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Abstract

Microbial gene expression is a comparatively well understood process, but regulatory
interactions between genes can give rise to complicated behaviours. Regulatory networks
can exhibit strong context dependence, time-varying interactions and multiple equilibrium.
The qualitative diagrammatic models often used in biology are not well suited to reasoning
about such intricate dynamics. Fortunately, mathematics offers a natural language to
model gene regulation because it can quantify the various system inter-dependencies with
much greater clarity and precision. This added clarity makes models of microbial gene
regulation a valuable tool for studying both natural and synthetic gene regulatory systems.

However models are only as good as the knowledge and assumptions they are built on.
Specifically, all models depend on unknown parameters — constant that quantify specific
rates and interaction strengths within the regulatory system. In systems biology parame-
ters are generally fit, rather than measured directly, because their values are contextually
dependent on state of the microbial host. This fitting requires collecting observations of
the modeled system. Exactly what is measured, how many times and under what exper-
imental conditions defines an experimental design. The experimental design is intimately
linked to the accuracy of any resulting parameter estimates for a model, but determining
what experimental design will be useful for fitting can be difficult. Optimal experimental
design (OED) provides a set of statistical techniques that can be used make design choices
that improve parameter estimation accuracy.

In this thesis I examine the use of OED methods applied to models of microbial gene
regulation. I have specifically focused on optimal design methods that combine asymptotic
parametric accuracy objectives, based on the Fisher information matrix, with relaxed for-
mulations of the design optimization problem. I have applied these OED methods to three
biological case studies. (1) I have used these methods to implement a multiple-shooting
optimal control algorithm for optimal design of dynamic experiments. This algorithm was
applied to a novel model of transcriptional regulation that accounts for the microbial host’s
physiological context. Optimal experiments were derived for estimating sequence-specific
regulatory parameters and host-specific physiological parameters. (2) I have used OED
methods to formulate an optimal sample scheduling algorithm for dynamic induction ex-
periments. This algorithm was applied to a model of an optogenetic induction system —
an important tool for dynamic gene expression studies. The value of sampling schedules
within dynamic experiments was examined by comparing optimal and naive schedules. (3)
I derived an optimal experimental procedure for fitting a steady-state model of single-cell
observations from a bistable regulatory motif. This system included a stochastic model of
gene expression and the OED methods made use of the linear noise approximation to derive



a tractable design algorithm. In addition to these case-studies, I also introduce the NLOED
software package. The package can perform optimal design and a number of other fitting
and diagnostic procedures on both static and dynamic multi-input multi-output models.
The package makes use automatic differentiation for efficient computation, offers a flexible
modeling interface, and will make OED more accessible to the wider biological community.
Overall, the main contributions of this thesis include: developing novel OED methods for
a variety of gene regulatory scenarios, studying optimal experimental design properties for
these scenarios, and implementing open-source numerical software for a variety of OED
problems in systems biology.
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Chapter 1

Introduction

“To consult the statistician after an experiment is finished is often merely to ask
him to conduct a post mortem examination. He can perhaps say what the
experiment died of.”

-Ronald Fisher

Models and data are two sides of the same coin. Without data, models are unmoored
imaginations of what might be; without models —even very simple non-mathematical ones—
data is not much more than a listing of measurements. Interpreting data is a process of
reading between the data points, sometimes literally interpolating and sometimes more
figuratively, to glimpse an underlying process that has not yet been understood. In some
sense, building models is only a more refined version of visually assessing a trend, but with
more precision both in our assumptions and, hopefully, in the predictions and understand-
ing that result. Unlike a scientist’s intuition in eye-balling a scatter plot, mathematical
models provide researchers with a precise way of writing down assumptions about relation-
ships between different observables. This has made them an appealing tool in dissecting
the complex set of interactions that make up biological systems. Especially as the focus
in biology has shifted from individual genes and molecules towards interaction and the
behaviour of many-component systems, mathematical language has become increasingly
valuable for describing relationships and interpreting data.

However, as we increasingly rely on models to encode our assumptions, it is logical that
this paradigm will also influence which data we collect. Different assumptions imply dif-
ferent questions which in turn suggest different experimental designs to interrogate nature.
As the opening epigraph from Ronald Fisher suggests, data is only valuable if it comes



from a well-designed experiment, as the data’s ability to illuminate is determined by the
design, not the result. Each experiment is a delicately posed question and our intuition
is often a poor guide to the exact consequences of our experimental inquiries. Planning
for data collection can be a tedious business that requires careful considerations of what
uncertainties need to be hedged against and how our assumptions will color our interpre-
tation of the results. In a field such as systems biology, where a system’s behaviour is
naturally described with mathematics, mathematical tools can also be used to guide our
experimental questions. Optimal experimental design is a sub-discipline of statistics that
focuses explicitly on this purpose, using mathematical rigour to guide experimentation for
improved results. This is a reversal of the traditional flow of data in biology which, per-
haps due to historical or cultural factors, has often moved from the experimentalist to the
theorist with little feedback being returned. This lack of feedback is in sharp contrast to
disciplines like physics and chemistry with their robust dialogue between theory and ex-
periment. However, with each passing decade biology seems increasingly poised to become
more like its quantitative cousins. This will hopefully see mathematical biologists getting
their hands dirty putting experimental questions to Mother Nature, and experimental biol-
ogists using more precise quantitative thinking to interpret their results. With the popular
hype about big data and machine learning, especially in biology, it is often easy to forget
that the quality of the data we collect can often be much more important than how much
we have; asking the right question can be more useful than asking many.

In this thesis I have focused on applying ideas from the field of optimal experimental
design (OED) to models in microbial systems biology. Optimal experimental design has a
long tradition within the field of statistics, with early work dating back to Ronald Fisher
near the beginning of the last century [0, 7]. While much of the theory for experimental
design was developed decades ago, its application and implementation still pose challenges.
Each new field brings with it unique models, questions, and experimental hurdles. Sys-
tems biology, like physics and chemistry, often relies on (pseudo-)mechanistic models, and
practitioners can plan direct experimentation rather than rely on observational studies.
However, unlike the fundamental sciences and much more like economics or ecology, the
parameters in systems biology models are often themselves crude abstractions of more fun-
damental processes. Also, these parameters can often only be determined via fitting. This
unique blend of mechanistic model structure and designed experiments, with a reliance on
statistical fitting, has created significant opportunities for OED; but systems biology also
presents great challenges. Systems biology has a comparatively large variety of models;
including a wide variety of space and time scales, dimensions, non-linearities and sampling
distributions. The experimental systems under study run the gamut from molecular reac-
tions to multi-organism interactions. Despite this complexity, recent works have suggested



that experimental design can significantly improve model calibration in systems biology
[8] but there have been few practical demonstrations (see [9, 10] for isolated examples).
Therefore, developing specialized OED methods and more accessible tools for the field is
part of an ongoing research program.

This thesis will specifically focus on experimental design for parameter estimation in
models of microbial gene expression. Gene expression provides an ideal system of study for
experimental design for a number of reasons. Gene expression is relatively well understood,
with adequate understanding of the biochemical processes involved. This knowledge makes
it suitable for a mechanistic modelling approach as the model structure can be proposed
with reasonable confidence. However, as gene expression involves multiple scales, the
mechanistic aspects of the model are often combined with pseudo-mechanistic components;
phenomenological parameters often lump fine-grained interactions into single constants
(i.e. like sigma factor binding, mRNA folding, and initiation stages of transcription and
translation). This blend of mechanistic and phenomenological modelling is emblematic of
many systems biology models, and this makes gene expression a suitable proving ground
for OED techniques. In addition, experimental methods for measuring gene expression
are mature, diverse, and widely available. This means many labs may be interested in
and capable of implementing designs for studying expression, and that there is fair degree
of flexibility in the types of experiments that may be used. This is in contrast to more
experimentally constrained systems of study where there may not be as much interest or
choice in experimental design.

Applying optimal experimental design to gene expression models may also yield some
unique benefits. For example in gene expression models, parameters are often intrinsi-
cally interesting, not just for accurate predictions but also as aspects of study in them-
selves. For example, when estimated accurately, parameters describing transcription factor,
polymerase, and ribosome binding strengths, and can provide information about low-level
DNA/RNA sequence properties. It is also often possible to manipulate these parameters,
through mutation or replacement by synthetic sequences so that the parameters serve to
characterize different alterations made to a natural system. Tools for manipulating DNA
are now pervasive and building gene expression constructs now plays a central role in many
bio-engineering projects. While it has long been a goal to perform model-guided design
of biological systems [11, 12], in the past, few models were predictive enough to be used
in designing constructs other than as rough a intuitive guide. For example early synthetic
gene expression circuits like the Elowitz’s represillator and Gardner’s toggle switch were
studied mathematically in a post hoc or parallel manner rather than being designed in
a fully model-driven fashion [13, 14]. In recent years though, gene expression networks
have become one of the the first synthetic systems to be wholly designed and implemented



successfully in vivo using automated model-drive design [12]. This work by Nielsen et al.
points the way to future research on genetic part characterization and model-guided design
for a wider variety of systems. Many of these research programs will depend on having ac-
curate predictive models of component behaviour and accurate parameter estimates. Here
there is potentially great opportunity for optimal experimental design to ensure efficient
and accurate part characterization and model calibration.

1.1 A Simple Example

The diversity of models and experimental questions that can be asked is very large, even
just for models of gene expression. Exactly what experimental designs should be used
in each context depends on the experimental goals and experimenter’s assumptions. The
assumed model structure encodes many of these assumptions and plays a very crucial role
in optimal design for parameter estimation.

To give some intuition for the experimental design process and its relation to the pro-
posed model, we begin here with a simple linear model:

E(y) = mx + 0. (1.1)

The random observation variable y has a conditional mean, E(y), that depends on the
experimental input z and the two unknown parameters m and b. Figure 1.1 illustrates
a simplified fitting scenario, comparing two different experimental designs, shown with
red or green dots respectively for each dataset. Each experimental design has only two
unique input points z; and xs (shown as z’s for the red dataset). The true and unknown
underlying data-generating process is shown as the blue dashed line. The red dataset has
x] and 7, placed close together and the green dataset has x; and x5 spaced far apart.
The true underlying distributions for y, depicted at each input condition, are shown as
blue distributions (shown horizontally as the observation noise occurs vertically in the
observation variable y). It can be seen somewhat intuitively that in the green dataset,
by placing the two experimental inputs far apart, any feasible fit like the example green
line is restricted to be somewhat close to the true underlying trend. In the red dataset
we can see that several fits, shown as the pair of red lines, may be feasible depending on
the exact realization of the random observations. This implies that in the red datasets the
model fitting process will be sensitive to outliers, whereas in the green dataset fitting will
be more robust. It is also fairly obvious from this simple illustration that our knowledge
of the slope and intercept parameters will be much more precise if we fit the model to the
green dataset; the green lines lie much closer to the true blue line than the candidate red
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Figure 1.1: A depiction of a linear model (‘true’ trend: blue dashed line, ‘true’ error
distributions: blue distributions) being fit with two different experimental designs (less
optimal: red, more optimal: green). Feasible fits are shown as solid lines with corresponding
colors.

fits. This in turn means we will get more accurate predictions when we use the green-fit
model to extrapolate and interpolate as the green lines lie closer to the true trend across
all x values. The red dataset will yield less accurate estimates of m and b and will also
generally produce a model that makes bad predictions. The simplicity of this scenario
makes some of the general ideas of optimal experimental design intuitively clear. It is easy
to see that the design can improve model fit and robustness to observation noise even if
the sample size is held constant. Also, parameter accuracy and prediction accuracy are
intrinsically related.

For a linear model like the one illustrated above the optimal design is characterized
by always splitting the total sample size over two x values spaced as far apart as possible
[15]. However, optimal designs depend heavily on the assumptions encoded in the model
they are created for. An optimal design can therefore take a very different structure under
alternative assumptions, even for trends that look broadly similar. For example, for a
nearly identical process but this time with a fixed zero intercept the optimal design is
quite different as shown in Figure 1.2. Here the true trend is again shown as a blue dashed
line. As the model has a zero intercept, we have forced the b parameter to be zero. This



Figure 1.2: A depiction of a linear model with no intercept (‘true’ trend: blue dashed
line, ‘true’ error distributions: blue distributions) being fit with two different experimental
designs (less optimal: red, more optimal: green). Examples of feasible fits are shown as
solid red and green lines.

is an assumption made by the experimenter and by assuming it is true, observations taken
near x = 0 are no longer expected to be useful. In fact we only need to observe a single x
value to calibrate the model. If we select the x level near zero, at x| as in the red dataset,
the feasible fits shown as the red lines can still vary widely depending on the realization of
the data. If instead the data is collected at an x level as far from zero as is possible, such
as x1 in the green design, the estimate of the slope and resulting feasible fit will improve,
as is shown by the green lines representing feasible fits for this case. Our assumption of
a zero intercept has reduced the model flexibility and therefore changed what design will
give optimal results when we perform the fitting. If we have good prior evidence that

= 0 but we do not assume this constraint, as in the first model, we will need to spread
out our observations over two levels of x to achieve a good fit. However in the end this
may be wasted effort, in light of the strong existing evidence for b = 0. Our assumptions
determine what choices appear optimal for us in the moment by encoding the information
that we have at hand. Conversely, poor experimental designs can result from making
unjustified assumptions about the model structure. If for example the intercept parameter
was actually nonzero but we assumed that b = 0, even the more optimal green design in



1.2 would not produce a good fit, and worse we may not ever know it. The optimal design
we compute always depends on the assumptions being made but its true performance in
turn depends on the accuracy of the assumptions. For low-dimensional, linear models with
normal error distributions, good designs can be created through intuition and by thinking
through the model geometry. However, when the model is nonlinear and the data comes
from a complex distribution this is no longer the case and tools from optimal experimental
design can provide some guidance.

1.2 Thesis Overview

This thesis is a synthesis of several related projects; most of the chapters have appeared as
journal articles or conference proceedings. The general theme running through each chap-
ter is the design of experiments for studying various aspects of microbial gene expression
and regulation. Therefore, in Chapter 2, I give some history and background for the theory
of optimal experimental design for parameter estimation and its historical development.
Chapter 3 consists of a review article written by myself and Brian Ingalls detailing some of
the new opportunities for optimal experimental design appearing in microbial system and
synthetic biology. This review specifically details the emergence of new experimental tech-
niques in the field and how these techniques can be paired with appropriate experimental
design algorithms. Chapter 4 consists of a journal article, co-authored with Brian Ingalls
and Matt Scott, describing a physiologically-aware model of gene expression, and an algo-
rithm for generating optimal experimental designs useful for calibrating the model. In this
work we handled the optimal design problem using a model predictive control algorithm
implemented with multiple shooting. Chapter 5 consists of a shorter conference paper writ-
ten with Max Reed and Brian Ingalls on the convex structure of optimal sample scheduling
problems for dynamic stimuli experiments; this is then applied to a simple dynamic model
of gene expression. Chapter 6 consists of another conference paper, written with Addison
Richards and Brian Ingalls, studying optimal experimental design for a bi-stable genetic
motif observed at single-cell resolution and at steady state. In Chapter 7, I summarize
current work and implementation of the NLOED package — a Python software package
for nonlinear model building and optimal experimental design. Work on the package has
not yet been published but the software is being used in some current laboratory projects.
Finally in Chapter 8 I conclude by summarizing some common themes and lesson shared
across the various works.



Chapter 2

Background on Optimal
Experimental Design

Optimal experimental design (OED) is a sub-field of statistics that uses mathematical
optimization to guide the selection of observations in order to achieve a given statistical
objective [15, 16]. In this chapter I give a brief description of the history and mathematical
background of OED. However before starting on this material, it is useful to briefly clarify
the relation of OED to some other closely related sub-fields, and to justify the terminology
used in this work.

Optimal experimental design can be considered a subset of the broader statistical sub-
field called design of experiments (DOE) [17]. DOE focuses on the general aspects of
experimental design, such as creating standardized, easy-to-implement designs with well-
balanced performance in fitting many common regression models [18]. DOE also includes
other sub-fields that have less of an emphasis on modelling objectives, such as response sur-
face methodology which deals with optimizing process performance [19]. OED specifically
differentiates itself from other areas within DOE with its heavy use of optimization applied
to mathematically formalized objectives — especially objectives related to improving the
accuracy of parameter estimates and model fitting [15, 16]. Like its parent field, OED
has also traditionally focused on regression models, however there has also been a long
history of applying the mathematical ideas from OED to nonlinear models found in other
scientific disciplines [16, 20]. T generally use the term OED to describe the methods imple-
mented in this thesis, as I feel it is the most accurate term available. Work in this thesis
has specifically focused on optimizing experiments using statistical objectives developed
within the OED literature. However, within systems biology and bio-engineering, there
has emerged another commonly used term, model-based design of experiments (MBDOE),
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which is often used in a similar manner to OED [21, 22]. In my readings I have come to
understand MBDOE as having a broader set of experimental goals, like the parent field
of DOE, but researchers working under the MBDOE heading have focused on more com-
plex, mechanistic models found in systems biology and bio-engineering. Therefore, when
discussing more broad statistical objectives and novel methods developed specifically for
systems biology, I have also used MBDOE in certain chapters (Chapter 3 for example).

2.1 A Short History

Experiments have been done for hundreds, if not thousands of years. It seems reasonable
to assume that experimenters have tweaked and optimized their experimental methods
to achieve better results for almost as long. These improvements may have involved an
improved apparatus, better measurement devices or techniques, or more practice with
the prescribed protocol by the experimenters themselves. These practical aspects of ex-
perimentation are perhaps the most important for generating useful results. However,
optimal experimental design in this thesis deals with a more narrow and abstract aspect
of experimental design. Here, experimental design refers specifically to the mathematical
characterization of numerical measurements and their relation to proposed mathematical
models of the process. This perspective on experimentation is a comparatively recent in-
novation, and before describing the mechanics of optimal design, it is useful to situate
optimal experimental design in a broader scientific context.

Modern statistical theory, on which OED is constructed, began to be formalized around
the end of the 19th and into the early 20th century by the likes of Francis Galton and
Karl Pearson [23]. These early practitioners of statistics built upon more theoretical work
on probability by the likes of Laplace and Gauss in the 18th century, but unlike their
predecessors their interests turned away from abstract games of chance and astronomical
observations and towards problems in data interpretation found in daily life [23]. Before the
modern field of statistics emerged, the idea of observational errors and random variation
in data was largely handled in an ad hoc manner [23]. Methods for handling data were
developed independently for specific fields, like astronomy, without a more general theory
for how an experiment, data, and models may be connected [23]. However by the early
20th century, ideas like sampling distributions, model fitting, and parameter estimates,
were being formalized for increasingly more general situations [23]. It is only by developing
these concepts that early statisticians were first able to formalize exactly what constitutes
an experiment, from a mathematical perspective, and what formalized objectives may be
pursued in doing them. It is in this context that the first works on the design of experiments



began to emerge.

The first modern work on optimal experimental design is generally thought to be Kirs-
tine Smith’s 1918 paper on optimal design for polynomial regression models [24]. (Stigler
notes that there exists at least one pre-modern work, but it is of more historical rather
than scientific interest [25].) Smith’s work was in many ways ahead of its times, as many
statistical ideas had not yet diffused into general scientific practice. Before optimal exper-
iments could be used in real experiments, the statistical ideas on which they were based
needed to mature and reach more widespread adoption. Ronald Fisher, perhaps the most
important statistician in history, made ground-breaking contributions to statistical theory
and his work helped catalyze the adoption of statistical methods and experimental design
by a much wider scientific audience [26]. Fisher wrote, “The Arrangement of Field Exper-
iments” in 1926 [6] and “The Design of Experiments” in 1939 [7], both of which are classic
early works on experimental design that explained the statistical aspects of experimental
methods to the general scientific community. Fisher also made significant contributions to
maximum likelihood estimation and derived the Fisher information matrix, mathematical
concepts that are central to OED and this thesis [27]. Fisher’s experimental work was in-
fluenced by his position at the Rothamsted agricultural research station, where agricultural
field trials had been conducted for nearly a half-century at the time of his appointment.
This close contact with daily experimental work is evident in Fisher’s useful blend of prac-
tical and theoretical analysis and much of the modern tradition of experimental design
begins with this early work by Fisher[25].

After Fisher, the design of experiments blossomed into a thriving sub-discipline in its
own right. Many standard designs in DOE were developed and analyzed in the decades
from 1940-1960, including fractional factorial design [29], Placket-Burman designs [30], and
orthogonal arrays [31]. George Box, perhaps the most important contributor to experi-
mental design after Fisher, also became active in this period [32]. During this time Box
developed response surface methodology (RSM) for designing experiments used to optimize
processes in the chemical industry [33]. He also did early work on experimental design for
non-linear dynamic models of chemical reactions [20]. This latter work is of special inter-
est as it is the first example of optimal design being applied to a numerically integrated
system of nonlinear differentiation equations, a topic which has become a central theme in
optimal design for systems biology and in this thesis. Box’s nonlinear work was perhaps,
like Smith’s founding paper, before its time, as the computational tools that would make
it practically useful in the hands of everyday experimenters would not appear for several
decades.

The standardized designs developed in the DOE literature in this era were easy to
generate and gave good performance in fitting simple linear regression models. However
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they were not necessarily well adapted to more complicated experimental constraints or
models. Designs in RSM too were focused on a very simple class of models, and were more
focused on finding the optimum operating conditions for a process rather than producing
improved parameter estimates or predictions. However, in parallel to work in the general
DOE and RSM literature, researchers in the 1950’s also began to study exactly what made
experiments optimal for statistical goals like parameter estimation and prediction. This
began as a more detailed mathematical study of classic regression models, but eventu-
ally involved more complex tools from convex analysis. This research program had early
contributions from Wald [31], Chernoff [35], and Elfving [36, 37]. But some of the most
notable contributions were from Jack Kiefer [33]. Kiefer’s early works helped frame and
address the main problems of the OED field [38, 39], and his seminal paper with Jacob
Wolfowitz first described the general equivalence theorem [10]. The equivalence theorem
given in Kiefer and Wolfowitz’s paper is important for several reasons. Firstly it showed
that designs that were optimal for estimating parameters were also optimal for certain
measures of prediction accuracy. Secondly, the paper shows the equivalence between cer-
tain easily checked conditions on the model and the optimality of a design, providing useful
criterion for checking optimality. Thirdly it provides mathematical tools for constructing
numerical algorithms for optimizing designs. Kiefer and other contributors in this era laid
the groundwork for generalizing experimental designs to non-standard models and experi-
mental constraints. Their detailed study of design optimization freed experimenters from
needing to use standard off-the-shelf designs. Now, instead, methods from OED could
provide a tailored experiment for any scenario [11].

After its formative years in the 1950’s and 1960’s, OED methods have slowly diffused
into neighbouring disciplines and application areas. This has been facilitated by the in-
creasing availability of computing power and software needed for optimization [11]. In the
field of statistics, optimal design theory and methods have been expanded to increasingly
more complex models [12] and data distributions [13]. Ljung and colleagues, working in
control theory, have used ideas from optimal design in systems identification, and have ex-
tended these methods to frequency domain analysis of linear time-invariant systems [14].
Following in Box’s footsteps, chemical engineers have continued to explore applications of
optimal experimental design applied to complicated nonlinear chemical and biochemical
processes [21]. Optimal design has also found applications in pharmaceutical research and
drug development, for improving the efficiency of data collection [15, 16].
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2.2 Mathematical Necessities for Optimal Experimen-
tal Design

Optimal experimental design centres on choosing an ideal set of experimental conditions
in which to take observations. However, in order to define what conditions are useful
and to be able to pose this as an optimization problem, some mathematical background
needs to be developed. In this thesis I have primarily focuses on optimizing experiments
for fitting model parameters. In this subsection I mathematically formalize the general
definition of a model, with special attention paid to the connection between the model
structure and the sampling distribution of observations. I also formalize the notion of an
experimental design for a given model, which determines the structure of a dataset that
will be used for fitting. After this I give a brief overview of maximum likelihood estimation
(MLE) and its asymptotic properties, which provides a flexible framework for fitting a large
variety of models. The asymptotic properties of the MLE parameter estimates allows us
to quantify the expected variability of the parameter estimates around the true parameter
value. These asymptotics also lead to the Fisher information matrix (FIM), which can be
used to compute the expected utility of experiments that have not yet been performed. I
conclude by discussing objective functions computed from the FIM and by giving a brief
introduction to OED-type optimization problems. It should be noted that the resulting
optimal experimental design depends on all of the mathematical components discussed in
this chapter. Designs are optimized for a specific model, combined with a specific fitting
method, and for specific asymptotic objectives. This means that careful attention should
be paid to all model components, estimation methods and assumptions, as changing any
aspect of the overall modelling process can alter the structure of the resulting optimal
design.

2.2.1 Components of a Data-generating Model

Models are abstraction of a true underlying data-generating process in a given experimen-
tal scenario. For the purposes of this thesis a model can be defined as a mathematical
structure that connects the observation variables, Y;, — which are measured during an ex-
periment — with the experimental conditions that are known or can be controlled, ;. Here
the observation variables are indexed by ¢ where each 4, from 1 to M, corresponds to a
unique observation variable (i.e. different measurement types taken of the system). The
experimental conditions, x;, are vector-valued, numerical encodings of any of the relevant
conditions known or controlled by the experimenter when the observations are taken (i.e.

12



ambient conditions, treatments, physical or chemical perturbations etc.). Each dimension
of the input vector may be subject to various restrictions, such as some inputs being re-
stricted to a real interval or being drawn from a discrete set. (These constraints can be
ignored for the purposes of this exposition; see Chapter 7 for further discussion of how
these constraints are handled in practice.) As the system can be observed in multiple sets
of conditions in a single experiment, the set of condition vectors is index by 7, from 1 to /V,
with a total of IV possible experimental condition vectors. As all experimental observations
are effected by random errors or uncontrolled variation, the observation variables, Y;, are
random variables. The observation distribution, p;(.), of each observation variable is condi-
tional on the experimental vector, «;, and so to be formally correct, each observation type
in each unique condition is a unique random variable, Y; ;. (However, it is convenient when
referring to all observations of the same type, regardless of the experimental conditions,
to suppress the j subscript and use Y;.) With the above definitions, a full model can be
formalized as

Yij ~ pi(yijmij=rfi(x;,0)). (2.1)

In this work p;(.) is generally approximated as a parametric distribution, for example the
normal, log-normal or Poisson distributions. Observation variables, Y;, are assumed to
come from one parametric distribution type, such that each p;(.) always has the same
type regardless of the inputs, x;, or parameter values, 8. The support of ¥; depends on
the distribution type assumed such that Y; can be restricted to the real numbers, positive
real numbers or positive integers as the experimental situation dictates. Here m); ; are the
distribution p(.);’s natural parameters; in this work they are referred to as the sampling
statistics of the distribution. For example, the normal distribution would have the mean
and variance as its sampling statistics; the Poisson distribution would have the A\ rate
parameter as its sampling statistic. A repeated observation of the same observation vari-
able and experimental conditions is termed a replicate. There can be a unique number of
replicates of each observation and condition for a total of 3;; in each combination. Each
replicate results in a realization y§§), of an identically distributed random variable Y; ;; here
the k subscript indexes the replicates from 1 to 3; ;. The deterministic model components
fi(x;,0) describes the relationship between the experimental conditions, «;, and the sam-
pling distribution statistics, 7; j, and therefore provides the link between the experimental
conditions and the random but conditional variability of the observations. It should be
stressed that the function f;(.) can take the form of any sufficiently-smooth mathematical
or numerical expression; it can therefore be a constant, an algebraic expression, a differen-
tial equation solution, the root of an implicit function or the solution to an optimization
problem. Finally the functional mapping between the experimental conditions x; and the
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sampling statistics n; ;, is parameterized by the unknown parameter vector 8. In this work
it is generally the case that 6 needs to be estimated from the data resulting from any
designed experiments. Note that in this formulation there is some ambiguity in whether
observations of the same type taken at different points in time or space are handled as
model input dimensions in «; — by entering the temporal or spatial location directly as
an input dimension value — or as a separate observation variables Y; — with their own
distributions p;(.) and functions f;(.). However for the theoretical exposition of parameter
estimation and optimal design this distinction has no direct impact, see Chapter 7 for
practical considerations.

In this work we assume that the experimenter is confident in postulating the sampling
distributions, p;(.), and model structure, f;(.), for each observation variable. This neces-
sarily implies the experimenter has some knowledge about the system as making choices
for these model components imposes significant constraints on the model’s flexibility and
the resulting optimal design. Information for model specification can come from past data
or from mechanistic considerations given knowledge of how the system functions. In this
work, it is assumed that the main source of uncertainty for the experimenter is the param-
eter vector, @, which needs to be fit to the collected observations. Uncertainty in model
structure can be included in a more general optimal design framework [16, 17, 18], however
model selection is not a central theme in this work.

2.2.2 Definition of an Experimental Design

An experimental design specifies the structure of the data that is collected. A design
must include two aspects to fully specify an experiment, 1) which experimental conditions
are used, «;, 2) how many replicates, J3; ;, are taken of each observation variable at the
given condition vector. When discussing the set of input conditions used, it is common to
refer to the design’s support, which consists of the unique set of input points used in the
experiment [15]. Therefore each x; from 1 to N must be unique, and the full set of N
vectors constitutes the design’s support. At each unique support point, a design must also
specify a set of replication counts, 3; ;, taken for each observation variable, Y;, for ¢ from
1 to M. The replicate count, 3; ;, is integer valued and specifies the number of replicates
to be taken from the specific random variable Y; ;. A design D is then fully specified by
the list of support points x; € X and the list of replication counts 3;; € B. Note here
that f3; ; can have a value of zero indicating that no observations of the ith observation
variable are taken for the jth experimental condition vector. The total sample size for the
experiment, Nr, is computed as Ny = wa Zjv Bij. A dataset, yp, corresponding to

design, D, consists of a listing of the Np,; observations, yl(’kj), for all replicates, k from 1 to
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Bi.;, observation variables, 7 from 1 to M, and experimental conditions, j from 1 to N. A
design determines the structure of the dataset that results from it.

2.2.3 Maximum Likelihood Estimation

Maximum likelihood is a well-tested and generally applicable method for fitting proba-
bilistic models [19, 16]. The key idea in maximum likelihood estimation is to seek the
parameter values that maximize the likelihood of observing the given data [19]. In order to
specify a maximum likelihood estimator for a given model, the model must include a sam-
pling distribution, p;(.) above. In general, it is not always possible to specify an analytic
expression for the observation distribution or to know which parametric distribution may
best approximate the observations. However it should be noted that even simpler fitting
methods like least-square fitting, can be seen as a special case of MLE when the user is
(implicitly) assuming normally distributed errors [50].

In order specify the maximum likelihood estimator, we need to derive an expression for
the total data likelihood [19]. The likelihood is directly related to the probability distri-
bution of the data conditioned on the parameter values [19]. Using a single dimensional
example, the conditional probability distribution of a random observation variable Y is
p(y|0,); this is the distribution for an individual observation y conditioned on a fixed true
value of #,. The likelihood is functionally identical to the conditional distribution of the
observation except with a reversal of the nominal input; for a fixed observation value, y,
the likelihood L(6;y) = p(y|@) is a function of any candidate value of §. Assuming inde-
pendence of observations, the total likelihood, Lz4(0;yp, D), of all replicates, yi(f;), in a
given experimental dataset with design, D, and observations, yp, can be expressed as

N M Bij

Lro(0;yp, D) = HHHPZ(?J@(?V’?Z] = fi(x;,0)). (2.2)
J ik

(Note, dependent observations are discussed below.) The design influences the total like-
lihood by varying both the inputs, x;, and the replicates, 3; ;. The parameter vector, 0,
that optimizes the likelihood expression is the maximum likelihood estimate, denoted as
0.

While the likelihood is straightforward to define, it is almost always advisable to max-
imize the log-likelihood, I7,:(0; yp, D) = log(L1t(0;yp,D)). The log(.) function is mono-
tonic increasing and therefore the maximizing parameter vector for the log-likelihood is
identical to that of the likelihood. However the log-likelihood can be numerically simpler
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to compute and more stable. Also most of the asymptotic results for the MLE are devel-
oped using the log-likelihood because, for independent observations, the logarithm converts
products involved in a joint observation distribution into sums. Expressing the estimator
in terms of a summation of random terms leads more naturally to the application of vari-
ous central limit theorems and the subsequent asymptotic derivations [16]. For brevity in
writing out the complete data log-likelihood we express the log-probability of each data
point as

(05 @) = log(pi(y") Iniy = fi(;,0))). (2.3)

Then the total log-likelihood can be expressed as a summation such that

N M Bij

l70t(0; yp, D Z Z Zz ) (2.4)

For brevity, the dependence of the total log-likelihood, l7,:(0; yp, D), on the data, yp, and
the design, D, is often suppressed because for a given dataset these values are constants.
In these cases the total log-likelihood is abbreviated as l1,(6). The additive nature of
each data point within the total log-likelihood has important consequence for the struc-
ture of optimal experimental design problems. However, not all observation variables are
independent. If we admit dependence between various observations, it will be reflected in
the joint distribution of various groups of Y; ;. Dependence between observations means
that the total log-likelihood ceases to be additive because the joint probability of two ob-
servations does not factor; p(Y, s, Yea) 7# P(Yas)p(Yea). In this case the user must specify a
joint distribution for any correlated observations that are taken together, and also specify
a marginal distribution for each observation taken alone. In addition analytic multivariate
distributions are only available for a subset of the possible observational supports that
may be required. For example, expressing correlation between two normal distributions is
straightforward but expressing dependence between a normal and Poisson distribution, or
between pairs of Poisson distributions is not analytically tractable. If we wish to have an
analytically tractable log-likelihood (with consequences later for the optimal design com-
putation), there is a choice in either accommodating multiple data types easily, but with
presumed independence, or in handling dependent observations with a much more limited
set of observation distributions. In this thesis I have generally focused on models where
observations can be approximated as independent.
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2.2.4 Quantifying the Accuracy of Parameter Estimates

Observations in a given realization of an experimental design are the result of a random
process. This implies that the maximum likelihood estimate, é, is also a random variable.
The probability of 0 exactly matching the true parameter value, 8,, is unlikely given
randomness inherent in the observations. However despite this variability, we want the
estimate to be near to the truth on average, and a key goal in evaluating fitting procedures
and experimental designs is in quantifying how close to the truth the estimate is likely to
be. At a bare minimum, for a large variety of models, it can be proven that the MLE
will recover the true parameter value in the limit of large sample sizes. For example
this has been proven for nonlinear regression models [51], generalized linear models [52],
and models with non-identically distributed data [53]. (These are all model types that
are accommodated by the general formalism outlined previously, however the reader is
warned that it is possible to specify models for which the MLE has not been proven to be
consistent within the above framework.) For the asymptotic results to apply it is important
that the model is identifiable [51]. Identifiability requires that for any pair of candidate
parameter values, 8, and 6, the model yields distinguishable prediction for at least one
possible input vector x; and observation variable Y;; there must exist conditions for which
fi(x;,0,) # fi(x;,6,) holds. This implies that at least one possible observation variable
will have a distinguishable difference in distribution for alternative parameter values under
some conditions achievable in an experiment. Many models will conform to this assumption
if they are not over-parameterized and a sufficient variety of system measurements can be
included in an experimental design. Even in some cases that do not satisfy the identifiability
condition, re-parameterization can yield an identifiable model. Given this identifiability
assumption and some other mild regularity conditions, the maximum likelihood estimate
is both asymptotically non-biased and consistent [55]. For models meeting the required
conditions, these properties imply in the limit of large sample sizes the expected difference
between the estimate and true parameters goes to zero, and the MLE estimate converges in
probability to the true value (i.e. the probability of not generating an exactly true estimate
goes to zero in the limit).

The asymptotic non-biasedness and consistency of the estimator suggest that it is at
least plausible that the MLE estimate yields reasonable results for identifiable models.
However, when dealing with finite sample sizes in real experiments, estimates for non-linear
models are almost always biased and can exhibit significant variability in their distribution
around the true value [56]. With finite sample sizes, the design of the experiments can have
a significant impact on the distribution of the estimate, 6 [16]. The experimental design
influences 0’s distribution by mediating the sensitivity of the estimate to the variability
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inherent in the observations. Therefore it is desirable to have a more precise measure of
the effect of a design D on the distribution of the estimate about the true value. An ideal
measure of accuracy is the expected mean squared error of the estimate,

MSE(Da 00) = dlag{E’yD[(é - 00>T ’ (é - 00)|D7 00]}7 (25>

(with respect to the data, yp, as distributed under the true parameter vector, 6,) which is
effectively the second central moment of each parameter estimate about its true value [19].
Here diag{.} returns the diagonal elements of a square matrix and 0 and 0, are presumed
to be row vectors. For computing the MSE, it can be useful to decompose it as follows:

MSE = diag{E,,[67 - 0|D,0,]} + E,,[(0 — 6,)|D, 6,]*}. (2.6)

The E,, [éT . é|D, 0,] term is the covariance matrix of the MLE estimate, more conveniently
denoted as Cov(éﬂ), 0,). The estimate’s covariance tells us about the raw variability of
the estimator, but does not contain any information on its nearness to the true value, 6,.
The E,,[(6 —0,)|D, 0,] term is the estimate’s bias, denoted as Bias(8|D, 6,) and measures
the expected difference between the estimate and the true parameter vector [19]. (Note,
the square in the bias term is applied element-wise.) Unfortunately it is impossible to
compute the MSE, covariance, or bias exactly because the distribution of the estimator,
p(é|D, 0,) is generally not known or analytically tractable, as it results from a nonlinear
transformation of the observation randomness propagated through the fitting process.

However it is possible to compute an asymptotic approximation to the MSE, and the
bias and covariance terms. To do so, an expansion is taken in the square root of the inverse
of the sample size, Ny ; this analysis is complex and tedious and further details can be

found elsewhere [57]. In performing the expansion it can be shown that the bias has no
effect until after the first order, whereas the covariance expansion contains a non-zero first
order term [50, 57]. This means that the variability of the estimator is generally dominant

in the overall error compared to the estimator’s bias, at least for reasonably large sample
sizes. Therefore in this work, like most optimal design works, we focus on approximations
for the estimator’s covariance.

Approximating the covariance matrix of the MLE parameter estimate can be done
using the Fisher information matrix. This result is often given as part of the proof of the
asymptotic normality of the MLE [50, 16]. The Fisher information matrix for a single
observation, Y;, at input, @;, is defined as

Ii(x;,0) = Ey, ,[Vol;(0;y; j,x;) - Voli(0;y: j, ;)" ). (2.7)
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Here Vg is the parametric gradient operator which is treated as a column vector. Note, that
the Fisher information would ideally be evaluated at the true parameter value 6,, however
this is unknown. Instead, the FIM is generally computed at the estimate, 0 — if initial
data is available — or a nominal value, @, based on literature or other considerations. With
independent observations, the total Fisher information matrix for an entire experiment can
be computed as a weighted sum of the individual FIM’s at each replicate:

It (D, 0) = Z Z Biili(x;,0). (2.8)

Here the weights, f3; ;, are the number of replicates taken in the experimental conditions
corresponding to the individual Fisher information matrix, ;(z;,0). Via the asymptotic
expansion, it can be shown that the covariance of the parameter estimate with the given

experimental design is approximated by the matrix inverse of the total FIM [16]:
Cov(8|D, 0) = Ir(D,6)" 1. (2.9)

To be clear this relation approximates the estimator’s covariance assuming the nominal
parameter vector, @, is near to the true value of 6, (i.e. this is a local approximation, see
additional comments below).

The full proof of the FIM’s connection to the parametric covariance is tedious and
is not reproduced here, however it is possible to gain some intuition for how the FIM is
linked to the covariance by observing some of its easily derived properties. By definition
the maximum likelihood estimate occurs at the point, é, that maximizes 7, (0). It follows
that, at the optima, Vngot(é) = 0. Here the vector valued function Vglr,(0) is called
the score, and the MLE must occur at a point where all entries in the score are zero (due
to first-order optimality conditions) [19]. From the definition of the FIM, we see that it is
the matrix of second moments and cross-moments for the score evaluated at our guess of
the true parameter vector. It can be further shown asymptotically (at first-order) that the
expected value of the score evaluated at the true parameter vector, £, [Volro(6,)], is zero
[19], which is consistent with the fact that the MLE is asymptotically non-biased. This
expectation implies that the diagonal entries of the FIM are not just the second moments
of the score, but the second central moments about its expected value, because

Var(v9lTot(00)) = diag{EyD [VOZTot(ec)) : v9lTot(00)T]} - Eyv [VelTot(OO)]Qa

_ diag{ Fron(D, 8,)} — 0. (2.10)

As the root of the score function fully defines the MLE, we should expect its variability
to be strongly connected to the variability of the MLE estimate; in this case the variances
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Figure 2.1: A figure comparing the total log-likelihood and score behaviour for multiple
realizations of both an optimal design (left) and a sub-optimal design (right). The blue
curves correspond to the average log-likelihood (top) and score function (bottom) for the
given design — averaged over all possible datasets. The other colors represent the log-
likelihood and score functions for specific realizations of the design each with random
observations.

are inversely related. If the variability of the score is large over multiple realizations of
the experimental design, it implies that the estimate is heavily constrained by the design
to fall near its expected true value. This scenario is depicted in Figure 2.1 where, for the
optimal design on the left, the intercepts of the individual score functions with the (blue)
vertical line through the true parameter value, 8,, exhibit large variability when the score
functions’ roots, és, cluster around the true value. For the sub-optimal dataset on the
right, the score function’s value taken at the true parameter exhibits less variability and
the estimates are therefore more variable.

Intuition for the FIM can be developed further by expressing the FIM in an alternative
form in terms of the log-likelihood’s second derivatives. For an individual independent
observation it can be shown that [50]

Ii(x,0,) = By, ,[Voli(00; yij, ;) - Voli(00; yij, ;)] = —Ey, ,[Ho(1i(0,; yi 5, ®;))]. (2.11)

Here Hy(.) is the Hessian operator with respect the parameter vector, such that the latter
term above is the matrix of expected values of the second parametric derivatives of the
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log-likelihood. These two definitions of the FIM are equivalent under mild regularity
conditions; to understand why, it is helpful to consider the single dimensional case. For a
single observation y and a single parameter 6; the sampling probability is p(y|0) and the
log-likelihood is 1(6;y) = log(p(y|@)). Under mild regularity conditions, it follows from the
identity [ p(y|f)dy = 1 that [ d%p(y|0)dy =0 and [ %p(yﬁ)dy = 0 also hold. It then
follows that [58]

E{dQ z(e;y)] —E

do? p(y|0) p(ylo)

Ly — [ PO
_/dQQP(W)dy / p(yl0) W (2.12)

=0- / <%l(9;y)>2p(y\9)dy,

%p@\e)] . (%pme))?

This result helps us to link the variance of the parameter estimate with the FIM —
d2
62

of the curvature of the log-likelihood, it is also the expected slope of the score function.
This is shown in Figure 2.1 where on the left, for the optimal design, the log-likelihood
exhibits significant curvature around the optima; therefore the slope of the score, shown
below, is very steep. On the right, the sub-optimal design has less curvature around the
optima and therefore exhibits shallow slopes in the score below. It follows from the previous
paragraph that, for the optimal design, given the diagonal entries of the FIM are large, the
variance of the score’s intercept with the vertical line at the true parameter value will be
large. This also implies that the expected slope of those same score functions will be steep.
With steep average slopes, the roots of the score functions will have a smaller variability.
As the score’s root is the MLE estimate, this implies the MLE has a lower variability
in the optimal case. The situation is reversed for the sub-optimal design, where the low
variability in the score’s value at the true parameter and the score’s shallow average slope
allow the estimates to vary widely under multiple realizations of the design. These results
also hold for multiple parameters and provide some intuition for connecting the FIM to
the MLE’s variability.

As previously noted, we do not know the true value, 6,, at which to take the asymptotic
approximation and at which to evaluate the FIM. This means that any asymptotic results

defined as the variance of the score. To see this, note that while £ [ 1(0; y)] is a measure
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are inherently local to our nominal parameter vector, 8. In practice initial estimates for
0 can come from the available literature or from the MLE fit to some initial data. As the
underlying model (i.e. f;(.)) must be sufficiently smooth, we can also expect asymptotic
measures to hold approximately for parameter values near to the nominal vector. Other
strategies have been proposed for dealing with the local nature of the FIM computed at the
nominal parameter value . Perhaps the most common approach is to implement optimal
design in an iterative fashion, with each batch of optimized experiments adding to the
collected data, improving the parameter estimates for the next round [15]. In this case
even though the designs are optimized for a local objective, the parameter estimates tend
to become more accurate after each iteration. This accuracy is ensured by the increasing
sample size, so even if the initial designs were erroneous and sub-optimal, as the estimates
improve, so will the optimality of the iterative designs over the course of the experiment.
However, some experimental contexts are not suitable for iterative design. In these case
other strategies exist including Bayesian averaging over a parametric prior distribution or
min-max optimization — where the design is optimized for a parameter vector that has the
worst estimation performance [15, 59]. In some cases, the local analysis alone can be useful
if it is used to qualitatively explore optimal design structure under various parametric
scenarios within the plausible parameter space; this has been done in some parts of this
thesis.

