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Abstract 

A path following controller was proposed that allows autonomous vehicles to safely navigate 

roundabouts. The controller consisted of a vector field algorithm that generated velocity 

commands to direct a vehicle. These velocity commands were fulfilled by an actuator 

controller that converts the velocity commands into wheel torques and steering angles that 

physically move a vehicle. This conversion is accomplished using an online optimization 

process that relies on an internal vehicle model to solve for necessary wheel torques and 

steering angles.  

To test the controller’s performance, a 16 degree of freedom vehicle dynamic model was 

developed with consideration for vehicle turn physics. Firstly, tire force data was gathered by 

performing driving maneuvers on a test track using a vehicle fitted with tire measurement 

equipment. The generated tire force data was used to compare various combined slip tire force 

models for their accuracy. The most accurate model was added to the high-fidelity vehicle 

model. Next, suspension kinematic data was generated using a simple testing procedure. The 

vehicle was equipped with the tire measurement equipment and the vehicle was raised a 

lowered with a hydraulic jack. Using displacement and orientation data from this test, a novel 

reduced order suspension kinematic model that reproduces the observed motion profile was 

developed.  

Application of the path following controller to the high-fidelity model resulted in close 

following of a roundabout path with small deviations. 
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Chapter 1 

Introduction 

1.1 Autonomous Vehicles 

Autonomous vehicles have gained popularity as a heading direction for future automobile 

designs. Developing autonomous vehicles requires addressing problems in planning, 

perception, and control [1]. These areas are oftentimes connected meaning knowledge in all 

three areas is necessary when developing autonomous vehicles. Commonly stated, there are 

five levels of autonomy used to characterize autonomous vehicles [2]. Higher levels of 

autonomy indicate greater functionality from vehicles and less interaction from drivers. 

Examples of level 1 autonomous vehicles are those with Advanced Driver Assisted Systems 

(ADAS) such as cruise controllers or anti-lock braking systems [3]. Recently, Tesla has 

achieved level 3 autonomy with their Autopilot system [4]. Under specific conditions, the 

Autopilot system allows Tesla vehicles to drive, park and turn autonomously. 

Path planning is about generating reference paths for autonomous vehicles. These reference 

paths are designed to avoid collisions and to encourage vehicles to arrive at a desired 

destination. Popular approaches to path planning are those that can be combined with 

controllers or graph theoretic methods [5, 6]. Control theoretic approaches rely on potential 

fields can lead to smooth path generations however they do not guarantee arrival at 

destinations. On the other hand, graph theoretic algorithms offer flexibility by allowing 

weights to be assigned by direction. Paths that are feasible can be designed this way however 

graph theoretic approaches require discretizing motion spaces. This reduces path smoothness. 

Perception deals with locating a vehicle and identifying its surroundings [1]. This is 

oftentimes accomplished using Light Detection and Ranging (LIDAR) sensory equipment, 

cameras or a fusion of perception elements to map a vehicle’s environment. Combining these 

strategies with localization algorithms, estimates of a vehicle’s position and the location of 

obstacles can be identified. Commonly, localization and mapping of vehicles are accomplished 

simultaneously. This is usually referred to a Simultaneous Localization and Mapping (SLAM). 
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SLAM techniques employ Bayesian filters, Kalman filters, or particle filters to accurately 

estimate position while scoping a surrounding environment.  

Lastly, controllers actuate vehicles based on information from path planning algorithms [5]. 

Through combinations of feedback and feedforward controllers, commands can be delivered 

to vehicle accelerator pedals, brake pedals and the steering wheel to make the vehicle move 

appropriately. One of the most popular control methods is Model Predictive Control (MPC) 

[7]. An MPC relies on an internal vehicle model to compute control inputs that make a vehicle 

move in a desirable way. This is accomplished through an online optimization, with the internal 

vehicle model, such that an error function is reduced. A principal advantage of an MPC is the 

ability to handle constraints. 

1.2 Roundabouts 

Roundabouts are a roadway intersection type that were shown to lead to fewer vehicle 

collisions and pedestrian accidents compared to typical traffic stop intersections [8]. They can 

be identified by their distinct circular geometry. Roundabouts are considered safer than 

signalled intersections because they require slower vehicle speeds and greater driver vigilance. 

However, municipalities often choose not to construct roundabouts because of their expensive 

construction costs [9, 10]. Moreover, the slow vehicle speed requirement makes roundabouts 

ineffective for highway intersections with high speed limits. The challenge addressed in this 

thesis is navigation of autonomous vehicles through roundabouts. We advocate for the use of 

path following by presenting a theoretical strategy that achieves traversal of roundabout paths. 

 

1.3 Motivation and Challenges 

Most research on autonomous driving is devoted to straight line driving and steady-state 

cornering. Yet, roundabouts are quite commonplace [11]. Driving behavior along roundabouts 

differs from that of conventional driving scenarios. In Ontario, Canada, drivers are required to 

traverse roundabouts in a counterclockwise direction [12]. Moreover, they can only traverse 

the intersection if the roundabout is clear of pedestrians and other vehicles. Conventional 
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signalled intersections, however, allow drivers to either proceed straight, turn right, or turn left. 

Additionally, traffic can flow in two directions simultaneously. 

Depending on the number of road junctions at a roundabout, steering requirements change. 

A study conducted by Zhao et al. [13] reveals that one steers a vehicle in both directions when 

going through a roundabout. Upon entry, a driver steers a vehicle right and then steers to the 

left while traversing the roundabout. Finally, the driver may steer to the right again when 

exiting a roundabout. But this depends on the exit the driver chooses. Considering that drivers 

can only enter a roundabout when it is clear, it is natural to assume that drivers accelerate their 

vehicles from a standstill. The steering requirements and the acceleration action indicate that 

roundabout traversal cannot be considered using steady-state cornering principles [14]. If 

vehicle dynamic simulations are required for roundabouts, it is necessary to incorporate 

appropriate tire models and suspension models into a vehicle dynamic simulation. This way, 

the behavior of general turning maneuvers can be studied. If one designs a controller for 

roundabout navigation using a vehicle dynamics model without these characteristics, then one 

cannot be assured that actual autonomous vehicles can safely navigate a roundabout. 

1.4 Thesis Organization 

This thesis contains vehicle modelling work and control design to facilitate roundabout 

navigation. Modelling efforts were made to improve a 14 degree of freedom vehicle dynamic 

model of a 2015 Plug-in Hybrid Electric Vehicle (PHEV) Toyota Prius [15] to characterize 

roundabout turn physics in detail (see Appendix A). Attention was focused on developing tire 

models and models of suspension kinematics to accurately simulate general turning 

maneuvers. Model development was facilitated by experimental procedures on an actual 2015 

PHEV Toyota Prius. 

The second chapter provides a comprehensive literature review on modelling and path 

following. The third chapter includes a study of various combined slip tire models on their 

accuracy in predicting combined slip tire loads. Additionally, construction of a reduced order 

suspension model is presented to mathematically represent suspension kinematics. The fourth 

chapter presents the process of constructing a reference path for navigation through 
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roundabouts. Next, a proposed development of a kinematic path following algorithm is 

presented along with an actuator controller that physically applies the commands of the 

kinematic path following algorithm. Finally, path following results were generated by applying 

the control system to the upgraded high fidelity model. The last chapter details observations 

and directions for further research. 
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Chapter 2 

Literature Review 

2.1 High Fidelity Modelling 

The growth of computer technology has extended the capabilities of simulation software for 

vehicle design and analysis. Now, simulation software can be used to produce detailed dynamic 

models of vehicles to evaluate the performance of vehicle controllers. Commonly referred to 

as high fidelity models, these models can reduce the amount of experimentation required for 

controller testing [16, 17] . Consequently, the frequency of accidents can also be reduced 

because one can quickly address dangerous situations by testing controllers on high fidelity 

models. Because high fidelity vehicle models closely resemble real vehicles, high fidelity 

vehicle models can be used to perform robustness studies of controllers. There are multiple 

simulation platforms that allow for the construction of high - fidelity models. Each of them has 

their own advantages and disadvantages. Some of the popular simulation software for vehicle 

dynamics are: 

• MSC ADAMS 

• CarSim 

• Simscape Multibody 

• MapleSim 

Throughout this work, the coordinate system in Figure 2.1 will be used to characterize the 

global positions and orientations of the vehicle chassis. The red dot corresponds to the front of 

the vehicle. 
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Figure 2.1 Vehicle Chassis Coordinate System 

2.1.1 MSC ADAMS 

MSC ADAMS is a popular multibody dynamics software with a tool called ADAMS Car 

specifically built for vehicle dynamic analyses [18]. ADAMS Car supports the ability to 

perform standard vehicle tests in a virtual environment for validation or verification purposes. 

For example, one can study the suspension system of a car by using ADAMS Car’s four post 

test rig [18]. ADAMS Car employs differential algebraic equation (DAE) solvers when 

simulating constrained vehicle systems, where ordinary differential equations are solved 
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numerically while satisfying algebraic constraint relationships. This restricts its usability for 

real-time applications because of the computational requirements in solving DAEs. 

2.1.2 CarSim 

CarSim is a software package tailored specifically for virtual automobile control testing. One 

can design and simulate driving scenarios for contextual testing of controllers [19]. In 

simulating vehicles with ADAS, CarSim allows users to specify driver models and traffic 

environments for their testing needs. Furthermore, these simulations can be performed in real 

time to aid with computational efficiency studies of automobile controllers. 

2.1.3 Simscape Multibody 

MATLAB has a multibody dynamics tool developed for use with Simulink called SimScape 

[20]. SimScape provides tools to help users design controllers or to optimize system designs. 

Additionally, SimScape supports model deployment for hardware-in-loop (HIL) testing of 

controllers and C-code generation of models for model-based control design. 

2.1.4 MapleSim 

MapleSim is a multibody dynamics extension to Maple [21]. Unlike traditional multibody 

dynamics software, MapleSim relies on a graph theoretic approach to modelling [22].This 

extends common modelling capabilities because one can combine models from different 

physical domains (i.e. mechanical and electrical) to create a complete model. This feature is 

beneficial for modelling hybrid vehicles they contain electrical and mechanical components 

that interact with each other. Furthermore, MapleSim applies symbolic formulations when 

solving multibody dynamic equations to reduce computational time. Additionally, MapleSim 

has a custom component tool that allows one to create and apply novel components to high 

fidelity models. Nonstandard vehicle modelling elements can be made this way.  

2.2 Tire Modelling 

Tire forces, moments and kinematic variables are defined according to a standard coordinate 

system called the SAE Tire Axis System (see Figure 2.2) [29]. In this thesis, the longitudinal 
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forces will refer to forces in the positive SAE X-direction, the lateral forces occur in the 

positive SAE Y-direction and the vertical loads act in the positive SAE Z-direction.  

 

Figure 2.2 SAE Tire Coordinate System 

Two important quantities associated with tire kinematics and dynamics are slip and sideslip 

[23, 29]. Tire slip occurs due to deformation of the tire rubber and it affects the translational 

motion of a tire in the SAE X-direction. Numerically, the slip ratio quantifies tire slip in the 

SAE X-direction by providing a measure of pure translational motion of a tire’s center of mass 

[29]. Larger slip ratio values indicate less rolling and greater sliding action of a tire on a road 

surface. Physically, screeching tires during hard braking maneuvers represent large slip ratios. 

Sideslip is an angular measurement quantifying the deviation between a tire’s heading angle 

(SAE X-direction) and its travel direction (see Figure 2.3). The sideslip angle (𝛼) becomes 

nonzero when turning and leads to the generation of lateral forces.  
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Figure 2.3 Tire Sideslip Angle 

In general, tires are challenging vehicle elements to model accurately, yet the forces they 

experience have a profound influence on vehicle dynamics [23]. The difficulty in modelling 

tire forces and moments stems from characterizing the dynamic and material properties of the 

rubber. Tire performance can be influenced by temperature changes, inflation pressure changes 

and vehicle weight transfer and they occur simultaneously. Typically, tire data is generated by 

subjecting them to various tests on dedicated test rigs. Although reliable tire data is collected 

this way, the tire data is not reflected in the context of driving because the aforementioned 

effects cannot be reproduced simultaneously on these test rigs. It was revealed by Nordeen, 

that changes to the contact forces between the road and the tire have a significant impact on 

the lateral forces that can be generated by a tire [24] making it important when considering 

turning maneuvers. Turning induces shifts in vehicle weight which in turn vary the vertical 
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loads acting on all four tires. In turn, this affects the cornering properties of the tires. 

Additionally, tires warm up as vehicles are driven. This also induce changes to tire pressure. 

Together, these effects contribute to changes in tire performance when turning. Lastly, turning 

also induces nonzero moments on the tires which change tire orientation [14]. This contributes 

to changes in lateral forces affecting tire cornering properties.  

Due to the complexity of tire behavior, there is a spectrum of proposed tire models which 

are appropriate for specific applications. On one end of the spectrum, there are simple linear 

tire models that capture the major characteristics of tire behavior [23]. These tire models are 

typically used for vehicle control applications because their simplicity ensures they are not 

computationally demanding. On the other end of the spectrum, there are complicated finite 

element tire models that capture rubber deformation mechanics, temperature effects and 

pressure effects in great detail [23]. Finite element tire models are computationally demanding, 

but realistic enough to be suited for tire analysis and tire development. There are, however, 

models which offer a compromise between detail and computational intensity. Among them, 

the most popular models are the Magic Formula, the Dugoff model and the LuGre model [25, 

26, 27, 28].  

2.2.1 Combined Slip Tire Modelling 

On roundabouts, vehicles will accelerate and steer simultaneously [13]. This means tires will 

incur nonzero longitudinal slips and nonzero sideslip angles during a turn. According to 

Pacejka, Wong and Brach and Brach, this state is known as combined tire slip [23, 14, 29]. 

When a tire is experiencing combined tire slip, the longitudinal and lateral forces acting on a 

tire will be coupled causing significant changes to a tire’s cornering properties.  Conventional 

tire models, like the Magic Formula, do not capture the relationship between longitudinal and 

lateral loads. To accurately simulate this coupling, it is important to consider a combined slip 

tire force model. In the literature, most combined tire slip models were found to be data driven 

or developed from first principles. The data driven tire models are produced from empirically 

from tire load data whereas, the first principal models are developed from physical 

representations of tires. These tire models, however, require some data driven elements such 
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as parameters to make them consistent with a specific tire. Brach and Brach [29] presented a 

list of requirements to qualitatively evaluate combined tire slip models.  They proposed that a 

combined tire slip model should be able to continuously map to pure slip conditions. 

Furthermore, when a tire locks (i.e. slip ratio is 1 or -1), the resultant of the combined slip load 

must be equal to 𝜇Fz where 𝜇 is the friction coefficient between the tire and the road and Fz is 

the vertical load acting on a tire.  This requirement should hold true at any sideslip angle. It 

was observed that the common approach to combined tire slip modelling is to extend pure slip 

models to predict combined slip loads. 

