustion system lead to the development 

of various chemical looping technologies. From then on, extensive research, mostly on reactor 

design and OC development, have been reported. 7, 42-47 
 

  

Figure 2-2 Reaction scheme of (a) type I CLC process and (b) type II CLC process 

 

Based on the reaction properties, there are two types of chemical looping schemes that 

can proceed the fuel conversion process. As shown in Figure 2-2 (a), type Ⅰ CLC processes the 
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indirect combustion of fuels by introducing an OC, which minimizes the irreversible entropy 

during the combustion process. In the first reactor (the reducer), metal oxides are reduced to 

process the full oxidation of either gas or solid fuels, e.g. syngas or coal. The reduced metal 

oxides are then transported into the second reactor (the combustor) to be re-oxidized by air, 

thus forming a loop. Through CLC, the combustion process is energy-effective since it 

simultaneously captures CO2 and produces heat, thus promoting energy, environmental and 

ecosystem sustainability. As shown in Figure 2-2 (b), type II CLC also requires two reactors, 

i.e. a carbonator and a calciner, including CO2 transport using CO2 carriers. In the carbonator, 

CaO is carbonated by CO2 into CaCO3, whereas in the calciner, the CaCO3 undergoes a 

calcination reaction to release CO2 at high temperatures. In general, the utilization of the 

intermediate (e.g. CaCO3) increases the efficiency of energy utilization for CO2 disposal. 48-49 

Guo et al.50 combined experimental and DFT methods to study metal promoter effects in type 

II CLC process (e.g. Al, Mg, Zr and Na). Zr and Na benefit CO2 adsorption while Al and Mg 

weaken the adsorption. Ca-based material, however, has only rarely been studied in 

computational studies.  

The two key drivers for the development of CLC technology are reactor design and OC 

performance. The interactions between the OC and the fuels highly affect the conversion 

efficiency, which is determined by the shape and size of the reactors. Thus, reactors should be 

carefully designed to maintain adequate contact between fuels and OCs. Likewise, attrition, 

agglomeration and leakage should be controlled to minimize the loss of active OCs in the 

recirculation process. Another important aspect considered to improve the CLC process is OC 

development, which is the focus of this study. 

2.2 Oxygen carrier 

This section provides a general overview to OCs’ desirable characteristics, the most 

studied OCs and typical methods to enhance OC performance. Numerous studies have shown 

that the properties of OC can significantly affect CLC performance. 51-52 Therefore, OC 

development has been the focus in the area of CLC investigation for decades. The active 

components of OCs are usually metal oxides, and specific characteristics are preferred for high 
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performance of CLC. High redox reactivity and desirable selectivity are usually the first 

consideration in the selection of OCs. Also, sufficient oxygen transport capacity is preferred 

for maintaining an acceptable rate of fossil fuel combustion.13 To guarantee long-term stability, 

high mechanical strength for the resistance of OC to attrition, fragmentation and agglomeration 

is expected, especially under stringent operating conditions (e.g. 20 bar, around 1000℃).37, 53 

Another aspect to consider is the environmental impact of OC materials, i.e. Ni-based OCs are 

toxic and can be converted into stable nickel subsulphide (Ni3S2) especially in the in-situ 

Gasification Chemical Looping Combustion (iG-CLC) process. 54 The cost of OC is an aspect 

that cannot be ignored for large scale utilization. 55 Additionally, coke formation is of great 

significance for OC development since coke could be transported to the oxidizer, which may 

lead to CO2 emissions. This issue can be controlled by adopting suitable operating 

temperatures for the CLC process and avoiding carbon-intensive fuels such as CH4. 56An 

extensive research on OC development provides specific applications for different OCs, which 

are determined by their features. The most commonly studied OCs are Cu-based, Fe-based and 

Ni-based. Among them, Cu-based OCs stand out for their application in the Chemical Looping 

Uncoupling (CLOU) process because of their unique thermodynamic property, which enables 

these OCs to release O2 in the fuel reactor for solid fuel combustion. 57-58 The CLOU process 

intensively employed the Cu-based OCs due to their advantages of high reactivity, large 

oxygen transport capacity and relatively low cost. 59 Meanwhile, Fe-based OCs are widely 

employed for syngas production in the iG-CLC process for solid fuel gasification, which rely 

on their low cost and environmental compatibility. 60-61 Ni-based OCs have also been widely 

investigated in experimental settings; particularly under harsh operating conditions. 62-63 

Although Ni-based OCs have aforementioned detrimental environmental effects, the high 

reactivity of Ni-based OCs and their catalytic potential of breaking C-H bonds make them one 

of the most popular OCs. 8, 13, 64 65 In addition to the OC materials described above, other OC 

materials have also been studied in the literature. Ce-based OCs have the advantage of high 

oxygen mobility and storage capacity whereas Mn-based OCs are known for their good redox 

properties66. Similarly, Co-based OCs have been investigated for their high oxygen-

transmission capacity67. Nowadays, perovskite-type materials are trending due to their 

property of high O2- anion mobility13. More and more materials are being developed and tested 
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for their desirable properties in specific utilization of the CLC process. A thorough review on 

OC materials is available elsewhere. 55, 68 

In order to improve OC performance, the addition of supports and metal promoters of 

OCs are usually considered based on previous reports. 43, 69-72 OC supports such as TiO2, Al2O3 

and ZrO2 are commonly used to strengthen the active components. 62, 73-74 Support effects have 

proven to enhance OC properties such as reactivity, stability and durability. 75 TiO2 has high 

chemical and thermal stress, but it shows low activity and impurity formation as a support of 

OC. 8 The favoured fluidization properties of Al2O3 attracted particular attention to this support. 

ZrO2, on the other hand, is proven to enhance the oxidation rates of OCs.66 CeO2 has become 

an attractive support lately due to its ability to stimulate the formation of vacancies and increase 

oxygen transfer rates.76 However, the impurity of OCs resulted from the addition of the 

supports has become a problem during the CLC process. The widely used Al2O3 support leads 

to the formation of NiAl2O4 under operating temperatures above 1,000℃, thus leading to a 

loss of reactivity. In addition, the metal promoters in mixed-metal-based OCs have shown their 

potentials for combining the advantages of several single metal-based OCs and overcome their 

limitations. For instance, Co-doped NiO OC with support showed excellent stability and 

reactivity in CLC due to its high metal oxide dispersion and strong sintering resistance. 77 42 

Note that high metal oxide dispersion results in a larger active surface area for CLC reactions, 

while enhanced sintering resistance leads to lower activity decay.  

It is observed that both supports and metal promoters contribute to the formation and 

migration of oxygen vacancies.78-80 The oxygen vacancies generated by the reduction of OCs 

play an important role in improving the OC performance: multiple studies have shown that the 

defective sites of OCs benefit the reaction activities, and also provide active sites for both 

adsorption and reactions. Furthermore, since the fuels most prominently used in CLC are in 

the gas phase (e.g. syngas and CH4), the fuel oxidation by OCs is usually considered as an 

heterogeneous reaction, which is significantly affected by the temporal evolution of the surface 

configuration. 21-22 Despite the progress in this field, most of the studies in this area have 

focused on experimental research. In this work, the effects of vacancies and first nearest 

neighbours will be theoretically investigated given their relevance to OC development. The 

next section provides an overview on multiscale modelling whereas section 2.4 presents the 
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state-of-the art theoretical studies of OC development including the factors mentioned above, 

i.e. oxygen vacancy and first nearest neighbours. 

2.3 Multi-scale modelling 

Theoretical studies have gained attention with the advances in computer science and 

numerical methodologies. The development of the modelling methods allow researchers to 

investigate physical processes at varying length and time scales. Multi-scale modelling 

methods combine different modelling methodologies at various scales, which can range from 

electronic scale methods (e.g. DFT) to macroscopic scale modelling approaches (e.g. 

computational fluid dynamics). Therefore, multi-scale models can provide a comprehensive 

understanding of the systems that evolve at different temporal or spatial scales. For example, 

the thin film deposition process was investigated by Rasoulian et al.81 using a closed-form 

multi-scale model, which was later employed within a nonlinear model predictive control 

(NMPC) algorithm for a robust control strategy for the application of this system under the 

uncertainties. Syngas and hydrogen generation on noble metals were studied using the multi-

scale DFT-based microkinetic analysis for the insights into control and selectivity of this 

process.82 Additionally, heat transfer was investigated using a multi-scale particle-resolved 

simulation that homogenizes the original multiphase system for the modeling its microwave 

heating process.83 An example in the development of biology shows that multi-scale models 

can be applied for mammogram classification.84 Regarding the improvement of the calculation 

efficiency, a non-closed-form multi-scale model using 2nd order Polynomial Chaos Expansions 

with Nonintrusive Spectral Projection (PCE NISP) for uncertainty analysis was proven to 

provide predictions at a comparable level of accuracy using half of the computational cost 

compared to the scenario using 2nd order Power Series Expansion (PSE) by Grigoriy et al.85. 

Additionally, a hybrid multi-scale model was developed to efficiently predict the film 

parameters by Chaffart et al.86 in a thin film deposition process. This model was proven to 

accurately captured the film parameters within only a fraction of the computational cost of the 

previously reported kMC-based multi-scale model by combining the mechanistic multi-scale 

model with artificial neural networks. As for catalyst development, a DFT-based microkinetic 
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model was established by Ren et al.87 to reveal the vacancy effects on a CO2 reduction reaction 

at the three-phase boundary of Ni(111)/samarium-doped ceria surface, which suggested that 

the rate-controlling step on the defective surface is CO desorption regardless of the electrode 

overpotentials. Due to the multi-scale nature of the studied process of this research, CLC, OC 

performance can be captured under three domains: the electronic scale simulation, which 

evaluates the system properties based on electron distribution; the microscopic scale 

performance that considers the kinetic interactions at the atomic scale88; and the continuum 

scale phenomena that follow the classical physical laws such as Newton’s laws of motion and 

the Maxwell equations89. DFT analysis is the most popular electronic scale modeling method, 

which can provide the energetic results, reaction kinetics, and atomic scale OC performance 

based on electron population analysis. On the other hand, the typical microscopic models, such 

as MF and kMC, are used to reveal the atomic scale system properties on the surface model. 

Regarding continuum methods, the time- and spatial-dependent mass, energy and momentum 

conservation laws are simulated by partial differential equations (PDEs). The macroscopic 

properties of the system can be obtained from solving those PDEs using numerical methods, 

such as finite difference analysis (FDA) and finite element analysis (FEA). 89 Multi-scale 

modeling studies can capture the OC performance at different scales by integrating two or 

more of the aforementioned simulation methods for a comprehensive understanding of the 

material properties.  

In a multi-scale scenario, the DFT simulations provide the energetic results, reaction 

kinetics and the OC performance based on the electron distribution. Then the reaction kinetics 

and the reaction rate parameters interpreted from the DFT energetic results can be used as 

inputs to the microscopic models, e.g. MF and kMC for the prediction of the atomic scale 

system dynamic properties on the surface model, e.g. coverages of the surface species. 

Meanwhile, key surface information from the microscopic models such as species coverage, 

production rates and surface temperatures can be passed to the surface boundary conditions of 

the transport equations at the continuum scale.89 Likewise, the key outputs from the continuum 

models, such as the partial pressures of the studied species and temperatures near the surface, 

can be fed back to the reaction rates in the microscopic models.  
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In this research, only the electronic scale and microscopic scale simulations are 

considered to achieve the research objectives outlined in Chapter 1. The continuum model is 

recommended for the future work to advance the understanding of the studied system. The 

simulation methods used in this study are DFT, MF and kMC, which will be explained in detail 

in sections 2.4 and 2.5. Specifically, the DFT outcomes including the reaction kinetics 

occurring at very fine scales can be connected to the system dynamic properties obtained from 

MF or kMC simulations. Consequently, the reaction kinetics proposed by DFT analysis can be 

verified by the experimental observations through the combination of DFT and the microscopic 

simulation, which is usually difficult due to the scale gap between measurable variables in the 

experiments and microscopic configurations.  

The multi-scale scenarios used in this study, DFT-based MF and DFT-based kMC, have 

been previously proven to be powerful tools to study heterogeneous catalytic and reacting 

systems. For example, McEwen et al. 24 developed a DFT-based MF model to simulate 

temperature programmed desorption, which is shown to accurately reproduce the desorption 

behavior of benzene on Pt (111) and Pt3Sn (111). Mei et al. 26 studied the kinetics for the 

selective hydrogenation of acetylene over Pd(111) using DFT based kMC, which included both 

the energetic results and microscopic kinetic information such as the turnover frequency and 

the average surface coverage. Choi et al. 90 studied ethanol decomposition on Rh (111). Their 

DFT results proposed the elementary kinetics of ethanol decomposition on Rh (100), which 

were used in kMC and simplified the kMC events. Furthermore, kMC analysis confirms the 

most probable reaction paths established by DFT through the analysis of the surface coverage 

of the species. Li et al. 91 proposed a first-principle-based kMC research on carbon nanotube 

growth which provides kinetic results that agree well with the experimental outcomes.  

In the area of OC development, multi-scale modelling studies are very limited. To the 

author’s knowledge, there are only a few studies available currently. For instance, You et al. 
92 proposed a multi-scale study combining the MF model and the gas diffusion model for the 

CO oxidation by NiO. That work focused on combining the surface reaction model with the 

continuum gas diffusion model. The explicit reaction kinetics were not reported in that work. 

In the aforementioned study, the sensitivity analysis on the pore size of OC and the rate 

constants showed reasonable tendencies, which implied that the established model generally 
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captured the OC performance in the studied system. In addition, Andersson et al.28 conducted 

a multi-scale simulation using DFT, kMC, an intra-partical transport model and a fluid-particle 

multiphase flow model for the investigation of the reactivity of Fe2O3 in a chemical looping 

reforming (CLR) reactor. Using the developed multi-scale modeling framework, the OC 

utilization in a specific process (Fe2O3 reduction in a small-scale fluidized bed CLR reactor) 

was studied for a better descriptor of the OC performance. Despite these efforts, the lack of 

multi-scale studies in this area shows the urgent need of developing multi-scale models for a 

comprehensive description of OC performance.  

2.4 Density Functional Theory 

To improve the development of OCs, the reaction mechanisms and insights into the 

atomic scale behaviour of OCs can provide effective guidance to tune these materials. The 

experimental studies, however, cannot provide reaction kinetics and the atomic-scale structural 

information (e.g. favoured adsorption sites) due to the scale gap between measurable variables 

in the experiments and microscopic configurations. In addition, it is also challenging for 

experimental studies to discover the factors that affect the reaction kinetics at the atomic scale, 

e.g. the nearest neighbours adjacent to the reaction site. On the other hand, theoretical methods 

such as quantum chemistry are advantageous due to their ability to investigate the reaction 

mechanisms and extract the microscopic scale information at a high efficiency. The precedent 

quantum chemistry method, also referred to as Hartree Fock (HF), was first established in the 

1920s, which was used to provide approximated solutions to the fundamental equation of 

quantum mechanics that describes a chemical system (i.e. Schrodinger’s equation). 93 

However, the HF method neglects electron interactions, and thus, its accuracy is limited. For 

the post-HF calculations, no more than 20 atoms can be simulated in the system owing to the 

intensity of the calculations required by this method. 93 In order to improve the accuracy and 

efficiency of quantum chemistry calculations, the DFT method was proposed. 

Instead of the wavefunction, DFT calculations solve Schrodinger’s equation for the 

unique functions of the electron density. This is the result of the first Hohenberg- Kohn 

theorem, which states that the ground-state energy from Schrodinger’s equation is a unique 



 

18 

functional of the electron density. This unique electron density determines all the quantum 

mechanical properties of the system. 94 Therefore, a function of three spatial variables related 

to the electron density is expected rather than the wavefunction of 3Nelectron variables (Nelectron 

being the number of the electrons in the system). Furthermore, the second Hohenberg- Kohn 

theorem states that the electron density that minimizes the overall energy functional is the true 

electron density related to the full solution of the Schrodinger’s equation. This theorem 

provides the algorithm to solve the Schrodinger’s equation by minimizing the system energy. 

Another important component of DFT is the utilization of the Kohn-Sham equation, which is 

established based on the assumption that the electron density for the fully interacting system 

can be expressed by a set of non-interacting particles. 95 The non-negligible many-body 

interactions are considered in the Kohn-Sham equation by including the exchange-correlation 

potential. Therefore, the problem of solving the many-body Schrodinger equation is avoided. 

Meanwhile, the optimum approximation for the many-body interactions has become key for 

accurate model predictions. 

Local-density Approximation (LDA) is a critical approximation in DFT which states that 

the energy only depends on the electron density at the point where the functional is evaluated. 
96 LDA can predict the functionals of exchange and correlation of a homogeneous electron gas 

system; but it is still not suitable for the prediction of solid state physics. The generalized 

gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof represents an 

improvement to the LDA.97 GGA takes into account the electron density as well as its gradient 

such that the inhomogeneous nature of molecular densities can be well described. On the basis 

of GGA, the hybrid functionals such as meta-GGAs and hyper-GGAs have also been 

developed to achieve higher accuracy and broader applicability. 98-99 A detailed review of the 

DFT method can be found elsewhere.95, 100  

In the field of CLC, DFT analysis has been mostly used to study the reactivity of OCs in 

the redox process. In terms of OC development for CLC applications using DFT analysis, Fe-

based materials are the most widely studied materials14-16 followed by Cu-based OCs17. 

Though NiO-based is one of the most popular OCs in CLC, only a limited number of DFT 

studies for NiO have been conducted18 101. Theoretical studies focused on other metals are 
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scarce in the literature. 102-104 The current state-of-the-art DFT studies for OC development is 

discussed next. 

Dong et al.14 conducted a DFT analysis on Fe2O3 as an OC using CO as a gas fuel. That 

study showed that the Fe2O3 (1102) surface has higher reaction activity with CO than the Fe2O3 

(0001) surface. In another study conducted by the same group, they reported that the high index 

surface Fe2O3 (104) performs better than the low index (001) surface. 105 Carbon deposition 106 

and mercury adsorption107 were also investigated by the same group to assess the impurity 

effects on the Fe2O3 surface. Methane decomposition mechanisms on Fe2O3 have been studied 

using DFT by multiple groups. Different reaction pathways have been established on Fe2O3 

surfaces108-112. Due to the complexity of methane decomposition paths, this reaction 

mechanism is still under debate and will likely be the subject of future research in this area. In 

a different study, Fan et al.9 considered the oxygen vacancy on the α-Fe2O3 (001) surface, 

which has been shown to enhance the partial oxidation of CH4. Later on, Guo et al. 71 tested 

the reduction reaction of more than 30 kinds of doped Fe2O3 OC by analyzing the vacancy 

formation energy and proved that nine kinds of dopants including Li, Na and K enhance the 

deep reduction of Fe2O3 into Fe3O4 in chemical looping hydrogen production process. Other 

fuel molecules reacting on the Fe2O3 surface, such as carbon atoms or CO, have been 

investigated. 113-114 Those DFT studies reported the reaction kinetics in a solid fuel CLC 

process. Miller et al. 115 reported calcium ferrite as an OC for chemical looping partial 

oxidation of methane. The results of DFT analysis suggest that the form Ca2Fe2O5 contributes 

the most to the partial oxidation of methane for syngas as compared to other reduction forms 

of CaFe2O4. Supports such as Al2O3, ZrO2 and MgO have also been studied as the inert support 

of Fe2O3
15, 116-117. Tan et al. 15, 117 investigated the ZrO2 supported Fe2O3 and MgO supported 

Fe2O3. Those studies showed that ZrO2 could enhance the adsorption of CO while MgO 

lowered the reaction barriers of CO oxidation as compared to the pure Fe2O3 OC.  

Cu-based OCs are promising materials for the oxygen uncoupling (CLOU) process since 

O2 is released in the reducer. Zhao et al. 118 studied the support effect on the sintering resistance 

of CuO. In their study of four different supports (TiO2, ZrO2, CuAl2O4 and MgAl2O4), they 

found that all of these supports worked to reduce the energy barriers of the fuel combustion 

process. Among them, CuAl2O4 showed the best performance in the CLOU process. Xu and 
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Zhao119 studied a specially synthesized Cu-based OC with a core (Al2O3)-shell (TiO2) support. 

That study showed that this material could effectively prevent the impurity formation in the 

CLOU process. Studies involving graphene120 and ZrO2
121 supports have also been reported 

and have shown that graphene improves the reaction activity of the OC with CO, whereas ZrO2 

contributes to the CO oxidation. Liu et al.122 demonstrated that Zr benefits the oxygen vacancy 

formation and migration on the CuO surface This leads to a higher reactivity of CuO as the 

OC. In addition, Zhao et al. 123 investigated the CuO oxidation process, which provided the 

theoretical evidence of the complete oxidation process of Cu → Cu2O → CuO. In order to study 

the CuO reduction affected by the particle size, Zhu et al.124 compared the structural 

transformations of bulk, surface and cluster CuO in the reduction process, which proved that 

small particles, i.e. cluster model, are more active to exchange oxygen with fuels.  

Regarding Ni-based OCs, Guo et al. 63 reported that the impurity of H2S significantly 

suppressed the CO adsorption on both perfect and defective NiO surfaces. In addition, the Ni 

oxidation process in CLC was also investigated through DFT analysis. Fan et al. 125 showed 

that Ni as a later transition metal had a weaker interaction with O2 compared to an earlier 

transition metal such as Co. Guo et al. 101 compared the performance of NiO/ZrO2 and 

NiO/MgAl2O4 as OCs to reform CH4 into syngas. That study showed that the ZrO2 support 

exhibited the highest reactivity. Cai et al. 65 proposed an analysis of O2 decomposition on the 

defective NiO surface, which will be discussed in details in the following paragraph. Despite 

these efforts, the behaviour of Ni-based OC at an atomic scale remain unclear due to the low 

number of theoretical studies for this system, which motivates this comprehensive study of 

NiO. 

As discussed in section 2.2, the mixed metal OCs are expected to improve performance 

with the addition of supports and metal promoters. In particular, specific structures of these 

mixed OCs were reported for their favorable characteristics in CLC process. Studies focusing 

on perovskites such as BaMnO3 and SrMnO3 have been reported. Results from those studies 

have shown that different compositions of these materials have resulted in different reaction 

activity performances. 126-129 Another bimetallic OCs, spinel-type oxides have also attracted 

much attention because of their possible higher oxygen capacity than that of perovskites.130-131 

Liu et al.132 revealed that the Co atoms improved the reactivity of CoFe2O4 to oxidize CO. 
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They also proved that the oxygen diffusion in a spinel CoFe2O4 is easier than that in the Fe2O3 

OC. Want et al.133 investigated the spinel CuFe2O4 reaction with C and discovered that the 

CuFe2O4 would be reduced into Fe3O4 with the generation of COx. Fan et al 134 reported a DFT 

analysis combined with experimental data that studied the nature ore ilmenite. In that work, 

the structure of ilmenite (FeTiO3) was chosen to represent the TiO2-supported iron oxide. That 

study presented a comprehensive understanding of the TiO2 support effect on Fe-based OC 

and provides a representative demonstration of DFT study in this area. Since FeTiO3 is the 

active component of ilmenite in addition to MgO and Al2O3
135, that study can be used as a 

basis to develop a new study of trace metal elements in ilmenite as mixed OCs. 

A major aspect of the addition of supports and metal promoters is to stimulate vacancies, 

which are proven to improve the OC performance. Consequently, it is of great importance to 

study the effects of vacancies on the OC performance via theoretical studies. Su et al. 136 

reported that oxygen vacancies can stabilize the CHx radicals thus promoting CH4 dissociation. 

Fan et al. 16 showed that a high concentration of oxygen vacancies in iron oxide lowers the 

energy barriers of CH4 dehydrogenation and the cleavage energy of Fe-C bonds. Furthermore, 

that study showed that the vacancies would prefer to be substituted by the subsurface oxygen 

rather than the horizontal oxygen on the same layer. In terms of surface adsorption, Lee et al.23 

reported that the surface adsorption of CH4 would be promoted by the oxygen vacancies on 

the surface of gadolinium-doped ceria (GDC). Zhao et al. 137 focused on Cu-based OCs and 

showed that the defective sites significantly benefit the sulfur-sensitive CuO adsorption and 

reaction with gaseous COS, the main sulfur-containing species in the in-situ gasification 

chemical looping combustion process. 138 That study highlights the vital effect of the CuO OC 

oxygen vacancies on the degradation of CuO into copper sulfides. Cai et al. 65 showed that 

oxygen vacancies on NiO enhanced the CO adsorption and O dissociation. The vacancy effects 

are valued in the studies of mixed metal OCs particularly, because the addition of metal 

promoters and supports benefits the formation of the oxygen vacancies as mentioned before. 

Zachariah et al. 139 reported that the activation energy and the reaction rate of carbon doped 

with delta-Bi2O3 were improved due to a high oxygen vacancy concentration of the doped 

Bi2O3. Fan et al.80 showed that Li doping-induced oxygen vacancies would benefit the 

adsorption of methyl radicals and suppress the C-H decomposition. Zhu et al.140 showed that 
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oxygen vacancies introduced by Ce doping contributed to the reactivity of syngas generation 

from CH4 via the hexaaluminate OC. Furthermore, the defective sites of perovskites were 

shown to serve as active sites for the breakage of H-O to generate H2 in the steam methane 

reforming process. 141-142.  

Moreover, oxygen ion generation is also facilitated by the oxygen vacancies in both the 

oxidation and the reduction processes of the OCs. Zhao et al.143 showed that the defective sites 

would favour oxygen ion dissociation from water and therefore would benefit both the CO 

conversion and selectivity by the system’s OC, Ca2Fe2O5. During the re-oxidation process, the 

surface vacancies were also proven to promote the decomposition of O2 which would 

theoretically benefit the re-oxidation of OC. Furthermore, Li et al.144 related the increase in the 

oxygen released with the low vacancy creation energy by comparing DFT results and 

experimental involving a CLOU process. In addition to improving the reactivity and the O2 ion 

generation, a high concentration of the vacancies accelerates the oxygen migration from the 

bulk to the surface by vacancy diffusion and tunnel formation; hence, they are important 

processes that can increase the reaction rates as well as the OC capacity. 76, 145-146 Specific 

structures like metal promoters or perovskites have been used for this purpose. Xiang et al. 78 

reported that doped CeO2 would lead to abundant oxygen vacancies and promote oxygen 

mobility. Furthermore, they reported that the vacancies reduce the disadvantageous carbon 

deposition and sintering processes that need to be counteracted in order to maintain the 

reactivity and the stability of the doped OC, Fe2O3/CeO2. Hwang et al. 147 reported that the 

surface oxygen vacancy on the GDC improved the oxygen transfer rate of the studied OC 

during the OC reduction process, and that the lattice oxygen vacancies of the GDC were the 

preferred active sites of oxidation on the reduced OC. Chen et al. 148 found that the oxygen 

vacancies caused micro-structural evolution of the iron oxide and therefore led to the formation 

of a porous structure. Based on the established studies, vacancies play an essential role in 

improving OC performance. However, theoretical studies of oxygen vacancies are still limited 

and mostly focus on the CH4 oxidation process. As a result, the vacancy effects at the 

microscopic scale are still not clear even for some commonly used systems, e.g. NiO OC 

combustion with syngas. In order to improve CLC performance, the studies providing a 

comprehensive analysis of the vacancy effects using NiO is still missing in the open literature.  
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Since the fuels most prominently used in chemical looping process are mostly in the gas 

phase (e.g. syngas and CH4), the fuel oxidation by OCs is usually a heterogeneous reaction, 

which is significantly affected by the temporal evolution of the surface configuration. 21-22 The 

adsorbed species as the nearest neighbours are expected to play a major role in OC performance. 