Computing the derivatives and expectation required for the FIM for an arbitrary model
may seem daunting. However, this derivation can be done quite simply by observing the
following application of the chain rule [16]:

Voli(0;y;;,x;) =Volog(pi(yi;|ni;=fi(x;,0))),
Vofi(z;,0) -V, log(pi(yi|ni;))-

The above decomposition makes use of the fact that the sampling statistics, 7, ;, of the
observation distribution, p;(.), are directly computed by the deterministic model compo-
nent such that n; ; = f;(x;,0). The score function can therefore be decomposed into the
deterministic model’s parametric sensitivity and derivative of the log-probability of the
observation with respect to the sampling statistics 7; ; [L0]. As the model sensitivity does
not depend on the random observation values, Y ;, this simplifies the computation of the
Fisher information matrix at each observation so that we have [10]

Ii(x;,0) = Ey, ,[Vofi(x;,0)Vy,  10g(pi(yi;|n;)) - Vi, log(pi(yisni;)) Ve fi(x;, 0)"],
= Vofi(x;,0) V(n;;=fi(x;,0)) Vofi(x;,0)".

(2.13)

(2.14)
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Here ¥(n; j/=fi(x;,0)) is defined as

U(n;;=fi(x;,0)) = By, [V, 10g8(0i(Yi;1m)) - Vi, 1og(pi(yi;mi )" (2.15)

This expectation is effectively just the Fisher information of a standard parametric dis-
tribution, such as the normal, Poisson etc., with respect to its sampling statistics. We
follow Fedorov in referring to these matrices as elemental FIMs of the given distribution
[16]. These elemental FIMs have been computed for the vast majority of common one and
two parameter distributions for which the expectation is analytically tractable. A good
reference can be found in Fedorov’s recent book [16]. Therefore, computing the Fisher
information for the overall experimental design, decomposes into computing a parametric
sensitivity vector for each observation point, Vg fi(x;, 0), and matrix multiplying it with
the observation distribution’s elemental FIM; W(mn, ;=fi(x;,0)). The formula for the ele-
mental FIM for common parametric distributions is easily looked-up and computed from
the predicted values of m; ;. The individual FIM’s for each observation are then summed
to produce the total FIM for the experiment. The total Fisher information matrix can be
used to quantify the expected parameter estimate covariance for the given design at the
nominal parameter values, 6.

2.2.5 Scalar Objectives for Optimizing Designs

The Fisher information matrix captures approximate information about the expected dis-
tribution of the MLE estimate given a specified design. However, other than in the single
parameter case, the Fisher information is matrix-valued which makes it unsuitable for use
as an optimization objective. In order to construct an optimization problem for selecting
an optimal design, we need a scalar function, W(.), of the FIM that can be maximized:

mgx\IJ([Tot(D, 0)). (2.16)

The most common scalar objective in practice is the determinant of the Fisher information
matrix [15, 59]. This is equivalent to minimizing the determinant of the expected covariance
matrix of the parameter estimates. Optimizing a design subject to this objective is known
as finding a D-optimal design [15]. The determinant of a covariance matrix is referred to
as the generalized variance of the underlying random vector, and as such the D-optimal
design minimizes the generalized variance of the MLE estimate [15]. The D-optimal design
is commonly used because it has a number of useful properties, including that it is simple
to compute, it can be formulated as a convex objective and D-optimal designs are invariant
under re-parameterization [15, 59]. As such, D-optimal designs are the main designs studied
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in this work. Other than D-optimal designs, there exist a number of other scalar design
criteria, these are sometime referred to as the alphabetic optimality criteria because they
are generally named using single letters; for example, A-optimal, c-optimal, I-optimal etc.

[15].

To find an optimal design, D, we seek to find the optimal support points x; € X
and optimal replicate counts f3; ; € B. Using a scalar objective, the overall optimization
problem can be defined as

max U(Ir,:(D,0)),

It (D, 6) ZZ@J (z;,0), (2.17)
D (¥.B)

This optimization is difficult for a number of reasons. It is non-linear in the support
points, x;. It is also an integer programming problem because of the integer restrictions
on f3; ;. Also, the optimal number of support points, N, is not generally known. These
computational difficulties are already layered on top of those required to compute the FIM,
as the FIM also requires computing sensitivities, which can be difficult for certain models.

A common approach for reducing the computational difficulty of optimal design is to re-
lax the integer constraint such that a continuous weighting, ; ;, over the input-observation
pairs is optimized [15]. In this relaxed formulation, each &; ; replaces the corresponding f; ,
however the §; ; have non-negative real-values which are constrained so that 0 < &;; < 1
and 1 = wa Zjv §i,7. For a relaxed design the replicate weights, &; ;, are grouped in the
weight set such that & ; € Z. A relaxed design, Dg, is then defined by the support points
and weight set such that Dgp = {X, Z}. The relaxed optimization problem can then be
written as

r%ax \IJ(ITot (DR7 é))?

[Tot DRa ZZSz] w]; (218>
Dp = {X,Z}.

An exact design, D, specified using integer replicate allocations, 3; ;, can be converted to a
relaxed design, D, by dividing the replicate integers by the total sample size: f; j/Nrot =
& ;. The total FIMs, Ir., of the two design representations are therefore also related by
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the sample size so that Ire (D, 0)/Nro = Irei(Dr,0). Given these relations, the relaxed
formulation is effectively normalized so that it does not depend on the overall sample size,
Nry. To convert a relaxed design, Dg, to an implementable exact design, D, with integer
replicate allocations, a sample size is selected and a rounding procedure is then applied to
generate [3; ; from the weights & ;. Simple rounding or specialized apportionment methods
can be used for this conversion [00, 61, 62]. Due to the computational advantages, the
relaxed form of the design problem is used for optimization throughout this thesis.

After solving the full design optimization problem, or the relaxed approximation to
it, the research will achieve an optimal design with a specified list of support points and
replicate allocations. This design will be optimal in a mathematical sense, but only condi-
tionally for the given model structure, nominal parameter values, observation distributions
and experimental constraints the research has specified. It is important to remember that
optimal designs are generated under these strong assumptions. This means that other
sources of uncertainty about model structure and alternative sources of variability are not
necessarily hedged for in the optimized design. The optimal design can therefore serve as
an idealized guide for a given system, however the design should be combined with good
experimental judgment when implementing the prescribed measurements in practice.
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Chapter 3

Applications of OED in Systems
Biology

Published as “New opportunities for optimal design of dynamic experiments in
systems and synthetic biology” by Nathan Braniff, and Brian Ingalls in Current
Opinion in Systems Biology 9 (2018): 42-48

3.0.1 Summary

Recently developed dynamic experimental techniques offer new opportunities for the use of
model-based experimental design in the construction and refinement of predictive models
of cellular behaviour. Specifically, novel optogenetic and microfluidic tools have been made
accessible by the distribution of low-cost, automated hardware designs that rely on readily
available components and inexpensive construction processes. Experimental design meth-
ods can be applied to these platforms to identify time-varying input signals that generate
maximally informative system responses. We review these developments and illustrate
how the convergence of these approaches facilitates the construction of accurate biological
models of both natural and engineered cellular systems.

3.0.2 Introduction

Quantitative characterization of the dynamic (time-varying) behavior of cellular systems
is central to systems and synthetic biology. In systems biology, mathematical models are
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used to generate testable hypotheses and to provide insight into the behavior of natural
systems. In synthetic biology, predictive models are increasingly needed to guide design, in
the tradition of more established engineering disciplines. Unfortunately, biological models
are often poorly constrained. This is, in part, due to a lack of appropriate data (e.g. time-
series), the collection of which has traditionally required specialized commercial equipment
or laborious protocols.

We review a maturing set of accessible techniques for precise dynamic perturbation
and observation of cellular systems, and the low-cost, automated equipment that enable
their implementation. These techniques can generate a wide range of dynamic excitations
not previously achievable, and thus raise the question: what excitation profiles should
be applied? Model-based design of experiment (MBDOE) tools can be used to answer
this question. These tools provide a framework in which researchers can formalize their
experimental goals and identify time-varying stimuli to accomplish them. We begin this
brief review with a survey of recent innovations in experimental devices and protocols that
facilitate the generation of broad classes of dynamic stimuli. We then provide an overview
of model-based experimental design methods and review examples demonstrating their
practical use for dynamic experimental design. Together these advances offer an effective
work-flow, shown in Figure 3.1, for the design and implementation of dynamic biological
experiments.

3.0.3 Time-varying control of cellular systems

Traditional experimental protocols allow for only a limited selection of temporal pertur-
bation patterns (e.g. steps, sometimes pulses). In contrast, optical inputs and microflu-
idic delivery enable a wide range of time-varying stimuli. In addition, automated culture
systems (turbidostats, chemostats) provide precise environmental control, uncoupling dy-
namic cellular responses from exogenous effects. For a recent review of developments in
this area, see [63]. Below, we highlight works that exemplify the flexibility and precision
of these dynamic techniques. We then survey a range of community-developed automated
and accessible hardware for efficient implementation of these experimental approaches.

Experimental tools for dynamic stimuli The range of available light-induction sys-
tems is growing rapidly [0, 65]. Optical stimulus tools have become increasingly popular
for precision dynamic perturbation experiments [66]. Toettcher et al. [67] used optically-
regulated protein-protein interactions to control the translocation dynamics of signaling
proteins. They used automated microscopy measurements and light delivery to implement
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Figure 3.1: Design and implementation of dynamic biological experiments. Tools for model-
based experimental design (left): Systems biologists often seek to improve a model by more
accurately constraining its parameters, its predictions, or its structure. Model-based design
of experiment (MBDOE) methods identify time-varying perturbation stimuli to achieve
these goals via a range of optimization criteria. Tools for dynamic biological experiments
(right): Temporal perturbation profiles can be realized with a range of emerging biological
tools. Low-cost and open-source hardware systems can implement these dynamic experi-
ments efficiently, resulting in informative experiments and improved model accuracy.
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predefined translocation dynamics, to control population heterogeneity, and to implement
robust clamping of targeted intracellular species. Milias-Argeitis et al. [68] demonstrated
similar results using an optogenetic system and a computerized feedback circuit to control
gene expression in real time. This in silico control set-up achieved robust, accurate track-
ing of reference concentration profiles and was used to mediate growth rates via feedback
control of an essential metabolic enzyme [69]. In related work, Melendez et al. employed
optogenetic induction in a chemostat system with microfluidic sampling and microscopy to
demonstrate precise control of protein expression in a steady state microbial culture [70].

Several groups have made use of the CcaS/CcaR system for optogenetic control in
bacteria. This light-responsive cyanobacterial two-component system was cloned into Fs-
cherichia coli by Tabor et al. [71]. Olson et al. have since developed the CcaS/CcaR system
into a precise tool for gene expression control using parallelized delivery of light to an array
of culture tubes, enabling more complex experiments and improved dynamic characteri-
zation [72]. They determined the response of the CcaS/CcaR system to a range of light
stimulus profiles, and further demonstrated precise and predictive model-based control of
the system in validation experiments. In complementary work, Davidson et al. character-
ized the response of the CcaS/CcaR optogenetic system to pulse width modulations [73].
More recently, Chait et al. [71] combined CcaS/CcaR optogenetic induction with microflu-
idic control of media contents and single-cell microscopy to achieve closed-loop control of
single-cell and population-wide gene expression patterns.

Similar optical control strategies have been employed to reveal naturally occurring
signaling network behaviour, via a photoactivateable adenylate cyclase stimulating the
PKA pathway in yeast [75] and phytochrome-B-PIF activation of Ras/Erk in mammalian
cells [70], providing insights into network structure and dynamic response.

Microfluidic approaches allow precise temporal manipulation of media contents [63].
Uhlendorf et al. employed a microfluidic chamber with real-time microscopy to implement a
computer-in-the-loop controller of gene expression, resulting in tight regulation of variance
in protein abundance [77]. A similar apparatus, using a media input system driven by
differential hydrostatic pressure, was implemented by Menolascina et al. [78] and used
by Fiore et al. [79] to compare the performance of multiple control strategies. Lugagne
et al. [30] used microfluidic delivery of chemical inducers and monitoring of single-cell
fluorescence to precisely maintain a genetic toggle switch at an unstable equilibrium using
closed-loop control of gene expression. Microfluidic control has also been used to decode
the behaviour of natural systems, e.g. Msn2 transcription factor signaling dynamics in the
Saccharo cerevisiae stress response [31, 82].

Together, these recent projects demonstrate robust, accurate performance of closed-loop
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and model-based control schemes when implemented through optical or precise chemical
inputs. This computational control of cellular systems, termed ‘cybergenetics’ [23], can
serve as a valuable foundation for the development of maximally informative time-varying
perturbation experiments. While chemical and optical induction are the most established
methods for dynamic control, novel approaches are an area of active research. Tschirhart
et al. pioneered an ‘electro-genetic’ system via a redox-sensitive transcription factor. The
system was used to control both cell motility and cell signalling in response to electrical
signals [81]. The use of more exotic induction systems, such as acoustic and magnetic
actuation, has also been explored [35]. This expanding collection of methods could enable
an even wider use of dynamic experimental techniques.

Accessible automated experimental hardware Dynamic experiments require time-
varying adjustment of experimental conditions and are thus more labor intensive than
traditional dose-response approaches. Efficient protocols can be achieved through the use
of automated equipment, which enables precise implementation of temporal perturbation
and observation profiles. In recent years these automated tools have become increasingly
accessible, due to novel technologies such as 3D printing and modular programmable con-
trollers.

Continuous culture systems are attractive tools for dynamic experimentation because
they allow for extended experimental runs under consistent, tunable conditions. Toprak et
al. [86] provided designs for a flexible user-constructed continuous culture ‘morbidostat’.
This device, built for the study of evolutionary response to antibiotic treatment, can serve
as a chemostat (to maintain constant flow-through rate) or as a turbidostat (to maintain
constant growth rate). The complementary design provided by Takahashi et al. [37] de-
scribes a low-cost, extensible turbidostat, utilizing 3D-printed parts. A similar design,
presented by Matteau et al. [38], can operate as either a turbidostat or a chemostat, and
is supported by a graphical user interface (GUI)-enabled custom software package.

The optogenetic work of Olson et al. was implemented through a light tube array
(LTA), a custom system enabling parallel delivery of time-varying light signals at varied
frequencies to 64 liquid cultures [72]. Follow-up designs for a variation of this system, the
light plate apparatus, offer a highly flexible tool for optogenetic experiments [39]. The
designs for this tool and its control software are open-source. Wang et al. combine ideas
from both the LTA and continuous culture systems in a custom-built bioreactor capable
of time varying optogenetic stimulation [90]. In addition to light activation, this system
employs photosensor readouts of fluorescent protein activity.

Customized microfluidics is becoming increasing accessible [91, 92, 93]. The Metaflu-
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idics repository [91] contains a wide variety of custom microfluidic designs, and could
enable widespread dissemination of tools necessary for dynamic experiments. Open-source
software for automating microscopy data collection allows observations to be collected and
analysed efficiently [95, 96]. Microfluidics also offers support for single-cell ‘omics’ data col-
lection, which, when combined with precise dynamic perturbations, could provide improved
dynamic characterization of cellular behaviour across the genetic landscape [97, 98].

3.0.4 Model-based design of experiments: dynamic stimuli

Techniques for optimal experimental design were pioneered in the 1950s, notably by Elfv-
ing, Kiefer and Box [36, 99, 20]. Much of this work focused on linear factorial models
commonly used in statistics [100]. Later work, particularly in the field of systems iden-
tification, extended these experimental design techniques to linear dynamic models [11].
These tools are not directly applicable to the nonlinear, (pseudo-)mechanistic models typ-
ically employed in systems biology. Such models are better served by model-based design
of experiments (MBDOE) [21]. These design approaches, built largely on earlier work in
the chemical and bioprocess engineering literature, employ hypothesized models to identify
optimal experiments. The results of these experiments then inform model structure and
parameterization in an iterative process.

In particular, MBDOE methods have been promoted as a means to resolve problem-
atic identifiability issues in systems biology modelling. Through a series of papers, Sethna
and colleagues characterized ‘sloppiness’ in parameter estimation as a common feature
of systems biology models (e.g. [101], see also [102]). Sloppiness here is defined by wide
variation in the confidence of parameter estimates for a given model. (Formally sloppi-
ness can be thought of as a large ratio between the largest and smallest eigenvalues of
the parameter covariance matrix or the Fisher information matrix.) This influential work
suggested that sloppiness is perhaps unavoidable, and thus cast doubt on the promise
of achieving parametrically accurate models in systems biology. In response, the research
community demonstrated the role of experimental design in ameliorating sloppy parameter
fits [103, 8] and articulated the important distinction between sloppiness and identifiabil-
ity [104]. (Sloppiness is concerned with the relative uncertainty of various parameters
where as identifiability is concerned with bounding the absolute uncertainty of all param-
eters of interest.) This more recent work reveals that sloppiness in parameter fits does not
necessarily pose challenges for identifiability, especially when optimal experiments have
been identified.

Methods for model-based experimental design can be classified according to:
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i. Design space - experimental design decisions for which the method provides insight.
Examples: selection of targets for external control, choice of time-varying perturbations
to be implemented, selection of species or outputs to be measured, and scheduling of
sampling times.

ii. Goal - model-based optimality objective. Examples: accuracy of parameter estimation,
decidability of model structure, or variance of model predictions.

iii. Optimization approach - how the optimality objectives are measured and evaluated. A
range of formulations have been employed, derived from both frequentist and Bayesian
statistics, as well as systems identification and control theory.

Several reviews of model-based experimental design have appeared recently: Franceschini
and Macchietto [21] provide a comprehensive review of MBDOE methods with clear ex-
position of the main theoretical points; Kreutz and Timmer [105] enumerate the many
aspects of an experiment that can be optimized, and discuss both model discrimination
and optimal parameterization approaches; Chakrabarty et al. [22] provide a comprehensive
survey of the field, describing both Fisher information and Bayesian paradigms; Ryan et
al. [106] provide a focused review for Bayesian methods. (Fisher information, a measure
based on local parametric sensitivities, is very commonly used in this context. Bayesian
approaches rely on fewer assumptions, but are more computationally demanding.)

The temporal excitation profiles generated by model-based experimental design tech-
niques yield observations that are optimally useful toward a given modelling goal. To date,
most designs have been restricted to step-wise inputs, though arbitrary input profiles have
been considered (e.g. control vector parameterizations [107]). Most early treatments of
model-based design of dynamic experiments in biology used Fisher information-based op-
timality criteria with the goal of accurate parameter estimation [108, 109]. (See [110, 111]
for workflows.) More recently, Ruess et al. extended these tools to a stochastic setting to
address single-cell experiments [112].

These Fisher information-based techniques rely on local analysis centered at a nominal
point in parameter space. They are thus of limited use when applied at poorly deter-
mined parameter estimates. Global experimental design approaches, including Bayesian
techniques (e.g. [113]) and sparse-grid approximations (e.g. [ 14]), can overcome this limi-
tation, but are typically computationally demanding and can be challenging to implement.

Although Fisher information-based techniques have focused primarily on improving
model parameterization, experimental design of dynamic stimuli has also been used for
model discrimination. The methods of [17] and [I 15] produce input signals that maximize
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the distance between model outputs (defined in terms of the Ly norm and the Kullback-
Leibler divergence, respectively). A complementary approach, presented by Apgar et al.,
involves constructing model-based controllers for candidate models. Model discrimination
is then based on the effectiveness of the resulting control inputs. Robust tools for model
discrimination are provided in [116, 117].

Tools like the light plate apparatus [39] and automated microfluidics [95, 96] are herald-
ing an era of high-throughput dynamic perturbation experiments. With this equipment,
researchers will be able to probe multiple components of a system in parallel or to ex-
haustively examine the effect of environmental context on the dynamic behavior of cellular
systems. Some model-based experimental design techniques have been proposed to address
such experiments, e.g. design methods suited to experiments run in parallel ([1 18, 119]) or
in conditions that allow real-time (i.e. online) redesign of experimental inputs ([120, 121]).
Further development is needed, in both experimental design methods and experimental
techniques, to realize optimal high-throughput experimental approaches.

3.0.5 Optimal dynamic experiments in practice

As methods for dynamic perturbation of cellular systems have caught up to MBDOE
theory, examples of their combined utility have appeared. These join a longer history
of successful applications of model-based experimental design in bioprocess engineering
(e.g. [122, 123, 124]) where temporally controlled inputs are more standard.

An early example of model-based experimental design in the context of cellular systems
biology is the work of Bandara et al. [9] who used optimal design of time-varying chemical
inputs to optimize fluorescence microscopy experiments for a model of PIP3 signaling in
fibroblast cells. Optimization allowed them to realize a 60-fold reduction in the mean vari-
ance of parameter estimates over non-optimized experiments. They further note that the
optimal experiments improved identifiability by reducing correlation between parameter
estimates.

More recently, Ruess et al. [10] applied optimal Fisher information-based design tech-
niques using a stochastic model to generate optimized inputs for an optogenetic signaling
system in yeast. This was coupled with a Bayesian inference algorithm, used to update the
stochastic model parameters. This iterative procedure out-performed randomly chosen ex-
perimental designs. The predictive power of the resulting model was illustrated by design
of novel control inputs that accurately generated prescribed gene expression patterns.
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3.0.6 Future Directions

Implementations of cybergenetic in silico control of cellular systems are in their infancy.
They are poised to have significant impact on our ability to precisely characterize and
manipulate cellular activity. Continued improvement of experimental tools will expand
the range of time scales, stimulus targets and cell types for dynamic perturbations [81,
, 65]. Dissemination of low-cost, open-source designs for the associated hardware can
foster widespread adoption [87, 89]. One barrier to generalizing the resulting data and
models is the traditional approach of collecting data in relative (i.e. arbitrary) units. The
development of standardized unit-full measures [125, , | will be essential for the
community to fully realize the collaborative potential of these new modelling tools.

As for experimental design, a current barrier to adoption is simply the wide variety of
model-based approaches available in the literature, many of which seem equally well-suited
to any given task. Comparison studies, such as [128, |, especially those that would com-
pare experimental implementations, can serve as valuable ‘consumer guides’, and may lead
to community consensus as to which tools are most effective in which contexts. To comple-
ment the expected increase in application of model-based experimental design, continued
theoretical work is needed to further address limitations and constraints commonly faced
in cell biology, such as model mismatch [130, 131].

Following the precedents set by [9] and [10], further applications of experimental de-
sign tools in time-varying perturbation experiments will increase our understanding of
dynamic behavior in natural and engineered biological systems. In synthetic biology, tools
for automated and data-driven rational system design have begun to emerge [12, ]. Op-
timized experiments hold promise for extension of these ideas to complex dynamic cellular
behaviours.
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Chapter 4

Optimal Experimental Design for a
Physiologically-aware Model of Gene
Expression

Published as “Component Characterization in a Growth-Dependent Physiolog-
ical Context: Optimal Experimental Design” by Nathan Braniff, Matt Scott,
and Brian Ingalls in Processes 7.1 (2019): 52.

4.1 Summary

Synthetic biology design challenges have driven the use of mathematical models to charac-
terize genetic components and to explore complex design spaces. Traditional approaches
to characterization have largely ignored the effect of strain and growth conditions on the
dynamics of synthetic genetic circuits, and have thus confounded intrinsic features of the
circuit components with cell-level context effects. We present a model that distinguishes
an activated gene’s intrinsic kinetics from its physiological context. We then demonstrate
an optimal experimental design approach to identify dynamic induction experiments for
efficient estimation of the component’s intrinsic parameters. Maximally informative ex-
periments are chosen by formulating the design as an optimal control problem; direct
multiple-shooting is used to identify the optimum. Our numerical results suggest that the
intrinsic parameters of a genetic component can be more accurately estimated using opti-
mal experimental designs, and that the choice of growth rates, sampling schedule and input
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profile each play an important role. The proposed approach to coupled component-host
modelling can support gene circuit design across a range of physiological conditions.

4.2 Introduction

Proposed applications of synthetic biology demand complex synthetic constructs involving
dynamic internal regulation. Novel analytic and experimental approaches will be needed
to efficiently navigate the corresponding design space [133, |. Model-based design ap-
proaches promise to (partially) replace costly experiments with computer simulations. A
range of theoretical approaches to automated or computer-assisted design have been pub-
lished [135, , , , , , , ]. When supported by reliable characterization
of genetic regulatory components, automated design algorithms can greatly increase the
efficiency of design. As an example, Nielsen et al. demonstrated efficient automated design
of very large genetic logic circuits from a carefully designed and characterized regulatory
library [12]. Systematic characterization of genetic components can include generation
of standardized data sheets [113], use of standardized relative units [I11], and predictive
characterization of circuit dynamics [115]. This type of characterization is demanding and
resource-intensive; to date it has rarely been accomplished. The resulting knowledge deficit
is a major bottleneck to wider use of model-based design.

A drawback of standard approaches to characterization is that they fail to distinguish ef-
fects due to the host’s physiological state from the intrinsic properties of the construct [146].
Here we define intrinsic properties to be those biochemical properties specific to a genetic
construct’s sequence. The physiological state incorporates, among other features, (i) the
DNA quantity and gene copy number, (ii) available RNA polymerases (RNAPs) and ribo-
somes, and (iii) the cell volume, all of which impact gene expression [117, 2]. Calibration
of model parameters without accounting for the cell’s physiology results in aggregate pa-
rameters that describe lumped effects from both host and component. Such a model
cannot be trusted to extrapolate beyond the physiological state in which it was calibrated.
Separating host state and component behaviour is a difficult and multivariate problem.
Experimentalists cannot directly perturb or even measure many physiological properties.
The cell’s physiological state can be modulated indirectly by external or internal perturba-
tions including modulation of (i) nutrient sources [2, 145], (ii) antibiotics [148], (iii) gene
expression burden [1158], (iv) metabolic fluxes [119, ], as well as temperature, pH and
osmolarity. The aggregate effect of each of these perturbations influences growth rate, but
predicting host properties from the perturbation or the growth rate is not generally possi-
ble. However, for nutrient-limited growth, it has been shown that the exponential growth
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rate acts as a summary statistic for the physiological state of an E. coli host cell [2, ].
Klumpp and Hwa demonstrated how nutrient-limited growth rates can then be used as an
aggregate predictor of the physiological effects on gene expression [1417].

In [147], Klumpp and Hwa stop short of proposing an explicit dynamic model for
coupling physiology to gene expression. They focus primarily on steady-state behaviour.
More recent works have developed coupled models of gene expression, host physiology and
growth rates [151, , |. Here, we focus specifically on the use of a coarse-grained
model to empirically predict physiological properties from an observed exponential growth
rate. Our model distinguishes intrinsic parameters of the genetic construct from extrinsic
parameters of the host’s physiological state. This distinction allows for extrapolation across
physiological conditions and for reuse of the estimated component parameters. We have
aimed to keep the parameter set small to maximize both identifiability and interpretability.

Noise and nonlinearity make precise estimation of the parameters that characterize
biomolecular systems a challenging task [101, 102]. Optimal experimental design (OED)
tools offer a means to improve the efficiency of data collection for model calibration [2, 103].
Despite its potential to increase experimental efficiency and the precision of parameter
estimates, OED has not seen widespread use in laboratory experiments within systems
or synthetic biology. Two notable exceptions are reported by Bandara et al. and Ruess
et al.; both groups implemented optimal experimental design for efficient calibration of

dynamic biological models [9, 10]. OED techniques are especially promising when coupled
with optogenetic or microfluidic techniques, which allow for a broad range of dynamic
perturbations in wvivo [151]. Here, we employ optimal experimental design algorithms

originally demonstrated for chemical and bioprocess engineering applications [155, , ]
for the characterization of a genetic component from simulated data.

We develop our physiologically-aware model of gene expression for an exponentially
growing FE. coli population, because this is the only host system for which the necessary
data has been collected. We use nutrient quality in exponential phase as a predictable
controller of the cell’s growth rate and relevant physiological state. We use the model
to optimally design dynamic induction experiments across a set of growth rates to simu-
late efficient estimation of the intrinsic parameters of the genetic component. We adopt
an optimal design approach that expresses the experimental design as an optimal control
problem, which can be efficiently solved using numerical optimal control methods, such as
multiple shooting. We specifically focus on multiple shooting because this method provides
efficient solutions for the complex experimental control problems addressed in this work,
while also being tractable and easily implemented for the large number of states required in
optimizing experimental design objectives. We treat the induction profile, growth rate, and
sampling schedule as experimental controls. Their selection is simultaneously optimized
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over multiple sub-experiments. This simultaneous optimization of sampling schedule and
multiple experimental perturbations, including growth rates, is an improvement over pre-
viously published accounts of OED in synthetic biology (although see [107]). Previously
published analyses have either assumed constant sampling rates or have chosen sampling
schedules in a secondary optimization step [10, 158], both of which sub-optimal [159]. We
use numerical simulations to demonstrate that the optimal experiments outperform in-
tuitively designed experiments: the optimal designs improve both parameter estimation
accuracy and out-of-sample prediction accuracy. We further demonstrate that the use of
multiple growth rates is important for model identifiability over realistic parameter ranges.
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Figure 4.1: (A) Growth media nutrient quality dictates the growth rate of an E. coli
culture. The observed growth rate can be used to predict many physiological parameters
of the host, which in turn influence gene expression. (B) By accounting for physiological
parameters, we can optimally estimate intrinsic parameters of a genetic construct, which
reflect properties of its sequence. These intrinsic parameters can be reused across growth
conditions and can be used to guide changes to the construct sequence.
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4.3 Materials and Methods

In this work we design optimal experiments for calibrating a dynamic model of expression
of a genomically-integrated gene, induced by an activating transcription factor (TF). For
simplicity, we assume that the controlled induction input is the activating transcription
factor copy number, u. (More realistically, the controlled input would be some signal
that influences the TF abundance.) Our population-averaged model incorporates both
gene-specific intrinsic parameters and parameters that characterize aspects of the host
physiology. The physiological parameters of the model are dependent on the steady-state
exponential growth rate, A\, controlled via nutrient quality. The empirically observed re-
lations and rationale for the connection between a cell’s physiological parameters and its
growth rate have been discussed in past works [117]. The model describes mRNA copy
number, X,,,, and protein copy number, X,

Pfl PaK'rt
inna _ 042 n_GKT + (nG)2 U(t) _ 5£Xrna
a VvV V Pa Ki | PaKypy V
L+oehe+ (nG + (nG)Q) ult) (4.1)
R
iXprot _ Vf Xrna . /\Xprot
itV Ky+& Vv Vo

The gene’s intrinsic characteristics are captured by the intrinsic parameters «, K,., K,
K., 0, f and K,;, while expression is also dependent on the physiological parameters:
V, g, Pa, G, Ry, and A, which are growth rate dependent, and n and £, which are fixed.
The intrinsic parameters characterize each gene’s induction behaviour. In contrast, the
physiological parameters reflect the state of the host cell (Figure 4.1). These parameters
are summarized in Table 4.1, along with nominal values and relevant ranges. Justification
for these parameter values is provided in the next section.
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Table 4.1: A table describing the symbols, nominal values, and feasible ranges of the
intrinsic parameters and physiological properties used in the model.

Parameter Label Intrinsic Parameter =~ Nominal Value Feasible Range

Intrinsic Transcription Parameters

Promoter Escape Rate o 20 min~! [1— 30]
RNAP-Promoter Binding K, 40 [10 — 40]
TF-Promoter Binding K, 5 x 10° [2 x 10° — 1 x 109
TF-RNAP Interaction Ky 1.09 x 10° [4.02 x 10° — 5.93 x 10'7]
Intrinsic mRNA Decay Parameters

mRNA Decay Rate ) 257 x 107 pm=3min~! [7.7 x 107° — 7.7 x 1074
Intrinsic Translation Parameters

Maz. Initiation Rate B 4.0 min~! [1—10]
Half-saturating Constant Ky 750 g m™3 [750 — 1500]
Property Label Physiological Property Value at p=0.6 db/hr  Value at p=3 db/hr
Physiological Properties of Transcription

Gene Copy Number g 14 5.7

Awailable RNAP P, 1000 4000
Genome-lengths of DNA G 1.3 4.3

Physiological Properties of mRNA Decay

RNase Concentration 13 900 gm—*min~! 900 pm~3min~!
Physiological Properties of Translation

Free Ribosomes Ry 600 7000

General Physiological Properties

Cell Volume Vv 0.4 pm=3 2.24 ym=3

Growth Rate A 0.7 x 1072 min~! 3.5 x 1072 min~!

4.3.1 Derivation of the Physiological Gene Expression Model

We develop the model for the case of an exponentially growing E. coli population, where
growth rate is controlled by nutrient limitation. While some features of the model may
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generalize to other cell types, it is only in the case of E. coli that sufficient data has been
collected to provide reasonable estimates of functional relations and parameter values.

We employ two standard measures of growth rate. The doubling rate u is the inverse
of the doubling time 7,. The exponential growth rate A = In(2)/7, is used to describe
population growth as Pye, and is thus suitable to use as the dilution rate in a differential
equation model. We treat the exponential growth rate, A, as an independent variable deter-
mined by experimental conditions. We also assume the growth rate is constant throughout
each experiment, which implies that no nutrient shifts occur.

Cell Volume and Mass, DNA Content and Protein Mass

Prior work in bacterial physiology has established expressions for the physiological param-
eters V, G, and ¢ in terms of A. (While each of the parameters is expected to undergo
random fluctuations and to vary with the cell cycle, these expressions approximate average
values over time.)

Cell volume has been shown to scale with growth rate exponentially [160, 161]:
V = VpelCtPIA, (4.2)

Here the constant Vj is the ‘initiation volume’ measured to be V, = 0.28 pum? by Si et
al. [160]. The parameters C and D represent the time periods required to replicate the
chromosome and to septate, respectively. We take C' = 40 min and D = 20 min [1(1].

An expression for the average number of genome equivalent lengths of DNA, G, is given
in terms of C, D, and A by Cooper and Helmstetter [161]:

1

=3

(e(CHDIA _ DAY, (4.3)

Individual loci vary in copy number based both on growth rate and on their location
relative to the origin of replication. (At faster growth rates there are more copies of genes
near the origin because the cell must have multiple rounds of DNA replication underway.)
We use the constant [,,; to indicate the gene’s position relative to the origin: [,,.; = 0 at the
origin; l,-; = 1 at the terminus. Bremer and Churchwood [162] provide a simple derivation
for the average gene copy number, g, of a specific locus as

g = e(C+D)=loriO) (4.4)
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Total RNA polymerase (RNAP)

We first note that the buoyant density of E. coli has been observed as constant across
growth rates: Kubitschek et al. found p = 1.09 pg pm=3 [163] while Basan et al. report
p = 0.215 pg pum =3 [164] (average of reported values). We use the dry weight data from [2]
with Si et al.’s description of volume [160] to select an intermediate density of p = 0.55 pg
pm=3 L.

The average cell mass for a given growth rate is then:
Mz = pV = pVoel TP, (4.5)

This total cell mass Mr,; can be partitioned into fractions of protein and other constituents.
We fit the protein fraction of the mass, denoted ®,,, to data from [2] with a linear function
(supplemental Figure S1, Appendix A):

Dy = KA+ Do (4.6)

with xp, = —6.47 min and ®,,q = 0.65.

The total RNAP fraction of the overall protein mass, which we denote ®,,, exhibits an
approximately linear dependence on growth rate, which we fit to data from [2] (supple-
mental Figure S2, Appendix A) as

T (4.7)

with &, = 0.30 min and ®,, = 0.0074. We can then express the total mass of all RNAP
protein, Mryap as

Protein Mass
7\

Ve

MRNAP = (/{p)\ + (I)pO) (Kpr)\ + q)pTO) p%e(O+D)>\ : (48)
RNAP % of Prot. Cell Mass

The total number of RNAPs per cell can be determined by dividing Mgryap by the protein
mass per RNAP core enzyme, which we denote m,.,q, and is estimated as 6.3 x 1077 pg

[165].

IThe compromise value selected in this work does not take into account the effect that the mass of
water has on the two alternative density measurements that are cited. This means the reader should treat
the proposed value as a rough approximation subject to error.
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Available RNAP

Each RNAP can be classified by its state: freely diffusing; weakly DNA bound at a non-
specific site; actively transcribing other genes; paused or non-functioning during tran-
scription; or immature [5, , ]. Below, we describe promoter binding in terms of
a thermodynamic model that takes into account the observed rapid equilibrium between
non-specifically bound and freely diffusing RNAPs [5]. We therefore define the combined
pool of free and non-specifically bound RNAPs as the available RNAP pool, with molec-
ular population size P,. Denoting the fraction of RNAP in this available pool by ®,, we
estimate, from Bakshi et al. [5] and Stracy et al. [3] (details in the supplement, Section
1.3, Appendix A):

D, = K A+ Dy (4.9)
with kK, = —9.3 min and &,y = 0.59. Using this relation we have an expression for the
available RNAP:

p, = PV (KX 4 ®q0) (KpA + @ A4 D) e CFHDA 4.10
a — m a a0 ’fp + pO) (/ipr + pTO)e . ( . )
rnap

Transcription Rate

We describe the initiation of transcription via a thermodynamic equilibrium model of
promoter occupancy involving available RNAPs, transcription factors (TFs), promoter
copies, and non-specific binding sites along the genomic DNA [168, ]. At a given
growth rate, we assume there are P, available RNAP copies and T, active transcription
factor copies diffusing along the genomic DNA, and that the DNA contains N, non-specific
binding sites to which these DNA binding proteins may weakly attach and g copies of the
regulated promoter of interest. Further we assume that Ny > P,,T,,g and that each
binding of an RNAP or a TF to a non-specific site or a promoter is characterized by
an associated binding energy; €,, and €,, for RNAP binding to the non-specific sites and
promoters, respectively, and €, and €, for transcription factor binding to non-specific sites
and promoters, respectively (all e are negative [170]).

We use these species and site counts to enumerate the possible arrangements of RNAP
and TF across the genome, and we use the binding energies to derive Boltzmann weights for
each arrangement [168]. We denote the differences between the energy involved in binding
the promoter and the background non-specific binding as Ae; = €, —¢€;, and A€, = €,g—€py,.
(Note, €, > €4 and €, > €4 so that Ae, and Ae, are both negative [170].) We denote
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. _ Aep _ Ae _ (AertAcitept) .
the Boltzmann weights as K, = e¢ *7, K; = e *sT and K,; = ¢ kpT (with kp,

Boltzmann’s constant, 7', temperature in degrees Kelvin) where €, is the binding energy
between RNA polymerase and transcription factor when both are bound to the same
promoter. Then, the equilibrium probability of a single promoter being occupied by an
RNAP is (further details in the supplement, Section 1.4, Appendix A):

P, P, T
F(;KT + stza Krt

1+ 2K, + 2 K + B K,y

(4.11)

Pbound =

With g promoter copies, and presuming that open complex and promoter escape occurs
at a fixed rate o [171] we have the initiation rate as

P, P, T,
ﬁzKr—i_ X]SQGKM

1 + %Kr + ]E_ZKt + P][i[ga Krt

Initiation rate = ag (4.12)

We next establish estimates of the parameter values for transcription. To begin, mul-
tiplying G by the genomic density of non-specific binding sites, n = 5 x 10° sites/genome,
yields an estimate of the total number of non-specific binding sites Ny as a function of
growth rate [165].

From Heyduk et al., we have the rate of open complex formation « for the phage
lambda Pg promoter as 19.2 min~! [171]. Assuming Pg exemplifies a strong promoter, we
estimate a reasonable range based on analysis of constitutive promoters and mutants of
the Pg sequences as 1 — 30 min~! [172, 173, 174, 171].

The constants K, and K; can be interpreted as ratios of dissociation constants for the
DNA-binding species (RNAP and TF) binding to non-specific DNA versus the promoter
sequence [168]. This provides a convenient method for constraining their feasible values

from reported dissociation rates. Expressing them as such yields; K, = K7 /KIon,

Ky = Kip /K" and K,; = K,K;exp(e.+/kgT). Here K] and K are dissociation

rnap

constants of the TF and RNAP with respect to non-specific DNA binding and KP'o™

rnap
and K" are dissociation constants for promoter binding. The non-specific dissociation

constant for RNAP, K'* ' has been observed to be approximately 10000 nM [168]. The

rnap?

promoter-specific dissociation constant, Koy, varies from promoter to promoter. For

lacP1 it is approximately 550 nM and for T7 it is approximately 3 nM [16%]. To represent
a relatively weak constitutive leak for an inducible promoter, we expect values nearer to the
lacP1 dissociation constant would be reasonable, and so presume KL/ could range from

250 nM to 1000 nM. Using the above value for K* ~and the range for K™ we estimate

rnap r™nap
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a feasible range for K, to be between 10 and 40 (unitless). We set KZo7 to be 250 nM
and therefore our nominal value for K, is 40, suggesting a slightly stronger leak than found
in uninduced lacP1. (Over the growth rates we consider, we found K, to be practically
unidentifiable in simulation studies for various optimized designs, with high variability in
its estimated value. We therefore fixed it to the nominal value for our experimental design

and fitting.)

To estimate K;, Stormo suggests a reasonable range for the promoter-specific dissoci-
ation constant, K", of 0.01 nM to 1000 nM [175]. We assume we are working with a
relatively strong activator and that Kj;”" lies in the range 0.01 nM to 5 nM. Stormo also
suggests that non-specific binding dissociation constants are between three and six order
of magnitude less than the specific binding constants. For simplicity, we follow Bintu et
al. and let K7? = 10000 nM [168]. This yields a range for K; between 2000 and 10°. We
chose Kf}"om =0.02 and K; =5 x 10° as nominal values.

As noted, the parameter K,; can be expressed as K,; = K, K;exp(—¢./kpgT) with
€+ representing the energy involved in the RNAP-TF interaction at the promoter. Few
estimates exist for such values. Bintu et al. use demonstrative values of €,,/kgT ranging
from —3.5 to —4.5. We allow a wider range from —3 to —5. This allows K,; to range from
4.02 x 10° to 1.61 x 10'°. We take a nominal value of K,; = 1.09 x 10°.

mRNA Degradation

The data in [2] indicate that the mRNA decay rate is linear in mRNA copy number, with

a growth rate-independent rate constant. In [117], the authors hypothesize that this is
due to the maintenance of a constant concentration of RNase E, the primary ribonuclease
involved in mRNA decay initiation in E. coli[176]. (RNase E exhibits auto-regulation which
appears to keep its concentration constant [177, , |. Moreover, RNase E appears

to be expressed in excess, resulting in insensitivity to small changes in its abundance
[180, ].) Under this assumption and using mass action we have a simple model for
mRNA decay as follows

E
mRNA Decay Rate (copy # per min) = 5VXW1 (4.13)

Here E is the copy number of RNase E. Assuming % is constant across growth rates (and
therefore E' oc V'), we can express the mRNA degradation rate as

mRNA Decay Rate (copy # per min) = 6§ X, (4.14)
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Here £ is the constant concentration of relevant degrading enzymes in the host.

The parameter 0 represents the susceptibility of the the mRNA transcript to RNase
degradation, and acts as a mass action constant. The half-life of mRNAs can range from
1 — 10 min; Chen et al. suggest the mean RNA half life is near to 2.5 min [181, , 183].
Based on a constant concentration of RNase E of £ = 900 pm ™2 [1584] and taking a nominal

half-life of 3 min, we suggest 6 ~ 2.57 x 107 pym=3 min~!.

Total and Free Ribosome Populations

A linear relation for the fraction, ®,., of protein mass that is composed of ribosomal protein
was derived in [118]:

®, = 1, A+ Dy (4.15)

Fitting this model to data from Bremer [2] yields estimates of x, = 5.48 min and ®,¢ =
0.030, (see supplemental Figure S4, Appendix A). The total ribosomal protein mass Mgy,
is then

Mpiy = (KX + rg) (R A + ) pVoel CTA, (4.16)

Each ribosome has a mass of 2.7 MDa of which 35% is protein [185]. The individual
ribosomal protein mass is therefore m,; = 1.57 x 107% pg. We then have the number of
ribosomes per cell, Ry, as

Vv €(C+D)>‘
Rror = (KA + ®yo) (Kpr A + o) 2 Om (4.17)
rib
Based on results in Dai et al. [180], we have assumed that about 10% of the ribosomes
are inactive. Assuming that these are free, we denote this fraction as ®; = 0.1 and have
D pV
Rp = @ Ryor = Wff‘bo (Fe A + @rg) (e A + B o) e CTP, (4.18)

Translation Rate

We employ the Michaelis-Menten model of translation initiation proposed by Borkowski et

al. [187]. In terms of the free ribosome concentration Rj:
Ry
Translation Rate (copy # per min) = ———— X, (4.19)
Ky + 3+
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In this model, the mRNA’s ribosome binding site (RBS) is characterized by two constants:
B, the maximal translation initiation rate per mRNA, and K, a half-saturating constant
specific to the given RBS. A detailed justification for this model is provided in supplemental
Section 1.6, Appendix A.