Bayle, Forissier and Lafon [30] developed an empirical extension of the Magic Formula for 

combined slip conditions using weighting functions. The weighting functions, when applied to 

the Magic Formula, attenuate pure slip longitudinal and lateral loads to predict combined slip 

loads. At pure slip conditions, the weighting functions become unity which implies this method 

continuously maps to pure slip conditions. The 2002 version of the Magic Formula has this 

model built into it [23, 31]. In 2015, Taheri and Wei [32] predicted combined slip tire loads 

with weighting functions that differ from those of Bayle, Forisser and Lafon. While Bayle, 

Forissier and Lafon developed their model for the Magic Formula, the combined slip model 

by Taheri and Wei was applied to a pure slip tire force model they developed. Rather than 

curve fitting a sinusoidal weighting function, Taheri and Wei suggested curve fitting 

exponential functions. Additionally, Taheri and Wei introduced a term called the residual force 

that accounts for tire camber effects and asymmetry of the tire geometry. Both models were 

shown to agree well with combined slip tire load data. 

The COMBINATOR model proposed by Schuring, Wagner and Pottinger [33], is an 

empirical combined slip tire model that treats tire slip as a vector. The components of the slip 

vector are made up of the slip ratio and the sine of the sideslip angle.  An important 

characteristic of the vector treatment of slip is that the slip vector forms a circle if the vector is 

varied by the angle between the slip components. The radius of the circle is equal to the 

resultant magnitude of the slip vector. To apply this model, pure slip tire load models must 

first be expressed in terms of the resultant slip magnitude. The combined slip tire loads could 

be found using relationships between the slip magnitude and the angle subtended by the slip 
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vector. An important assumption that was made in this model is that the slip vector is colinear 

with the resultant load. This assumption has been a source of contention in [34] and [35]. It 

was found by Xi and Guo that this conjecture does not hold at small slip magnitudes due to 

anisotropy of tires. Pottinger, Pelz and Falciola [36] tested the effectiveness of the 

COMBINATOR model on a set of truck and racing tires however they did not test the 

COMBINATOR model on tires for passenger vehicles. They found that the COMBINATOR 

model holds well for tires bigger than 275/80R22.5. 

In a series of papers by Guo et al. [37, 38, 34, 39] the UniTire model was proposed for 

vehicle dynamic simulations with the capability of predicting tire loads under combined slip 

conditions. Using a simple physical model of tires, modified slip definitions were proposed 

which depend on tire deformation parameters. Guo and Sui [40] demonstrated that under 

combined slip conditions, the tire rubber deflects in the direction of the resultant slip they 

proposed. Based on this observation and tire loading measurements, Guo et al. developed a tire 

force model for a normalized force in the resultant direction. This resultant load is then scaled 

using the modified slip quantities to predict combined slip longitudinal and lateral tire loads. 

The UniTire model was shown to accurately predict combined tire slip loads while requiring 

less parameters than other tire models. Improvements to the UniTire model were made in [37] 

to better improve combined slip prediction capabilities and to include non-steady tire loading 

effects. 

Based on the ideas by Guo et al, Guo and Xu [34] presented a method to predict combined 

tire slip loads using pure slip tire force models. This method became known as the State 

Stiffness method. The State Stiffness model was developed partly to address the issue of the 

collinearity assumption in the COMBINATOR model not holding true at small slip 

magnitudes. According to Guo and Xu, a tire’s loading characteristics are dominated by 

deformation of the tire rubber at low slip magnitudes. This invalidates the collinearity 

assumption of the COMBINATOR model because tires have anisotropic material properties 

that dominate at low slip magnitudes. The State Stiffness method is a combined tire slip model 

that captures combined tire slip loading characteristics through the brush model [24] while 

including tire anisotropy.  Based on the brush model, a tire’s loading characteristics under 
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combined slip conditions are related to pure slip conditions because both conditions can 

produce the same deflection of a brush bristle [40, 34, 39]. Hence, they claim the stiffness of 

the bristles in both situations will be the same thereby establishing a connection between 

combined tire slip loads and pure slip tire loads. 

The popular software ADAMS, by MSC Software, has two combined tire slip models 

available for the application ADAMS Car [41]. Users can either use a model developed by 

MSC Software or the weighting function model by Bayle, Forisser and Lafon. Like the 

COMBINATOR model, the ADAMS model also uses the slip circle. However, the slip circle 

is used to predict friction coefficients in the longitudinal and lateral directions under combined 

slip. These friction coefficients scale pure slip tire forces to predict the combined slip tire 

forces. 

Gafvert and Svendenius [42, 35] also developed two semi - empirical combined tire slip 

model from the brush model. They have shown from first principles that the brush model can 

be used to identify invariant slip ratios and sideslip angles between pure slip tire loads and 

combined tire slip loads, which could be exploited to predict combined tire slip loads. Gafvert 

and Svendenius demonstrated in their derivations that tire loads can be separated into an 

adhesion part and a sliding part. The combined slip tire loads could be found by scaling these 

parts and then superimposing the results. Both models were shown to have similar accuracy in 

predicting combined tire slip loads. Gafvert and Svendenius have further developed their 

proposed models to include transient tire loading behavior and camber effects in [43, 44]. 

Van Gennip and McPhee proposed an approach to extend pure slip tire models in [45] for 

combined slip conditions. Firstly, the pure slip tire model is fit to tire load data at various slip 

ratios and sideslip angles for both the longitudinal and lateral directions. Spline interpolation 

curves are then used to modify the parameters of the pure slip tire model to create a continuous 

function that could be used to predict combined tire slip loads. As noted by Van Gennip and 

McPhee, the accuracy of the model depends on the number of pure slip tire load curves fit to 

tire load data. With more curves, better splines can be used and therefore more accurate 

estimates of combined tire slip loads can be found. This approach can be difficult to use if a 
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combined tire slip model has too many parameters because these parameters would need to be 

identified for more than one tire curve. Furthermore, this method is stringent on the quality of 

data because the accuracy depends on the goodness of fit of the pure slip tire models at various 

slip ratios and sideslip angles. 

Nicholas and Comstock [46] introduced and extension of pure slip tire models using 

empirically derived mappings of the pure slip longitudinal and lateral loads. However, Brach 

and Brach [29] found this model does not continuously map to pure slip conditions so they 

made changes to the Nicholas Comstock model which became the Modified Nicholas 

Comstock model. The Modified Nicholas Comstock model was shown to map to pure slip 

conditions continuously and they require parameters that could be found from pure slip tire 

load data. 

2.3 Suspension Kinematics and Compliance (K&C) 

According to Cao et al., there are three factors that influence the behavior of suspension 

systems: springs, dampers and suspension kinematics and compliance (K&C) [47]. Suspension 

kinematics refer to displacements and changes in wheel orientation due to suspension 

geometry. Compliance refers to changes in a wheel’s kinematics due to deformation of the 

suspension links and its bushings. For most vehicle modelling applications, suspension K&C 

are neglected. Unlike springs and damper behaviors, which could be modelled using two 

degree of freedom suspension systems (i.e. quarter car suspension models), modelling 

suspension K&C require complicated multibody dynamic representations. This is chiefly due 

to the need for considering the complicated geometry of a vehicle suspension system. 

According to Stoll and Reimpell, the geometry of a vehicle suspension system profoundly 

influences vehicle performance [48]. For instance, negative camber angles reduce steering 

effort while cornering however too much camber causes tire wear to accelerate. Additionally, 

suspension kinematics affect vehicle roll behavior when cornering. Shim and Veluswamy 

conducted a study of suspension kinematics on vehicle roll stability [49]. They found that toe 

and camber angles can significantly affect the roll response of a car when turning. Moreover, 

suspension kinematics can also influence the characteristics of vehicle tires. Camber angles 
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contribute to lateral forces and overturning moments when cornering by generating a force 

called camber thrust [14]. 

In addition to suspension kinematics, deformation of suspension links and bushings also 

contribute to a vehicle’s handling performance. This deformation is known as suspension 

compliance. Park and Nikravesh demonstrated that deflections of suspension bushings is 

important when studying vehicle Noise, Vibration and Harshness (NVH) [50]. Likewise, 

Blundell found suspension compliance significantly affects toe kinematics [51].  

 Most vehicle suspension systems take on one of three different architectures [52]. The 

MacPherson strut is an assembly consisting of a lower control arm connecting the wheels to 

the chassis and a strut connected to the shock absorber. It is the least expensive architecture, 

so it is commonly found on passenger vehicles. The double wishbone suspension consists of 

two control arms where one of the control arms attaches to the shock absorber of a vehicle. At 

the cost of increased tire wear, double wishbone suspension systems are commonly found on 

luxury vehicles and sports cars because they can reduce negative camber angles on wheels 

during turning maneuvers to enhance vehicle cornering performance. Lastly, the multi-link 

suspension architecture features a collective of flexible links connecting the chassis to the 

wheels and the shock absorbers to the wheels. This structure is commonly found on high end 

race cars and all-terrain vehicles. Multi-link suspension systems offer tremendous performance 

tuning flexibility because each of the links can be independently adjusted to generate various 

wheel alignment behaviors. 

Reproducing the architectures for multibody dynamic simulations can be a demanding 

process. Suspension parameters would be required from experimentation, and multiple 

constraints need to be both imposed and enforced. Due to the complexity of suspension K&C 

models, they would not be suitable for application with vehicle control design. High fidelity 

vehicle models are often incorporated with hardware-in-loop (HIL) testing of controllers and 

are required to simulate in real time [53]. However, a complicated suspension K&C model 

would slow computation time. This motivates a requirement for simpler suspension K&C 

models that maintain a high degree of accuracy.  
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Suspension kinematics and compliance data is typically generated using a testing procedure 

referred to as a K&C test [54]. A vehicle is hoisted on a test rig where each wheel is supported 

by a moveable pad. The pads are moved in various ways to excite changes in tire position and 

orientation. Along with changes in a vehicle chassis, the motion of the tires is measured.  

One approach to creating reduced order suspension K&C models is to use a Single degree 

of freedom Equivalent Kinematic (SEK) joint [55]. The SEK joint captures the relative motion 

between a vehicle wheel and a vehicle chassis by replacing the suspension geometry with a 

holonomic constraint. The constraint, however, is a reference path specified parametrically and 

is therefore not a traditional holonomic constraint [56]. Simulations of a SEK joint used to 

model suspension K&C showed a significant reduction in computation time compared to 

typical multibody dynamic suspension models [55]. This is partly due to the symbolic 

formulations associated with SEK joints.  

2.4 Path Following 

The goal of a path following problem is to ensure that a system smoothly merges onto a 

predefined reference path and then traverse that path without deviating from it [57, 58]. Path 

following can therefore, be considered a variation of a trajectory tracking problem because a 

system is tasked to approach and follow a defined trajectory rather than match a time varying 

reference signal. Path following problems offer some advantages over standard trajectory 

tracking problems. They can reduce control effort, offer stronger robustness properties, reduce 

likelihood of controller saturation and mitigate transient effects too [57]. 

From a theoretical perspective, one of the principal advocates of path following is in the 

control of nonminimum phase systems [59, 60]. According to Aguiar et al., nonminimum phase 

systems have performance limitations when regulating them using standard trajectory tracking 

methods. However, they showed that by recasting the regulation problem as a path following 

problem, nonminimum phase systems can be rendered stable by imposing an appropriate 

timing law between a reference path location and time rather than a control law. In the case of 

nonminimum phase linear systems, Dagic and Kokotovic provided sufficient conditions to 

stabilize these systems and provided a procedure for designing stabilizing controllers for these 
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systems [61]. Dagic and Kokotovic proved that nonminimum phase linear systems can be 

stabilized if the origin of their state spaces lies in a convex region of admissible timing laws. 

Additionally, the reference path is required to be bounded for all parameter values. Expanding 

on the work by Aguiar et al. and the work by Dagic and Kokotovic, Miller and Middleton 

studied the efficacy of using path following strategies to improve the performance of 

nonminimum phase linear systems [62]. Using the mathematical properties of a nonminimum 

phase system, they derived conditions to reduce performance costs through path following 

perspectives. Moreover, they developed computational tools to determine cost functions that 

would allow one to synthesize controllers that would improve performance. Effectively, they 

presented ideas to distinguish trajectories that lead to desired performance and a computational 

framework for path following control design along those trajectories.  

In addition to alleviating performance limitations in nonminimum phase systems, path 

following strategies have been utilized for navigating robots [63, 64], unmanned aerial vehicles 

(UAVs) [65], marine vehicles [66, 67, 68] and autonomous cars [69, 70]. Among the strategies 

presented for vehicle navigation, are different stability and performance characteristics.  

In a survey of various path following strategies for unmanned aerial vehicles, path following 

controllers can be typically classified as either geometric or control theoretic [58]. Geometric 

methods rely on physical relationships between reference paths and vehicles to devise routes 

for a vehicle to take. Whereas control theoretic methods use external control laws to direct 

vehicles toward reference paths.  

Commonly, geometric approaches rely on a principle known as “virtual targets” which 

define destinations and directions of travel for vehicles [71]. Three popular techniques that use 

the virtual target concept are the pure pursuit, line-of-sight method (LOS) and the nonlinear 

guidance law (NLGL) [67, 72, 73]. The pure pursuit algorithm defines a target point on a 

reference path and a vehicle is tasked to directly approach that point. The LOS method, 

however, uses a vector attached to a vehicle that defines a heading direction for it. As the 

vehicle moves, the vector updates until the vehicle reaches the virtual target point on the 

reference path. In the nonlinear guidance law, a circle of some radius is defined around the 
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vehicle and a virtual target point is specified where the circle intersects the reference path. 

Motion commands are then specified to have the vehicle smoothly approach the virtual target. 

Rather than solely using virtual target points, modifications were presented where Frenet-

Serret frames were attached to the virtual target points [70, 71]. This allowed the virtual target 

points to be regarded as virtual vehicles and dynamics could be assigned to the virtual vehicle 

for greater flexibility.  

According to Rubi et al., the most popular control theoretic path following algorithms are 

backstepping and feedback linearization [57]. Backstepping uses a series of error functions to 

recursively determine control inputs that make each error function asymptotically approach 

zero. The authors remark that backstepping approaches create large regions of stability and 

offer robustness against disturbances. Feedback linearization is often paired with backstepping 

in path following problems and it allows a nonlinear path following problem to become linear 

using a control law that negates nonlinear terms.    

A notable approach involving the control theoretic methods is to recast path following 

problems as set stabilization problems. Nielsen et al. proposed a variant of feedback 

linearization where a reference path is transformed into a set that can be rendered stable using 

a feedback control law [74, 75]. The authors state this variant offers flexibility for path 

following problems because one can separately stabilize the path and specify motion 

requirements for merging and traversal [75].  Applied to an aircraft, the authors noticed the 

aircraft can merge and traverse closed reference paths and maintain bounded roll motion [76].   

El-Hawwary and Maggiore developed a passivity based approach that would make a reference 

path into an asymptotically stable set [77]. The proposed feedback law is made up of two 

control inputs to handle traversal and merging, respectively. One of the control inputs renders 

the reference path inescapable by enforcing a condition and the other control input makes the 

reference path stable with respect to a function. When applied to a path following problem 

involving a unicycle model and an elliptical path, the ellipse becomes globally stable and the 

controller appropriately orients the unicycle. For applications to rigid bodies, Kapitanyuk et al. 

proposed a passivity-based controller to stabilize reference paths transformed into sets [78]. 

Firstly, the authors defined error functions and velocity requirements based on a reference path. 
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Next, the translational and rotational dynamics of a rigid body were expressed in terms of the 

error functions and required velocities. The authors proposed feedback control laws for both 

the translational forces and rotary moments that would make the dynamics of a rigid body 

stable. 

From the perspective of path following error, Sujit et al. revealed, in their study, that vector 

field algorithms can lead to the smallest errors in path following [58]. Notably, vector field 

approaches were found to be popular in path following problems involving aerial vehicles. 