However, there are no neighbouring effects reported in the theoretical reports for OC 

development. On the other hand, it is proven that the effect of the neighbouring adsorbed 

molecules is relevant, particularly for adsorption studies on catalytic materials since they may 

change the structural configuration of the reacting surface. In the modification of 

semiconductor surfaces, Ren et al. 149 have shown that the neighbouring adsorbed H could 

induce the production of the ferromagnetic order of Si dangling bonds, which provides a way 

to promote magnetism on the Si (111) surface. It has been shown that neighbouring effects 

also play a key role in the decoration of polymers. The neighbouring linkers decorated on the 

adsorbents benefit the adsorption of specific molecules, 150 which could significantly increase 

the polymer saturated adsorption capacity. Hence, neighbouring effects impacts both the 

adsorbed molecules and the decorated surface. Furthermore, the surface decorated functional 

groups, which can be seen as the neighbouring occupied molecules, also affect the surface 

adsorption as well as the elementary reactions. 151-152 Note that the adsorption strength and the 

electronic structure of the OC surface are affected by the neighbours as well. 92, 153-154 Muhler 

et al.155 reported that the pre-adsorbed CO2 strengthens the adsorption stability of CO on the 

ZnO surface by tuning the Lewis acidity of the neighbouring Zn2+ cation. In addition, the redox 

reaction activity on solid surfaces can be significantly affected by the neighbouring atoms in a 

wide range of heterogeneous systems. Futamata et al.156 discovered that the Ru decorated on 

the Pt surface enhance the CO oxidation activity with Pt. Shahid Khan et al.157 proved that the 

CO oxidation activity is also improved by the doped Cu on the MoS2 nanosheet.  

Overall, DFT analyses of the most widely used NiO are still limited so that the reaction 

mechanisms and microscopic insights of NiO with fossil fuels are not known with complete 

certainty. The effects of vacancies and the first nearest neighbours are expected to affect the 

OC performance significantly, which are rarely reported particularly for the NiO system.  
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2.5 Microscopic modelling 

As mentioned in section 2.3, DFT analysis provides the energetic results and the atomic 

scale OC performance. Due to the gap of the scales between the DFT results and the 

experimental outcomes, it is difficult to validate the DFT results using experimental 

observations. Microscopic models such as MF and molecular simulations can be employed 

bridge the gap between DFT outcomes and experimentally observed properties. 

2.5.1 Mean-field approximation 

MF models assume that the adsorbed molecules on the surface are homogeneously 

distributed , and therefore they cannot consider the spatially heterogeneous surface behaviour. 
25 For an OC development system, the variables to be solved by the MF model are the surface 

coverages of each of the adsorbing species. The surface coverage of the different species is 

calculated from the surface accumulation rate obtained from the adsorption, production, 

consumption and desorption events. The surface coverages of the species i, 𝜃𝜃𝑖𝑖 can be predicted 

as follows: 
 

d𝜃𝜃i d𝑡𝑡⁄ = 𝑘𝑘i,ad𝐶𝐶𝑖𝑖,g𝜃𝜃empty‒ 𝑘𝑘𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝜃𝜃𝑖𝑖‒𝑘𝑘𝑖𝑖,𝑑𝑑𝜃𝜃𝑖𝑖                                                              (2-1) 

 

where t is time; 𝑘𝑘𝑖𝑖,ad , 𝑘𝑘𝑖𝑖,rec  and 𝑘𝑘𝑖𝑖,d  are the rate constants of adsorption, reaction and 

desorption; C𝑖𝑖,g is the concentration of species i in the gas phase; 𝜃𝜃empty is the coverage of 

empty sites. Note that multi-step reactions would result into additional ordinary differential 

equations that can describe the evolution of the added surface species. DFT-based MF models 

have been shown to adequately capture the system behaviour. 24, 158 In the area of OC 

development, only one study was reported by You et al. 92 integrating the MF model into a 

multi-scale simulation (see section 2.3); hence the need to further investigate this phenomena 

from the theoretical point of view. Since the MF model cannot consider spatially 

heterogeneous surface behaviour, this model may not be adequate to incorporate key 

influencing factors such as the neighboring effects. Consequently, molecular simulations such 
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as kinetic Monte Carlo can be considered to accurately investigate the temporal evolution in 

heterogeneous systems such as OC behaviour. 159 

2.5.2 Kinetic Monte Carlo 

There are a number of different microscale modelling methods that can be implemented 

to simulate the evolution of heterogeneous systems. Molecular Dynamics (MD) methods are 

one of the most commonly employed modelling methods that can to obtain the dynamic 

properties of a system. MD methods aim to study the time evolution of a system by solving the 

classical equations of motion. Although MD can provide an accurate prediction of the system 

evolution subject to heterogeneous events, it is limited in regards to the time scale that can be 

realistically achieved, e.g. from nanoseconds to microseconds. 160 Experimental results 

involving time-dependent data cannot be compared to that of MD since the data is often 

collected at larger time scales (e.g. seconds). Alternatively, stochastic methods such as kMC 

can be implemented to study heterogeneous system behaviour over larger timescales. The idea 

of kMC is to extend the time limit of MD by analyzing the changes of the system’s state instead 

of solving for the movement of the individual atoms. This basic principle was first established 

in the 1960s 161 and has been continually developed ever since. The currently-used kMC theory 

thus becomes the bridge between the microscopic insights and the measurable properties found 

in experimental studies.160 kMC simulates the dynamic evolution of a system by treating the 

transition as a state-to-state process rather than following the trajectory of every entity in time. 

In heterogeneous catalysis, the kMC kinetic events are based on the reaction mechanisms on 

the atomic surface. These events are randomly selected and executed depending on the event 

probabilities interpreted from the event rates. After each event, the kMC system time is 

incremented based on the rates of all the events that are currently possible. Due to the state-to-

state nature of this method, the kMC modelling approach is capable of simulating system 

events over the same timescales as would be recorded in experimental results. The timescales 

of kMC scenario are mostly determined using the reaction rate constants and the number of 

events happening on the surface. Additionally, kMC is a rejection free algorithm, which 

suggests that for each of the step there must be one event for the system to evolve. Furthermore, 

lattice-based kMC models are capable of achieving even longer simulation times by restricting 
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the movement of the studied molecules to a lattice mesh. This approach is particularly useful 

for surface-based systems such as OCs.91 A general kMC simulation scheme is presented in 

Figure 2-3. 

 

Figure 2-3 kMC scheme 
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As shown in Figure 2-3, kMC establishes the initial surface configuration of an N×N 

lattice and the system time is defined as tsystem=0. Note that N is the total number of the reaction 

sites along one direction of the 2D lattice. Following the surface establishment, all the possible 

surface events (i.e. the reaction mechanism events such as adsorption, reactions, etc.) and their 

corresponding rates are inputted into the system. If the surface is empty, then the absorption 

rate is the only non-zero rate for a given absorption site. For a DFT-based kMC model, the 

explicit reaction kinetics proposed by DFT are inputted in the system at this step. Subsequently, 

the total rate R of the system, i.e. the sum of all the possible events on the established surface, 

is calculated using Equation 2-2 as follows: 
 

R=∑ 𝑁𝑁i𝑘𝑘ii                                                                                                                     (2-2) 

 

where 𝑁𝑁i is the number of possible sites for the kMC event i and 𝑘𝑘i is the rate parameter for 

event i, which is provided by the DFT calculations. Next, the kMC system generates two 

uniform random numbers 𝜌𝜌1 and 𝜌𝜌2 within the range of (0,1] and uses them to randomly select 

a specific surface event n at a specific surface site m, based on their kinetic rates as follows: 

 
∑ (∑ 𝑘𝑘ii )jm−1
j  < R𝜌𝜌1 < ∑ (∑ 𝑘𝑘ii )jm

j                                                                                 (2-3) 

 ∑ 𝑘𝑘in−1
i  < (∑ 𝑘𝑘ii )m 𝜌𝜌2 <∑ 𝑘𝑘in

i                                                                                        (2-4) 

 

where (∑ 𝑘𝑘ii )j is the total rate of all possible events at the specific site j. The selected event is 

subsequently executed at the selected site. Then the surface configuration is updated based on 

the chosen event n at the selected site m. For instance, when the adsorption event is selected, 

the surface will add the adsorbate at the chosen site. For a heterogeneous system subject to 

neighbouring effects, the sites adjacent to the selected site are also updated to consider the 

effects of this new neighbor. To update the system time tsystem, the time interval, 𝛥𝛥t, is obtained 

by generating another uniform random number 𝜌𝜌3 in the scope of (0,1] as follows: 
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𝛥𝛥t = − 1
𝑅𝑅
𝑙𝑙𝑙𝑙𝜌𝜌3                                                                                                             (2-5) 

tsystem=tsystem + 𝛥𝛥t                                                                                                          (2-6) 

 

The evolution of the kMC system is expressed by the updates of the surface configurations 

and the kMC system time. Lastly, the system checks to see if the stopping criterion, i.e. the 

maximum simulation time (tmaxi), has been reached. If the stopping criterion is fulfilled, then 

the kMC model stops. Otherwise, the kMC cycle will be repeated to further advance the system 

evolution. Despite the advantages of kMC modelling, there are very few studies within the 

literature that have applied this method to study OCs. The only report of OC development 

adopting kMC model was performed by Andersson et al.28, which is a multi-scale modelling 

study on CH4 oxidation process (see section 2.3).  

2.6 Summary 

In summary, the theoretical studies of OC development are still limited within the 

literature. Consequently, the reaction mechanisms and microscopic insights remain unclear 

even for one of the most used OCs, NiO. The effects of vacancies and the nearest neighbors 

are expected to affect the OC performance significantly. Nevertheless, the microscopic insights 

into these effects are not fully explored. Studies involving multi-scale modelling can provide 

a comprehensive understanding of the OC performance at different temporal and spatial scales. 

However, only a few multi-scale modelling reports are available within the open literature. 

These gaps motivate the present multi-scale modelling study to advance the knowledge in this 

particular area.  
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 A Density Functional Theory Analysis on Syngas Adsorption on 
NiO (100) Surface 

3.1 Introduction 

As discussed in the previous chapter, the lack of theoretical studies in this emerging area 

of CO2 capture renders these insights unclear even for one of the most studied OCs, NiO. 162-

163 NiO stands out, as an OC, due to its favourable kinetics, potential catalytic abilities and 

high performance under severe operating conditions despite its problems of high cost and 

toxicity. 62 Therefore, a DFT analysis of NiO can enhance our understanding on the 

microscopic behaviour of this OC and become key to improve its performance in the CLC 

process.   

The first step in the redox reaction of NiO is the adsorption of fuel molecules to its surface. 

This phenomenon affects the electronic properties of both the surface of the OC materials and 

the adsorbed molecules. In addition, the first nearest neighbors are proven to significantly 

affect the adsorption behaviour in a heterogeneous system, as presented in Chapter 2. However, 

a theoretical study taking into account the neighbouring effects on the adsorption of fuel 

molecules on OC materials is not currently available in the open literature.  

The aim of this chapter is to present a DFT analysis of syngas adsorption on NiO in 

consideration of the neighbouring effects to reveal the adsorption principles affected by the 

nearest negihbours. The studied fuel (syngas) is widely used in CLC as a promising, 

economical, abundant and environmentally friendly fuel and also represents the major product 

from methane reforming.164 Additionally, syngas generated from biomass conversion is 

oxidized to produce power such as heat in CLC with inherent CO2 disposal. The CO2 originally 

needed to produce the biomass is obtained from the atmosphere. Therefore, negative CO2 

emissions can be achieved due to the removal of CO2 from the atmosphere in this process. 165 

In this work, all the possible configurations of the first nearest neighbours are considered to 

provide a systematic adsorption study for this process. The adsorption energy, as well as the 

electronic properties of the NiO surface, have been analyzed and reported in this work. The 

results of this study are expected to provide a solid foundation to investigate the reaction 
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mechanism and the neighbouring effects on a larger temporal and spatial scale for the studied 

OC system. Note that the results of this chapter have already been published.166 

The rest of this chapter is presented as follows. Section 3.2 provides the computational 

details used in this study. The structural properties, adsorption energies and the corresponding 

electronic property analysis are shown in section 3.3. A summary of the DFT analysis of the 

neighbouring effects on syngas adsorption is provided in section 3.4. 

3.2 Computational details 

A spin-polarized DFT analysis was conducted with the Vienna Ab Initio Simulation 

Package (VASP). The Projector-augmented Wave (PAW)167-168 method was employed as the 

description of the core electrons and the exchange-correlation functional the Generalized 

Gradient Approximation(GGA) of Perdew-Burke-Ernzerhof was chosen in this work. 97 The 

energy cut-off of 400 eV was considered; The Brillouin-Zone is properly separated by a 2×2×1 

Monkhorst-Pack k grid, which can accurately predict the behaviour of the studied slab model 

with sufficient efficiency.101, 169 For structure relaxation, the energy convergence criterion is 

set to 1×10-5 eV while the force convergence criterion is set to 0.05 eV/Å. 

Moreover, the DFT combined with the Hubbard Hamiltonian method (DFT+U) was 

adopted to improve the prediction accuracy of the electronic properties by the traditional 

exchange-correlation functional, GGA. This is required since the studied system includes a 

transition metal (Ni). By applying the Hubbard-U correction, a more accurate prediction is 

obtained through the modification of the strong on-site Coulomb repulsion to simulate the 

electronic interactions related to the magnetic effects on the NiO solid 170. The DFT + U 

method adopted the U and J modifiers to improve the conventional DFT analysis. U presents 

the strength of the on-site Coulomb repulsions while J represents the screened exchange 

energy. It has been shown that Hubbard-U corrections are essential to provide an accurate 

prediction of NiO electronic properties such as the density of the states. Note that the electronic 

properties of NiO are sensitive to the chosen modifiers (i.e. U and J) 171. In this work, the 

electrons are accurately localized with the Coulomb repulsion U term applied on Ni as U = 6.3 

eV and J = 1.0 eV. 172 It has also been shown that the chosen Hubbard-U correction parameters 
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can accurately predict the system properties through the consistency between the simulated 

lattice constants of NiO predicted by this study (a=b=c=4.161 Å and α=β=ɣ=90°) and 

experimental observations (a=b=c=4.15 Å and α=β=ɣ=90°).173 The prediction of the bulk NiO 

property using the selected modification parameters U and J is proven to be accurate due to the 

validation of the experimental data. In addition to the simulated NiO lattice constants obtained 

in this report, the system description of NiO surface such as adsorption behaviours could be 

accurately predicted with the same Hubbard-U correction parameters employed in this study 

according to previous reports172, 174-175. 

A 6-layer nickel oxide slab model has been constructed with the bottom three layers fixed 

to simulate syngas adsorption on the NiO surface. This slab model configuration has been 

shown to provide sufficiently accurate results. 125 The NiO bulk structure was obtained from 

the Inorganic Crystal Structure Database (ICSD) provided by FIZ Karlsruhe with the database 

code ICSD 182948 and proposed by Yang et al. 30. NiO presents to be the same crystal structure 

to NaCl, i.e. a face-centered cubic (fcc). The nickel ion is connected with six oxygen ions and 

shows an octahedral symmetry.176 Since the nonpolar plane, NiO (100) has been proven to be 

the most stable surface, a cleaved surface of NiO (100) with a 15 Å vacuum gap is used in this 

study to perform the adsorption calculations177-178. The surface mesh vector directions are set 

as U (001) and V (010). Carbon monoxide has only one carbon-oxygen bond which is about 

1.144 Å long while the H2 molecule also has only one hydrogen-hydrogen bond of 0.751 Å. 

The adsorption geometry of CO is at the top of the Ni atom with the C-O bond located vertically 

to the NiO surface. This configuration is the most stable geometry with the minimum energy. 
179 The further reaction of CO with NiO is that the C atom in CO scavenges the O on NiO 

surface, which makes the vertical CO (with C close to the surface) a more reasonable geometry 

for further reactions. As for H2 molecule, the selected geometry is also at the top of Ni due to 

the tendency of H2 breaking at the top of Ni180 and the linear molecule H2 also keeps vertical 

with the surface from the aspect of stability and small steric effect. The optimized adsorption 

configurations are provided in Figure 3-1. Note that the studied adsorption system is physically 

adsorption, which results in moderate changes in the bond distances of CO and H2. 
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The DFT calculations in this study were performed on Shared Hierarchical Academic 

Research Computing Network (SHARCNET: www.sharcnet.ca) supported by 

Compute/Calcul Canada.  

 

Figure 3-1 Stable adsorption configuration on NiO with (a) CO adsorbate (b) H2 

adsorbate. Blue (Ni), red (O), black (C), white (H) 

 

The adsorption energy of syngas on NiO surface, ΔEadsorption is calculated as follows: 

 
ΔEadsorption = Esystem - Efreefuel – Esurface                                                                            (3-1) 

 

where Esystem is the overall energy of the system with the adsorbed CO or H2 molecules, 

Efreefuel refers to the energy of the free fuel molecule (i.e. CO or H2) whereas Esurface represents 

the energy of the OC surface (NiO). Note that ΔEadsorption is not zero-point corrected since this 

system represents physically adsorption. 

3.3 Results and discussion 

This section presents the results obtained from this chapter. The sites considered on the 

NiO surface and the notation adopted for the adsorption geometries are presented first. The 

structural properties from the adsorption of syngas (i.e. CO and H2) on the NiO surface are 

presented next. The adsorption principles of CO and H2 obtained according to the adsorption 

energy analysis with uniform neighbouring molecules, i.e. molecules of the same species, and 

the hybrid adsorption effects caused by the geometry containing different molecules at the 

http://www.sharcnet.ca/
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nearest neighbouring sites are presented thereafter. An analysis of the projected density of 

states, which supports the primary outcomes of this study at the electronic scale, are provided 

at the end of this section. 

3.3.1 Structure characterization 

 

 
Figure 3-2 Studied nearest neighbour sites labeled as 1, 2, 3 and 4, adsorption site 

labeled as 0. Blue (Ni), red (O) 
 

Figure 3-2 presents the NiO structure model used in the present study. As shown in this 

figure, four closest neighbouring sites are considered in this study to reveal the tendencies of 

the neighbouring effects on which the oxidation of CO and breaking of H2 to form H2O are 

expected to occur. The four sites selected have the closest distances with the adsorption site 

labeled as 0 in the figure, which is expected to have the strongest interactions with the adsorbed 

CO or H2 neighbours located in positions 1, 2, 3 and 4 in the figure. To distinguish between 

the different adsorption geometries, the following notation is established from heretofore: C 

and H stand for CO and H2 occupied sites on the NiO surface, respectively; * stands for an 

empty site. When naming a particular geometry, the order follows the site numbering indicated 

in Figure 3-2; the 5th position in the name suggests the 0th site. For example, the geometry 

HHHHH indicates the study of H2 adsorption at the 0th site with 4 H2 nearest neighbouring 

sites. If site 1 and 3 are empty and site 2 and 4 are occupied by CO and H2, respectively, then 
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that geometry will be referred to as *C*HC or *C*HH depending on whether CO or H2 

adsorption is considered at the 0th site.  

3.3.2 Structural property analysis 

 

 

Figure 3-3 Symmetry categories of the adsorption system, (a) symmetry 1, (b) symmetry 

2 (c) symmetry 3. Blue (Ni), red (O), yellow (the occupied sites on the surface) 
 

Table 3-1 Structure properties of CO adsorption on NiO 

 Uniform Adsorption Hybrid Adsorption 

Symmetry Geometry name Distance a/Å Geometry name Distancea/Å 

none ****C 2.058   

none C***C 2.076 H***C 2.059 

symmetry 1 CC**C 2.071 HH**C 2.056 

symmetry 2 C*C*C 2.043 H*H*C 2.068 

symmetry 1 CCC*C 2.091 HHH*C 2.076 

symmetry 3 CCCCC 2.050 HHHHC 2.067 

a Distance between the C in CO and the closest Ni to the mentioned C on the surface 
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Three types of symmetries have been considered in the present system. As shown in 

Figure 3-3(a), symmetry 1 represents a line symmetry with only one axis of symmetry. As for 

symmetry 2, (Figure 3-3(b)), there are two axes of symmetry, which is also a point symmetry 

structure. Moreover, symmetry 3 has the highest degree of symmetry, which has four axes of 

symmetry (Figure 3-3(c)). 

Table 3-1 and Table 3-2 present the distances between the CO and H2 molecules and the 

adsorbed Ni site on the NiO surface, respectively. As mentioned above, uniform adsorption is 

used here to refer to the adsorption of CO (H2) with the same molecules of CO (H2) already 

adsorbed at the neighbouring sites while hybrid adsorption indicates CO or H2 adsorption with 

the different molecules of H2 or CO captured at the closest neighbouring sites.  

As shown in Table 3-1, the distance between the adsorbed species and the adsorbed site 

increases from ****C to C***C, which suggests that the adsorbed CO molecule would be 

repelled by the neighbouring attached CO molecule. However, when the neighbouring site is 

occupied by H2 (i.e. H***C), the repulsion effect is much smaller than that obtained from the 

neighbouring effect of CO. This change in behaviour is due to the steric effects, which are 

more significant for CO than for H2. Note that the distance between the carbon atom of 

adsorbed CO and its connected Ni on NiO (100) is reported to be 2.070 Å according to the 

experimental study 181. The calculated distance between the carbon of CO and its connected 

Ni in this chapter is 2.076 Å at low coverage. Both carbon and oxygen atoms in the CO 

molecule have relatively larger van der Waal radius (1.885 Å and 1.514 Å) compared to that 

of H atom (1.394 Å) in H2; hence, higher steric repulsions are expected by the former species. 
182 The results shown in Table 3-1 for CC**C and CCC*C indicate that, when the structures 

belong to the same symmetry (symmetry 1), the repelling effects are more notable as the 

number of nearest neighbours increases. This behaviour was also observed for the hybrid 

adsorption of CO (i.e. between HH**C and HHH*C). As for symmetry 2, the distance from 

C*C*C (2.043 Å) increases when the empty sites are replaced with two H2 neighbours 

(CHCHC, 2.058 Å). As shown in Table 3-1, the distance in the highest degree of symmetry 

(i.e. CCCCC) is smaller than that observed for ****C. This observation may be expected since 

the linear CO molecule tends to tilt to weaken the steric effect between the neighbours and the 
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adsorbed molecule while the tilting in a highly symmetric geometry is very unlikely to happen. 

Also, a comparison between the distances obtained for CC**C (symmetry 1), C*C*C 

(symmetry 2) and CCCCC (symmetry 3) tend to suggest that a high degree of symmetry of a 

uniform CO adsorption may lead to shorter distances even when the number of nearest 

neighbours is higher. On the other hand, the hybrid adsorption geometries of CO with H2 

occupied sites did not present the same behaviour, i.e. the distance predicted for HH**C 

(symmetry 1) is smaller than that obtained for H*H*C (symmetry 2); similarly, the distance of 

HHHHC (symmetry 3) is larger than that of ****C (i.e. no neighbouring sites), as shown in 

Table 3-1. Consequently, the neighbouring effects of hybrid CO adsorption with H2 as 

neighbouring sites would not be affected by the degree of symmetry as much as that observed 

from the uniform CO occupied sites. Nevertheless, H2 nearest neighbours present shorter 

distances compared to CO nearest neighbours with the same number of neighbouring 

molecules; except for the case of four (full) nearest neighbours HHHHC and H*H*C at 

symmetry 2, which present larger distances than that of CCCCC and C*C*C. As mentioned 

above, this is caused by the stronger symmetry effects of the neighbouring CO molecule. These 

results suggest that a high coverage NiO surface will not enhance CO adsorption due to low 

availability of active NiO sites and the high degree of symmetry. The neighbouring attached 

CO molecules lead to the more substantial repelling effect rather than the neighbouring 
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attached H2. These observations have been corroborated by an adsorption energy analysis that 

is presented in the next section.  

 

Table 3-2 presents the structural properties of H2 adsorption as a function of both the 

number and type of nearest neighbours. As shown in Table 3-2, a similar trend to that observed 

for CO adsorption is also observed for H2 adsorption. An increase in the number of H2 nearest 

neighbours results in stronger repelling effects with the same degree of symmetry (symmetry 

1) whereas a high degree of symmetry for H2 adsorption with H2 neighbouring sites makes the 

tilting of the linear H2 molecule very unlikely thus producing a structure with shorter distances 

between the adsorbed H2 molecule and the surface. Regarding symmetry 2 configurations for 

H2, the distance in CHCHH (2.498 Å) is larger than that in C*C*H (2.492 Å) due to the 

increasing number of the neighbours. As shown in Table 3-2, the same number of CO occupied 

neighbouring sites often results in more significant repelling effects than those observed for 

H2 occupied neighbouring sites, except for the case of CCCCH. The distance of CCCCH is 

smaller than that of HHHHH, which is mostly due to the stronger symmetry effect observed 

for CO neighbouring molecules than that of H2. A higher-coverage NiO surface tends to repel 

the H2 from the surface due to the steric effects and the higher degree of symmetry. The 

attached CO neighbours will lead to a more significant repelling effect rather than having H2 

as nearest neighbours. 