To estimate 3, we note that translation initiation rates on the order of 3 = 4 min—! have
been observed for lacA [188]. Additional studies of RBS activity suggest a wide variation in
expression levels induced by RBS alterations, ranging over orders of magnitude [189, .
We presume that a reasonable range for the maximal translation initiation rate is from 1
min~! to 10 min~!.

The values of Kj; reported by Borkowski et al. [I87] are reported in arbitrary units.
They observe a range of saturation levels from near linear behaviour to near constant
saturation [187] from which we can propose a range of Kj; values based on the observed
free ribosome concentration, which in our model is between 1000 ym~2 and 3000 um™3.
We let K, range between 750 ym~2 and 1500 ym~3, with a nominal value of Kj; = 750
pm~3 which is approaching saturation (and hence the near constant translation efficiency
observed by Klumpp and Bremer [147, 2]).

4.3.2 Optimal Experimental Design

To illustrate calibration of the intrinsic parameters of the model, we consider a set of dy-
namic induction experiments conducted over multiple growth rates, where the experimenter
can select (i) the (constant) growth rate, (ii) the time-varying induction profile, and (iii) the
sampling schedule. We define an experiment as a set of N = 3 sub-experiments, each with a
constant growth rate A (possibly repeated), organized into vector A = [A), A®) \®)]. (The
exponential growth rates, A\, are reported as doubling rates p¥ (db/hr) in the results for
interpretability). In each sub-experiment, the population begins at rest and responds to a
dynamic induction signal in the form of a time varying transcription factor copy number,
w(t) = M), u®(t),u®(t)]. (Such an input u?(t) could be implemented by, e.g., a
calibrated induction system [72] or closed loop control of fluorescently tagged TFs [191].)
For computational efficiency, we have restricted each u(?)(¢) to be piecewise constant, with
6 constant control values delivered for 100 min each, for a total duration of ¢t; = 600 min.
We have constrained the maximum value of each u((t) to Uy, = 1000 and the minimum
t0 Ui, = 0. This wide range was selected to ensure it spans the un-saturated range of
the promoter well in excess. For each sub-experiment we also select sampling schedules
for both mRNA and protein species. A single sampling schedule for a specific species is
defined as a list of points, S(species) = {P1,---P1, -, pr}. Each p; = (1, ¢;) consists of a time
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7, € [0,600] and a positive integer count ¢; of the number of samples taken at that time.
We have restricted the design such that ¢; € {1,2,3}. The total number of samples for
each species, crq is constrained to be no more than 12. The sampling schedule for each
sub-experiment, S®, consists of a schedule for each species S®) = {sgl) st )}. These

rna)’ © (prot
are collected into an overall schedule: § = {SM), S?) G,

Optimization over the sampling schedules as defined above involves integer program-
ming, which poses significant computational challenges. We avoid these by employing a
relaxation approach [157, , |. We treat the sampling schedule as a continuous sam-
ii)ecies) corresponds to a density wglecies)
has sampling density W®(t) = {w((?na)(t), wé;)mt) (t)} and the overall sampling schedule is
W (t) = WO W W) These sampling densities are restricted to be piecewise con-
stant over 48 equal (iir)ltervals (each of length 12.5 min) during gach sub-experiment. Each

pling density such that sg (t). Each sub-experiment
(

sampling density w (t) is upper bounded by wye, = and the integral of the

(species) ' 25
sampling distribution, @{7*** is bounded by the maximal number of samples, ¢z
© R0
w($P€Ci€S) - /O w(species) <t> dt < crot (420)

The relaxed schedule must be discretized to arrive at an implementable sampling sched-
ule [157]. In practice, the optimal densities are often bang-bang [193] and so can be easily
discretized by the sampling interval length (12.5 min) to recover integer sample counts.
To account for non-integer values, we applied the Sum-Up-Rounding strategy, a common
heuristic in integer programming, to recover integer solutions that approximate the opti-
mal discrete schedule [192]. This discretization strategy effectively rounds the continuous
density while respecting the sampling constraints [192]. After generating the sampling
counts, ¢, from the sampling densities, we fixed their associated times 7; to the centre of
each of the 12.5 min intervals.

To characterize a genetic construct with the induction experiments as defined above, we
seek an experimental design that can accurately estimate the intrinsic parameter set 8. As
stated in section 4.3.1, the parameter K, proved to be practically unidentifiable under the
model specifications described above. Consequently, we fixed it to its nominal value listed
in Table 4.1, and took the intrinsic parameter set to be estimated as 0 = [« § K; K, 0].
These parameters characterize the regulated promoter, its regulating transcription factor
and the downstream gene sequence, independent of growth context. We denote an estimate
of the true parameters as . For our objective, we seek to minimize the determinant of

the covariance matrix det (cov(é)), in what is known as a D-optimal design [22]. The
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determinant of the covariance matrix is also known as the generalized variance [19]; min-
imizing it is equivalent to minimizing the volume of the confidence ellipsoid defined by the
covariance matrix [105]. Because the model is nonlinear and the true parameter vector is,
by definition, unknown, it is not possible to estimate the parameter covariance matrix a
priori. Instead of estimating cov(é) directly, we use the Fisher information computed at
an initial guess 6, as a proxy. In linear models, (or in the limit of large sample sizes or low

~

signal to noise ratio) the inverse of the FIM is asymptotically equivalent to cov(@) [195]:

7(6,t5) ! = cov(6) (4.21)

A

In this case minimizing det (cov(@)) is equivalent to maximizing the determinant of the

Fisher information matrix, det (Z). In the non-linear finite sample regime in which our
experiments are conducted, this relation is admittedly tenuous; the use of an initial guess 6,
also introduces potential errors. However, the process of iterating the local approximation
and successively updating 6, after each experiment has been numerically demonstrated to
yield convergence to the true parameter set in some cases [103, 8]. We thus define our
objective as ©p(Z) = det (Z), which is generally known as the D-optimality score [105].
(Other options such as A, E, and E-modified optimality minimize other properties of the
covariance [105, 22, 21].)

To determine the optimal set of experiments, we follow an optimal control-based proce-
dure described in [157, 156, 155]. (This approach to OED was demonstrated by application
to chemical and bioprocess models. It has seen limited use in systems biology [9] and has
not previously been applied to component characterization in a synthetic biology context.)
In this approach the control variables include aspects of the experimental design such as
the induction profile, the sampling times and the growth rate. To formulate a control
problem we must state the objective, the D-optimal score ©p(Z) = det (Z), in terms of the
model dynamics. We restate the model in the following generic form

dX L

——=F(X.0, A @D (t)) (4.22)
Here X = [X,p4, Xprot) and F' is the right hand side of the model expressed in equa-
tions (4.1). We determine the local sensitivities of X,,, and X, with respect to each

parameter 6;, by solving the following system of sensitivity equations

d0X OF OF 0X

eos _97 90 o2 4.2
it 96, _ 06,  9X 08, (4.23)

Because the parameters are dimensioned, their scalings can vary widely, leading to poor
conditioning of the Fisher information matrix and associated computations [155]. To rectify
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this, we scale the sensitivities by the parameter values (i.e. we use logarithmic sensitivities)

, X X
X, = =0, 4.24
% 9log(6)) % 80, (4.24)

Applying this change of variables yields

d X, _pOF OF o

0o, o OF  OF ¢ 42
@ ige, Toax (4.25)

The initial conditions for the state variables and their sensitivities are constrained to be
at steady state with respect to a zero induction input (u = 0):

X(t=0)=Xg5(0,\,u=0) (4.26)
X@j (t = 0) = -X_-91,55<07 )‘7 u = O) (427)
Because the steady state depends on both the growth rate and the initialized parameter

values, these initial conditions are not constants. They therefore appear as nonlinear
constraints in the optimization problem.

We denote the sampling variance for observations of species by 07,....,- We assume
normally distributed errors with variances equal to 5% of the species quantity:

Opna = (0.05) X,q (4.28)

0ot = (0.05) X 01 (4.29)

We further assume no covariance between species measurements. The (scaled) Fisher
information matrix, Z(@,t) can then be written for the relaxed problem as a differential
equation, as per [157]:

d

2 (0,t) = Xp, Q(t)E71(t) Xy, Z;1(0,0) =0 (4.30)

where the matrices €2(t) and X(t) are defined as;

(rna) 2
wy(t) 0 00 Xrna(t) 0
Qt) = . B(t)=| ™ 4.31
( ) [ 0 w;prot) (t) ( ) |: 0 Ugrthprot (t) ( )
Here w7 (t) are sampling densities, as defined above. Further details on the integration

of the Fisher information over continuous sampling densities can be found in [157, ].
Because samples are assumed to be independent across time points as well as species, the
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Fisher information for the experiment is additive across both. (Here we use the Fisher
information for a constant error variance, despite the assumption of non-constant vari-
ance implicit in the data generating model. We found this simpler formulation performed
equivalently and was more tractable.) Therefore we can express the cumulative Fisher
information for a given sub-experiment from time 0 to t; as

k

) ty ) .
73)(0,tf) = / xXPa0m="1 ()X, dt. (4.32)
0

The Fisher information for the total experiment, Zr., is then the sum over all sub-
experiments

N
Tro = Y IV(0,1y) (4.33)

i=1

The overall objective (D-optimality score) is then

Op (Zror) = det (i I@) (4.34)

The matrix is symmetric, so only the diagonal and lower triangular elements need to be
computed.

The value of ©p (Zr,) can vary over many orders of magnitudes for different experi-
ments, and so to improve numerical accuracy we take the logarithm of the determinant as
the objective. Finally, because most optimization packages are minimizers, we invert the
sign:

uII}l\l‘I}V —In(Op (Zrot)) (4.35)

For numerical stability we compute the determinant using QR factorization (details in
Section 2 of the supplement, Appendix A).
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In summary, we formulate our OED optimal control problem as

Objective:

N
uI,I)lj‘I}/ - ln(@D (ITot)) =—In <det (Zl I(Z) (07 tf)) )
Controls:

u = {u(l)(t), ...,u(N)(t)}
A= {0 AW

W = {0, @ (1), (), 00 |

rna prot rna
Subject to (Vi € {1,...,N}):
dX @
dt ‘
AX;) _, OF(XD,0.00,u(t)  OF(X9,009,u(t) g
a aej 0X bi7
i) i (4.36)
= wgp) (1), Vsp € {rna, prot}
(4)
ik () (i i -1 5@
= X0 (20(1) Xy, V0,0, €0

With Constraints:

XO(t=0) = X556, A9, u=0)

Xt =0) =X} 5(0,00,u=0), V€0
7)(6,0)=0  V0;,6,€0
g (0) =0, sp € {rna,prot}
(

- F<X“>, 0,2, u (1))

‘v’0j€0

2 (tf) < CTots sp € {rna,prot}
0< wS?D) (1) < Wnag, sp € {rna,prot}
0 < u(t) < Umaa
)\min < )\(1) < Amax
This problem formulation matches that used by Telen et al. and Hoang et al. [157, |.

We used a multiple shooting algorithm to solve the optimal control problem [156]. We
implemented this algorithm in CasADi, a rapid prototyping optimal control toolbox, using
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its MATLAB interface [196]. CasADi uses algorithmic differentiation to compute first and
second derivatives with respect to both the objective and the constraints. This higher-order
information is used for optimization in an interior-point barrier method implemented in
the nonlinear programming package IPOPT [197]. Further details of the multiple shooting
algorithm and optimization settings can be found in Section 2 of the supplement, Appendix

A.

4.4 Results

4.4.1 Comparing Lumped and Physiologically-aware Models

Models of gene expression typically use lumped parameters that confound physiological
effects with intrinsic features. Such models are usually calibrated against data collected
from cells grown in one particular medium (and so at a single growth rate). To illustrate
the consequences of neglecting growth effects, we consider a lumped version of our growth
dependent model (equation (4.1))

d[ X na) B+ Cu
=A — B Xrna
dt 1+B+(D+C)u [ | (4.37)
d[Xprot]

dt == F[Xrna] - )\[Xprot]>

_ ag _ PyK» _ PK, _ K _ _ BRy
where parameters A = 37, B = TR C = CELE D = el E =6, and F = VRN VIR

are treated as growth rate-independent constants. (The one exception is the protein decay
rate, which is equal to the exponential growth rate.) Of course, this parameter lumping
does not impact model behaviour for the growth rate at which the model is calibrated, but
accurate extrapolation to other growth rates cannot be assured. This loss of accuracy is
illustrated in Figure 4.2. Panels A and B show predictions of the full growth-dependent
model and the lumped model, both calibrated to fast growth rates (3 db/hr). As the growth
rate drops, significant deviation in the predicted steady state copy number of both protein
and mRNA is observed. In Figures 4.2C and D we see similar deviation for the steady
state concentrations of these species. (We note that the relative deviations in concentration
are comparatively small. Protein concentration is important for, e.g. metabolic enzymes.
In contrast, copy number is more important for DNA binding proteins, which tend to
disperse along the DNA rather than the total cell volume [191, 5].) A complementary
measure of inaccuracy due to lumping appears in Figure 4.2E, which shows how the lumped
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parameter values vary with growth rate when the full model is used to determine their
values (in comparison to their values calibrated at the reference fast growth rate of 3
db/hr) . The divergence in these parameters sets has a significant effect on the model’s
dynamic behaviour. Figure 4.2F shows the root mean squared error (RMSE) between
the two models’ response to the input profile depicted in Figure 4.2G. The difference in
dynamic behaviour between the lumped and full model under this dynamic induction, at
slow growth rate of 0.5 db/hr, is shown in Figure 4.2G.

4.4.2 Null and Optimal Experimental Designs

We next explore how experimental design can improve the estimation of the intrinsic
parameters of the full growth-dependent model (equation (4.1)). We have selected a null
experiment, shown in Table 4.2, to represent a reasonable non-optimized design. It consists
of a set of logarithmically (base 10) distributed pulses, delivered at evenly spaced growth
rates, with evenly spaced samples taken every half-hour (mRNA and protein samples are
taken at the same time). We propose this as a sensible first experiment for fitting a
dynamic model. We designed the null experiments assuming limited information on the
dynamics of the specific gene expression system. They were selected to involve a reasonably
comprehensive set of perturbations and measurements. For comparison, we examine three
variants of the null experiment, also shown in Table 4.2, each with a perturbation to either
the growth rates, induction profile, or sampling rate of the null. The growth variant is
identical to the null case, except it is performed over a narrower range of growth rates.
The sampling variant differs from the null by redistributing the samples so that their
rate is halved but the sampling number at each point is doubled (with the same total
number of samples). The induction variant uses linearly (rather than logarithmically)
spaced strengths of induction pulses. Shown with each design is its predicted optimality
score (the negative log determinant of the scaled Fisher information matrix computed at
the true parameter set: equation 4.35). As expected, each variant provides less information
than the null (as measured by D-optimality).

In contrast, Figure 4.3 depicts an optimal experiment for our model. This design was
generated by using the true nominal parameter vector as the algorithm’s initialization
parameters. This is an artificial scenario (the true parameters are not known initially,
by definition), but it serves to demonstrate the difference between intuitive designs and
optimal designs selected by our method. In Figure 4.3, each column describes a sub-
experiment, labeled with the corresponding optimal growth rate. The top row, (A-C),
depicts the optimal input profiles; the middle row, (D-F), shows the system response in
both mRNA and protein copy number. The last row, (G-I), shows the sampling densities
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Figure 4.2: A and B. Steady state protein (A) and mRNA (B) copy number predictions
for the lumped and full model across growth rate for two different constant input levels. C
and D. Corresponding protein (C) and mRNA (D) concentrations. E. Relative difference
in the lumped parameter values, fit at 3 db/hr, compared with the values predicted by
the full growth dependent model. F. Root mean squared protein concentration error over
the dynamic simulation in (G) between the full and lumped model. G. Predicted protein
concentrations of the lumped and full model over a dynamic simulation with growth rate
of 0.5 db/hr.

(in the shaded regions) as well as the results of the Sum-Up-Rounding discretization scheme
(depicted by the stem plots, where the height is an integer representing the sample count).
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Table 4.2: Null (non-optimal) Experimental Designs

Experiment Growth Rates (db/hr) Induction Pattern (log;,) Sampling Schedule Optimality
Null Experiment {0.6, 1.8, 3} —| E(,T”I,,T”JJ”I, -63.8
Growth Variant {2,2.5, 3} i F‘,”T,T.I”_I.,”Tl, -61.5
Sampling Variant {0.6, 1.8, 3} —| I I I H ] -62.6
Induction Variant {0.6,1.8,3} —|_|_U_|_ E(,T”l,”””” -60.5

The optimality score of this design is —69.6. (In this case, the optimal design selected the
maximum growth rate twice. We suspect this is due to higher sensitivities at faster growth.
More complex models typically demand observations over a wider range of growth rates.)

Comparing the null and optimal designs we see that, while the null experiments have
an intuitive appeal because of their wide, even distribution of experimental choices, none
achieve a score similar to the optimized design. Further, while null variants exhibit differ-
ences in optimality scores, when compared to the optimized experiment these differences
are small. This suggests that manually tuning aggregate design measures is less effective
than the holistic optimization provided by the OED approach.

4.4.3 Utility of Optimal Designs for Parameter Identification and
Prediction

The difference in optimality scores between the null and optimized experiments suggests
significant improvements in parameter estimation using the optimized design. However, the
statistical theory used to derive the optimality score can only be guaranteed to hold a pri-
ori for linear models in the limit of small observation variances and large samples [195]. To
validate that our optimality scores correspond to improved parameter estimation accuracy,
we used simulated experiments to assess the correlation between theoretical and observed
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variability. To generate simulated data, we simulated the model using the nominal true
parameters and added normally distributed observation error with variance equal to 5%
of the corresponding species count. We used a multiple shooting approach for parameter
estimation; obvious outliers were removed (details in Section 2 of the supplement, Ap-
pendix A). Fig. 4.4A shows, on the vertical axis, the logarithm of the generalized variance
(determinant of the observed covariance matrix) for the collection of parameter estimates

uV=0.6 (db/hr) 412= 3 (db/hr) 1®)=3 (db/hr)
A B C
= o )
3 =) 3
R 2o 2o
D [*)] D
S S S
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Figure 4.3: An optimal experiment (designed at the true value of ). Each column depicts
one sub-experiment, labelled with optimal doubling rates: u(!), u® and u® (corresponding
to exponential growth rates AV, A and A®). The top row (A-C) depicts the optimal
inputs, v (t), u®(t) and u®(t) (on a log,, scale). The middle row (D-F) shows the system
response (both mRNA and protein copy number) for each induction profile. The last row

shows the sampling densities w¥), and w;?ot (in shaded areas, blue and red, respectively),
for both protein and mRNA, as well as the rounded sampling schedule, s, and sl(,?ot

(depicted by the stem plot). The optimality score of this experiment was —69.6.
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(each corresponding to an experimental design). This measure of fit variability is computed
from the collection of parameter fits to independent simulations of the given experiment.
From this set of estimates we computed the observed covariance matrix and the general-
ized variance. The optimality score of the design is shown on the horizontal axis (lower
is better), computed at the true parameter value. Fig. 4.4A shows that the optimality
score (objective of the OED approach) and the observed parameter covariance (sampled
measure of design ’quality’) correlate well. In particular, we note that the optimal design
achieves both a better optimal score and a smaller generalized parameter variance when
compared to the non-optimal designs. This suggests that the objective function (using the
homeostatic FIM) is a useful measure of design quality, despite the nonlinearity and het-
eroskedasticity of the model. We also note that adopting a uniform sampling schedule or
reducing the range of growth rates is expected to result in considerably worse performance,
as evidenced by comparison between null variants.
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Figure 4.4: A. Results from the true optimal (optimal experiment designed at true pa-
rameter value) and null experiments (circles): optimality score on the horizontal axis;
observed generalized variance of the parameter estimate on the horizontal axis. B. The
same experiments: generalized parameter variance on the horizontal axis; log integral of
the squared error on an out-of-sample prediction experiment (inset) on the vertical axis.
Optimal experiments designed with erroneous initial parameter guesses are shown as X'’s.
(Linear trend lines also shown.)

In addition to accuracy of parameter estimates, accurate predictions of the system be-
haviour for out-of-sample conditions is also important for model-based design. For linear
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regression models, D-optimal designs that minimize the generalized variance of the pa-
rameter estimate are equivalent to designs that minimize the upper bound on prediction
variance (General Equivalence Theorem) [10]. This guarantee does not generalize to our
dynamic, nonlinear and heteroskedastic model. To verify if prediction accuracy indeed
correlates with D-optimality for our model, we ran a second simulation study. For each of
the parameter estimates used in calculating the fit variability for the experimental designs,
we simulated the model response for a new dynamic experiment. We chose out-of-sample
conditions: growth rates and induction levels not used in fitting. We simulated the model
with the true nominal parameter values, and computed the integrated squared error (ISE)
between the true and fitted values in each case (thus including error at all time points).
Figure 4.4B shows the generalized parameter variance along the horizontal and the log ISE
on the out-of-sample data set on the vertical axis. The plots shows that the generalized
parameter variance correlates reasonably well with prediction accuracy: the optimal design
performs better than any of the null designs. This reflects the linear case, in which the
D-optimal design sets an upper-bound on the expected prediction variance [10)].

So far, we have compared designs in the idealized (and artifical) scenario in which
OED is applied to the model parametrized by its true values. We relaxed that assumption
by first generating five intrinsic parameter sets from a uniform distribution spanning the
intervals specified in the feasible ranges from Table 4.1. We then ran the OED algorithm
using models parametrized by these 'perturbed’ parameter sets. The optimality scores of
these designed experiments, when evaluated against simulated data generated by the true
parameter set, are plotted in Figures 4.4A and 4.4B, depicted as X’s.

4.5 Discussion

We have proposed a physiological-aware model of gene expression in F. coli that accounts
for the effects of nutrient limitation on the host physiology. The model is more complex
than standard models of gene expression, but this comes with several benefits. The model
naturally suggests a partitioning of the parameter set into 1) intrinsic parameters that
characterize the genetic component and, 2) a set of empirically derived parameters charac-
terizing the host’s physiological state as a function of nutrient-mediated growth rate. The
intrinsic parameters can thus be reused across a range of growth conditions. In particular,
because the intrinsic parameters can be linked to sequence properties of the component
(e.g. promoter affinities, RBS strength, mRNA stability), they could provide insight as to
which aspect of a component’s DNA sequence could be altered to achieve a desired effect
across a variety of contexts. Future work could attempt to link such intrinsic parameters to
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sequence properties directly. In contrast, the extrinsic parameters can be used to predict
the host’s context based on the observed growth rate in a range of nutrient conditions.

Accurate estimation of the intrinsic parameter set is more difficult than estimation
in context-naive models. We have demonstrated that optimal experimental design can
mitigate this challenge by identifying maximally informative experiments. We applied
a comprehensive OED platform, optimizing over constant growth rate, time dependent
induction profile, and sampling schedule. Many current experimental design approaches
in systems biology use general purpose optimization algorithms that scale poorly to such
multivariate and non-linear designs [154, 22]. This often leads to non-optimal selection
of certain design variables [159]. To achieve computational efficiency in our optimization
tasks, we re-interpreted the problem via optimal control, with growth rates, sampling
schedules and induction levels as control variables. This optimal control framing of OED
problems has so far been underutilized in systems biology; it allows access to the rich
tool-set developed by control and process engineers, including direct multiple-shooting

and collocation methods [1506, , ]. These methods are ideally suited for use with
emerging experimental tools such as optogenetic induction systems and automated culture
and microfluidic devices [154]. Our numerical results suggest that the multiple shooting

algorithm provides an efficient method to optimize experiments, improving both parameter
estimation accuracy and prediction accuracy over unoptimized designs.

The optimal experimental design algorithm presented here could be improved in a
number of ways. We used the simplest and most tractable form of the Fisher information.
More accurate formulations account for the sample variance’s parametric dependence [10]
and for the constraints imposed by initial conditions [195]. Additionally, our approach
provides a design that may be only locally optimal. Current iterative designs are based
on the assumption that the iterated algorithm does not become trapped in some local
minimum. Past numerical studies of iterative applications of OED have shown consis-
tent convergence to the true parameter set (global optimum), but there is scope for more
rigorous investigation [103, 8]. Improved computational efficiency may allow users to ad-
dress multiple scenarios and larger models, or even implement online experimental design
algorithms that can update the design in real-time [199, ]. Our algorithm was imple-
mented with CasADi, which provides rapid-prototyping capabilities for control problems,
algorithmic differentiation and interfaces to powerful non-linear programming solvers like
IPOPT [196, |. This tool facilitates rapid implementation, but requires some mathe-
matical expertise. Further packaging of OED tools for use by experimentalists would no
doubt increase adoption in systems and synthetic biology.

The experiments proposed in this work are demanding, requiring sampling of multiple
species and control of inputs over extended time periods. In practice it is not currently
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possible to precisely control the transcription factor count in vivo. It would suffice to map
the experimental input (e.g. light, chemical inducer), to the expected average copy num-
ber of TF per cell. This could be implemented through precise calibration experiments,
achievable with current techniques [72]. Future experiments may be able to implement
closed-loop control using real-time measurements to ensure robust tracking of desired in-
puts. It also may be possible to modify the OED algorithm to account for the effects
of input variability (an errors-in model). In this work we have assumed time-series mea-
surements of both mRNA and protein quantities. Emerging experimental tools, combined
with assays like RNA-seq [201], will likely enable these complex dynamic experiments in
the future [154].

For the model considered here, observing only one species results in a structurally
unidentifiable parameter set. Any parameter lumping to alleviate unidentifiability leads
to a loss of modularity in characterization. Even with observations of both species, the
parameter K., which characterizes promoter leak, had to be excluded from the analysis
because it was practically unidentifiable over reasonable parameter ranges. In practice it
may be possible to ignore promoter leakiness in many cases. However for strong leaks it is
important to identify the parameter K, ; fixing it, as we have, may introduce significant bias
in other parameter estimates. In addition to these specific identifiability concerns, the re-
usability of parameter estimates is limited by the use of relative units, which are specific to
the measurement instrument they are calibrated on. The methods used in this work should
ideally be implemented using absolute units, which will allow for comparison between
parameter values calibrated on different instruments and in different labs [127, , ].

Our description of physiological state was restricted to a single case: exponentially
growing F. coli host cells, with growth rate determined by nutrient quality. Our model for-
mulation was made possible by significant experimental efforts into characterizing precisely
this physiological response [2]. Beyond nutrient limitation, several other relevant growth
perturbations are of interest to synthetic biologists, including translation-inhibiting an-
tibiotics, gene expression burden and metabolic knockdowns. Phenomenological growth
laws and coarse-grained proteome models have been extended to some of these condi-
tions [148, , |. Recent results suggest that certain metabolic perturbations may
effect proteome partitioning (and possibly RNAP and ribosomal fractions) in a manner
similar to nutrient limitation [149, |.  Certain physiological properties, such as the
ribosome-to-protein ratio, can also be predictably linked to the growth rate controlled by
expression burden or antibiotic dosage [164, ]. The linear ribosome-to-protein ratios
may even generalize across species (Figure S1 of [118]). The details necessary to link these
coarse-grained models to the specifics of gene expression, as originally proposed in Klumpp
and Hwa [117] (and further elaborated on here) are still lacking. While the nutrient-limited
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growth theories have taken decades to build, modern techniques can likely accelerate this
host characterization process, allowing generalization across strains, growth inhibition con-
ditions and potentially even microbial species.

Extensions of phenomenological growth theories to heterologous protein expression bur-
den and modification of metabolic fluxes could have significant impact on metabolic en-
gineering. These effects are especially relevant to the emerging sub-discipline of dynamic
metabolic engineering, where synthetic gene expression circuits dynamically modulate both
fluxes and heterologous enzyme expression [203, , ]. Design of such systems is chal-
lenging; the engineered regulatory components modulate expression burden and enzymatic
activity, which in turn affects the growth rate, broader cell physiology and the regulatory
component behaviour itself [200, , |. An extended growth theory combined with the
optimal experimental design algorithm and gene expression models presented here could
be valuable for guiding future work in this area.

We have proposed the coupling of physiologically-aware modelling and OED techniques
to address limitations in the accuracy and generalizability of component characterization.
Current gene expression models often fail to account for the host or environmental state,
and are calibrated with poorly constrained parameter estimates using ad hoc experimen-
tal designs. These shortcomings contribute to the limited use of model-based design in
synthetic biology. Poor parameter estimates result in lackluster predictive accuracy, and
context-naive model predictions cannot generalize, resulting in recalibration for each new
design and circumstance, and thus little advantage of model-based design over trial-and-
error approaches. Our model has yet to be validated in vivo, but wider use of such coarse-
grained, context-aware models and optimal experimental designs will ideally maximize
researchers’ return on experimental investment, and aid efforts to rationally design gene
expression circuits.

62



Chapter 5

Optimal sample scheduling for
dynamic gene expression experiments

Published as “Optimal experimental design for characterizing gene expression:
sample scheduling” by Nathan Braniff, Max Reed, and Brian Ingalls in IFAC-
PapersOnLine 51.19 (2018): 48-51.

5.1 Summary

Recent developments in experimental methods, such as optogenetic induction and microflu-
idic culture devices, enable precise time-varying control of gene expression. These tools
provide new opportunities for dynamic experiments. However the complexity of these ex-
periments poses a challenge to traditional experimental design. In this work, we propose
a method for optimal sample scheduling and use simulations to compare it with uniform
sampling schedules. We show that optimal scheduling improves the informativeness of re-
sults toward parameter estimation and identifiability. In addition, we show that uniform
sampling may impose obstacles for the application of experimental design methods for the
selection of dynamic inputs.

5.2 Introduction

A number of techniques for precise time-varying control of gene expression have been de-
veloped in the last decade, including methods of optogenetic induction and microfluidic
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delivery of chemical inducers [63]. Accompanying these novel perturbation methods have
been increasingly accessible technologies for automating experiments to generate rich time-
series measurements of cellular dynamics. Together these tools have enabled precise exter-
nal control of cellular systems and have enabled the nascent field of ‘cybergenetics’ [30].
This precise dynamic control unlocks new possibilities for experimentally decoding cellular
dynamics.

5.2.1 Model-based design of experiments

Model-based Design of Experiment (MBDOE) methods provide a framework for improving
the accuracy of model selection, parameterization and prediction [22].These tools have
been used recently to optimize dynamic input profiles that can then be implemented via
optogenetics or time-varying chemical induction [10, 9].

However, optimization problems resulting from the MBDOE approach are frequently
unwieldy. Optimality criteria are typically conditioned on a wide array of factors, in-
cluding model structure, nominal parameter values, measurement targets, sampling times,
error model, and the nature and target of experimental perturbations. A general solution
thus requires solving a hierarchy of interdependent subproblems over the variable exper-
imental design parameters, while integrating over uncertainty in system behaviour and
experimental protocols. However, both theoretical and experimental results suggest that
even a sub-optimal design can provide significant improvement in the informativeness of
experiments [3, 112, 10].

Given the wide array of features that enter into MBDOE analysis, simplifying assump-
tions must be made. A commonly employed simplification is to assume continuous observa-
tion or temporally uniform sampling schedules of the measured species [101, 9, , 8]. The
specific subproblem of sample time selection has received relatively little attention, despite
early evidence of its value [158]. Erguler et al. have demonstrated that the information
content of samples from certain time intervals in a system’s response, such as transient or
steady-state, differ significantly from one another [102]. They further show that selecting
when to sample is a challenge, as it depends on the qualitative dynamics of the system.
Recently, Reuss et al. incorporated sample time selection into a full MBDOE framework
to select optimal dynamic perturbations in both a theoretical study and an experimental
implementation [1 12, 10]. They first selected optimal time-varying perturbations based on
a prescribed uniform sampling schedule and then optimized time points for a chosen per-
turbation. This approach is robust to uncertainty, but may impose some specific problems
on the search for optimal inputs, as we show below.
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In this work we propose an efficient method for time point selection for a given dy-
namic experiment. Our approach is inspired by optimal experimental design in linear
statistical models [209]. We further demonstrate that neglecting time point selection when
analysing optimality of dynamic perturbation experiments can introduce spurious compli-
cations which have been largely overlooked in past experimental design works.

5.3 Methods

We are pursuing the use of MBDOE methods for characterizing the dynamics of light-
induced gene expression. We chose a simple mechanistic model of regulated expression
to illustrate our approach. Figure 5.1 depicts the system, in which a light-inducible pro-
moter controls expression of a transcription factor (TF) which in turn activates a florescent
reporter (GFP).

\/ 2 <
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Figure 5.1: Regulated gene expression model: Optogenetic control of a light-inducible
promoter activates a transcriptional activator which in turn activates the transcription of
a fluorescent protein.

We model transcription and translation of both proteins explicitly. The transcription
rate of the light-induced promoter is assumed to be directly controlled via light induction;
no model of light mediated signaling is included. This formulation is motivated by previous
demonstrations of successful model-based control by [72]. We include an explicit matura-
tion step for the fluorescent protein, the importance of which has been demonstrated [210].

The model is governed by the following equations:
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dT, dG, ™

dr dG
_— — —_— = r 5 4:
=T =T, (5;2 o = PG —(r+v)G, (54

The state variables are the concentrations of transcription factor mRNA, T,, tran-
scription factor protein, T, GFP mRNA, G,, immature (non-fluorescing) GFP protein, G,
and mature GFP protein, G,,. The input u(t) is the expression rate of the light-induced
transcription factor gene.

Parameters were set to realistic values based on previous dynamic characterization of
related systems; v = 2 x 107% sec™!, §p = 6 x 1073 sec™!, §; = 4.8 x 1073 sec™!, B = 0.4
RiPS,! @ = 6.7 PoPS,? K = 4.17 x 10° sec, n = 1.6, and v = 1.8 x 107 sec™" [143, 210].
We assume that observations can be made of the mature GFP and both mRNA species.

5.3.1 Measuring experimental optimality

MBDOE techniques begin with specification of an optimality criterion. The quality of
parameter estimates can be quantified by an experimentally obtained parameter covariance
matrix 3y. A model-derived parameter covariance matrix can therefore be used as a model-
based optimality measure. In general the covariance matrix can be approximated by the
inverse of the Fisher information matrix (FIM), I, which in turn can be computed from
the sensitivity matrix, Q, and the covariance matrix of the measurements, 3, [22]:

$y=I,"" where I,=Q'%,'Q (5.6)

The sensitivity matrix, Q is defined by

_ dyy(0.u(ty). 1)
do;

Qj.i (5.7)

where the index j runs over the model observables ¥, and the corresponding sampling times
times .

IRiPS, ribosomes per second
2PoPS, polymerases per second
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For efficient comparison, a scalar measure of total uncertainty can be derived from
the covariance matrix. Here, we use D-optimality, which is the determinant of the Fisher
information matrix; maximizing D-optimality is equivalent to minimizing the volume of
the confidence region ellipsoid in parameter space. We show minimizing D-optimality also
results in improvements of both E-optimality and modified E-optimality (ME-optimality)
scores. FE-optimality is defined as maximizing the smallest eigenvalue of the FIM and
can by thought of as gauging the practical identifiability of the model. ME-optimality
corresponds to the condition number of the FIM and can be equated with ‘sloppiness’
as defined by [101]. These additional measures are subject to ongoing discussion in the
community as to what constitutes a well-parameterized model ([104]). For our system,
D-optimality correlates with all three measures listed above and it is easily posed as a
convex problem (unlike E-optimality which requires some reformulation [209]).

To predict the FIM for a given experiment we need to specify the measurement co-
variances and nominal parameter values. To simplify the analysis, we assume each mea-
surement is independent with error equal to 5% of the dynamic range of the respective
species.

5.3.2 Optimal time point selection

As Erguler et al. have previously noted, the informativeness of samples that are uniformly
distributed in time is unevenly distributed amongst the observations [102]. Thus experi-
ment protocols can be improved by distributing the samples over the available times and
observation variables in an optimal manner. This includes the possibility of repeatedly
sampling at some time points.

To arrive at a discrete optimization problem, we specify a fine mesh of potential samples
times over the experimental time-frame. Then, for a given input u(t) and initial condition,
we can pose the D-optimal time point selection problem as a maximization problem defined
over the rows of the sensitivity matrix Q;

imi et :
maximize det(Q INZ, " Q) (5.8)
N
subject to Z A =N, (5.9)
I=1

where the total number of observations is fixed as N. The solution to this optimization
problem is an integer-valued vector A that assigns the N total samples to each of the po-
tential time points and observation variables. Solving the integer version of this problem
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is challenging, but in the limiting case where N is much larger than the number of pa-
rameters, the solution to the non-integer relaxation approaches the exact solution and the
resulting non-integer vector A can be rounded to yield a good approximate solution [209].
The relaxed version is a convex optimization problem because the objective can be written
as a convex function of the sum of a set of semi-positive definite matrices. Such convex
problems can be solved quickly with general purpose solvers such as CVX, which we used
here [211].

5.4 Results

As demonstrated below, an optimized sampling schedule achieves significant improvement
in expected parameter estimation accuracy and model identifiability, as well as a decrease
in sloppiness, when compared to a uniform schedule. Furthermore, we show that a uniform
schedule generates problematic artifacts in optimality measures for dynamic inputs.

5.4.1 Optimal sample scheduling

We consider the response of system (5.1-5.5) to a single input pulse. We initialize the system
at steady-state with respect to a constant low input of 0.05 PoPS. After 20 minutes the
transcription rate is raised to its maximal value of 7.6 PoPS for 20 min before returning
to the starting value for the remainder of the experiment. The total experimental time
is 8 hours. We compare two sampling schedules. A uniform sampling schedule consists
of samples every 15 minutes for GFP mRNA and mature GFP. The transcription factor
mRNA relaxes quickly to steady state, so we assign uniform sampling every 2 minutes for
only the first hour. This results in a total of N = 97 samples taken during the uniform
schedule. We solved the optimization scheme (5.8-5.9) with N = 97 to arrive at an optimal
sampling schedule. Figure 5.2 shows the system response and the set of optimal sampling
times. The optimal number of replicates taken at each of these time points ranges between
1 and 12.

Table 5.1 shows the relative improvements provided by the optimal sampling schedule.
Improvement in D-optimality, E-optimality and ME-optimality are achieved (despite the
fact that this method seeks only to improve the D-optimality criterion). The volume of
the eight-dimensional parametric confidence region is reduced by over 97%. Furthermore
we determined that only 56 optimally placed samples would be required to achieve an
equivalent D-optimality result as the 97 uniform samples.
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Figure 5.2: System response to a 20 minute pulse of maximal transcription rate (applied
over the shaded interval). The optimal sampling points for each species are indicated.

5.4.2 Improved criteria for selection of dynamic inputs

We next demonstrate that uniform sampling schedules can generate spurious effects that
may confound optimization over dynamic inputs. Consider the case of system (5.1-5.5)
responding to a square wave input rising from u = 0.76 PoPS to u = 7.60 PoPS (covering
90% of the system’s dynamic range) and back. We suppose the system is observed over
24 hours. We will consider a range of pulse lengths, each with midpoint at 12 hours
(Figure 5.3A). In each case we compare two sampling schedules. A uniform sampling
schedule is defined by: every 15 minutes for the GFP mRNA and the mature GFP and
every two minutes for the TF mRNA. This results in N = 915 samples. Alternatively,
we solve the optimization scheme (5.8-5.9) using N = 915 to find the optimized sampling
schedule.

We consider a range of pulse durations from 4 hours to 20 hours. The value of the D-
optimality criterion for each sampling approach is shown in 5.3B. As shown, the uniform
sampling strategy suggests that D-optimality is maximized at a pulse duration of 12 hours.
However, this peak is absent when applying optimal sampling. This spurious effect occurs
because uniform sampling seeks to balance the information provided by dwelling at the high
and low input values. Optimal sampling (which allows for re-sampling at any time-point)
is under no such constraint.

Next consider the case where system (5.1-5.5) is forced by a sinusoidal input with a
range u € [0,7.60] PoPS, delivered over a 72 hour experiment (Figure 5.4A). We will
sweep over a range of frequencies. For each choice of input we again compare two sampling
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Table 5.1: Improvement of Optimal Sampling Relative to
Uniform Sampling

Criteria Increase
D-optimality (square-root') 3690%
E-optimality (Identifiability) 272%
Criteria Decrease
ME-optimality (Sloppiness) 63.6%
Confidence Ellipsoid Volume 97.3%
Parameter Confidence Intervals from 18.0% to 50.8%
Samples Required? 42.3%

! D-optimality percentage change is reported after taking the
square-root because D-optimality scales with the inverse square
of the confidence region volume.

2 Samples required for the optimal sampling schedule to achieve
an equivalent D-optimality result as that of the pre-specified
uniform schedule.

approaches: (i) the uniform sampling schedule is used as in the pulse duration experiments
above (resulting in N = 2739 samples); and (ii) the optimized sampling scheme with
N = 2739. Figure 5.4B shows the D-optimality value for both sample schedules over a
range of input frequencies. Again we see that spurious local maxima are generated by the
uniform sampling approach.

5.5 Conclusion

We demonstrated the successful application of a convex optimization approach for time
point selection in dynamic experiments. Further we demonstrated that adherence to a
uniform sampling schedule can produce spurious extrema when assessing the quality of
dynamic inputs in experimental design. These artifacts would likely confound the already
challenging optimization task of searching over a high-dimensional input space.

The analysis presented here did not account for parameter and experimental uncer-
tainty. Nevertheless, these results suggest that non-uniformity in sample time distribution
is ideal. Further refinement and integration of optimal sampling techniques within the
larger MBDOE framework will provide improved experimental protocols and more effi-
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Figure 5.3: A. Square wave input centered at 12 hours. B. Relative D-optimality criteria
for optimized and uniform sampling schedules as function of the pulse duration (normalized
to their respective minima over the inputs considered).

cient use of emerging dynamic experimental techniques.
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Chapter 6

Optimal Experimental Design for a
Bistable Gene Regulatory Network

Published as “Optimal Experimental Design for a Bistable Gene Regulatory
Network” by Nathan Braniff, Addison Richards, and Brian Ingalls in IFAC-
PapersOnLine 52.26 (2019): 255-261.

6.1 Summary

Accurate model calibration is essential for model-based design of synthetic gene regula-
tory networks. Optimal experimental design (OED) techniques can be used to efficiently
decrease parameter uncertainty. However, many biological networks of interest exhibit
multimodal response functions due to multistability. These models are incompatible with
traditional OED approaches that have been developed for models with mono-modal error
distributions. In this work we propose an OED approach for a gene expression model that
exhibits bistability via a saddle-node bifurcation with respect to an experimental input.
We demonstrate construction of an approximate likelihood and derive the corresponding
Fisher information across the monostable and bistable regimes. We use the linear noise
approximation for the local error model and apply logistic regression to capture the switch-
ing probabilities between the stable equilibria. We then use this Fisher information matrix
to generate locally optimal experimental designs for this system. This leads to a simple,
qualitative approach to optimal experimental design based on experimental detection of
bimodality.
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6.2 Introduction

Many synthetic biology projects aim to construct designer gene regulatory circuits. These
circuits often involve feedback and nonlinear dynamics, including bifurcations and mul-
tistability [212]. Model-based design can be a critical tool in the development of such
systems. However, biological models have traditionally suffered from sloppy parameter
estimates and poor predictive accuracy, limiting the effectiveness of modeling in biological
design [102, 101].

Optimal experimental design (OED) provides tools by which synthetic biologists can
improve the efficiency of precise model calibration [154, 22]. However, OED approaches
have traditionally been applied to monostable systems, which exhibit monomodal error
distributions [10] that are often assumed to be Gaussian [103, 8]. Many synthetic regula-
tory systems of interest exhibit bifurcations and multistability [212], which can result in
multimodal error distributions. Limited attention has been given to these more complex
error distributions in the OED literature. Examples have been developed for linear models
[213], but they are not directly applicable for modelling biological systems.

In this work we develop an OED procedure for characterizing expression of an inducible
auto-activating gene that exhibits bistability over a subset of its induction range. We use
a stochastic model to account for random jumping between the two equilibria in the mul-
tistable regime. This jumping results in a bimodal error model. We use the linear noise
approximation (LNA) to form a Gaussian mixture approximating the multimodal likeli-
hood function. We then apply OED to this approximation, using the Fisher information to
identify optimal experiments. Specifically, we identify (i) an optimal set of induction input
values, and (ii) the fraction of the overall number of steady-state single-cell observations
to be taken at each input. The LNA incurs approximation error when applied to multi-
stable systems [214]. However the LNA is analytically differentiable with respect to both
inputs and parameters, and it is computationally tractable, both of which are essential for
performing optimization over the experimental space.