Lawrence et al. presented a vector field approach using Lyapunov functions for autonomous 

flight navigation [79]. The Lyapunov functions are used to specify attractive locations and 

velocity vector fields that direct an aircraft to those locations. By switching the vector fields 

between attractors, aircrafts can follow paths composed of lines and arcs. They have shown 

mathematically that the algorithm leads to globally stable behavior. Nelson et al. also 

developed a vector field path following algorithm for aircrafts, but their vector field assigns an 

orientation based on an aircraft’s position [65]. Combining a vector field approach with sliding 

mode control, this vector field was shown to produce small path following errors for paths 

composed of straight lines and arcs in the presence of wind disturbances. Like Nelson et al., 

Yajing et al. presented a vector field algorithm that is combined with sliding mode control [80]. 

Yajing et al. first formulated the error kinematics of an unmanned aerial vehicle using a Frenet-

Serret frame on a parametric function. Then they define a vector field that assigns an 

orientation based on the error kinematics. They have shown smooth merging and traversal 

along reference paths defined by splines in the presence of wind. Liang and Jia presented a 

systematic approach to vector field construction for flight navigation that could be used on a 

wide variety of reference paths beyond straight lines and arcs [81]. Liang and Jia employed the 

use of a decomposition approach to systematically construct a composite velocity vector field 

that is made up of two vector fields. The conservative vector field creates a vector field 

tangential to the reference path and the solenoidal vector field makes a normal vector field to 

the reference path. When combined, the composite vector field leads to convergence of UAVs 

to the reference path. 
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Chapter 3 

Vehicle Modelling 

3.1 Introduction to Vehicle Modelling 

In this chapter, the modelling of combined slip tire models and suspension (K&C) will be 

discussed. The first part is about the experimental equipment used for data collection. Next, a 

description of the physics of combined slip tire behavior is presented followed by a study of 

combined slip tire force models. The study consisted of popular combined slip tire force 

models and tire force data where the models were tested for their ability to predict the tire force 

data. Finally, an overview of suspension (K&C) is presented. The various components of 

suspension (K&C) are described and their impacts on vehicle performance is discussed. 

Development of the SEK joint follows. 

3.2 Experimental Equipment 

3.2.1 Vehicle Measurement System (VMS) 

The VMS (Figure 3.1) is a sensory system developed by A&D Technology to collect tire 

loading and tire kinematic data, while driving a vehicle [82]. The size and value of the system 

make it inappropriate for use on public roads, so it was used for specialized driving maneuvers 

performed on a vehicle test track. The VMS is made up of a collective of three major sensor 

units. 
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Figure 3.1 Vehicle Measurement System Attached to Toyota Prius 

 

The Wheel Force Sensor (WFS) is a custom wheel hub containing strain gauges which 

measure the forces and moments acting on a tire. These measurements are according to the 

SAE tire axis system [83] (see Figure 2.2). The Wheel Position Sensor (WPS) is an assembly 

of links and encoders that measure displacements and changes in tire orientation. The 

displacements and changes in orientation are also measured according to the SAE tire 

coordinate system. The Laser Ground Sensor (LGS) uses a series of lasers to measure tire 

velocities and track changes in tire radii. 

 

3.2.2 Inertial Measurement Unit (IMU) 

The VBOX 3i is an Inertial Measurement Unit (IMU) by Racelogic [84] that was mounted on 

top of the Prius. The IMU measured translational and rotational accelerations of the Prius’s 

chassis. Unlike conventional IMUs, the VBOX 3i included a Global Positioning System (GPS) 

that measured the Prius’ position and heading direction. Since the IMU was not positioned at 

the center of mass of the Prius, coordinate transformations were made to express the 

measurements at the center of mass. 
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3.2.3 Wheel Dolly 

The RL1 rotating dolly, from GKS-Perfekt, is a wheeled mobile support used to transport 

heavy tools and equipment [85]. The wheel dolly consists of three wheels connected to a base 

using swiveling connectors. A rubber pad is attached to the top of the base to act as a non-slip 

surface. The dolly, rated with a maximum weight capacity of 10kN, was used to support 

individual wheels for the SEK joint test [85]. 

 

Figure 3.2 GKS Wheel Dolly 

3.3 Combined Slip Tire Modelling 

Modelling combined tire slip behavior requires an understanding of the friction ellipse (see 

Figure. 3.4), which highlights an inverse relationship between the longitudinal load and lateral 

load generated by a tire under combined slip [14, 86, 23]. The blue lines represent lines of 

constant sideslip angles with varying slip ratios and the red lines show constant slip ratios with 

varying sideslip angles. The friction ellipse implies that as the sideslip angle (𝛼) of a tire 

increases, the amount of longitudinal force (𝐹𝑥) generated by the tire reduces. Similarly, if the 
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slip ratio (𝜆) increases then the lateral load (𝐹𝑦) generated by a tire abates. The limits of the 

friction ellipse depend on the friction coefficients of a tire in the longitudinal and lateral 

directions. If a tire shows weak anisotropic behavior, the friction ellipse can be approximated 

as a friction circle because the friction coefficients in the lateral and longitudinal directions 

will be similar. The friction ellipse indicates that this behavior is continuous for all 

combinations of the sideslip angle and the slip ratio. Additionally, when either the slip ratio or 

sideslip angle is zero, a tire exhibits pure slip behavior. To agree with the friction ellipse, an 

appropriate combined tire slip model should reflect the inverse relationship between the 

longitudinal load and lateral load shown by the ellipse. In addition to this agreement, the 

models should also be continuous functions of slip ratio and sideslip angle and that continuity 

should extend to pure slip conditions. Brach and Brach [86] examined the use of the friction 

ellipse as a model to predict combined tire slip loads and they demonstrated that the friction 

ellipse should not be used as a tire force model. When compared with experimental data, the 

friction circle tends to be considerably conservative when predicting tire forces and the limits 

of frictions. Thus, the friction circle serves as a guide to characterizing combined slip tire 

forces. This necessitates combined slip tire force models that reduce conservatism. With a less 

conservative model that better reflects the relationship between tire forces, the high fidelity 

model’s tire properties would be more consistent with that of a Toyota Prius. Therefore, we 

could better infer how a Toyota Prius would move with a path following controller installed.  
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Figure 3.3 The Friction Ellipse 

A physical understanding of combined tire slip behavior can be developed by studying a 

physical tire model called the brush model [23, 87]. Originally, the brush model was created 

as a tool for understanding tire loading behavior, but authors found that the brush model could 

be used to develop combined tire slip models. The brush model treats the rubber carcass of the 

tire as a series of thin brush bristles. Pacejka, Gafvert and Svendenius [23, 87, 35] showed that 

this view of a tire reveals that tire load curves can be broken down into two regions (see Figure 

3.5). At low slip ratios and sideslip angles, tire loads are primarily generated by deformation 

of the bristles. This area is called the adhesion region because the brush bristles stick to the 

road surface [35, 42, 87]. The tire loads in the adhesion region vary linearly with the slip ratio 

and sideslip angle because tire rubber has elastic material behavior. As a slip quantity grows 

some of the bristles in the tire contact patch begin to transition into a sliding mode. This causes 

a tire loading curve to become nonlinear. Although the entire contact patch is no longer in the 

adhesion region, this part of the curve is still considered to be within the adhesion region [35, 

42, 87]. Beyond a certain limit, all the brush bristles no longer deform so they begin to slide 

against the road surface. This creates the sliding region in a tire load curve where the tire 

loading characteristics are nonlinear. In the sliding region, tire loads are dominated by dry 
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friction forces and this causes tire load curves to saturate at large slip ratios or large sideslip 

angles. Within the context of the friction ellipse, Brach and Brach [86] have indicated that tire 

forces within the friction ellipse are forces caused by deformation of the tire carcass and that 

full steering control is maintained. Beyond the friction ellipse, tire forces are caused by sliding 

of the carcass and the relationship represented by the friction ellipse no longer holds. 

 

Figure 3.4 Tire Load Curve 

Four combined tire slip models were compared for their accuracy in predicting combined 

tire slip loads with respect to tire load data from track testing. The chosen models were the: 

 

• COMBINATOR Model 

• State Stiffness Model  

• ADAMS Model  

• Region Invariant Slip Model 
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These combined tire slip models were chosen because they required little to no additional 

parameters beyond the pure slip tire models and their generality allows them to be paired with 

many static friction pure slip tire force models. Additionally, model fitting is not required for 

these models because they determine combined slip tire loads using predefined relationships 

involving pure slip tire models. 

3.3.1 COMBINATOR Model 

Applying the COMBINATOR model requires determining two quantities stemming from the 

slip circle: the resultant slip, s, and the joint heading angle, 𝛽, which can be computed using 

(3.1) and (3.2) [33]. The COMBINATOR model relies on a notion that tire slip quantities are 

confined to a circle called the slip circle. Equation (3.1) provides a radial measure of the slip 

circle for a given combination of the slip ratio and sideslip angle. Likewise, (3.2) provides an 

angular measurement for a slip state. 

 𝑆 = √𝜆2 + sin2(𝛼), (3.1) 

 

 𝛽 = arctan (
sin(𝛼)

𝜆
) (3.2) 

 

The resultant slip from (3.1) replaces the slip quantities in a pure slip tire force model and a 

resultant tire load is found as in (3.3) 

 

 𝐹(𝑠, 𝛽) = 𝐹𝑥0(𝑠) cos2(𝛽) + 𝐹𝑦0(𝑠) sin2(𝛽) (3.3) 

 

where 𝐹 represents the resultant tire load based on the slip circle. Finally, combined slip tire 

loads can be found by scaling the resultant tire load in (3.3) using the joint heading angle in 

(3.2). 
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𝐺𝑥 = 𝐹(𝑠, 𝛽)cos⁡(𝛽),  

⁡⁡𝐺𝑦 = 𝐹(𝑠, 𝛽)sin⁡(𝛽) 
(3.4) 

where 𝐺𝑥 and 𝐺𝑦 are the combined slip longitudinal and lateral loads, respectively. 

3.3.2 State Stiffness Model 

The state stiffness model introduces a quantity called the state stiffness which is defined in 

(3.5). 

 𝐾𝑖 =
𝐹𝑖

𝑆𝑖
 (3.5) 

where 𝑖 is either the longitudinal direction or lateral direction (𝑥 or 𝑦, respectively) and 𝑆𝑖 is 

the corresponding slip quantity. Visually, the state stiffness represents the slope of a secant line 

that connects a pure slip tire load with a slip quantity on a tire load curve (see Fig. 3.6).  

 

Figure 3.5 State Stiffness Representation 

As proposed by Xu and Guo [34], for a given deflection of the tire carcass under combined 

slip conditions an equivalent deflection of the tire carcass under pure slip conditions could be 
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found. In either case, the state stiffness is the same. Therefore, the state stiffness could be found 

using the resultant slip rather than individual slip quantities. Moreover, the resultant slip can 

be passed as an argument to the pure slip tire force models. 

 𝐾𝑖 ≈
𝐹𝑖0(𝑆)

𝑆
 (3.6) 

Finally, the state stiffness in (3.6) scales the individual slip quantities to output the combined 

slip tire loads 

 𝐺𝑖 = 𝐾𝑖𝑆𝑖 (3.7) 

3.3.3 MSC ADAMS Model 

The combined slip tire model produced for MSC ADAMS is a variation of the COMBINATOR 

model that was developed internally [41]. The ADAMS model uses relationships to vary 

friction coefficients (𝜇𝑥,⁡and 𝜇𝑦) that scale pure slip tire loads as expressed in (3.7) – (3.10).  

 

 𝜇𝑥,𝑎𝑐𝑡 =
𝐹𝑥0

𝐹𝑧
,⁡⁡⁡⁡⁡⁡⁡𝜇𝑦,𝑎𝑐𝑡 =

𝐹𝑦0

𝐹𝑧
 (3.7) 

 

 𝜇𝑥,𝑚𝑎𝑥 =
𝐹𝑥,𝑚𝑎𝑥

𝐹𝑧
, 𝜇𝑦,𝑚𝑎𝑥 =

𝐹𝑦,𝑚𝑎𝑥⁡

𝐹𝑧
⁡⁡ (3.8) 

 

 

𝜇𝑥 =
1

√(
1

𝜇𝑥,𝑎𝑐𝑡
)
2

+ (
tan 𝛽
𝜇𝑦,𝑚𝑎𝑥⁡

)
2

, ⁡⁡⁡𝜇𝑦 =
tan⁡(𝛽)

√(
1

𝜇𝑦,𝑎𝑐𝑡
)

2

+ (
tan 𝛽
𝜇𝑥,𝑚𝑎𝑥⁡

)
2

 

(3.9) 

 

 𝐺𝑥 =
𝜇𝑥

𝜇𝑥,𝑎𝑐𝑡
𝐹𝑥0,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐺𝑦 =

𝜇𝑦

𝜇𝑦,𝑎𝑐𝑡
𝐹𝑦0 (3.10) 
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where 𝛽 is defined as in (3.2). 

3.3.4 Region Invariant Slip Model 

Similar to the claim made by Xu and Guo, Gafvert and Svendenius [87, 35] showed using the 

brush model that for a given combined slip condition, an equivalent pure slip condition can be 

found and that a relationship can be established between the two. However, they derived this 

condition by studying the behavior of a tire contact patch as opposed to a single bristle. 

Considering that a contact patch gradually transitions from full adhesion to full sliding, the 

contact patch has an adhesion area and a sliding area that changes based on the slip ratio and 

sideslip angle. Gafvert and Svendenius argued that similar sized adhesion and sliding areas of 

the contact patch can be found from pure slip results. They call the slip ratios and sideslip 

angles that generate these areas, region invariant slips. Computing the region invariant slip tire 

forces requires new slip quantities, defined by (3.11), related to the old ones. 

 𝜎𝑥 =
𝜆

1 − 𝜆
,⁡⁡⁡⁡𝜎𝑦 =

tan(𝛼)

1 − 𝜆
⁡ (3.11) 

Next, a normalized slip and normalized sideslip angle are found using the slip quantities in 

(3.12).  

 𝜓(𝜎𝑥 , 𝜎𝑦) = √(
𝜎𝑥

𝜎𝑥
∘
)

2

+ (
𝜎𝑦

𝜎𝑦
∘
)

2

, 𝜙 = arctan (
𝜓(0, 𝜎𝑦)

𝜓(𝜎𝑥, 0⁡)
) (3.12) 

The normalized slip relies on two parameters 𝜎𝑥
∘, 𝜎𝑦

∘ called limit slips. These are the slip 

values from pure slip tire models where a tire’s loading behavior changes from full adhesion 

to full sliding. This parameter can be identified using a pure slip tire load curve as shown figure 

3.5 just slightly beyond the peak force. When 𝜓 < 1, the contact patch is in the adhesion region 

and when 𝜓 ≥ 1, the contact patch is in the sliding region.  Using the limit slips, the region 

invariant slips can be found using (3.13).  

 𝜎𝑥
𝑟𝑒𝑔

= ⁡𝜎𝑥
∘√(

𝜆

1 − 𝜆

1

𝜎𝑥
∘
)

2

+⁡(
tan(𝛼)

1 − 𝜆

1

𝜎𝑦
∘
)

2

𝑠𝑔𝑛(𝜆), (3.13) 
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𝜎𝑦
𝑟𝑒𝑔

=⁡𝜎𝑦
∘√(

𝜆

1 − 𝜆

1

𝜎𝑥
∘
)
2

+⁡(
tan(𝛼)

1 − 𝜆

1

𝜎𝑦
∘
)

2

𝑠𝑔𝑛(𝛼) 

The normalized slip in (3.12) is then inputted into (3.14) to determine the proportion of the 

contact patch that is sliding region. 