Table 3-2 Structural properties of H2 adsorption on NiO 
 Uniform Adsorption Hybrid Adsorption 

Symmetry Geometry name Distancea/Å Geometry name Distancea/Å 

none ****H 2.543   

none H***H 2.759 C***H 2.959 

symmetry 1 HH**H 2.519 CC**H 3.132 

symmetry 2 H*H*H 2.491 C*C*H 2.492 

symmetry 1 HHH*H 2.542 CCC*H 3.018 

symmetry 3 HHHHH 2.501 CCCCH 2.499 

a distance between the H closer to the surface in H2 and the closest Ni to the mentioned H on the surface. 
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3.3.3 Adsorption energy analysis 

To assess the energetic adsorption effects of syngas (CO and H2) on the NiO (100) surface, 

the adsorption of CO and H2 with the same (uniform) neighbouring molecules was analyzed 

first. The adsorption energy can be regarded as the isothermal enthalpy change of adsorption 

in the system; this energy is often found to be negative, which indicates a spontaneously 

exothermic adsorption process. A large absolute value of the negative adsorption energy is an 

indication of large amounts of heat generated from the adsorption process. Thus, a release of 

heat (energy) is often observed during the adsorption process. Figure 3-4 shows the adsorption 

energy of CO with and without CO nearest neighbours (uniform adsorption). According to 

DFT analysis of CO adsorption on NiO, CO adsorbed on a clean NiO surface releases about 

1.56 eV of heat. This suggests that on a periodic surface one of the 16 surface atoms was 

occupied. With one nearest neighbouring molecule of CO (3.194 Å), the adsorption energy of 

CO is reduced to only 18% of the total heat generated on the clean surface without 

 

 

 

Figure 3-4 Adsorption energy of uniform loading molecules 
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CO neighbouring molecules. This implies that adsorption stability of CO is significantly 

weakened by its first loaded CO neighbour. It is noteworthy this computed adsorption energy 

(0.28 eV) agrees with the experimental result as 0.30 eV in the low-coverage regime183. With 

two or three neighbouring molecules of CO, the changes in the adsorption energy are less than 

10% respecting that with no neighbours. These results indicate that the first adsorbate molecule 

on the NiO surface significantly weakens the adsorption of the same molecule on a nearby site. 

As for the geometry with four nearest neighbours, the adsorption energy changes to +0.06 eV. 

Hence, the CO adsorption with four nearest neighbours can hardly happen due to the 

endothermic process as indicated from the positive enthalpy change. To further support this 

analysis, the CO adsorption with five neighbouring occupied molecules was conducted and 

resulted in adsorption energy of + 0.03 eV. The 5th neighbouring site is the 2nd closest Ni to 

the adsorption site which has a distance of 4.167 Å from the adsorption site. The similar 

behaviour was observed for the H2 adsorption on NiO with H2 neighbouring molecules 

(uniform adsorption), as shown in Figure 3-4. The difference in adsorption energies decreases 

and flattens out with the 3rd and 4th loading molecules, respectively. Particularly for the H2 

loading with four nearest neighbours, the adsorption energy is the lowest due to its fully 

occupied neighbouring sites, which is still negative and indicates greater stability of the H2 

adsorption compared to that of the CO adsorption with four CO neighbours. The adsorption 

energy analysis of uniform adsorption suggests that the NiO surface with high coverage of 

uniform neighbours tends to be unreactive to adsorb CO and H2. 
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Figure 3-5 Uniform adsorption (black) and hybrid adsorption (blue) of (a) CO adsorption 

comparison; (b) H2 adsorption comparison 

Figure 3-5(a) presents a comparison between CO uniform adsorption and CO hybrid 

adsorption as a function of the number of nearest neighbours. Uniform adsorption energy with 

the same number of neighbours are also presented in this figure for comparison purposes. The 

neighbouring occupied geometry sharing the same x value means that they have the same 

number of occupied neighbouring molecules as well as the same degree of symmetry. Hybrid 

adsorption distinguishes from the uniform adsorption by the different neighbouring occupied 

molecules with the studied adsorption molecule. For example, the CO hybrid adsorption 

considers the neighbouring sites occupied by H2 while the H2 hybrid adsorption estimates the 

neighbouring sites employed by CO. As shown in Figure 3-5(a), the difference in adsorption 

energies between the uniform adsorption and hybrid adsorption increases as the number of 

nearest neighbours increases. The degree of symmetry increases from none symmetry (C***C 

and H***C) to symmetry 3(CCCCC and HHHHC) with the increasing number of neighbours. 

As discussed in the previous section, a higher degree of symmetry will lead to weaker 

adsorption stability for both CO and H2 adsorption which is shown in Figure 3-5 and will be 

discussed in detail in the following paragraph. The results from Figure 3-5(a) shows that this 

effect is more significant on CO occupied neighbouring geometry since it contributes to more 
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considerable differences in adsorption energy between CO adsorption with CO neighbours 

than on CO adsorption with H2 neighbours. As a result, it is expected that the stability of CO 

adsorption with H2 neighbouring molecules is relatively higher when compared to uniform CO 

adsorption. Figure 3-5(a) also shows that the difference in energy between CCCCC and 

HHHHC (symmetry 3) is much more significant than that between C***C and H***C (no 

symmetry). The less reduced stability observed with hybrid nearest neighbours species 

compared to that with uniform adsorption may be due to the different electronic structures of 

the adsorbed molecule (CO) and the Ni on the surface (see section 3.3.4).  

Figure 3-5(b) compares the energetic results for hybrid and uniform H2 adsorption. As 

shown in this figure, H2 adsorption is more stable with one H2 nearest neighbour rather than 

with one CO nearest neighbour. This may be due to the much smaller effect of one H2 molecule 

on the surface compared to that of CO as a neighbour (see section 3.3.4). When the number of 

the neighbouring occupied sites increases (HH**H and HHH*H ), the H2 uniform adsorption 

is weaker than the hybrid adsorption due to the magnified neighbouring H2 effects, as shown 

in Figure 3-5(b). As mentioned in section 3.3.2, CO as neighbour leads to a more significant 

steric effect than H2 does. Thus, the stability of H2 adsorption is more negatively affected by 

the steric repulsions with hybrid CO neighbours rather than that with uniform H2 neighbours. 

As mentioned above, a high degree of symmetry has a more profound effect on the CO 

occupied geometry. As shown in Figure 3-5(b), the stronger steric and symmetry effects caused 

by the presence of four CO neighbours in H2 adsorption lead to a significant decrease in 

adsorption energy. From Figure 3-5, the hybrid effect weakens the negative impact of the 

neighbours on both CO and H2 adsorption. Particularly, the adsorption energy of H2 on a 

perfect NiO (100) surface obtained from experimental data tends to be low (smaller than 0.22 

eV)184. The computed adsorption energy of H2 in this work with low coverage is about 0.1 eV, 

which agrees with the experimental results. 
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Figure 3-6 Fully occupied nearest neighbouring site (a) CO adsorption and (b) H2 adsorption 

 

Figure 3-6 shows the CO and H2 adsorption with four nearest neighbours using molecules 

of different species, whereas their location is given by the notation described in section 3.3.1. 

CO adsorption is an exothermic process, thus generating a negative value of adsorption energy. 

A higher absolute value of adsorption energy indicates higher adsorption stability. According 

to Figure 3-6(a), an increase in the number of H2 nearest neighbours leads to stronger CO 

adsorption (higher absolute value of adsorption energy). As shown in Figure 3-6(a), a higher 

degree of symmetry (symmetry 2 higher than symmetry 1) weakens the CO adsorption. As for 

H2 adsorption (Figure 3-6(b)), this is affected by both hybrid and steric effects. Therefore, the 

heat generated from H2 adsorption first increases caused by the attached CO included in the 

nearest neighbours(shown as CHHHH), which highlights the hybrid effect on H2 capture, and 

then it tends to decrease since the CO steric effect dominates the process. Furthermore, Figure 

3-6(b) also shows that adsorption stability is negatively affected by cases of higher degrees of 

symmetry. Through the comparison of the adsorption energy between CHCHH (symmetry 2) 

and CCHHH (symmetry 1), it is deduced that a higher degree of symmetry will reduce the heat 

generated from H2 adsorption which indicates weaker adsorption stability. 
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3.3.4 Electron property analysis 

 

 

Figure 3-7 Comparison between non-adsorbed system and adsorbed system (a) 3d Ni orbitals 

and CO molecular orbitals: non-adsorbed system (b) 3d Ni orbitals and CO molecular 

orbitals: adsorbed system (c) 3d orbitals of attached Ni and non-attached Ni (d) molecular 

orbitals of non-attached CO and attached CO 

 

The electronic properties of CO and H2 uniform and hybrid adsorption have been analyzed 

to provide further insight into the neighbouring effects of these species on the NiO surface. 

Figure 3-7 presents the molecular orbitals of CO and Ni 3d orbitals, which provides a 

comparison between the free gas with NiO surface system and the adsorbed system. According 

to Figure 3-7(a), 2π* and 5σ orbitals of CO and 3d orbitals of Ni have similar energy level. 

Note that 1π orbital of CO mainly contributes to the bonding between C and O in CO 
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molecule185. Therefore, CO as an adsorbate primarily interacts with Ni by hybridization 

between 5σ and 2π* orbitals of CO and 3d orbitals of Ni on the surface. This conclusion agrees 

with previous reports of CO adsorption 186-187. Figure 3-7(b) shows that CO adsorption leads 

to the spreading of the d orbitals of Ni. A small peak of Ni 3d orbital appears at the same energy 

level as the 2π* orbital of CO. The electron occupation at 5σ orbital of CO dramatically 

decreases and shifts to a lower energy level due to the 5σ-d forward donation effect188. 

According to the comparison between the non-adsorbed system and the adsorbed system, as 

shown in Figure 3-7(c) and Figure 3-7(d), the 3d orbitals of Ni shift to a lower energy level 

and the molecular orbitals of CO shift in the same direction, which indicate a more stable 

system upon adsorption. The changes of 5σ and 2π* orbitals shown in Figure 3-7(d) result from 

the 5σ-d forward donation and d-2π* back-donation 188 185, 189. 

Figure 3-8 provides a comparison between the free H2 on NiO surface system and the 

adsorbed system to study the interactions between the H2 molecular orbitals and the 3d orbitals 

of the transition metal Ni. Figure 3-8(a) shows that 3d orbitals of Ni have energy level 

overlapped with bonding σ orbital and antibonding σ* orbital of H2. The interaction between 

the H2 and surface Ni mainly results from the interactions between 3d orbitals and σ molecular 

orbital. H2 adsorption leads to the spreading of σ* orbital. According to Figure 3-8(c), no 

apparent change appears for 3d Ni orbitals except for the slightly spreading at the energy level 

of σ* orbital. The H2 adsorption barely affects the surface electronic structure. Compared to 

CO adsorption, H2 has a weaker effect on the surface as an adsorbate. Therefore, stronger 

adsorption of CO compared to that of H2 is expected. This also explains why the absolute value 

of the CO adsorption energy is much larger than that of H2 adsorption, as shown in Figure 3-4. 

As for the molecular orbitals of H2, the peak of σ orbital shifts to a lower energy level due to 

the interaction between the surface Ni and H2, thus increasing the stability of the system. 
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Figure 3-8 Comparison between non-adsorbed system and adsorbed system (a) 3d Ni orbitals 

and H2 molecular orbitals: non-adsorbed system (b) 3d Ni orbitals and H2 molecular orbitals: 

adsorbed system (c) 3d orbitals of attached Ni and non-attached Ni (d) molecular orbitals of 

non-attached H2 and attached H2 

 

By comparing Figure 3-7(c) and Figure 3-8(c), the frontier 3d orbitals of Ni are apparently 

affected to a larger extent by CO adsorbate compared to H2. A weaker interaction between H2 

and surface Ni suggests that it may be more favourable for H2 to migrate from Ni site to its 

neighbour for further reactions. The weaker interaction is also corroborated by the lower 

adsorption energy of H2 compared to that of CO, as discussed in section 3.3.3.  

Figure 3-7 and Figure 3-8 provide the interactions between the adsorbates and studied 

surface. Based on previous analysis, the neighbouring effect of CO and H2 on the studied 

surface and adsorbates are shown in Figure 3-9. To emphasize the neighbouring effect, the 



 

46 

 extreme conditions are considered for both CO and H2 adsorption as where the four nearest 

neighbour sites are fully occupied. With four nearest CO neighbours, the d orbitals of Ni at 

HOMO orbital broadens and its left edge shifts to a lower energy level in Figure 3-9(a) while 

no significant change appears for the d orbitals of Ni with 4 H2 neighbours. Accordingly, the 

closest active site of Ni is more significantly affected by the neighbouring CO than by the 

neighbouring H2. Molecular orbital change shown in Figure 3-9(b) gives the same trend as 

abovementioned. The CO neighbours significantly influence the molecular orbitals of the 

adsorbed CO while H2 neighbours only lead to a slight shift to a higher energy level. This 

Figure 3-9 Neighbour effect on CO and H2 adsorption shown in (a) 3d orbitals of Ni 

connected with CO (b) CO molecular orbitals (c) 3d orbitals of Ni connected with H2 (d) H2 

molecular orbitals 
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explains the more significant repelling effect on the adsorbed species coming from the CO 

neighbours to H2 neighbours. This result agrees with the conclusions obtained from the 

adsorption energy in section 3.3.2. Hence, a clean NiO surface is more likely to attract CO 

molecules rather than a surface with high coverage. The peak at 2π* antibonding orbital splits 

into two new peaks. The bonding between C and O in CO molecule appears to change by the 

significant effect of CO neighbours. As shown in Figure 3-9(c), the electron density occupancy 

of 3d orbitals of Ni with four CO neighbours spreads to a lower energy level while it almost 

remains constant with four H2 neighbours. The fully occupied CO neighbouring configuration 

leads to an apparent broadening of the σ orbital of adsorbed H2 compared to that resulted from 

a fully occupied H2 neighbour configuration. The mentioned change also comes from the more 

substantial repelling effect caused by the CO neighbours. The aforementioned results 

corroborate the conclusions obtained from Figure 3-5 (b). Comparing Figure 3-9(a) and Figure 

3-9(c), the change in the electronic structure of H2 adsorbed surface stemming from 

neighbouring effect is not as apparent as that of CO adsorbed surface. This is due to the smaller 

difference in H2 adsorption energy compared to that in CO, which is also reflected by the 

results presented in Figure 3-4. 

Figure 3-10 compares the CO adsorption in CCHH and CHCH (symmetry2 compared to 

symmetry1) neighbouring configurations to emphasize the symmetry effect shown from the 

electron distribution. For CO adsorption in Figure 3-10(a), the 3d orbitals of Ni at low energy 

levels are slightly more packed and tend to spread in CCHHC system compared to that in 

CCHHC system. As shown in Figure 3-10(b), bonding orbitals of CO in CHCHC (symmetry 

2) system broaden and experience a small shift compared to that in CCHHC system (symmetry 

1). Therefore, a higher energy level of CHCHC system is expected as well as lower system 

stability. In particular, the antibonding orbital 2π∗ in CHCHC (symmetry 2) system is more 

packed, thus weakening the bond of C and O in CO molecules. According to Figure 3-10(c) 

and Figure 3-10(d), H2 adsorption in a system with a higher symmetry degree (CHCHH, 

symmetry2 ) leads to similar spreading on 3d orbital of Ni, σ and σ∗ orbitals of H2. More packed 
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antibonding σ∗ orbital of H2 demonstrates the weakened inner bond of H2. The geometry with 

a higher degree of symmetry (i.e. CHCHC and CHCHH) lowers the stability of the adsorption 

while structures that present a lower degree of symmetry (i.e. CCHHC and CCHHH) for both 

CO and H2 adsorbed molecules do not show that effect. This result agrees with the findings 

presented in Figure 3-6, i.e. a higher degree of symmetry (symmetry two compared to 

symmetry 1) generates less adsorption heat. 

Figure 3-11 presents the electronic property analysis for the hybrid adsorption effects. 

Figure 3-11(a) and Figure 3-11(b) show a larger spreading in both Ni 3d orbital and CO  

Figure 3-10 Symmetry effect on CO and H2 adsorption shown in (a) 3d orbitals of Ni 

connected with CO (b) CO molecular orbitals (c) 3d orbitals of Ni connected with H2 (d) H2 

molecular orbitals 
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molecular orbitals in CCHHC (with hybrid neighbours) system compared to that in CCCCC 

(without hybrid neighbours) system. Stronger interaction between CO and the surface is 

predicted. Figure 3-11(c) and Figure 3-11(d) reveal the a slightly smaller difference in the trend 

of Ni 3d orbital and H2 molecular orbitals via the comparison between CCHHH (with hybrid 

neighbours) system and HHHHH system (without hybrid neighbours). This result indicates 

that hybrid effects will weaken the negative effect on both CO adsorption and H2 adsorption 

caused by neighbours, which is supported by the adsorption energy analysis presented in 

Figure 3-5 and Figure 3-6. 

Figure 3-11 Hybrid effect on CO and H2 adsorption shown in (a) 3d orbitals of Ni 

connected with CO (b) CO molecular orbitals (c) 3d orbitals of Ni connected with H2 

(d) H2 molecular orbitals 



 

50 

3.4 Summary 

This part of the research provided new insights into the adsorption of syngas (i.e. CO and 

H2) on the NiO surface (16 atoms on the surface of the 6-layer periodic slab model) while 

accounting for the neighbouring effects. A DFT analysis was performed to study the structural 

properties and adsorption energies in consideration of different occupied geometries of the 

nearest neighbors. An electron property analysis was conducted to further validate the DFT 

outcomes. The results show that an increasing number of neighbours weakens the adsorption 

stability. In particular, the first neighbour affects the adsorption stability the most significantly. 

A highly symmetric neighbour configuration leads to weak adsorption stability, while the 

hybrid neighbour configuration leads to a lower reduction in the adsorption stability compared 

to the uniform neighbour configuration. These results indicate that the adsorption stability of 

CO or H2 can be predicted by analyzing the steric, hybrid and symmetry effects of the surface’s 

nearest neighbours. The next nearest neighbours are expected to present similar effects as the 

nearest neighbours do, which should be evaluated in future studies. The neighbouring effects 

on the syngas adsorption presented in this chapter can be taken into account when buliding a 

microscopic model such as kMC, to further investigate this phenomena at larger temporal and 

spatial scales. To accomplish this goal, Chapter 3 builds a solid foundation that can be used to 

develop the elementary reaction mechanisms for the studied system. 
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 A Multi-scale Simulation of Syngas Combustion Reactions by 
Ni-based Oxygen Carriers for Chemical Looping Combustion 

4.1 Introduction 

Theoretical studies of Ni-based OCs within the CLC process are limited, especially when 

compared to Fe-based OCs. These studies are furthermore predominantly focused on the 

oxidation of NiO and the effects of influencing factors such as the impurity, as discussed in 

Chapter 2. Consequently, the behaviour of Ni-based OCs at a microscopic scale is still rarely 

reported, even for the critical fuel oxidation process on NiO. In order to overcome these issues, 

DFT studies can be performed to gain insights on the elementary reaction mechanisms and the 

microscopic behaviour in the process of syngas combustion on NiO. In order to validate the 

proposed insights, a multi-scale model is required to relate the DFT outcomes to experimental 

observations.  

Chapter 4 aims to present the elementary reaction mechanism of syngas combustion on 

an NiO OC. A DFT analysis was conducted to reveal the reaction kinetics and the microscopic 

performance of NiO in the syngas oxidation process. Moreover, this work performed different 

electronic analyses (see section 4.3.2), which were coupled together to further support the 

results from the DFT analysis. In order to validate the proposed reaction kinetics and estimate 

the reaction kinetics under practical operating conditions, a DFT-based MF multiscale model 

was established to study the impact of inlet compositions, temperatures and pressures on the 

CLC performance. The developed multi-scale model was validated using experimental 

observations available in the literature 190-192 and used to predict the product selectivity of the 

system subject to the coordinate effects of the studied operating conditions. This study was 

conducted using the basis of the stable adsorption configurations reported in Chapter 3. The 

developed multi-scale model and the outcomes presented this chapter have already been 

published.193 

The rest of this chapter is organized as follows. Section 4.2 presents the computational 

details employed in this part of the study. Section 4.3 provides the structure-related energetic 
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results, the electronic analysis and the DFT-based MF predictions. A summary of this chapter 

is provided in section 4.4. 

4.2 Computational details 

The calculation details of DFT analysis and the surface NiO model are the same as 

explained in last chapter, section 3.2. The DFT-based MF model was implemented in Python 

3.7.0. 

4.2.1 Reaction mechanism establishment 

The reaction activation energy can be obtained from the Transition State (TS) estimation 

using Climbing-Image Nudged Elastic Band (CI-NEB) method, which was conducted using 

VASP Transition State Tools (VTST) with the force convergence criterion as 0.05 eV/Å 

energy and energy convergence criterion as 1×10-4 eV. The expression for the zero-point 

energy (ZPE) corrected activation energies of the forward and backward reactions, Ea,forward, 

Ea,backward are as follows:  
 

Ea,forward = Ea,TS -Ea,reactant + EZP,forward                                                                                                                 (4-1) 

Ea,backward = Ea,TS -Ea,product + EZP,backward                                                                                                            (4-2) 

EZP,forward = Σi(
1
2
)h𝜔𝜔i

TS - Σi(
1
2
)h𝜔𝜔i

reac
                                                                                                                     (4-3) 

EZP,backward = Σi(
1
2
)h𝜔𝜔i

TS - Σi(
1
2
)h𝜔𝜔i

prod
                                                                                                                (4-4) 

 

where h is Planck’s constant, Ea,reactant, Ea,TS and Ea,product are the system energies of the 

reactant, the TS and the product, respectively; 𝜔𝜔i
TS,𝜔𝜔i

react and 𝜔𝜔i
prodare the frequency of the 

vibration of a atom i of the transition state, the reactant and the product respectively whereas 

EZP,backward and EZP,forward are the zero-point energy difference for the backward and forward 

reaction, respectively. 
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4.2.2 Electronic analysis 

Further insights into the reported mechanisms and related neighbouring effects are 

provided through a combined electronic analysis. The crystal orbital Hamilton population 

(COHP) analysis is conducted using the Local Orbital Basis Suite Towards Electronic-

Structure Reconstruction program (LOBSTER). 194 COHP interprets the bonding, nonbonding 

and antibonding contributions to reveal the interaction strength of the studied atom pairs. 195 

The energy-resolved COHP plots are calculated by multiplying the density of states matrix to 

the Hamilton matrix elements representing the interaction between the orbitals. Furthermore, 

projected COHP (pCOHP) is also used in this work to describe the bonding property based on 

atomic orbitals separately as a tool analog motivated by projection technique. 196  

4.2.3 Reaction rate constant 

For physical adsorption of CO and H2, the rate constant of adsorption, 𝑘𝑘i,ad is calculated 

based on the temperature, pressure and the characteristics of the surface 197, i.e.  

 
𝑘𝑘i,ad = 𝑆𝑆𝑎𝑎𝑃𝑃a𝐴𝐴site

�2π𝑚𝑚𝑘𝑘𝐵𝐵𝑇𝑇
                                                                                                          (4-5) 

 

where Asite denotes the area of one single site; Sa is sticking coefficient of species a, Pa is 

the partial pressure of species a, kB is Boltzmann constant, m is the mass of species a molecule 

and T is the system’s temperature. The reaction rate constants of the chemical reactions can be 

obtained following the Transition-State Theory (TST). The expression for the rate constant, 

𝑘𝑘𝑖𝑖,rec is as follows:  

 

𝑘𝑘𝑖𝑖,rec = 𝑘𝑘𝐵𝐵𝑇𝑇
ℎ

𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣
𝑇𝑇𝑇𝑇

𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 exp �− 𝐸𝐸𝑎𝑎

𝑘𝑘𝐵𝐵𝑇𝑇
�                                                                                        (4-6) 

𝑄𝑄vibreac =  ∏ 1

1 − 𝑒𝑒−ℎ𝜔𝜔i
react 𝑘𝑘𝐵𝐵𝑇𝑇�𝑛𝑛                                                                                         (4-7) 

𝑄𝑄vibTS =  ∏ 1

1 − 𝑒𝑒−ℎ𝜔𝜔i
TS 𝑘𝑘𝐵𝐵𝑇𝑇�  

 𝑛𝑛−1                                                                                        (4-8) 
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where Ea is the Zero-point Energy (ZPE)-corrected activation barrier (Ea,forward or 

Ea,backward). 𝑄𝑄vibTS  and 𝑄𝑄vibreac represent the vibrational partition functions of the transition state 

and the reactant, respectively. Because the most degrees of freedom of the molecules in the 

reactions are vibrations. The difference between 𝑄𝑄vibTS   and 𝑄𝑄vib𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is that 𝑄𝑄vibTS   ignores the 

imaginary vibrational frequency of the transition state, as shown by the index n in Equations 

4-7 and 4-8.  

4.3 Results and discussion 

4.3.1 Reaction mechanisms and structure-related energetic results 

 

Figure 4-1 Energy profile of CO oxidation. Blue (Ni), red (O), black (C) 

 

Stable adsorption configurations of both CO and H2 have been reported in Chapter 3. 166 

Based on the stable configurations of adsorbed CO and H2 on the NiO surface, the oxidation 

mechanisms of syngas combustion are established by locating the saddle point of the 

elementary reactions. The established reaction mechanisms are discussed next for CO and H2 

combustion. 
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A one-step oxidation process is built for the CO reaction as shown in Figure 4-1. The CO 

atop the Ni scavenges the adjacent surface O and pulls the O about 1.384 Å away from its 

original position. The system experienced a relatively large energy barrier due to the energy 

consumption for breaking the Ni-O bonds at the surface. The linear molecule of CO2 moves 

further away from the surface to form a stable configuration by enlarging the angle of O-C-O 

from 124.26° in the transition state of CO oxidation (TSCO) to almost 180°, as depicted in 

Figure 4-1. Along with the energy profile (reaction coordination), Figure 4-1 also provides the 

elementary reaction equation; note that the symbol * indicates the species attached on the 

surface. The initial configuration of the CO attached system is more stable than the product 

configuration, which includes a slightly repelled CO2. This indicates that the CO2 tends to leave 

the surface thus enhancing the forward oxidation process.  

 

Figure 4-2 Energy profile of H2 oxidation. Blue (Ni), red (O), white (H) 

 

The H2 oxidation process goes through a 3-step mechanism, as depicted in Figure 4-2. 

The surface H2 is decomposed at the Ni top; then, the two single hydrogen atoms are attached 

to the two contiguous Ni on the surface and the bond between the two hydrogens is broken. as 

the first reaction step. The second reaction step involves H migration from Ni top to the O top. 