Past work has investigated parameter estimation procedures for multistable switches [215]
suggesting the tracing of hysteresis loops as a means to detect bistable regions. This pro-
cedure requires complex experiments with time-varying inputs and careful consideration
of the relaxation timescales as part of the experimental design. Our approach uses a more
direct strategy for the identification of bistability, focusing exclusively on steady state
observations and bimodality detection. Additionally, we provide a simple procedure for
avoiding irregularities caused by bifurcations. We find that, for our example system, the
optimal experiments follow a consistent qualitative pattern. Further investigation will ad-
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dress the question of whether this pattern generalizes to a simple heuristic procedure for
designing optimal experiments for other bistable systems.

6.3 Methods

We employ a simple one-dimensional model to illustrate the method. Equation 6.1 depicts
the deterministic rate equation for the mean concentration of the protein product x of an
auto-activating gene:

(u+a(t)"
K™ + (u+ z(t))"

ix(t) =+ o — x(t). (6.1)
dt

Here, u is the concentration of protein provided via a separate, experimentally inducible,
source. We assume u and x are functionally identical, but x can be differentiated during
measurement, e.g. via a tag or co-expressed reporter. We take the nominal parameter
set as ap = 0.5 a = 3 K" = 9, and n = 3. The parameters oy, o, and K are in
arbitrary units of concentration; the time-scale is chosen so the rate of degradation is unity.
For this parameterization the deterministic system exhibits bistability for inputs u in the
range u € [up,ugr] = [0.07,0.22], and undergoes saddle-node bifurcations at these points,
see Figure 6.1B. We seek the inputs that provide maximally informative observations for
the purpose of accurately estimating the parameter vector 6 = [ag, a, K,n]. We assume
the experiments generate a noisy set of observations, D = [y, ..., yn], taken in long-time
equilibrium at input values U = [uy, ..., uy]. Further we assume the observations y; are
measurements of single-cell concentrations (via a high-throughput instrument such as an
automated microscope). Below, we derive the distribution of observations y about the
mean = and the resulting likelihood function. We use the likelihood to construct the
Fisher information matrix (FIM), and use a scalar function of the FIM as our optimization
objective, following classic optimal experimental design theory [59].

The primary challenge with the proposed approach is that gene expression is noisy,
and at long-time equilibrium there will inevitably be jumping between equilibria when the
system is operating in the bistable regime. Thus the observations y will be bimodally
distributed for inputs u € [ur,ur]. We can simulate this jumping behaviour by using
the deterministic rate law in equation (6.1) to construct a corresponding Master equation
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model, with reaction propensities as follows:

+ &)n
Production : €2 - (ao + a&> )

K+ (u+Z)n (6.2)

Decay : X
Here, X is the discrete (random) protein count and €2 is the system size. Simulating this

system using the stochastic simulation algorithm (SSA) at a nominal system size of 2 = 90
[2106], we see the bimodal distribution for intermediate values of u as shown in Figure 6.1A.
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Figure 6.1: (A) An empirical density plot of the simulated species concentration X/
for various inputs u, simulated using the SSA with © = 90. (B) The bifurcation curve
(stable, solid; and unstable, dashed) for the steady state protein concentration z* from
the deterministic model, with the LNA-derived standard error (shaded). The simulated

mean values (open circles) and standard errors (error bars) were computed from the SSA
simulation.
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The bimodal distribution of the observations y cannot be described by normally-
distributed homoskedastic or heteroskedastic error models around a single deterministic
mean. We instead assume y can be modeled by a Gaussian mixture and propose an ap-
proximate log-likelihood for the system of the form:

(01D, U) = log{p(us) - pr(yilu;, )
i (6.3)

+ [1 = p(ui)] - pp(yilui, 0)}

Here @r(yilu;, @) and ¢p(y;|u;,0) are the local distributions of y; around the top and
bottom bifurcation branches, respectively, while p represents the probability that a single-
cell observation y; will have originated from @7 (y;|u;, 0) for a given input u;. Thus [1 — p]
is the probability that the observation originated from ¢p(y;|u;, 0)

To define pr(y;|u;, 0) and ¢p(y;|u;, 0), we apply Van Kampen’s system size expansion
(SSE) to the Master equation, using the ansatz X = Qx + v/QC, where ¢ represents the
random fluctuations in species concentration around the deterministic mean concentration
x [217]. At first order in the SSE, we recover the deterministic rate equation (6.1) for mean
concentration x. At steady state the this rate law yields an equation for the steady state
mean z* in terms of the input wu,

(u+x)"

= ) = - A4
0 g(m,u, ) a0+aKn+<u+l‘)n Z (6 )

which has multiple solutions in the bistable region (i.e. for u € [ur,ug]). Over that range
we denote the lower root (stable fixed point) as x7, the middle root (unstable saddle
point) as z},, and the upper root (stable fixed point) as z%. In the monostable region
where u < up, the only root is z7; for u > ug, only 2% appears. Thus z} and 7. define
the bottom and top branches of the bifurcation curve respectively. The stable upper and
lower branches are shown in figure 6.1B along with the means and standard deviations
generated from SSA simulations. (To compute the means and standard deviations we used
the position relative to the unstable branch to assign each SSA-simulated concentration to
either the upper or lower basin of attraction.)

The next order in the SSE yields the linear noise approximation (LNA) [217]. From
the LNA we have an expression for the local variance of y about z*;

(ao—l—a% +$>

(6.5)
—2Q%g($, Uy 0)|pmge

o?(z*,u,0) =
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We evaluated this variance function, o?(z*,u, ), at the roots =% and z% to compute the
local variance around each bifurcation branch [218]. Figure 6.1B shows the reasonable
agreement between the SSE and SSA for both the means and the standard deviations, at
a system size of 2 = 90. Using the means and variance derived from the SSE we define
the local distribution g (y;|u;, 6) such that {y;|p = 0} ~ N (2%, 0(x%,u)) and @7 (y;|u;, 0)
such that {y;|p = 1} ~ N (2%, o%(z%, u)).

To describe the branch probability p, we use an alternate framing of the system dy-
namics as stochastic diffusion within a bistable potential. Focusing on the observation y,

define V(y f Y —g(v,u,0)dv as a potential function for the vector field of the de-
termlnlstlc rate equatlon Thus, as a somewhat ad hoc approximation, we can write
dy(t) = —VV(y) + v2edW. Here € represents the strength of a constant noise source

and dW are increments from the Wiener process. This approximation does not correspond
directly to either the linear noise approximation (which has a constant noise source at
steady state but a monostable potential about the deterministic mean) or the Kramers-
Moyal expansion (which has a nonlinear diffusion term). However, it allows us to use
Kramers’ expression for the the escape times between two wells in a potential [219];

Top *27T - 62(|V(:c}‘v1)—V(:B*B)|)/EB7
\/V”('xB> |V”('rM)| (6 6)
A 2n (V@) -V fer

\/V” |V// xM)‘

Here a7 and 7rp are the expected waiting times for the first crossing of the unstable
equilibria z3, from the bottom-to-top, or top-to-bottom respectively, assuming the system
is initialized at equilibrium in the corresponding potential basin. Here eg and e represent
the noise strength within each potential. Assuming that the well-to-well transition rates
are inversely proportional to these expected waiting times, we can write an equilibrium
constant for switching between wells as K, = 7p7/7rp. Recall that we defined p as the
probability of being in the well around x%. We can then write p = K./(1 + K.), i.e

p(u, 8) ~ logistic ('VW; Vgl |V <x7\4)€; Vi(ay)l .

+ 3o (V"(a3) — 5 log (V'(x3))).

where logistic(z) = (1 + e™#)~!. This is essentially the Erying-Kramers (EK) law for
reaction rates [219], where the logistic argument involving the potential is a function of
the input w. While this ad hoc approximation provides some mathematical insight, we
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cannot hope to generalize it directly to higher dimensional systems for which potentials
cannot be readily constructed. Moreover, it relies on the assumption of constant noise
that is small relative to the depth of the potential well. While these drawbacks make this
expression unsuitable for direct application, the functional form of the EK approximation
for p(u,0) suggests a logistic function may provide a satisfactory approximation for the
branch probability. As such we have used the approximation:

1
1+ exp(— (¢o + cru))

(6.8)

p(uv Co, Cl) ~

Here, the nonlinear expression involving the potential has been replaced with a linear
expression in u. To assess the accuracy of this approach, we used the SSA to numerically
determine the probability that the state lies in the basin of attraction of either the top
or bottom stable fixed points after long simulation times, see figure 6.2A. As shown, the
SSA results are fit well by a logistic function, over a range of system sizes. These logistic
curves are specified by parameters ¢y, ¢;, which we organize into vector ¢ = [¢y ¢;]. These
are auxiliary parameters, in the sense that, while having some underlying connection to
mechanistic parameters 6, they are not the direct target of our experiment, and serve
primarily to account for variability that would otherwise make the model intractable.

Substituting the expression for p(u, ¢) into (6.3) results in an appropriate mixture like-
lihood function on the bistable region. However, it cannot be evaluated as written on the
monostable branches, where only one of the two distributions is defined. One approach
to resolve this issue would be to modify the behaviour of p at the bifurcation points in a
piecewise fashion. But that would introduce points of non-differentiability (with respect
to 6) in p, which would invalidate use of the Fisher information [220]. As a tractable alter-
native, we define a guaranteed bistability region, as follows. We presume that preliminary
experiments have identified a region of bimodality. This can be achieved by, e.g. a screen-
ing experiment, using a grid or bisection search with a bimodality statistic, such as the
the Hartigan Dip Statistic (HDS) [221], shown in Figure 6.2B. (The HDS is a min-max,
non-parametric comparison of the observed distribution with the family of unimodal dis-
tributions, see [221] for details.) The HDS can detect a subinterval of the bistable region
where p deviates significantly from 0 or 1. Using an appropriate threshold, this data can
be used to define a region of guaranteed bistabilty u € [By, Bg] C [ur,ug]. For values of
u outside By, Bg|, we set p to either 0 or 1, thus approximating the system as monos-
table. By imposing the conservative bounds By and Bg, we have traded precision at the
bifurcation points for tractability (and smoothness with respect to the parameters) of the
resulting likelihood. To make use of this construction we restrict the permissible parameter
vectors 6 so that model’s bifurcation points fall outside the guaranteed bistable interval:
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Figure 6.2:  (A) Probability that the system is within the basin of attraction of the
upper equilibrium point in long-time equilibrium for Q@ = {60,90,120}; SSA (circles),
corresponding logistic fit (curve). The fit values are; ¢ = [—18.1 111.7] for Q = 90,

= [-24.2 150.3] for © = 120 and ¢ = [—12.1 73.8] for Q = 60. (B) The Hartigan dip
statistic computed for various inputs using N = 100, 1000, or 10000 observations. The
algorithm was taken from [1].

© € {0|lur(f) < By & Br < ug(f)}. The likelihood function can then be written as:
((6,¢|D,U) Zlog{p ui, ) - pr(yilui, 0)

+[1 = p(wi, c)] - pp(yiluwi, 0)}

Where: (6.9)
0 u < By,

p(u, c) = < logistic(co + cyu) B < u < Bg
1 Br<u
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Note that p(u,c) depends only on the auxiliary parameters ¢ while the local distributions
wp and @7 depend only on the reaction parameters 6.

We will use the Fisher information to quantify experimental optimality and thus identify
the optimal set of inputs. The inverse of the Fisher information matrix is equivalent to the
asymptotic covariance of the parameter estimates computed using a maximum likelihood
estimator [222]. Calculation of the Fisher information for this nonlinear system relies on
a nominal parameterization: é, ¢. Consequently our results are only guaranteed to be
locally optimal. The initial screening experiments used to define the guaranteed bistability
bounds can provide these nominal (preliminary) estimates. The Fisher information for a
single sample u; is;

I(uil0,¢) = By, [Vo.l(0, clyi,u;)" Vo (0, clyi, u)] (6.10)

where y; is the observed steady state protein concentration resulting from input u;. For
inputs where the response is approximated as monostable (i.e. u; < Bp or Bg < u;), the
Fisher information has an analytic expression. It can be computed as

Vgt (u;, 0\ gz (u;, 0)
I(uz‘e) = 02($*7Ui’é>
<V902(x*, U, é)TVHJZ(x*, U, é))

~

1
2 (02(z*, us, 0))?

(6.11)
+

Here z* correspond to 27 or x} depending on the input. The sensitivity of the branch
mean z* is
Og(z* u;,0)

Vor*(u;, 0) = (1 00 ) (6.12)

_ Og(z*,u;,0)
ox*

For the variances, we can compute the derivatives analytically as

0> (2", u;, 0

2 * .
+ 9o (a”, i, 0) (zx’*u“ 9) Vor*(x*, u;, 0).

To evaluate each of eq. 6.11-6.13, we solve for the roots of g(z*,u;,0), z7 and x%., numer-
ically.
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For inputs in the guaranteed bistable region u € [By, Bg|, calculation of the Fisher
information is more complicated due to the mixed Gaussian response. We computed the
sensitivity Vg (0, c|y;, u;) using the algorithmic differentiation capabilities of CasADi [196].
The expectation integral in the Fisher information (equation 6.10) is then computed nu-
merically using MATLAB’s globally adaptive quadrature function integral.

In this work we solve for what is known in the OED literature as the approximate
optimal design [223]. Using this approach the optimal design consists of a set of unique
inputs U = {uy, ...,us} and a corresponding set of sampling weights, £ = {£1, ..., &g}, such
that > .& = 1. The weight & reflects the fraction of the total number of observations
that should be made with the given input u;. (The reason these designs are called ap-
proximate is that, with a finite number of total samples in the experiment, one may only
approximate the optimal weighting unless the solution happens to have relatively simple
fractional weights.) The total Fisher information for the experiment is additive over inputs
u (assuming uncorrelated observations), therefore for an approximate design the total FIM
is a weighted average, with weights & = [¢1, ..., &5):

S
Irot(U,€10,8) = Y &1 (uilf, €). (6.14)

Next, we select a scalar function of the total information matrix as the OED objective.
We use two different optimality measures. The first is the standard D-optimal objective,
defined as the determinant of the total Fisher information |I7o (U6, ¢)| [15]. Maximizing
this objective is equivalent to minimizing the volume of the asymptotic confidence ellipsoid
for the entire parameter set (0, c). Because our primary interest is in accurately estimat-
ing the reaction parameters 6, we also consider D -optimality, which aims to specifically
minimize the confidence ellipsoid of 6, without consideration for the accuracy in ¢ [15]. To
define D,-optimality, first recall that the asymptotic covariance matrix, C', is equal to the
inverse of the total FIM, I,;. We block partition both matrices as follows;

Iy [96:| [ng Cgc:|
It = J ’ , C = 7 ’ , 6.15
t |: ]976 ch CG,C Cc,c ( )

A Dg-optimal design minimizes the determinant of Cjg, thus minimizing the confidence
ellipsoid for €. This is equivalent to maximizing the determinant [15]:

‘[Tot’
Lol

| To.0 — 197015315 = (6.16)

Having defined the D-optimal and Dg-optimal objectives, we can identify optimal exper-
imental designs {&;,u;}. To determine the D-optimal designs we use the CVX package
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over an adaptively refined grid of candidate u;’s [221]. For the Ds-optimal designs we
use CasADi and the IPOPT package for optimization, again using an adaptive grid for

u [196, ].

6.4 Results

We begin by investigating the manner in which the optimal designs depend on the nominal
values of the logistic parameters ¢, with 6 fixed at the nominal vector [0.5,3, v/9, 3], and
with 2 =90, B, = 0.1 and Bg = 0.2. For this analysis, we reparameterize the function p
such that ¢g = —c.c;. The new parameter ¢, corresponds to the u-value for which p = 0.5.
This allows us to independently set the midpoint and slope of the logistic. Figure 6.3A
depicts p for ¢; fixed and ¢, varying; Figure 6.3B shows p for varying c¢; values with c.
constant. The parameter ranges were chosen centered on the fit values of ¢ = [-18, 111]
at = 90 (shown in figure 6.2A). The corresponding optimal designs are depicted beneath:
optimal inputs, u; (stem locations); optimal weights, &; (stem height). Both the Dy and D
optimal designs are shown.

These results reveal that the optimal design in each case involves (i) a modest experi-
mental effort to characterize the monostable response at the extremes of the feasible input
range, and (ii) a much heavier sampling within the bistable region. For Dg-optimal exper-
iments, the optimal design clusters the bimodal samples near the mid-point of the logistic
function (where p ~ 0.5). For D-optimal experiments, which aim to characterize the full
parameter set (6, c¢), optimal samples consistently track a pair of percentiles of p above and
below the mid-point.

We next investigated the sensitivity of optimal sample placement to the nominal 6
vector, by holding the logistic parameters constant at ¢ = [—18.0, 111] and randomly
selecting ten 6 vectors from a normal distribution with mean [0.5, 3, V9, 3] and standard
deviations of 10% of the mean values. To ensure all § were consistent with the assumptions
used to derive the likelihood, we rejected parameter sets that did not result in deterministic
bistability at « = B, —e and u = B, +¢€, with ¢ = 0.05, as well as rejecting parameters sets
that resulted in bistability at v = 0 and u = 0.3 (the upper and lower bounds of the feasible
range for u). Figure 6.4A depicts stable branches of the ten random bifurcation curves for
the chosen 6 parameter sets. Figures 6.4B and C depict the corresponding D,-optimal and
D-optimal designs respectively. With the logistic parameters held constant, the optimal
samples for both Dy and D optimality show a similar placement and weighting, despite
the variability in the model parameterization. This finding suggests that, at this systems
size (2 = 90), the shape of the logistic function (which characterizes the bimodality)
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Figure 6.3:  (A) Plots of p for ¢. = 0.152, 0.162, 0.172 (¢¢ = —16.9,—18.0,—19.1),

with ¢, = 111. (B) Plots of p for ¢ = 76, 111, 156 with ¢. = 0.162 (¢ =
—12.33, —18.00, —25.30). (C, D) Corresponding Ds-optimal designs. (E, F) Correspond-
ing D-optimal designs. Input values u; correspond to stem locations. Weights &; correspond
to stem heights. Note the short stems at both ends of each feasible input range.

has a strong effect on the optimal sample placement. These also implies that preference
between the D or D, objectives will depend predominantly on the experimental plans. If
the experimenter will only perform a single experiment, the D, design yields an optimal
estimate for the primary parameters §. However, if the experimenter plans to perform a
series of iterated experiments, refining their parameter estimates and re-optimizing their
experimental design after each iteration, the D-optimal design will yield a sequence of
improved estimates for both # and c. As the optimal design appears to depend largely on
the values of ¢, the D-optimal objective is ideal for this case.

Referring to Figures 6.3 and 6.4, we note that the D,-optimal designs tended to sample
from single mid-point near the middle of the bistable region at a percentile near p = 0.5.
Likewise the D-optimal designs appear to select a pair of optimal inputs that map to
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Figure 6.4: (A) Stable branches of the bifurcation curves generated from ten random
parameter sets 6. (B) Ds-optimal sample weights and inputs for the chosen § parameters
sets, with logistic parameters ¢ held constant. (C) Corresponding D-optimal designs.

relatively consistent and symmetric percentiles on the p logistic curve. To further assess
this trend, we generated 500 fully randomized parameters sets. Vectors 6 was chosen as
above; values of ¢; were selected from a uniform distribution over [91 141], while ¢, was
selected from a uniform distribution over [0.125 0.175]. This ensured the mid-point p = 0.5
did not fall too close to the boundaries of the guaranteed bistable region By, = 0.1 and
Br = 0.2. Figure 6.5 shows histograms of the Dy and D-optimal sampling locations in
the bistable region across all of the randomly generated parameter sets, where the optimal
inputs v have been mapped against percentiles of the logistic p. The figure shows clear
trends: the Dg-optimal input, for use when applying a single round of OED, lies near
the 60th percentile of p; the D-optimal inputs, which are suited to an iterative OED
application, occur near the 25th and 85th percentiles of p. Referring to Figure 6.2, we
note that the 60th percentile of p is approximately where the HDS peaks, while the 25th
and 85th percentiles occur where the HDS rises above the baseline. These results suggest
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Figure 6.5: (A) Histogram for 500 random parameters sets; shown are the frequency of Ds-
optimal input values that fall within the bistable region, plotted according to the percentiles
of the logistic p to which they correspond. (B) Corresponding histogram for D-optimal
inputs.

a simple heuristic for performing OED in this bistable system by using the HDS to do a
preliminary search for these locations. After these critical values have been located, the
experimenter can use the existing data to provide initial estimates of 0 and ¢ and perform
a D or D, optimal design. For a crude approximation of the optimal design, the logistic
could be fit using only the peak and bounds of the elevated HDS signal to approximate the
percentile locations. These critical HDS locations could also be used to select the inputs
u directly. The sampling weights £ could then be approximated based on an average of
weights across many 6 values, as shown in Figure 6.4. As shown in Figure 6.4B and C, 0
appears to have a limited effect on the optimal design once the logistic is known, with the
majority of samples being taken in the biomodal input range.
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6.5 Conclusion

In this work we applied OED to an inducible and auto-activating gene expression motif
that exhibits bistability. We used a stochastic model to derive an approximate likelihood
function, based on the LNA, and a logistic approximation for stochastic switching be-
tween stable points motivated by Eyring-Kramers’ law. We defined a likelihood to avoid
irregularities caused by the bifurcations. We then used D, and D-optimality criteria to
determine optimal inputs and sampling proportions for steady state experiments. We
showed that, for the given nominal parameter set and system sizes, the logistic switching
function strongly influences the optimal input placement and that optimal inputs roughly
correspond to certain percentiles on the logistic curve. Our results suggest that bimodality
statistics, like the HDS, may provide a convenient method to perform optimal experiments
in the absence of accurate initial estimates for the model parameters. These results can
be further investigated by additional simulation studies, to examine a wider range of sys-
tem sizes and parameters. Additional tests can incorporate maximum likelihood fitting
to SSA-generated data. We chose the somewhat artificial one-dimensional system used
here because it provided a simple, tractable example, allowing us to more thoroughly il-
lustrate the connection between optimal designs and bistability. Extending our analysis to
higher-dimensional systems will reveal whether the simple design heuristic we discovered
may be representative of a more general property of OED for bistable systems. An obvious
next step is to extend our analysis to a more realistic two-dimensional toggle switch, a
direction which we are currently pursuing. Another possible line of inquiry would involve
using model and dimensionality reduction techniques to map higher dimensional systems
into a one or two dimensional observation space. These reduction techniques may be easier
to apply at steady state, rather than in a dynamic context, which is an attractive feature
of targeting steady state experiments. Finding an appropriate model reduction procedure
would ideally make it straightforward to validate and apply our heuristic design rule to a
much broader class of systems.
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Chapter 7

A Software Package for Optimal
Experimental Design in Systems
Biology

7.1 Introduction

Models used in systems biology are often non-linear, multi-dimensional, and dynamic.
Models of this type are difficult to study and fit to data due to the computational cost
in simulating them and the lack of analytical tools available for studying their behaviour.
However, due to the nature of the biochemical systems of interest, there is often no recourse
to model simplification and the applied modeler is forced to contend with an unwieldy
model in order to capture the behaviour of interest. Fortunately, increasing availability of
novel experimental techniques and high-quality numerical tools can provide some remedy
[154]. Calibrating complex models is made more feasible with the availability of richer, more
informative datasets. Biology has seen significant advances in experimental techniques
including methods for real-time, single-cell, multivariate measurements in dynamic contexts
[154]. Also recent decades have seen the community converge on a number of high-level
modelling languages such as Python and MATLAB, as well as the emergence of a large
variety of specialized computational tools for working with the numerical models that
are common in systems biology [225, |. However as experimental interests also shift
to studying more complex and dynamic systems-level behaviour in vivo, modelers will
likely need to take a more active role in guiding experimentation. Numerical tools are
needed that reverse the traditional flow of information which historically emanated from
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experimentalists, who collected the data, and was transferred to modelers, who fit models,
made predictions, and theorized about mechanisms. Experimental design tools are valuable
for systems-level experimentation, as they can take existing understanding of a system,
described mathematically, and generate efficient experimental designs for understanding
the systems behaviour. In this way, experimental design tools can help to strengthen the
feedback between theory and experiment. By including mathematical modelling within
the experimental loop, it is hoped that the community can improve the efficiency of data
collection and the accuracy of model calibration for more complex systems [154]. This
in turn will increase the reliability of model predictions, making models more useful for
generating new hypotheses in natural systems and in engineering synthetic ones. To this
end, this chapter describes the implementation of the Non-linear Optimal Experimental
Design (NLOED) software package, which seeks to provide convenient OED tools, in an
open-source Python module, for experimentalists interested in fitting non-linear systems
biology models.

7.1.1 Past Works

There has been a growing interest in experimental design methods in systems biology (i.e.
see works cited in [105, 22, ]), including the previous works contained in this thesis
[159, , |. All of these works have required a custom implementation of the exper-
imental design algorithms in each case. These studies require many common numerical
procedures including model simulation, fitting, sensitivity analysis, computing Fisher in-
formation matrices, and optimization over the design space. There are still only limited
examples of studies that implement numerically designed experiments in the laboratory
[9, 10], likely because implementing optimal design algorithms is quite involved, especially
for groups that are already focusing on the practical aspects of experiments. Purpose-built
software like NLOED can provide significant benefit to model builders and experimental-
ists, by making design and analysis of experiments for systems biology easier to perform
without the need to re-implement algorithms or knowledge of experimental design theory.
A modular framework combining many of the common elements of experimental design
will make it easier to study optimal designs; study of which will inform modelers about the
feasibility of model calibration and help guide experimentalists to improve the efficiency
of data collection.

Interest in experimental design spans a number of related fields in statistics [229],
chemical engineering [21], control theory [14], pharmacokinetics/dynamics (PKPD) [230]
as well as systems biology. Existing software tools have been developed across these vari-
ous fields. Statistics has a long history of studying optimal design and many established
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software suites such as SAS and R have experimental design algorithms available in them
[231, ]. R in particular provides access to a wide range of experimental design tools
(see the DOE task view page at [231]). The vast majority of these packages are aimed at
the traditional static regression models used for empirical modelling in statistics. While
these tools are well established and maintained, SAS, R and other statistical languages
are less commonly used in systems biology, where MATLAB and Python are the preferred
languages for modelling dynamic systems. PKPD researchers have also been interested in
optimizing experimental design in the pharmaceutical field, several notable experimental
design packages have been developed within this field. These include the PopED pack-
age from Nyberg et al. (available in MATLAB) [233] and PFIM 3.0 from Bazzoli et al.
(available in R) [231] among others thoroughly compared in later work by Nyberg et al.
[230]. These tools are more focused on dynamic models then those in statistics, however
they place special emphasis on approximating the FIM for mixed-models (models that
include random coefficients that vary between subjects). This emphasis is warranted be-
cause subject-specific effects are a common and unavoidable occurrence in pharmaceutical
research where animal and human subjects are necessary. Computing the FIM for models
with these mixed sources of variability is difficult and these additional sources are not often
of interest for systems biologists working with microorganisms. The modelling interests
and experimental constraints of microbial systems biology are different enough from PKPD
practitioners that a separate set of software tools is desirable. Bayesian design methods are
of particular interest to those studying non-linear models, including those in microbial sys-
tems biology, as it allows modelers to include prior information on parameter uncertainty
rather than relying on purely local analysis. An early example of a Bayesian design package
was published by Clyde [235], however this was released in 1993 in the, now defunct, XLisp-
Stat language. However, Bayesian design has experienced some renewed interest in recent
years; of special interest is the aceBayes package by Overstall and Woods [236], which
implements Bayesian design optimization for a variety of models. Their very recent work
has begun to address dynamic models of biology using similar approaches to that found
in aceBayes and this work will be of considerable interest to systems biology practitioners
going forward [237]. Despite these promising developments in Bayesian design software,
Bayesian methods can be both theoretically complex and computationally intensive. For
pragmatic reasons a dedicated optimal design package for systems biology, focusing on
well established non-Bayesian optimal design methods, is desirable. An accessible package,
written in a high-level language, using classic OED techniques will simplify the application
of optimal design in systems biology and encourage wider adoption of design optimization.
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7.1.2 Motivation and Objectives

In addition to challenges faced by other experimental design tools non-PKPD systems
biology poses a range of unique challenges, especially with respect to developing a general
use software package for the field. Biological systems often exhibit strong non-linearity,
multi-stability and bifurcations [238]. Interesting dynamic behaviour can occur over a
range of timescales, and steady-state relations are often described by implicit functions.
Often the systems of interest have relatively small species counts resulting in significant
stochastic effects, and replication can be challenging and take on multiple meanings [239].
Compounding this, biological systems often have a large number of separate species, many
of which may be inaccessible to measurement. Data from biological experiments can come
from a variety assay types, and often exhibit non-normal error distributions. In addition
measurements may span multiple physical scales, from individual chemical species counts,
to single-cell data, to bulk population measurements all within the same experiment. As
such a single software tool will likely not address all systems biology applications equally
well, but we have identified several key objectives for a system biology-focused software
package like NLOED which are outlined below;

e Develop the package in an established modelling language for users in systems biology
(in this case Python) and make the tool open source and accessible. In addition it is
desirable that the package interfaces easily with other established numerical libraries
(i.e. Numpy, Pandas, Matplotlib) so that users can easily import and export data
and results.

e Support optimal design for both static and dynamic nonlinear models, including
multi-input and multi-output models. This will allow researchers to study dynamic
and steady-state behaviour for a wide variety of systems and experimental protocols
within one tool.

e Accommodate non-normal observation distributions (i.e. Poisson, binomial and log-
normal etc.) and allow for a variety of observation distributions within the same
model. Such heterogeneous distributions are often found in biological experiments
with assays such as plate counts and fluorescent measurements.

e Provide not only the design algorithms, but also the fitting, evaluation, simulation
and data sampling routines that are useful in an overall workflow for model building
and analysis. These features allow the package to serve as a standalone environment
for model development with a specific focus on experimental design. These features
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also ensures asymptotic tools used in design are paired with their appropriate fitting
algorithms, decreasing the amount of statistical knowledge the user will need.

In addition to these design objectives, ongoing development in other numerical fields
has provided some opportunity to update the experimental design tool set. Optimal ex-
perimental design for non-linear models relies heavily on sensitivity analysis in order to
compute asymptotic objectives based on the Fisher information matrix. Optimal design
also depends significantly on efficient optimization algorithms. We have taken advantage
of maturing open-source numerical projects available for sensitivity analysis and optimiza-
tion. Specifically, while most past software tools have relied on finite difference methods
for computing model sensitivities, these can be numerically error prone and computation-
ally inefficient [210]. Automatic differentiation (AD) provides a novel alternative, in which
derivatives are computed through code generation created at run-time by specialized li-
braries, ensuring rapid computation with minimal numerical error [196]. AD tools have
matured significantly in recent years, with higher-level tools emerging that are easier to use
[196]. The NLOED package has been built on top of CasADi, an AD equipped software
tool for rapid prototyping of optimal control problems [196]. CasADi is a natural choice for
integration with a systems biology experimental design tool, as it is primarily built for the
optimal control community, a field with similar formalisms and objectives to many systems
biologists. In addition CasADi provides a convenient interface to specialized third-party
open-source optimization frameworks such as IPOPT [197]. Our package therefore uses
some of the most cutting-edge numerical tools, which is an improvement on past optimal
design packages.

While many researchers would benefit from the above objectives, there remains a huge
variety of users, models and design objectives that would identify with the umbrella-term
‘systems biology’. Given that each choice of a numerical method comes with certain limita-
tions, necessary design trade-offs have to be made during software development. Below we
outline specific design decision that, while narrowing the package’s use cases, are required
to ensure a well-tested and cohesive software tool;

e The package is designed with a programmatic interface, rather than a graphical in-
terface. While written in high-level language and in an object-oriented style, the
NLOED package is designed to be modular so that users can generate a wide variety
of experiments and simulation studies with the available code. Designs are not gen-
erated in a single out-of-the-box function call, and the user requires some familiarity
with the package classes and functions. Helper-functions and interfaces can be built
on top of the package in future development.
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e The package supports deterministic model structures that can be implemented in
CasADi’s modelling framework, this includes both algebraic and differential equation-
based models. The package supports a variety of common observation distribution
types, including many from the exponential family.

e The package is primarily focused on local, asymptotic objectives base on the Fisher
information matrix. This type of objective benefits most from the use the AD and
optimization frameworks available. While not as robust to parameter uncertainty,
optimization is comparatively fast for these objectives allowing for multiple local
analyses in a comparatively short period of time.

e Optimization objectives in the package are primarily dedicated to parameter accu-
racy, specifically D-optimal and related objectives (see Chapter 2 for details). Model
selection objectives have not been implemented in the initial release, although ro-
bustness to model uncertainty has been given some attention.

e The package relies on gradient-based non-linear programming via the IPOPT pack-
age. This type of optimization also benefits significantly from the AD tools available
in CasADi. This approach is computationally efficient and scales well at the expense
of local optima and some sensitivity to starting designs.

e In the initial release we have not implemented multi-shooting or collocation methods
which would allow optimal design to scale to more complex and higher-dimensional
dynamic experiments. While powerful, these methods can be highly specialized and
require a more complex interface and dedicated code for specifying the optimization
problem. However these methods could be included in future releases given that
CasADi is an ideal tool on which to build related optimal control algorithms.

e In the package we solve a relaxed version of the design optimization problem and
then provide the user with rounding methods to generate an exact, implementable
design with a specific sample size. This is an optimize-then-discretize approach with
respect to the replicate allocation. This approach benefits most from the available
AD and optimization tools, and is fast and flexible at potentially some expense to
optimality in small sample size designs.

To summarize, our design choices have focused on harnessing the underlying AD and
optimization tools as effectively as possible to achieve a fast turnaround in modelling
and design, at the expense of using local and relaxed approximations. This means users
can quickly, and in some cases interactively, design multiple experiments and explore a
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range of cases. This is motivated by the philosophy that it is better to explore multiple
scenarios quickly and approximately, rather than exactly optimize the “perfect” objective
only once — after significant computational cost and delay. Furthermore, in the authors
experience, any single optimal design, while valuable, always embodies trade-offs against
competing possibilities. Significant value is often obtained in going through the process
of experimental design as it allows the user to discover qualitative properties of good
design structure for their system. The design process also allows the user to explore model
identifiability under various scenarios. In pursuit of these qualitative and exploratory
goals, a fast turnaround, with flexibility to examine multiple possibilities is an important
attribute. In pursuit of flexibility, the package does not deliver a design in a single function
call or through a pre-fixed graphical interface. We have also prioritized flexibility and
modularity in the package interface, keeping to the ideal that it is better to show the user
how to use a modular set of functions for many things, rather than force a user to solve a
single type of problem with a single purpose built function. In a similar fashion, we have
focused on supporting as broad a range of models and distributions as possible, believing
its better to support many models adequately rather than only a niche set of model types
with fully optimized numerics. This flexibility will ideally allow the user to explore a wide
variety of models of the a given system (i.e. steady-state and dynamic behaviour) in the
same software environment.

7.2 Workflow and Definitions

The NLOED package is written in Python 3 and can be used in Python scripts or inter-
actively in the interpreter. The package consists primarily of two core classes; the Model
class and the Design class. The Model class encodes information about model structure,
observation distributions, and model-specific functions such as those used for fitting, simu-
lation and model analysis. The Design class accepts models and other design information
and can be used to optimize and output experimental designs.

Model equations passed into the Model class are created using CasADi symbolics and
the CasADi Function class. Use of CasADi constructs enables much of the auto-generated
functionality within the main two classes. Due to this reliance on CasADi, the core package
does require some familiarity with model construction in the CasADi framework. However
the modular and object-oriented nature of the core package classes means it is amenable
to future extensions, such as wrapping the core classes in more beginner-friendly helper
functions or GUI interfaces.

Output from both the Model and Design classes is primarily returned as Pandas and
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Numpy data structures. For examples experimental designs, model simulations and predic-
tions are exported as Pandas dataframes. Data, candidate designs, and other user provided
information are also passed into class functions as dataframes. This makes it easy to read
in raw data from Excel and CSV files, via Pandas functions like read csv(), to_csv(),
read_excel() and to_excel(). The use of dataframes also makes it easy to plot model
predictions and sample data using third-party plotting packages such as Matplotlib, as well
as exporting output to a variety of formats for use in other tools such as MATLAB and R.

Basic Package Overview

s ' _
Maodel(s) Distribution(s) (" Input Information - x
fi(x.8) Y, ~ py/f(x.8)) e Range/Constraints
S d e Candidate Points

o Discrete/Continuous

\AA/

[ ‘Model’ Class ]

~

" Parameter Information - 8
s Parameter Values
e Prior Info J

Observation Structure - Y, J

- y ) e Grouping of ys
| Other Functionality Objective Function(s)
e Fitting e i.e. D-optimality
e Predictions . Optimal Design
e  Sensitivity Analysis | ‘Design’ Class ] .
| e Data Simulation | Input Replicates
N S
X B1_3
x, B,=3

X, |33=4

Figure 7.1: A diagram depicting the archetypal NLOED workflow including model creation
using the Model class, and design creation using the Design class. Here « is the vector of
model inputs describing the experimental conditions, y are the observation variables, @ are
the unknown model parameters, f(.) is the model function and p(.) is the data distribution,
see text for further description.

The majority of use cases for the package center around a simple archetypal workflow,
as shown in Fig. 7.1: 1) Model creation; create a model using CasADi symbolics and the
NLOED Model class, 2) Design creation; pass the Model instance, along with other design
specifications, into the Design class constructor to create an optimal design. This simple
pattern can be recycled in a variety of ways, i.e. to construct simulation studies, to compare
designs across different models, or to generate design variations with a single model. The
Model class can perform a range of other functions, such as fitting and simulation, which
are useful in both real experimental work and simulation studies.
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7.2.1 Model Definition

Before discussing the programmatic details of model creation in the NLOED package, we
first define what mathematical structure NLOED accepts as a suitable model. NLOED
models generally follow the model specification given in Chapter 2, which is briefly re-
viewed here. The model connects the random observation variables, Y;, with model input
vector, @, which quantifies the experimental conditions. Note that when considering the
model declaration the user can ignore the j sub-scripting on the input vectors, x;, as the
number of unique experimental conditions is not addressed until the design phase. There-
fore, when not discussing the data or a design, it is often convenient to suppress the jth
index on x;, 1; ;, Y;; and y; ;. Recall that each Y; is a random variable representing a given
type of observation. Each Y; has a specific parametric distribution, p;(.), but this distri-
bution’s shape is conditional on the model inputs & and the unknown parameter vector 6.
Therefore for each possible observation, Y;, the connection between input and observation
is mediated by two components: 1) the conditional observation distribution, p;(y;|n;) and
2) the deterministic model function n; = fi(x,0). These two components are combined to
create the overall model:

Y; ~ pi(yilni=fi(x,0)). (7.1)

The observation distributions, p;(.), in NLOED are all parametric distributions and they
currently include; the normal, Poisson, binomial, log-normal, Bernoulli, exponential and
gamma distributions. The deterministic model, f;(.), maps the experimental conditions
x to the sampling statistics, 7;, of the observation distribution p;(.). The function fi(.)
must be sufficiently smooth and implementable in CasADi symbolics. This permits a wide
range of model types including models based on numerical integration. Recall the sampling
statistics are the natural parameters of the parametric distribution p;(.). For example with
the normal distribution the sampling statistics are the mean and variance, for the Poisson
distribution the sampling statistic is the A\ rate parameter, and for the Bernoulli distribu-
tion the sampling statistic is the probability of a success. Therefore in NLOED the model
function f;(.) does not always predict the mean observational response, but rather predicts
the appropriate sampling statistics of the random variable, Y;, assigned to the given ob-
servation type. Specifying models in this way allows for much more flexibility in the types
of experimental observations NLOED can handle. Each y; represents a single-dimensional
realization of the random observation variable Y;. NLOED always assumes all observa-
tion variables Y; are independent; this allows NLOED to easily accommodate a variety of
distribution types rather than only supporting (possibly correlated) normally distributed
data. When creating a model in NLOED the user must specify the vector dimensions of
the parameters, 6, and of the model inputs, x, as well as the list of observation variables,
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Y; € Y. The user must also indicate the distribution type of p;(.) for each observation
variable, Y;, and they must provide the model function, f;(.) using CasADi’s symbolic
tools. The distribution, p;(.), and the function f;(.) for each Y; are passed as a list so the
user can add as many observations as is desired.

S0

Direct Measurement of A at
Three Possible Time Points

Species A
Abundance

Plating of Cellular
Population at the Final
Time Point

Figure 7.2: A figure depicting an example experimental scenario, involving a decaying
cellular species A. The experiment includes both direct measurement of A and a plate
count assessing A’s potential for conferring resistance to a selective agent.

Specifying models in this way provides flexibility in mixing different observation types.
As an example, assume synthesis of a biochemical species A has previously been induced
in a cell culture and A’s intra-cellular concentration is undergoing exponential decay. This
scenario is depicted in Figure 7.2. An experimenter wishes to take some replicate measure-
ments of A at any of three possible time points spaced evenly throughout the first three
hours after decay begins. Furthermore, assume that A confers some selection resistance
and the experimenter will plate the culture on selective plates at the fourth hour and per-
form a plate count. Assume the experimenter controls the initial induction level as input
x1. In this proposed experiment there are four observation variables; Y7, Y5, and Y3 are
observations of A’s concentration at one, two and three hours after induction. Observation
Y, is the plate count from the fourth hour. We assume that p;(.) p(.), and ps(.) are nor-
mally distributed with a known fixed variance of 02 = 1, and p4(.) is Poison distributed.
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We assume that the mean concentration of A can be modelled as

w(t) = aze™ (7.2)
we assume that the Poisson rate for the plate count is modeled as
v
At) = —; 7.3
0= = (73)
The model can be defined by listing out the model components as:
wZ[I1]7 0:[05777V7"€]7 Y:D/la}/%yéayzl]
pl() - Normal, m = [M(t:]-)? 02]7 fl(ma 0) - [Oéxle_fya 1}
p2(> = Normal, N2 = [M(t:2>7 02]7 f?(ma 0) = [Oéxle_277 ]-]
po() = Nommal, 1y = [u(t=3)0],  fo(w.8) = [arse " 1] 7
: v
pa(.) = Poisson,  mq = [A(t=4)], fi(x,0) = T
ary

Another possible model structure for this experimental scenario would involve treating
the observation time for the A species assay as a second input dimension, x,. In this
scenario there would now be only two observation variables: Y] is the abundance of species
A at any time point before the fourth hour, and Y5 is the plate count performed at the
fourth hour. Using this encoding the model structure would be

m:[$17w2]7 9:[04,%”7"4]7 Y:[Yi,Yé]

pl() = Normal, m = [M(t:l'g), 0-2]7 fl (33, 0) = [axle—m’ 1] (7 5)
. 14 .

pa(.) = Poisson,  mz = [A(t=4)], fo(x,0) = =

This encoding provides greater flexibility in the sampling schedule of A which may be de-
sirable or problematic depending on the experimental protocol. Choosing the appropriate
encoding for a given experimental scenario depends on practical aspects of the protocol
and numerical considerations for the optimization. Information and examples provided
throughout this chapter will be useful for guiding this decision. Regardless of how the
model is encoded, specification of the deterministic model components and the observa-
tion distributions fully defines an NLOED model. Receiving this information, the Model
class constructor auto-generates a large variety of useful code including maximum likeli-
hood fitting functions, parametric sensitivity functions, and model prediction and sampling
functions as described below.
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7.2.2 Design Definition

Designs in NLOED generally follow the design definition outlined in Chapter 2, which is
summarized here for convenience. Designs in NLOED must specify two main pieces of
information, 1) the set of input conditions (support points) «; € X' used in the experiment
and 2) the number of replicate observations f3; ; € B taken of each observation variable, Y;,
in each condition «;. These two properties are common to most design formalisms [15, 16].
NLOED uses two different types of designs in its workflow; relazed designs andezact designs
(see Chapter 2 for further discussion). In exact designs, each f3;; is an integer and the
overall sample size for the experiment, Ny, is the sum of the replicates in each observation
and in each condition: Np, = Zj\/f ZZN Bi;. Relaxed designs instead use real valued
weights, &; ;, between 0 and 1 to represent the replicate allocations to each observation and
in each condition. The sum of the real valued weights is 1 and therefore relaxed designs
do not have a sample size. Instead the weights represent the approximate fraction of an
arbitrary sample size that should be allocated to each input and observation condition so
that Np&; ; ~ (i ;. This relation only holds approximately because the weights, &, ;, may
not share the desired sample size as a common denominator, or may even be irrational.
NLOED uses both design types in its workflow because it generates designs using an
optimize-then-discretize approach. Initially an optimal relaxed design is solved for, after
which the relaxed design is then rounded to a discrete exact design with a desired sample
size. Optimizing the exact design directly is difficult because, with 3; ; restricted to discrete
integers, the resulting optimization problem is a nonlinear integer programming problem
which is difficult to solve efficiently [15, 16]. The term relaxed comes from the relaxation
of the integer constraint. Relaxed designs can be viewed as a mathematical idealization of
an optimal experiment with infinite data which means they can be difficult to implement
with small finite sample sizes [15, 10].

