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Abstract

Widely-used deep learning (DL) libraries demand reliability. Thus, it is integral to
test DL libraries’ API functions. Despite the effectiveness of fuzz testing, there are few
techniques that are specialized in fuzzing API functions of DL libraries.

To fill this gap, we design and implement a fuzzing technique called DocTer for API
functions of DL libraries. Fuzzing DL API functions is challenging because many API func-
tions expect structured inputs that follow DL-specific constraints. If a fuzzer is (1) unaware
of these constraints or (2) incapable of using these constraints to fuzz, it is practically im-
possible to generate valid inputs, i.e., inputs that follow these DL-specific constraints, to
explore deep to test the core functionality of API functions. DocTer extracts DL-specific
constraints from API documents and uses these constraints to guide the fuzzing to generate
valid inputs automatically. DocTer also generates inputs that violate these constraints to
test the input validity checking code. To reduce manual effort, DocTer applies a sequential
pattern mining technique on API documents to help DocTer users create rules to extract
constraints from API documents automatically.

Our evaluation on three popular DL libraries (TensorFlow, PyTorch, and MXNet) shows
that DocTer’s accuracy in extracting input constraints is 82.2–90.5%. DocTer detects 46
bugs, while a baseline fuzzer without input constraints detects only 19 bugs. Most (33) of
the 46 bugs are previously unknown, 26 of which have been fixed or confirmed by developers
after we report them. In addition, DocTer detects 37 inconsistencies within documents,
including 25 fixed or confirmed after we report them.

iv



Acknowledgements

I would like to thank my advisor Professor Lin Tan and Professor Michael Godfrey
for providing immense guidance and support. They have taught me the methodologies to
carry out the research and shared invaluable visions to steer the direction of this work.

I would like to thank Hung Viet Pham and Thibaud Lutellier for providing insightful
suggestions as colleagues, and generous support as friends.

I would especially like to thank my family and my girlfriend for their love and encour-
agement over the years.

v



Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Approach 6

2.1 Challenges and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Pattern miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 API document collection and preprocessing . . . . . . . . . . . . . . 8

2.2.2 Sequential pattern mining . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Rule construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Constraint extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Constraint dependencies . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Documentation bug detection . . . . . . . . . . . . . . . . . . . . . 12

2.5 Fuzzing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Input generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Test case evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



3 Experiments and Results 14

3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Constraint extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Constraint extraction results . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Extraction results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.3 Generality of rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Bug detection results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.2 Bugs in library code . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.3 Conforming and violating inputs . . . . . . . . . . . . . . . . . . . . 20

3.5.4 Bugs in API documents . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Bug examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.1 Bug 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.2 Bug 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Valid-input generation results . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Threats to Validity 25

4.1 Practicality of generated inputs . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Complex constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Manual rule construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Python test inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



5 Related Work 27

5.1 Testing DL libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Unit test generation and fuzzing . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Analyzing software text to detect bugs . . . . . . . . . . . . . . . . . . . . 28

6 Future Work 29

6.1 Complex constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Input minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3 Feedback-directed fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.4 Use address sanitizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Conclusion 31

References 32

viii



List of Figures

1.1 Documents of PyTorch API function grid sample . . . . . . . . . . . . . . 2

2.1 Overview of DocTer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Ratio of passing inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



List of Tables

2.1 Rule examples and the extracted constraints . . . . . . . . . . . . . . . . . 10

3.1 Quality of constraint extraction . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Rule overlap across the three libraries . . . . . . . . . . . . . . . . . . . . 18