As shown in Figure 4-2, the remaining bond Ni-H tilts towards the O top H, which lengthens 

the Ni-H bond from 1.437 Å in product 1 to 1.645 Å in product 2. This second reaction step 
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was shown to be fast and necessary to facilitate the forward reaction. At the third reaction step, 

the surface O connected with H is pulled away from the surface and then connected with the 

H at the adjacent Ni top to form the H2O molecule at the Ni top. An angle of O-H-O about 

114.199° in product 3 indicates the formation of water with an experimentally reported bond 

angle of about 105.°198-199 As depicted in Figure 4-2, TSH1, TSH2 and TSH3 represent the 

configurations of the transition states for the first, second and third reaction steps of H2 

oxidation, respectively. The third reaction step needs to overcome the energy consumption for 

both Ni-H and Ni-O-Ni bond cleavage on the surface. However, the largest energy barrier 

found in this mechanism is still the first reaction step of H2 breaking followed by the third and 

second step reactions, respectively. Therefore, the H2 breaking at the Ni top turns out to be 

extremely difficult according to the aforementioned largest energy barrier and is considered 

the controlling step of the overall H2 oxidation process.  

4.3.2 Coupling electronic analysis 
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Figure 4-3 Electronic analysis of the CO oxidation process: (a) coupling analysis from 

reactant to product (b) COHP analysis from reactant to TSCO. Blue (Ni), red (O), black (C) 

 

This section presents a coupling electronic analysis aimed at providing a deeper 

understanding of the proposed reaction mechanisms on the clean surface by analyzing the 

electron distribution of the different configurations. COHP (crystal orbital Hamilton 

population, explained in section 4.2.2) and pCOHP (projected COHP) describe the interaction 

strength in the selected atom pair by partitioning the band structure energy into bonding, 

nonbonding and antibonding contributions. The corresponding projected density of states 

(pDOS) and molecular orbitals are coupled together to provide the details of the studied 

orbitals.  

Figure 4-3 shows the pDOS of the adsorbed CO on the clean surface together with the 

calculated COHP of C-O and C-Ni. Due to the 5σ-d forward donation of the attached CO on 

the NiO surface, the HOMO orbital 5σ of CO is significantly weakened166, as shown in Figure 

4-3(a). This figure also shows that the major contributor to the bonding of CO is 1π orbital 

while the main interactions between CO and surface Ni come from the hybridization between 

2π* and 5σ orbitals of CO and Ni 3d orbital. Based on the COHP analysis of the C-O pair, the 

4σ orbital almost disappears with the formation of a more occupied π orbital at a relatively 

lower energy from reactant to product, which is a strong indication of the transition from CO 

to CO2 due to the tendency to establish the CO2 molecular orbital structure. In the reactant 
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configuration shown in Figure 4-3(b), the strong interaction between C and the surface Ni is 

mostly due to the occupied bonding orbitals. However, the bonding orbital, which is lower than 

the Fermi level in the product, shrinks until it becomes nearly negligible in the TSCO, as 

depicted in Figure 4-3(b). The disconnection of C from the surface Ni also suggests the 

activation of the surface CO. Based on the analysis of Figure 4-3, CO oxidation is initiated by 

the disconnection of C in the surface-adsorbed CO from the surface Ni and then the activated 

CO scavenges the surface O to form CO2 as proposed in the CO oxidation mechanism 

presented in section 4.3.1. 
 

 

 

Figure 4-4 Electronic analysis of H2 dissociation (a) coupling analysis from reactant to TSH1 

(b) pCOHP analysis from TSH1 to product. Blue (Ni), red (O), white (H) 
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Figure 4-4 provides a coupling electronic analysis of the H2 decomposition. The strong 

inner bond of the adsorbed H2 can be predicted by the highly occupied bonding orbital σ at a 

low energy level according to the pDOS analysis of the surface H2. The shapes of the molecular 

orbitals of H2 are also presented in Figure 4-4(a). The COHP analysis shown in Figure 4-4(a) 

elucidates the breaking of the H-H through the displacement of the bonding orbital from a 

relatively low energy level in the reactant to above Fermi level in TSH1. On the other hand, the 

antibonding interaction displayed in Figure 4-4(b) moves above the Fermi level from TSH1 to 

product1, thus stabilizing the configuration by depleting the occupied antibonding orbital. A 

more spreading and significant bonding orbital contribution is also depicted in product1, which 

explains the strong interaction between Ni and H. The analysis of Figure 4-4 supports the 

established 1st step elementary reaction of H2 oxidation involving the H2 decomposition 

followed by the formation of the Ni-H bond.  

At the H migration step, the interaction between the Ni and H is almost insignificant in 

product2, as shown in Figure 4-5(a). This implies the breaking of the Ni-H bond. On the 

contrary, the formation of the O-H bond is indicated in product2 with the existence of a more 

notably populated bonding orbital, as shown in Figure 4-5(b). Therefore, the breaking of the 

Ni-H bond and the formation of the O-H bond are illustrated according to the electron 

population change, which further explains the H migration process as the 2nd step elementary 

reaction of H2 oxidation.  
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Moreover, Figure 4-6(a) shows that the interaction between the studied O and H mainly 

comes from the hybridization of the H 1s and O 2p orbitals in product 3, which is the same as 

the orbital hybridization between the O and H in H2O formation. This suggest the formation 

of H2O in product3. From product2 to TSH3, the antibonding orbital between O and Ni shifts 

downward to a lower energy level and presents more populated, which demonstrates the 

activation of product2 by weakening the connection between O and its adjacent Ni on the 

surface. Although the bonding orbital is also more occupied in product2 compared to that in 

Figure 4-5 pCOHP analysis of H migration from product 1 to product 2 (a) H-Ni 

interaction (b) H-O interaction. Blue (Ni), red (O), white (H) 
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TSH3, the more considerable increase in the population of the antibonding orbital still suggests 

the bond cleavage of O-Ni. The analysis of Figure 4-6 supports the proposed elementary 

reaction of H2O formation in section 4.3.1. 

4.3.3 DFT-based Mean-field analysis 

4.3.3.1. Mean-field Model 

Based on the proposed elementary reaction mechanisms, the behaviour of these events at 

larger scales can be estimated using a MF model. This model assumes that the adsorbed species 

homogeneously distribute among the solid surface 25. The dynamic coverage of each species 

on the surface can be calculated based on the proposed reaction mechanism and reaction rates 

estimated from DFT calculations, i.e. MF uses the energetic results from DFT to predict the 

expected distribution of the participating species in the surface (i.e. surface coverage). Hence, 

MF can also be used as a tool to validate the elementary reaction mechanisms and reaction 

kinetics parameters obtained from the previous DFT analysis. Based on the proposed reaction 

mechanism presented in section 4.3.1, the MF model developed in this study involves the 

following reactions:  

Figure 4-6 pCOHP analysis of H2O formation (a) H-O interaction from TSH3 to 

product 3 (b) O-Ni interaction from product 2 to TSH3. Blue (Ni), red (O), white (H) 
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CO (gas) + ∗ → CO∗                                                                                                     (R1) 

CO∗+ O∗ → CO2 (gas) + 2∗                                                                                         (R2) 

H2 (gas) + Ni∗ → H2Ni∗                                                                                               (R3) 

H2Ni∗ + O∗ → HNi∗HO∗                                                                                             (R4) 

HNi∗HO∗ → H2O (gas) + Ni∗ + ∗                                                                                (R5) 

 

where R2 and R5 represent the chem-desorption process with the products leaving 

instantaneously to the gas phase after formation. The activation energy of H migration from 

Ni top to the O top (step 2 in Figure 4-2) is almost one order of magnitude smaller than the 

activation barrier of the former step reaction of H2 decomposition (step 1 in Figure 4-2). This 

mechanism suggests that H migration proceeds immediately after H2 decomposition, as shown 

in Figure 4-2. Hence, these two elementary reactions (step 1 and step 2 in Figure 4-2) have 

been merged into a single reaction (R4, H2 dissociation), as shown above. Note that the 

backward reaction is not considered for R4 since the backward activation energy is much 

smaller than that of the forward reaction, which suggests that the backward reaction rarely 

happens compared to the forward reaction. The current MF model assumes that there is 

sufficient oxygen supply from OC in the system, i.e. the bulk oxygen immediately replaces the 

surface oxygen vacancy once the oxygen is consumed by the reaction. This assumption is 

reasonable during the earlier stages of the reduction process where sufficient oxygen in the 

channels of the OC particles is present. Additionally, this model aims to investigate NiO as the 

only OC species, i.e. the effect of a support has not been considered and will be part of future 

studies. The time evolution of the surface species is expressed by the coverages of the surface 

adsorbed species CO, H2, the adjacent structure NiHOH (i.e. the surface structure of product 2 

shown in Figure 4-2) and the surface O, i.e. 𝜃𝜃CO, 𝜃𝜃H2  , θHNiHO and 𝜃𝜃O. Note that the number of 

the surface oxygen is the same as Ni, which suggests the surface oxygen coverage of an empty 

surface is 0.5. The following Ordinary Differential Equations (ODEs) describe the reaction 

kinetics: 

 
𝜃𝜃O = 0.5‒𝜃𝜃HNiHO                                                                                                        (4-9) 
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d𝜃𝜃CO d𝑡𝑡⁄ = 𝑘𝑘co,ad(0.5‒𝜃𝜃CO‒ 𝜃𝜃H2‒ 𝜃𝜃HNiHO)‒𝑘𝑘co,rec𝜃𝜃CO𝜃𝜃O                                      (4-10) 

d𝜃𝜃H2 d𝑡𝑡⁄ = 𝑘𝑘H2,ad�0.5‒𝜃𝜃CO‒ 𝜃𝜃H2‒ 𝜃𝜃HNiHO�‒ 𝑘𝑘H2,break𝜃𝜃H2𝜃𝜃O                                 (4-11) 

d𝜃𝜃HNiHO d𝑡𝑡⁄ = 𝑘𝑘H2,break𝜃𝜃H2𝜃𝜃O‒ 𝑘𝑘H2O,form𝜃𝜃HNiHO                                                   (4-12) 

 

where 𝑘𝑘co,adand 𝑘𝑘H2,adare the adsorption rate constants of R1 and R3, respectively, which 

are calculated based on the gas phase partial pressures of CO and H2  as explained in Equation 

4-5; 𝑘𝑘co,rec , 𝑘𝑘H2,breakand 𝑘𝑘H2O,form are reaction constants of R2, R4 and R5, respectively. 

Note that the rate constants depend on the pressure and temperatures. The consumed oxygen 

(i.e. number of reacted oxygens per available site),  𝑁𝑁O,con can be calculated as follows:  

 
d𝑁𝑁O,con d𝑡𝑡⁄ = 𝑅𝑅O,con = 𝑘𝑘co,rec𝜃𝜃CO𝜃𝜃O + 𝑘𝑘H2O,form𝜃𝜃HNiHO                                      (4-13) 

 

where 𝑅𝑅𝑂𝑂,𝑐𝑐𝑐𝑐𝑐𝑐  represents the reacted oxygen rate on the surface. Since the number of 

available sites for the reactions is the same as the number of oxygen sites on the surface, 𝑁𝑁𝑂𝑂,𝑐𝑐𝑐𝑐𝑐𝑐 

is proportional to the solid conversion ratio, 𝑋𝑋O,con, i.e. 𝑛𝑛O,surface 
 

𝑋𝑋O,con =  𝑚𝑚O,con 𝑚𝑚O,OC⁄  = 𝑛𝑛O,con (𝑛𝑛O,surface⁄  ƞ) = 𝑁𝑁𝑂𝑂,𝑐𝑐𝑐𝑐𝑐𝑐 /ƞ                                  (4-14) 

ƞ=  𝑛𝑛O,OC 𝑛𝑛O,surface⁄                                                                                                  (4-15) 

where 𝑚𝑚𝑂𝑂,𝑐𝑐𝑐𝑐𝑐𝑐 represents the mass of oxygen transferred from the OC particle to gas phase 

and 𝑚𝑚𝑂𝑂,𝑂𝑂𝑂𝑂 denotes the mass of oxygen present when the OC particle is fully oxidized. 𝑛𝑛𝑂𝑂,𝑐𝑐𝑐𝑐𝑐𝑐  

represents the number of reacted oxygen whereas 𝑛𝑛𝑂𝑂,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the number of oxygens of the 

fully oxidized OC surface. In addition, ƞ is the ratio between the number of oxygens on the 

surface (𝑛𝑛𝑂𝑂,𝑂𝑂𝑂𝑂) and the number of total oxygens in OC particle when it is fully oxidized. The 

reaction rate parameters are calculated based on the energetic results from the DFT analysis 

presented in the previous section. The computational details of these calculations are described 

in section 4.2.3.  
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4.3.3.2. MF Model Validation 

 

Figure 4-7 Comparison between oxygen consumed from the MF model (solid line) and solid 

conversion from experimental observations190 (dashed line) at compositions of CO/H2 = 

1(black) and CO/H2 = 3 (red) in the gas phase 

 

The MF model presented in the previous section was validated using experimental 

observations reported in the literature for this system190. Figure 4-7 provides the oxygen 

consumed in the system within the first 30 s at two different compositions of syngas. As shown 

in Equation 4-14, the consumed oxygen (𝑁𝑁O,con) is proportional to the solid conversion ratio 

Table 4-1 Reaction rate parameters 

Reaction         Reaction parameters                             Mol second-1 site-1 

R1 𝑘𝑘𝐶𝐶𝐶𝐶,𝑎𝑎𝑎𝑎 1.88× 107 

R2 𝑘𝑘𝐶𝐶𝐶𝐶,𝑟𝑟𝑟𝑟𝑟𝑟   4.47× 104 

R3 𝑘𝑘𝐻𝐻2,𝑎𝑎𝑎𝑎  7.03× 107 

R4 𝑘𝑘𝐻𝐻2,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 2.46× 1010 

R5 𝑘𝑘𝐻𝐻2𝑂𝑂,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 1.91× 106 

T = 1,223 K, 𝑃𝑃𝐶𝐶𝐶𝐶  = 1.515 × 104 Pa, 𝑃𝑃𝐻𝐻2= 1.515 × 104
 Pa, 𝑆𝑆𝐶𝐶𝐶𝐶 = 1, 𝑆𝑆𝐻𝐻2=1  

;𝑃𝑃𝐶𝐶𝐶𝐶  is the a partial pressure of CO and 𝑃𝑃𝐻𝐻2is the partial pressure of H2 
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(𝑋𝑋O_con). Hence, Figure 4-7 is used to illustrate the prediction capabilities of the proposed MF 

model through a comparison between oxygen consumed from the MF model (solid line) and 

solid conversion from experimental observations (dashed line). The operating conditions and 

corresponding reaction rate parameters adopted in the established MF model are listed in Table 

4-1. As depicted in Figure 4-7, the oxygen consumed (𝑁𝑁𝑂𝑂,𝑐𝑐𝑐𝑐𝑐𝑐) is larger with a CO/H2 ratio of 

1 than that with a CO/H2 ratio of 3. Therefore, a high ratio of H2 in the gas phase benefits the 

oxygen transformation according to the outcomes predicted by the MF model. The proposed 

MF model combines H2 decomposition and H migration on a single reaction step; hence, the 

overall effect of the MF model shows that the H2 oxidation process proceeds faster thus 

promoting H2O formation, as explained in section 4.3.3.1. The latter leads to the 

aforementioned increase in the oxygen transformation caused by the high ratio of H2 in the gas 

phase. The MF model predictions are consistent with the experimental observations of solid 

conversion during the initial stages of the reactions, as displayed in Figure 4-7. Furthermore, 

there is a sharp increase in solid conversion within the first 0.1 minutes that tends to flat 

afterwards (dashed lines in Figure 4-7), which suggests that the system reached steady state 

after 0.1 minutes. This also means that a significant decrease in the solid conversion rate is 

expected at the beginning of the reaction (i.e. within the first 0.1 minutes). The same tendency 

is qualitatively predicted by the proposed MF model. A significant decrease in the consumed 

oxygen rate is predicted at approximately 0.1 minutes, which can be interpreted by the change 

in the slope of the oxygen consumed in the channel (solid lines in Figure 4-7). However, the 

predicted system reached steady state faster than the experimental results because the present 

model does not consider the inside channel and out of particle diffusion effects. Based on the 

above, outcomes from the MF model proposed in this work qualitatively agree with 

experimental observations reported in the literature. Accordingly, the MF model proposed in 

this work can also be used to predict the behaviour of OCs taking place in the channel of the 

OC particle under different operating conditions.  
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Figure 4-8 (a) Comparison between the solid conversion from the MF model (line) and the 

solid conversion from the experimental observations191 (scatter) at temperatures of 923.15 K 

(blue), 873.15 K (red) and 823.15 K (black); (b) pressure analysis of the oxygen consumed 

from the MF model at 0.1 MPa (black) and 2 MPa (red) 

Furthermore, sensitivity analyses featuring changes in temperature and pressure were 

performed on the MF model with the aim to gain insights into the performance of the proposed 

reaction kinetics on this process. The MF model predicts the number of reacted oxygens per 

oxygen site on the surface of the OC channel, NO,con, under the assumption that there is an 

abundance of surface oxygens on the surface, i.e. the surface oxygen vacancy from reactions 

would be filled by the bulk oxygen instantaneously, as explained in section 4.3.3.1. Moreover, 

the MF model assumes a homogeneous distribution of the surface species thus neglecting 

neighbouring effects, as discussed in section 4.3.3.1. To account for these effects, the reaction 

parameters (𝑘𝑘CO,rec, 𝑘𝑘H2,break,𝑘𝑘H2O,form) have been adjusted by a weight λ such that the MF 

model can provide acceptable predictions. In addition, the sticking coefficients of CO and H2 

were adjusted to capture the actual adsorption process; a previous study has shown that not all 

atoms impinging upon the surface can be adsorbed 200. The weight λ and the revised sticking 

coefficients were obtained from least squares fitting using experimental data reported in the 

literature 191 (λ = 0.87, 𝑆𝑆CO= 0.32, 𝑆𝑆H2 = 0.07). Figure 4-8(a) compares the OC conversion ratio 

predicted by the MF model and that obtained from the experimental observations at different 

temperatures. As shown in this figure, an increase in temperature leads to a higher solid 
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conversion, which agrees with the experimental report 191. Moreover, Figure 4-8(a) shows that 

the MF model predictions quantitatively agree with these experimental observations, e.g. the 

solid conversion at 873.15 K is around 62% at 40 seconds, which agrees with the reported 

experimental solid conversion (67%) 191. Note that this model provides better predictions under 

high operating temperatures. Figure 4-8(b) shows that the oxygen consumed by the reactions 

decreases as the pressure within the OC channel increases. Previous experimental studies have 

reported the same observation, i.e. reduction in the reaction rates with an increase in pressure 
192. Moreover, the consumed oxygen experienced a fast increase at the beginning of the reaction 

followed by a regime of slower growth. The decrease in the rate of the consumed oxygen is 

due to the changes in the coverages of the surface species. The oxygen is consumed by the 

reaction of CO oxidation (R2) and NiHOH oxidation (R5). Hence the rate of oxygen consumed 

is directly related to the coverages of the adsorbed CO, 𝜃𝜃CO , and the surface adjacent structure 

NiHOH, θHNiHO. As shown in Table 4-1, 𝑘𝑘CO,ad is larger than 𝑘𝑘CO,rec ,i.e. the surface CO is 

oxidized at a lower rate than CO adsorption. Hence, 𝜃𝜃CO keeps increasing which leads to the 

constant increase in the rate of the consumed oxygen by reaction R2.  Nevertheless, θHNiHO 

initially increases; this increase comes from the faster reaction of H2 dissociation (R4) 

compared to the NiHOH oxidation (R5), i.e. 𝑘𝑘H2,break is larger than 𝑘𝑘H2O,form. In addition, the 

H2 adsorption (R3) is slower than the H2 dissociation (R4) ), i.e. 𝑘𝑘H2,ad  is smaller than 

𝑘𝑘H2,break, which leads to the low surface coverage of H2 after the initial reactions. The low 

coverage of surface H2 significantly lowers the rate of the H2 dissociation (R4), which 

eventually leads to a decrease in θHNiHO. These changes in θHNiHO results in the rate of the 

consumed oxygen by reaction R5 to increase at the beginning of the process followed by a 

decrease. The decrease in the consumed oxygen by reaction R5 lowers the overall rate of the 

consumed oxygen after the initial reactions. Overall, the MF predictions agree with the 

experimental observations as explained above.  

4.3.3.3. Model performance over different operating conditions 
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Table 4-2 Operating conditions 

Temperature Pressure  Inlet composition 

K Mpa   CO/H2 

823.15 

to 

923.15 

0.1  1/3 

to  1/1 

2.0  3/1 

 

The previous section showed that the proposed MF model agree with experimental data 

reported in the literature. The aim of this section is to explore the MF model predictions under 

different operating conditions. Table 4-2 presents the range of values in the inlet compositions, 

temperatures and pressures at which the present study was performed. These set of operating 

conditions correspond to typical operating conditions for the studied CLC system 190 191 192. 

The MF model predictions at different CO2/H2O product ratios under these operating 

conditions are depicted in Figure 4-9. 

 

Figure 4-9 Product ratio CO2/H2O, composition: CO/H2 = 3/1 (cyan), CO/H2 =1/1 (blue), 

CO/H2 = 1/3 (red), temperature range: 823.15 K - 923.15 K, pressure range: 0.1 MPa - 2 MPa 
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As shown in Figure 4-9, the MF model predicts a higher CO2/H2O product ratio at high 

temperatures and low pressures. Note that the highest CO2/H2O product ratio is almost 0.94 at 

923.15 K, 0.1 MPa and a CO/H2 gas-phase ratio of 3. The MF model shows that the product 

ratio is more sensitive at high temperatures or low pressures compared to the rest of the 

operating conditions considered in this study (the pressure and the input composition or the 

temperature and the input composition). With a higher content of CO in the inlet stream, the 

change in the temperatures and pressures leads to a more significant change in the CO2/H2O 

product ratio. This suggests that CO oxidation is more sensitive to temperature and pressure 

changes. These results are key to achieve full combustion of syngas, and therefore improve 

fuel utilization efficiency and environmental sustainability for this process.  

The proposed DFT-based MF model is proved to be valid for the prediction of the studied 

OC system based on its comparison with the experimental reports. The changes in performance 

predicted by the MF model can be used as a basis to identify suitable operating conditions 

when this process is operated at larger (macroscopic) scales. Furthermore, the validation MF 

model further confirms the DFT-based reaction kinetics and mechanisms proposed in this 

study. 

4.4 Summary 

Chapter 4 revealed the elementary reaction mechanisms of syngas combustion using NiO 

as the OC. Results from this study showed that the controlling step of the overall syngas 

oxidation reaction is the decomposition of H2 on the NiO surface. A coupling electronic 

analysis was performed in this study to further support the insights gained from the DFT 

analysis. Moreover, a DFT-based MF model was developed to connect the atomic-scale 

outcomes from the DFT analysis to experimentally reported observations. The developed 

multi-scale model was subsequently validated using experimental data reported in the 

literature. The system predictions from this model showed that a high OC conversion and 

product selectivity of CO2/H2O can be expected when the system operates at high temperatures 

and low pressures. The reported reaction kinetics can be furthermore employed in Chapter 5 

and Chapter 6 for the assessment of the key factors affecting the performance of this system. 
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 Insights into Syngas Combustion on Defective NiO Surface for 
Chemical Looping Combustion: Oxygen Migration and Vacancy 

Effects 

5.1 Introduction 

The previous chapter presented the reaction kinetics of syngas combustion on NiO. To 

advance the understanding of this system, oxygen vacancies on the NiO surface can also be 

considered on the basis of the reported reaction kinetics to gain insights on this phenomenon. 

Among all the favoured properties of OCs, the redox activities, oxygen compacity and mobility 

of OCs are essential considerations. 75 3, 201-202 It has been shown that oxygen vacancies can 

benefit CLC performance from each of the aforementioned aspects, as discussed in Chapter 2.  

Nevertheless, theoretical studies of oxygen vacancies for OC development primarily 

focus on the CH4 oxidation process. Consequently, the study of the non-negligible role of 

vacancies in syngas combustion is quite limited in the open literature; this is especially the case 

for theoretical studies on the vacancy effects. Accordingly, the vacancy effects on the atomic-

scale OC performance have not been widely investigated; particularly for the syngas 

combustion process on NiO. In order to provide insights on the vacancy effects within the 

studied system, this chapter provides a comprehensive analysis of vacancy formation, syngas 

adsorption and syngas oxidation using the OC, NiO. The energetic results, coupled with the 

electron distribution analysis, provide insights into the significant role of the defective sites 

based on the comparison between the calculations on the defective surface and those on the 

perfect surface (i.e. a surface without vacancies). Furthermore, the experimental observations 

reported in the same system within the literature are used to validate the proposed reaction 

mechanisms via a DFT-based MF model, which is developed using the reaction kinetics on a 

defective NiO surface. The insights presented this chapter have already been published.203 

The rest of this chapter is organized as follows. Section 5.2 presents the computational 

details used in this chapter. Section 5.3 provides the structure-related energetic results, the 

electronic analysis and the DFT-based MF investigation. A summary of this chapter is 

provided in section 5.4. 
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5.2 Computational details 

The DFT calculation details and NiO surface model are the same as discussed section 3.2. 

The DFT-based MF model was implemented in Python 3.7.0. 

The adsorption energy of CO or H2, ΔEadsorption on NiO surface is calculated using 

Equation 3-1. The CI-NEB method is implied to locate the TS. The forward and backward 

reaction barriers, Eforward, Ebackward are calculated as follows: 

 
𝐸𝐸forward = 𝐸𝐸a,TS ‒  𝐸𝐸a,reactant                                                                                      (5-1) 

𝐸𝐸backward = 𝐸𝐸a,TS ‒  𝐸𝐸a,product                                                                                    (5-2) 

 

where Ea,reactant, Ea,TS and Ea,product represent the energies of the reactant, the TS and the 

product, respectively. 

Further insights into the proposed mechanisms and the vacancy effects are provided 

through the electronic analysis. The COHP analysis describes the bonding properties to 

interpret the interactions between the studied atom pairs. 195-196 The related calculation details 

are explained in section 4.2.2. 