While an approximation, the optimize-then-discretize approach naturally splits the
workflow into two phases providing greater flexibility for the user. Specifically, the user’s
ultimate goal may be to choose their sample size to achieve certain accuracy objectives
as efficiently as possible; they wish to take as few samples as they can but as many as
they must. An optimal design will help to improve estimation accuracy, however the over-
all sample size is a more important factor. The accuracy of parameter estimates always
improves monotonically with increasing sample size and the structure of the design only
determines how much marginal improvement each additional measurement contributes.
When optimizing an exact design directly the user must specify the sample size before
they optimize, which means they do not know the structure or the pre-factor utility of
the optimal design when the overall size of the experiment is chosen. Therefore, in direct
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Table 7.1: An example of the structure used to represent an experimental design in the
NLOED package. Here both the continuous sampling weights and the discrete sample
numbers are shown. Relaxed designs use the continuous weights where as exact designs
use the discrete numbers. Here the exact design has a sample size of N = 20.

Input  Observation Sample Sample

Vector Variable Weight Number

L Y; §i g Bij
x; =0 Y] 0.1 2
xp = 10 Y; 0.2 4
xz = 10 Ys 0.1 2
xy = 10 Y, 0.3 6
xr3=>5 Y, 0.3 6

optimization of the exact design, choosing a minimally sufficient sample size would require
multiple runs of a difficult integer programming problem. By optimizing the relaxed design
first, the user will achieve an approximately optimal design structure. They can then use
efficient rounding procedures to investigate multiple sample sizes and choose the lowest
possible experimental burden that achieves their desired accuracy level.

When using the NLOED package, relaxed designs are generally hidden from the user
within a Design object, however they can be printed as a dataframe if desired. Exact
designs are created from existing Design objects using a specific rounding function. The
rounding function returns a dataframe containing an implementable exact design with the
desired sample size. When representing design information in a dataframe, NLOED uses
a three column data format. This format consists of 1) a list of input settings, x;, 2) a list
of observation variables, Y;, indicating which output is measured at each setting, 3) a list
of replicate allocations, either §;; or & ;. In NLOED’s design format, the input list can
contain duplicates of support points, x;, if multiple observation variables are measured at
the same point. However each input-observation pair is unique and corresponds to a single
replicate allocation. Table 7.1, shows how NLOED designs are specified for the example
model discussed in the previous section, in its initial discrete time formulation. The first
column contains a listing of input conditions at which observations are to be taken. The
overall design here only has three unique support points: @, &>, and x3, however five input
points are shown because s has been repeated three times. The second column specifies
which observation variables are to be observed at each of the input points to their left. In
the third and fourth columns, two different types of replicate allocations are shown. The
third column contains continuous sampling weights, &; ; which sum to one, and indicate
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the fraction of the total sample size to be made at the input-observation pair specified to
the left. The fourth column lists the replication allocation as integer counts, f; ;, and in
this case they sum to a total sample size of 20. In any given design only one of the third
and fourth columns is needed; which type is dependent on whether the design is a relaxed
design or an ezxact design, as previously discussed.

7.3 The Model Class

The Model class encapsulates all of the information about the model structure and error
distribution needed within the NLOED package. The class is designed to be a minimal
but self-sufficient modeling environment providing functions for generating predictions,
fitting parameters, simulating data, performing diagnostics like confidence region plots,
and doing sensitivity analysis. Figure 7.3 gives a general overview of the process for
creating and interacting with a Model class instance. The figure is divided into three
main sections: green represents the parts of the process the user controls, blue represents
the parts of the process that are automatic. At the top of the figure, the green section

Model Class

User-Provided

T e User Provided Information for Model Instantiation
e CasADi model function: f(x,8)
e Observation distribution type: p,(.)
e |nput and Parameter Names for x and @
Internally-Generated '
Function Attributes [ ‘Model’ Class Constructor ]
v ) ) ¥
Ll Fisher Information
Mean and Mean Sensitivity Data Sampling Matrix Function Log-likelihood
Variance Function Function Attribute Function Attribute . Function Attribute
Attributes Al

User-Callable
sample()

Functions
Figure 7.3: A diagram depicting the user-provided arguments, internal function attributes
and user-callable functions of the NLOED Model class.

predict() evaluate()

labeled User-Provided Information illustrates the data a user needs to prepare in order to
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create an NLOED model. The required information includes the deterministic parts of the
model f;(x,0), encoded in a CasADi functions. It also includes the assumed observation
distributions, p;(.) for each observation variable, as well as names for the model inputs
and parameters. The user provides this information to the Model class constructor which
creates the class instance.

Instantiation is normally done in a single line of code and occurs almost instantaneously;
however it hides several automated processes that generate internal function attributes
inside the class instance. These automatic processes are labelled as Internally-Generated
Function Attributes in Figure 7.3 and are shown in the blue region in the middle of the
figure. During instantiation, the Model class uses the CasADi function, f;(x, ), passed
by the user, to auto-generate a variety of CasADi function attributes. These function
attributes include atomic functions to compute the mean and variance of observations
variables, the log-likelihood, the parametric sensitivities, the FIM and simulated data.
These expressions are first generated symbolically and then encapsulated in a callable
CasADi function stored within the Model class instance. The user will rarely interact with
them directly, however they are used internally in many scenarios. These scenarios include
when the Model instance is passed to the Design class for optimization or when the user
invokes user-callable functions (discussed below) that use these auto-generated function
attributes within their implementation.

The final section in Figure 7.3 is labelled User-Callable Functions and it highlights
various high-level functions the user can call directly to perform specific tasks using the
model. For example the user can ask for predictions from the model using the predict ()
function, or the user can use the fit () function to fit the model parameters to a provided
dataset. These high-level user-callable functions are designed to provide a simple means to
perform common tasks efficiently, while hiding the more mathematical function attributes
within the class. Thus the user will generally instantiate a model at the beginning of a script
or session and then use that model, and its available high-level functions, to perform various
computations such as designing experiments, fitting data and predicting new behaviour.
In the following three subsections we go into more detail on 1) how to create a model, 2)
the exact role of the auto-generated function attributes, and 3) explaining the usage of the
high-level user-callable functions for fitting, predicting, sampling and evaluating designs.

7.3.1 Creating a Model Object

To create a Model class instance, the user first needs to encode the deterministic part
of their model in CasADi symbolics. Recall, the deterministic part of the model are
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the mathematical relations, f;(x,0), mapping the inputs, x, and parameters, 6, to the
sampling statistics, 1;, of the observation variable, Y;. Listing 1 demonstrates this process
for a simple two-input, two-output, four-parameter model: 7.6,

Hy; = 60 + 911’1 -+ 931’1372, 0'52/1 = 01, Yi ~ Normal(,uyl, 0')2/1),

7.6
)\Y2 = eXp(QO + Oy + (93$1w2)a Yy ~ POiSSOH(AYz)' ( )

This model has a simple linear regression model for Y; and a Poisson regression model for
Y5. To begin implementing this model in CasADi symbolics the Model class is imported
from the NLOED package on line 1 of Listing 1. Lines 3 and 5 declare CasADi symbols for

from nloed import Model

#create casadi symbols for the inputs

x = cs.SX.sym('x"',2)

#create casadt symbols for the parameters

theta = cs.SX.sym('theta',4)

#define y1 sampling statistics; mean and variance
mean_yl = thetal[0] + theta[1]*x[0] + thetal[3]*x[0]+*x[1]
var_yl = 0.1

#define y2 sampling statistics; mean and variance
rate_y2 = cs.exp(thetal[0] + theta[2]#*x[1] + theta[3]*x[0]*x[1])
#create a casadi function for yl stats

eta_yl = cs.vertcat(mean_yl, var_yl)

func_yl = cs.Function('yl', [x,thetal, [eta_y1])

#create a casadi function for y2 stats

eta_y2 = rate_y2

func_y2 = cs.Function('y2', [x,thetal, [eta_y2])

Listing 1: An example encoding a mathematical model in CasADi symbolics and creating
a CasADi function, prior to instantiating a Model instance.

the input vector, a, as variable x and the parameter vector, @, as variable theta. In lines
7 and 8 the mean, py,, and variance, 012,1, of observation variable, Y7, are defined in terms
of the inputs and parameters as mean_y1 and var_y1. In line 10 the Poisson rate, \y,, for
observation variable, Y3, is likewise defined. In line 12, the sampling statistics vector, 1y,
for observation Y is defined as eta_yl. In line 13 a CasADi function, func_y1, mapping
inputs and parameters to the sampling statistics for Y; is created; this CasADi function
implements f;(x, 8). Likewise in line 15, the sampling statistic, 1y, for observation variable
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Y, is defined as eta_y2 and in line 16 a CasADi function func_y2 corresponding to model
function fy(x, ) is also created. From the perspective of NLOED, the CasADi functions
implementing f;(x,0) are a computational black box and the user can use a wide range
of CasADi modelling methods and different building blocks to construct these functions.
Regardless of how they are built up, NLOED will auto-generate any required functionality
internally. While this regression model is quite straightforward, symbolic construction can
become more nuanced for dynamic models which is covered in the example section 7.5.

Having constructed the deterministic parts of the model as CasADi functions the user
can now instantiate a Model object. The general call structure for the Model class con-
structor is;

Model (observ_list, input_names, param_names, options={})

The first argument, observ_list, is a list of tuples, each tuple corresponds to an inde-
pendent observation variable. The first entry in each tuple is the CasADi function for the
sampling statistics (i.e. m; = fi(x,0)), the second entry is the name of the distribution
assigned to that observation (i.e the type for p;(.), see Listing 2). The list of observation
tuples in observ_list can be extended to accommodate dozens of observation variables,
which becomes important for dynamic models with multiple states and time points. The
second and third arguments to the Model constructor, param names and input_names,
are an input name list and parameter name list. These are both lists of strings, naming
the parameters and inputs according to the order they are given to the CasADi function.
Input and parameter names are required in NLOED so that any returned dataframes or
graphics will be labelled intelligibly. Note that the names for the observation variables,
Y;, are inherited from their corresponding CasADi function strings, assigned as the first
argument when the functions are created. In Listing 1 the names y1 and y2 were assigned
in the creation of the CasADi functions func_y1 and func_y2 respectively. These names
will be passed into the Model constructor via the CasADi functions when they are added
to the observ_list argument. Listing 2 demonstrate the creation of the required Model
constructor arguments and the calling of the Model class constructor. In line 18, an ob-
servation list, observ_list, is constructed with a tuple for each observation variable:
and y,. The first element of each tuple is a CasADi function: func_y1 and func_y2. The
second element of each tuple is the assigned distribution; here we pass Normal assigning
the normal distribution to Y;, and Poisson assigning the Poisson distribution to Y5. The
other distribution options include; Lognormal, Bernoulli, Binomial, Exponential, and
Gamma. In lines 20 and 22, names are given in lists for the inputs and parameters. In line
24 the Model object is created with a call to the Model class constructor.
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#create observation list

observ_list = [(func_y1, 'Normal'), (func_y2, 'Poisson')]

#creat input name list

input_names = ['x1','x2']

#create parameter name list

parameter_names = ['ThetaO','Thetal','Theta2','Theta3']

#create NLOED Model

model_object = Model(observ_list, input_names, parameter_names)

Listing 2: An example showing creation of a Model instance in NLOED.

7.3.2 Function Attributes of the Model Class

After instantiating the model, several automatic process occur to create the previously
mentioned function attributes. The CasADi functions the user passes in the observ_list
argument implement the deterministic model components (i.e. f;(x,0)). Having the de-
terministic model component expressed as a CasADi function provides a powerful tool for
auto-generating new mathematical expressions because CasADi functions have a dual na-
ture as both symbolic and numeric functions. If we pass numerical values to the CasADi
function, it will compute a numerical output. On the other hand, if we pass CasADi sym-
bols to a CasADi function, the returned object is a symbolic expression. This means we
can use CasADi functions to generate new symbolic expression. The expressions can then
be algebraically combined as well as differentiated (via AD) to compute other new quan-
tities symbolically. Any newly generated symbolic expressions can also be encapsulated in
a CasADi function so that they can be used to generate numerical results when required.
CasADi functions therefore allow this interleaving of symbolic expression building and nu-
meric function generation which is ideal for constructing the mathematical infrastructure
needed by the Model class. During instantiation of a Model object, this process is used
to auto-generate and store mathematical function attributes used for experimental design,
fitting and other higher-level tasks. These function attributes are available to the user but
are not intended to be called directly. However they may be of use if the user wishes to per-
form certain model analyses that are not available as a higher-level user-callable function.
Below we give a brief overview of the auto-generated function attributes to give context for
the package architecture and its internal capabilities. Note, there is a function attribute
for each observation variable, Y;, and the class fields where they are stored are therefore
lists, indexed by the observation variable order. That is to say each field discussed below
is a list of functions indexed by [i], one function for each observation variable.

105



e Sampling statistics The CasADi functions passed by the user, implements n; =
fi(x,0) from the model definition. The original CasADi functions are therefore
useful for predicting sampling statistics of each observation variable, conditional
on the specified input and parameter values. The user provided CasADi functions
are therefore stored as function attributes, one for each observation variable, in the
model [i] (inputs,parameters) field for use in other function attributes and user-
callable functions.

e Observation Mean and Variance Given the conditional sampling statistics, n;,
of each observation variable, it is also possible to compute the observations, Y;’s,
expected mean, E[Y;] and variance, Var[Y;], algebraically from n; at any given input
and parameter value. (Note, the mean and variance are not the same as the sampling
statistics for some non-normal distributions). Function attributes to compute the ob-
servation mean and variance for each observation variable, given an input and param-
eter vector, are auto-generated and stored in the model mean[i] (inputs,parameters)
and model variance[i] (inputs,parameters) fields.

e Mean Sensitivity Sensitivity functions for the mean observational responses, E[Y;],
of each observation variable with respect to the parameters are also auto-generated.
To do so we make use of CasADi’s AD functionality via the jacobian function. The
resulting function attributes returns a parametric sensitivity vector; the functions
attributes are stored in the model _sensitivity[i] (inputs,parameters) field.

e Observation Sampling Observations generated by the model are assumed to come
from the conditional distribution p;(y;|fi(z,0)). Sampling from this distribution
requires the user-passed CasADi function, (i.e fi(x, @)), and the distributional infor-
mation, (i.e. the type of p;(.)). Given this information, the package can combine the
correct distribution-specific random number generation from SciPy or Numpy and
the model[i] (inputs,parameters) function attributes to create a data sampling
function attribute for each observation variable. These function attributes are stored
in the observation sampler[i] (inputs,parameters) field. Each of these function
attribute generates a single realization, y;, of the given random observation variable,
Y;, conditioned on the input and parameter values passed.

e Log-likelihood The log-likelihood is needed for performing maximum likelihood
fitting and is also useful in calibration diagnostics like profile likelihood intervals
and traces (see the fit() function later in this section). The log-likelihood for an
individual observation is defined as in Chapter 2, with the indices indicated there,

106



such that

Liyilz, 0) = log [pi(yi|ni=fi(x, 0))] (7.7)

Using the type of distribution for p;(.) and the user passed CasADi function for
fi(x,0), the NLOED package will auto-generate a function for computing the log-
probability of observing a specific observation value, y;, given specified input and
parameter values. The log-likelihood function attribute is stored in the class field
named loglik[i] (observation,inputs,parameters), with one function for each
observation variable.

Fisher Information Matrix The Fisher information matrix is a key entity used
in experimental design. In evaluating a new design, each potential input-observation
pair contributes an individual Fisher information matrix to the overall sum for the
experiment, see Chapter 2 for a full description. The Fisher information matrix for
an individual input-observation pair is defined as

Ii(z,0) = E,,[Voli(0;y;,x) - Voli(0;y:,2)"]. (7.8)

The individual matrices, I;(x, @), are additive over input-observation pairs due to
NLOED’s assumption that all observations are independent. However NLOED uses
the chain rule decomposition, discussed in Chapter 2, to separate the FIM com-
putation into a sensitivity vector and a distribution-specific elemental matrix such
that

Ii(x,0) = Vofi(x,0) V(ni=Ffi(x,0)) Vefi(x,0)". (7.9)

Here Vg fi(x,0) is the parametric sensitivity of the sampling statistics 7;. The
sensitivity vector can be computed using CasADi’s automatic differentiation func-
tionality applied to the user-passed model functions, fi(x,0). The elemental ma-
trix, ¥(n,=fi(x,0)), is specific to each distribution [10], and can be computed alge-
braically from the sampling statistics, n;. Using this property the package is able to
auto-generate a function that can compute the individual Fisher information for a
given input-observation pair at a candidate parameter vector instance. The FIM func-
tions are stored in the fisher info matrix[i] (inputs,parameters) field. These
functions, like the other function attributes, are a CasADi functions and are therefore
capable of both numeric and symbolic computation. The Model class uses this dual
functionality both to compute evaluation metrics for candidate designs numerically
and to construct symbolic expressions for the optimization problem solved in the
Design class.
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7.3.3 User-callable Model Functions

After instantiating a Model instance, the user will often follow the basic workflow outlined in
Figure 7.1 and pass the model object into the Design class constructor to begin optimizing
designs for the given system. However, the Model class provides a number of high-level
user-callable functions that provide additional model building, calibration and diagnostic
tools. Descriptions and usage examples for these functions are outlined below.

The evaluate() function The NLOED package exists to optimize experimental de-
signs for various models and objectives. In many workflows, it is reasonable to assume
the user may wish to evaluate the performance of many designs for a given model using
some common quantitative metrics. While the Design class can return the objective for
its optimal (relaxed) design, this objective is generally scaled for numerical convenience
and is a single number (i.e. the determinant) computed from the total Fisher information
matrix. Thus the objective alone may not be interpretable or useful for intuitive compari-
son. In addition, the user may often wish to evaluate non-optimized designs implemented
in existing datasets or prospective designs created using domain-specific knowledge rather
than optimization. Motivated by these considerations, the evaluate() function accepts
any candidate design (optimized or user-created) and can return interpretable comparison
metrics for evaluating and comparing design performance.

The evaluate () function specifically focuses on comparing designs on their prospective
parameter calibration accuracy. NLOED generally assumes that all models are identifi-
able. Under this assumption, the evaluate() function gives approximate metrics about
the estimate’s distribution, given a design D. Metrics provided by evaluate() include
the estimate’s MSE, covariance and bias as well as the FIM (as discussed in Chapter 2).
Unfortunately it is impossible to compute these first three quantities exactly. However,
these metrics can be approximated, either asymptotically or through simulation at a can-
didate point for the true parameter vector (i.e. a guess or estimate). The evaluate()
function provides both asymptotic and Monte Carlo methods for computing these metrics
for a given design. (Note, these approximations are always local and thus conditional on
a nominal parameter estimate, as the true value is never actually known.) First-order
asymptotic approximations for the covariance can be be computed as the inverse of the

Fisher information matrix [16]. As the asymptotic bias is zero at first order, the diagonal of
the inverse of the FIM is an asymptotic approximation for the MSE as well (see discussion
in Chapter 2 for details) [77]. The Design class performs all optimization using objectives

based on the FIM, thus the asymptotic metrics generated by evaluate() are computed
with similar assumptions to those used in the optimization. These methods are rapid and
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computationally efficient, especially with CasADi’s AD tools, however they compromise
on accuracy at smaller sample sizes.

Without using higher order methods, which are significantly more complicated [57], ap-
proximating the bias generally requires simulation-based approximations via Monte Carlo
methods. The evalutate() method therefore also implements a parametric Monte Carlo
algorithm for approximating the MSE, covariance and bias terms. The Monte Carlo method
may yield greater precision than the asymptotic approach, especially at smaller sample size
or with highly nonlinear models. In this method, a ‘true’ nominal parameter vector is used
to simulate a large number of datasets corresponding to the candidate design. These
datasets are then each fit independently using maximum likelihood. The resulting set of
estimated parameter vectors are then used to compute the MSE, covariance and bias em-
pirically, using the nominal parameter vector as a stand-in for the unknown true values.
This then provides a local approximation for the parameter accuracy metrics for the given
design, conditional on the assumed true vector values. The Monte Carlo approximation
is time consuming and the sample number used may need to be tuned to the design and
model being evaluated in order to achieve stable approximations, as the algorithm is neces-
sarily non-deterministic. These considerations make the Monte Carlo approach unsuitable
for use in the Design class optimization, however Monte Carlo metrics can provide useful
benchmarks to assess the suitability of asymptotically derived designs at small sample size.
The Monte Carlo metrics are also valuable for comparing amongst several design candi-
dates, allowing the user to accurately differentiate between subtle trade-offs in bias and
variance components of parameter error.

All design evaluation methods implemented in evaluate() are data-free, meaning they
can be used to evaluate a design regardless of whether real data has been collected. This is
because all of the metrics discussed here are computed as expectations, taken with respect
to the data. Other comparison and diagnostic metric, such as profile likelihood-based
methods, require real experimental observations and thus are not suitable for comparing
existing datasets and prospective designs. Some data-dependent diagnostic tools, like
profile-likelihoods, are implemented in the £it () function, described later in this section.

In order to call the evaluate () function, the user needs to provide a design. Designs in
NLOED are contained in dataframes which all follow the same format with specific naming
conventions; an example of which is shown in Figure 7.4. The first pair of columns each
contain model input values and are named according to the input names passed by the
user when the model_object was instantiated. Here there are two inputs named x1 and
x2 from the model shown in equation 7.6. To the right of the input columns is a column
named Variable which contains the names of the observation variables to be observed at
the input setting listed to the left. Here the observation variables are those from the model
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x1 x2 Variable Replicates

e o 1 yl 3
1 -1 1 % 1
2 2 -1 % 2
3 3 @ y1 2
4 0 1 y2 3
5 -1 1 y2 1
6 2 -1 y2 2
7 3 ® y2 2

Figure 7.4: An example of a dataframe containing an experimental design.

shown in equation 7.6; named y1 and y2. The right most columns is named Replicates
and it contains the number of observations to be taken at the given input and observation

settings listed to the left.

#define a design
design = pd.DataFrame({ 'x1':[0,-1,2,3]%*2,
'x2':[1,1,-1,0]%*2,
'Variable':['y1']*4 + ['y2']1x*4,
'Replicates':[3,1,2,2]*2})
#set nominal parameter values
param = [0.1, 2, 0.4, 1.3]
#declare specific options
eval_opts={'Method': 'MonteCarlo',
'FIM' : True,
'Covariance' :True,
'Bias':True,
'"MSE' : True,
'SampleNumber':100}
#call the evaluate() function
eval_info = model_object.evaluate(design, param, eval_opts)
#print the resulting evaluation
print(eval_info)

Listing 3: Code example using the evaluate() function from the Model class.

The general call structure for the evaluate() function is:
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model_object.evaluate(designs, param, options={})

Here the designs argument is a dataframe containing the candidate design to be evaluated.
The param argument contains the nominal parameter vector at which the analysis is to take
place. The options argument is optional and can be used to pass a dictionary of key-value
pairs to alter the default evaluate() behaviour. An example of a call to the evaluate()
function is shown in Listing 3. Lines 3-5 show the creation of a design dataframe and line
7 defines the nominal parameter values. In lines 9-13 various options are set in an options
dictionary. The Method option can take two values; Asymptotic or MonteCarlo depending
on which method is to be used. The evaluate() function by default computes metrics
asymptotically, and the Fisher information matrix is always computed asymptotically. The
options FIM, Covariance, Bias, and MSE accept booleans depending on whether or not the
user wants the specific metric included in the returned dataframe. By default only the
covariance matrix is returned. The SampleNumber option accepts an integer value for the
samples used to generate the Monte Carlo estimates. In line 15 the evaluate() function
is called with the previously declared arguments, and in line 17 the returned dataframe is
printed.

FIM Covariance Bias MSE

Theta@ Thetal Theta2 Theta3 Theta@ Thetal Theta2 Theta3 Bias MSE

Theta® 87.715881 90.0 5.285446 -50.669422 0.025036 -0.006026 -0.016016 0.011422 -0.019295 ©@.025158
Thetal 90.000000 270.0 0.000000 -70.000000 -0.006026 0.005282 0.003724 0.000373 0.004122 0.005246
Theta2 5.285446 0.0 5.505539 -0.229236 -0.016016 0.003724 ©0.277523 -0.003943 -0.102024 @.285157
Theta3 -50.669422 -70.0 -0.229236 90.889515 0.011422 0.000373 -0.003943 0.017554 -0.029147 0.018228

Figure 7.5: An example of the dataframe returned by the evaluate () function, containing
parameter accuracy metrics for the given design.

An example output for the multi-index dataframe returned by evaluate() is shown in
Figure 7.5. Dataframe columns are grouped by the upper-levels FIM, Covariance, Bias,
and MSE. Rows are named according to the parameter names passed by the user when
the given model was instantiated. The FIM upper-level contains columns named for each
parameter, mirroring the rows. Each entry in these columns gives the Fisher information
matrix values for the model in the given experiment. The Covariance upper-level likewise
contains columns for each parameter and gives the expected covariance matrix entries. The
Bias upper-level contains a single column with values, in each row, for the bias of each
parameter. The MSE level likewise contains a single column, with the expected MSE for
each parameter with respect to the nominal true value in the given design.

The evaluate() function does not return Wald confidence intervals for the parame-
ters. (Wald intervals are asymptotic intervals generally computed using the FIM, see [50].
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However, these are easily generated from the root of the diagonal of the covariance matrix,
which yields the standard deviation for each parameter. Other similar metrics such as
the generalized variance and alphabetic optimality criteria, can be easily computed from
the returned metric (see Chapter 2 for some discussion). The evaluate() function can
also be run in a batch mode, where multiple designs are passed as a list to the designs
argument. In this case the returned object is a list of dataframes, each structured like the
previous example. The batch mode is useful for evaluating many design variants at once
and automating the comparison process.

The sample() function The sample() function is provided in order to generate simu-
lated data from the model. This is useful for generating more detailed diagnostics about
specific aspects of a design via simulation studies. Simulation studies involve simulating
data for a given experimental design and performing batch fitting and evaluation on the re-
sulting set of fits to study expected statistical properties of the fitting process. To this end,
the sample() function can generate artificial datasets by sampling observations y; from
the observation distribution p;(y;|fi(x, 0)) for each replicate specified in a given design,
and at a given nominal parameter vector.

#define a design

design = pd.DataFrame({ 'x1':[0,-1,2,3]%*2,
'x2':[1,1,-1,0]%2,
'Variable':['y1']*4 + ['y2']1x*4,
'Replicates':[3,1,2,2]*2})

#set nominal parameter values

param = [0.1, 2, 0.4, 1.3]

#call the sample() function

dataset = model_object.sample(design, param, design_replicates=1)

#print the resulting dataset

print (dataset)

Listing 4: Example using the sample () function from the Model class.

In order to call the sample () function, the user must provide a dataset in a dataframe,
using the previously detailed naming convention (see Figure 7.4). The general call structure
for the sample() function is:

model_object.sample(designs, param, design_replicates=1,options={})
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The design argument accepts a dataframe with format depicted in Figure 7.4. The param
argument contains the nominal parameter values at which the samples are to be taken. The
design replicates option is an optional argument that specifies the number of replicate
datasets to generate from the design. The default value is a single dataset however when
doing simulation studies it is useful to be able to generate batches of datasets for a given
design and nominal parameter value. The options argument is optional and accepts a
dictionary of key-value pairs that can modify the default behaviour of the the sample()
function. An example call to sample() is shown in Listing 4. In lines 2-5 an example
design dataframe is created, and in line 7 nominal parameter values are listed. In line
8 the sample() function is called and a simulated dataset is created as a dataframe; in
line 11 the returned dataframe is printed. The sample() function returns a dataframe
containing the simulated dataset. All datasets in NLOED follow the same structure and
naming convention; an example dataset is shown in Figure 7.6. The first pair of columns
correspond to the model input settings and are named according to the string names passed
during model instantiation; here they are x1 and x2 as per the model given in equation
7.6. Following the input columns there is the Variable column which contains the name
of the observation variable, here y1 and y2 as per the model in equation 7.6. Finally, there
is the Observation column which contains the numeric values of the observed samples.

x1 x2 Variable Observation
0 0 1 yl 0.270282
1 0 1 yl 0.165917
2 0 1 yl 0.348707
3 -1 1 yl -3.355999
4 2 -1 yl 1.213557
5 2 -1 yl 2.135630
6 3 0 yl 5.682009
7 3 ] yl 5.749861
8 0 1 y2 1.000000
9 (7] 1 y2 2.000000
10 (7] 1 y2 1.000000
1 -1 1 y2 0.000000
12 2 -1 y2 0.000000
13 2 -1 y2 0.000000
14 3 ] y2 2.000000
15 3 ] y2 0.000000

Figure 7.6: An example dataset generated from the sample() function.

The sample() function can also be run in a batch mode for generating datasets from
multiple designs at the same time. To run a batch of designs, each design should be added
to a list which is then passed in as the designs argument. This can be coupled with the
design replicates argument to generate a specified number of replicates of each design.
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In batch mode the returned object is a list of dataframes for each dataset. When replicates
are also included, the returned object is a list of lists, where the first dimension indexes
the design and the second indexes the replicate number.

The fit () function Model fitting is an important part of the workflow when generating
model-based optimal experimental designs. Fitting is needed for estimating parameters
from real data; data that can be preliminary or the result of optimal experiments. It is
also valuable for performing simulation studies before experiments are run to give users
an idea of the true expected utility of their experimental plans. All fitting functionality
in the package is provided via the fit () function. The £it () function is also provided as
a matter of convenience, as the type of fitting algorithm to be used for a given optimized
design is not arbitrary. The Design class performs experimental optimization using various
objectives based on the Fisher information matrix. The primary justification for using the
FIM is that it provides an asymptotic estimate of the parameter uncertainty that can be
achieved after fitting with maximum likelihood. The FIM and other information matrices
are asymptotic for the specific model, at the guessed parameter values and for the given
fitting method [16]. This means that the optimized experiment should be paired with its
appropriate fitting method for the best results. Using £it() for fitting the user’s model
ensures the appropriate maximum likelihood fitting algorithm is used in all cases.

In order to fit data using the fit () function, the user needs to provide a dataset as an
argument. Datasets passed to the fit () function follow the same format as other datasets
in NLOED, see Figure 7.6 for an example. The general call structure for the fit () function
is shown below.

model_object.fit(datasets, start_param=None, options={})

The datasets arguments accept a dataframe, structured as in Figure 7.6. The start_param
argument is optional, but can be used to initialize the optimization to a specific initial pa-
rameter point. The options argument, is a dictionary with various key-value pairs that
can be used to override specific default behaviours of the fitting algorithm, some of which
are outlined below. The fit () function solves for the maximum likelihood estimate with
a call to the nonlinear programming package IPOPT via the CasADi interface. In order
to set up the log-likelihood optimization for the IPOPT call, £it () uses the log-likelihood
function attributes that are auto-generated in the Model object’s instantiation. The over-
all likelihood objective is constructed by iterating through the rows of the passed dataset,
applying the appropriate log-likelihood function attribute to each input-observation pair,
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and summing the result. This produces a CasADi symbol for the overall fitting objective
(see Chapter 2 for further discussion of maximum likelihood),

N M Bij

l70t(0; yp, D ZZZZ (v x;,0). (7.10)

As the objective is a symbolic expression, when it is passed to IPOPT via the CasADi
interface, any required derivative information for the interior-points algorithm is automat-
ically generated. This ensures the maximum likelihood fitting implemented in £it () occurs
rapidly in a few iterations for most models.

# set specific fitting options

fit_opts={'Confidence':'Intervals',
"InitParamBounds':[(-1,1),(-1,1),(-1,1),(-1,1)1],
'InitSearchNumber':7}

#call the fit() function

fit_info = model_object.fit(dataset, options=fit_opts)

#print the fitting information

print(fit_info)

Listing 5: Example using the £it () function from the Model class.

A generic call to the £it () function is shown in Listing 5, this code assumes dataset
contains an existing dataset like the one shown in Figure 7.6. In lines 2-4, several options
for the £it () function are modified. The Confidence option has been set from the default
value of None to Intervals which signals to the fitting algorithm that it should generate
profile likelihood-based confidence intervals for all fitted parameters after fitting [211].
The InitParamBounds option has been set with a list of tuples specifying a range for each
parameter over which a coarse fitting pre-search is performed. The InitSearchNumber
option specifies the number of evaluations to perform in the InitParamBounds ranges; here
we have set it to seven but its default value is three. The pre-search procedure is performed
to ensure the starting parameter vector is reasonable and the pre-search is a good recourse
if a suitable start_param cannot be specified a priori. If a start_param value is specified
and the pre-search option InitParamBounds is also passed, the start_param is appended to
the pre-search evaluation list but it may not actually be used as the start value for IPOPT’s
maximum likelihood optimization as a more suitable starting value may be found during
the pre-search. Note, that InitParamBounds are not bounds for IPOPT’s optimization,
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only the pre-search, and that fit() does not allow bounded or constrained maximum
likelihood fitting. The user is expected to use parameter transformations to ensure models
are specified properly (examples of this are given in Section 7.5). As maximum likelihood
estimates are invariant under parameter transformation, any required re-parameterization
should not effect the resulting fits [19]. In lines 6 the fit() function is called for the
provided dataset and in line 8 the fitting information is printed to the console.

An example output of the dataframe returned by the fit () function is shown in Figure
7.7. The returned value is a multi-index dataframe, which is organized by the upper
level labels Estimate, Lower, and Upper. The Estimate level contains columns for each
parameter, named according to the names passed when the model was instantiated. These
columns contain the maximum likelihood estimates for the model parameters. The Lower,
and Upper levels also contain columns for each parameter with the corresponding upper
and lower bounds for the requested likelihood-based intervals. These columns are only
returned if the Confidence option is set to something other than None, such as Intervals
in this example. By default a 95% confidence interval is returned.

Value Estimate Lower Upper
Parameter Theta® Thetal Theta2 Theta3 Theta® Thetal Theta2 Theta3 Theta® Thetal Theta2 Theta3
0 0.214178 2.082278 0.56926 1.459132 -0.258899 1.845001 -0.89315 1.057758 0.682719 2.319906 1.655937 1.860704

Figure 7.7: An example of the dataframe output from a call to the £it () function.

The intervals returned via a call to the £it () function are computed using the profile
likelihood with the observed data [241, 19]. Profile likelihood confidence intervals are based
on asymptotic properties of the likelihood ratio, defined as —2Ly(0,)/L1oi(8) [19]. Using
properties of the likelihood ratio, it can be shown that

_Q[ZTot(oo) - lTot(é)] S XZ,(l_a)' (711)

Here the expression on the left of the inequality is equivalent to the likelihood ratio. The
l7ot(.) function is the overall log-likelihood for the dataset, 0 is the MLE parameter estimate
and 6, is the unknown true parameter value. The X;,(l—a) term is the 1 —a% percentile of a
Chi-square distribution, with p degrees of freedom where p is the number of dimensions of 6.
Effectively, the above inequality states that the likelihood ratio between the unknown true
parameter vector and the MLE estimate should be less than X;%,(pa) with a probability of
1—a% [50, |. To construct intervals for each parameter dimension using the above result,
each dimension is profiled. Profiling each dimension allows the confidence intervals for a
single dimension to properly account for uncertainty in the other parameters (see [211, 19)]
for further discussion). Profiling a given dimension, 6;, involves incriminating its value
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away from the MLE value; first in an increasing direction and then a decreasing directions,
although the order is arbitrary. At each increment of ; the other marginal parameter
dimensions are re-optimized to yield a new conditional MLE for the marginal parameters
given the fixed incremented value of ;. The resulting parameter vector, including the
current value of 6; and the conditionally optimized marginal parameters, is notated 6(6;).
As the value, 6;, of the profiled dimension is adjusted away from the MLE the conditional
estimate @(6;) traces out a curve in parameter space, this is known as the profile trace
[242]. The likelihood ratio,

_ ~

—2[l701(0(6:)) — l7at(0)], (7.12)

between the MLE, é, and the conditional vector, 8(f;), will grow until it reaches the Chi-
square threshold, Xf},(l—a)' The values of 6;, both in the positive and negative directions,
that make the Chi-squared inequality strict are considered the bounds of the the 1 — a%
confidence interval for dimension 6;. The value of the log-likelihood, I7.;(0(6;)), for each
value of 0; is known as the likelihood profile [105]; its maxima occurs when 6; is at its
MLE value. The profiling procedure can be performed for each parameter dimension in

the parameter vector, yielding an interval, trace and profile for every dimension.

When the Intervals value is passed as the Confidence option, the fit() function
currently uses a bisection search to find the profile likelihood interval boundary points
rather than completing a full incremental profile. Beyond intervals, the fit() function
can also generate other useful diagnostic information. The Confidence field can also be
set to the value Profiles to generate graphical plots of the likelihood profiles and 2D
projections of the profile traces for the given dataset. Examples of the profiles and trace
projections are shown in 7.8. The plots on the diagonal show each parameter’s profile
likelihood plot, with the log-likelihood values for the profile shown on the y-axis and the
the value of the profiled parameter, #;, on the x-axis. The MLE value of the profiled
parameter occurs at the profile maximum. The red dashed line indicates the log-likelihood
value at which the Chi-squared threshold is reached (the default is for a 95% interval).
The intercepts between the likelihood profile and the threshold line denotes the confidence
interval end points. In the lower triangular plots, a plane for each pair of the parameters
is shown in which 2D projections of each parameter’s profile trace are plotted as lines; the
blue line belongs to parameter in the given column (profile plot above) and the orange line
belongs to the parameter in the given row (profile plot to the right). The trace projections
are terminated at the confidence interval boundaries, and their intersection marks the MLE
estimate. Returning profiles and trace projections is useful because the shape of the log-
likelihood profile, when plotted with respect to the corresponding parameter as in Figure
7.8, should be asymptotically quadratic; significant deviations from this trend can indicate

117



Thetal
N
o
LogLik Ratio

154

Theta2

LogLik Ratio

-24 -2 10

-
w

eta
Il
N
w o
Thet:
[
N b
w o
et@s3
[
N
w o
LogLik Ratio
-
1)

T T T ™ 4 T T T T T T T T i
-0.2 0.0 0.2 0.4 0.6 1.8 1.9 2.0 2.1 2.2 -2 -1 0 1
ThetaO Thetal Theta2 Theta3

Figure 7.8: Example of the fit () functions graphical output of likelihood profiles and 2D
trace projections generated when the Confidence option is set to Profiles.

poorly identified parameters [19]. Specifically, a blunt peak to the profile can indicate that
the current data is insufficient to constraint the parameter values [105]. In addition, the
projections of the profile traces for each parameter should be asymptotically ‘X’ shaped,
with the MLE estimate at the intersection point [212]. Curvature of the trace projections
as they move away from the intersection can indicate significant non-linear effects and the
breakdown of the asymptotics. In addition, the profile trace projections should ideally
intersect at near right angles, with highly oblique angles indicating significant correlation
between parameter pairs and possible deficiencies in the experimental design.

The fit() function can also compute likelihood contour projections by setting the
Confidence option to Contours. Likelihood contour projections consist of a closed curve
surrounding the maximum likelihood estimate in a 2D projection of the parameter space
[242]. These curves mark the extreme points that the given pair of parameters can extend
out from their MLE value before the log-likelihood ratio increases to the asymptotic Chi-
square threshold, assuming the marginal parameters have been conditionally optimized (i.e.
profiled) [242]. The profiling algorithm used for the confidence interval computation can
be modified to find likelihood contour projections in 2D parameter-pair planes by profiling
along non-axial parameter vectors rather than along parameter axes. Just like the profile
trace, the algorithm begins at the MLE vector, but rather than selecting an individual
parameter, a pair are selected; 6; and ;. This pair forms a 2D plane in the parameter
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space. Next a grid of angles is selected from 0 to 27 radians, each angle corresponds
to a direction vector in the parameter-pair plane emanating from the MLE vector. The
parameter pair, ¢; and 6;, are incremented along this vector for each angle in the grid,
and the remaining marginal parameters are optimized at each point yielding a conditional
MLE vector 6(6;,6;), given the fixed values of 6; and ¢;. When the a parameter pair is
found along the current direction vector that satisfies the equality,

_Q[ZTot(g(eia 0;)) — lTot(é)] = X;zg,u_a)a (7.13)

the position in parameter space is recorded as a member of the 1 — a% profile contour
projection for that parameter pair. This is repeated for each angle and parameter pair
to build a set of 2D contour projections for each parameter pair. Some interpolation of
the recorded contour points is used to generate smooth curves during plotting. When the
Confidence option is set to Contours, contour projection plots are added to the profile
and trace projection plots previously discussed. An example of the profile and trace plots
with added contours is shown in Figure 7.9. By computing contour projections for each
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Figure 7.9: Example of the fit () function’s graphical output of likelihood contour projec-
tions generated when the Confidence option is set to Contours. The contour projections
are shown along with the profiles and trace projections previously shown in figure 7.8.

pair of parameters, we can gain an understanding of what parameter sets are feasible given
a certain confidence level. The contour projections are asymptotically ellipsoidal but model

non-linearity and weak experimental designs can lead to eccentric shapes. Computing the
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contour projections will generally fail if the region is so eccentric that it contains large
concave sections in its boundary. Computing contour projections can be time consuming,
especially for large and dynamic models. Currently fit() uses a bisection search along
each angle to find the contour points, similar to the search used for interval computation.

#create three datasets

datal, data2, data3 = dataset = model_object.sample(design, param,
— design_replicates=3)

#combine datasets into a single list

datasets = [datal, data2, data3]

# set up specific options for fitting
fit_opts={'Confidence':'Intervals'}

#call the fitting procedure

fit_info = model_object.fit(datasets,options=fit_opts)
#print the fitting information

print(fit_info)

Listing 6: Example using a batch call of the £it () function from the Model class.

The intervals and graphical diagnostics generated by the fit() function are data-
dependent, in that the intervals, profiles and contours require data in order to compute.
This is in contrast to the data-free diagnostics that are provided in the evaluate() func-
tion, and which are used in the Design class for experiment optimization. The data-free
methods involve an expectation and so are suitable to apply before or after data is collected
but they are less useful for generating visual diagnostics and they lack the interpretive rich-
ness of the data-required methods implemented in the fit () function.

Value Estimate Lower Upper
Parameter Theta0 Thetal Theta2 Theta3 Thetao Thetal Theta2 Theta3 Theta@ Thetal Theta2 Theta3
4] 0.076718 1.959471 -0.424494 1.124808 -0.396464 1.723006 -2.587254 0.723141 0.545436 2.196488 1.134938 1.526694

1 0.224183 1.987154 0.398126 1.193759 -0.248185 1.750248 -1.143593 0.792909 0.691805 2.224489 1.532261 1.594884
2 0.279028 2.023878 -0.029809 1.413481 -0.192847 1.787084 -1.907175 1.011892 0.745895 2.261125 1.268460 1.815189

Figure 7.10: Example dataframe returned with a batch call to the £it () function.

The £it () function can be used in batch mode by passing a list of datasets rather than a
single dataframe. In this mode each dataset is fit independently yielding its own parameter
estimate. This batch fitting is generally not useful for fitting to real experimental data but
it is valuable for fitting to collections of simulated datasets in simulation studies. (Note,
to fit multiple datasets simultaneously to achieve a single estimate, the user can simply
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vertically concatenate their respective dataframes and pass them as a single dataset.)
Listing 6 shows an example of a batch call with three datasets. In line 2 three datasets
are simulated with a call to sample() and on line 4 they are bundled into a list. On line
6 options are set to return confidence intervals for each fit and on line 8 the datasets and
options are passed to fit(). Line 10 prints the resulting dataframe containing all of the
estimates and intervals. Figure 7.10 shows an example of the returned dataframe from a
batch call to fit. Each additional dataset adds an extra row to the returned frame. In
simulation studied we are often interested in checking if true values fall in the intervals
near the desired percentile rate or if the estimates exhibit a similar covariance structure
to the covariance matrix predicted by the FIM. This information can easily be extracted
from the returned dataframe. For example to compute the covariance of all the estimates,
the user can use the expression:

np.cov(fit_info['Estimate'].to_numpy() .T)

To check the fraction of datasets for which a given parameter (named ’Par’) falls within
its interval the user can call:

sum(fit_info['Estimate', 'Par'] .between(fit_info['Lower', 'Par'],
— fit_info['Upper','Par']))/len(fit_info)

The predict() function Generating model predictions is often the final goal of the
modeling building process. However predictions are also useful during model calibration
to understand expected model behaviour in various experimental scenarios as well as to
understand how parameter uncertainty and sampling variability propagate to model pre-
diction uncertainty. The predict () function can be used to generate model predictions for
specific input settings and parameter values. The predict () function by default provides
predictions for the mean behaviour of the observation variable, E(Y;). In addition to the
mean behaviour the predict() function can also provide various confidence intervals for
the observation variables, Y;, given parameter uncertainty. This uncertainty propagation
can be done using the delta method [19] or through Monte Carlo simulation. In addition,
the predict () function can also generate parametric sensitivities for the mean response.