 𝜃(𝜓) =
𝜓(3 − 2𝜓)

3𝜌(1 − 𝜓)2 + 𝜓(3 − 2𝜓)
 (3.14) 

where 𝜌 is a parameter that is defined as the ratio of the tire static friction and kinetic friction 

coefficients. Unless the tire has strong anisotropic properties, these friction coefficients are 

usually assumed to be the same in both the longitudinal and lateral directions. Finally, the 

region invariant slips in (3.13) are passed as arguments into pure slip tire force models and 

scaled using the proportion in (3.14) to individually compute the adhesion and sliding loads. 

 

 

𝐹𝑎𝑥 = (1 − 𝜃(𝜓))𝐹0𝑥(𝜎𝑥
𝑟𝑒𝑔

) cos(𝜙), 

 

𝐹𝑎𝑦 = (1 − 𝜃(𝜓))𝐹0𝑦(𝜎𝑦
𝑟𝑒𝑔

) sin(𝜙), 

 

𝐹𝑠𝑥 = 𝜃(𝜓)𝐹0𝑥(𝜎𝑥
𝑟𝑒𝑔

) cos(𝜙), 

 

𝐹𝑠𝑦 = 𝜃(𝜓)𝐹0𝑦(𝜎𝑦
𝑟𝑒𝑔

) sin(𝜙) 

 

(3.15) 

The 𝐹𝑎 terms are the adhesive loads and the 𝐹𝑠 terms are the sliding loads. The combined slip 

loads can be found by superimposing the adhesive and sliding loads in (3.16). 
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 𝐺𝑥 = 𝐹𝑎𝑥 + 𝐹𝑠𝑥 ,⁡⁡⁡𝐺𝑦 = 𝐹𝑎𝑦 + 𝐹𝑠𝑦 (3.16) 

3.4 Comparing Combined Slip Tire Models 

The combined slip tire models listed did not have associated error measurements. This can be 

a source of confusion for one when selecting a model to use for vehicle dynamic studies. 

Although they were shown to be accurate, an error analysis would allow one to differentiate 

these tire models from an application standpoint. To clarify the accuracy of these tire models, 

we present an error analysis of them with respect to driving data. 

Combined tire slip conditions were created by following the approach proposed by Van Gennip 

and McPhee [45]. The Toyota Prius was accelerated to a specific speed and then braked 

aggressively while steering the vehicle to the left or right until the vehicle came to a stop. This 

maneuver was performed at speeds of 50km/h, 60km/h and 70km/h allowing load data at 

various slip ratios and sideslip angles to be generated. This test generated data only for 

combined braking and cornering, so symmetry was assumed for the acceleration case. 

Equations (3.18) and (3.19) show the definitions of slip and sideslip, respectively, that were 

used with the data from the VMS. This definition for the slip ratio was used instead of the slip 

ratio definition in SAE J670 [83] because the slip ratio in SAE J670 becomes singular when 

the longitudinal speed of a vehicle is small as would be the case when the Prius came to a halt.  

 

 𝜆 =
(𝑅𝑒𝜔 − 𝑉𝑥)

max⁡(𝑉𝑥)
 (3.17) 

 

 𝛼 = arctan (
𝑉𝑦

𝑉𝑥
) (3.18) 

Longitudinal and lateral load data sets from each trial of the test were isolated and compiled 

together. Next, these loads were normalized with respect to the vertical load to eliminate the 

dependence of the longitudinal and lateral load on the vertical load. Finally, the normalized 
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longitudinal load and normalized lateral load were plotted with respect to the slip ratio and 

sideslip angle respectively as shown in Figures 3.7 and 3.8 for a tire corner. 

 

 

Figure 3.6 Normalized Longitudinal Tire Load 
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Figure 3.7 Normalized Lateral Load 

Considering that tire data is typically obtained from tires mounted on dedicated test rigs [23], 

this data is unique because it was collected while driving on a test track. Nordeen pointed out 

that during general turning maneuvers, tire forces can change considerably [24]. For instance, 

load transfer due to chassis motions cause fluctuations in the vertical loads exhibited by tires. 

This results in changes to the lateral loads. Unlike test rigs where vertical loads can be kept 

constant, standard data processing techniques are not applicable to tire load data from driving 

[88, 89]. However, comparing combined slip tire force models to the driving data sets could 

act as a test of robustness. If these combined slip tire models are reliable, then they should be 

able to predict combined slip tire loads under driving scenarios with some degree of accuracy.   

In this study, the 1987 Magic Formula, proposed by Pacejka, Nyborg and Bakker [27] was 

extended to predict combined slip tire friction forces using the previously mentioned models. 

The Magic Formula is a static friction empirical tire model that predicts pure slip tire loads 

through a pair of functions involving quantities from a tire’s motion. These functions require 

the tire slip ratio, sideslip angle and the vertical load acting on a tire. Equations (3.19) and 

(3.20) show the Magic Formula relationships where one of the functions predicts pure slip 

longitudinal tire loads (𝐹𝑥0) and the other predicts pure slip lateral tire loads (𝐹𝑦0). To apply 

the Magic Formula to a tire, one must fit parameters in the equations to tire load data. Although 

the Magic Formula has gone through multiple revisions, the 1987 Magic Formula was chosen 

here for its simplicity. While the 1987 Magic Formula requires 4 parameters (𝐵, 𝐶, 𝐷, 𝐸) for 

the longitudinal and lateral directions respectively, successive versions require a significantly 

greater number of parameters [23, 31].  

 

 𝐹𝑥0 = 𝐷𝑥sin⁡[Cx arctan(𝐵𝑥𝜆 − 𝐸𝑥(arctan(𝐵𝑥𝜆)))⁡]𝐹𝑧 (3.19) 

 

 𝐹𝑦0 = 𝐷𝑦sin⁡ [C𝑦 arctan (𝐵𝑦𝛼 − 𝐸𝑦(arctan(𝐵𝑦𝛼)))⁡] 𝐹𝑧 (3.20) 
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The normalized longitudinal load was separated by sideslip angles and the normalized lateral 

load was separated by slip ratio. Each of the aforementioned combined slip tire models were 

evaluated at those slip states. As an error metric, the mean squared error (MSE) between the 

normalized loads predicted by the models and the loads collected from the VMS were 

computed to determine the accuracy of the models. The expression for MSE is expressed in 

(3.21). 

 

 𝑀𝑆𝐸 =
(𝐺𝑖(𝜆̂, 𝛼̂) − 𝐺̂𝑖(𝜆̂, 𝛼̂))

2

𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐷𝑎𝑡𝑎⁡𝑃𝑜𝑖𝑛𝑡𝑠
 (3.21) 

 

The longitudinal and lateral directions are referenced by the index, 𝑖. The computation of the 

MSE requires substituting slip ratios and sideslip angles (𝜆̂ and 𝛼̂ respectively) from the VMS 

to the combined slip tire models. We compare the determined normalized load (𝐺𝑖) with a 

corresponding load data point from the same slip state (𝐺̂𝑖). The MSE computation was 

performed over the full range of available slip ratios and sideslip angles. 

This error metric was chosen over root mean squared error (RMSE) because RMSE tends to 

penalize small errors greatly. Naturally, one can expect some degree of error because the 

driving conditions under which the data was generated differ from standard testing scenarios. 

Thus, MSE ensures these effects do not heavily influence the comparison. The MSE of each 

tire model is presented in Table 3.1 separated by the normalized longitudinal and normalized 

lateral loads, respectively. 
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Table 3.1 Mean Squared Error Results 

Model 
Normalized Longitudinal 

Load MSE 

Normalized Lateral Load 

MSE 

COMBINATOR Model 0.0634 0.0997 

State Stiffness Model 0.0517 0.0522 

MSC ADAMS Model 0.0650 0.1053 

Region Invariant Slip Model 0.0533 0.0554 

 

To understand the nature of errors in model accuracy, it is necessary to visualize the tire models 

by plotting them. We plot the longitudinal tire forces predicted by each combined slip tire 

models based on various sideslip angles. Similarly, we plot the lateral tire forces for various 

slip ratios.  

 

Figure 3.8 COMBINATOR Model in Longitudinal Direction 
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Figure 3.9 COMBINATOR Model in Lateral Direction 

 

Figure 3.10 State Stiffness Model in Longitudinal Direction 



 

 37 

 

Figure 3.11 State Stiffness Model in Lateral Direction 

 

Figure 3.12 ADAMS Model in Longitudinal Direction 
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Figure 3.13 ADAMS Model in Lateral Direction 

 

 

 

 

Figure 3.14 Region Invariant Slip Model in Longitudinal Direction 



 

 39 

 

Figure 3.15 Region Invariant Slip Model in Lateral Direction 

 

According to Table 3.1, these combined slip tire models vary significantly when compared 

with driving data. The figures indicate the behavior of each tire model deviates from data points 

in the sliding region. This contributed as the primary source of the errors in Table 3.1. Most 

combined slip tire force models are intended for use in the adhesion region because full steering 

control is maintained in the adhesion region. As indicated by Brach, modelling combined slip 

tire forces in the sliding region is difficult due to the nonlinear nature of dry friction behaviors 

in this region [86]. 

From Figure 3.9, it can be seen the COMBINATOR model does not agree well with the 

combined slip characteristics of the friction circle in the longitudinal direction. The friction 

circle indicates that the maximum longitudinal load should decrease as the sideslip angle 

increases however, the plot shows the maximum longitudinal load increased with sideslip angle 

between the 2∘ sideslip angle curve and the 4∘ sideslip angle curve. This could be due to the 

tire size of the Toyota Prius being smaller than those tested in the study of the COMBINATOR 
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by Pottinger, Pelz and Falciola [36]. Figures 3.13 and 3.14 indicate The ADAMS model 

became singular in the longitudinal and lateral directions at small slip ratios. The singular 

behavior may not make the ADAMS model suitable for slow driving scenarios.  

This study has demonstrated that the State Stiffness model and the Region Invariant Slip model 

were the most accurate combined tire slip models. One could attribute the accuracy of these 

models to their foundation. The physical intuition of the brush model helped to derive 

relationships that is consistent with realistic combined tire slip loading behavior. Additionally, 

their generality allows these tire models to be applicable to various road conditions. This 

implies the brush model is a good representation of tires and that it is an effective tool for 

producing combined slip tire force models. Since the state stiffness model was the most 

accurate, this model was incorporated into the high-fidelity model. 

3.5 Suspension Kinematics Modelling 

The SEK joint can be used to develop reduced order suspension K&C models by replacing 

complicated suspension geometry with a set of constraints [55]. These constraints relate the 

position of automobile wheels with its chassis, to characterize relatice changes in wheel 

position and orientation. An advantage of the SEK joint is the elimination of the suspension 

geometry. Suspension links have negligible inertial properties, so their dynamics have little 

influence on suspension behavior. Hall presented two formulations of the SEK joint where one 

of them results in a set of Differential Algebraic Equations (DAEs) and the other generates 

Ordinary Differential Equations (ODEs). Only the ODE formulation was considered in this 

work because it was shown to reduce computational intensity [55]. Furthermore, only 

suspension kinematics was considered here because experimental data could not be generated 

for suspension compliance. 

The ODE formulation of the SEK joint relies on curve fitting the relative motion between two 

bodies (see Figure 3.17). Specifically, the relative position must be expressed parametrically 

and in terms of arc length [55]. Curve fits for the relative Euler angles between the rigid bodies 

are also required if rotational motion is being considered. Curve fitting can be accomplished 

with parametric spline functions [90, 91] applied to data sets. Next, the parametric functions 
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are combined with a Frenet-Serret frame [56]. From a multibody dynamics perspective, the 

joint spaces and reaction spaces of the SEK joint are listed in Table 3.2. 

 

Figure 3.16 SEK Joint Principle 

 

Table 3.2 Motion Spaces and Reaction Spaces of SEK Joint 

Translational Motion 

Space 

Translational 

Reaction Space 

Rotational Motion 

Space 

Rotational Reaction 

Space 

𝑡(𝑠) 𝑛⃗⃗(𝑠)⁡𝑎𝑛𝑑⁡𝑏⃗⃗(𝑠) ∅ ℝ3 

 

The Frenet-Serret frame is referenced by the tangential direction, 𝑡(𝑠), the normal direction, 

𝑛⃗⃗(𝑠) and the binormal direction, 𝑏⃗⃗(𝑠).  Each of them are functions of the arc length parameter, 

𝑠. It is important to recognize that the translational motion space is the tangential direction 

because the desired relative motion should be along the reference paths. Consequently, the 

constraint forces would be imparted by the reaction spaces which are the normal and binormal 

directions, respectively.  According to Hall [55], the rotational motion space of the SEK joint 
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is empty set, ∅. Thus, rotational reaction moments will exist in ℝ3. One may question how the 

rotational motion characterized by the Euler angles is enforced by the SEK joint if the 

rotational motion space is empty. Hall proposed a workaround where moments that induce 

rotational motion are converted into equivalent forces [55]. The equivalent forces are called 

torque projection forces and are derived from notions of generalized forces from Lagrangian 

mechanics [56]. For a given set of Euler angles and a resultant reaction moment, the torque 

projection force is defined by 

 

 𝐹𝑇𝑃 = 𝑇⃗⃗𝑛𝑒𝑡 ∙
𝑑𝜃⃗

𝑑𝑠
(𝑠) (3.23) 

 where 𝐹𝑇𝑃 ∈ ℝ3 is the torque projection force, 𝑇⃗⃗𝑛𝑒𝑡 ∈ ℝ3 is the resultant reaction torque and 

𝜃⃗ ∈ ℝ3 is the vector of Euler angles. 

3.5.1 Generating Suspension Kinematic Data 

Suspension kinematic data for the Prius was generated using the wheel dolly (Figure 3.3), the 

VMS (Figure 3.1), and a hydraulic jack. A wheel of the Prius was carefully centered on the 

black pad of the wheel dolly (Figure 3.18) and a hydraulic jack was used to raise the vehicle 

off the dolly. The Prius was raised until the wheel and chassis started to move in unison. 
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Figure 3.17 SEK Joint Testing 

At this point, changes to a wheel’s lateral and longitudinal displacement and orientation were 

no longer caused by suspension kinematics. Rather, the motion was merely excited by the 

hydraulic jack. Following this change, the vehicle was slowly lowered onto the wheel dolly. 

This process was repeated on all four wheels of the Prius and their motion profiles were 

recorded through the VMS. Figure 3.19 shows the lateral position of a wheel relative to its 

vertical position. Based on the coordinate system of the VMS, the wheel is moving inwards 

towards the chassis as the chassis was raised using the jack. At roughly 785mm of the vertical 

position, the wheel began to move in unison with the chassis, so the Prius was lowered onto 

the dolly again.  

 



 

 44 

 

Figure 3.18 Lateral Position of Tire 

The wheel dolly allows for reduced horizontal reaction forces between a ground surface and 

the tires. This alleviated an issue in data generation produced in a similar fashion [92]. Van 

Gennip performed the same procedure without a dolly and noticed that there was a hysteresis 

loss between the ascending and descending motions of the wheel. The introduction of the wheel 

dolly established symmetry between the two motions, yielding data appropriate for curve fits. 