5.3 Results and discussion 

5.3.1 Bulk oxygen diffusion 

Due to the surface reactions, the oxygen on the surface is continuously consumed to form 

the surface oxygen vacancy, then the vacancy is substituted by the sublayer oxygen. The 

vacancy distribution and oxygen migration play a vital role in OC performance. 
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Figure 5-1 Oxygen migration analysis: (a) stability analysis of defective configurations (b) 

energy profile of oxygen migration (2nd layer to the surface through TSbulk1, 3rd layer to the 

2nd layer through TSbulk2) 

 

Figure 5-1 describes the direction of bulk oxygen diffusion and also reveals the 

mechanism of oxygen migration. As shown in Figure 5-1(a), the analysis of adsorption 

energies (with defective sites at the 1st layer, 2nd layer and 3rd layer) indicates that the most 

stable vacancy exists at the 3rd layer, followed by the 2nd layer and the eventually the 1st layer 

vacancy, respectively. This behaviour is mostly due to the slightly higher state energy of the 

3rd layer vacancy configuration, i.e. 0.17 eV higher than the 2nd layer vacancy configuration 

and 0.28 eV higher than the 1st layer vacancy configuration. Therefore, the bulk oxygen is 
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expected to diffuse from the 3rd layer to the 2nd layer. Figure 5-1(b) elucidates the mechanism 

of bulk oxygen migration. The surface layer O reacts with the adsorbed CO or H2 followed by 

the formation of the 1st layer vacancy indicated as the reactant in Figure 5-1(b). The 2nd layer 

O migrates to the 1st layer through TSbulk1 to form the 2nd layer vacancy configuration as 

product1. The forward energy barrier of O diffusion from the 2nd layer (2.88 eV) to the 1st layer 

is smaller than the backward energy barrier (3.05 eV), which further illustrates the O migration 

direction from the bulk to the surface. The energetic results of O diffusion from the 3rd layer 

to the 2nd layer indicate the same outward direction of O migration (from the 3rd layer to the 

2nd layer). The direction predicted on oxygen migration agrees with a previous study16, i.e. the 

oxygen diffuses from the subsurface to substitute the surface vacancy. Moreover, the O 

diffusion from the 3rd layer to the 2nd layer is expected to be more active than the O transport 

from the 2nd layer to the 1st layer due to the smaller energy barrier of the former reaction (2.80 

eV) compared to the latter reaction (2.88 eV). The bulk oxygen migration guarantees a 

sufficient oxygen supply on the surface for the further oxidation of CO and H2. 

Table 5-1 Reaction barriers of bulk oxygen migration 

 Forward reaction barrier /eV Backward reaction barrier /eV 

Oxygen migration from 2 to 1 2.88 3.05 

Oxygen migration from 3 to 2 2.80 2.91 

 

5.3.2 Defective adsorption 
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Figure 5-2 Adsorption energy comparisons of (a) CO and (b) H2 between the defective 

surface (left) and the perfect surface (right). OV: Oxygen vacancy 

 

Figure 5-2 compares the adsorption energies of CO and H2 between a defective surface 

and a perfect surface. In comparison to the vacancy top configuration, the Ni top configurations 



 

75 

are considered for both CO and H2 adsorption since Ni top was observed to be the stable 

adsorption and active reaction sites.166 Results show that the more stable adsorption is observed 

on the perfect surface for both CO and H2. Accordingly, the relatively high state energies of 

both CO and H2 adsorption configurations on the defective surface are expected, which tends 

to produce low energy barriers of the subsequent oxidation reactions, i.e. small energy 

differences between the reactants and the TSs. Therefore, in the presence of vacancies, the 

more active subsequent reactions are expected after the adsorption of both CO and H2. 

Vacancies tend to stimulate the oxidation reactions of syngas. In terms of CO adsorption 

presented in Figure 5-2(a), the CO at the Ni top with an adjacent vacancy is less stable than 

that observed at the vacancy top, which means the oxygen vacancies are active sites for CO 

adsorption while the adsorption configuration of Ni top with an adjacent vacancy will lead to 

more active CO oxidation. Accordingly, the corresponding energy barrier of CO oxidation at 

the Ni top should be lower than that at the vacancy top in the defective surface system; this 

will be explained in section 5.3.4. Regarding H2 adsorption, the adsorption configuration at the 

vacancy top is not stable. Then the H2 molecule migrates from the vacancy top to the adjacent 

Ni top, as shown in Figure 5-2(b). Low stability of adsorption with the neighbouring vacancy 

suggests an active reactant configuration of the subsequent H2 oxidation. 

5.3.3 Projected density of states analysis of syngas adsorption 

Followed by the analysis of adsorption energies, the pDOS analysis provides further 

evidence of the syngas adsorption based on the electron population. 
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Figure 5-3 Electron distribution comparisons of (a) CO molecular orbitals and (b) Ni 3d 

orbitals between the CO adsorption configurations with (red: vacancy top, blue: vacancy-

adjacent Ni top) and without vacancies (black) 

 

The interactions between CO as an adsorbate with the nearest Ni come from the 

hybridization between the HOMO orbital (5σ) and LUMO orbital (2π*) of CO and the 3d 

orbital of the nearest Ni. After adsorption, the molecular orbitals of CO are shifting to the lower 

energy level, which indicates a stable adsorption configuration on the surface. The 5σ-d 

forward donation effect leads to a significant decrease in the electron occupancy of the 5σ 

orbital of CO, while the d-2π* back-donation effect results in the increase in the electron 

population of the 2π* orbital. 185, 188-189 In addition, the mentioned 5σ and 2π* orbitals tend to 

spread due to the interactions between the adsorbate and the surface. As shown in Figure 5-3 

(a), the molecular orbitals of the adsorbed CO on the perfect surface stay at the lowest energy 

levels compared to the molecular orbitals of the attached CO in the other configurations. 

Likewise, the 3d orbital of Ni in the perfect surface configuration tends to stay at the lowest 

energy level, as shown in Figure 5-3(b). Therefore, the most stable CO adsorption 

configuration is observed on the perfect surface, as described in section 5.3.2. Comparing the 

electron populations in the two configurations with vacancies, the occupied orbitals (to the left 
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of the Fermi level) of CO on the vacancy top are localized at higher energy levels than that on 

the Ni top with an adjacent vacancy. However, the unoccupied orbitals (to the right of the 

Fermi level) of CO on the vacancy top stay at lower energy levels than that on the adjacent Ni 

top surface. Note that the 3d orbital of Ni in the vacancy top configuration apparently occupies 

a lower energy level than that in the Ni top configuration with an adjacent vacancy. These 

results suggest that the adsorption configuration at the vacancy top is more stable than that 

with an adjacent vacancy. Accordingly, a lower adsorption energy is observed on the vacancy 

top, as discussed in section 5.3.2. The strongest 5σ-d forward donation effect leads to the most 

significant spreading of the 5σ orbital on the vacancy top configuration, which is followed by 

that on the Ni top configuration with a defective site and the perfect surface configuration. 

Hence, the HOMO orbital of the CO on the vacancy stays closest to the Fermi level. Regarding 

the d-2π* back-donation, the 2π* orbitals of the CO on the vacancy-adjacent Ni top tend to be 

the most affected based on the most obvious spreading of the 2π* orbital. Note that the 

interactions between the adsorbate and the surface produce smaller gaps between the HOMO 

and LUMO orbitals of CO in the presence of vacancies, which indicates that the adsorption 

configurations are more active reactants of the subsequent reactions. This change in the 

electron occupation also suggests the oxygen vacancies benefit the further CO oxidation. 
 

 

Figure 5-4 Electron distribution comparisons of (a) H2 molecular orbitals and (b) Ni 3d 

orbitals between the H2 adsorption configurations with (red) and without vacancies (black) 
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Figure 5-4 provides the pDOS analysis of the H2 adsorption on both the perfect surface 

and the defective surface. As depicted in Figure 5-4(a), the more spreading molecular orbitals 

of H2 on the perfect surface is observed. Likewise, the 3d orbital of the studied surface Ni on 

the perfect surface occupies the lower energy level. Therefore, the more stable H2 adsorption 

is expected on the perfect surface, as indicated in section 5.3.2. In addition, the gap of the Ni 

3d orbitals between the left and right side of the Fermi level shown in Figure 5-4(b) tends to 

be smaller in the presence of the neighbouring vacancy. A more active H2 oxidation is thus 

expected on the defective surface (see section 5.3.5). 

5.3.4 Reaction mechanism: CO oxidation 

Vacancies are expected to benefit the redox reactions based on the results presented above 

and a previous report.204 Figure 5-5 shows the positive effects of the oxygen vacancies on the 

CO oxidation reaction. The mechanism of CO oxidation reaction on a perfect surface has been 

reported Chapter 4, i.e. the surface O is scavenged by the attached CO atop the adjacent Ni and 

reacted into CO2 as a product. 
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Figure 5-5 Comparison of the CO oxidation energy profile between the perfect surface 

(black: from Reactant1 to ProductCO1 through TSCO1) and the defective surface (blue: from 

Reactant2, CO adsorbed at vacancy top to ProductCO2 through TSCO2; red: from Reactant3, 

CO adsorbed at vacancy-adjacent Ni top to ProductCO3 through TSCO3) . Blue atom (Ni), red 

atom (O), black atom (C) 

 

Figure 5-5 presents two reaction mechanisms on the defective surface based on the 

vacancy top reactant (reactant2) and vacancy-adjacent Ni top reactant (reactant3). The energy 

barriers of the CO oxidation on the perfect surface is shown from reactant1 to productCO1 

through TSCO1 (transition state of CO oxidation reaction on the perfect surface). The estimated 

forward energy barrier from Reactant1 to TSCO1 is larger than the other two studied reaction 
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mechanisms on the defective surface. Thus, the oxygen vacancy on the surface benefits the CO 

oxidation based on the energetic results. Furthermore, the neighbouring vacancy of the 

adsorbed CO on the Ni top has a more significant effect on enhancing CO oxidation than the 

vacancy site that adsorbs the CO. The bond angle of O-C-O in TSCO3 from the reactant of CO 

at adjacent vacancy Ni top is about 158.8°, which is the closest to that of a stable linear CO2 

among the three studied TS. The lowest state energy of TSCO3 is expected among the studied 

three TSs. Consequently, the neighbouring vacancy tends to activate the CO oxidation more 

significantly due to the low energy barrier from reactant3 to TSCO3. The backward activation 

energies are lower than the forward activation energies, which implies the CO2 reduction might 

happen on the reduced surface. The extremely small adsorption energies of CO2 in the product 

configurations (0.08 eV on perfect surface and 0.06 eV on defective surface) indicate that the 

produced CO2 hardly stays adsorbed on the surface and diffuses into the gas phase immediately 

after its production, which promotes CO conversion into CO2. Note that these conclusions are 

obtained on the specific surface configurations presented in Figure 5-5, which do not consider 

other factors that may impact OC performance such as the nearest adsorbed species, i.e. CO or 

H2, surface impurities or supporting effects. 

Additionally, since the vacancy is likely to be occupied by CO based on the adsorption 

energy analysis presented in section 5.3.2, the CO oxidation mechanism was studied with an 

adjacent vacancy occupied by a CO neighbor. The results show that the forward and backward 

reaction barriers of the aforementioned configuration are much larger than those observed in 

all the other studied configurations. Moreover, the difference between the forward and 

backward reaction barriers in this system is smaller than those observed in each of the other 

studied systems. The observed deviations come from the coordinate effects of the nearest 

neighbor CO and the vacancy. Note that this manuscript focuses on the vacancy effects, which 

cannot be distinguished from the aforementioned coordinate effects on a defective surface with 

a vacancy-top CO neighbor. Therefore, the energetic results and their comparison to the other 

studied configurations are provided in Figure B2 within the supporting information. 
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5.3.5 Reaction mechanism: H2 oxidation 

The CO oxidation reaction is a 1-step process on both the perfect surface and defective 

surface. However, the H2 oxidation on the defective surface changes into a 2-step reaction 

instead of a 3-step reaction on the perfect surface.  

Figure 5-6 provides a comparison between the H2 oxidation mechanisms with and without 

vacancies. As mentioned above, the H2 attached at the Ni top is decomposed into two H and 

stays at the two contiguous Ni tops on the perfect surface. The migration of H from one of the 

Ni tops to the O top produces the adjacent structures of Ni-O and O-H shown in Figure 5-6. 

These two steps have been proven to be inevitable on a perfect NiO surface based on the DFT 

results, i.e. no valid TS was found in a one-step scenario as presented in Chapter 4. However, 

the H2 decomposition into the adjacent structures of Ni-O and O-H only takes one step on the 

defective surface. Furthermore, the disconnection of the H-H bond without a neighbouring 

vacancy is highly unlikely to happen according to the calculated energy barrier. Accordingly, 

H2 decomposition governs the overall H2 oxidation process on the perfect surface. At the same 

time, the forward 
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Figure 5-6 Comparison of H2 oxidation energy profile between the perfect surface (black: 

step 1 from Reactantperfect to Product1perfect through TS1perfect; step 2 from Product1perfect to 

Product2perfect through TS2perfect; step 3 from Product2perfect to Product3perfect through TS3perfect) 

and the defective surface (red: step 1 from Reactantdefective to Product1defective through 

TS1defective; step 2 from Product1defective to Product2defective through TS2defective). Blue atom 

(Ni), red atom (O), white atom (H) 

 

energy barrier of H2 decomposition is dramatically reduced by the neighbouring vacancy on 

NiO. The two H keep a distance of 1 Å with each other in TS1defective (TS of H2 decomposition 

on the defective surface), which presents a more similar structure to the structure of H2 

compared to those observed for the two H in TS1perfect (1.7 Å) and TS2perfect (2.5 Å), 

respectively. The similarity between the two H in the TS1defective and an H2 molecule is an 

indication of a stable configuration. Then compared to the state energies of both TS1perfect and 

TS2perfect, the state energy of TS1defective is lower. Moreover, the defective site leads to a smaller 

distance between the adsorbed H2 and the surface Ni. This adsorption configuration in the 

presence of the vacancy is associated with an active reactant that leads to a lower energy barrier 
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of the H2 decomposition reaction, as discussed in section 5.3.2. The 2nd step of H2 oxidation 

on the defective surface is the same as the 3rd step of H2 oxidation on the perfect surface: the 

adjacent O-H and Ni-H react to form a water molecule through TS2defective. The forward energy 

barrier of step 2 on the defective surface is lower than that of the same chemical transformation 

(step 3) on the perfect surface. In TS2defective, the bond angle of H-O-H is about 105.3°, which 

is close to the bond angle of H2O (105°);198-199 hence, this suggests a stable configuration of 

TS2defective. The bond distance of H-O in TS3perfect (2.2 Å) is much longer than that observed 

for the produced H2O molecule(0.96 Å).199 Hence, a high state energy of the relatively unstable 

TS3perfect is expected. Accordingly, the lower energy barrier of H2O formation is observed on 

a defective surface. As shown in Figure 5-6, the adjacent structures of Ni-H and O-H are 

pointing towards each other on the perfect surface in Product2perfect, whereas the vacancy 

attracts the two H and makes both Ni-H and O-H tilt slightly to the defective site in 

Product1defective. The produced bond angle of O-H-O in Product2defective is 108° which is slightly 

larger than the experimentally reported bond angle of 105° and the bond angle in Product3perfect 

of 104°. The backward energy barrier of the H2O formation reaction on the defective surface 

is much smaller than that on the perfect surface. The decomposition of the adsorbed H2O is 

more likely to happen with the existence of the defective site. Note that on the defective 

surface, the largest energy barrier is at the 2nd step to form H2O instead of H2 decomposition 

on the perfect surface. As a result, H2O formation represents the controlling step of the H2 

oxidation reaction when there is a high coverage of vacancies on the surface. Accordingly, the 

reaction activity of OC in the H2O formation process needs to be considered to improve the 

OC performance in H2 oxidation.  

5.3.6 Model Verification 

The energies barriers of the proposed elementary reactions are listed in ascending order 

in Table 5-1. As shown in this table, the H2 oxidation process, including both H2 decomposition 

and H2O formation, is easier to process compared to the CO oxidation. This observation comes 

from the relatively low energy barriers obtained for the H2 oxidation reactions compared to 

those predicted for the CO oxidation reaction mechanisms. The CO oxidation process 

represents the controlling step of the overall syngas oxidation process. Therefore, a high ratio 
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Table 5-2 Energy barriers of the proposed elementary reactions 

Reaction Ea /eV 

H2 decomposition 0.70 

H2O formation 1.06 

CO oxidation a 1.56 

CO oxidation b 1.70 

a Ni top reaction; b Vacancy top reaction 
 

of H2 to CO in the syngas will benefit OC reduction. This is in agreement with experimental 

observations reported by Labiano et al.190, which showed that the studied OC (active 

component as NiO) presents higher reactivities with the increasing ratio of H2 to CO in the 

syngas. The same phenomena on OC conversion using syngas was also reported by Lasa et 

al.191 The reactivities of the studied species with the highly performing oxygen carrier (active 

component as NiO) are as follows: H2 > CO> CH4. Note that the trace amounts of CH4 reported 

in the previous study are due to the syngas generation from biomass gasification. 205 

Table 5-3 presents the reaction rate constants of all the reactions and adsorptions 

calculated based on Equations 4-6 and 4-5. As shown in this table, the oxygen migration rate 

constants are much smaller than that of the adsorption and reactions. The units of the reaction 

rate constants are s-1. Therefore, these events can be treated as the first order reaction to obtain 

the characteristic time (τ), i.e. 
τ = 1

ki
                                                                             (5-3) 

where ki is the rate constant with the unit s-1. As shown in Table 5-3, H2 decomposition 

exhibits the largest rate constant followed by H2O formation and H2 adsorption. The oxygen 

migration rate constants are much smaller than the other events, which is mostly due to the 

larger diffusion energies compared to the activation energies of CO oxidation and all three 

steps of H2 oxidation. Consequently, the characteristic time for oxygen migration is much 

larger than that observed for the oxidation reactions and adsorptions. The oxygen migration 
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from the third layer to the second layer is faster than that from the second layer to the first 

layer, which agrees with the outcomes described in section 5.3.1. Moreover, the largest 

characteristic time of the oxygen migration process implies that the surface oxidation reactions 

and adsorptions are much faster when there is only a small amount of vacancies on the surface 

at the initial stage. However, when more oxygens of the surface are consumed, the rates of the 

surface oxidations and adsorptions are expected to decrease and be comparable with the 

oxygen migration rates to guarantee the oxygen supply in the OC particle. Note that there are 

no experimental studies currently available in the open literature that can be used to validate 

the characteristic time for this system. 

To further validate the proposed reaction mechanism, the reaction kinetics obtained in the 

present study were used to inform a mean-field (MF) model. The considered events are the 

same as listed in section 4.3.3.1 from R1 to R5. But the reaction rate parameters are calculated 

based on the activation energies of the reactions on a defective NiO. Figure 5-7 compares the 

consumed oxygen obtained from the DFT-based MF model to the solid conversion ratio from 

the experimental observations. 190 With a high ratio of H2 to CO (i.e. CO/H2 = 1), the oxygen 

consumed is larger. This agrees with the tendency shown in the reported solid conversion ratio 

from the experimental work, e.g. a higher solid conversion ratio is achieved with a high ratio 

of H2 to CO. Since the oxygen consumed is proportional to the solid conversion ratio, Figure 

5-7 qualitatively validates the proposed reaction mechanisms using the DFT-based MF 

outputs. Note that the gradient change of the experimental observations is also shown in the 

predicted number of the consumed oxygen: the rate of increase in the solid conversion ratio is 

reduced at around 0.1 minutes in the experimental reports in Figure 5-7 (dashed lines), whereas 

the change in the rate of oxygen consumption appears within a much shorter time (within 0.01 

minutes) according to the output of the proposed DFT-based MF model in Figure 5-7 (solid 

lines). This comes from the elimination of the syngas diffusion inside the particle channel and 

outside of the particle in the established model.  
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Table 5-3 Characteristic time comparison 

 
Activation 

energy /eV 

Reaction rate constants 

/s-1 

characteristic time 

/s 

  1.88E+07 5.32E-08 

CO react 1.59 3.20E+06 3.13E-07 

H2 adsorption  7.03E+07 1.42E-08 

H2 decomposition 0.63 1.10E+10 9.09E-11 

H2O formation 1.17 3.71E+08 2.70E-09 

Oxygen migration: 2 to 1 layer 2.87 1.50E+01 6.67E-02 

Oxygen migration: 3 to 2 layer 2.79 2.87E+01 3.49E-02 

 

 

Figure 5-7 Comparison between oxygen consumed from the MF model (solid line) and 

solid conversion from experimental observations (dashed line) at compositions of CO/H2 = 

1(black) and CO/H2 = 3 (red) in the gas phase 

Based on the above, the proposed reaction mechanisms of syngas combustion on defective 

surface has been shown to remain valid based on the predicted order of the reactivities of the 
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studied species. The results from the DFT-based MF model show the same tendency with the 

experimental observations, which further demonstrates the accuracy of the proposed reaction 

kinetics. Note that the O migration reactions and the neighbouring effects are not considered 

in this DFT-based MF model, which may explain the differences observed between the 

predicted results and the experimental observations. In addition, the active NiO OC component 

was supported by Al2O3 in the aforementioned experimental reports; experimental studies 

involving only NiO as OC that can be used to validate this study are not currently available in 

the literature. 

5.3.7 Crystal orbital Hamilton population analysis 

 

Figure 5-8 COHP analysis of (a) C-O interaction (enclosed in the blue circles) of TSCO (green), 

TSCO1 (red) and TSCO2 (blue) (b) C-Ni interaction (enclosed in the blue circles) of TSCO (green), 

TSCO1 (red) and TSCO2 (blue). Blue atom (Ni), red atom (O), black atom (C) 

 

 

 



 

88 

The established reaction mechanisms have shown that the neighbouring vacancy can 

effectively boost the syngas oxidation, which can be further explained based on the electron 

population distribution. A COHP analysis estimates the interactions between the reacted atoms 

and can further support the proposed vacancy effects on the oxidation process. 

Figure 5-8 compares the interactions of the reacted C-O and C-Ni (enclosed in circles in 

the figure) of the TSs in the perfect surface configuration (TSCO1), the vacancy top 

configuration (TSCO2) and the vacancy-adjacent Ni top configuration (TSCO3). From the 

reactant to the product, the CO scavenged the nearby O on the surface and formed another C-

O bonding to generate CO2. As shown in Figure 5-8(a), the interaction of the reacted surface 

O and the C appears to be the weakest on the perfect surface. This conclusion comes from that 

the bonding orbitals in the defective configurations (vacancy top and vacancy-adjacent) are 

more occupied and shifting to the lower energy levels. Therefore, the electron population 

analysis shown in Figure 5-8(a) suggests that the O-C-O structures on the defective surface are 

more similar to the linear CO2, which is likewise implied by the structural properties discussed 

in section 5.3.4. Once the CO seizes the surface O, the O-C-O structure distances from the 

surface to form a linear CO2 molecule and then it is re-adsorbed on the surface. The most 

populated bonding orbitals are observed on the Ni top with a neighbouring vacancy, as shown 

in Figure 5-8(b). The strongest adsorption is thus indicated in the vacancy-adjacent 

configuration. However, a moderate interaction of Ni-C is displayed on the vacancy top, 

whereas the antibonding orbitals are shifting to the energy levels lower than the Fermi level on 

the perfect surface (i.e. without vacancy). The occupied antibonding orbitals on the perfect 

surface suggests a weak adsorption. The most stable O-C-O structure adsorbed on the surface 

is observed in TSCO3, which is also the closest structure to the product among the three studied 

configurations. Then the lowest state energy of TS is expected to be TSCO3; hence, this leads 

to the lowest energy barrier of CO oxidation. The COHP analysis shown in Figure 5-8 supports 
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the observations presented in sections 5.3.2 and 5.3.4, i.e. the neighbouring vacancy benefits 

the CO oxidation the most. 

 

Figure 5-9 presents the COHP results for H2 oxidation. This figure compares the 

interactions of the reacted O-H and Ni-H of the transition states (enclosed in circles in the 

figure) in the perfect surface configuration (TS2perfect) and defective surface configuration 

 

Figure 5-9 COHP analysis of (a) H-O interaction (enclosed in the blue circles) of TS2perfect (green) and 

TS1defective (blue) (b) Ni-H interaction (enclosed in the blue circles) of TS2perfect (green) and TS1defective 

(blue). Blue atom (Ni), red atom (O), white atom (H) 
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(TS1defective) during the H2 decomposition process. Note that this is not a direct comparison 

since these processes are not coming from the same step of reactions. However, at this step, 

the adjacent O-H and Ni-H structures are formed on both the perfect and defective surfaces. 

Based on Figure 5-9(a), a stronger bond between the reacted O and H is observed through the 

distinctly more occupied bonding orbitals on the defective surface compared to that on the 

perfect surface. However, the Ni-H interaction is shown to be more significant without the 

vacancy, as depicted in Figure 5-9(b). This suggests that the bonding orbital on the perfect 

surface is more populated while the antibonding orbital is moving to the energy level lower 

than the Fermi level under vacancy. The COHP analysis indicates the strong interaction of O-

H and weak interaction of Ni-H in the presence of the vacancy. The H2 decomposition on the 

defective surface proceeds through the surface two H approaching the O and distancing from 

the originally attached Ni. The transition state of H2 decomposition on the defective surface 

(TS1defective) displays an adjacent two H structure close to the H2 molecule as indicated above 

(see section 5.3.5). On the other hand, the H2 decomposition without vacancy is accomplished 

by moving one H closer to O while the other H likely remains on the same position. The strong 

bonding between the Ni and H on the perfect surface can further support this observation.  



 

91 

Following the H2 decomposition, the adjacent Ni-H and O-H react with each other to form 

an H2O molecule through TS3perfect and TS2defective on a perfect surface and a defective 

surface, respectively. In this process, the H moves away from the Ni-H bonding and reacts 

with the O-H structure to form an H2O molecule. With the existence of the neighbouring 

vacancy, the bonding orbitals between the studied O and H (enclosed in circles in the figure) 

are significantly more populated as presented in Figure 5-10(a). At the same time, there are no 

noticeable occupied bonding orbitals between the Ni and H (enclosed in circles in the figure) 

shown on the defective surface as depicted in Figure 5-10(b). These observations suggest that 

the transition state structure of H2O formation with the neighbouring vacancy (TS2defective) is 

akin to the product configuration as discussed in section 5.3.5 in which the O-H structure is 

connected with the adjacent H and the Ni-H bonding breaks. Consequently, a lower energy 

barrier of H2O formation is observed in the presence of the vacancy due to the high stability 

suggested by the aforementioned structural characteristics.  

Figure 5-10 COHP analysis of (a) H-O interaction (enclosed in the blue circles) of TS3perfect 

(green) and TS2defective (blue) (b) Ni-H interaction (enclosed in the blue circles) of TS3perfect 

(green) and TS2defective(blue). Blue atom (Ni), red atom (O), white atom (H) 
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5.4 Summary 

The outcomes presented in this Chapter revealed the intrinsic effects of vacancies on 

syngas adsorption and combustion on the OC NiO. The reaction mechanisms of the syngas 

combustion on a defective surface were disclosed. A throughout DFT analysis coupled with 

an electronic analysis showed that the vacancies act as the active sites for syngas adsorption 

and also tend to produce reactant configurations that are more active for both CO and H2 

oxidation. The vacancies significantly enhanced the syngas combustion, particularly for the H2 

decomposition reaction. Accordingly, the CO oxidation reaction was shown to be the 

controlling step of the syngas combustion process in the presence of relatively high vacancy 

coverages. The proposed kinetics were qualitatively verified through the validation of the DFT-

based MF model via the experimental outcomes presented within the literature. Note that this 

verification is not a direct comparison due to scarce availability of experimental reports in this 

field and the assumptions considered for the proposed model. The experimentally reported 

order of the oxidation reactivities of the studied species (CO and H2) further proved the 

accuracy of the computational observations. In addition, the outward direction of the oxidation 

migration was assessed using the multi-scale model.  