In order to call the predict () function, the user must first create a dataframe contain-
ing the input and observation combinations at which they desire predictions. An example
of this dataframe is shown in Figure 7.11 for a two input model with inputs names x1 and
x2. The last column is always named Variable and specifies for which observation vari-
ables predictions should be made. Here eight predictions are asked for at different input
settings for one of two observation variables y1 and y2.
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x1 x2 Variable

o -1 -1 yl
1 1 -1 y1
2 -1 1 %
31 1 y1
4 -1 -1 y2
5 1 -1 y2
6 -1 1 y2
7 1 1 y2

Figure 7.11: Example of an input dataframe used to generate predictions with the
predict () function.

#define the inputs for predict()

predict_inputs = pd.DataFrame({ 'x1':[-1,1,-1,1]%2,
'x2':[-1,-1,1,1]%2,
'Variable':['y1']1*4 + ['y2']%4})

#spectify the parameter values

params = [0.1, 2, 0.4, 1.3]

#call predict()

predictions = model_object.predict(predict_inputs, params)

#print the predictions

print (predictions)

Listing 7: Example of a simple call to the predict function from the Model class.

The general function call for predict () takes the following format;
model_object.predict(input_struct, param, covariance_matrix=None, options={})

The input_struct argument accepts the previously mentioned dataframe, shown in Figure
7.11, specifying the input and observation variables. The param argument accepts a list con-
taining the parameter values at which the prediction is to be made. The covariance matrix
argument is an optional argument that can be passed if the user has a parameter covari-
ance matrix generated from an existing fit to data or a theoretical prior, this is used for
computing certain prediction intervals. The options argument is a Python dictionary of
string-value pairs that can be used to adjust default options in the prediction method,
some of the more useful options are highlighted below.

An example of predict() function call is shown in Listing 7. In lines 2-4 we define
the input dataframe, specifying for which inputs and observations we want predictions.
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Figure 7.12: Example of the returned dataframe from a call to the predict () function.

In line 6 we set numerical values for the parameters and in line 8 we call the predict ()
function. In line 10 we print the predictions, the return object predictions is a multi-
index dataframe, an example of the printed output for which is shown in Figure 7.12. Here
the columns that were passed as part of the input dataframe, specifying the inputs and
observation variables, have been grouped under the upper index Inputs. The returned
predictions for the mean response are listed under the upper index Prediction in the
columns named Mean. This column lists the predicted mean observation response, E(Y;)

for each condition.

x2 Variable

-1 yl
-1 yl
1 yl
1 yl
-1 y2
-1 y2
1 y2
1 y2

Prediction

-0.
.800000
.200000
.400000
.718282
.201897
.449329
. 049647

|
oOoeeNWWe

Mean
600000

#define a covariance matriz for the parameters

cov_mat = np.diag(params+0.05)
#specify desired option wvalues

predict_opts = {'Method': 'MonteCarlo’,

'"PredictionInterval':True,

'ObservationInterval':True,
'Sensitivity':True}

#generate the predictions

predictions = model_object.predict(input_frame, params,

- cov_mat,predict_opts)
#display the predicted outputs
print (predictions)

Listing 8: A more advanced example using the predict() function from the Model class

to return prediction intervals and sensitivity information.

A more advanced call to predict() can be used to generate intervals and sensitivity
data. Listing 8 gives an example where the user requests both prediction and observation
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intervals (defined below) via Monte Carlo, as well as sensitivity data. This additional
information is requested by using the options dictionary, see lines 4-7. Prediction intervals
require the user to pass a parametric covariance matrix, which is specified in line 2 as a
diagonal matrix with parameter variances set at 5% of their nominal values. This covariance
matrix defines a multivariate normal parametric prior over the parameter vector. The mean
of this prior distribution is located at the parameter vector passed via the param argument.

Both prediction intervals and observation intervals are requested in Listing 8. Predic-
tion intervals are percentile-based intervals on the mean of the observation variable, E(Y;),
given uncertainty in the parameters. Observation intervals are percentile-based intervals
on the random observation variables, Y;, itself, given both observation variability and, if
a prior is provided, parameter uncertainty. For the prediction intervals, F(y;) is an ex-
pectation with respect to the observation variability of Y;, and therefore the randomness
inherent in each observation has been integrated out. However, the mean response, E(Y;),
can still be considered random when parameter estimate uncertainty, in the form of a prior
distribution, is considered. To be more precise, let the mean observation response of Y; as
a function of fixed inputs and parameter values be defined as

Ui(x,0) = /yip(yi\niZfi(wae))dyi- (7.14)

Let it be emphasized that g;(x,0) is a deterministic function of & and 6. For all of the
parametric distributions used in NLOED, ¢;(x,0) can be computed algebraically from
the statistics n;. However, when uncertainty in the parameter vector, 6, is assumed, the
parametric uncertainty propagates to the mean response, y;(x,0). The distribution of
Ui(x, @) under the parameter uncertainty then depends on the prior distribution, p(@).
The predict() function defines the prior to be a multivariate normal distribution, cen-
tered at the value passed in argument param and with covariance matrix passed in argument
covariance matrix. Prediction intervals are computed such that interval bounds enclose
the true mean response, y;(x,0,), of the true parameter vector, 6,, with the prescribed
confidence probability, by default 95%. This computation obviously assumes the prior
correctly reflects the uncertainty about the location of the true parameter vector. Obser-
vation intervals, on the other hand, are computed so that their bounds contain realizations,
y;, of the observation variable at the prescribed probability, by default 95%. Observation
intervals are computed so as to include both sampling variability, as well as parameter
uncertainty if a covariance matrix has been passed. Mathematically the distribution of yet
to be observed values of the observation variables, y; can be expressed as follows:

plylz) = / pi(uilfi(, 0))p(6)db. (7.15)
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The observation interval bounds are determined from the percentiles of this distribution.
Without parameter uncertainty this distribution just reduces to the observation distribu-

An example of the returned predictions dataframe from Listing 8, containing both
types of intervals and sensitivity data, is shown in Figure 7.13. Several additional columns
are now included, grouped by upper indices. The upper index Prediction now includes
columns Lower and Upper which mark the lower and upper bounds of the prediction
interval for each input-observation combination. A new upper index Observation has
been added, containing Lower and Upper bound columns for the 95% observation intervals.
Note that under parameter uncertainty the predicted mean response, Fg(y;), and the mean
observation, E, ¢(y;), should be the same and so only the predicted mean is returned (i.e.
Fo(7;)). Sensitivities of the prediction mean (taken at the value passed via the param
argument) are shown in the third upper index grouping named Sensitivities. Here each
column is named according to the parameter names the user originally passed to the Model
class during instantiation.

Inputs Prediction Observation Sensitivity

x1 x2 Variable Mean Lower Upper Lower Upper Theta@ Thetal Theta2 Theta3
0 -1 -1 yl -0.598996 -1.407066 ©0.206339 -1.621448 0.426733 1.000000 -1.0 0.000000 1.000000
1 1-1 yl 0.794492 -0.023211 1.600685 -0.239791 1.814854 1.000000 1.0 0.000000 -1.000000
2 -1 1 yl -3.205570 -3.990696 -2.395610 -4.212005 -2.201955 1.000000 -1.0 0.000000 —1.000000
3 11 yl 3.394067 2.599634 4.202541 2.385205 4.414268 1.000000 1.0 0.000000 1.000000
4 -1 -1 y2  2.846424 1.508091 4.824131 0.000000 7.000000 2.718282 0.0 -2.718282 2.718282
5 1-1 y2  0.212539 0.113365 ©0.365549 0.000000 1.000000 0.201897 0.0 -0.201897 -0.201897
6 -1 1 y2  0.470683 0.248804 ©0.802139 0.000000 2.000000 0.449329 0.0 0.449329 -0.449329
7 11 y2  6.344337 3.406244 10.898060 1.000000 14.000000 6.049647 0.0 6.049647 6.049647

Figure 7.13: An example of the returned dataframe from the predict () function, including
prediction and observation intervals as well as sensitivity information.

When computing the mean response, prediction intervals, and observation intervals,
the user has a choice of method options: Exact, Delta and MonteCarlo. Only one method
can be used in a given call to predict (), and all returned information will be computed
using the selected method. The Exact method is the default method, and it ignores any
parameter uncertainty. The Exact method returns F(Y;) computed algebraically from the
statistics, m;, computed at the nominal parameter values passed. The Exact method can-
not compute prediction intervals as the propagation of a normal prior through a non-linear
model cannot be computed exactly, at least for arbitrary models. The observation intervals
can be computed exactly, ignoring any parameter uncertainty, by using the cumulative dis-
tributions function of the observation probability distribution, p;(v;|fi(x,8)). The Delta
method propagates parameter uncertainty using local parametric sensitivities and a nor-
mal approximations for the prediction and observation intervals [19]. Using the Delta
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method, the predict () function can compute mean, prediction intervals, and observation
intervals, but these may be inaccurate for observation distributions that are not well ap-
proximated by the normal distribution and for highly nonlinear models. For example, due
to the normal approximation in the Delta method, interval bounds can be negative even
if the observation variable is strictly positive. The MonteCarlo method uses Monte Carlo
sampling from the parameter prior, p(€), and the observation distribution, p;(y;|fi(x,8)),
to compute the mean response and intervals. The Monte Carlo method can be accurate for
most scenarios but can be slow and may require the user to increase the default number
of samples via the options dictionary to ensure stable estimates.

7.4 The Design Class

The Design class is used to generate optimal designs in the NLOED package. Design
optimization is conditional on the model and parameter values at which the design is
optimized, but also depends on experimental constraints encoded in the optimization, and
on how the optimization problem is structured computationally. Fach of these factors
can alter the resulting optimal design structure. Therefore it may often be the case that
the user will want to create multiple optimal designs under various scenarios, and then
compare their performance. This motivates having designs encapsulated in a specific class
object, so that multiple designs can be created in a modular fashion by instantiating a
Design object for each scenario the user wishes to consider. Another reason for having
designs encapsulated in a Design object, is that the output of any design optimization
problem in NLOED is a relaxed design which requires additional processing to generate
an exact design. This processing is not necessarily unique and involves some user choices.
The Design class therefore stores relaxed solutions internally and provides users an easy
functional interface to generate various exact designs from the relaxed solution.

Figure 7.14 outlines the basic process for creating a Design object. Here, as in Figure
7.3, the green areas indicate user-controlled passing of data or calling of functions. The
blue area indicates automatic processes performed during object instantiation. The upper
green area is labelled as User Provided Information, this area indicates the various data
and options the user needs to provide to the Design class constructor for object creation.
This information includes which model and parameter value are going to be used, as well
as which objective is optimized, how each input variable is to be handled by the optimiza-
tion algorithm, and choices about sampling flexibility for models with multiple observation
variables. Together this information determines the exact nature of the optimization prob-
lem and will influence the resulting design considerably. Once this information is properly
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Design Class

User-Provided User Provided Information for Design Instantiation

Information e NLOED Model object

e Parameter values

o Objective type

o Discrete and/or continuous input infarmation
Inte_rm.nllyjorgamzed [ ‘Design’ Class Constructor ]
Optimization 5

Optimization Set-up
Create discrete input grid
Create continuous input symbols
Create weighted sum for overall FIM
Create symbols for overall objective and constraints

[ IPOPT optimization generates relaxed design ]

User-Callable
Functions relaxed()

*To be implemented

Figure 7.14: Caption text

encoded and passed to the class constructor, instantiation of the Design object commences.

Instantiation of the Design class will only take a single line of code to initiate, but as
the instantiation process contains a call to IPOPT for optimization, this can take some
time to complete. During this process several automated actions are taken within the
Design class constructor. These automated processes are labelled as Internally-Organized
Optimization in Figure 7.14. These processes are primarily split into two parts, 1) opti-
mization set-up and 2) the IPOPT call for optimization that generates the relaxed design.
During optimization set-up the specific information passed during instantiation, especially
function attributes within the passed models, are used to construct a CasADi symbol for
the optimization problem and its constraints. Once this symbolic structure is prepared, it
is passed to IPOPT via CasADi’s interface; the optimizer then runs and returns an optimal
solution which is parsed and stored within the resulting design object.

After optimization completes, the design object will be fully instantiated and the user
can interact with it using various user-callable functions. These are shown in the bottom
green section and are labeled User-Callable Functions in Figure 7.14. These functions
can be used to create exact designs from the optimal relaxed archetype or to compare
various exact designs’ performance depending on user’s choice regarding the sample size.
Specifically, the round () function can be used to return an exact design as a dataframes
in NLOED’s default design format. The exact designs can be used directly with the Model
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class’s user-callable functions like sample() and evaluate() for further analysis, or to
guide real experimentation. The following subsections give detailed descriptions of each of
the three phases outlined in Figure 7.14, including sample code and call structures where
appropriate.

7.4.1 Creating a Design Object

In order to create a Design object the user needs to call the Design constructor. The
general call structure for the Design class constructor is;

Design(models, parameters, objective, discrete_inputs=None,
— continuous_inputs=None, observ_groups=None, fixed_design=None,
- options={})

The first three arguments; models, parameters, and objective are always required. The
models, argument accepts a model object of the Model class created previously by the
user. The parameters argument accepts a the nominal parameter values at which the
optimal design is computed. The objective argument accepts a string specifying the
objective function type. Currently this argument only accepts D for D-optimal designs
(the determinant of the Fisher information matrix).

The remaining input arguments: discrete_inputs, continuous_inputs, observ_groups,
fixed design, and options, are optional to varying degrees. The user exerts significant
control over the posing of the design problem in specifying these remaining arguments.
The discrete_inputs and continuous_inputs arguments control how the inputs to the
model are handled. At least one of these two input-related arguments must be passed,
as all inputs must be treated as either discrete or continuous. Discrete inputs are dimen-
sions for which the optimization algorithm will only consider discrete levels of the input in
the design. Continuous inputs are treated as real-valued and thus can be varied accord-
ingly. The observ_groups argument accepts information about which observation variables
must be sampled together. By default the Design class assumes all observations can be
replicated with complete flexibility and independence, sometimes this is not possible and
observ_groups allows the user to force additional structure on which observation variables
can be measured together in a given input condition. The argument fixed design allows
the user to pass an existing fixed design to the Design class. This is useful if the user has
certain observations that need to be taken regardless of the optimal design (i.e. based on
domain specific knowledge) or to optimize the current design conditionally on past data.
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The options arguments is optional and accepts a dictionary of key-value pairs to modify
default settings of the Design constructor and optimization.

To help explain the behaviour of the optional arguments of the Design constructor, as-
sume an existing model object, model_object, has been passed to the Design constructor.
Also assume that model_object has four inputs, and two observation variables. Let the
input names be: x1, x2, x3, and x4 , and the observation variable names be: y1 and y2.
In the subsequent paragraphs this example model will be used to explain the usage of the
various optional arguments. As the descriptions are quite lengthy, the topics are outlined
here for clarity:

e Discrete Inputs Using the discrete_inputs argument to handle all model inputs.

e Continuous Inputs Using the continuous_inputs argument to handle all model
inputs.

e Mixed Inputs Using a both the discrete_inputs and continuous_inputs argu-
ment to handle different model input subsets as either discrete or continuous.

e Observation Groups Using the observ_groups argument to force observation vari-
ables to be sampled together.

e Fixed Design Aspects Using the fixed design argument to pass in an existing
or fixed aspect of the experimental design for conditional optimization.

Discrete Inputs Both the discrete_inputs and continuous_inputs arguments are
dictionaries, each with multiple fields. The user must create them prior to passing them
to the Design constructor. To assign all four inputs to be discrete, the user can use the
code in Listing 9.
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#discrete_input argument creation

discrete_dict ={'Inputs':['x1l','x2"','x3"','x4"'],
'Grid':[[-1,-3,-6,3],[0,0,0,0],[4,1,2,-1],

[3,8,-3,71,09,7,-7,91,[0.1,0.3,-0.2,1]11}

#declare parameters

param = [2, 3.3, 0.5, 1]

#call Design constructor

design_object = Design(model_object, param, 'D',

«» discrete_inputs=discrete_dict)

Listing 9: Example of the discrete_inputs argument creation and passage, assigning four
model inputs to be handled discretely.

The Inputs key must be passed for discrete_inputs, its value is a list of strings naming
the inputs to be treated discretely. Here all inputs are listed in the Inputs field of the
dictionary, which means all inputs are handled discretely and the continuous_inputs
argument can be ignored. When inputs are discretized the optimization algorithm only
considers discrete levels of each input, permuted to create a grid of candidate input points in
the discrete input domain. The remaining keys in discrete_inputs determine the layout
of the discrete grid for the specified inputs. The user can specify the grid in three ways; 1)
with Grid key, 2) with the Candidates key, and 3) with the Bounds and NumPoints keys.
As shown in Listing 9, the user can specify the exact set of grid points using the Grid key,
which is followed by a list of lists; the outer list contains all of the grid points, the inner list
specifies the input values at each point. Values in the inner lists are assumed to be ordered
in the same way the discrete input names were passed via the Inputs key. Passing the
exact set of grid points gives the user complete control over which input combinations are
considered, but it can be time consuming to construct. In the case where the user requires
specific discrete levels of each input to be considered but faces no other limitation, they can
use the Candidates key. Here the user passes a list of lists again, but the outer list is the
same length as the number of discrete inputs. Each inner list contains the unique candidate
values of the corresponding input to be consider. The inner lists can be of different lengths.
An example of this type of dictionary is shown below:

#discrete input argument creation
discrete_dict ={'Inputs':['xl','x2"','x3"',"'x4'],
'Candidates':[[-1,0,1],
[1,5,10,15,20],
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[.1,.7,12,20011,
[O,1,2’374,5,6,7)8,9,101}

The Design constructor will generate all possible permutations of the provided candidate
lists and use this permutation set as the grid of potential input points. Finally, in some
experiments the user may wish to simply distribute points evenly through some region of
the discrete input space. To do so they can use the Bounds and NumPoints keys. When
passing the Bounds key, the user gives the lower and upper bounds for each discrete input
dimension as a list of tuples. The Design constructor then creates a grid of candidate points
in this hyper-rectangle defined by the bounds, with the integer passed via the NumPoints
key determining the number of points per dimension. The points within each dimension
are distributed in an equidistant manner and all permutations within the hyper-rectangle
defined by the bounds are considered. If NumPoints is not passed, the number of values
along each dimension defaults to 5. The Bounds and NumPoints keys are useful for quickly
generating an equidistant candidate grid if the exact value of the discrete levels do not
matter. An example dictionary using the Bounds and NumPoints keys is given below:

#discreet input argument creation

discrete_dict = {'Inputs':['x1l','x2"','x3",'x4"'],
'Bounds': [(-1,1),(-1,1),(-1,1),(-1,1)],
'NumPoints':10}

There are a number of reasons the user would consider using discrete inputs. Real
experimental inputs to a system, when implemented in the lab, are always restricted to
discretely distinguished levels by experimental measurement accuracy and equipment lim-
itations. Even if an input such as temperature could in theory be resolved down to an
infinitesimal scale, an experimental apparatus in the lab can only maintain temperature
consistently in a bounded range, determined by measurement accuracy and the apparatus
control resolution. Some experimental inputs cannot be varied from a few discrete levels
(i.e. growth rate on various carbon sources), and some inputs are simply numerical encod-
ings of categorical factors that have no ordering (i.e. background strain, antibiotic type
etc.). In certain models it can be advantageous to discretize an input, despite its fine exper-
imental resolution, either because the model is relatively insensitive to the given input or
greater optimization efficiency can be achieved via discretization. Discrete inputs impose a
higher upfront computational cost and a create a larger overall optimization problem (with
higher memory overhead) but discretization leads to faster iterations of the optimization
solver due to increased convexity and a simpler overall problem structure. The problem
size and upfront cost scale with the number of discrete candidate points considered in the
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input space. As the grid generally grows exponentially with the number of input dimen-
sions, it is generally difficult to handle high-dimensional problems with all inputs treated
discretely.

Continuous Inputs In order to treat inputs continuously the user passes the continuous_inputs

argument, which accepts a dictionary with somewhat similar structure to its discrete coun-
terpart, discrete_inputs. An example of a call to the Design constructor with all inputs
treated continuously is shown in Listing 10;

#continuous input argument creation
continuous_dict = {'Inputs':['xl','x2"','x3"','x4"'],

'Bounds': [(-1,1),(-1,1),(-1,D],

'Structure': [['x1_1v11','x2_1v11','x3_1v1l1','x4_1v11'],
['x1_1vl12','x2_1v12','x3_1v12', 'x4_1v12'],
['x1_1v13','x2_1v1l3','x3_1v13','x4_1v13']]1}

#declare parameters

param = [2, 3.3, 0.5, 1]

#call Design constructor

design_object = Design(model_object, param, 'D',
< continuous_inputs=continuous_dict)

Listing 10: Example of the continuous_inputs argument creation and passage, assigning
four model inputs to be handled continuously.

Here, the Inputs key maps to a list of input names that are to be treated continuously.
In Listing 10, all four inputs are listed in the Inputs field of continuous dict and so
the discrete_inputs argument can be ignored. Similar to the discrete case, the Bounds
key for continuous inputs are also specified as a list of tuples containing lower and upper
bounds for each input. All continuous inputs must have boundaries specified. These
input bounds are necessary as they ensure well-posedness of the optimization problem; the
objective value can increase indefinitely with the increase of some combinations of input
dimensions for certain models. Also, it is generally infeasible or impractical to vary the
input values beyond some natural limits within the laboratory. Bounds can be imposed
based on limitations of experimental equipment or based on restrictions on the input ranges
for which the model assumptions hold. When discrete inputs are used, the candidate
grid points are fixed and the optimization selects inputs by adding them to the solution
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based on their utility. When using continuous inputs, the input points are treated as the
optimization variable themselves, and the user must specify how many unique points the
optimizer should consider within the bounded input space. The Structure key allows the
user to specify how many unique input points to consider and any common dimensional
values they may need to share. The Structure key must be passed with a list of lists
as its value. The outer list corresponds to the number of unique input points that will
be considered in the continuous input space. Each inner list has the same number of
dimensions as the number of continuous inputs. The inner lists each contain a set of string
symbols, one for each continuous input dimension. Each unique string symbols specifies a
unique level for the corresponding continuous input.

In the example shown in Listing 10, we have specified three unique points in the con-
tinuous input space; each point has complete freedom in each of the four input dimensions.
This scenario is encoded with three inner lists, one for each point. The independence
of every point and dimension is indicated by the use of a novel symbol string for every
list entry (i.e. ‘x1_1v1l1’ ‘x2.1v12’, etc.). However using the Structure key we can also
specify more constrained experimental design problems. For example, we may consider
six input points, but for all six, x1 can only have one unique value. We may also wish
to restrict input x2 to one level in the first three points and another in the later three
points. Inputs x3 and x4 are assumed to be free in all six input points. An example of the
continuous_inputs dictionary encoding such restrictions is shown in Listing 11.

#continuous input argument creation
continuous_dict = {'Inputs':['xl','x2"','x3",'x4"'],
'Bounds': [(-1,1),(-1,1),(-1,1),(-1,1D1],
'Structure':[['x1_1vl','x2_1vl1l',6 'x3_1vll','x4_1v11'],
['x1_1vl','x2_1v11l','x3_1v12','x4_1v12'],
['x1_1vl','x2_1v11l','x3_1v13','x4_1v13'],
['x1_1vl','x2_1v12','x3_1vl14','x4_1v14'],
['x1_1vl','x2_1v12','x3_1vl5','x4_1v1l5'],
['x1_1vl','x2_1v12','x3_1vl6','x4_1v16']1]1}

Listing 11: Example of the continuous_inputs argument that uses the Structure field
to encode candidate points with shared dimensional values.

Note how the first element of each inner list is now the same string; ‘x1_1v1l’, indicating
that input x1 has a single value, shared across all points to be optimized. The second
element of each inner list is either ‘x2_1v11’ (in the first three) or ‘x2_1v12’ (in the latter
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three), indicting input x2 will only take two unique values after optimization. Lastly, every
element corresponding to inputs x3 and x4 has a unique string, indicating unique levels
for each point.

The Structure field will often be used as shown in Listing 10, with all points free, and
the main choice being how many inputs points to consider. However the more complicated
points structure shown in Listing 11 are required in certain experiments. For example
consider a time series experiment where the initial conditions are a model input and all
replicates share the same initial conditions. In such a case, the initial condition input
will need to be restricted to a single value for all replicates, just like x1 above. Another
example may be that limited capacity of a laboratory, like the number of incubators, may
necessitate certain input dimensions, such as temperate, can only take a finite number of
unique values in each experiment, just like input x2 above only has two levels.

When using continuous inputs, the Design constructor will optimize the placement of
the input points and will also attempt to optimize the quantity of replicates taken at each
point (this is also done for discrete inputs). However for continuous inputs the user may
wish to specify that each input point in the structure gets exactly the same number of
observations. This option is ideal for optimizing design with smaller sample sizes. To do
so the user can pass the option 'LockWeights’ as True in the options argument. This
option is only available if all inputs are handled continuously.

Choosing to treat inputs continuously rather than discretely depends on the model and
the experimental context. Generally, real world experimental levels are discrete up to the
tolerance of measurement and control, and thus continuous inputs are an approximation.
However, it is generally practical to approximate inputs as continuous if the number of
discrete levels achievable in the laboratory is numerous and the experimental control is
very fine relative to the model’s input sensitivity. Continuous inputs can also be used
for computational reasons as they generally lead to smaller problems that are quick to
initialize. However continuous inputs generally result in an optimization problem that is
more nonlinear leading to more optimizer iterations, more intensive computation on each
iteration, and greater chances of getting stuck in local optima. In addition for continuous
inputs, the user needs to specify the number of unique input points the algorithm should
consider in the design; this information can be difficult to set a priori.

Mixed Inputs In certain situations it is desirable to handle some inputs discretely while
treating others as being continuous. This can be for both experimental or computational
considerations. For example, adding some discrete inputs tends to make a design problem
more convex and easier to solve, but adding some continuous inputs can make the overall
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problem smaller with respect to memory requirements. When dealing with very complex
models or input spaces, blending the input types can allow the user to tackle problems
that may be difficult to handle with a single input type. Listing 12 shows an example
where input x1 and x2 have been handled continuously, with similar restrictions to those
imposed in Listing 11. Inputs x3 and x4 have been discretized. In this case both the
discrete_inputs and continuous_inputs arguments are passed, with the model’s four
inputs split between both input structures.

#continuous input argument creation
continuous_dict = {'Inputs':['xl','x2'],
'Bounds': [(-1,1),(-1,1D],
'Structure': [['x1_1vl','x2_1v11'],
['x1_1vl','x2_1vl11'],
['x1_1vl','x2_1v11'],
['x1_1vl','x2_1v12'],
['x1_1vl','x2_1v12'],
['x1_1vl','x2_1v12']1]1%}
#discrete input argument creation
discrete_dict ={'Inputs':['x3','x4'],
'Candidates':[[-1,-.5,0,.5,1],
[-1,-.5,0,.5,111}
#declare parameters
param = [2, 3.3, 0.5, 1]
#call Design constructor
design_object = Design(model_object, param, 'D',
- discrete_inputs=discrete_dict,continuous_inputs=continuous_dict)

Listing 12: Example calling the Design constructor using a mixture of discrete and con-
tinuous inputs.

Observation Groups The observ_groups argument to the Design constructor is op-
tional. By default each observation variable is handled independently meaning that during
optimization, outputs y1 and y2 could have different replicate quantities assigned to them
even in the same input conditions. In certain conditions this is not practical, for example
in a costly destructive sampling experiment where a replicate is destroyed on observation.
In this case the user will likely measure any relevant observation variables they are able to
whenever a replicate is destroyed. In this case it is useful to assign the relevant observation
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variables to a group that will be sampled together. The observ_groups argument accepts
a list of lists, each inner list contains the names of observation variables that are measured
in an observation group. For example if y1 and y2 needed to be measured together in any
observation, one could use the example shown in code listing 13.

#discreet input argument creation

discrete_dict = {'Inputs':['x1"','x2','x3",'x4'],
'Bounds':[(-3,3),(-3,3),(-3,3),(-3,3)],
'NumPoints: 10}

#declare parameters

param = [2, 3.3, 0.5, 1]

#observation grouping

observ_group_lst = [['y1','y2']]

#call Design constructor

design_object = Design(model_object, param, 'D',

< discrete_inputs=discrete_dict, observ_groups = observ_group_lst)

Listing 13: Example of the observ_groups argument being used to group observation
variables y1 and y2.

The observ_groups list is constructed in line 8 and is passed in line 10. This will force
both observations y1 and y2 to be treated as a single unit when the algorithm considers
the number of samples to assign to them.

Fixed Design Aspects The fixed design argument is also optional and can be used to
pass fixed design aspects or the design used in existing data. The fixed design argument
accepts a dictionary containing an existing design along with a weight indicating what
fraction of the overall sample size dedicated to the fixed design aspects. For example if the
user has already collected 5 observations and plans to collect another 15 with an optimal
design, the user would pass the fixed design argument with a weight of 0.25. A coded
example using the fixed design argument is shown in Listing 14. Here in lines 6-11, the
initial design is declared. In practice this design can come from a previous optimal design
or past datasets. In line 13 the initial design is inserted into a dictionary under the key
name Design. In the same dictionary we also include the key name Weight whose value
specifies the fraction (between 0 and 1) of the overall sample size dedicated to the initial
design. In this case the value of 0.25 is passed as the weight and so the designed experiment
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is expected to have a sample size three times that of the initial experiment. Passing in
fixed aspects of an overall experimental effort is important in order for the optimal design
to perform well. Optimal designs created without conditioning on fixed design aspects will
ignore information contained in the fixed aspects. This may lead to some observations in
the optimal design being inefficiently placed.

#discrete input argument creation
discrete_dict = {'Inputs':['xl"','x2','x3",'x4'],
'Bounds':[(-3,3),(-3,3),(-3,3),(-3,3)1,
'NumPoints:10}

#declare inttial design

init_design = pd.DataFrame({'x1':[-2,-1,1,2]%4,
'x2':[2,-2,-1,1]*4,
'x3':[1,2-2,-1]%4,
'x4':[-1,1,2,-2]*4,
'Variable':['y1']*4+['y2']*4,
'replicates': [3]%8})

#create the fized design dictionary

fixed_dict = {'Weight':0.25, 'Design':init_design}

#declare parameters

param = [2, 3.3, 0.5, 1]

#observation grouping

observ_group_lst = [['y1','y2']]

#call Design constructor

design_object = Design(model_object, param, 'D',

< discrete_inputs=discrete_inputs, fixed_design = fixed_dict)

Listing 14: Example of a call to the Design constructor with the fixed design argument
used to pass an existing aspect of the overall design.

7.4.2 Design’s Automatic Optimization Set-up

After the Design constructor is called, instantiation of the Design object begins with
the automatic organization the optimization problem for passage to IPOPT. The main
challenge in setting up the optimization problem is in creating the CasADi symbol for the
overall design objective. In order to create the objective symbol, the optimization variables
need to be linked to the total Fisher information matrix for the experiment. All objectives
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used by the NLOED package for optimization are computed as simple algebraic functions
from the elements of the experiment’s Fisher information matrix; computing the total FIM
for a design is therefore the main computational hurdle.

As observations in NLOED are assumed to be independent, the Fisher information
matrix for an experiment can be computed as a weighted sum of individual matrices at
each observation. For a multi-output model the FIM sum can be written as (see Chapter
2 for details)

I10(D, 6) ZZ@J (z;,0 (7.16)

Here there are M observation variables, Y;, indexed by ¢, and N support points x;, indexed
by j. The support of the design consists of the set of all unique input vectors such that
x; € X. The FIM at a given input point, x;, for the observation variable Y; is Z;(z;, 0).
The vector @ is the nominal parameter vector at which the design is optimized. Each
replicate allocation, f3; ;, corresponds to a support point @; and an observation variable Y;.
Together the replicate allocations for each observation and input condition form the set
Bi; € B, which defines the design’s replication structure. For an exact design the weights
are restricted to be non-negative integers. The sum of the weights adds to the overall
sample size N7, such that; N = wa Z;V Bij. The overall information matrix, Zr. (D, 9),
is therefore a function of the design, D, where the design consists of the support point
set, D, and weight set, B, such that; D = {X,B}. The integer constraint makes the
above problem very difficult. In the Design class the integer constraint on the replicates is
relaxed, and the integer replicate allocations, f3; ;, are replaced with real-valued continuous
weights, & ;, which are constrained so that 1 = wa Zjv &i;j- The relaxed design problem
can then be written as

]Tot DR: ZZ&] my (717)

For the relaxed formulation, all the weights, & ;, now form the weight set & ; € Z, and
the relaxed design is defined as Dy = {X, Z}. The problem in the relaxed form remains
nonlinear but it is now possible to pass to a solver such as IPOPT and expect reasonable
solution times for many models of interest.

In order to compute the FIM sum for a given experiment, the Design constructor
uses the FIM function attributes of the Model object passed to the Design constructor.
These function attributes are able to compute Z;(x;,0) and can therefore compute the
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individual FIM’s symbolic dependence on each of the candidate support points. The total
FIM sum, listed previously, is generated as a CasADi symbolic function with ¢;; and x;
as the symbolic inputs. The total FIM is then used to generated a CasADi symbol for

the overall optimization objective symbol, (I, (Dg, @)). The resulting objective symbol,
U (I7,:(Dg, 0)), effectively encodes the entire optimization problem in a CasADi symbolic
structure, linking the objective symbol to symbols for each of the optimization variable
symbols; x; and & ;. This whole CasADi symbolic structure can then be passed to IPOPT
via the CasADi interface, along with any required constraints. The CasADi interface then
uses the symbolic structure to auto-generate objective and constraint derivatives for use in
IPOPT’s interior points solver. Much of the actual optimization is handled automatically
by CasADi and IPOPT. NLOED specifically manages the problem formulation, controlling

how the overall FIM is computed and how the optimization problem is structured.

Weight

Fixed grid

Input Space It

otal ~ <i<j

= ZZEL()(])

Optimization
1 Variable

Figure 7.15: A depiction of NLOED design optimization problem structure with two dis-
cretized inputs and a single observation variable.

The input settings the user provides in discrete_inputs and continuous_inputs dur-
ing instantiation of the Design object significantly influence the optimization problem’s
computational structure. For example when only discrete inputs are used, the candidate
grid specified by the user effectively becomes the support points set ; € X. As these
points are fixed at specific levels in the grid, the input points, x;, are not included as
free optimization variables in the optimization problem. Instead, the weights, &, ;, be-
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come the only optimization variables. This results in a large sparse convex optimization
problem, because the individual FIMs, Z;(x;, 0), for each candidate grid point, x;, can be
pre-computed numerically before calling the solver. However, the weights, &; ;, then control
the exact convex combination of these matrices that make up the total FIM. The optimal
support points will be indicated by the non-zero replicate weights after optimization. Non-
zero replicate weights also indicate which observation variables are to be measured. As
each FIM is semi-positive definite, the overall problem is convex (at least for the default
D-optimal objective) [15]. However, the discrete handling of inputs requires the Design
class to compute a FIM for every input grid point, which can be time consuming if there are
many inputs and the grid points consist of all permutations of the candidate input levels.
Figure 7.15 visually depicts the optimization problem formulated with a discretized two
dimensional input space and a single observation variable. This scenario would correspond
to a discrete_inputs dictionary structured as;

discrete_dict = {'Inputs':['x1l','x2'],
'Candidates':[[1,2,3],[1,2,3,4]]1}

In the figure, three levels of x1 and four levels of x2 are permuted to create a candidate
grid over which the sampling weights serve as optimization variables. In summary, the
optimizer has flexibility in assigning sampling weights and observation variables and will
easily converge to a global optima, up to numerical precision, but the optimizer has no
flexibility to adjust the grid of input points.

A complimentary scenario to the discretized input grid optimization problem can be
achieved, where the weights, &; ;, are fixed and only the input points, x;, are optimized.
This occurs when only continuous inputs are used, and the LockWeights option is set to
True, so that each input point gets the same fixed weighting. In this case the user controls
the number of unique support points, IV, by specifying the size of the support set using the
Structure field of the continuous_inputs argument. Figure 7.16 depicts this optimization
set up for a two input scenario. This would correspond to a continuous_inputs argument
structured as;

1 continuous_dict = {'Inputs':['xl','x2'],

2 'Bounds':[(0,1),(0,1)],

3 'Structure':[['x1_1vl','x2_1v1l1'],
4 ['x1_1v2','x2_1v12'],
5 ['x1_1v3', 'x2_1v13'],
6 ['x1_1v4','x2_1v14']1]13}
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Figure 7.16: A depiction of an NLOED design optimization problem structure with two
continuously handled inputs and the LockedWeights constraint activated.

In the figure there are four support points free to vary within the bounded domain, each
with a fixed identical sampling weight. Here, if the model is nonlinear in its parameters,
then the input points, x;, are nonlinearly related to the optimization objective. This
means the optimization becomes a fully nonlinear programming problem but it tends to
be smaller as the number of optimization dimensions is the product of the input dimension
size of & and the number of support points, N. Here the optimizer has great flexibility
in moving the support points around the input space, but designs may be sensitive to the
starting locations of the support points and no flexibility in re-weighting the support points
is possible. In this scenario, the only way for the optimizer to replicate a support point
is to locate two support points at an identical position, meaning the user will generally
need to provide a large number of support points (potentially on the same order as their
intended sample size) in order to understand the optimal replication structure. However,
the resulting designs derived with locked weights are easily implemented exactly with small
sample sizes.

When continuous inputs are used in the default manner, without locked weights, both
the weights, §; ;, and the input points, x;, are treated as optimization variables. This
scenario is depicted in Figure 7.17 and would equate with a continuous_inputs argument
structured as:

141



» Il

T = zizj)

Optimization
Variable

Figure 7.17: A depiction of NLOED design optimization problem structure with two con-
tinuously handled inputs, optimized sampling weights, and a single observation variable.

1 continuous_dict = {'Inputs':['xl','x2'],

2 'Bounds':[(0,1),(0,1)],

3 'Structure': [['x1_1vl','x2_1v11'],
4 ['x1_1v2','x2_1v12'],
5 ['x1_1v3','x2_1v13']]}

This setup gives the optimizer flexibility in both the location of the support points and
in the distribution of samples amongst support points as both points and weights are
optimization variables. In the figure there are three support points, each with its own
sampling weight. The resulting problem is still highly nonlinear in the support points but
the use of the weights means that user can allot less candidate support points and still
discover the optimal replication structure. This can lead to a smaller optimization problem
but the resulting design may be more suited to a large sample size for implementation.

Mixing continuous and discrete inputs can lead to complicated structures which are
difficult to visualize. In the continuous subspace of the overall input space, a certain num-
ber of candidate support points are free to vary during optimization, as specified by the
Structure key in the continuous_inputs argument. (Recall these ‘points’ are technically
in a lower dimensional sub-space of the overall input space which consists of only the con-
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Figure 7.18: A depiction of NLOED’s design optimization problem structure with the first
input dimension handled continuously and the second input dimension handled discretely,
and with a single observation variable.

tinuously assigned dimensions). Along the remaining discretely handled input dimensions,
a candidate set of levels is available via the discrete grid. An example of this scenario
is depicted in Figure 7.18. This scenario would correspond to the discrete_inputs and
continuous_inputs arguments structured as;

1 #discreet_inputs argument

2 discrete_dict ={'Inputs':['x2'],

3 'Candidates':[[1,2,3,4]1]1%}
4 #continuos_inputs argument

5 continuous_dict = {'Inputs':['x1'],

6 'Bounds': [(0,1)],
7 'Structure': [['x1_1v11'],
8 ['x1 1v12']1]1}

Here two unique levels of input x1 are available to the optimizer. At each of these two
levels, in the second dimension, x2, a four level grid is available for selection via the
sampling weights. The optimal set of support points that are selected is a function of the
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location of the continuous dimension points and which discrete grid locations receive non-
zero weights. This type of problem formulation allows the user to accommodate specific
experimental limitations, for example if x2 can only be set to four discrete levels in the
available equipment, and if x1 can only be run with at most two unique levels in the given
round of experimentation. The mixed formulation can also decrease the non-linearity of a
problem, as the input dimensions that are handled continuously are the only ones that are
fully nonlinear with respect to the objective.
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Figure 7.19: A depiction of NLOED’s method for observation selection as part of its
optimization structure. On the left, the default method is used, where observation variables
y1 and y2 are each given a separate set of weights over the same input structure. On the
right, the observ_struct has specified that y1 and y2 must be observed together in any
given input conditions.

For models with multiple observation variables, output selection is performed in a
similar manner to discrete input selection. Non-zero weights, &; ;, are used to decide which
outputs are measured. Figure 7.19 shows the default handling of multiple observation
variables for a two input model on the left. In this case each of the outputs, y1 and y2, has
its own FIM with its own weight but they both share the same underlying input points,
regardless of whether inputs are handled continuously, discretely, or in a mixed fashion.
When the user groups outputs together using the observ_struct argument, the FIMs are
automatically summed within the group before they are weighted, implying that they are
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always observed as a group. This situation is shown on the right in Figure 7.19 for a two
output model where both outputs, y1 and y2 have been grouped together.

Based on the provided inputs to Design constructor NLOED will implement the ap-
propriate optimization scenario. Each scenario results in different symbolic structures,
which are then passed to IPOPT. Some experimentation may be necessary with a given
experimental design problem in order to find a structure which works well in IPOPT and
satisfies experimental constraints. After optimization, the relaxed design is parsed from
IPOPT’s output and stored within the Design object. The user can then view the re-
laxed design with its continuous weights or generate an exact design using the objects
user-callable functions described in the next section. While NLOED provides extensive
flexibility in formulating the optimal design problem, not all experimental limitations can
be implemented. In these scenarios, the optimal relaxed design can often provide qual-
itative information about which input conditions provide the most desirable information
about the model parameters. The user can then use the Model class’s evaluate () function
and simulation tools to assess design modifications and find a reasonable design.

7.4.3 User-callable Design Functions

Once the user has instantiated a Design object instance, they can use the object to examine
the optimal design structure and to generate exact designs that can be implemented in
practice or be simulated by the Model class. The user can perform these actions by calling
functions available within the Design class object. Here we explain the calling procedure
for the available functions and discuss some planned extensions.

The relaxed() function The relaxed() function can be used to return the relaxed
optimal design as a dataframe. Relaxed designs resemble exact designs however instead
of a Replicates column containing the integer count of replicate allocations, f; ;, they
have a Weight column that contains the real valued weights, &; ;. The sum of the Weight
column values will be one, up to the numerical precision of the optimization algorithm.
The relaxed() function does not accept any input arguments. An example call is shown
in Listing 15.
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#extract the relaxzed design from the design object
relaxed_design = design_object.relaxed()

#print the relazed design

print (relaxed_design)

Listing 15: An example call to the Design class’s relaxed () function.

Line 2 returns the relaxed design dataframe and in line 4 the dataframe is printed to the
output. An example of a relaxed design that has been printed is shown in Figure 7.20. Here

x1 x2 Variable Weights

0 -1 -1 yl 0.125
1 -1 -1 y2 0.125
2 -1 1 vyl 0.125
3 -1 1 y2 0.125
4 1 -1 vyl 0.125
5 1 -1 y2 0.125
6 1 1 yl 0.125
7 1 1 y2 0.125

Figure 7.20: An example of a dataframe containing an relaxed design returned by the
relaxed() fucntion.

we can see that there are only four unique support points, with different input values of x1
and x2, each with even weighting across both observation variables y1 and y2. This result
is typical for linear models with normal errors and symmetric bounds on the input domain.
Returning the relaxed design is not generally necessary but as the relaxed design is used
to generate all exact designs via rounding, it can be useful for visualizing the underlying
relaxed structure. In addition, depending on how the design optimization problem was
structured, the relaxed design may be guaranteed to satisfy certain equivalence theorems
[15], and thus can be used to verify a global optima has been achieved. This will only work
in special cases, for more information the user may refer to [15].