Data was collected for all six degrees of freedom of a tire however, toe was treated as a constant 

in the SEK joint formulation. This was due to the toe angle experiencing negligible changes 

due to the suspension kinematics when performing the SEK joint test. The toe angle changed 

when the wheel moved in tandem with the chassis making that part of the data ineligible for 

use. 
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Figure 3.19 Wheel Orientation About SAE Z-Axis 

 

3.5.2 Curve Fitting the Suspension Kinematic Data 

The ODE formulation of the SEK joint requires fitting a parametric function to the wheel’s 

displacement and orientation variables [55]. Hall suggested using B-splines for the curve fits 

because they can grant at least 𝐶2continuity thereby allowing them to be paired with Frenet-

Serret frames. B-splines were first introduced by de Boor as a parametric approach to curve 

fitting that minimized oscillations and established higher order continuity [90]. The general 

expression for a B-spline is 

 𝑁(𝑠) = ∑𝑃𝑖𝐵𝑖,𝑛(𝑠)

𝐿

𝑖=0

 (3.22) 

where 𝑁 ∈ 𝑅3 is a parametric vector function of parameter 𝑠, the 𝑃𝑖 ∈ ℝ3 are called control 

points and the 𝐵𝑖,𝑛 ∈ ℝ3 are basis polynomials. The order of the basis polynomials is defined 

by 𝑛 and 𝐿 denotes the number of curve segments. Lines connecting the control points generate 

a convex polygon that confines the generated curve [93, 90, 91]. Therefore, the control points 

may not be on the curve. Constructing the basis polynomials requires identifying intermediate 
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values for 𝑠 which locate points that the generated curve will pass through. These parameter 

values are commonly called knots and they can be expressed as a vector. For a given knot 

vector 𝑝 = [𝑠1, 𝑠2, … , 𝑠𝑚]𝑇 arranged in an increasing sequence, the basis polynomials can be 

computed recursively as 

 

 

𝐵𝑖,0 =⁡ {
1, 𝑠𝑖 < 𝑠 < 𝑠𝑖+1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝐵𝑖,𝑗(𝑠) =
𝑠 − 𝑠𝑖

𝑠𝑖+𝑗 − 𝑠𝑖
𝐵𝑖,𝑗−1(𝑠) +⁡

𝑠𝑖+𝑗+1 − 𝑠

𝑠𝑖+𝑗+1 − 𝑠𝑖+1
𝐵𝑖+1,𝑗−1(𝑠)⁡ 

 

(3.23) 

The goodness of fit is influenced by the choice of knot locations and the number of knots. 

Unfortunately, determining the number of required knots and their locations are difficult 

problems to solve due to the large number of solutions [91]. The most popular solution was an 

iterative technique proposed by Tao and Watson [91]. Knots are added iteratively until a 

stopping condition is met. For a given knot added to the knot vector, an optimization algorithm 

is solved to position the knot such that the error between the spline, evaluated at the knot, and 

the data points are minimized. Knots are successively added in this manner until a goodness 

of fit measure begins to exhibit minimal changes.  

Once a knot vector is found, the basis polynomials can be constructed, and the next step is to 

locate the control points. Considering that a B-spline lies in the convex polygon formed by 

connecting control points, a least-squares optimization process could be used to locate the 

control points. 

 

 𝐽(𝑃) = [𝑥 − 𝑁(𝑠)]𝑇[𝑥 − 𝑁(𝑠)] (3.26) 
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Where 𝐽 ∈ ℝ is the cost function and 𝑥 ∈ ℝ3 is a data point. The cost function seeks to 

minimize the difference between the B-spline and the data points by suitably positioning the 

control points. Evaluating a B-spline using (3.24) is not practical. Rather, B-splines are 

commonly converted into piecewise polynomial functions with desirable continuity between 

segments [93]. 

Figures 3.21 to 3.24 show B-splines fitted to displacement and orientation data from the Prius 

as collected by the VMS. Displacements were selected for the translational variables so that 

the positions can be easily resolved with respect to other reference frames (i.e. center of mass 

of a vehicle). 
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Figure 3.20 Camber Angle Profile 
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Figure 3.21 X-Displacement of Wheel 
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Figure 3.22 Y-Displacement of Wheel 
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Figure 3.23 Z-Displacement of Wheel 

 

3.5.3 Implementation of the SEK Joint 

The high fidelity Prius model relies on prismatic joints to simulate suspension travel [15]. This 

means the wheels and chassis can only move vertically relative to each other. To apply the 

SEK joint, the suspension geometry of the Prius model must be altered. We first replace the 

prismatic joints with translational spring and damper components. Next, we resolve the relative 

displacement components from the curve fits above to an appropriate reference frame. For 

simplicity, the displacement components of the wheel can be converted to positions relative to 

the vehicle’s center of mass. Before the SEK joint can be added to the model, the issue of 

wheel spin axis must be addressed. Revolute joints cannot be connected directly to the tire 

body because the camber angle changes. Consequently, this means the joint axes of the 
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revolute joints would also change. To resolve this issue, a small rigid body mass is added 

between the vehicle center of mass and the tire. Physically, this rigid body mass represents a 

wheel hub assembly [48]. Revolute joints can then be connected between the wheel hubs and 

tires to create revolute joints with a “variable” joint axis. Finally, the SEK joint can be 

connected between the vehicle center of mass and the wheel hubs. The MapleSim 

implementation of the new suspension architecture for a corner of the Prius is shown in Figure 

3.25. 

 

Figure 3.24 SEK Joint Implementation for Automobile Suspension on MapleSim 

 

To make the suspension architecture consistent with a particular vehicle, new suspension 

parameters may need to be estimated. This is due to the presence of the SEK joint. The addition 

of the SEK joint means wheel travel is no longer in one direction akin to a prismatic joint. 

Therefore, parameters estimated using common two degree of freedom suspension models (i.e 

quarter-car suspension models or half-car suspension models) are no longer valid. Although 

not covered in this thesis, the parameters that would need to be estimated are: 
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• The Spring Stiffness 

• The Damping Coefficient 

• The Unstretched Length of the Spring-Damper Component 

• The Inertial Parameters of the Wheel Hub 

With a combined slip tire force model and suspension kinematics model added to the high-

fidelity Prius model, the Prius model is prepared for controller testing on roundabouts. The 

added modelling components ensure that the Prius model can reflect realistic turning physics. 

Through the tires, the handling properties of a vehicle are defined. The SEK joint suspension 

model ensures the correct roll motion and wheel kinematic characteristics are reproduced. This 

is necessary to evaluate the roll characteristics of the high fidelity model under the influence 

of the path following controller. Although the implementation is presented here, the parameter 

estimation was not performed in this work so prismatic joints were used to the suspension 

system of the high fidelity model. 
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Chapter 4 

Path Following 

4.1 Path Following Controller Architecture 

In this chapter, the development of a path following controller for roundabout navigation is 

presented. The problem of generating a reference path for the Prius is first discussed. Then, an 

upper level controller is presented using a kinematic path following algorithm. The following 

sections show a modification of the algorithm to adapt it for roundabout paths. Following the 

design of the upper level controller, an actuator controller is presented which physically fulfills 

the commands of the upper level controller. A flowchart of the control system is presented in 

Figure 4.1.  

 

 

Figure 4.1 Path Following Control System Block Diagram 

4.2 Path Generation for Roundabouts 

When making reference paths for roundabout navigation, Gonzalez argued for the use of spline 

interpolation functions [94]. Specifically, Bézier curves were recommended as a suitable spline 

function for these paths. Bézier curves [95, 94, 96] are parametric splines, with curve parameter 

𝛽 ∈ [0,1], defined by the general expression 
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 𝑊(𝛽) = ⁡∑(
𝑧

𝑖
)

𝑧

𝑖=0

(1 − 𝛽)𝑧−𝑖𝛽𝑖𝑃𝑖 (24) 

   

where 𝑊 ∈ ℝ𝑛 and 𝑧 is the order of the spline. The 𝑃𝑖 are points in ℝ𝑛 and are referred to 

as control points because they influence the shape of a Bézier curve. The control points may 

not necessarily be on the curve. Rather, the Bézier curve lies within the convex hull formed by 

the control points [96]. These points can be optimally placed by minimizing curvature thereby 

reducing unwanted oscillations in path generation. This feature makes Bézier curves attractive 

for path planning algorithms [95]. Moreover, Bézier curves promote low computational costs 

and paths that can lead to comfortable driving scenarios. Gonzalez et al. further states that this 

optimization process allows one to define smooth entry and exit paths that seem natural for 

roundabout navigation [94]. As an example, consider a straight drive-through motion on a 

roundabout, as shown in figure 4.2. 

 

Figure 4.2 Roundabout with Straight Drive Through Path 

A vehicle enters and exits a roundabout at opposite ends.  The reference path can be defined 

by three curve segments with at least 𝐶1continuity between them. The first segment defines 
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the entry path for the vehicle, the second segment is the circular part of the roundabout and the 

third segment represents the exit path. Following the approach inspired by Gonzalez et al [94], 

the entry and exit paths were defined by cubic Bézier curves and the circular portion was 

defined using the parametric equation for a circle 

 𝑞(𝜃) = 𝑅𝑐𝑜𝑠(𝜃)𝑖̂ + 𝑅𝑠𝑖𝑛(𝜃)𝑗 ̂ (4.3) 

where 𝑞 ∈ ℝ2, 𝜃 ∈ [0,2𝜋) and 𝑅 is the radius of the circle. The cost function was defined as 

 

𝐽 = 𝜅(𝛽0) + 𝜅(𝛽1) 

𝜅(𝛽) =
‖
𝑑𝑊
𝑑𝛽

×
𝑑2𝑊
𝑑𝛽2 ‖

‖
𝑑𝑊
𝑑𝛽

‖
3  

(4.4) 

 

where 𝜅 ∈ ℝ is the curvature of the path [56]. Evaluating the curvature at 𝛽 = 0 and 𝛽 = 1, 

respectively, resulted in the curvature being expressed in terms of the control points. Next, 

boundary constraints were imposed. The boundary constraints ensured that the generated 

reference path had no inflections and was natural for roundabout navigation. Figure 4.3 shows 

a physical depiction of the constraints. 

 

Figure 4.3 Constraint Derivation for Roundabout Paths 
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A vehicle was assumed to approach the entry path in a straight line at a known point, 𝑃0. 

This implies one of the constraint boundaries is a straight horizontal line at 𝑃0. Next, the vehicle 

was assumed to merge into the circular portion of the roundabout at a known point, 𝑃3. This 

led to the other constraint boundary being a line tangent to the roundabout circle at 𝑃3. Given 

coordinates 𝑥 and 𝑦 in ℝ2, the boundary constraints were expressed as 

 
𝑦 ≤ 0 

𝑦 − 𝑚𝑥 ≤ 𝑏 

(4.5) 

where 𝑚 is the slope of the line tangent to the circle at 𝑃3 and 𝑏 is the y-intercept of the 

tangent line. These quantities can be computed by evaluating the derivative of (4.3) with 

respect to 𝜃⁡at the merge point, 𝑃3.⁡Applying these two constraints, ensured that the generated 

path was similar to the red curve in Figure 4.3. Expressing the constraints in terms of the 

decision variables, 𝑃1 ∈ ℝ2 and 𝑃2 ∈ ℝ2, resulted in 

 

𝐴𝑃 ≤ 𝑑 

𝐴 =⁡ [

0 1 0 0
0 0 0 1

−𝑚 1 0 0
0 0 −𝑚 1

] , 𝑃 = ⁡

[
 
 
 
 
𝑃1𝑥

𝑃1𝑦

𝑃2𝑥

𝑃2𝑦]
 
 
 
 

, 𝑑 = ⁡ [

0
0
𝑏
𝑏

] 

 

(4.6) 

The optimization problem with cost function (4.4) and constraints (4.6) was solved using 

MATLAB’s fmincon command [97] for a 15m radius roundabout. The resulting path is shown 

in Figure 4.4 and the control points of the entry path are listed in Table 4.1. The exit path was 

assumed to be symmetrical to the entry path therefore each set of coordinates in Table 4.1 were 

reflected about the global X-axis. It should be noted that lanes were not considered in path 

generation to maintain generality for path generation and for consideration with various types 

of roundabouts. 
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Table 4.1 Roundabout Entry Control Points 

 𝑃0 𝑃1 𝑃2 𝑃3 

Coordinates (-40,0) (-20.20,0) (-15.53,-5.67) (-10.60,-10.60) 

 

 

Figure 4.4 Roundabout Reference Path 

It should be noted that the merge point, 𝑃3 was selected through a trial and error process. 

Referring to Figure 4.3, if the merge point was closer to the left of the circle, then the resulting 

path would have been sharper. This means the Prius would enter and exit the roundabout in an 

aggressive manner. To avoid this, a point closer to the bottom of the circle was chosen thereby 

requiring a gradual steering motion from the Prius. 

4.3 Guiding Vector Field 

A vector field path following algorithm called the Guiding Vector Field (GVF) algorithm was 

proposed for navigating ground vehicles [63]. This algorithm defines a velocity vector field 

that assigns a velocity and an orientation for a vehicle to take based on its position. It was 

shown, mathematically and through application, that the GVF leads to globally asymptotically 

stable convergence to reference paths. Furthermore, the vector field becomes tangential to a 
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reference path if a vehicle is on the path allowing the vehicle to traverse the path without 

deviating from it. When compared to the LOS and NLGL algorithms, the guiding vector field 

was shown to perform better than them [63]. 

Creating the vector field requires expressing a reference path as a contour map. In general, 

it may not be possible to represent a reference path as a contour map. Reference paths defined 

using parametric functions, for example, are ineligible functions for the GVF algorithm 

because parametric functions cannot be converted to functions in Cartesian coordinates. 

However, Gonzales et al. mentioned parametric functions are frequently used in path planning 

algorithms [95, 94]. Moreover, Rubi et al. also indicated that underwater vehicles and ground 

robots pair path planners with path following strategies [57]. Developing path following 

strategies that could be used with parametric path planners for autonomous vehicle navigation 

would provide the benefits that Rubi et al. mentioned are associated with path following.  

To apply the GVF algorithm to roundabouts, the algorithm must be modified for use with 

parametric functions. Typically, control theoretic approaches are used for path following with 

parametric functions. One attaches a moving frame onto a reference path with its own 

controllable kinematics and then impose control laws to influence the motion of vehicles and 

the moving frames [98, 99, 100, 101, 102]. Although stronger robustness and greater flexibility 

in path following is provided through control theoretic approaches, Sujit et al. and Rubi et al. 

indicate control theoretic algorithms are more difficult to implement on physical systems, 

require greater tuning effort, and are more computationally laborious than the geometric 

methods [57, 58].  

4.4 The Dual Space and One-Forms 

For any vector space V, there is a co-existing vector space called the dual space denoted by V* 

[103]. The dual space is defined as the set of all linear functionals, 𝐿, that act on the vector 

space. That is, 

 𝑉∗ ≜ 𝐿(𝑉,ℝ) (4.7) 
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The dimension of a dual space is the same as that of its associated vector space and elements 

of a dual space are called co-vectors or one-forms [103]. Let V be an n-dimensional vector 

space, over ℝ, with basis {𝑔1, 𝑔2, … , 𝑔𝑛}. There exists a basis, {𝑔1, 𝑔2, … , 𝑔𝑛} for V*, the dual 

basis, that satisfies property (4.8), where 𝛿𝑗
𝑖 is the Kronecker delta function [104]. 