In addition to the vacancy effects, the neighbouring effects are another key aspect that 

impact the OC performance, as shown in Chapter 3. A multi-scale simulation will be discussed 

in Chapter 6 for a systematic understanding of the neighbouring effects on the studied system. 
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 Multi-scale modelling of Syngas Combustion on NiO Surface 
under Neighbouring Effects 

6.1 Introduction 

The results from Chapter 3 reported the considerable effects of neighbouring adsorbates 

on syngas adsorption in a CLC process on a NiO surface. In addition, the neighbouring atoms 

were proven to affect the redox activities in a wide range of heterogeneous systems, as 

discussed in Chapter 2. Consequently, the neighbouring effects are expected to be significant 

on syngas oxidation; however, this still remains as an open challenge in the literature.  

In order to fill in the gap within this area of study, a DFT analysis of syngas combustion 

on NiO in consideration of the explicit neighbouring effects is proposed in this chapter. The 

reaction kinetics under neighboring effects were estimated using DFT and subsequently 

coupled with the adsorption principles obtained in Chapter 3 to develop a DFT-based kMC 

multi-scale model. This model takes the explicit neighbouring effects into consideration while 

analyzing the system behaviour. A key novelty in this research is that neighbouring effects 

caused by all the possible configurations at the nearest neighbouring sites were considered in 

a dynamic surface environment. That is, the change of the neighbour configuration caused by 

the syngas adsorption and combustion is explicitly considered for the execution of every event 

in the development of the DFT-based kMC model. To the author’s knowledge, this is the first 

study that explicitly consider such phenomena for OC within the CLC process.  

The rest of Chapter 6 is organized as follows. Section 6.2 presents the calculation details 

used in this part of study. Results from the multi-scale model developed in this work are shown 

in section 6.3. Section 6.4 provides a summary of this chapter.  
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6.2 Computational details 

6.2.1 Density functional theory and the DFT-based reaction kinetics 

The DFT calculation details and used NiO (100) slab model for the system are the same 

as explained in section 3.2.  

The forward and backward activation energy Ea,forward,and Ea,backward are calculated using 

the equations in section 4.2. To study the neighbouring effects on the reaction equilibrium, the 

reaction equilibrium constant K can be calculated based on the forward and backward reaction 

rates as follows: 
 

𝐸𝐸diff =  𝐸𝐸forward − 𝐸𝐸backward                                                                          (6-1)  

K = 𝑊𝑊forward
𝑊𝑊backward

 = 𝑄𝑄vib
prod

𝑄𝑄vib
reac  𝑒𝑒𝐸𝐸𝑑𝑑iff/𝑘𝑘𝐵𝐵𝑇𝑇                                                                        (6-2) 

𝑄𝑄vib
prod =  ∏ 1

1 − 𝑒𝑒−ℎ𝜔𝜔i
prod 𝑘𝑘𝐵𝐵𝑇𝑇�𝑛𝑛                                                                                        (6-3) 

 

where 𝐸𝐸forward  denotes the forward energy barrier whereas 𝐸𝐸backward  denotes the 

backward energy barrier; 𝑊𝑊forward  and 𝑊𝑊backward  are the forward and backward reaction 

rates, respectively; 𝑄𝑄vib
prodis the product vibrational partition function and 𝑄𝑄vibreacis the reactant 

vibrational partition function explained in Equations 6-3 and 4-7. Since the energy difference 

(Ediff) between the forward energy barrier and the backward energy barrier results in a 

significant exponential change of the reaction equilibrium constant, this energy is compared 

with the increasing number of neighbours to investigate the neighbouring effects on reaction 

equilibrium.  

To consider the neighbouring effects on the adsorption kinetics, the desorption rate 

parameters, 𝑘𝑘desorption, are calculated as follows 197: 

 

𝑘𝑘desorption = 𝑘𝑘𝐵𝐵𝑇𝑇
ℎ

𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣
𝑇𝑇𝑇𝑇

𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘𝐵𝐵𝑇𝑇
)                                                                    (6-4) 

𝐸𝐸desorption  =  −  𝛥𝛥𝛥𝛥adsorption                                                                                  (6-5) 
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where 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑is the desorption energy; the vibrational partition functions 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇  of the 

transition state and the reactant is calculated using Equation 4-8. In equation 6-5, 𝛥𝛥𝛥𝛥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

is the adsorption energy obtained by Equation 3-1. 

Further insights into the neighbouring effects are provided through the electronic analysis. 

The COHP analysis was conducted and the related calculation details are explained in section 

4.2.2. 

6.2.2 kinetic Monte Carlo 

Based on the reaction kinetics established from the DFT analysis, the involved events in 

the system and their corresponding reaction kinetics are obtained. As explained in section 

2.5.2, the kMC model proceeds the system evolution by performing the possible events based 

on the dynamic surface environment. Therefore, the neighbouring effects can be considered by 

employing different reaction parameters for the specific neighbour configurations in kMC, 

which cannot be involved in the proposed MF model explained in Chapter 4. The explicit 

neighbouring effects on the parameters will be described in section 6.3.7.1 and 6.3.7.2. Overall, 

the DFT-based kMC can fill in the information gap between the microscopic reaction kinetics 

from DFT analysis and the measurable experimental observations in consideration of the 

neighbouring effects. Furthermore, operating conditions (e.g. temperature and pressure) can 

be considered into the study of the neighbouring effects on the reaction kinetics by kMC model. 

The validation of the DFT-based kMC model by its comparison to the experimental results 

also demonstrates the accuracy of the DFT outcomes. The algorithm of the proposed kMC 

model is the same as the one explained in Chapter 2, section 2.5.2. The DFT-based kMC model 

was implemented in Python 3.7.0. 
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6.3 Results and discussion 

6.3.1 Neighbouring effects: CO oxidation 

Once the reaction mechanisms in the clean surface configuration were identified, the 

neighbouring effects on the syngas oxidation process were considered by displaying the 

structure-related energetic deviation caused by the neighbours. To simplify the analysis, one 

neighbour configuration and the fully occupied first neighbour configuration are considered 

here for each of the elementary reactions. In the case of CO oxidation, the four nearest 

neighbours are studied as the fully occupied nearest neighbour configuration while in the case 

of H2 oxidation, the three nearest neighbours are considered to guarantee the empty sites of 

two adjacent Ni top for the H2 decomposition. Our previous study of the neighbouring effects 

on adsorption has shown that the most significant change of the adsorption energy is introduced 

by the first loaded neighbour. 166 Therefore, it is expected that the most notable change on the 

surface will also occur with the first loaded neighbour. Nevertheless, the extreme nearest 
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neighbour conditions are also studied here to provide a systematic analysis of increasing 

nearest neighbours. 

Figure 6-1 presents a comparison of the activation energy in the CO oxidation process 

between configurations with one and four nearest neighbours as well as a clean surface. The 

corresponding structural properties of each configuration are also illustrated in that figure. As 

shown in Figure 6-1(a), the forward activation energy increases with the 1st loaded CO 

neighbour and decreases with fully occupied nearest neighbours to an energy level that is 

similar to that of the clean surface configuration. A similar behaviour is observed in the 

backward activation energy for this reaction. Only in the case of four CO neighbours, the 

backward activation energy is still much larger than that on the clean surface. Thus, the CO 

 

 

Figure 6-1 Activation energy of CO oxidation with (a) CO neighbours and (b) H2 neighbours. 

Blue (Ni), red (O), black (C), white (H) 
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neighbours generally weaken both the forward and backward reactions of CO oxidation. The 

forward activation energy is calculated based on the difference between the reactant and the 

TS for this reaction, TSCO. During the transition process from the reactant to TSCO, the 

physically-adsorbed CO molecule first scavenges the surface O and pulls the O molecule 

further from the surface. The smallest bond angle of O-C-O within the TSCO exists with one 

CO neighbour as 108.811° in comparison with 124.260° with no neighbour and 128.707° with 

four CO neighbours. Thus, the highest activation energy observed in the configuration with 

one CO neighbour is more likely due to the largest difference between its TSCO and the stable 

product, i.e. a linear CO2 molecule. Moreover, the increase in the activation energy with the 

load of a single CO neighbour also comes from the large energy consumed by pulling the 

surface O the farthest and the disconnect between the reacted O and the adjacent Ni atoms. On 

the other hand, the four CO neighbours lead to a larger angle of O-C-O and a larger pulling 

distance of the O in the TS compared to that on the clean surface. Based on the analysis of the 

forward activation in consideration of the CO neighbours, the neighbouring effects caused by 

the difference between the angle of O-C-O in TSCO and the bond angle of CO2 is more 

prominent compared to that of the pulling distance. From the saddle point to the product, the 

reacted O is disconnected with the adjacent two Ni atoms on the surface. Then, the linear CO2 

is produced and stays within a certain distance from the surface. In the product CO2, the slight 

decrease of the O-C-O angle results from its interaction with the 1st loaded CO neighbour. The 

distance between CO2 and the surface also increases due to the single CO neighbour. With the 

fully occupied four CO neighbours, CO2 is repelled further away and the bond angle of CO2 

rebounds slightly due to the larger distance between the CO2 product and the CO neighbours. 

The yielded CO2 with four CO neighbours keeps the longest distance with the surface due to 

the intense steric effect of the four CO neighbours. The change in the bond angle (O-C-O) from 

the TSCO to the CO2 product for one CO neighbour was the largest observed followed by that 

obtained for the clean surface and with four CO neighbours. Due to the presence of a CO 

neighbour, the bond angles are affected thus causing a higher degree of transition from TSCO 

to the product. Therefore, the backward activation energy increases with a larger degree of 

change in the bond angle. However, the changes in the distance between the product and the 

surface also affect the CO reaction on the clean and loaded NiO surface. The largest distance 
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between the produced CO2 and the surface is observed in the four CO neighbour configuration, 

which indicates that, compared to that in the clean surface configuration, a larger backward 

activation energy is needed to push the produced CO2 farther away from the surface. The CO 

neighbour configuration is dominated by the change in the bond angle while the four CO 

neighbour configuration is dominated by the change in the bond length.  

As depicted in Figure 6-1(b), both the forward and backward activation energies undergo 

a pronounced decrease with the 1st loaded H2 and tend to remain almost unchanged as more H2 

is loaded on the surface. The decrease in the forward activation energy is mostly associated 

with the larger angle of O-C-O in the TS with H2 neighbours. The smaller difference between 

the O-C-O structure and the linear CO2 molecule indicates a more stable TSCO with a lower 

system energy. The larger distance between the surface reacted O and the surface should have 

led to an increase due to the loaded H2 neighbours; however, this effect is neutralized by the 

aforementioned energetic change due to the changes in the angle. As described above, the 

difference between the angle of O-C-O in TSCO with the bond angle of CO2 contributes more 

to the energetic change compared to the distance the surface reacted O is pulled away from the 

surface in TSCO. During the transition from TSCO to the product, the bond angle of O-C-O 

changes significantly on the clean surface (from approximately 124° to almost 180°) whereas 

this value remains almost unchanged in the presence of both a single H2 neighbour and four 

H2 neighbours, as shown in Figure 6-1. Furthermore, the degree of change in the distance 

between the reacted surface molecule and the surface from TSCO to the product decreases 

dramatically from almost double the distance on the clean surface to almost unchanged (with 

one single H2 neighbour) as depicted in Table A3 in Appendix A. Hence, there is a significant 

decrease in the backward activation energy with the emergence of H2 neighbours.  

In summary, the distance that the reacted O is pulled away from the surface is expected 

to be larger in the presence of neighbours than that on the clean surface. Particularly, the first 

neighbour of both CO and H2 leads to a larger distance between the reacted surface O and the 

NiO surface compared to the four neighbours. However, the produced CO2 is repelled further 

away from the surface when there exist four nearest neighbours. H2 neighbour also produces 

an increase in the bond angle of the TSCO. The H2 neighbours result in a more significant 

structural change in TSCO (i.e. in terms of angles and distances) compared to that of the CO 
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neighbours. However, the activation energy is generally more affected by CO neighbours as 

shown in Appendix A (Table A12). The two studied species as the neighbours cause the same 

trend in the changes in the activation energy for both forward and backward reactions during 

CO oxidation, as depicted in Figure 6-1.  

6.3.2 Neighbouring effects: H2 decomposition 

As shown in Figure 6-2, the H2 oxidation process proceeds through three elementary 

steps. At the 1st step, H2 decomposes into two H and locates at Ni tops. The neighbouring 

effects on the H2 decomposition process are presented in Figure 6-2 for both CO and H2 

neighbours. As shown in Figure 6-2(a), the forward activation energy of H2 decomposition 

drops with the existing of CO neighbours while the backward activation shows a similar 

tendency only with a slight rebound in the configuration with three CO neighbours. In the 

reactant, the CO neighbour decreases the distance between H2 and the surface Ni while 3 CO 
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neighbours push the centroid of H2 away from the Ni top and slightly enlarges the distance. By 

inspecting the different TSH1 displayed in Figure 6-2(a) for each configuration, the distance 

between the two dissociated H atoms increases with the loaded CO neighbours. This behaviour 

is also observed for the H-Ni-Ni angle. Regarding the structural changes caused by the CO 

neighbours, the structures of the TS are more similar to the products’ configurations. This 

indicates more stable saddle point configurations; thus, there is a drop in the forward activation 

energy caused by the CO neighbours. The backward activation energy is determined by the 

transition process from the TSH1 to the product. During this process, each of the single H atoms 

approaches the surface while distancing themselves from each other. As shown in Appendix 

A Table A4 and A5, the change in the angle of H-Ni-Ni and the distance of the H-H 

significantly decreases in the presence of CO neighbours. Consequently, the backward 

activation energy is reduced by the first CO neighbours as shown in Figure 6-2(a). Compared 

 

Figure 6-2 Activation energy of Step 1 of H2 oxidation with (a) CO neighbours and (b) 

H2 neighbours. Blue (Ni), red (O), black (C), white (H) 
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to the configuration with a single CO neighbour, a slight rebound in the backward activation 

energy is observed in the configuration with three CO neighbours. This energy increase results 

from the most significant change in the Ni-H bond distance in the presence of 3 CO neighbours, 

as shown in Table A6 in Appendix A. Figure 6-2(a) shows that the H-H distance and the H-Ni 

bond length of the product are the longest with one CO neighbour. Accordingly, the H-Ni bond 

length in the product tends to negatively influence the backward activation energy.  

Figure 6-2(b) exhibits the structure-related energetic change caused by the H2 neighbours 

for the H2 decomposition step. The forward activation energy experiences a decrease first 

followed by an increase to a higher energy level than that observed in the clean surface 

configuration. Moreover, the backward activation energy shows a similar tendency as the 

forward activation energy, except for the case of three H2 neighbours where a similar energy 

level was observed to that of the clean surface. Similar to the case of CO neighbours, H2 

neighbours lead to a shorter distance between the H2 and the surface Ni in the reactants shown 

in Figure 6-2(b). Akin to the single CO neighbour, the 1st loaded H2 neighbour results in the 

increase in both the distance between the dissociated H atoms and the H-Ni-Ni angle in TSH1 

structure while the three H2 neighbours lead to a decrease in both the angle and the distance in 

the TSH1 structure. The aforementioned structure changes result in the reduction in the forward 

activation energy in the case of a single H2 neighbour and the increase in the forward activation 

energy with the emergence of three H2 neighbours, as displayed in Figure 6-2(b). Contrary to 

the products’ configuration with CO neighbours, the 1st H2 neighbour results in a longer 

distance between the two H compared to that on the clean surface. Nevertheless, the three H2 

neighbours result in a similar surface structure to that on the clean surface, which suggests a 

decrease in both the H-H distance and the angle of H-Ni-Ni from those observed with one H2 

neighbour. However, the same trend of stretching the Ni-H bond of the product due to the CO 

neighbours is also observed with the H2 neighbours. In the single H2 neighbour configuration, 

more significant changes in both H-H distance and H-Ni-Ni angle on the backward activation 

energy are balanced by the slight change in the Ni-H bond distance as shown in Appendix A 

(Table A4 to Table A6). Therefore, the 1st loaded H2 neighbour results in lower backward 

activation energy compared to that of the clean surface. On the other hand, an almost negligible 

change in the backward activation energy within the 3 H2 neighbour configuration from that 
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on the clean surface is dominated by a similar degree of change in the Ni-H bond distance, as 

shown in Appendix A (Table A6). Thus, the backward activation energy is mostly affected by 

the narrowing of the Ni-H bond distance. 

Compared to the CO reaction, the energy change due to the neighbouring effects for the 

1st H2 oxidation reaction step is much less significant. Moreover, the changes in forward and 

backward activation energies generally follow the same behaviour, except for an inverse 

change in the forward activation energy from that in the backward activation energy in the 

three CO neighbour configuration, as depicted in Figure 6-2(a). In particular, the change in the 

backward activation energy is generally more considerable than that in the forward activation 

energy at this step except for the case of three H2 neighbours. In terms of structural changes, 

the 1st loaded CO neighbour as well as the single H2 neighbour generates a similar TSH1 

structure to the product. Accordingly, the lower forward activation energy is observed within 

the single neighbour configuration. However, the backward activation energy is dominated by 

the degree of change in the Ni-H bond distance from TSH1 to the product. In addition, the Ni-

H bond distances in both the TSH1 and the product are enlarged by the CO and H2 neighbouring 

effects. Furthermore, the products containing CO neighbours tend to present shorter distances 

between the dissociative H atoms whereas larger distances were observed for the case of H2 

neighbours.  

6.3.3 Neighbouring effects: H migration 

Figure 6-3 shows an analysis of the neighbouring effects on H migration. At this step, the 

migration of H from Ni top to O top results in a change in distance between H and O. In 

addition, the Ni-H and O-H interaction lead to the tilting of the Ni-H and O-H bonds towards 

each other. As depicted in Figure 6-3 (a), the 1st loaded CO neighbour results in a drop in both 

the forward and backward activation energies while three CO neighbours induce a rebound in 
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the forward activation energy but a further decrease in the backward activation energy. The 

change in the forward activation energy caused by the CO neighbours is related to a reduction 

in the bond distance of O-H from the reactant to TSH2, as shown in Figure 6-3(a). As indicated 

in Appendix A (Table A7), the single CO neighbour leads to an almost negligible increase in 

the degree of change in the aforementioned O-H bond distance. The three CO neighbours, on 

the other hand, generate a slight decrease in the distance. Since a larger change in the distance 

is expected to consume more energy, an increase (decrease) in the forward activation energy 

should be expected in the single-CO-configuration (three CO neighbour configuration). 

However, the lowest forward activation energy is observed in the presence of a single CO 

neighbour. This indicates that the length of the O-H bond in TSH2 should also be considered in 
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this case. The shortest O-H bond is an indication of similar structures between TSH2 and a 

stable product at a low energy level. Therefore, the lowest forward activation energy in the 

single CO neighbour configuration comes from the most stable TSH2 shown in Figure 6-3(a). 

To interpret the CO neighbouring effects on the backward activation energy, the decrease in 

the bond distance of O-H from TSH2 to the product are compared using the three configurations 

considered in this study. The least significant change is observed in the presence of a single 

CO neighbour; on the other hand, the changes observed in the case of three CO neighbours are 

similar to that of a clean surface, as presented in Appendix A (Table A7). Accordingly, the 

backward activation energy is reduced by the 1st loaded CO. However, a further drop is 

observed in the backward activation energy in the three CO neighbour configuration instead 

of a similar energy level to that on the clean surface, which is supported by the change in the 

 

Figure 6-3 Activation energy of Step 2 of H2 oxidation with (a) CO neighbours and (b) H2 

neighbours. Blue (Ni), red (O), black (C), white (H) 
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bond length. This may be due to the interactions between the Ni-H and O-H in the transition 

states and the products. As a result of those interactions, the least visible decrease in both Ni-

H bond and H-Ni-Ni angle from TSH2 to the product appears in the configuration with three 

CO neighbours, which presents a reduction in the backward activation energy. The H2 

neighbour effects produce similar tendencies of change in the forward and backward activation 

energies, as displayed in Figure 6-3(b). The 1st loaded H2 neighbour shortens the distance 

between O and H in TSH2, which leads to a more stable structure compared to that on the clean 

surface, and reduces the forward activation energy. On the other hand, the H-Ni-O angle in 

TSH2 of the three H2 neighbour configuration is the smallest among the three TSH2 shown in 

Figure 6-3(b). This change in the structural property of this configuration should be considered 

a contributor to the increase in the forward activation energy. The backward activation energy 

is reduced in the case of a single H2 neighbour. This is because a less significant change in the 

O-H bond distance was observed in one H2 neighbour configuration compared to that on the 

clean surface from TSH2 to the product. In case of the three H2 neighbour configuration, the 

interaction effects of Ni-H and O-H should be considered. The most significant changes in 

both the Ni-H bond and H-Ni-O angle are observed with the three H2 neighbour configuration, 

which explains the highest backward activation energy.  

The forward and backward activation energy show similar tendencies for the 

configuration with either CO or H2 neighbours at the H migration step, except for the backward 

activation energy drop promoted by the three CO neighbours. The activation energy is 

generally reduced by the neighbouring effects. Except for the three H2 neighbour 

configuration, the activation energy increases in the presence of neighbours compared to that 

on the clean surface.  
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6.3.4 Neighbouring effects: H2O formation 

At the final step of H2 oxidation, the surface O disconnects with the adjacent Ni. As shown 

in Figure 6-4, the Ni-H bond is shortened to be in close proximity to the OH structure such that 

H2O is formed within a distance from the surface. Figure 6-4(a) presents the decrease of the 

forward activation energy and the increase of the backward activation energy with the 

increasing number of the loaded CO neighbours. In Figure 6-4(a), the distance that the reacted 

O in the TSH3 is pulled from the surface increases by the single CO neighbour from 1.008 Å to 

1.354 Å. Then this distance drops from 1.354 Å in the single CO neighbour configuration to 

1.125 Å in the three CO neighbour configuration. The large displacement observed for the 

reacted O in the single CO neighbour configuration generates a higher forward activation 

energy than that predicted for the three CO neighbour configuration. On the other hand, the 

clean surface configuration produces the highest forward activation energy; this is mostly due 

to the 
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most significant reduction on the distance of the Ni-H bond from the reactant to TSH3, as 

indicated listed in Appendix A (Table A11). Furthermore, the backward activation energy is 

dominated by the configurations of the product. With the increasing number of CO neighbours, 

the H-O-H angle in the product narrows down from 114.199° on the clean surface to 106.158° 

in the three CO neighbour configuration and gradually approaches the stable H2O molecule 

structure, which has a simulated bond angle of 104.405°. Therefore, the product shown in 

Figure 6-4(a) tends to be more stable with more CO neighbours, which results in a higher 

backward activation energy. Figure 6-4(b) displays the same tendency of a slight decrease in 

the forward and backward activation energies followed by a considerable increase in both 

energies. In the presence of a single H2 neighbour, the O is pulled away from the surface to the 

shortest distance while three H2 neighbours lead to the largest O-surface distance. Accordingly, 

 

 

Figure 6-4 Activation energy of Step 3 of H2 oxidation with (a) CO neighbours and (b) H2 

neighbours. Blue (Ni), red (O), black (C), white (H) 
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the forward activation energy shown in Figure 6-4(b) drops first and then experiences a 

considerable increase. As for the backward activation energy, the lowering of the O-H-O bond 

angle with the increasing number of H2 neighbours should have brought a continuous drop in 

the backward activation energy. Nonetheless, the lowest backward activation energy is shown 

with 1st H2 neighbour, which may be due to the longest distance between the produced H2O 

and the surface.  

The neighbouring effects help to stabilize the H2O product; contrary to the other 

elementary reactions, the change in the forward activation energy shows an inverse tendency 

to that of the backward activation energy in the presence of CO neighbours. In terms of the 

configurations with H2 neighbours, the forward and backward activation energy keep the same 

tendency of change again. It should be noted that the activation energy in the configuration 

containing 3 H2 neighbours is up to 5 eV, which means that the reaction is almost improbable 

to happen under this configuration. In addition, the energy change caused by the neighbouring 

effects at the 3rd step of H2 oxidation is more significant in comparison to the first and second 

steps of H2 oxidation. Furthermore, the backward activation energy is more sensitive to the 

neighbouring effects at the H2O formation step. 

6.3.5 Neighbouring effects on reaction equilibrium 

The previous section has shown that the neighbouring effects have notable energetic and 

structural effects on the NiO system and that they significantly deviate from the behaviour 

observed for a clean surface. As explained in section 6.2, the energy difference (Ediff) between 

the forward activation energy and the backward activation energy is further studied in this 

section to investigate the reaction equilibrium shift resulting from the presence of CO and H2 

neighbours. 

Figure 6-5(a) illustrates the declining trend of Ediff of CO oxidation with loaded CO and 

H2 neighbours. These results indicate that there is a shift in the forward reaction equilibrium 

due to the neighbouring effects. In fact, the CO neighbour promotes the mentioned forward 

shift more notably than the H2 neighbour. For completeness, two intermediate values in energy 

difference involving two and three nearest neighbours were estimated using a customized 
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exponential fitting function for both the CO and H2 neighbours. As shown in Figure 6-5(a), the 

predicted values follow the expected behaviour.  

 

From Figure 6-5(b), the reaction equilibrium shift of the H2 decomposition reaction is 

insignificant compared to the CO oxidation reaction: the Ediff of CO oxidation in the presence 

of four CO neighbours is lower than half of that on the clean surface while the most significant 

change in Ediff of H2 decomposition goes from 2.61 eV on the clean surface to 2.51 eV in the 

three CO neighbour configuration, as depicted in the Appendix A (Table A12). The predicted 

 

Figure 6-5 Reaction equilibrium shift of (a) CO oxidation, (b) step 1 of H2 oxidation, (c) 

step 2 of H2 oxidation and (d) step 3 of H2 oxidation with CO and H2 neighbours 
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Ediff for this reaction increases with the loaded 1st neighbour and falls due to the addition of 

two CO or H2 neighbours. This reveals the backward shift in the reaction equilibrium generated 

by the single neighbour. However, a forward shift is observed in the presence of the three CO 

neighbours while a backward shift is observed in the three H2 neighbour configuration. As 

mentioned above, the 1st H2 neighbour results in a more significant change than that caused by 

the 1st CO neighbour. The CO neighbours otherwise produce a more considerable fluctuation 

of the Ediff. As shown in Figure 6-5(b), a second order polynomial fitting function provides an 

adequate energetic prediction for the expected two nearest neighbour configurations.  