The round() function In order to create an exact design with a finite sample size,
N7y, the user must discretize the exact design in some manner, converting real-valued
weights, & ; to integer valued allocations, f3;;, so that Ny, = Zjv wa Bi;- There are
a number of rounding methods available, each with various trade-offs [60, (1, 62]. The
round () function implements the Adam’s apportionment rounding procedure as a default
method for performing this task. Adam’s apportionment has been noted in previous works

146



as having a number of ideal properties for rounding experimental designs [60, 61, 62]. The
general call structure for the round () function is;

round (sample_size, options={})

The sample_size argument accepts the desired number of sample size for the experiment.
The options argument is optional and can be used to override the default behaviour of
the rounding algorithm. An example call to the round () function is shown in Listing 16.

#set the sample size

sample_size = 10

#generate the rounded design

exact_design = design_object.round(sample_size)
#print the resulting exact design

print (exact_design)

Listing 16: An example call to the Design class’s round () function.

In line 2, the sample size, Npy, is set to 10, and in line 4 the exact design is generated
with a call to the round() function of the design object. In line 6 the exact design is
printed to the console output. An example of a exact design returned by the round()
function for the relaxed design shown in Figure 7.20 is shown in Figure 7.21. The round ()

x1 x2 Variable Replicats

0 -1 -1 y1 1
1 -1 1 y2 1
2 -1 1 % 1
3 -1 1 y2 2
4 1 vl 1
5 1 -1 y2 1
6 1 1 vl 2
7 1 1 y2 1

Figure 7.21: An example of an exact design dataframe returned by the round () function.

function here is called with a sample size of 10, however, the relaxed design has 8 unique
input-observation pairs, each with equal weighting. As an equal weighting of 8 points is
not achievable with 10 observations, the rounding procedure will allocate these additional
points randomly. As in the above case Adam’s method does not always yield a unique
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apportionment, in which case currently a random selection is made. In future versions of
the package the rounding () function will be extended to allow more rounding methods as
well as further analysis in cases where non-unique rounding occurs.

The power () function Often the user’s ultimate goal is to constrain parameter values
within reasonable confidence bounds of a prescribed width. Experimental equipment or
cost may place some upper bound on the sample size in a given experiment, and in cases
where this is quite restrictive the user will use the maximum sample size as the input
for the round() function. If the design achieves the desired accuracy than the task is
achieved, and if not the experimenter may be forced to iterate over multiple rounds of
experimentation.

However, in some cases there may not be a restrictive upper bound on the sample size,
but rather observations may be costly in either time or resources and the user may prefer
smaller sample sizes but has no firm upper limit. In this context the user needs a method
to examine trade-offs in sample size and confidence interval width across a range of feasible
sample sizes. This type of analysis is similar to power analysis done for traditional regres-
sion models in empirical studies for social and medical sciences [213]. Power analysis can
demonstrate how confidence intervals or other diagnostic metrics converge as the sample
size increases.

The power () function is nor currently implemented but its intended role is to allow
the user explore rounding of the optimal relaxed design for multiple sample sizes within
a range. This process will allow the user to understand performance trade-offs across this
range for the given design and to determine at what sample size threshold certain accuracy
objectives are expected to be achieved. It is important to note that the same underlying
relaxed design is used for each sample size to generate an exact design, however the exact
designs will differ in replicate allocation. As the sample size increases the exact design
can better approximate the optimal weights in the relaxed design. This generally results
in a monotonic increase in performance for exact designs created with larger sample sizes;
a larger sample size is almost always better. However, for some relaxed designs, certain
integer sample sizes more accurately approximate the relaxed weights than other nearby,
even larger, sample sizes. The larger sample sizes will always perform better, but the gains
may be marginal relative to the cost for the experimenter. The power() function will
provide graphical and quantitative methods to assess these trade-offs.
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7.5 Examples

In this section, we give a description of the package workflow using specific models. These
examples include code snippets and sample output, and specifically focus on how models
are encoded in CasADi’s symbolics, and how the experimental constraints are passed to
the Design class. These example, among other, will serve as prototypes for first-time
users in the package documentation so that those new to the package have several working
examples to start from and modify when they seek to implement their own projects.

7.5.1 Optimal Design for Static Models

Here we begin by describing the NLOED package applied to a static model; one that does
not require any numerical integration and therefore does not involve ODEs. As a first
example we begin with a simple optogenetic dose response curve. Recall from previous
chapters that an optogenetic system is one where gene expression can be activated by a
the light intensity of a specific color. Here a Hill function is used to describe the expression
of GFP as a function of the light intensity such that

Light"

GFP = L
ot e Tight'

(7.18)
Here ag, o, K and n are the parameters of interest, Light is the single experimental input
and GFP is the observed expression of GFP and the single model observable. We assume
some past experimental data has been collected for this model but that the user wishes to
improve the accuracy of the confidence intervals as efficiently as possible. We assume the

user is also confident enough to assert that the distribution of the GFP expression level is
normally distributed with a standard deviation of about 5% of the mean expression level.

The user begins by starting their preferred Python interface and importing the required
packages. Listing 17 shows the the required commands in lines 1-6.
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import numpy as np

import pandas as pd

import casadi as cs

import matplotlib.pyplot as plt
from nloed import Model

from nloed import Design

Listing 17: Import statements for using the NLOED package, including the Model and
Design class as well as other common Python numerical libraries.

Next in Listing 18, the user creates CasADi symbols for the input and parameters. This
occurs in lines 8 and 9, note that the names here can be arbitrary. These lines make use of
CasADi’s cs.SX.sym() function to create two symbol vectors. The call to cs.SX.sym() for
creating the experimental input has a single dimension (second argument omitted). The
second call to cs.SX.sym() for the parameters has four dimensions, one for each parameter
of interest. In lines 11-14 we define the named parameters used in the model definition to be
the exponentiated values of the parameters in the parameters vector. This is a log trans-
formation and it ensures that the named parameter values are always positive. This type
of transformation is an important consideration when working with bounded parameter
ranges. Asymptotic expressions for parameter variability, like the Fisher information ma-
trix, are more cumbersome to compute for bounded parameter domains and thus NLOED
assumes the user either transforms their parameters to avoid the need for bounding or
that the feasible parameter range is so distant from the bounds they can safely be ignored
during model calibration. Here we have chosen a simple transformation to avoid the need
for bounds. A log transformation can also sometimes improve the numerical performance
of the design and fitting algorithms. The named parameters are given for clarity but the
user could choose to perform the transformation and model definition together for brevity.
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#define input and parameter symbols

inputs = cs.SX.sym('inputs')

parameters = cs.SX.sym('parameters',4)

#log-transormation of the parameters

alpha0 = cs.exp(parameters[0])

alpha = cs.exp(parameters[1])

n = cs.exp(parameters([2])

K = cs.exp(parameters[3])

#define the deterministic model for the GFP mean

gfp_mean = alpha0 + alpha*inputs#*#*n/(K**n+inputs*+*n)

#assume some hetroskedasticity, std_dev 5J of mean expression level
gfp_var = (0.05*gfp_mean)**2

#link the deterministic model to the sampling statistics (here mormal
<~ mean and variance)

gfp_stats = cs.vertcat(gfp_mean, gfp_var)

#create a casadi function mapping input and parameters to sampling
— statistics (mean and var)

gfp_model = cs.Function('GFP', [inputs,parameters], [gfp_stats])

Listing 18: An example of building a CasADi function for the deterministic component of
the optogenetic dose-response model, before making a call to the Model constructor.

In line 16, the mean GFP response, gfp_mean, is defined in terms of the named parameters
and the input. In line 18 the variance of the GFP observations, gfp_var, is defined to
be the square of 5% of the mean GFP expression. In line 20 the mean and variance are
concatenated into a single vector, this is mainly done for clarity and it could be merged into
the following line. In line 22, a CasADi function, gfp model, is defined using CasADi’s
cs.Function() constructor, this function maps the input and parameters to the GFP
sampling statistics. Up to this point the naming of all variables and CasADi symbols was
arbitrary, however now the string passed to the Function() constructor (in this case ‘GFP’)
will become the name of the observation variable within the NLOED Model.

Having created a CasADi symbol for the GFP observation variable, the user can now
construct an NLOED Model instance. Listing 19 demonstrates this process. In line 24, the
gfp-model function is tupled with the label Normal indicating that it describes the sampling
statistics of a normal random variable. This tuple is placed in the list observ_list. If the
model had more observation variables they would also be entered as tuples in the same list,
however as the current model has a single observation dimension, the list is a singleton.
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29

30

In lines 26 and 28, names for the input and parameters are given in vectors input_names
and parameter names respectively. In line 30, the NLOED model constructor is called
with the three preceding lists as arguments. The model_object variable now contains an
instance of an NLOED Model class encoding the dose-response model.

# create observation list, add model function with 'Normal' label as
-~ tuple

observ_list = [(gfp_model, 'Normal')]

#create names for inputs

input_names = ['Light']

#create names for parameters

parameter_names = ['log AlphaO','log Alpha','log n','log K']
#instantiate nloed model class

model_object = Model(observ_list,input_names,parameter_names)

Listing 19: Code showing the instantiation of an NLOED Model instance for the optoge-
netic dose-response model.

We assume the user has some preliminary data describing the GFP-intensity does re-
sponse relationship, shown as a dataframne in Figure 7.22. Here there are triplicate obser-
vations at four different light intensities 0.1, 3.0, 6.0 and 10.0. (We use this dataset as a
stand in for real experimental data, however it was actually generated using the sample ()
function from the Model class using parameter vector [2, 10,2, 3] which we pretend we do
not know for this analysis.) We assume this initial data is contained in the dataframe
init_data. The user can perform an initial fit to the preliminary data using the Model
class’s £it () function. Listing 20 demonstrates this procedure. In lines 32-33, fit options
are set, specifying a range for the parameter pre-search. Here a 7* element grid of ini-
tial parameters vectors are distributed over the region in parameter space specified by the
bound tuple list. The pre-fitting search evaluates each of these points for a good can-
didate starting point for the maximum likelihood optimization. Using the pre-search is
ideal when an initial parameter guess is not possible, as in this case. In line 35, the £it ()
function of the model object is used to fit the model to the data in init data. In line

37, we extract the fit parameter values into a Numpy array, numerically they correspond
to [1.87,12.20,1.31,3.72]
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32

33

34

35

36

37

Light Variable Observation

(5] 0.1 GFP 1.933326
1 0.1 GFP 1.961151
2 0.1 GFP 2.042274
3 3.0 GFP 7.501225
4 3.0 GFP 7.143189
5 3.0 GFP 6.694389
6 6.0 GFP 9.898560
7 6.0 GFP 9.361815
8 6.0 GFP 10.197202
9 10.0 GFP 11.238234
10 10.0 GFP 11.163177
11  10.0 GFP 11.946090

Figure 7.22: An example dataset for the optogenetic dose-response model, with triplicate
measurements of GFP taken at four different light levels.

#set options to use a simple initial search

fit_options={'InitParamBounds':[(-1,2),(1,3),(-1,2),(-1,2)],
'InitSearchNumber' :7}

#f1t the model to the initial data

fit_info = model_object.fit(init_data, options=fit_options)

#extract the parameter values

fit_params = fit_info['Estimate'].to_numpy().flatten()

Listing 20: Code showing the optogenetic dose-response being fit to an initial dataset using
the £fit () function.

To get a sense for the initial uncertainty in the parameter values we can use the
evaluate() function in the Model class to generate the asymptotic covariance matrix
for the inital data’s design. Listing 21 shows this process, in line 39-41 we enter the design
information for the initial dataset. In lines 43-44, the covariance matrix is requested and
the method for computing the matrix is specified in the options dictionary. In line 46
the evaluate() function is called from the model _object, using the fit parameters val-
ues stored in the fit_params array. In lines 48-49, we compute the approximate Wald
confidence interval bounds.
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# enter the initial design information

init_design = pd.DataFrame({'Light':[.1,3,6,10],
'"Variable':['GFP']%4 ,
'replicates':[3]*4})

#request the asymptotic covariance matric

eval_options={'Method': 'Asymptotic',

'Covariance':True}

# call evaluate() to compute the asymptotic covariance

asymptotic_covariance =

— model_object.evaluate(init_design,fit_params,eval_options)

#compute the asymptotic upper and lower 95\J bounds

asymptotic_lower_bound = fit_params -

- 2*np.sqrt(np.diag(asymptotic_covariance))

asymptotic_upper_bound = fit_params +

< 2*np.sqrt(np.diag(asymptotic_covariance))

Listing 21: Code showing the use of the evaluate() function to generate the asymptotic
covariance matrix and Wald confidence interval bounds for the initial dataset.

The resulting confidence intervals are printed in Figure 7.23. As we know the ‘true’
values from which the data was generated, we can see the intervals contain the data-
generating parameter vector, however the point estimate could certainly be improved. The
user, who only has experimental data, would not know the true error, however the width
of the confidence intervals is an indicator that accuracy could be improved.

Lower Estimate Upper
Alpha® 1.500220 1.870615 2.332458
Alpha 7.020268 12.203428 21.213385
n 0.539345 1.307552  3.169942
K 1.649340 3.720461 8.392341

Figure 7.23: A print out of the returned 95% Wald confidence bounds for the optogenetic
dose-response model fit to the initial dataset.

The parameter uncertainty captured in the asymptotic covariance matrix can also be
used to approximate how much prediction uncertainty there is conditioned on our uncer-
tainty in the parameter values and our knowledge of the sampling statistics. Listing 22
demonstrates how this is done using the Model class’s predict () function; in line 51 the
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60

61

62

asymptotic covariance matrix is converted to a Numpy matrix. In line 53-54, we specify
the model predictions that are desired for plotting. We request 100 light levels linearly
spaced between 0.1 and 10, all of which are of the GFP observation variable. In lines 56-57,
we specify that the predict() function should return both prediction and observation
intervals in the options dictionary. In lines 59-62, the predict () function is called at the
estimated parameter values.

#convert the covariance matriz to a Numpy array
covariance_matrix = asymptotic_covariance.to_numpy ()
#select prediction intputs
prediction_inputs = pd.DataFrame({'Light':np.linspace(0.1,10,100),
'Variable':['GFP']%*1003})
#request prediction and observation intervals
prediction_options = {'PredictionInterval':True,
'ObservationInterval':True}
#call predict()
predictions = model_object.predict(prediction_inputs,
fit_params,
covariance_matrix = covariance_matrix,
options=prediction_options)

Listing 22: Code showing the use of the predict function to generate the mean dose response
given the parameter estimates, along with 95% prediction and observation intervals using
the asymptotic covariance matrix.

The result of the call to the predict () function is shown in Figure 7.24. Here the pre-
dicted mean GFP level at the parameter estimates is shown in dark blue. The blue region
surrounding the prediction indicates the asymptotic approximation of the 95% confidence
region for the mean GFP response given the parameter uncertainty. Here we can see that
a large amount of uncertainty regarding model behaviour is concentrated in the light in-
tensity ranges between 0 and 2. This indicates that the constraints the initial data places
on the model leaves this region subject to great uncertainty and future experiments will
ideally provide better constraints on this region. The orange region indicates the approx-
imate 95% bounds on the data, meaning that given uncertainty in both the parameters
and sampling error we would expect, approximately, that 95% of the data would fall in
this region.

Given the analysis of the initial uncertainty in the parameter estimates and the predic-
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Figure 7.24: Mean GFP response (blue line), 95% prediction intervals (blue region) and
95% observation intervals (orange region) for the optogenetic model after fitting to the
initial dataset (orange dots).

tion accuracy, the user will likely wish to improve model fit in the next round of planned
experiments. Listing 23 shows the process of defining a Design class instance to generate
an optimal design for the next set of measurements. Here we choose to treat the light level
as continuous as the intensity can be varied to a fine degree in the lab relative the model’s
sensitivity over that range. In lines 64-67, we initialize the continuous input options so that
we consider four unique light levels, just like in the initial experiment, that are free to be set
between the light intensity bounds of 0.1 to 10. We assume these bounds are the limits of
the experimental equipment. In line 68, we specify the initial design as having a weight of
0.33. Given the initial dataset contained 12 measurements, this assumes the next round of
experiments will make approximately 24 GFP measurements. Here init_design contains
the design for the initial dataset; it is a dataframe similar to the init_data but specifying
replicate counts instead of observations. In lines 70-72, the Design class constructor is
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7

78

called and an instance is returned named design_object.

#set 'Light' as a continuous input with 4 unique levels
continuous_inputs={'Inputs':['Light'],
'Bounds':[(.01,10)],
'Structure' :[['x1'],['x2'],['x3'],['x4']1]}
#set fized design dictionary with init design and wetght
fixed_dict ={'Weight':0.33, 'Design':init_design}
# generate the optimal design object
design_object = Design(model_object,fit_params,'D',
fixed_design = fixed_dict,
continuous_inputs = continuous_inputs)
#extract the relaxzed design structure
relaxed_design = design_object.relaxed()
#set the sample size to 30
sample_size = 24
#generate a rounded exzact design
exact_design = design_object.round(sample_size)

Listing 23: Code showing the process of creating an optimized Design object for the
optogenetic dose-response model. Here the relaxed design is also returned and an exact
design is generated through rounding.

In line 76, we use the relaxed () function of the Design class to return the relaxed design.
This dataframe is shown in Figure 7.25. We can see that the optimal relaxed design consists
of four unique light levels with asymmetric weights. It is not surprising that approximately
40% of the sampling weight is concentrated at a light level of 0.66, an input that is within
the uncertainty bulge in the prediction interval plot in Figure 7.24. In line 76 of Listing

Light Variable Weights

0 10.000000 GFP 0.141446
1 0.659775 GFP ©.435226
2 10.000000 GFP 0.141500
3 2.698935 GFP ©0.281828

Figure 7.25: Output of the relaxed design from the relaxed () function for the optogenetic
dose-response model.

157



23, we set the sample size to 24 and in line 78 the round () function of the Design class is
used to generate an exact design. The exact design is shown in Figure 7.26.

Light Variable Replicats

0 10.000000 GFP 4
1 0.659775 GFP 10
2 10.000000 GFP 4
3 2.698935 GFP 6

Figure 7.26: Output showing the exact design for the optogenetic dose-response model
generated from the round() function.

Before implementing the exact design in the laboratory it is useful to assess what the
optimal designs expected utility is when combined with the initial data. This can be done
by concatenating the initial and optimal design dataframes as follows:

combined_design = pd.concat([init_design, exact_design],
— ignore_index=True)

The combined design dataframe can then analysed using the same code shown in Listings
21 and 22. The resulting expected asymptotic confidence intervals for the combined data
are shown in Figure 7.31. Here we see that the intervals are expect to shrink considerably
after adding the optimal data. In addition, we can generate prediction and observation

Lower Estimate Upper
Alpha® 1.802369 1.87@0615 1.941445
Alpha 10.936137 12.203428 13.617575
n 1.186161 1.3@07552  1.441365
K 3.038102 3.720461 4.556078

Figure 7.27: Expected 95% confidence intervals for the optogenetic dose-response model
parameters computed using the evaluate () function after combining the initial and opti-
mal designs.

intervals with the expected asymptotic convariance matrix of the combined data in a
similar manner to that used for the initial data. The prediction intervals are also expected
to shrink considerably after implementing the optimal design, as shown in Figure 7.28

At this point the user would perform the optimal experiment and return with the
new data. Assuming the user has imported these observations into a dataframe named
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GFP

Light

Figure 7.28: A plot of the 95% prediction and observation intervals under the asymp-
totic covariance matrix from the combined initial and optimal designs, computed with the
predict () function.

optimal data, a combined dataset can be generated and the model can be re-fit. This
process is shown in Listing 24. In line 81 the initial dataset and optimal dataset are
combined into a single dataframe. In line 83, an options dictionary is created to request
the likelihood contours from the fitting algorithm so that we can visualize the likelihood
profiles and 2D contour projections as diagnostics for the final fit. In line 85, the fit () is
called to fit the model to the combined dataset. In line 87, the fit parameters are extracted

from the from the returned dataframe into a Numpy array. The resulting parameter vector
is [1.96,10.04, 1.93,2.98|.
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87

#combine the initial and optimal design

combined_data = pd.concat([init_data, optimal_datal], ignore_index=True)
#request contours and use a simple initial search
fit_options={'Confidence': 'Contours'}

#fit the model to the initial data

fit_info = model_object.fit(combined_data,start_param = fit_params,

- options=fit_options)

#extract the parameter values

fit_params = fit_info['Estimate'].to_numpy().flatten()

Listing 24: Code showing the concatination of the initial and optimal datasets, and their
combined fitting to the optogenetic dose-response model. Fitting is called with a request
for likelihood confidence contours for diagnostic purposes.

During fitting the £it() function generates the likelihood profiles, trace projections and
contour projections shown in Figure 7.29. Here the profiles (blue curves along the diagonal
plots) are nearly parabolic and the profile traces make ‘X’ shapes (blue and orange curves
in the lower triangular plots). Some irregularity is detectable in the eccentricity of the
95% contour traces which are not quite elliptical, and some curvature can be seen in the
profile traces which deviate from linearity at their endpoints. Overall this diagnostics looks
reasonable and the data appears to constrain the model parameters well suggesting the ap-
proximations being used to assess parameter accuracy are themselves accurate. Likelihood
based intervals are also generated during fitting and are given in the returned dataframe.
The likelihood intervals for this example are shown in Figure 7.30. Wald-type intervals
can also be generated by using the evaluate () function as shown in Listing 21. The Wald
intervals for this example are shown in Figure 7.30. These intervals differ from those shown
in Figure 7.27 only in that the parameter estimate has now shifted with the new data; this
means the center of the interval moves but their widths are nearly the same under an
exponential transformation (needed due to the log-transformed parameters). Comparing
the likelihood-based and Wald-type intervals suggests reasonably good agreement in the
intervals with the likelihood based intervals being slightly wider and more conservative.
This lends support to the argument that the model has been calibrated with reasonable
accuracy and that we are in a signal-to-noise regime where the approximations used in the
design and diagnostics are accurate. In fact here, as we know the ‘true’ data-generating
parameters, we can confirm that the resulting estimate is very near the true value.
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Figure 7.29: Diagnostic plots generated by the fit() function for the optogenetic dose-
response model, including likelihood hood profiles, trace projections and contour projec-
tions.

Lower Estimate Upper
Alpha@® 1.787926 1.961537 2.159234
Alpha 9.166230 10.037329 11.166391
n 1.647012 1.933440 2.348894
K 2.632790 2.976713 3.456342

Figure 7.30: Output of the 95% parameter confidence intervals generated using the profile
likelihood functionality of the fit () function.

Lower Estimate Upper
Alpha® 1.844871 1.961537 2.085580
Alpha 9.426088 10.037329 10.688206
n 1.732524  1.933440  2.157655
K 2.733638 2.976713  3.241401

Figure 7.31: Updated 95% Wald confidence intervals for the optogenetic dose-response
model computed at the parameter estimates generated from the combined initial and op-
timal datasets.
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7.5.2 Optimal Design for Dynamic Models

Encoding dynamic models in CasADi symbolics is somewhat more complicated than static
models. The simplest method for doing so is to encode the numerical procedure itself as
a symbolic structure. This has the advantage that the entire algorithm can be differenti-
ated both for sensitivity and FIM computation, as well as within the optimizer. However
this process can be confusing for first-time users and its scalability is limited to smaller
dynamical systems. CasADi also offers external interfaces to third-party integration and
sensitivity analysis packages such as CVODES as well as tools for creating differential-
algebraic models [196]. In theory these can also be used in NLOED however they currently
need further testing as of the date of writing.

As a first example of a dynamic system we will address a two-state model of gene
expression, including states for both mRNA and protein levels. The dynamic system can
be written as

d[RNA] «

= — 0[RNA]
K )
dt L+ [Inducer] (719>
d[Protein] g .
p” =1 7 — 7y[Protein)].
+ ®’NAl

Here expression of mRNA from the promoter is assumed to be controlled by an experimen-
tally controlled inducer whose concentration is [Inducer] above. The state variable [RNA] is
the mRNA concentration, the presence of which initiates translation of the corresponding
protein. The concentration of the protien, [Protein], is the second state variable. Here «,
B, K, L, § and v are parameters to be estimated. We assume the user is going to perform
time series experiments on the proposed model and is looking to design such experiments
for improved parameter estimation.

162



10

11

12

13

14

15

16

18

#create state wariable vector

states = cs.SX.sym('states',2)

#create control imput symbol

inducer = cs.SX.sym('inducer")

#create parameter symbol wvector

parameters = cs.SX.sym('parameters',6)

#log-transformed parameters

alpha = cs.exp(parameters([0])

K = cs.exp(parameters[1])

delta = cs.exp(parameters[2])

beta = cs.exp(parameters[3])

L = cs.exp(parameters[4])

gamma = cs.exp(parameters[5])

#create symbolic RHS

rhs = cs.vertcat(alpha*inducer/(K + inducer) - delta*states[0],
beta*states[0]/(L + states[0]) - gamma*states[1])

#create casadt RHS function

rhs_func = cs.Function('rhs_func', [states,inducer,parameters], [rhs])

Listing 25: Code showing the creation of a CasADi function for the RHS of a two-state
ODE model for the mRNA-protein dynamic model.

Encoding a dynamic model in CasADi symbolics for NLOED begins with the same
import commands as the static models, see Listing 17. Following this the user begins
by creating a symbolic expression and CasADi function for the right-hand side (RHS)
of the dynamic system. Listing 25 shows this process. In line 2, symbols are created
for the state variables, mRNA and protein concentration. In line 4 a symbol is created
for the inducer concentration. Line 6 shows the creation of a symbol vector for the model
parameters. In lines 8-13, we perform a similar log transformation as that done in the static
model, this ensures non-negativity of the named parameter values and improves numerical
performance. In line 15-16, a symbol for the RHS of the system is created, containing
symbolic expression for the equations given above. In line 18, a CasADi function is created
mapping the current state and inducer levels as well as the parameters to the derivatives
expressed by the RHS.
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#time step size
dt =1
# Create symbolics for RK4{ integration, as shown in Casadi examples

k1 = rhs_func(states, inducer, parameters)

k2 = rhs_func(states + dt/2.0*kl, inducer, parameters)
k3 = rhs_func(states + dt/2.0%k2, inducer, parameters)
k4 = rhs_func(states + dt*k3, inducer, parameters)

state_step = states + dt/6.0 * (k1 + 2%k2 + 2%k3 + k4)

# Create a function to perform one step of the RK integration
step_func = cs.Function('step_func', [states, inducer,

< parameters], [state_step])

Listing 26: Code showing the creation of a symbolic implementation of a fourth-order
Runge-Kutta integrator using the RHS function for the mRNA-protein dynamic model.

Recall that CasADi functions can be used to return numeric values or new symbolic
expressions depending on the inputs provided to them. The CasADi function for the RHS
can therefore be used to create new symbols for numerical time-stepping of the state vector
by a given integration method. In Listing 26, imitating examples given in the CasADi
documentation, we implement a fourth-order Runge-Kutta algorithm (RK4) [196]. In line
20, the time step-size is set, and in lines 22-24, the four incremental slopes are computed
using the RHS CasADi function. The inputs to the RHS function are symbols: states,
inducer, parameters, and therefore the slopes: k1, k2, k3, and k4 are also symbols. In
line 26, the incremental slopes are combined to create a symbol for a full time step of the
length set in line 20. In line 28, a CasADi function is created mapping the current state,
inducer and parameter values to the next state values.
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# create a symbol for the initial inducer level

initial_inducer = cs.SX.sym('init_inducer')

#define the steady state initial states in terms of the initial inducer
init_mrna = (alpha/delta)*initial_inducer/(K+initial_inducer)
ini_prot = (beta/gamma)*init_mrna/(L+init_mrna)

# zip the initial states into a wvector

initial_states = cs.vertcat(init_mrna, ini_prot)

#create a wvector for inducer levels in each control interval
inducer_vector = cs.SX.sym('inducer_vec',3)

#merge all inducer levels into a single experimental inputs vector
inputs = cs.vertcat(initial_inducer,inducer_vector)

Listing 27: Code showing how the initial conditions for the mRNA-protein model’s steady
states are encoded symbolically. Composition of the experimental input vector is also
illustrated.

The RK4 time-stepping CasADi function, step_func (), allows us to build up integrated
solution curves of the model system as symbolic expressions. At this point we have a fair
degree of flexibility in how the problem will be posed to NLOED via the Model class. We
specifically need to choose how the initial conditions and inducer concentration throughout
a single time series are encoded as NLOED model inputs, and how the state variables at
various time points throughout the series are encoded as model observation variables. An
example of our chosen formulation of the problem is shown in Listing 27 and 28. We have
opted to have the system start at steady state with respect to a variable input level; in
Listing 27, lines 30-35, the initial conditions are implemented symbolically. In line 30,
a symbol, initial inducer, is created for the initial inducer level. In lines 32-33 we
compute the steady state values of the two state variables in terms of the initial inducer
concentration. In line 35, we concatenate the initial state variables into a single vector,
initial states, containing the initial states of the system. In line 37, we create a vector,
inducer_vector, containing the three inducer levels, one for each of the three control
intervals over the duration of the experiment (see further discussion below). In line 39 we
concatenate the initial inducer and inducer vector to form the overall set of inputs for
the designed time-series experiment. This means each experiment has four experimental
inputs, the initial inducer concentration to which the system starts in steady state, and
three other inducer concentrations applied sequentially through the experimental duration.
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#3 samples per cntrl interval, 3 cntrl intervals
#control intervals are 1+2+3=6 steps long:
# cnirl_aintl cntrl_int2 cntrl_int3
#]-1-=-2=====3] | =1===R=====3] [~1==-2~====3]
#set number of control intervals
num_cntrl_intervals = 3
#define a sample pattern to apply im each control interval
sample_pattern= [1,2,3]
#lists to store symbols for each sample point, and times of each sample
sample_list, times = [], []
# set the initial states and initialize the step counter
current_state, step_counter = initial_states, O
#loop over control invervals
for interval in range(num_cntrl_intervals):
# loop over sample pattern
for num_stps in sample_pattern:
#1terate steps indicated by sample pattern
for k in range(num_stps):
#propagate the state wvariables via integration
current_state = step_func(current_state, inducer_vector[interval],
—, parameters)
step_counter+=1
#save the state symbols and times of each sample
sample_list.append(current_state)
times.append(step_counter*dt)

Listing 28: Code showing how the symbolic integration is used to implement a specific
sampling and observation pattern, and how observation variables for various states and
time points are collected.

Having prescribed the model inputs we now need to collect the observation variables (at
multiple time points) into an observation list for the Model constructor. To do so we must
increment over the time series using the RK4 time stepping, implementing the inducer
control scheme and collecting time points through the looping process. This procedure is
shown in Listing 28. The current time-stepping algorithm is ideal for a step-wise input
in the inducer concentration and we choose to implement three control intervals, meaning
that each time course can have three different levels of inducer concentration, occurring
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sequentially each for the same length of time. In line 45, we therefore set the number of
control intervals to three. In our case, the control intervals are assumed to be relatively
long compared to the relaxation time of the system, as such we will want the option to
select several observation time points within each sampling interval. Here we choose to
place candidate observation points at one, two and three time steps after the beginning
of the control interval. In line 47 we create a list containing the number of time steps to
advance before taking an observation. Both the number of control intervals, and the time
steps before observation, can be used to construct the looping structure to iterate over the
experiment. In line 49, we create lists to store CasADi symbols for the observed state at
various time points as well as the times at which these occur. In line 51, we initialize the
system state to the steady state values in the initial_state variable and set the step
counter to 0. Beginning on line 53, we loop over the three control intervals; each pass
through this loop integrates a single control interval over which there is a constant inducer
level. On line 57 we loop over the sample_pattern array, such that the loop variable
num_stps will contain the number of integration steps that need to be incremented. This
loop effectively iterates over observations within each control interval. As there are three
possible observation within each control interval, this loop will repeat three times for
each control interval; however, note that the time between observations is not the same,
as set by the sample pattern array. In line 57, we enter the time stepping and iterate
over the specified number of steps using step_func. In the time stepping loop, we apply
the RK4 step function in line 59 to the current state vector in current state with the
prescribed inducer level specified by inducer _vector [interval]. The step counter is also
incremented in line 60, to track the number of RK4 steps taken and thus the time elapsed.
In line 62 we store the state vector, which at this point corresponds to an observation time
point; the time is also computed and recorded in line 63.
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# create list for observation structure
observation_list= []
#create list to store response mames
observation_names, observation_type, observation_times = [], [], []
# loop over samples (time points)
for i in range(len(sample_list)):
#create a unique mame for mrna and prot samples
mrna_name = 'mrna_'+'t'+"{0:0=2d}".format(times[i])
prot_name = 'prot_'+'t'+"{0:0=2d}".format(times[i])
#create mean and var tuple for mrna and prot observ.
mrna_stats = cs.vertcat(sample_list[i] [0], 0.005)
prot_stats = cs.vertcat(sample_list[i][1], 0.005)
#create casadi function for mrna and prot stats
mrna_func = cs.Function(mrna_name, [inputs,parameters], [mrna_stats])
prot_func = cs.Function(prot_name, [inputs,parameters], [prot_stats])
#append the casadi function and distribution type to obs struct
observation_list.extend([(mrna_func, 'Normal'), (prot_func, 'Normal')])
#store observation names, useful for plotting
observation_names.extend([mrna_name,prot_name])
#store observation type
observation_type.extend(['RNA', 'Prot'])
#store observation time
observation_times.extend([times[i]]*2)

Listing 29: Code showing the assembly of the observ_1ist argument for use in the Model
class constructor call for the mRNA-protein dynamic model.

After completing the loop structure shown in Listing 28, the result is a list, sample_list,
containing symbols for the each state variable at the observation time points under con-
sideration. It remains for us to construct CasADi functions for each of these symbols,
before they can be passed to the Model constructor via an observation list. We also need
to specify the distribution type assumed for each state variable; here we assume a nor-
mal distribution with constant variance to keep the model simple for illustrative purposes.
Listing 29 provides a loop in which the symbols list is used to construct CasADi functions
each of which is then stored in an observation list for passage to the Model constructor.
In line 65, the observation list list is declared and in lines 67 several other lists are
initialized for storing the observation name, type (RNA or protein) and time; these are
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87

88

89

90

91

valuable for plotting and organizing data later. On line 69, the loop for building up the
observation list begins; this loop iterates over each element in the sample list containing
the observation symbols. In lines 71-72, each state’s observation is given a unique string
name, marking its type and time. On lines 74-75, the state observation statistics (mean
and variance) are concatenated together. On lines 77-78 we construct CasADi functions
mapping experimental inputs (the various inducer levels) and the model parameters to the
observation statistics. On line 80, we append the CasADi functions in tuples with the
Normal label, to the observation list. In lines 83-86 we also store the auxiliary information
for plotting and data export in the previously declared lists.

#list the inpit and parameter names

input_names = ['Init_Inducer','Inducer_1','Inducer_2','Inducer_3']
parameter_names =

— ['log_Alpha','log K','log_Delta','log Beta','log_L','log_Gamma']
#instantiate the model object

model_object = Model(observation_list, input_names, parameter_names)

Listing 30: Code showing the creation of an NLOED Model object for the mRNA-protein
dynamic model.

Following the creation of the observation structure in the previous loop, we are ready to
create the NLOED model. Shown in Listing 30, in lines 88 and 89 we declare the input and
parameter names and on line 91 we create an NLOED model object named model object
using the NLOED Model class constructor.

Lower Estimate Upper
Alpha 1.458430 1.900728 2.477161
K 0.807291 1.407532 2.454068

Delta ©.953771 0.991747 1.031235
Beta  1.833569 2.404468 3.153122
L 0.208740 0.430277 ©0.886932
Gamma @.478522 0.539838 0.609012

Figure 7.32: Output of the 95% Wald confidence intervals under the initial dataset for the
mRNA-protein dynamic model, computed using the evaluate() function.

We can use code similar to code listings 20, 21 and 22 in the static model to for fitting,

generating Wald-type confidence intervals and prediction bounds. In this example, we
assume an initial dataset with a single observation at each possible time point during a
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single time course. We assume the time course begins with an initial inducer concentration
of 0 and the subsequent three inducer levels are set to 1, 0 and 3 respectively. Fitting is done
as in the static model using the model_object and the fit () function. Wald intervals are
shown in Figure 7.32. The size of these bounds relative to the magnitude of the parameters
is reasonably large and could be improved. Prediction and observation intervals can also be

2.5 5.0 7.5 10.0 125 15.0 17.5
Time

2.5 5.0 7.5 10.0 125 15.0 17.5
Time

Figure 7.33: Prediction of the mean mRNA and protein levels, along with the 95% pre-
diction and observation intervals generated with the predict() function for the mRNA-
protein dynamic model.

generated using calls to the evaluate() function to generate parameter covariances, and
calls to the predict function to generate the mean and interval information. Figure 7.33
depicts the predicted mean response at each observation point in the initial experiment
(shown as blue dots). Data from a simulation of the initial experiment is also shown
(orange x’s), along with prediction intervals for the mean under parameter uncertainty
(blue bands) and observation intervals for the data under both sampling and parameter
uncertainty (orange bands).
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#set all inducer inputs as continuous
continuous_inputs={'Inputs':['Init_Inducer','Inducer_1','Inducer_2','Inducer_3'],
'Bounds': [(.01,56),(.01,5),(.01,5),(.01,5)1,
'Structure':[['IO','I1','I2','I3']1]}
#create the fized design dictionary
fixed_dict ={'Weight':0.5, 'Design':init_design}
# generate the optimal design object
design_object = Design(model_object,fit_params,'D',
fixed_design = fixed_dict,
continuous_inputs = continuous_inputs)
#set the sample size to 18
sample_size = 18
#generate a rounded exact design
exact_design = design_object.round(sample_size)

Listing 31: Code showing the instantiation of a Design object for the mRNA-protein
model, as well as the generation of an exact design with a sample size of 18.

To generate an optimal experiment we need to instantiate a Design instance; Listing 31
shows this process. In lines 93-95 we specify that all inputs will be treated as continuous,
bounded between 0.1 and 5 and that a single inducer profile will be optimized. In line 97, we
create a fixed design dictionary and include the initial design (contained in the dataframe
init desgin) and weight it at 0.5. This weighting of the initial design implies the optimal
design will be implemented with the same number of observations, 18, as the initial data.
In lines 99-101, we call the Design constructor and instantiate the design_object. in line
103, we set the sample size to 18, and in line 105 we generate an exact design with the
round () function.

Init_Inducer Inducer_1l Inducer_2 Inducer_3 Variable Replicats
4] 4.999999 0.01 0.022324 5.0 mrna_te@3 2
1 4.999999 0.01 0.022324 5.0 prot_te6 3
2 4.999999 0.01 0.022324 5.0 mrna_t12 4
3 4.999999 0.01 0.022324 5.0 prot_t12 5
4 4.999999 0.01 0.022324 5.0 mrna_t13 2
5 4.999999 0.01 0.022324 5.0 prot_t18 2

Figure 7.34: Output of the optimal exact design generated for the mRNA-protein dynamic
model.
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The optimal design generated from this process is shown in Figure 7.34. The resulting
design sets an initial inducer concentration of 5 and then drops it to the minimum of 0.01
in the first control interval. In the second control interval, the inducer is increased slightly
to 0.022 and in the final interval it is again increased to the maximum of 5. Various protein

Lower Estimate Upper
Alpha 1.676100 1.894684 2.141773
K 1.197722 1.425028 1.695473
Delta ©.957298 @.987649 1.018962
Beta 2.461245 2.887566 3.387733
L 0.486384 0.642979 0.849990
Gamma @.492308 0.530829 0.572365

Figure 7.35: Updated 95% confidence intervals for the mRNA-protein model, generated
using the evaluate() function and the combined initial and optimal designs.

and RNA measurements are taken at different times (coded in the Variable column) and
replicate numbers. This type of design is possible if multiple biological replicates can be
run with a shared inducer level. For example light or temperature induced systems may be
suitable for this type of input and replication structure. In these situations multiple cultures
can be grown (and thus multiple replicates sampled) in the same inducer sequence within
their incubator or light box. If the user instead wishes to optimize an experiment where
each replicate can have its own unique inducer course but multiple replicate observations
cannot be made at each time point, the user can use the LockWeights option of the Design
class and a different continuous input structure. However use of the LockWeights option
prohibits time point selection and the user must use a fixed sampling schedule. After
implementing the optimal design we can update the Wald intervals, shown in Figure 7.35.
Here we see that interval sizes have shrunk. Figure 7.36 shows the new prediction and
intervals for the original dataset. Here we see that the prediction intervals (blue bands)
have shrunk somewhat from the initial data collection. Further improvements would be
expected if the sample size was increased for the optimal design.

7.6 Discussion

The current version of NLOED implements much of the core functionality and many impor-
tant supplemental features, however I intend to add a number of additional features before
the initial release. Currently more testing and further user-interface design is needed be-
fore the NLOED package can support optimal design over model or parameter uncertainty.
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Figure 7.36: Updated 95% prediction and observation intervals for the mRNA-protein
model, generated using the predict() function under the covariance found using
evaluate () applied to the combined intitial and optimal designs.

Specifically, in future releases the models argument to the Design class will accept a list
of Model instances as along as they have the same input structure. With a list of Model
instances passed, the resulting design is optimized for an average objective across all of the
models. This model averaging provides designs that can be used to fit any of the candidate
models, providing robustness to model uncertainty (but not necessarily addressing model
selection). In future releases, the local design optimization at a nominal parameter vector,
0, will also be supplemented with a pseudo-Bayesian approach which will allow for design
optimization over a weighted average of several candidate parameter points [241]. To ac-
complish this the parameters argument to the Design class will accept either mean and
covaraiance information for a normal prior, or a list of weighted candidate parameter vec-
tors. Much of the numerical structures for these model and parameter uncertainty features
have already been implemented but they need further testing and documentation. Also,
while the D-optimal objective is widely used and useful, support for D,-optimal designs is
also planned for the initial release as the Dy objective facilitates designs targeting specific
parameters sets or even model selection in nested models [15]. The power () function of the
Design class remains to be implemented; while not required for optimal design it provides
important tools for assessing the sensitivity of confidence intervals to the overall sample
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size. I also plan to provide greater flexibility and more user feedback within the round()
function in the Design class so the user has more guidance and control over the genera-
tion of exact designs. Lastly, I hope to improve the numerical stability of model fitting,
likelihood profiling and the design optimization algorithms through additional testing and
tuning of the default algorithm settings.

I also have several secondary objectives for package extensions. These include adding
diagnostics based explicitly on the general equivalence theorem, which in special cases can
be used as a powerful tool for checking optimality and understanding design structure [0,

|. T also aim to improve the user experience in implementing dynamic models, including
helper functions for implementing the CasADi symbolic integration and for extracting
data and design information at various time points. While NLOED already supports a
large variety of experimental constraints, in future version I plan to allow the user to
place non-linear constraints on continuous inputs as well as the sampling weights. I also
hope to integrate other powerful numerical tools available through CasADi’s interfaces,
including other optimization, numerical integration and sensitivity analysis packages (i.e.
CVODES), and tools for constrained and differential-algebraic systems. Using these tools I
would like to expand support and code optimization for models involving implicit functions,
optimization and differential-algebraic systems in the future.

Optimal experimental design has a long history of research; algorithms for optimizing
designs for non-linear, dynamic models dates back to the 1950’s, see work by Box and Lucas
[20]. In over a half-century of study, the area has been well researched and the theory, as
well as numerical procedures, for optimal design thoroughly explored. In many ways it is a
mature field, with few prospects for revolutionary new ideas. However, it remains a chal-
lenge to translate the existing body of knowledge into practice for an evolving experimental
discipline like systems biology; updated tools that focus on usability and easy-adoption are
needed. While systems biology makes use of (psuedo-)mechanistic models and designed
experimentation, model parameters are often only accessible via fitting. This situation
poses unique challenges as the models can have complicated non-linear structures with a
variety of observables, like in more fundamental sciences, but model calibration and testing
often require statistical tools more common in econometrics and other medical or social
sciences. Systems biology also includes a wide range of practitioners, from experimentalists
with non-quantitative backgrounds from many areas of biology, to more quantitative ex-
perts from fields like physics, engineering, computer science, and mathematics. Translating
OED ideas into a set of tools that is easy to use yet flexible for such a wide range of models
and users is difficult, especially as even the quantitative practitioners may lack familiarity
with the advanced statistical diagnostics and fitting concepts on which OED relies.