 𝑔𝑖(𝑔𝑗) = 𝛿𝑗
𝑖 (4.8) 

Consider a one-form 𝜙 ∈ 𝑉∗. The dual basis can be used to express 𝜙 in terms of vector 

components [𝑎1, 𝑎2, … , 𝑎𝑛] where 𝑎𝑖 ∈ ℝ.  

 
𝜙 = ∑𝑎𝑖𝑔

𝑖

𝑛

𝑖=1

 
(4.9) 

For a vector, 𝑥 ∈ 𝑉 with components [𝑥1, 𝑥2, … , 𝑥𝑛], where 𝑥𝑖 ∈ ℝ, a one–form, 𝜙 evaluated 

on a vector can be computed algebraically as 

 
𝜙(𝑥) = ⁡∑𝑎𝑖𝑥𝑖

𝑛

𝑖=1

 
(4.10) 

   

While vectors can be visually depicted as arrows, one-forms can be visually represented as 

contours of functions in ℝ𝑛−1 (see Figure 4.5) [105].  

 

Figure 4.5 A Visual Depiction of the One-Form 𝝓 = 𝒈𝟐 + 𝒈𝟏 ∈ ℝ𝟐∗
 

The level sets of the contour map correspond to specific outputs of the one–form for vectors 

extending from an origin. The numerical output of a one-form, for a vector input, can be 
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visually interpreted as the number of contours the vector pierces. The sign of the output 

depends on the direction of the vector and of the one-form. If the vector, points in the direction 

of increasing contours, the result is positive. Otherwise, the result is negative. Further details 

on the dual space and one–forms can be found in [103, 105, 106, 104].  

4.5 Modified Guiding Vector Field Algorithm 

Given a smooth parametric function 𝑃: 𝐼⁡ → 𝐷, where 𝐼 ⊂ ℝ and 𝐷 ⊂ ℝ2 and assuming a 

vehicle’s position can be described by a vector in ℝ2, a one-form can be used to establish an 

explicit relationship between a vehicle’s location and a curve parameter, 𝛽 ∈ 𝐼. 

4.5.1 Relating a Vehicle’s Position to a Curve Parameter 

To build the required one-form, we construct a secant line, in Cartesian coordinates, connecting 

the endpoints of the reference path. This secant line is referred to as the parameter indexing 

line (PIL). Next, we find the slope of a line perpendicular to the PIL. The perpendicular slope 

will then be used to make the one–form 

 𝛼 = 𝑔2 + 𝑚𝑔1 (4.11) 

 where 𝑚 is the perpendicular slope to the PIL and the 𝑔𝑖 are the standard dual basis on ℝ2∗. 

Visually depicting (34) shows it produces a contour map of lines perpendicular to the PIL (see 

Fig. 2). Because 𝛼:ℝ2 → ℝ,⁡ a vehicle position vector, 𝑟𝑣 ∈ ℝ2, can be passed as an argument 

to (4.11). Therefore, a vehicle must always lie on a perpendicular contour in ℝ2 meaning the 

output of 𝛼(𝑟𝑣) can be related to a curve parameter, 𝛽.⁡ 
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Figure 4.6 The Relationship Between Points on a Curve and a Vehicle’s Coordinates 

Generally, parametric curves have parameters with restricted domains. Notably, parametric 

curves used to create spline functions [95, 94, 96]. For these types of curves, 𝛽 ∈ 𝐼, where 𝐼 ⊂

ℝ. Assigning the output of (6) for a vehicle position as the curve parameter will cause the 

parameter to assume infeasible values because the one-form is defined on all of ℝ2. We resolve 

this issue as follows. Consider a parametric function with position vector 𝑟𝑐(𝛽) ∈ ℝ2, defined 

by parameter 𝛽 ∈ 𝐼 where 𝐼 ≜ [𝛽0, 𝛽1] ⊂ ℝ. We observe that the position vector, 𝑟𝑐 can also 

be passed as an argument to (4.11) for all admissible values of 𝛽 (see Figure 4.6). Evaluating 

(4.11) at the endpoints of the curve give us two scalars, 𝐶0, 𝐶1 ∈ ℝ.  

 𝐶0 = 𝛼(𝑟𝑐(𝛽0)), 𝐶1 = 𝛼(𝑟𝑐(𝛽1)) (4.12) 

 Let 𝑟𝑣 ∈ ℝ2 be the position vector of a vehicle. We propose the curve parameter can be 

obtained from a vehicle’s position by using the linear function 

 

 
𝛽 = 𝐺(𝛼(𝑟𝑣) − 𝐶0) + 𝛽0, 𝐺 =

𝛽1 − 𝛽0

𝐶1 − 𝐶0
 

(4.13) 
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Although (4.13) is defined over all ℝ2, the domain of (4.13) should be restricted to a subset 

of ℝ2 so that 𝛽 could assume admissible values in 𝐼. Consider a vehicle’s position expressed 

in terms of an inertial frame in Cartesian coordinates. That is, 𝑟𝑣 = [𝑥⁡𝑦]𝑇. Let 𝑆 ≜ {(𝑥, 𝑦) ∈

ℝ2:⁡𝐶0 ≤ 𝛼(𝑟𝑣(𝑥, 𝑦)) ≤ 𝐶1} then ∀(𝑥, 𝑦) ∈ 𝑆, 𝛽0 ≤ 𝛽 ≤ 𝛽1. Expressing a vehicle’s position 

in terms of its coordinates and using (4.12) allows (4.11) and (4.13) to be written as 

 𝛼(𝑥, 𝑦) = 𝑦 + 𝑚𝑥 (4.14) 

   

 𝛽(𝑥, 𝑦) = 𝐺(𝛼(𝑥, 𝑦) − 𝐶0) +⁡𝛽0 (4.15) 

4.5.2 Changes to the Vector Field  

We use the same form of expression for the guiding vector field from [63] but we propose 

changes to the elements that make the guiding vector field. The tangent and normal vector 

fields from the original definition are replaced with parametric expressions for tangent 

vectors,⁡𝑡 ∈ ℝ2 and normal vectors, 𝑛 ∈ ℝ2 to a curve based on a Frenet-Serret frame in two 

dimensions [56]. 

 
𝑡(𝛽) =

𝑑𝑟𝑐
𝑑𝛽

 
(4.16) 

 

 𝑛(𝛽) = 𝐸𝑡(𝛽);     𝐸 = [
0 −1
1 0

] 

 

(4.17) 

Next, we propose replacing the error function in the original definition with the error 

function in (4.18). 

 𝑒(𝛽) =< 𝑟𝑟𝑒𝑙, 𝑢𝑛(𝛽) >, 𝑟𝑟𝑒𝑙(𝛽) = 𝑟𝑣 − 𝑟𝑐(𝛽) (4.18) 

Where 𝑢𝑛 ∈ ℝ2 is a unit normal on the path and <∙,∙> denotes the standard inner product on 

ℝ2. The error term, 𝑒 ∈ ℝ, in (4.18) is called the cross – track error and it measures how far a 
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vehicle is orthogonally to a point on the reference path. Finally, by using (4.16), (4.17) and 

(4.18) and recognizing that a curve parameter can be related to a vehicle’s location through 

(4.15), we can write the modified guiding vector field as 

 𝑣(𝛽(𝑥, 𝑦)) = 𝑡(𝛽(𝑥, 𝑦)) − 𝜌𝑒(𝛽(𝑥, 𝑦))𝑛(𝛽(𝑥, 𝑦)) (4.19) 

where 𝑣:ℝ2 ⁡→ ℝ2 and 𝜌 ≥ 0 is a tunable gain that affects the convergence rate of a vehicle 

to the reference path. Increasing values of 𝜌 make a reference path more attractive causing a 

vehicle to approach it more aggressively. In general, we remark that 𝜌 need not be a constant 

but is treated as a constant for simplicity. Based on the definition in (4.19), if a vehicle 

approaches a reference path then 𝑒(𝛽) ⁡→ 0 and consequently, 𝑣(𝛽) → 𝑡(𝛽) meaning the 

vector field would guide a vehicle tangentially along a path.  

4.5.3 Using the Modified Guiding Vector Field 

Generating translational velocity requirements that direct a vehicle to the reference path from 

the guiding vector field can be done using the same relationships in [63]. However, when 

computing them, the curve parameter map from (4.15) must be considered as well. 

 
𝑟𝑑̇ = 𝑈𝑚𝑑(𝛽(𝑥, 𝑦)),⁡⁡⁡𝑚𝑑(𝛽(𝑥, 𝑦)) =

𝑣(𝛽(𝑥, 𝑦))

‖𝑣(𝛽(𝑥, 𝑦))‖
 

 

(4.20) 

Where 𝑟𝑑̇ ∈ ℝ2 is the desired velocity in the 𝑥 and 𝑦 directions respectively, 𝑈 ∈ ℝ is a 

chosen longitudinal velocity for a vehicle to track and 𝑚𝑑 ∈ ℝ2 is the modified guiding vector 

field normalized into a unit vector field. Deriving a desired yaw rate from the modified 

approach, however, requires the chain rule due to the parameter map in (4.15). This fact makes 

the desired yaw rate in (4.21) different from the desired yaw rate presented in [63]. The desired 

rotation rate of a vehicle can be found as follows. 
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𝜔𝑑 = 𝑚𝑑̇ (𝛽(𝑥, 𝑦)) = ⁡(−
𝑑𝑚𝑑(𝛽(𝑥, 𝑦))

𝑑𝛽
[
𝑑𝛽

𝑑𝛼
(
𝜕𝛼

𝜕𝑥
𝑥̇𝑑 +

𝜕𝛼

𝜕𝑦
𝑦𝑑̇)])𝐸𝑚𝑑(𝛽(𝑥, 𝑦))⁡ 

 

(4.21) 

The additional term given by the derivatives of the parameter map and the one-form act as a 

scaling term. The derivative of 𝑚𝑑 with respect to 𝛽 can be computed by differentiating the 

relationship between the two in (4.20). Moreover, the derivatives  
𝜕𝛼

𝜕𝑦
, 

𝜕𝛼

𝜕𝑥
 and  

𝑑𝛽

𝑑𝛼
 can be 

computed from (4.14) and (4.15) respectively. It should be noted 𝑥̇𝑑 and 𝑦̇𝑑 are the desired 

translational velocity components from 𝑟̇𝑑 in (4.20). Furthermore, the 𝐸𝑚𝑑 factor appears 

using 𝐸 from (4.17), because ‖𝑚𝑑‖2 = 1. Therefore 𝑚̇𝑑 ⊥ 𝑚𝑑 which implies that 𝑚̇𝑑 is 

proportional to the unit vector 𝐸𝑚𝑑. This means 𝑚̇𝑑 =⁡−𝜔𝑑(𝛽)𝐸𝑚𝑑(𝛽) and therefore 𝜔𝑑 

can be interpreted as the curvature of the integral curves generated by the modified guiding 

vector field. 

4.5.4 Stability of the Modified Guiding Vector Field 

We use Lyapunov’s direct method [107] to show that the velocity vector field in (4.19) leads 

to asymptotically stable dy. Firstly, we recognize the guiding vector field in (4.19) satisfies the 

set of autonomous ordinary differential equations 

 𝑑

𝑑𝑡
𝑟𝑣(𝑡) = 𝑣(𝛽(𝑟𝑣(𝑡)) ∈ ℝ2⁡ 

(4.22) 

Let us define the Lyapunov function for the error dynamics as 

 
𝑉 =

1

2
𝑒(𝛽(𝑟𝑣))

2
 

(4.23) 

Differentiating (4.23) with respect to time gives 

 𝑉̇ = 𝑒(𝛽(𝑟𝑣))⁡𝑒̇(𝛽(𝑟𝑣))⁡ (25) 

Differentiating (4.18) with respect to time gives 
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 𝑒̇(𝛽) =<
𝑑

𝑑𝑡
𝑟𝑟𝑒𝑙(𝛽), 𝑢𝑛(𝛽) > +⁡< 𝑟𝑟𝑒𝑙(𝛽),

𝑑𝑢𝑛

𝑑𝑡
> (4.25) 

Since the chain rule is required, we can use (4.15) and (4.18) to find the time derivative of 

the relative position vector term in (4.26). We have suppressed the implicit relationship 

between 𝛽 and the vehicle coordinates, from (4.15), for clarity. 

 𝑑

𝑑𝑡
𝑟𝑟𝑒𝑙(𝛽) = 𝑣 − 𝑡(𝛽)

𝜕𝛽

𝜕𝑥
𝑥̇𝑑 − 𝑡(𝛽)

𝜕𝛽

𝜕𝑦
𝑦̇𝑑⁡ 

(4.26) 

 Substituting (4.19) allows us to replace the first term in (4.26). 

 𝑑

𝑑𝑡
𝑟𝑟𝑒𝑙(𝛽) = 𝑡(𝛽) − 𝜌𝑒(𝛽)𝑛(𝛽) − 𝑡(𝛽)

𝜕𝛽

𝜕𝑥
𝑥̇𝑑 − 𝑡(𝛽)

𝜕𝛽

𝜕𝑦
𝑦̇𝑑 

(4.27) 

Next, we differentiate the unit vector, 𝑢𝑛(𝛽) with respect to time using the chain rule. 

Assuming the coordinate frame attached to the reference path is right - handed, we can say that 

the derivative of 𝑢𝑛(𝛽) with respect to the curve parameter is equivalent to scaling a unit 

tangential vector, 𝑢𝑡(𝛽) along the reference path [56]. Therefore, 

 𝑑𝑢𝑛

𝑑𝛽
= 𝑘(𝛽)𝑢𝑡(𝛽) 

(4.28) 

    The scaling factor, 𝑘(𝛽) ∈ ℝ is known as the curvature of the path [56]. Relationship 

(4.28) can then be used to write the time derivative of the unit vector, 𝑢𝑛(𝛽) as 

  

𝑑𝑢𝑛

𝑑𝑡
=

𝑑𝑢𝑛

𝑑𝛽
(
𝜕𝛽

𝜕𝑥
𝑥̇𝑑 +

𝜕𝛽

𝜕𝑦
𝑦̇𝑑), 

 

𝑑𝑢𝑛

𝑑𝑡
= 𝑘(𝛽) (

𝜕𝛽

𝜕𝑥
𝑥̇𝑑 +

𝜕𝛽

𝜕𝑦
𝑦̇𝑑) 𝑢𝑡 

(4.29) 

Equations (4.27) and (4.29) can be used to re – write (4.25) as 
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𝑒̇(𝛽) =< (𝑡(𝛽) − 𝜌𝑒(𝛽)𝑛(𝛽) − 𝑡(𝛽)

𝜕𝛽

𝜕𝑥
𝑥̇𝑑 − (𝛽)

𝜕𝛽

𝜕𝑦
𝑦̇𝑑) , 𝑢𝑛(𝛽) > +⁡

< (𝑟𝑣 − 𝑟𝑐(𝛽)), 𝑘(𝛽) (
𝜕𝛽

𝜕𝑥
𝑥̇𝑑 +

𝜕𝛽

𝜕𝑦
𝑦̇𝑑) 𝑢𝑡(𝛽) > 

(4.30) 

 The first term can be considerably simplified by recognizing that 𝑡(𝛽) ⊥ 𝑢𝑛(𝛽)⁡⁡∀𝛽 ∈ 𝐼 so 

< 𝑡(𝛽), 𝑢𝑛(𝛽) >⁡= 0 and that 𝑛(𝛽) ∥ 𝑢𝑛(𝛽)⁡⁡∀𝛽 ∈ 𝐼 meaning < 𝑛(𝛽), 𝑢𝑛(𝛽) >≡ ‖𝑛(𝛽)‖2. 