Figure 6-5(c) describes the reaction equilibrium shifts of the H migration step in the 

presence of CO and H2 neighbours. The 1st CO neighbour leads to a moderate shift in the 

forward direction of the reaction and then a dramatic backward shift is observed by three CO 

neighbours owing to the apparent decrease of the backward activation. As for H2 neighbours, 

a minor decrease is predicted, which indicates a slight forward shift due to the loading of the 

H2 neighbours. The intermediate values are provided in Figure 6-5(c) involving two 

neighbours.  

As shown in Figure 6-5(d), CO neighbours promote a forward shift of the H2O formation. 

This is because the forward activation energy of this step is reduced by the CO neighbours 

while the backward activation energy is increased to almost double the value observed for the 

clean surface. On the other hand, the H2 neighbours only cause a modest increase in Ediff. Based 

on the analysis of Ediff at this step, the reaction shifts backward by the loading of H2 neighbours 

and shifts forward considerably due to the CO neighbours. As shown in the Appendix A (Table 

A12), CO neighbours resulted in a change in Ediff from 0.97 eV to -0.28 eV, which is considered 

the strongest neighbouring effect observed during the H2 oxidation. Intermediate values are 

provided in Figure 6-5(d) involving two neighbours. 

Based on the analysis of Ediff for each of the different reactions the neighbouring effects 

can decrease the Ediff of CO oxidation by up to 67%, whereas the Ediff of H2 decomposition 

will only increase by 2%. This demonstrates that in general, the presence of neighbours will 

enhance the overall syngas oxidation kinetics. 
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6.3.6 Coupling electronic analysis of neighbouring effects 

Followed by the insights on the reaction mechanism of the syngas combustion on the 

clean surface, the neighbouring effects on the reactions are explained here in terms of the 

atomic interactions caused by the electron population. The 1st neighbour leads to the most 

distinguished change of the activation energy of CO oxidation. Therefore, the single CO and 

H2 neighbour configurations are investigated for the CO oxidation in this section. Moreover, 

the three CO and three H2 neighbour configurations are considered for the H2 oxidation process 

due to the maximum deviation of the activation energy from the clean surface. The H2 

decomposition is analyzed as the controlling step of H2 oxidization. 

Figure 6-6 Electronic analysis of neighbouring effects on CO oxidation (a) C-O 

interaction of TSCO (b) C-Ni interaction of TSCO 
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Figure 6-6 compares the interactions of the selected C-O pair and C-Ni pair in TSCO 

between the clean surface and the neighbour configurations (single neighbour configurations). 

The C in CO seized the surface O to form CO2, which leads to the bonding between C and the 

surface O. The bonding orbitals are more occupied and undergo a slight shift to the lower 

energy level with the effect of H2 neighbour, as shown in Figure 6-6(a). However, the CO 

neighbour results in the negligible occupied orbitals. The displacement of the electron 

population stated above indicates that the interaction between the studied C and O in TSCO is 

weakened by the CO neighbour but strengthened by the H2 neighbour. Therefore, contrary to 

the single CO neighbour, a more significant hybridization of the orbitals in the selected C-O 

pair is observed in the presence of the single H2 neighbour. This suggests that a more stable 

TSCO can be predicted with the H2 neighbour effect and the single CO neighbour may produce 

a TSCO configuration with a higher energy. This observation supports our DFT calculation 

results since both the forward activation energy and backward activation energy are reduced 

by the single H2 neighbour and increased by the single CO neighbour, respectively, as shown 

in Figure 6-1. The C in the reacted CO first leaves the surface Ni to catch the adjacent O. As 

depicted in Figure 6-6(b), the interaction between the C and surface Ni in TSCO is facilitated 

by the CO neighbour and weakened in the H2 neighbour configuration. This indicates that, for 

a single CO neighbour, a higher degree of transition is needed from TSCO to the product, which 

is in agreement with our DFT calculations. That is, the more significant change in the bond 

angle of O-C-O in the single CO neighbour configuration reveals a higher degree of transition 
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from TSCO to the product, thus increasing the backward activation energy. The opposite effect 

is observed for the case of a single H2 neighbour.  

To improve the H2 oxidation process, the rate-controlling step (i.e. H2 decomposition) 

should be taken into account. Figure 6-7 gives an insight into the break of the H-H bond and 

the formation of the Ni-H bond affected by the neighbouring effects (three CO and H2 

neighbour configurations). The H-H interaction is expected to be weakened by the three CO 

neighbours due to the reduced peak at the populated bonding orbital displayed in Figure 6-7(a). 

The three H2 neighbours on the other hand strengthen the H-H interaction with a more occupied 

bonding orbital. The changes in the electron population analysis indicate that a more similar 

TSH1 to the product in the presence of three CO neighbours is expected compared to that on 

the clean surface; nevertheless, the opposite effect is observed for the case of three H2 

neighbours, as shown in Figure 6-2. These observations are in agreement with the DFT results 

presented in section 6.3.2, i.e. a more similar structure between TSH1 and the product in the 

presence of three CO neighbours than that observed for the case of a clean surface was 

detected; hence, the former configuration presents a lower system energy compared to that of 

a clean surface. On the other hand, the three H2 neighbours produced an opposite effect. Figure 

6-7(b) shows the interaction between the dissociative H and the surface Ni. As shown in this 

Figure 6-7 Electronic analysis of neighbouring effects on H2 decomposition (a) H-H 

interaction of TSH1 (b) H1s-Ni3dz2 interaction of TSH1 

 



 

115 

figure, a slightly more occupied bonding orbital is presented with three CO neighbours while 

an almost negligible change in the occupancy of the orbitals is observed in three H2 neighbour 

configuration. The stronger bonding interaction caused by the CO neighbours also indicates 

the higher degree of transition in the process from reactant to product1. Then, a more stable 

TSCO caused by CO neighbours can also be expected due to this phenomenon, which explains 

the lower activation energy with three CO neighbours and the moderate increase of the 

activation energy with 3 H2 neighbours, as shown in Figure 6-2. Note that the changes shown 

in Figure 6-7 are less significant than those shown in Figure 6-6. This suggests that more 

significant changes are expected in the activation energy of the CO oxidation reaction than that 

of H2 decomposition. The same conclusion is reached based on the structure-related energetic 

analysis presented in the previous sections. 

6.3.7 DFT-based kMC multiscale model 

The kMC model presented in this section has been developed using the results from the 

DFT analysis presented in the previous section while taking into consideration neighbouring 

effects. The kMC events are considered based on the proposed elementary reactions presented 

in section 4.3. The elementary reactions considered, and the corresponding activation energies 

are listed in Table 6-1. 
 

Table 6-1 Clean surface elementary reactions and their activation energies 

 Reaction Ea / eV 
CO*+ O* → CO2 (gas) + 2* CO oxidation 1.86 
H2Ni* + Ni* → 2HNi*  H2 decomposition 2.92 
HNi* + O* → Ni* + HO* H migration 0.35 
HNi*HO* → H2O (gas) + Ni* + * H2O formation 1.64 

 

As shown in the table, the activation energy of H migration from the Ni top to the adjacent 

O top is 88% smaller than the activation energy from the previous step of H2 decomposition, 

which means the H migration process is much faster than the H2 decomposition. This energetic 
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difference suggests that the H migration proceeds immediately after the H2 decomposition. 

Therefore, the H2 decomposition and H migration are combined as a single reaction, H2 

dissociation (R4 in Table 4-1). The integration of the H2 decomposition and H migration is 

considered sufficiently accurate. due to validation of the model presented in Chapter 4 that also 

adopted this assumption. Moreover, the current kMC model assumes that the bulk oxygen 

immediately replaces the surface oxygen vacancy once the oxygen is consumed by the 

reaction. Therefore, there is sufficient oxygen supply from OC in the system. This oxygen 

migration process is supported by the analysis of bulk oxygen transfer presented in Chapter 5.  

As shown in Table 4-1, the H2 dissociation is much faster than its previous event of the 

H2 adsorption and is also the fastest among all the considered events: the reaction parameter 

of H2 dissociation (R4) is the largest and three orders of magnitude larger than that of the H2 

adsorption (R3). Therefore, this model also assumes that the H2 dissociation happens directly 

after the H2 adsorption. This implies the H2 adsorption and H2 dissociation can be combined 

into one H2 chemisorption step, E4 as shown below. The H2 chemisorption model has been 

proven to be valid for the system prediction involving the H2 dissociation on the surface by 

previous reports. 206-207 Overall, the events considered for this kMC model are listed as follows:  

 
CO (gas) + ∗ → CO∗                                                                                                     (E1) 

CO∗+ O∗ → CO2 (gas) + 2∗                                                                                         (E2) 

H2 (gas) + O∗ + Ni∗ → HNi∗HO∗                                                                                (E3) 

HNi∗HO∗ → H2O (gas) + Ni∗ + ∗                                                                                (E4) 

 

These reactions are expected to occur in the NiO surface under different neighbor 

configurations. Hence, this work will explicitly estimate the reaction kinetics for each of these 

events under the more likely adjacent configurations that are expected to occur on the NiO 

surface. The developed kMC model is simulated using the scheme described in section 2.5.2 

and illustrated in Figure 2-3. 

6.3.7.1.  Neighbouring model for adsorption 
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Table 6-2 CO adsorption energy analysis 

CO neighbour 

number 

Adsorption 

energy 

/eV 

Adsorption rate 

ratio 

H2 neighbour 

number 

Adsorption 

energy 

/eV 

Adsorption rate 

ratio 

0 -1.56 100.00% 0 -1.56 100.00% 

1 -0.28 27.81% 1 -0.32 28.88% 

2 -0.25 27.00% 2 -0.31 28.75% 

3 -0.15 24.49% 3 -0.30 28.28% 

4 0.06 19.75% 4 -0.27 27.58% 

 

In order to relate the adsorption rates with the adsorption energies affected by the 

neighbouring molecules species, this work relates the adsorption rate with the inverse of the 

diffusion rate constants, 𝑘𝑘desorption, in Equation 6-4, because the adsorption can be seen as the 

inverse process of the desorption. 197 Therefore, the adsorption rates affected by the 

neighboring effects can be predicted by the inverse of the diffusion rate interpreted from the 

adsorption energy. The adsorption rate ratio is obtained by comparing the inverse of 𝑘𝑘desorption 

in the system containing the neighbour occupied surface and the clean surface, as listed in 

Table 6-2 and Table 6-3 for CO and H2 adsorption, respectively. The adsorption energies of 

syngas on NiO surface used in this study were presented in Chapter 3. Compared to the 

decrease in the adsorption rate ratio caused by the first loaded neighbour from 100% to 27.81% 

(decrease by 72.19%), more neighbours only result in a moderate change in the adsorption rate 

ratio (decrease by less than 8%). In order to consider the neighbouring effects on the CO 

adsorption rate, modifiers of the adsorption rate that refine the neighbouring effects are 

obtained from the average of the adsorption rate ratio in the presence of first nearest 

neighbours. This indicates that the same species of neighbours lead to similar changes in the 

adsorption rate despite the number of the nearest neighbours. With CO neighbour, the CO 

adsorption rate modifier is 0.264, whereas for the H2 neighbour the CO adsorption rate 

modifier changes into 0.284. However, the CO adsorption becomes an exothermic process with 

four CO neighbours; this is a strong indication that this process is highly unlikely to occur. 
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Hence, the rate modifier of CO adsorption with four CO neighbours was set to zero to imply 

the aforementioned phenomena. 

 

Table 6-3 H2 adsorption energy analysis 

CO neighbour 

number 

Adsorption 

energy 

/ eV 

Adsorption rate 

ratio 

H2 neighbour 

number 

Adsorption 

energy 

/ eV 

Adsorption rate 

ratio 

0 -1.29 100.00% 0 -1.29 100.00% 

1 -0.08 29.65% 1 -0.10 30.42% 

2 -0.09 29.89% 2 -0.05 28.72% 

3 -0.06 29.15% 3 -0.04 28.54% 

4 -4.70×10-3 27.58% 4 -0.03 28.42% 

 

Table 6-3 provides the H2 adsorption energy and the H2 adsorption rate ratio, considering 

the four nearest neighbours as CO or H2. The H2 adsorption stability is significantly weakened 

by the 1st loaded neighbour and keeps the same trend as CO adsorption. The H2 adsorption rate 

modifier with both CO and H2 neighbours was set to 0.29 since similar changes in the H2 

adsorption rate ratio were observed by the CO and H2 neighbours. 

6.3.7.2. Neighbour model for oxidation 

The explicit neighbouring effects on syngas oxidation are obtained from DFT analysis 

and has been presented in sections 6.3.1-6.3.4. All the DFT obtained reaction parameters were 

calculated using Equation 4-6. All the reaction parameters considered for the kMC model are 

labeled in Figure 6-8 including three categories of neighbour configurations for each of the 

reaction: in presence of only CO neighbours (red circles), in presence of only H2 neighbours 

(blue triangles) and in presence of hybrid neighbours (green squares) containing both CO and 

H2 neighbours at the same time. Among them, the reaction parameters calculated from DFT 

are: CO reaction with one and four nearest neighbours as CO or H2, and H2 oxidation (three 

steps as shown in Figure 4-2) with one and three nearest neighbours as CO or H2. All the 
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specific configurations analyzed by DFT calculations were explained in detail in sections 6.3.1 

to section 6.3.4. To simplify the analysis, neighbour configurations not analyzed by DFT 

calculations were predicted by the regression of the aforementioned DFT obtained reaction 

parameters. The regression of the single neighbor configurations was conducted using 1st order 

polynomial fitting, whereas the regression of the hybrid neighbor configurations was obtained 

using a weighted fitting wherein weighted modifiers were assigned to different species. 

Overall, 14 neighbour configurations are considered for each of the elementary reactions, R2, 

 

 

Figure 6-8 Reaction parameters for (a) CO reactions, (b) H2 dissociation and (c) H2O formation in 

consideration of single species neighbours as CO (red circle) or H2 (blue triangle) and hybrid 

neighbours (green cube) 
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R4 and R5 presented in Table 4-1. The complete set of reaction kinetic parameters used in this 

study is listed in Appendix A (from Table A13 to Table A15). 

As shown in Figure 6-8(a), the loaded neighbours generally enhance the CO oxidation 

process, as implied by the increase in the reaction parameters caused by the neighbours. Only 

one CO neighbour configuration leads to a slight decrease in the reaction parameter compared 

to the CO oxidation on the clean surface (4.47× 104 s-1). Note that the kMC model assumes 

that the H2 decomposition (described in sections 6.3.2) and H migration (described in section 

6.3.3) are merged into H2 dissociation, R4 in Figure 6-8(b) as explained at the beginning of the 

section 6.3.7. Therefore, the neighbouring effects of both of these two reactions are considered 

in Figure 6-8(b), which is shown to benefit the H2 dissociation process. Note that three H2 

neighbours significantly suppress the H2 dissociation; this is caused by the boost in the forward 

activation energies of both H2 decomposition and H migration reactions described in sections 

6.3.2 and 6.3.3. Therefore, the predicted reaction parameter of the H2 dissociation reaction in 

the presence of four nearest H2 is 0 s-1, which implies that four nearest H2 neighbours avoid 

the H2 dissociation to happen. Regarding H2O formation, the neighbours tend to benefit the 

reactions; however, three H2 neighbours result in a considerable drop in the reaction 

parameters, as shown in Figure 6-8(c); this suggests that the predicted H2O formation with four 

H2 neighbours is not likely to happen. This prediction comes from the significant increase in 

the activation energy of H2O formation reaction shown in Figure 6-4.  

Overall, first nearest neighbours tend to benefit the syngas oxidation process. However, 

the fully occupied H2 neighbour configuration tends to reduce the H2 oxidation process. The 

explicit predictions for all the neighbouring effects follow the changes in the activation 

energies. The reaction parameters estimated in the presence of the different nearest neighbour 

configurations were used to establish a kMC model for this system. The validation of the kMC 

model predictions by experimental observations can, therefore, verify the accuracy of the DFT 

predictions.  
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6.3.7.3. Lattice size effects 

 

Figure 6-9 Comparisons of the surface coverages of (a) CO and (b) H on 20×20, 30×30, 

50×50 and 70×70 lattice, respectively. 

 

After establishing the kMC model with an explicit consideration of the neighbouring 

effects, the lattice size for the developed kMC model is investigated for efficient and accurate 

predictions of the system. Small lattice sizes result in short computational times but inaccurate 

results whereas large lattices return accurate results at the expense of high computational costs. 

Figure 6-9 compares the coverages of CO and H predicted by the developed kMC model using 

four lattice sizes, i.e. 20×20, 30×30, 50×50 and 70×70 (lattice spacing = 2.087 Å). Since the 

proposed kMC model assumes that the H2 physical adsorption and H2 decomposition can be 

merged into a single H2 chemisorption process, the gas H2 will be directly chemisorbed on the 

surface as H explained at the beginning of the section 6.3.7. Therefore, the output of the kMC 

model discussed in Figure 6-9(b) is the coverage of H. The reaction parameters listed in Table 

4-1 show that the parameter of CO adsorption is larger than that of the CO oxidation, which 

explains increase in the CO coverage within a short time followed by smooth convergence to 

a steady-state, as displayed in Figure 6-9(a). However, the reaction parameter of H2 

chemisorption is similar to the H2O formation, and the parameter of the H2O formation reaction 

gradually becomes larger due to the neighbouring effects, as described in section 6.3.7.2. 
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Therefore, the coverage of H decreases to reach the steady-state as displayed in Figure 6-9(b). 

Figure 6-9 shows that all the tested lattice sizes produce similar averaged coverages for both 

CO and H. However, the three responses from 20×20 lattice are noisier compared to the 

predictions from other lattice sizes. The predictions using the 30×30 lattice contain less 

variability compared to the 20×20 lattice. The larger lattice sizes provide more steady 

predictions at the cost of longer computational times. For the same reaction time in the kMC 

model, the computational time using 30×30 lattice is 29 s while the computational time using 

50×50 lattice is 132 s and the computational time using 70×70 lattice is 401 s. Moving from a 

30x30 surface to a 50×50 shows no significant improvement in reducing the noise as displayed 

in Figure 6-9. Likewise, the computational time from a 50×50 lattice increases the CPU costs 

more than four times to those observed for a 30×30 lattice. Therefore, for the prediction of the 

system properties, an average of the predictions from three independent kMC simulations on 

a 30×30 lattice is adopted in the following section to capture the behaviour of the surface 

evolution. Furthermore, the steady-state coverages of the species on the surface are reached 

within a short time because the current kMC model does not consider the channel diffusion 

process and also assumes sufficient oxygen on the surface, as discussed at the beginning of the 

section 6.3.7, which is supported by the oxygen migration analysis presented in Chapter 5. 

6.3.7.4. Multiscale model verification 

As shown in Figure 6-10, the validation of the proposed kMC model is conducted based 

on the experimental observations. The validation under different syngas compositions was 

performed by comparing the oxygen consumed predicted from the kMC model and the solid 

conversion ratio reported in previous experimental studies. The oxygen consumed per site, 

𝑁𝑁𝑂𝑂,𝑐𝑐𝑐𝑐𝑐𝑐, is proportional to the solid conversion ratio, 𝑋𝑋𝑂𝑂,𝑐𝑐𝑐𝑐𝑐𝑐, shown as Equation 4-14. 
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Figure 6-10 Comparison between (a) the oxygen consumed from the kMC model and (b) 

solid conversion from experimental observations 190 at compositions of CO/H2 = 1(blue) and 

CO/H2 = 3 (red) in the gas phase; Comparison between (c) the solid conversion from the MF 

model and (d) the solid conversion from the experimental observations (scatter) 191 at 

temperatures of 823.15 K (blue), 873.15 K (red) and 923.15 K (green) (e) pressure analysis 

of the oxygen consumed from the MF model at 0.1 MPa (blue) and 2 MPa (red) 
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Since 𝑁𝑁O,con is proportional to 𝑋𝑋O_con, the comparison between the oxygen consumed 

from the kMC model and the solid conversion ratio from the experimental observations can 

provide a qualitative validation for the developed DFT-based kMC model. Moreover, due to 

the computational cost associated with this model, the kMC reaction time employed in the 

comparison is only 10-5 s. Since the system reached steady-state within 10-5 s as discussed in 

section 6.3.7.3 (constant surface coverages shown in Figure 6-9), the prediction in 10-5 s is 

sufficient to capture the system behaviour under the studied conditions and provides a 

qualitative verification for the model. That is, no noticeable changes are expected in the long-

term behaviour of the consumed oxygen as predicted by the kMC model; therefore, it is 

expected that these results may be extended to analyze the system behaviour over the longer 

time frames explored within the experimental work (30 s). Note that the estimated calculation 

time to simulate a single run of the kMC model over a 1s timeframe on a 30x30 lattice would 

be over one month (roughly requiring 2×109 steps). 

Figure 6-10 compares the predicted performance from the kMC model and the 

experimental observations under different operating conditions. The higher ratio of H2 to CO 

in the syngas leads to higher consumed oxygen as presented in Figure 6-10(a), which follows 

the same tendency as the experimental report: the higher ratio of H2 to CO benefits the oxygen 

transformation and results in a higher solid conversion ratio of solid conversion as shown in 

Figure 6-10(b). 190 Regarding the temperature effects, Figure 6-10 (c) shows that the increase 

in the temperature leads to more consumed oxygen. This temperature effect is observed in the 

previous experimental study presented in Figure 6-10(d): a higher solid conversion ratio is 

obtained under a higher system temperature. 191 Meanwhile, the oxygen transformation is 

suppressed by the high pressure, as shown in Figure 6-10(e), which agrees with the 

experimental outcomes reported in a previous study. 192 

Overall, the proposed kMC model captures the behaviour of the system at the early stages 

as their predictions follow experimental observations reported in the literature under different 

operating conditions, i.e. syngas composition, temperature and pressure. 

6.3.7.5.  Sensitivity analysis for DFT-based kMC scenario 
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Table 6-4 Sensitivity analysis 

 

As mentioned above, the system reached a steady-state in a short time (within 10-5 s). 

Hence, a sensitivity analysis of the neighbouring effects on different reactions at steady-state 

was performed. To perform this analysis, the neighbouring effects on each of the reactions are 

neglected respectively to be compared to the scenario in full consideration of the neighbouring 

effects. The changes in the system properties caused by the neighbouring effects are listed in 

Table 6-4 including the surface coverages of different species (CO or H), the product number 

per site (CO2 and H2O) and the total consumed O number per site. The percent deviation, 𝛥𝛥σ, 

caused by the neighboring effects is calculated as follows: 

 
 

𝛥𝛥σ = (Numfull – Numnonei)/ Numfull                                                                         (6-6) 

 

where Numfull is the predicted property from the scenario with full consideration of 

neighbouring effects, whereas Numnonei is the predicted property from the scenario under no 

neighbouring considerations on one specific event (e.g. CO adsorption). Note that the predicted 

property (Numfull/ Numnonei) can be coverage, produced product number per site or reacted 

oxygen per site. 

Moreover, Figure 6-11 (a) to Figure 6-11 (d) compare the full neighbour consideration 

scenario and the scenario with no neighbour consideration on CO adsorption. Figure 6-11 (e) 

to Figure 6-11 (h) give the same comparison on H2 chemisorption. Since the nearest neighbours 

significantly weaken CO adsorption rate as explained (see section 6.3.7.1), there is an increase 

No neighbouring effects CO 
coverage 

H 
coverage 

CO2 
production 

H2O 
production 

Consumed 
O/site 

CO adsorption +19.7% -39.6% -20.5% -93.0% -92.3% 

H2 chemisorption -70.0% +595.1% +499.5% +67.2% +71.2% 

CO oxidation -1.7% +7.7% -58.3% +0.6% +0.3% 
H2O formation -28.2% +294.7% +239.2% -83.1% -80.2% 

+ increase, - decrease  
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Figure 6-11 Comparison between the full neighbour consideration scenario (red) and no 

neighbour consideration on CO adsorption scenario (blue) of (a) CO coverage (b) H coverage 

(c) produced CO2 per site and (d) produced H2O per site; or no neighbour consideration on 

H2 chemisorption scenario (blue) of (e) CO coverage (f) H coverage (g) produced CO2 per 

site and (h) produced H2O per site 
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in the coverage of CO (Figure 6-11(a)) and a decrease in H coverage (Figure 6-11(b)) on the 

surface when the system eliminates the neighbouring effects on the CO adsorption. However, 

the CO2 production is not increasing as the CO coverage increases because the CO neighbours 

slightly weaken the CO oxidation, as shown in the activation energy analysis provided in 

section 6.3.1. Therefore, neglecting the neighbouring effects on CO adsorption leads to a 

significant decrease in the consumed O per site (92.3%), as shown in Table 6-4; this effect is 

mostly due to the increase in the coverage ratio of CO to H on the NiO surface. Likewise, 

ignoring the neighbouring effects on H2 chemisorption results in a considerable increase in H 

coverage (by six times larger as shown in Figure 6-11(f)) and a decrease in CO coverage (by 

70.0% as shown in Figure 6-11(e)), respectively. The increase in H coverage comes from the 

elimination of the neighbouring effects on H2 adsorption, which weakens the H2 adsorption as 

explained in section 6.3.7.1. These changes lead to an increase in both CO2 and H2O 

production, as shown in Figure 6-11(g) and Figure 6-11(h), respectively. This is because the 

H2 neighbours are likely to enhance the CO oxidation and H2O formation reactions, as 

discussed in section 6.3.7.2. The consumed O number increased by 71.2% due to the increase 

in the H coverage in the scenario that neglects the neighbouring effects on H2 chemisorption. 

Figure 6-12(a) to Figure 6-12(d) provide a comparison between the scenario with full 

consideration of neighbouring effects and the scenario with no neighbour consideration on CO 

oxidation. Figure 6-12 (e) to Figure 6-12(h) provide the same comparison on H2O formation. 