The NLOED package attempts to address some of the opportunities and challenges
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listed above. While other packages exist, NLOED supports a unique blend of models and
numerical algorithms specifically suited to systems biology models; with special consider-
ation for the diversity of model structures (non-linear, dynamic, multi-input/output) and
numerical implementations (numerically integrated and even implicitly defined models).
NLOED also incorporates these tools with an updated toolset, making use of automatic
differentiation and state-of-the-art open-source optimization via CasADi. This provides a
flexible and extensible platform on which to build future capabilities. The package has
been written in open-source object-oriented Python with special attentions being paid to
interoperability with other third-party packages like Numpy and Pandas. Providing an
OED package in Python is ideal as Python blends the open-source licensing and graphical
support of languages like R, with the engineering and dynamic systems toolset found in
MALAB, while also bringing its own strengths as a fully-functioning programming lan-
guage. For user convenience and easy-adoption, NLOED supplements the core design
capabilities with a flexible set of supporting functions for fitting, diagnostics and simu-
lation — with equal attention paid to optimization as there is to qualitative assessment
and modularity. These combined features differentiate NLOED from other software tools,
giving it a modern implementation, well suited to systems biology, and good prospects for
future extensibility.
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Chapter 8

Conclusion

“If your experiment needs a statistician, you need a better experiment.”

-Ernest Rutherford

The main goal in this thesis has been investigating the use of optimal experimental de-
sign for calibrating models of microbial gene expression. I have specifically studied models
that have yielded unique challenges or opportunities for the application of OED techniques.
In applying OED methods to these various case-studies, I have been able to carefully study
how models can be used to guide experimentation. I believe this careful consideration of
the role of experimentation in model building is important to the wider goals of systems
biology. As models and systems-level thinking are increasingly used to encode our un-
derstanding of biological systems, it is important to consider how this scientific paradigm
should inform experimentation and data collection. This thesis has been an attempt to
contribute to this broader theme, and therein lie the main contributions of this work.

8.1 Summary

The results of this thesis have been largely theoretical. However they may have some impli-
cations for practical experiments in future works. In Chapter 4 we applied optimal design
to a novel physiologically-aware model of gene expression. This work pointed towards po-
tential future work in characterizing genetic parts using automated design of experiments.
This work also formulated the optimal design problem — for novel models of this type —
as an optimal control problem in the CasADi toolbox, which will provide some guidance
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for researchers seeking to implement optimal design for similar systems in the future. In
Chapter 5, we specifically discussed sampling schedules, and illustrated an efficient op-
timization approach for generating optimized schedules. While not groundbreaking, this
work is timely as many researchers have increasingly begun to use automated culturing de-
vices to perform time-course experiments on both natural and synthetic systems [154]. As
noted in Chapter 5, dynamic experiments are complex and in order to achieve an effective
experiment, it is important to consider interactions between the applied perturbations and
the observation schedule. Using more efficient methods for time-point selection within the
overall experimental design procedure can help to ensure important dynamic behaviour is
not missed in studying the dynamics of biological systems. Chapter 6 focused on steady
state experiments with more complex observation distributions. Many gene regulatory
networks, such as oscillators, switches and other multi-stable bifurcating systems can have
complicated steady state observation distributions for single-celled data. Little work has
been done in designing experiments for recovering data from this type of experiment, most
likely due to the complexity in formulating the likelihood and the required asymptotic
measures of a design. However, steady state experiments can be easier to implement in
practice and can be more repeatable than dynamic experiments. Work in Chapter 6 helped
introduce novel experimental design approaches for this scenario, and will hopefully point
the way to better use of steady state experiments, and further research on experimental
design for valuable but numerically difficult scenarios. Finally in Chapter 7 I presented
my recent work on the NLOED software package for experimental design. This package
made use of automatic differentiation tools in developing a modelling and optimal design
framework tailored to systems biology. The package also includes a number of other tools
important for model building and diagnostics. Despite the primarily theoretical focus of
this thesis, the NLOED software package will serve to make optimal design more accessible
to practicing experimentalists. In line with this thinking, we are also currently working
on some laboratory studies using the NLOED package. These ongoing works will serve to
stress-test the software package in practical use and, in turn, NLOED will ideally assist in
the study of real biological systems.

8.2 Some Critique

The work in this thesis has also revealed some shortcomings in the optimal design method-
ology in a system biology context. Under ideal conditions, optimal designs can significantly
improve parameter estimation performance. However I have found that a large increase
in the overall sample size, or the use of novel observation variables can sometimes do far
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more for model calibration than improving design alone. By this I mean that adding a
few measurements of previously non-measured species, or just replicating a non-optimal
but reasonably good experiment, can often improve parameter estimates considerably with
little or no design work required. Mathematically this also makes sense because the confi-
dence intervals of the parameter estimates generally shrinks with the inverse square root of
the sample size. Therefore while each new sample has diminishing returns, if observations
are cheap, enough measurements can always be taken to reach any desired confidence level.
The value of additional measurements is significantly amplified when these measurements
are made for novel species. In this case the new measurement types can provide novel
information via the individual FIM matrices they contribute to the experiment’s total sum
of information. Optimal designs ensure that each new observation is used as best as pos-
sible but — when observations are cheap and for a reasonably good starting design — an
experimenter may gain more value for their time through replication or learning a new
assay, than through implementing optimal design.

I have also often found that intuitive designs are not as mathematically sub-optimal
as one might expect. Experimenters naturally spread their observations out in the dimen-
sions they know to be relevant to the system behaviour. This is almost never optimal
but it is a form of thorough hedging against unexpected behaviour and it often ensures
sufficient information for a reasonable parameter estimate. This suggests that, at least for
low dimensional models with simple response patterns, intuition may often be sufficient as
well as being more robust than optimal design. In fact, when Bayesian priors are used to
incorporate more uncertainty in optimal design algorithms, past works (i.e. see examples
in[15]) have shown that such prior information results in a similar spreading of input points
selected by the optimal design algorithm. These results suggest that in some sense our ex-
perimental intuition is performing some very approximate Bayesian reasoning. In light of
this, future work should perhaps focus on creating optimal design methods that better
imitate experimental intuition. Allowing for more uncertainty to be specified in the design
optimization problem will result in designs that more thoroughly explore the input space,
and come closer to matching our expectations for a good overall design. Some work like
this is already taking place; examples include methods that allow Bayesian priors over var-
ious modelling uncertainties [230, |, or that directly including more complex sources of
variability in the model specification (i.e. hierarchical models) [230]. The NLOED package
did make some contribution here by allowing more flexible specification of the observation
distribution than has been considered in the past, however more work is certainly needed.
Future work should especially focus on the type of uncertainty and variability most relevant
to systems biologists. While accommodating uncertainty directly in the design process has
not been emphasized as much in the optimal design literature, work in this direction will
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be a return to an experimental philosophy emphasized within the wider DOE tradition,
see [2415].

My work on optimal experimental design and model calibration has also led me to
believe there has been some overvaluation of large multi-state dynamic models with many
parameters in systems biology. These models often contain dozens of parameters and their
dynamics are often so complex they can only be studied through simulation. However,
these models are easier to build than the real system is to experiment on, and the simula-
tion algorithms for these systems are much more tractable than the fitting and diagnostic
methods. Optimal design for these systems, like fitting and diagnostics, is limited by com-
putational costs. This means that it is much easier to study these models in theory than
to connect them to the real world in a meaningful way. While this is a shortcoming of op-
timal design algorithms, I believe it may also suggest a shift in emphasis. The complexity
of the model being studied should be dictated by the fitting, diagnostics and the exper-
imental burden, not just by the available listing of biological interactions. By focusing
on overly complicated models, modellers are forced to use weaker diagnostic tools, such
as Wald-type confidence intervals and least-squares fitting. These methods can be crude
compared to Bayesian, likelihood, and simulation-based methods available from statistics
— tools available even for non-linear models [50, 2412]. The number of observations required
to parameterize more complex models also tends to go up super-linearly with the number
of free parameters. For models with many states, the more layers of integration between
a parameter and the observed state, the more sensitivity information is blunted, yield-
ing insensitive and uninformative observations. I believe these difficulties emphasize the
benefits of experimenting on limiting regimes of larger systems. These limiting regimes
could involve applying optimal design to a model’s steady states, or specific subsystems
of the overall system in a piece-wise manner. This approach would be complimentary to
general techniques of model reduction but perhaps with more explicit emphasis on using
experimental design considerations in selecting an appropriate reduced model. Perhaps a
model reduction’s utility can in some sense be measured by its identifiability under opti-
mal design. Conversely, sometimes the experimental design itself determines the amount
of reduction feasible before the reduced model can no longer adequately capture the exper-
imental observations; a very simple experiment can accommodate a much simpler model.
Thus experimental design, model reduction and the limiting experimental scenarios which
will be targeted by the researcher are all intimately linked. Regardless, by considering
more reduced models in more limiting scenarios, more attention can be paid to experi-
mental design and fitting diagnostics, as well as to model assumptions like the observation
distributions and the experimental protocols. I believe this will result in better fits, more
confidence in model predictions and more reproducible results. While this comes at the
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expense of focusing on some limiting behaviour of a system rather than its full dynamics,
I believe this may be a useful trade-off in many situations.

Work on my thesis, especially Chapter 4, has also led me to believe that optimal
design, and modelling in general, is most valuable when applied to systems with more
operationally meaningful parameters. Systems biology models are often mechanistic or at
least pseudo-mechanistic and so parameters may have an interpretation within the physical
process of the system. For example some parameter may describe the rate of interaction
between two proteins. However, while the parameter value may tell you the specific rate,
it is often not possible with available knowledge to link this rate to the exact amino acid
residues responsible for the parameter value observed (at least without considerably more
experimental work). This means that even though a parameter may be mechanistically
interpretable, it lacks meaning in a operational sense; you do not know what implementable
changes to the system will cause changes to the parameter value. However, in some systems,
especially gene expression, there is sufficient existing knowledge so that parameters can be
linked to specific operational perturbations of the system. This means that we know how
to, at least hypothetically, perturb the parameter value via an achievable intervention.
In Chapter 4, the physiological model was of particular interest because the parameters
provided meaningful characterization of the genetic sequence and the host. The parameters
in this model were not all mechanistic (i.e. the phenomenological model of the proteome),
however they all had interpretations and many could be operationally linked to possible
experimental perturbations. For example parameters governing transcription could be
perturbed via changes to the promoter sequence[216], and the parameters for the host’s
translation capacity could be perturbed via mutation or antibiotic treatments [118]. For
systems where parameters can be imbued with this extra operational meaning, accurate
parameter estimation becomes more valuable and there are many more uses for a fit model.
In this context, parameter estimates now serve to characterize a specific configuration of
the systems, and if we make some of the prescribed perturbations we can use fitting to
quantify their magnitude. For example if we mutate the promoter sequence we would, as
a first estimate, expect only the promoter-related parameters to shift upon refitting the
model in Chapter 4. Models with this type of parameterization can also be more easily
validated. If we have an independent estimate for the direction or magnitude of a given
perturbation on a parameter value (i.e. estimates of mRNA-ribosome binding energy under
sequences alterations [190]), then upon perturbing the system, we would expect to see that
same direction or magnitude, reflected in the model’s parameter estimates after fitting to
the new data. If this is not so, than either our model or our biological understanding of
the perturbation could be in error, suggesting further refinements. This approach provides
a means for stress-testing our models and system understanding. In physics and chemistry
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physical parameters can often be estimated somewhat directly because the experimental
conditions can be reduced to a platonic simplicity. Unfortunately, living biological systems
are inherently irreducible past a certain point, making direct measurements of in vivo
parameter values very difficult. However, perturbing parameters and then quantifying the
perturbations with fitting provides at least some independent verification of our systems-
level models. This also takes advantage of the lower experimental burden in microbiology
compared to other disciplines in which experiments may be very costly or impossible (i.e.
economics, ecology, social sciences etc.). Conditions for this type of iterative perturbation
and fitting are still somewhat rare in systems biology but careful consideration by theorists
about the meaning of their parameter values and the availability of experimental tools to
perturb them can perhaps make this multi-faceted approach more common. I also believe
careful consideration of experimental design could play a useful role in this approach in
the future, especially as it relies on refitting a similar model in multiple scenarios with an
explicit emphasis on parameter estimation accuracy.

8.3 Future Prospects

By considering the above critiques carefully I think it is possible to derive some general
suggestions for which biological systems are most likely to benefit from optimal design
methods in the future. To summarize, these are:

e System in which additional observations are costly or destructive and in which ex-
perimentation is inherently iterative rather than occurring in large, cheap batches.

e Systems in which our intuition is likely to fail. This includes systems with many
experimental input or observation dimensions, especially when they are linked by a
complicated relationship.

e System with non-normal or complex error distributions. This includes multi-stable
or quasi-stable systems, especially focusing on single-cell observations. Functional
data, where the observation is a real-time function rather than a scalar, are also of
interest.

e Systems which are computationally tractable for optimal design and related fitting
diagnostics, especially future Bayesian methods. This includes steady state models
or dynamic models with few hidden states.
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e Systems where the link between parameter values and the system response are non-
intuitive. For example an increase in a parameter value can have an effect on the
mean or variance of the response that is directionally conditional on other parameters
or that is possibly non-monotonic. This may include multi-stable systems, and de-
terministic approximations to stochastic models where parameters can have complex
effects on both the observation mean and variance.

e Systems where the model structure is well established for the type of system but
individual instances of the system require accurate parameterization. This would
include characterizing design variants of synthetic systems.

e Systems with operationally meaningful parameters; meaningful in having both an
operational and mechanistic/functional interpretation. This is especially common in
well studied areas like gene expression.

While the optimal design methods used in this thesis are not a panacea, I believe even
the local methods used here can be of practical use in many other scenarios. I have
often gained considerable insight into the implications of a given modelling decision by
considering experimental design as part of the model building process. I have gained these
insights even in cases where I have run an optimal design algorithm and found a woefully
inadequate design is produced. On investigation it was rarely the optimal design method
that failed and more often I realize something unexpected about what the model structure
or the assumptions implied about the system behaviour. I think even these qualitative
insights make experimental design worth pursuing as a form of good modelling hygiene, to
shake assumptions loose and get theorists thinking about the lab.
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Appendix A

Supplementary Materials:
Component Characterization in a
Growth-Dependent Physiological
Context: Optimal Experimental
Design

Supplementary materials for the publication “Component Characterization in

a Growth-Dependent Physiological Context: Optimal Experimental Design”
by Nathan Braniff, Matt Scott, and Brian Ingalls in Processes 7.1 (2019): 52.

A.1 Derivation of the Physiological Gene Expression
Model

A.1.1 Protein fraction of cell mass

The total cell mass Mr,; can be partitioned into fractions of protein and other constituents.
The protein fraction of the cellular mass, ®,,, can be fit to data from [2] with a linear
function:

q)pr = K:pr>\ + (I)pr() (Al)
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The fit shown in Fig. A.1 provides estimates of &, = —6.47 min and ®,,o = 0.65.

0.65 « Protein Fraction of Total Mass

Model (fit)
® Bremer Data

0.6+

0.55

pr

0.5

0.45

0.4

0O 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Growth Rate (1/hr)

Figure A.1: Fit of protein fraction of the cell mass using data from Table 2 of [2] .

A.1.2 Growth Dependence of the Total RNAP Population

The total RNAP fraction of the overall protein mass, ®,, exhibits an approximately linear
relationship with growth rate:

(I)p = /{p/\ + (I)p(). (AQ)

We fit this to data provided in [2], yielding estimates x, = 0.30 min and ®,, = 0.0074,
shown in Figure A.2.

A.1.3 Available RNAP

The total RNAP population can be partitioned by state: freely diffusing; weakly DNA
bound at a non-specific site; actively transcribing other genes; paused and non-functioning
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Figure A.2: Fit of RNAP fraction of protein mass using data from Table 3 of [2].

during transcription (paused); or immature [5, 167, 166]. We are interested in those RNAP
that can initiate transcription. It has been assumed in past works that transcriptional ini-
tiation is proportional to the free fraction [166]. However, our thermodynamic equilibrium

model of the promoter accounts for competition between non-specific binding sites and the
specific promoter site. We therefore define the combined pool of free and non-specifically
bound RNAPs as the available RNAP pool, P,.

We use a course-grained partitioning of total RNAPs, Pry: dividing them into i) the
available RNAPs, P,, ii) the bound RNAPs, P,. We will neglect the immature population
as this has been measured to be a small fraction (< 10%) of the total [5]. We can therefore
write the total as

Pry ~ P, + P, (A.3)

The available subgroup, P,, includes those RNAPs freely diffusing in the nucleoid as well
as those non-specifically bound to the DNA. These two sub-groups within the available
pool, P,, have been observed to be in rapid equilibrium [5]. We assume that the bound
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RNAPs, B, include all those bound to the DNA that are actively transcribing or paused
in transcription. We write

Pa :PTot_Pb:PTot<]-_(I)b> :PToth)m (A4>

where @, is the fraction of transcription-occupied RNAPs unavailable for initiation of
transcription and @, is the faction of those that are available.

The growth-dependent fraction of RNAPs that are available to initiate transcription
(non-transcribing) is still poorly understood. Work by Klumpp and Hwa [166] as well as
Bremer and colleagues [247, ] have attempted to describe the partitioning of RNAP
into free and occupied fractions across growth rates without consensus. However, all agree
the concentration of free RNAP increases with growth rate. Recent spatial imaging ex-
periments of fluorescently-tagged RNAP suggest these previous theories may be partially
inaccurate; specifically, this new data suggest much larger fractions of RNAP are busy in
transcription, and smaller fractions are non-specifically bound or paused, than previously
expected [0, 3].

Current direct measurements of the dependence of ®;, or ®, on growth rate are sparse.
Bakshi et al. examine only a single growth rate (doubling time of approximately 42
min) at which they estimate the partitioning of RNAP using spatial tracking of tagged
molecules [5]. Stracy et al. have since compared RNAP partitioning between growth on
minimal and rich media in a spatial tracking study [3]. A plot of these three data points
is shown in Figure A.3. It should be noted that the studies use somewhat different ex-
perimental methodologies, and future work with multiple growth rates in the same strain
and conditions is needed to provide a confident description. Growth rates for strains in

Stracy et al. were previously reported in [1]. From the limited available data (Figure A.3)
we hypothesize a linear dependence for ®y:
(I)b = /-i',b)\ + Cpbg. (A5)

Fitting yields the estimates k;, = 9.3 min and &,y = 0.41. Then ¢, =1 — $py = 0.59 and
Ke = —Kp = —9.3 min.

We can then re-write this relationship as
(I)a == /ﬁla>\ + (I)ao. (AG)

Using this relation we can construct an expression for the available RNAP by multiplying
Prot by ®a;

%
mrnap

P, = (Ko + @ug) (kA + @po) (Fpe A + Bppg) e CFPIA, (A7)
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Figure A.3: Fraction of total RNAP occupied in transcription, as it depends on growth
rate. Data from [3], [1] and [5].

Dividing the expression for the available RNAP by the expression for cell volume yields
the concentration of available RNAP, which our model predicts will decrease with growth
rate. Past works have observed an increasing transcription rate per gene (particularly
moving from slow to moderate growth rates) [117]. This suggests that the free RNAP
concentration must therefore be increasing with the growth rate. However, although our
model predicts a decreasing RNAP concentration, the transcription rate is predicted to
increase (from slow to moderate growth) as the RNAP density along the genomic DNA
increases. This is consistent with the fact that DNA-binding proteins like RNAP and
transcription factors (TFs) are mostly confined to the nucleoid DNA [, | where they
diffuse along the DNA strand. As a result, in our model, total RNAP concentration is
less relevant than the RNAP density along the genomic DNA. We hypothesize this may
cause the non-monotonic relation for transcription rate per gene that has previously been
observed by Liao et al. for constitutive promoters [215].
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A.1.4 Transcription Rate

Following [168, |, our model of transcription involves interactions between RNA poly-
merases (RNAPs), transcription factors (TFs), promoter copies and non-specific binding
sites along the genomic DNA. As described in the main text, at each time point we suppose
that there are P, available RNAP copies and T, active transcription factor copies diffusing
along the genomic DNA, and that the DNA contains N, non-specific binding sites to which
the DNA binding proteins may weakly attach and g copies of the regulated promoter of
interest. Further we assume that N, > P, T,, g and that each binding of an RNAP or
a TF to a non-specific site or a promoter can be characterized by an associated binding
energy: €., and €,, for RNAP to the non-specific sites and promoters respectively, and e,
and e, for transcription factor to non-specific sites and promoters respectively (all € are
negative [170]).

We use these species and site counts to enumerate the possible arrangements of RNAP
and TF across the genome, and we use the binding energies to derive Boltzmann weights
for each arrangement [168]. This allows us to construct a partition function. For example
if all the P, RNAPs and v TFs are bound to nonspecific sites, the weighted enumeration
for this group of possible micro-states (the partition function) can be written as

Po+Ty)

N ' _p, frn. T ftn Ns( _p, frn. T Sin

Z(P,,u) = 2 e “kpTe "*kpT ny —— ¢ " “kpTg "“kpT A8
(Fa, ) PT,)(Ny— P, —T,)! ~ P,T,! o (A8)

~ energetic favorability

Vv
# of micro states

where the approximation holds because N, is large compared with the other quanti-
ties [168]. We can then construct the partition function for the total number of arrange-
ments of a single promoter copy (g = 1) as

Zg£i<Pa7Ta) = Z(P(Z?Ta) +Z(Pa - 17Ta)€_;gigT
N— N

~
Empty Promoters RNAP on Promoter
(A.9)
_ Ctg _ fpgtetgtept
+ Z(P,, T, — e ™7 + Z(P, — 1,T, — 1)e” %7
N TV - ~ TV 7
TF on Promoter RNAP and TF on Promoter

Here ¢, is the binding energy between RNA polymerase and transcription factor when
both are bound to the same promoter. We can use this expression to write the equilibrium
probability of the single promoter being occupied by an RNAP by taking the ratio of the
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partition functions for the RNAP-bound states to the total partition function;

Z{(Py, To)
Pond = TTa(p T
1% (Fa, Ta)

Aep _ (Aert+Acitept)
11\3;1 e kT 4 P&Zae kpT (AlO)
S s
Dona = Aep - Aey T, (A€r+Aét+€pt)
1+ ae kBT +Fa€ kT + N2ae kT
s

Here the Ae values are the differences between the energy involved in binding the promoter
and the background non-specific binding: Ae; = €—€;, and A€, = €,9—€,,. Note, €, > €44

and €, > €,, so that A¢, and Ae, are both negative [170]. Denoting the Boltzmann weights
Aer Aey _ (Aer+Aeptept)
as K, =e *T7 K, =¢e¢ “isT and K.,=e 5T ! yields the following simplified form;
Pa K + PaTa K
Poound = (All)

1+PaK+TaKt+PaTaK

Next, with RNAP bound to a certain fraction of the promoters (or on average a certain
fraction of the time over the relevant times scale of initiation), we assume open complex
and promoter escape occurs at a fixed rate a (NATE cite for open complex and escape
rate), giving

Pa K _|_ PaTa K
HJW(+nm+&ﬂK

Initiation Rate (for g=1) = (A.12)

So far, we have described a single promoter. To address the case of multiple promot-
ers we would need to account for the cross-correlation between their occupancy by the
transcription factor or RNAP. This has little effect at high TF copy numbers (although
at low copy numbers the occupancy of one promoter significantly decreases the odds of
another being occupied). We assume that the RNAP and TF populations are considerably
larger than g, which allows us to assume the promoters function approximately indepen-
dently [169]. In that case, we can scale equation (A.12) to arrive at the initiation rate as
a function of g.

PELK + PaTcLK
1+%K+%m+P%K

Initiation Rate = ag (A.13)

We assume that the initiation rate is the limiting step in transcription, as elongation
rates are generally faster [219, , ]. We can therefore write the overall transcript
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production rate as follows;

P, P, T,
FZKT_I' X[SZEKN

Transcript Production Rate = ag

1+ 2K, + 4K, + P&? Kt
Where:
_ p‘/b Prot\ _(C+D)X
P, = - (Ko + Pao) (KpA + Ppo) (KpeX + B ) € :
rnap
N, = %(e(CJrD))\ . em)
g = el@+D)~loriC)X
(A.14)
A.1.5 Total Ribosome Population
From [118], we have a linear relation for the fraction of protein mass that is composed of
ribosomal protein:
CI)T = I€T>\ + q)rO- <A15)

Fitting the model to data from [2] yields estimates of k, = 5.5 min and &,y = 0.030, as
shown in Figure A .4.

A.1.6 Translation Rate

Both Klumpp et al. and Liang et al. note that the translation rate per transcript is roughly
constant and speculate that this could be due to a constant concentration of free ribosomes

maintained by regulatory feedback [160, |. Dai’s more recent results suggest that the
fraction of inactive (non-translating) ribosomes, ®;,.., is constant at the moderate to
fast growth rates we consider here [186]. The total ribosome concentration increases with
growth rate, because total ribosome copy number scales faster than the cell volume:
Rrot _ (PVO (r A+ Do) (Kpe A + ,10) e(C+D)A) (Voe(C+D)>\)—1
4 Mrib (A.16)
= L (5, A+ @y0) (prd + o)
My
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Figure A.4: Ribosomal protein fraction of the total protein mass as a function of growth
rate. Data from Table 3 of [2].

Therefore, the inactive ribosome concentration [R;,..] also increases, because ®;nqc 18
constant:

T == (I)inactT = (I)inactm (lir)\ + (I)r0> (Hpr)\ + (I)pr(]) (A17)

The inactive ribosomes R;,qq¢ are either non-functioning (stalled or assembling), R, s, or
free, Ry, so

Rinact = Rnf + Rf (Alg)

Following [166, 252], we presume that the concentration of free ribosomes, [Ry] is constant.
Thus the fraction of inactive ribosomes that are free, ®; must scale inversely with the
ribosomal fraction of the mass:

1

@ p—
T (ke h + Do) (R h + Ppro)

(A.19)
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and therefore the fraction of inactive ribosomes, ®,,¢ is
1
(kA B10) (gr A+ By0)

This then yields an expression for the free ribosome concentration that is constant across
growth rates:

O, =1-— (A.20)

Rfree RTot

Vo= q)f(I)inactT (A.21)
Using a mass action expression for translation:
Translation Rate (in copy #) = B%Xma (A.22)
This implies the translation efficiency per mRNA, «,, is constant:
Translation Rate (per mRNA) = % (A.23)

This result conflicts with our assumption of ®; ~ ®;,,+ and R,; being negligible.
However, in a related study of translation in Bacillus subtilis, Borkowski et al. observe a
decreasing translation efficiency (per mRNA) with increasing growth rates and they infer
that this is due to a decreasing free ribosome concentration [187]. The authors use this
varying free ribosome concentration to test the mass action (linear) translation model used
by Klumpp et al. [117]. With a varying free ribosome concentration, R¢/V, the ratio
of efficiencies between two different RBS is constant if the mass action (linear) model of
Klumpp is used:

R
Ratio of Translation Efficiencies = — ¥ = h (A.24)

QVf 52
However, Borkowski et al. observe that the ratio of translation efficiencies between different
transcripts varies across growth rates. This suggests that a different model of translation
initiation may be more appropriate, and that constant translation rate may not be caused

by constant free ribosome concentrations (applying the same argument to both B. subtilis
and E. coli).

Borkowski et al. propose a Michaelis-Menten model of translation initiation in terms
of the free ribosome concentration to explain the non-constant translation efficiency ra-
tios [187]:

Ry
Translation Rate (copy #) = —VRXma (A.25)
Ky + 3
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with translation efficiency then expressed as;

Translation Rate (per mRNA) = ——— (A.26)
Ky + 3

In this model, the mRNA’s RBS is characterized by two constants, 3, the maximal trans-
lation initiation rate per mRNA, and K};, a half-saturating constant specific to the given
RBS. This model is also justified by the mechanisms of translation initiation in which the
mRNA species may be in limiting quantities and become saturated. This Michaelis-Menten
formulation agrees with the observation of constant translation efficiency in Klumpp and
Liao [117, |, under the assumption that the RBS of the gene has a low K, value and
is near saturation over the relevant growth rates. We have also assumed that initiation of
translation is the limiting step in protein production, and that it is slower than translation
elongation [253, 254].

A.2 Details of the Multiple-shooting Algorithm and
Optimization

Our OED algorithm can be classified as a direct optimal control approach — following a
discretize-then-optimize procedure with respect to the system simulation dynamics [255]
— where the system dynamics are implemented numerically, the control variables are dis-
cretized and selected, the system response is simulated, and then the controls are adjusted
to improve the objective. However, for our dynamic, non-linear system we found this
approach performed poorly if implemented in a naive manner. Multiple shooting and
collocations methods provide improvements by discretizing the simulation along with the
controls [255, ]. In multiple shooting specifically, the simulation is partitioned into
a series of initial value problems [255]. This process increases the dimensionality of the
problem but also improves the problem structure, giving the optimization algorithm more
information about how each control contributes to the objective function [257]. This pro-
cess has been referred to as ’lifting’, where the problem is lifted into a higher-dimensional,
but more easily navigated space [257]. The problem structure can be further improved by
including derivative information for the object and constraints, which can be done in a
straightforward manner using algorithmic differentiation tools available in CasADi [196].

Below, we provide a brief overview of the multiple shooting algorithm used in this work
for optimal experimental design (OED). Further details on the implementation of similar
algorithms can be found in [156, 157, 155]. We will describe the algorithm implementation
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in pseudo-code, outlining the use of CasADi’s symbolic interface. CasADi uses symbolics
(on the front-end) to create mathematical expressions; details of the back-end implementa-
tion can be found in [258]. An example of some (pseudo) syntax for the CasADi MATLAB
interface is given in Algorithm 1. In this example we define two symbolic variables ’x’

Algorithm 1 CasADi Example
: x=SX.sym('x’)

1

2: y=SX.sym(’y’)

31 Zz=X+y

4: f=function('t’ {x,y},{z})
5: f(1,2)

6: /.03

7. wl=SX.sym('wl’)

8: w2=SX.sym('w2’)

9: f(wl,w2)

10: . wl4+w?2’

and 'y’ with ’SX.sym()’. We then create the symbolic expression 'z=x+y’, where 'z’ now
symbolically means 'x+y’. To be able to evaluate that expression on new inputs, we define
a function ’f’” that maps 'x’ and 'y’ to the output described by ’z’. Below this, we see that
we can use the function ’f’ to map specific numbers to a numerical output, but we can also
use it to create new symbolic expressions (i.e. 'wl4+w2’). These in turn could be used to
build layers of symbolics as we will do in the OED algorithm. The reader is referred to
CasADi manual for further details on the internal functions [258]. We mix use of both the
MX and SX symbolic classes, which have different computational properties [258], however
the reader can ignore this for general understanding (MX symbolics are created like SX
symbols but with 'MX.sym()’).

For simplicity we will restate the system dynamics for a single sub-experiment as follows

% =G(Y,0,\u(t),W(t)) (A.27)
Here the state Y contains X (2 components), all Xy, for each of 6 parameters (12 com-
ponents), w (2 components), and the unique elements of Z (21 components), for a total of
37 components. The details of the dependence of Y on A, u(t) and W (t) can be found in
the main text. Our algorithm begins by defining this right-hand side as a symbolic expres-
sion in CasADi, via Algorithm 2. In defining G(Y, 0, A\, 4, Wypa, Wprot) algebraically (line 7
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Algorithm 2 RHS function definition

1 Y=SX.sym('Y",37) > Define symbolic variables
2: 0=SX.sym(’Y"’,6)

3: A=SX.sym("\")

4: u=SX.sym("u’)

5. w=SX.sym('w’,2) > One each for w,q, Wprot
6: RHS=G(Y, 0, \,u,w) > Implement G algebraically
7. g= function('g’ {Y ,\,u,w},{RHS}) > Create RHS CasADi function

above, details omitted), we used CasADi’s algorithmic differentiation and matrix algebra
abilities. This can be done by first defining the RHS for the state variables X, and X,
symbolically. Then the sensitivities and FIM RHS functions can be determined from the
corresponding RHS expression by using the jacobian function, the jtimes function and
the matrix product operator, among others.

Using the symbolic function for the overall RHS, G, we can construct a symbolic
function, G, for a single step of an explicit, fixed-step-size numerical integration scheme.
We used a fourth-order Runge-Kutta scheme as described in the CasADi examples [259)].
External ODE solvers, like the Sundials suite [260], can be used, but defining an explicit
integrator in CasADi has the advantage that the integrator itself can be algorithmically
differentiated. This is useful for providing first and second order integral information to
the NLP solver. In contrast, the use of conditional statements by variable step-size or
implicit solvers generally precludes algorithmic differentiation. The single step of the RK4
integrator is given as shown in Algorithm 3, see [259] for further details.

Algorithm 3 Define RK4 Scheme

8: Define Symbolic Yy,u > Define an input Y vector
9: k1 = 9(Yiput, 0, A\, u, w) > Implement the RK4 sub-steps
10: k2 =g Yz-'nput + Atkl/zu 67 /\7 U, Wyrna, wprot)

(

(

11: k3 = g(Yinput + Atka/2,0, X, u, w)

12: ky = g(Yinput + Atks, 0, X, u, w)

13: Yourput = Yinpur + At(ky + 2k + 2ks + k4)/6 > Create a symbolic expression for the
output

14: élzfunction(’él’,{Ymput,O,A,u,w},{Youtput}) > Create a function mapping from
Ymput to Youtput
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Recall that for a single sub-experiment, the input u(t) is piecewise-constant over six 100
min intervals, W(t) (i.e. Wyne(t) and wy,.(t)) is piecewise-constant over forty-eight 12.5
min intervals, and the growth rate A is constant. We label these discretized controls by
their corresponding intervals as follows: growth controls, A%}, where i € {1,, 2, 3} (each

sub-experiment ); induction controls, u%, where j € {1,...,6} (each induction interval &
sub-experiment); and sampling controls, w3 and wﬁ’;;’g’”, where k € {1,...,48} (each

sampling interval, induction interval & sub-experiment). Because the 48 sampling intervals
are the shortest of the piecewise constant intervals, each has constant controls (in A, u and
Wi(species)) OVer its duration. We can therefore iterate the single RK4 step function, él, to
create an integrator, G, that maps the state at the beginning of the sampling interval to
the end, 12.5 min later, with a constant set of controls (see Algorithm 4).

Algorithm 4 Iterate RK4 over the sampling (smallest) control interval
7. Y,=MX.sym('Y,’)

8: Yier=Y,
9: for 12.5/At do > Iterate, advancing At time units each loop
10: Yiier = G1(Yiter, 0, X\, Uy Wrna, Wprot) > Apply Gy to the state Y., each loop
11: end for

12: G=function('G’ {Y,,0,\,u,w},{Yier}) > Create function, maps interval start, Y, to
enda }/iter

To determine the D-optimality score we need to integrate the RHS over the total
time (0 to 600 min) for each sub-experiment. The final objective value can be com-
puted from the Fisher information entries (the 17th to 37th components) at the final time,
Y (t = tf)17. 37, in each of the sub-experiments. To apply multiple-shooting, we partitioned
each sub-experiment’s duration into six shooting intervals. We used intervals of 100 min,
corresponding to the six constant-u induction intervals. We treat each of these shooting
intervals as a separate initial value problem, with its own initial conditions Y. Algorithm
5 shows how we use G to propagate these initial conditions through the series of shooting
intervals, linking the initial value problems with constraints to enforce continuity. There
are seven initial conditions Y for each sub-experiment because the final time is treated as
a (dummy) initial condition; this increases the sparsity of the problem. Using the initial
conditions, Y/, as optimization variables, along with the discretized controls, provides a
number of benefits. It gives the NLP solver direct access to the system state at regular
intervals throughout the simulation time. This improves the problem structure as the NLP
solver can alter the states directly. The continuity constraints then propagate this infor-
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mation to the control variables. Moreover, these states increase the sparsity of the NLP
problem because the coupling of the controls and the objective across the simulation is par-
titioned by the additional optimization variables. The system dynamics in each shooting
interval only depend on controls in the other intervals via the continuity constraints.

As shown in Algorithm 5, we loop over each sub-experiment, induction/shooting inter-
val and sampling interval, iteratively building up a symbolic expression for the objective
function and for the nonlinear constraint functions. At the beginning of the experiment,
we create vectors 'CtrlVec’ and ’CnstrnVec’ which, as we move through the three nested
loops, are filled with symbolic terms for each of the NLP optimization variables and the
non-linear constraints, respectively. The elements of ’CtrlVec’ are individual symbols repre-
senting the controls and the shooting initial conditions, which the NLP solver will optimize.
The elements of ’CnstrnVec’ contain non-linear symbolic expression that evaluate to the
constraint functions. The vectors ’'Ibc’ and 'ubc’ are the lower and upper bounds for the
non-linear constraint functions. If we want two symbolic expressions to be equal, we insert
an expression for their difference into ’CnstrnVec’, and then set both ’lbc’ and 'ubc’ to
zero to enforce equality. The vectors lbw’ and 'ubw’ likewise constrain the 'CnstrnVec’
optimization variable vector to feasible ranges. We start with both ’CtrlVec’, "CnstrnVec’,
‘Ibw’, 'ubw’, ’lbc¢’” and 'ubc’ empty and fill them as we loop over the problem structure.

At line 21 we create a symbol, A(¥) for the growth rate control. This is done once
for each sub-experiment at the start of the outer loop. We then add it to the control
vector, 'CtrlVec’, and constrain its range. At line 26 we create a symbol vector for the
initial conditions for the sub-experiment. This too is then added to the control vector and
constrained to a feasible range. However at line 31, we insert the additional nonlinear con-
straint that the initial condition must be at steady state (defined by the CasADi function
'SteadyState(A\®), 8)’, definition not given and must be provided by the user). We enforce
equality in the following lines. At line 36 we create an induction control variable 40 and
add it to 'CtrlVec’, once for each sub-experiment and shooting/induction interval. This
also marks the beginning of a shooting interval. In the following lines we constrain the
induction to its feasible range. At line 42 we create symbols for the sampling density con-
trols, add them to 'CtrlVec’, and then constrain them. At line 47 we use G to propagate
the symbol for the initial condition, Y, forward, storing it in the same variable. (This
does not erase the original contents of Y9 from the start of the shooting interval, as
those symbols are stored in 'CtrlVec’.) The inner-most loop calls G with the correspond-
ing control symbols for the given interval and iteratively advances the state vector. After
completion of the inner loop, at line 51, a new shooting initial condition is created and
added to 'CtrlVec’. At line 56 we constrain the new initial condition to be equal to the
final value of the state vector on the previous shooting interval (the product of the iterated
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Algorithm 5 Construct control problem

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:

32:
33:
34:
35:
36:

37:
38:
39:
40:

CtrlVec={} > Empty vector for OED control symbols
Tbw=]] > Empty vector lower bound of OED control symbols
ubw=]] > Empty vector upper bound of OED control symbols
CnstrnVec={} > Empty vector for nonlinear constraint symbols
Ibe=]] > Empty vector lower bound of nonlinear constraints
ubc=[] > Empty vector upper bound of nonlinear constraints
FIM= 0
fori=1:3do > Loop over sub-experiments
A = MX.sym(’A(®”) > Create A control, one for each loop
CtrlVec={CtrlVec, A} > Add A to control vector
Ibw = [Ibw; A\inl; > Restrict growth rates to feasible range

ubw = [ubw; Aael;

Yo(o’i) = MX.sym(’Yo(O’i)’, 37); > Create initial condition state for each
sub-experiment

CtrlVec={CtrlVec, v, } > Add it to the control vector

Ibw = [Ibw; 0[;

ubw = [ubw; Inf];

CnstrnVec={CnstrnVec, YZ,(O’“—SteadyState()\(i),G) } > Constrain IC to be at
steady state

Ibe = [lbe; 0]; > Bounds for constraint are 0, implying equality
ubc = [ubc; 0];
fori=1:6do > Loop over shooting/induction interval
ul") = MX.sym('u%?’) > Create u control, one for each sub-exp. & induction
intrvl.
CtrlVec={CtrlVec, uU} > Add u9 to control vector
Ibw = [Ibw; wmin); > Restrict u to feasible range

ubw = [ubw; Upaql;
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41:
42:

43:
44:
45:
46:
47:

48:
49:
50:
51:
52:
53:
54:
55:
56:

57:
58:
59:
60:

61:
62:
63:
64:
65:
66:

for j =1:48 do

w®7) = MX.sym("w*74) 2) > Create w for each sub-exp., induction &
samp. intrvl

CtrlVec={CtrlVec, w*79} > Add w7 to control vector

Ibw = [Ibw; 0J; > Restrict w to feasible range

ubw = [ubw; Winaa;

YU = G0, A0 ) g (ki) > Advance (symbolic) state
vector
end for
v = MX.sym(’Yo(j’i)’, 37); > Create new shooting interval IC
CtrlVec={CtrlVec, VA } > Add it to the control vector
Ibw = [Ibw; 0];

ubw = [ubw; Inf];

CnstrnVec={CnstrnVec, Y,7" — vV 1 > Constrain Y.”" for continuity
with Y,/

Ibe = [lbe; 0]; > Bounds for constraints are 0, implying equality
ubc = [ubc; 0];
end for
CnstrnVec={CnstrnVec, ¢4z — E(G’i)(15..16) } > Constrain integral of samp.
density to leq. 12
Ibc = [Ibc; 0]; > Bounds for constraint is 0, implying equality
ubc = [ubg; 0];
FIM:FIM+§@(6’i)(17..37) > Sum FIM terms for each sub-exp.
end for
Objective= — log(det (sym(FIM))) > Define the overall objective
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G), adding it to 'CnstrnVec’. At the end of the sub-experiment loop, line 60, we enforce
the integral constraints on the sampling density. At line 64 we add the FIM entries in
the final sub-experiment state vector to the running totals across the sub-experiments. Fi-
nally, we form the objective expression ’Objective’, which contains a (very large) symbolic
expression for the objective of the entire experiment, in line 66.

To improved numerical stability, we compute the determinant of the Fisher information
matrix using QR factorization: Zr,, = QQR. The entries in '"FIM’ are the unique values
of Zper. The function 'sym()’ in Algorithm 5 reforms the complete Zr,; from the vector
'FIM’. Because Zr,; is positive semi-definite det (Z7,;) > 0. Further

| det(Zro)| = | det(Q)|| det(R)| (A.28)

The factorization is such that | det(Q)| = 1. Because R is an upper triangular matrix, the
determinant is the product of its diagonal entries:

det(Zror) = [ [ Rmom) (A.29)

and so

—In(Op (Zror)) = — In(det(Zror)) = — > n(Rigm)) (A.30)

The expression in ’Objective’ is a mathematical function of the symbols listed in ’Ctr-
IVec’. Likewise, the vector of expressions in 'CnstrnVec’ are also mathematical functions
of the symbols in ’CtrlVec’. Because these functions are symbolic, they can be differenti-
ated with respect to any (or all) of the entries in ’CtrlVec’ (or the parameter vector 0).
This property allows CasADi to automatically generate Jacobians and Hessians for the
objective and the constraints when passing the problem to IPOPT. Although generation
of the derivatives is automated once the symbolic expression is constructed, choosing a
problem structure that achieves maximal sparsity is critical. The degree of sparsity in the
Hessian and Jacobians make a significant difference in the computation time. Once the
the symbolic expressions for the OED problem have been created, passing them to IPOPT
is straightforward using CasADi’s interface. Algorithm 6 shows the creation of the solver
and its call in CasADi’s MATLAB interface. Starting the solver requires an initial guess
for the control vector. We generate this by simulating one of the null experiments and
storing the state variables and controls at the appropriate times to construct 'CtrlVec’.

Parameter Estimation: We also implemented our weighted least-squares parameter
estimation algorithm in CasADi. This was also implemented as a multiple-shooting al-
gorithm and was structured in a similar manner to the OED algorithm above, where the
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Algorithm 6 Calling IPOPT
67: prob = struct( Objective, CtrlVec, CnstrnVec) > Package symbol vectors for passage
to IPOPT

68: solver = nlpsol( ’ipopt’, prob) > Create a solver instance

69: solver( CtrlVec,, Ibw, ubw, lbc, ubc) > Call solver with initial guess; CtrlVec,, pass

upper/lower bounds

parameters are treated as time-constant controls in an optimal control problem [261, .
The weights in our fitting algorithm were taken as the inverse of the sampling variances,
020 = (0.05) X, and 07, = (0.05) Xpror. In our numerical fitting experiments, for each
experimental design (null, null variants, optimal and perturbed optimal), we initialized the
parameter estimation algorithm to a random parameter vector drawn uniformly from the
feasible parameter range. For each experimental design, a small subset of the 30 fittings
either did not converge (max number of iterations or other stopping condition was reached)
or converged to clearly erroneous estimates (relative error exceeding several orders of mag-
nitude ). We removed these outliers before computing covariances. The number of outliers
in each design were as follows: null experiment, 3; growth variant, 2; sampling variant, 1;

induction variant, 3; true optimal, 0; perturbed optimal, 0 (for all six).

Timing: Our OED algorithm normally took between 70 and 400 iterations to converge
in IPOPT (depending on the number and range of the parameters). The wall-clock time
was on the order of an hour. Our parameter estimating algorithm normally took between
10 and 70 iterations to converge. The wall-clock timing was on the order of 10s of minutes.
All experiments were done on a Mac mini machine with a 2.6 GHz Intel Core i5 and 16
GB of RAM.
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