Additionally, (4.15) can be differentiated to determine 
𝜕𝛽

𝜕𝑥
 and 

𝜕𝛽

𝜕𝑦
. 

 𝑒̇(𝛽) = ⁡−𝜌𝑒(𝛽)‖𝑛(𝛽)‖2 +⁡< 𝑟𝑟𝑒𝑙(𝛽), 𝑘(𝛽)(𝐺𝑚𝑥̇𝑑 + 𝐺𝑦̇𝑑)𝑢𝑡(𝛽) > (4.31) 

Equation (4.31) can now be substituted into (4.24) to expand the time derivative of the 

Lyapunov function.  

 𝑉̇ = ⁡−𝜌𝑒2(𝛽)‖𝑛(𝛽)‖2+< (𝑟𝑟𝑒𝑙(𝛽), 𝑘(𝛽)(𝐺𝑚𝑥̇𝑑 + 𝐺𝑦̇𝑑)𝑢𝑡(𝛽))𝑒(𝛽) > (4.32) 

Note that, 𝑘(𝛽)(𝐺𝑚𝑥̇𝑑 + 𝐺𝑦̇𝑑)𝑢𝑡(𝛽) is a scaling along the unit tangential so we can re-write 

it as 𝑏(𝑡)𝑢𝑡(𝛽) where 𝑏(𝑡) is a time varying scalar. Focusing on the second term in (4.32) and 

using (4.18) to expand 𝑒(𝛽), we can re-write (4.32) as 

 𝑉̇ = ⁡−𝜌𝑒2(𝛽)‖𝑛(𝛽)‖2 + [< 𝑟𝑟𝑒𝑙(𝛽), 𝑏(𝑡)𝑢𝑡(𝛽) >][< 𝑟𝑟𝑒𝑙(𝛽), 𝑢𝑛(𝛽) >] (4.33) 

We now simplify the expression by invoking the projection angle property of the standard 

inner product: < 𝐴,𝐵 >= ‖𝐴‖2‖𝐵‖2cos⁡(𝜃) where 𝐴, 𝐵 ∈ ℝ𝑛 and 𝜃 ∈ [0, 𝜋] is the angle 

between the two vectors⁡𝐴 and 𝐵. Let 𝜃 be the angle between 𝑟𝑟𝑒𝑙(𝛽) and 𝑢𝑛(𝛽). Since 𝑢𝑡(𝛽) 

is orthogonal to 𝑢𝑛(𝛽), the angle between 𝑟𝑟𝑒𝑙(𝛽) and 𝑢𝑡(𝛽) must be 𝜃 +
𝜋

2
. Using these 

properties, (4.33) becomes 

 

𝑉̇ = −𝜌𝑒2(𝛽)‖𝑛(𝛽)‖2 + ‖𝑟𝑟𝑒𝑙(𝛽)‖2
2‖𝑏(𝑡)𝑢𝑡(𝛽)‖2 cos(𝜃) cos (𝜃 +

𝜋

2
) 

𝑉̇ =⁡= −𝜌𝑒2(𝛽)‖𝑛(𝛽)‖2 − ‖𝑟𝑟𝑒𝑙(𝛽)‖2
2‖𝑏(𝑡)𝑢𝑡(𝛽)‖2sin⁡(𝜃) 

(4.34) 

The time derivative of the Lyapunov function in (4.34) is negative definite implying that the 

trajectories of (4.19) are asymptotically stable if (𝑥, 𝑦) ∈ 𝑆. Therefore, a vehicle can merge 
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onto a parametric reference path using the modified MGVF if it is anywhere between the 

endpoints of the path. 

4.5.5 Bézier Curve Example 

An example construction of the modified guiding vector field on a planar Bézier curve is 

presented in Figure 4.7 with its control points listed in Table 4.2. 

Table 4.2 Bézier Curve Control Points 

 𝑃0 𝑃1 𝑃2 𝑃3 

Coordinates (0,0) (3,7) (5,3) (10,5) 

 

We find the slope of a line perpendicular to the PIL with endpoints (𝑃0 and 𝑃3, respectively) 

for the curve in Fig. 3 and substitute it into (5). This gives the one-form 

 𝛼 = 𝑔2 + 2𝑔1 (4.35) 

Next, we evaluate the one-form (4.35) at the endpoints using (4.12) to get the scalars, 𝐶0 and 

𝐶1.    

 𝐶0 = 𝛼(𝑃0) = 0, 𝐶1 = 𝛼(𝑃1) = 25⁡ (4.36) 

Finally, substituting (4.35) and (4.36) into (4.13) and then the result into (4.15) gives  

 
𝛽(𝑥, 𝑦) =

1

25
(𝑦 + 2𝑥) 

(4.37) 

 where 𝑥 and 𝑦 are the coordinates of a vehicle’s center of mass.  
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Figure 4.7 A Bézier Curve with the Modified Guiding Vector Field 

Based on the scalars in (4.36), the curve parameter in (4.37) takes admissible values in the 

set 𝑆 = {(𝑥, 𝑦) ∈ ℝ2: 0 ≤ 𝛼(𝑥, 𝑦) ≤ 25}. Therefore, if a vehicle is restricted to lie in this set, 

the integral curves of the modified guiding vector field would flow towards the reference path. 

This is reflected by the integral curves in Figure 4.7. 

4.5.6 Applicability of the Modified Guiding Vector Field 

It was mentioned in section 4.5.5 that the integral curves of the modified guiding vector field 

are asymptotically stable indicating that if a vehicle is initially positioned anywhere between 

the endpoints of the reference path, it can smoothly merge onto the reference path. We remark 

that the direction of the vector field is influenced by the choice of endpoints assigned to C0 and 

C1 in (4.12). In the Bézier curve example, if the scalars C0 and C1 were reversed in (4.36), then 

the vector field and the integral curves in Figure 4.7 would be directed towards the opposite 

endpoint. Thus, the direction of travel dictated by the algorithm can easily be reversed by 

switching the constants C0 and C1. 
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In some cases, it may be impossible for the modified guiding vector field to cover an entire 

reference path. Let λ, γ ∈ I ⊂ ℝ be two arbitrarily distinct curve parameter values. The 

modified vector field covers an entire reference path if condition (4.38) is satisfied. 

 max(‖𝑟𝑐(𝜆) − 𝑟𝑐(𝛾)‖2) = ‖(𝑟𝑐(𝛽1) − 𝑟𝑐(𝛽0)‖2 (4.38) 

Alternatively, (4.38) states the endpoints of the reference path must be the furthest points 

apart on the curve. This condition is implied by the domain of (4.13), which is dictated by the 

length of the PIL. If condition (4.38) is not satisfied for a parametric function, then 𝑆 covers 

only a portion of that reference path (Figure 4.8) and therefore the algorithm would be partially 

applicable. One may argue a solution to this problem would be to partition a reference path 

into a number of smaller curves with at least 𝐶1 continuity between the segments and then 

apply the algorithm to each segment (Figure 4.9). However, each curve segment will have its 

own domain set, 𝑆𝑖 and ⋂ 𝑆𝑖 ≠ ∅𝑛
𝑖=1 . If a vehicle lies within the intersection of any number of 

𝑆𝑖, then multiple vector fields will be present simultaneously instructing a vehicle to move 

towards each curve segment. Although one can avoid this situation by applying the algorithm 

when a vehicle lies outside the intersections, the applicable domain with multiple curve 

segments becomes more restrictive that of a single curve and there is no guarantee a vehicle 

would be able to converge to a reference path. This was not an issue for the roundabout path 

from figure 4.4 because each of the path segments satisfied condition (4.38). 
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Figure 4.8 Limitation of the Modified Guiding Vector Field 

 

Figure 4.9 The Conflict Caused by Overlapping Modified Guiding Vector Fields 

 

4.6 Actuator Control 

The velocity commands, from the modified guiding vector field, cannot actuate the Prius to 

perform the path following task because they are not physically controllable inputs. Therefore, 

an actuator controller is needed to convert the velocity commands into physical inputs for the 

Prius. The inputs required to move the Prius would be those that can steer, accelerate, and 

brake the vehicle. One approach would be to map the velocity commands into pedal and 
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steering wheel commands, however there are no explicit relationships between them. 

Therefore, we assume the front wheels of the Prius can be actuated independently by torque 

commands.  The front wheels were chosen because the Prius is front wheel driven and explicit 

relationships were found that relate velocity commands to the wheel torques. 

Consider the planar vehicle model in figure 4.10 

 

 

 

Figure 4.10 Planar Vehicle Model 

 

Based on this model the resultant forces and yaw moment of the vehicle can be expressed as 
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𝐹𝑋 = (𝐹𝑥0
cos(𝛿0) +⁡𝐹𝑥1

cos(𝛿1) +⁡𝐹𝑥3
+⁡𝐹𝑥4

)

−⁡(𝐹𝑦0
sin(𝛿0) +⁡𝐹𝑦1

sin(𝛿1) +⁡𝐹𝑦3
+⁡𝐹𝑦4

) 

𝐹𝑌 = (𝐹𝑥0
sin(𝛿0) +⁡𝐹𝑥1

sin(𝛿1) +⁡𝐹𝑥3
+⁡𝐹𝑥4

)

+⁡(𝐹𝑦0
cos(𝛿0) +⁡𝐹𝑦1

cos(𝛿1) +⁡𝐹𝑦3
+⁡𝐹𝑦4

) 

𝑀𝑍 =
𝑡𝑤
2

(𝐹𝑥1
cos(𝛿1) − 𝐹𝑦1

sin(𝛿1) − 𝐹𝑥0
cos(𝛿0) + 𝐹𝑦0

sin(𝛿0) +𝐹𝑥4
− 𝐹𝑦4

− Fx3
+ 𝐹𝑦3

)

+ 𝑙𝑓(𝐹𝑥0
sin(𝛿0) + 𝐹𝑦0

cos(𝛿0) + 𝐹𝑥1
sin(𝛿1) + 𝐹𝑦1

sin(𝛿1))

− 𝑙𝑟(𝐹𝑥3
+ 𝐹𝑦3

+ 𝐹𝑥4
+ 𝐹𝑦4

) 

(4.39) 

Where the 𝐹𝑥𝑖
 are the longitudinal tire forces, 𝐹𝑦𝑖

 are the lateral tire forces and the 𝛿𝑖 are the 

steering angles of the front wheels. The index, 𝑖 refers to the wheels as referenced in figure 

4.10. The parameters 𝑡𝑤 , 𝑙𝑓 and 𝑙𝑟 are the trackwidth, and the distances between the Prius’ 

center of mass and the axles, respectively. Where 𝑓 is the front axle and 𝑟 is the rear axle. 

Using (4.39), one can derive the following state space model for the vehicle’s velocity based 

on Newton’s Second Law. It was assumed the vehicle would travel at a constant longitudinal 

velocity when deriving this relationship. 

 
[
𝑣𝑥̇

𝑣𝑦̇

𝑟̇

] = [
−𝑣𝑦𝑟
𝑣𝑥𝑟
0

] +⁡

[
 
 
 
 
 
1

𝑚
0 0

0
1

𝑚
0

0 0
1

𝐼𝑍]
 
 
 
 
 

[
𝐹𝑋

𝐹𝑌

𝑀𝑍

] 

 

(4.40) 

In (4.40), the mass of the Prius is represented by⁡𝑚 and the yaw moment of inertia of the 

Prius is represented by 𝐼𝑍. One may argue that substituting (4.39) into (4.40) may be better 

suited for actuator control design because this would incite a direct relationship between a 

vehicle’s velocity and our desired inputs. However, the resulting state space model would pose 
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two challenges affecting its usability. Firstly, the state space model would be nonaffine with 

respect to the inputs. Most literature on controlling nonlinear systems are limited to systems 

which are affine in the control inputs. Among literature devoted to controlling nonaffine 

systems, the nonaffine systems considered are usually restricted to a class of nonaffine systems 

[108, 109, 110]. Furthermore, neural network approaches are commonly used for nonaffine 

systems Secondly, the relationship between the accelerations, steering angles and longitudinal 

tire forces are not injective. That is, a controller designed with a direct relationship would not 

assign unique pairs of longitudinal tire forces and steering angles. Therefore, by declaring the 

expressions on the right-hand side to be the control inputs: 𝐹 = [𝐹𝑋 , 𝐹𝑌, 𝑀𝑍]𝑇 we can establish 

control affinity.  

The resultant forces and resultant yaw moment can be computed as control inputs for a 

tracking problem where the reference signal comes from the modified guiding vector field 

through expressions (4.20) and (4.21). The state space model in (4.40) was reformulated in 

terms of the error dynamics, as shown in (4.41), and a combination of feedback linearization 

and linear quadratic regulation were used to determine the control inputs. It was assumed that 

the error dynamics in 4.41 were controllable and observable. 

 
[

𝑒𝑥̇

𝑒𝑦̇

𝑒𝑟̇

] = [

−𝑒𝑦𝑒𝑟 + 𝑟𝑟𝑒𝑓𝑒𝑦 + 𝑦𝑟𝑒𝑓𝑒𝑟

𝑒𝑥𝑒𝑟 − 𝑟𝑟𝑒𝑓𝑒𝑥 − 𝑣𝑥𝑟𝑒𝑓
𝑒𝑟⁡

0

] + [

𝑣𝑦𝑟𝑒𝑓
𝑟𝑟𝑒𝑓

−𝑣𝑥𝑟𝑒𝑓
𝑟𝑟𝑒𝑓

0

] +⁡

[
 
 
 
 
 
1

𝑚
0 0

0
1

𝑚
0

0 0
1

𝐼𝑍]
 
 
 
 
 

[
𝐹𝑋

𝐹𝑌

𝑀𝑍

] 
(4.41) 

The terms 𝑒𝑥, 𝑒𝑦 and 𝑒𝑟 refer to the velocity errors from the system in (4.40) and the reference 

velocities are referred to by the subscript ref. These reference velocities come from the 

modified guiding vector field. The chosen physical inputs that would drive the vehicle were 

wheel torques at the front wheels and the steering angles at the wheels. Other tire forces were 

assumed to be known so they were treated as external inputs. The front wheels were chosen 

because the Prius is front wheel driven. To determine the tire force and steering angle inputs 

from the state space model (4.41), an approach inspired by tire force distribution algorithms 
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was used where an online optimization process was formulated [111, 112, 113]. We wanted to 

identify tire forces and a steering angle that minimized the cost function. 

 𝐽 = ⁡∫ (𝐹̂𝑋(𝑄𝑥, 𝛿) − 𝐹𝑋)
2
+⁡(𝐹̂𝑌(𝑄𝑥, 𝛿) − 𝐹𝑌)

2
+⁡⁡(𝑀𝑍̂(𝑄𝑥, 𝛿) − 𝑀𝑍)

2
𝑡

0

𝑑𝑡⁡ (4.42) 

This cost function represents a least squares optimization problem. We compute the resultant 

forces and moments by computing the resultant forces in (4.39) using the determined 

longitudinal tire forces and steering angles. The outputs of these values are represented by 

𝐹̂𝑋, 𝐹̂𝑌⁡and 𝑀̂𝑍 respectively. The input variables, 𝑄𝑥 and 𝛿 are vectors with component 

representation: 𝑄𝑥 = [𝐹𝑥0
, 𝐹𝑥1

]
𝑇
and 𝛿 = [𝛿0, 𝛿1]

𝑇.  