As discussed in 6.3.7.3, the neighbouring effects generally enhance the CO oxidation reaction 

under the studied conditions. Therefore, neglecting the neighbouring effects on CO oxidation 

weakens the CO oxidation and leads to a significant decrease in CO2 production (by 58.3% as 

shown in Figure 6-12(c)). This change only leads to a minor change in the coverages of CO 

and H. As shown in Figure 6-12(a), there is a slight increase in the CO coverage within a short 

timeframe at the initial stage due to the weakening of the CO oxidation. Then, increasing CO 

coverage weakens the CO adsorption, and therefore the CO coverage is slightly reduced at 

steady-state, as shown in Figure 6-12(a). Meanwhile, a slight increase (7.7%) in the coverage 

of H is observed at the steady-state in Figure 6-12(b). 
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Figure 6-12 Comparison between the full neighbour consideration scenario (red) and no 

neighbour consideration on CO oxidation scenario (blue) of (a) CO coverage (b) H coverage 

(c) produced CO2 per site and (d) produced H2O per site; or no neighbour consideration on 

H2O chemisorption scenario (blue) of (e) CO coverage (f) H coverage (g) produced CO2 per 

site and (h) produced H2O per site 
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Though the H2O production only increased by 0.6% (Figure 6-12(d)) while the CO2 production 

decreased by 58.3% (Figure 6-12(c)), the consumed O per site still increased slightly by 0.3%, 

as shown in Table 6-4. This is because the H2O formation reaction parameter is two order of 

magnitudes larger than the CO oxidation parameter, as shown in Table 4-1. Regarding H2O 

formation, the neighbouring effects generally enhance the H2O formation reaction as discussed 

in section 6.3.7.2. Therefore, H2O production is significantly reduced by 83.1% (Figure 

6-12(h)), which is caused by ignoring the neighbouring effects, and consequently, the H 

coverage is significantly increased by 294.7% (Figure 6-12(f)). The H2 neighbours will 

enhance the CO oxidation process such that the CO2 production is considerably increased by 

239.2% (Figure 6-12(g)), which also leads to a decrease in the CO coverage (28.2% in Figure 

6-12(e)). The overall consumed oxygen per site is significantly decreased by 80.2% due to a 

significant drop in the H2O production, as listed in Table 6-4. 

Overall, the changes caused by ignoring the neighbouring effects decreases in the 

following order: CO adsorption > H2O formation > H2 chemisorption > CO oxidation. This 

suggests that the neighbouring effects on CO adsorption are the most significant to the system 

temporal evolution, while those on CO oxidation are the least notable. The neighbouring 

effects on CO adsorption and H2O formation benefit the oxygen transformation considerably 

under the studied operating conditions since neglecting the neighbouring effects leads to a 

decrease in the consumed oxygen number per site. Moreover, the neighbouring effects on H2 

chemisorption suppress the oxygen transformation. In addition, since the H2O formation is a 

much faster reaction compared to CO oxidation, the change in H2O production affects the 

system more significantly, which would be the key factor to be considered in order to improve 

the oxygen conversion ratio and product selectivity. Note that a high ratio of CO coverage to 

H2 coverage tends to weaken the oxygen conversion. Furthermore, oxygen conversion changes 

significantly with and without consideration of the neighbouring effects, which implies that 

the reported neighbouring effects are key to capture the system behaviour. 
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6.4 Summary 

In this chapter, the neighbouring effects were taken into account for syngas combustion 

on a NiO surface. The syngas oxidation kinetics were investigated in the presence of specific 

first nearest neighbour configurations. The dominant structural deviation caused by the 

neighbouring effects and the corresponding changes in the activation energies were explained. 

The forward and backward activation energies presented similar tendencies in almost all of the 

studied cases. CO oxidation was often slightly weakened by the CO neighbours and enhanced 

by the H2 neighbours based on the analysis of the activation energies. The three step H2 

oxidation process was shown to benefit from the neighbouring effects except for the neighbour 

configuration involving full first H2 nearest neighbours. The activation energy analysis showed 

that H2O formation is highly unlikely to happen with fully occupied H2 neighbours. In addition, 

the backward activation energy tends to be more significantly affected by the nearest 

neighbours than the forward activation energy. The analysis of the reaction equilibrium 

revealed that the presence of CO neighbours resulted in more significant changes to the 

reaction equilibrium. A combined electronic analysis was performed to support the outcomes 

obtained from the DFT calculations. 

A DFT-based kMC multi-scale model was constructed and used to estimate the 

neighbouring effects under practical operating conditions for this process. The results from this 

simulation showed that the neighbouring effects on CO adsorption and H2O formation benefit 

the oxygen transformation significantly whereas the neighbouring effects on H2 chemisorption 

weaken the oxygen transformation. Among all the studied reactions, the system performance 

was most significantly affected by the neighbouring effects on CO adsorption, whereas the 

neighbouring effects on the CO oxidation led to an almost negligible change in the prediction 

of the system properties. The considerable changes caused by the neighbouring effects 

indicated that it is necessary to consider the neighbouring effects in order to capture the system 

performance under practical operating conditions. 

Note that the developed DFT-based kMC only provides property predictions within 10-5 

seconds. However, the studied system has reached steady states based on the coverage analysis 

shown in section 6.3.7.3. Then the average event rates can be calculated in consideration of the 
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explicit neighboring effects, which are not expected to deviate over a longer time frame. These 

average event rates can be brought into the closed-form MF model or microkinetic model, so 

that the longer system time can be achieved in consideration of the explicit neighboring effects. 

This part of research is highly recommended in the future. 
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 Conclusions and Future Work 

7.1 Conclusions 

This research study presented the theoretical study of syngas combustion on the NiO OC. 

The multi-scale models developed in this research provided a comprehensive understanding of 

the studied system, while taking into consideration the effects of oxygen vacancies and nearest 

neighbours. The major contributions from this work are outlined next. 

The adsorption principle of syngas on the NiO surface was revealed while taking into 

account the surrounding surface environment. According to the structural property analysis, 

the adsorption sites tend to repel the attached CO or H2 away with an increasing number of 

neighbours. This is an indication of the steric effects on the surface, which may become more 

significant for nonlinear molecules like methane. A CO neighbour leads to a larger distance 

between the adsorption site and the attached molecule as compared to the H2 neighbour. For 

both CO and H2 adsorption, the most significant decrease in the adsorption energy was caused 

by the first loaded neighbour. This suggests that once the first neighbouring molecule has been 

attached to the surface, an increasing number of the nearest neighbours does not significantly 

change the absorption stability. The energetic analysis showed that the hybrid adsorbed 

neighbor configuration leads to a smaller reduction in the adsorption energy of CO and H2 

compared to the uniform neighbor configuration. Note that the steric effects should be 

considered when CO is the neighbouring molecule. Likewise, a higher degree of symmetry 

leaves the adsorption molecule no tilting space, which leads to weakening the adsorption 

stability. This part of the research showed that the adsorption stability can be predicted by the 

combination of the hybrid, steric and symmetry effects. An electronic property analysis on 

different configurations was performed to validate the insights gained through this study. The 

insights from this study were essential to develop microscopic models of the studied system 

while considering the neighbouring effects.  

The elementary reaction mechanism for syngas combustion on NiO was obtained from a 

DFT analysis. The CO oxidation proceeded via a 1-step mechanism, while the H2 oxidation 

proceeded via a 3-step mechanism. The H2 decomposition proved to be extremely difficult to 
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advance due to its highest energy barrier among all the reactions. Therefore, the first step of 

H2 oxidation, i.e. H2 decomposition, is shown to be the controlling step dominating the overall 

reaction rate. An improvement in the H2 decomposition is expected to benefit the syngas 

combustion significantly. To provide a deeper understanding of the established reaction 

mechanisms, a coupling electronic analysis was performed, with the results supporting the 

proposed elementary reactions. An DFT-based MF model was then established based on the 

DFT results to validate the proposed reaction mechanism and investigate the effects of syngas 

composition, temperature and pressure on the species evolution on the OC surface. The system 

with a higher ratio of H2 in the syngas is likely to generate a higher OC conversion. Also, an 

increase in temperature resulted in a higher OC conversion ratio, while an increase in the total 

pressure resulted in a reduction of the consumed oxygen of OC. The predictions obtained from 

the MF model were in agreement with previous experimental observations, thus showing that 

the proposed mechanism is suitable for the prediction of the OC performance in the process of 

syngas combustion. The CO2/H2O product ratio was estimated under the coordinate effects of 

different operating conditions. The results show that high temperatures and low pressures will 

increase the CO2/H2O product ratios. The validated reaction kinetics laid a solid foundation for 

the later vacancy and neighbouring effect analyses performed in this study. 

Based on the established reaction kinetics on a perfect NiO surface described above, the 

effects of the oxygen vacancies were systematically investigated on syngas adsorption, O 

migration and surface reactions. The vacancy effects were emphasized through a comparison 

of OC performance with and without defective sites (i.e. the absence of oxygen in the surface 

layer). The syngas oxidation continuously consumed the surface oxygen to form oxygen 

vacancies, which were substituted by the subsurface O through O migration. The outward 

diffusion of the lattice O has been shown to be the preferred direction of diffusion according 

to the DFT analysis. In the presence of vacancies, both the CO and H2 adsorption 

configurations are expected to be more active in the subsequent oxidation reactions. Moreover, 

the CO adsorption at the vacancy-adjacent Ni top tends to be more active than the CO 

adsorption at the top of the vacancy. On the defective surface, two 1-step CO oxidation 

mechanisms were proposed based on the reactant configuration of CO adsorption on the 

vacancy and the reactant configuration of CO adsorption on the Ni top adjacent to the vacancy, 
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respectively. The corresponding energetic results show that vacancies benefit the CO oxidation 

process since they tend to reduce the reaction barriers of this reaction. In particular, the reaction 

with the reactant on the vacancy-adjacent Ni top has a lower energy barrier compared to that 

of the reaction with the reactant on the top of the vacancy. Regarding H2 oxidation, a 2-step 

mechanism on the defective surface was established instead of the 3-step mechanism on a 

perfect surface explained above. Furthermore, the H2 decomposition step, which serves as the 

rate-controlling step on the perfect surface, is significantly enhanced by the vacancy effects. 

Accordingly, the CO oxidation is shown to dominate the overall syngas combustion process. 

Based on these observations, vacancies have been shown to play a critical role in both syngas 

adsorption and oxidation. Electronic analyses were conducted to further support the insights 

gained on the reaction kinetics and the vacancy effects for this system. A validation of the 

proposed reaction kinetics was subsequently performed by analyzing the order of the 

reactivities and the predictions from a DFT-based MF model.  

In addition to the vacancies, first nearest neighbours are also expected to affect the 

reaction mechanism of the studied system. Thus, neighbouring effects were investigated by 

developing a DFT-based kMC multi-scale model. A DFT analysis was first conducted to assess 

the neighbouring effects on syngas oxidation. According to the DFT analysis, the adsorbed 

species as the first nearest neighbours lead to significant changes in the atomic structures of 

syngas as well as the OC surface, the activation energies, and the surface electronic population. 

Compared to the oxidation reaction observed in the presence of the H2 neighbours, the CO 

oxidation reaction experienced a more significant energetic change with a less visible structural 

deviation of TSCO due to the CO neighbours. The loading of the CO neighbours tends to 

weaken the CO oxidation while the H2 neighbours enhance the CO oxidation based on the 

change in the activation energies. However, the changes in the activation energy of H2 

decomposition are not as significant as those observed in CO oxidation, i.e. the presence of 

CO neighbours and the first loaded H2 neighbour leads to a lower forward activation energy of 

the H2 decomposition. Regarding the H migration process, the neighbours tend to reduce the 

activation energy, except for the case of three H2 neighbours. Moreover, H2O formation is 

generally enhanced by the neighbouring effects, excluding the fully occupied H2 neighbour 

configuration. Note that the fully occupied H2 neighbour configuration on the surface renders 
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the H2O formation process highly unlikely. The changes in the forward activation energy and 

backward activation energy usually present similar tendencies, except in the case of H2O 

formation in the presence of CO neighbours. In addition, the backward activation energy is 

normally more sensitive to the neighbouring effects as compared to the forward activation 

energy with the exception of the H migration process. 

The reaction equilibrium was also affected by the neighbouring effects. The neighbours 

lead to the forward shift of CO oxidation, while the reaction equilibrium of H2 decomposition 

shifts backward as a result of the neighbours, despite the three CO neighbour configuration. 

Moreover, the H migration reaction equilibrium was observed to slightly shift forward due to 

the neighbouring effects except in the case of the fully occupied CO neighbour configuration. 

In addition, the reaction equilibrium of the H2O formation is favoured by CO neighbours, but 

slightly suppressed by the presence of H2 neighbours. The reaction equilibrium is usually more 

sensitive to the effects of the CO neighbours. The neighbouring effects were also described 

based on an electron population analysis thus further supporting the findings of the preceding 

structure-related energetic analysis. 

The resulting neighboring effects are interpreted into reaction rate constants to develop a 

DFT-based kMC multiscale model. The validation of the DFT-based kMC multi-scale model 

showed that the proposed model can capture the properties of the studied system under 

practical operating conditions. A sensitivity analysis of the neighbouring effects on every event 

shows that the system performance is most significantly affected by the neighbouring effects 

on CO adsorption. Furthermore, this analysis also showed that neighbouring effects on CO 

oxidation only resulted in a moderate change in the predictions of the system properties. The 

neighbouring effects on CO adsorption and H2O formation were observed to enhance the OC 

conversion under practical operating conditions. Meanwhile, OC conversion is negatively 

affected by the neighbouring effects on H2 chemisorption. H2O production is the controlling 

step that determines the overall OC conversion ratio for the system. In addition, a high 

coverage ratio of CO to H2 tends to suppress the OC conversion ratio. The results from this 

study suggest that it is critical to consider the neighbouring effects to accurately capture the 

system performance, as implied by the considerable changes caused by the neighbouring 

effects predicted by the developed multi-scale model. 
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Note that the models presented in this study cannot be directly compared to the 

experimental observations due  the assumptions during model development. No effects of the 

oxygen migration and impurities on the system evolution are considered in this study. Also, 

the developed DFT-based MF model explained in Chapter 4 is established on the assumption 

of a perfect NiO surface, which does not take vacancy and neighboring effects into account. In 

addition, the proposed DFT-based MF model presented in Chapter 5 is developed based on the 

defective surface reaction kinetics. Therefore, the neighboring effects are not considered in this 

model. As for the DFT-based kMC model, the explicit neighboring effects are taken into 

consideration whereas the vacancy effects are not considered. Furthermore, the current studies 

available in this area do not allow a direct comparison to the present model. For instance, an 

experimental study using pure NiO, OC study of syngas combustion (measuring properties in  

short time interval) is not currently available.56 

7.2 Future work 

The findings and conclusions obtained from this study can be used as basis to develop 

future work in this emerging area. The suggested research avenues that can be pursued are 

described next. 

• The developed DFT-based kMC only provides property predictions within 10 -5 seconds. 

However, the studied system has reached steady states based on the coverage analysis 

shown in section 6.3.7.3. Then the average event rates can be calculated in consideration 

of the explicit neighboring effects, which are not expected to deviate significantly over a 

longer time frame. These average event rates can be brought into the closed-form MF 

model or microkinetic model, such that larger simulation times can be achieved in 

consideration of the explicit neighboring effects. 

• To date, no experimental pure NiO study can be adopted for the direct comparison of the 

multi-scale models developed in this research. Therefore, an experimental study that 

involves pure NiO as OC for the syngas combustion process within short contact time is 

recommended for a more direct comparison of the proposed models. Additionally, a 
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theoretical Al2O3 supported NiO OC study is also recommended on the basis of the 

proposed OC models for a higher quality of validation. 

• The proposed DFT-based MF model only considered vacancy effects in the system. In 

order to use variable-controlling method for the analysis of vacancy effects, the nearest 

neighbours are not considered for the establishment of the DFT-based MF model. To 

provide a more accurately prediction of the studied system, a DFT-based MF model that 

takes both vacancy and neighbouring effects into account is highly recommended for the 

future work. 

• The proposed DFT-based kMC model considered the explicit neighbouring effects. Since 

this model used the variable-controlling method to study the dynamic neighbouring 

effects, the resulting vacancy effects and the bulk oxygen migration were not considered 

in the kMC model. A DFT-based kMC model that involves oxygen migration and vacancy 

formation processes is expected to improve the insights for this process and perhaps reveal 

new mechanisms that may impact OC performance. 

• The current multi-scale model connects the information from the electronic population to 

the dynamic properties of the system from a microscopic kMC model. To reach larger 

scales, the proposed DFT-based kMC model can be coupled with an intra-particle 

diffusion model (mass balance equations) and a particle model (e.g. nucleation and nuclei 

growth model and shrinking core model) to predict OC performance at the larger spatial 

and temporal scales. 

• This study investigated the reduction process of NiO by syngas. The oxidation process of 

the OC is likewise significant and necessary to be considered for OC development. A 

research of the reaction activity of Ni oxidized by air in consideration of the factors such 

as neighbouring effects is expected to provide new insights for the studied system. 

• This study has showed that for syngas combustion, vacancies enhance CLC performance. 

CeO2 has attracted attention due to its advantages of high oxygen storage and its ability 

to maintain a specific concentration of vacancies. The addition of a three-valent metal 

oxides such as Fe2O3 to the CeO2 could further increase the reaction activity and avoid 

the rapid sintering of CeO2 at high temperatures. Therefore, a study that explores the use 

of this OC into this process can be key to further improve the overall process performance. 
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• CH4 is a widely used fuel in chemical looping technology, especially in chemical looping 

reforming process for syngas production. Hence, it is recommended to explore the 

reaction mechanisms of CH4 since this gas usually has many possible paths for its 

chemical transformation. A potential research of CH4 reforming in a chemical looping 

process could lead to new discoveries that can accelerate commercialization of CLC. 

• As mentioned in Chapter 2, metal promoters are trending due to their ability to improve 

the OC performance. Natural ores have attracted attention since they can be considered 

as OC with inherent metal promoters. Ilmenite ore mainly contains Fe2O3 and TiO2 in its 

structure, which are both proven to be active components of OCs. In addition, ilmenite 

ore is widely available and economically attractive. Theoretical studies involving this 

material are very limited. Thus, studies involving ilmenite ore as OC are highly 

recommended. 

• Reaction kinetics are vital for OC development. The DFT analyses performed in this work 

provided comprehensive insights into the reaction mechanisms. However, to screen a 

large scope of materials for a specific utilization of OCs, DFT calculations can be 

somewhat expensive. Machine learning (ML) techniques are promising computational 

tools that can be used for computer aided materials design.86, 208-210 In particular, ML can 

screen a large number of catalyst materials, as well as optimize and further design the 

catalysts in shorter time periods compared to the traditional experimental and/or 

computational methods. Therefore, developing a ML supported with DFT calculations 

can significantly aid in the optimization and selection of the OC for specific applications 

among a wide range of materials. 
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Appendix A 

A1 Structural change due to the neighbouring effects 

A1.1 CO oxidation 
Table A1 Angle of O-C-O /° 

 

 clean CO 4CO clean H2 4H2 

TSCO 124.26 108.811 128.707 124.26 179.394 179.882 

Product 179.911 179.518 179.686 179.911 179.928 179.956 

 

Table A2 Distance between reacted surface molecule and the surface from reactant to TSCO 

/Å 

 

 

Table A3 Distance between reacted surface molecule and the surface from TSCO to product 

/Å 

 

 

 

 

 

 

A1.2 H2 decomposition 

 clean CO 4CO clean H2 4H2 

CO and the surface 2.068 2.081 2.067 2.068 2.136 2.058 

Reacted O and the surface 1.384 1.975 1.433 1.384 3.664 3.457 

 clean CO 4CO clean H2 4H2 

Reacted O and the surface 1.384 1.975 1.433 1.384 3.664 3.457 

CO2 and the surface 3.739 4.077 5.302 3.739 3.628 4.301 
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Table A4 Angle of H-Ni-Ni /° 

 
 clean CO 3CO clean H2 3H2 

TSH1 70.174 70.469 72.41 70.174 70.178 69.736 
Product 90.037 89.29 89.202 90.037 90.687 89.799 

 

Table A5 Bond distance of H-H /Å 

 

 

 

Table A6 Bond distance of Ni-H /Å 

 
 clean CO 3CO clean H2 3H2 

TS H1 1.572 1.582 1.600 1.572 1.576 1.573 
Product 1.437 1.461 1.450 1.437 1.462 1.439 

 

A1.3 H migration 
Table A7 Bond distance of H-O /Å 

 clean CO 3CO clean H2 3H2 

Reactant 2.574 2.553 2.552 2.574 2.568 2.556 

TS H2 1.543 1.53 1.543 1.543 1.538 1.537 
TS H2 1.543 1.53 1.543 1.543 1.538 1.537 

Product 1.031 1.047 1.028 1.031 1.037 1.064 
 

Table A8 Bond distance of Ni-H /Å 

  

 clean CO 3CO clean H2 3H2 

TS H2 1.464 1.467 1.461 1.464 1.464 1.464 

Product 1.645 1.682 1.61 1.645 1.644 1.659 
 

Table A9 Angle of H-Ni-O /° 

 clean CO 3CO clean H2 3H2 
TS H1 1.743 1.763 1.804 1.743 1.75 1.741 

Product 2.943 2.933 2.910 2.943 2.969 2.944 
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 clean CO 3CO clean H2 3H2 

TS H2 90.992 91.412 91.329 90.992 91.114 90.921 

Product 73.196 70.667 73.828 73.196 72.561 70.158 

 

 

A1.4 H2O formation 
 

Table A10 Distance between reacted surface molecule and the surface from TSH3 to product 

/Å 

 

 

 

Table A11 Bond distance of Ni-H /Å 

 

 

 

 

 

 

A2 Neighbouring effects on activation energy 
 

 

 

 clean CO 3CO clean H2 3H2 

Reacted O and the surface 1.008 1.354 1.125 1.008 0.833 1.201 

H2O and the surface 2.192 2.159 2.207 2.192 2.812 2.159 

 clean CO 3CO clean H2 3H2 

Reactant 1.645 1.682 1.61 1.645 1.644 1.659 

TSH3 1.443 1.626 1.501 1.443 1.539 1.698 
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Table A12 Activation energy /eV 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

  

 

 

 

A3 Reaction parameters 

 
Table A13 CO oxidation parameters /s-1 
NCO NH2 Reaction parameter 

1 0 9.36×101 
2 0 1.99×104 
3 0 3.97×104 
4 0 5.95×104 
0 1 1.21×105 
0 2 3.00×106 
0 3 5.88×106 
0 4 8.76×106 

  
Forward 

activation 
energy 

Backward 
activation energy Ediff 

CO oxidation 

clean surface 1.862 0.239 1.623 
CO 2.563 1.649 0.915 

4 CO 1.801 1.262 0.539 
H2 1.596 0.000 1.602 

4 H2 1.586 0.000 1.584 

H2 decomposition 

clean surface 2.918 0.311 2.607 
CO 2.849 0.211 2.637 

3 CO 2.743 0.231 2.512 
H2 2.885 0.213 2.672 

3 H2 2.963 0.311 2.652 

H migration 

clean surface 0.347 2.103 -1.756 
CO 0.282 2.072 -1.790 

3 CO 0.301 1.480 -1.179 
H2 0.268 2.034 -1.766 

3 H2 0.484 2.324 -1.841 

H2O formation 

 1.640 0.674 0.967 
CO 1.523 1.150 0.373 

3 CO 1.119 1.400 -0.281 
H2 1.142 0.086 1.055 

3 H2 5.536 4.456 1.080 
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1 1 2.44×105 
1 2 1.11×106 
2 1 2.10×105 
1 3 2.52×106 
2 2 7.22×105 
3 1 2.07×105 

 

 

Table A14 H2 dissociation parameters 
NCO NH2 Reaction parameter 

1 0 6.25×1011 
2 0 1.21×1012 
3 0 1.79×1012 
4 0 2.37×1012 
0 1 5.86×1011 
0 2 3.28×1011 
0 3 6.97×1010 
0 4 0.00 
1 1 6.29×1011 
1 2 2.06×1011 
2 1 6.07×1011 
1 3 1.24×103 
2 2 1.54×106 
3 1 1.91×109 

 

Table A15 H2O formation parameters 
NCO NH2 Reaction parameter 

1 0 1.03×107 
2 0 2.16×108 
3 0 4.21×108 
4 0 6.26×108 
0 1 1.56×108 
0 2 7.80×107 
0 3 1.09×10-10 
0 4 0.00 
1 1 1.30×108 
1 2 7.49×102 
2 1 5.62×105 
1 3 1.58×102 
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2 2 2.50×104 
3 1 3.96×106 
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Appendix B 

 

The coverage analysis of the studied system is presented in Figure B1 under the same 

operating condition presented in Figure 5-7. As shown in this figure, the coverages of the 

surface species share the same tendencies towards steady-state for the two syngas compositions 

considered in this analysis. The CO coverage reached steady-state fast because the reaction 

rate of CO oxidation is larger than that of the CO adsorption. Moreover, the coverage of the 

adsorbed H2 initially increased but then it experienced a decrease before reaching steady-state. 

 

 
Figure B1 Coverage analysis of (a) the adsorbed CO, (b) the adsorbed H2 and (c) the surface NiHOH at 

compositions of CO/H2 = 1(red) and CO/H2 = 3 (blue) in the gas phase 
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This behaviour is due to the faster H2 decomposition compared to H2 adsorption. The drop in 

the H2 coverage also resulted in a drop in the NiHOH coverage. Comparing the outcomes from 

the two different compositions reported in Figure S1, a higher syngas ratio of H2 to CO resulted 

in larger coverages of H2 and NiHOH and slightly lower coverage of CO. 

Figure B2 presents the CO oxidation mechanism, from Reactant4 to ProductCO4 through 

TSCO4, on the defective surface with a CO neighbor occupying the adjacent vacancy top. The 

comparison between this studied configuration and the other studied systems shows that the 

CO neighbor at the adjacent vacancy top leads to larger forward and backward reaction barriers 

 
Figure B2 Comparison of the CO oxidation energy profile between the defective surface with a CO 

neighbor occupied at the adjacent vacancy top (green: from Reactant4 to ProductCO4 through TSCO4) 

and the perfect surface (black: from Reactant1 to ProductCO1 through TSCO1), the defective surface 

(blue: from Reactant2, CO adsorbed at vacancy top to ProductCO2 through TSCO2; red: from 

Reactant3, CO adsorbed at vacancy-adjacent Ni top to ProductCO3 through TSCO3) 
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than those observed in the other configurations. However, the difference between the forward 

and backward reaction barriers is much smaller on the defective surface with a nearest CO 

neighbor occupied at the vacancy site than those obtained on the perfect surface and the 

defective surfaces without any other absorbed molecules. 

 
 

 

 

 

 

Table B1 presents the imaginary frequencies of the TSs of H2 oxidation process on a 

perfect surface to verify the proposed mechanism. 

Table B1 Frequencies of clean surface mechanism 

 Imaginary frequency /cm-1 

TS1perfect 725.01 

TS2perfect 726.61 

TS3perfect 116.57 
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