 

(
𝑄𝑖

𝜇𝑥𝐹𝑧𝑖

)

2

+ (
𝐹𝑦𝑖

𝜇𝑦𝐹𝑧𝑖

)

2

< 1 

cot δout − cot 𝛿𝑖𝑛 =
𝑡𝑓

𝑙𝑓 + 𝑙𝑟
 

(4.43) 

The goal of the optimization problem was to determine wheel torques and a steering angle 

such that the resultant forces and resultant moment from the computed wheel torques and 

steering angle match closely with the resultant forces and resultant yaw moment from the upper 

level controller. The constraints from (4.43) were motivated by the requirement for vehicle 

maneuverability. The first constraint stems from the friction ellipse concept in section 3. By 

enforcing this constraint, the wheel torques computed by the optimization algorithm would be 

within the adhesion region. This ensures that the wheel torques are in a safe zone where the 

vehicle can steer and respond accordingly. The added conservatism by the friction ellipse 

further reinforces confidence that the longitudinal tire forces would be far from the sliding 

region [86]. The second constraint comes from the Ackermann steering condition [113, 14]. 

The Ackermann steering condition comes from geometrically modelling the kinematics of a 

turn. It ensures that the front tires roll while incurring the least amount of lateral slip while 

turning. In the optimization algorithm, this prevents excessive lateral forces from developing. 

To apply the steering condition from (4.43), the sign of the resultant lateral forces were 

considered. Using this fact, appropriate switches can be made to the inner and outer steering 
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angles for evaluation of the steering constraint. Once the longitudinal tire forces are determined 

by the optimization algorithm, they were multiplied by the effective rolling radius of the tire 

to compute the required wheel torque. The wheel torques are then passed as inputs to the 

corresponding wheels of the high fidelity model. The online optimization process was 

implemented into a MATLAB code using the fmincon function [97].   

It was found that using the optimization algorithm to simultaneously determine wheel 

torques and steering angles was quite computationally demanding and impractical. To reduce 

computation time, the steering angle was removed as a design variable from the optimization 

process and was treated as an external parameter that would be computed by an external 

algorithm. Using the Stanley method [114], an appropriate steering angle could be computed 

based on the cross-track error of the vehicle from the path so that the vehicle is steered towards 

the path. The Stanley method was designed to reduce cross-track errors and it takes vehicle 

speeds into consideration. This makes the Stanley method suitable for path following. With 

the steering angle becoming an external parameter the second constraint in (4.43) was replaced 

with 

 {
𝐹𝑥0

> 𝐹𝑥1
, 𝑖𝑓⁡𝛿 > 0

𝐹𝑥0
< 𝐹𝑥1

, 𝑖𝑓⁡𝛿 < 0
 (26) 

This constraint ensures that one of the longitudinal tire forces will be larger than the other to 

enforce turning. The constraint was motivated by the fact that when a vehicle turns, one of the 

longitudinal tire forces will be larger than the other because the outer wheel of a vehicle travels 

a larger distance. The condition depends on whether the Prius is turning to the left or turning 

to the right. Introducing the steering angle as an external parameter also eliminated the 

injectivity problem. The optimization algorithm would be directed to unique wheel torque 

values due to a predefined steering angle. Furthermore, it was found that there was a 

considerable reduction in computation time for the optimization algorithm. The drawback with 

this approach, however, was that the Ackermann condition could no longer be imposed. 

Therefore, the steering angles that would be computed may not necessarily cause the least 
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amount lateral slip. Nonetheless, after the steering angle was used by the optimization 

algorithm, it was passed as an argument to the front wheels of the high-fidelity model. 

4.7 Path Following Results 

The path following controller was applied to the upgraded high fidelity model presented in 

Chapter 3 and the performance of the path following controller was analyzed by plotting the 

cross-track error with respect to time (Figure 4.11). The corresponding path that was followed 

by the Prius is presented in Figure 4.13. The cross-track error was an appropriate measure of 

controller performance because it indicated how far away the center of mass of the Prius was 

with respect to the reference path. Figure 4.12 shows the longitudinal velocity of the Prius 

model as it traverses the path. The vehicle was given an initial velocity of 3m/s and was 

positioned at the left end of the roundabout. 

 

Figure 4.11 Plot of Cross-Track Error Over Time 
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Figure 4.12 Longitudinal Velocity of High-Fidelity Model 

 

Figure 4.13 Followed Path versus Reference Path 

 

According to Figure 4.11, the cross-track error decreased while the Prius was tasked to 

traverse each curve segment. This agreed with the stability result that was produced in section 

4.3.3. However, the Prius showed a tendency to deviate away from the reference path upon 
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entering and exiting the path. The appearance of the deviation shows that the vehicle is not 

steering enough when turning. This indicates an understeer characteristic [14] because the 

vehicle is accelerating according to Figure 4.12. Understeer is a phenomenon associated with 

vehicle turning where a vehicle exhibits less turning effort than commanded because it is 

accelerating. Physically, understeering is usually caused by slip angles of the front tires being 

larger than that of the rear tires. Wong explains if a vehicle is accelerating while turning, greater 

steering angles are required to negotiate a turn [14]. The Stanley Method relies on a tunable 

parameter that influences the steering angle based on a vehicle’s speed [114]. If correctly tuned, 

the vehicle may show better alignment with the reference path when entering and exiting 

roundabouts. Consequently, this would reduce the maximum deviation from the reference path. 

Currently, the maximum deviation is about 0.35m (Figure 4.11) which may be unsafe for 

roundabout entry.  

Figure 4.12 reveals the vehicle accelerated as it traversed the roundabout. This is a favorable 

response considering that drivers accelerate their vehicles while traversing roundabouts [13]. 

Additionally, the vehicle had a greater acceleration as it was leaving the roundabout. Compared 

to the findings by Zhao et al., this result shows a path following approach encourages 

autonomous vehicles to be bolder than human drivers when traversing roundabouts. However, 

this could be caused by the unconstrained structure of the path. There were no obstacles or 

lanes thereby granting greater freedom for the Prius model. Despite the accelerations, the 

maximum velocity was roughly 5.5m/s (19.8km/h) which is close to the speeds observed by 

Zhao et al. for drivers in a roundabout [13]. 

Figures 4.14 to 4.16 show snapshots of the high fidelity model on the entry curve, roundabout 

circle and the exit path. They indicate that the high fidelity model was appropriately oriented 

when traversing the reference path. 
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Figure 4.14 High Fidelity Model on the Entry Path 

 

 

Figure 4.15 High Fidelity Model Traversing the Roundabout Circle 
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Figure 4.16 High Fidelity Model on the Exit Path 

 

The path following controller presented is shown to be capable of allowing vehicles to 

closely follow paths for roundabout navigation. However, this control architecture does not 

control speed very well. Yet, accelerating a vehicle on a roundabout is natural for drivers [13]. 

In spite of this, the path following controller performs well since the high fidelity model shows 

little deviation from the reference path.  
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

With respect to vehicle dynamics modelling, this work presented the challenges and 

complexities of accurately capturing turning motion. Two of these challenges were tire 

modelling and suspension K&C. 

In considering general vehicle turning behaviors, commonly used pure slip tire force models 

are no longer sufficient. Turning vehicles often accelerate or decelerate which profoundly 

influences tire forces during a turn. Pure slip tire models become insufficient cannot 

characterize these changes. Combined slip tire models, however, can better represent tire forces 

during general turning maneuvers. Although various combined slip tire force models in 

literature were classified as accurate, this work revealed the accuracy of these tire models 

significantly differed when compared to driving data. Driving introduces additional effects that 

challenge the accuracy of combined slip tire models. Additionally, this work demonstrated the 

need to compare combined slip tire force models with respect to driving data. Doing so, 

alleviates doubt when selecting combined slip tire models for application. The comparison of 

combined slip tire force models in this work revealed the State Stiffness model and the Region 

Invariant Slip model agreed best with the track test data. Both models originated from the 

Brush model indicating that this model may be a reliable resource for deriving combined slip 

tire force models. 

Suspension (K&C) modelling is a challenging task because of the necessity for multibody 

representations of a suspension geometry. This adds computational and modelling effort for 

vehicle components with negligible inertial properties. Fortunately, the SEK joint simplifies 

this process. The SEK joint alleviated the issue by replacing the suspension geometry with a 

set of uniquely defined constraints. These constraints can be made by fitting parametric 

reference curves to suspension motion data. The SEK joint adds little to computational 

intensity and could be a considered as a preferred approach to modelling suspension K&C .  
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This thesis also advocated for exploration of path following strategies in autonomous vehicle 

navigation. Literature indicates path following offers several advantages over standard 

trajectory tracking methods such as robustness, reduced control effort, and mitigated transient 

effects. Moreover, path planning algorithms generate reference paths so path following seems 

like a suitable pair with these strategies. Vector field methods were shown to be the best 

performing path following algorithms with respect to minimizing errors. A promising 

algorithm for autonomous vehicle navigation from this class of methods is the GVF algorithm. 

However, the GVF is limited to contour map representations of reference paths. Hence, the 

GVF cannot be paired with path planning algorithms relying on parametric functions. Using 

one-forms shows that it is possible to alter the GVF algorithm so that it is applicable to 

parametric curves.  With little added complexity, the MGVF algorithm provides favorable 

stability conditions to encourage its use with path planning. 

5.2 Future Work 

There are multiple areas of exploration to advance the modelling work presented here. Firstly, 

the combined slip tire force models used in the comparative study represent a small subset of 

the available combined slip tire force models. This comparison could be extended to more 

combined slip tire force models to identify models that better predict tire forces. In doing so, 

further vehicle tire testing may be needed to identify parameters for additional tire models. It 

was mentioned in section 3, that standard data processing techniques cannot be used on driving 

data. If driving data is used more frequently, data processing techniques that handle vertical 

tire load fluctuations and changes in wheel orientation would need to be developed. 

Furthermore, the motion of the Prius model needs to be validated with the addition of the 

combined slip tire force models. This can be done using data from the combined slip test 

mentioned in section 3. By comparing motion variables of the chassis and tires, one can gauge 

how consistent the model behavior is with an actual Prius. 

Although an implementation of the SEK joint was presented, new suspension parameters are 

required for application to the Prius model. Estimating the parameters will require suspension 

data that could be generated by a four-post test or a speed hump drive test. To further enhance 
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the SEK joint suspension model, one can add compliance and steering effects. Hall presented 

an extension of the SEK joint to include suspension compliance and steering formulating a 

compliant Double Equivalent Kinematic (DEK) joint [55]. This would require changes to the 

K&C test presented in section 3 such that steering, and deformation of the suspension bushings 

is included. Implementation of this joint may require modelling bushings and estimating 

bushing parameters. 

The path following algorithm produces wheel torques and tire steering angles to actuate a 

vehicle. However, a more natural approach would be to identify accelerator pedal positions, 

brake pedal positions and steering wheel commands. If the framework presented here is to be 

used, a powertrain model of the Prius, engine model and a steering system model would be 

required. These models would also be required for the high fidelity model for controller testing. 

A promising powertrain model that could be paired with the path following approach presented 

here is the one by Hosking [115]. Hosking presented a hybrid powertrain model based on 

neural networks that could allow one to assign pedal positions to wheel torques. Powertrain 

testing of the Prius would be required to replicate the neural network for a high fidelity model. 
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Appendix A 

Prius High-Fidelity Model 

 

Figure A.5.1 Prius High Fidelity Model (Visual) 
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Figure A.5.2 Prius High Fidelity Model (Skeleton) 

 

Table A.1 Prius High Fidelity Model Parameters 

Vehicle Parameter Description Value 

𝑚 Vehicle Mass 2044 𝑘𝑔 

𝐿 Wheelbase 2.70⁡𝑚 

𝑡𝑤 Trackwidth 1.72⁡𝑚 

𝑙𝑓 
Distance from Vehicle C.G. 

to Front Axle 
1.24⁡𝑚 

𝑙𝑟 
Distance from Vehicle C.G. 

to Rear Axle 
1.46⁡𝑚 

𝐼𝑥 Roll Moment of Inertia 828⁡𝑘𝑔⁡𝑚2 

𝐼𝑦 Pitch Moment of Inertia 2888⁡𝑘𝑔⁡𝑚2 

𝐼𝑧 Yaw Moment of Inertia 2828⁡𝑘𝑔⁡𝑚2 

ℎ𝐶𝐺  
Height of Center of Mass 

From Ground 
0.6⁡𝑚 

𝑚𝑤 Wheel Mass 17⁡𝑘𝑔 

𝐼𝑤𝑥
 

Wheel Moment of Inertia 

About SAE X-Axis 
0.78⁡𝑘𝑔⁡𝑚2 

𝐼𝑤𝑦
 

Wheel Moment of Inertia 

About SAE Y-Axis 
1.56⁡𝑘𝑔⁡𝑚2 

𝐼𝑤𝑧
 

Wheel Moment of Inertia 

About SAE Z-Axis 
0.78⁡𝑘𝑔⁡𝑚2 
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𝐾𝑡 Tire Stiffness 450 𝑘𝑁
𝑚⁄  

𝐶𝑡 Tire Damping Coefficient 0.5⁡ 𝑘𝑁𝑠
𝑚⁄  

𝐾𝑓𝑟 
Front Right Suspension 

Stiffness 
48.2 𝑘𝑁/𝑚 

𝐾𝑓𝑙 
Front Left Suspension 

Stiffness 
48.2 𝑘𝑁/𝑚 

𝐾𝑟𝑙 
Rear Left Suspension 

Stiffness 
48.2 𝑘𝑁/𝑚 

𝐾𝑟𝑟 
Rear Right Suspension 

Stiffness 
48.2 𝑘𝑁/𝑚 

𝐶𝑓𝑟 
Front Right Damping 

Coefficient 
0.3075⁡ 𝑘𝑁𝑠

𝑚⁄  

𝐶𝑓𝑙 
Front Left Damping 

Coefficient 

0.3075⁡ 𝑘𝑁𝑠
𝑚⁄  

𝐶𝑟𝑙 
Rear Left Damping 

Coefficient 

0.3075⁡ 𝑘𝑁𝑠
𝑚⁄  

𝐶𝑟𝑟 
Rear Right Damping 

Coefficient 

0.3075⁡ 𝑘𝑁𝑠
𝑚⁄  
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Appendix B 

Tire Model Parameters 

Table B.2 Magic Formula Parameters 

Parameter Description Value 

𝐵𝑥 
Stiffness Factor 

(Longitudinal) 
32.99 

𝐶𝑥 Shape Factor (Longitudinal) 0.5485 

𝐷𝑥 Peak Factor (Longitudinal) 0.5431 

𝐸𝑥 
Curvature Factor 

(Longitudinal) 
0.7434 

𝐵𝑦 Stiffness Factor (Lateral) 11.79 

𝐶𝑦 Shape Factor (Lateral) 1.850 

𝐷𝑦 Peak Factor (Lateral) 0.5800 

𝐸𝑦 Curvature Factor (Lateral) -5.600 

 

 

Table B.3 Region Invariant Slip Parameters 

Parameter Description Value 

𝜎𝑥
∘ Limit Slip (Longitudinal) 0.06 

𝜎𝑦
∘ Limit Slip (Lateral) 0.5485 

𝜌 Friction Coefficient Ratio 1.477 

 

 