3.3 Number of verified new / new / all bugs found by DocTer and the
baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

x



Chapter 1

Introduction

With growing interests in building intelligent systems using Machine Learning (ML) in-
cluding Deep Learning (DL) techniques, various libraries (e.g., TensorFlow [11] and Py-
Torch [87]) have been released to allow developers to easily integrate ML algorithms in their
applications. These libraries have made developing ML models efficient and convenient.
However, ML libraries contain bugs [126, 52, 127, 51, 90], which hurt not only the devel-
opment but also the accuracy and speed of the ML models. Therefore, a DL library needs
to be well-tested for better reliability. A standard practice of testing these API functions
is to pass various input values to these functions and inspect any unexpected behaviors
triggered by the given inputs. Fuzzing is a scalable and practical testing technique for
this purpose. Fuzzing provides random data as test inputs to a program and monitors if
the inputs trigger any error in the program such as a crash [94]. Fuzzing a DL library’s
API functions is challenging because many of these API functions expect structured inputs
that follow DL-specific constraints. If a fuzzer is (1) unaware of these constraints or (2)
incapable of using these constraints to fuzz, it is practically impossible to generate valid
inputs (i.e., inputs that follow these DL-specific constraints) to explore deep to test the
core functionality of DL API functions.

Specifically, DL libraries’ API functions require two types of constraints for their in-
put arguments: (1) data structures and (2) properties of these data structures. First, DL
libraries often require their input arguments to be a specific data structure such as lists,
tuples, and tensors to perform numerical computations. For example, the PyTorch API
function torch.nn.functional.grid sample has two parameters, grid and padding mode

(other parameters are omitted for demonstration purpose). The former has to be a tensor,
while the latter has to be a string, as dictated by its API document shown in Fig. 1.1a.
A tensor is represented using an n-dimensional array, where n is a non-negative integer.
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Parameters

● grid (Tensor) – flow-field of shape (...) (4-D case) or (...) (5-D case)

● padding_mode (str) – padding mode for outside grid values 'zeros' | 'border' | 'reflection'. 
Default: 'zeros'

torch.nn.functional.grid_sample(..., grid: torch.Tensor, ..., 
padding_mode: str = 'zeros', ...) → torch.Tensor

torch.nn.functional.grid_sample

[SOURCE]

(a) API Document

grid: ndim:{4,5}

padding_mode: dtype:{string},
 default: zeros,

 enum:{border,reflection,zeros}

(b) Extracted constraints

grid:
 torch.tensor([[[[ 2.3e+38, 0]]]])

padding_mode: 
 'reflection'

(c) Bug-triggering input

-  return minimum(Vec(max_val), maximum(in, Vec(0)));

+  // ... in order to clamp Nans to zero

+  return clamp_max(Vec(max_val), clamp_min(Vec(0), in));

(d) Bug fix in GridSamplerKernel.cpp

Figure 1.1: Documents of PyTorch API function grid sample

Any input that cannot be interpreted as a tensor (e.g., a String) is rejected by the func-
tion’s input validity check. Such invalid inputs exercise only the input validity checking
code, failing to test the core functionality of the API function. To test grid sample’s core
functionality, a fuzzer needs to generate a tensor object for the grid parameter.

Second, API functions of DL libraries require their arguments to satisfy specific prop-
erties of data structures. Generating a correct data structure with incorrect properties is
often insufficient to pass the input validity checking of the DL API functions. They often
require two common properties of a data structure—dtype and shape. Property dtype spec-
ifies the data type of the data structure (e.g., int32, float64, and String). In Fig. 1.1a,
the dtype of the parameter padding mode should be String. Property shape specifies the
length of each dimension of the data structure. For example, a shape of 3× 4 matrix is a
2-dimensional tensor with the first dimension of 3 elements and the second dimension of 4
elements. In Fig. 1.1a, the parameter grid should be a tensor of either 4 dimensions or 5
dimensions. Any inputs that do not follow these dtype or shape requirements are rejected
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by the API function. Such inputs would exercise only the input validity checking code of
the API function and fail to test the core functionality of the API function.

There is a lack of techniques that are specialized in fuzzing API functions of DL libraries.
First, fuzzing techniques in the DL domain have been mostly used to test the robustness
of DL models instead of DL libraries by finding adversarial inputs (e.g., images or natural
language texts) for the models[77, 43, 120, 117, 133, 111, 110, 76, 113, 106, 131, 67, 48, 34].
As discussed earlier, testing DL models alone is insufficient, as a DL library itself contains
bugs [126, 52, 127, 51, 90], which hurt the accuracy and speed of the entire DL system [90].

Second, general-purpose fuzzers that support API fuzzing cannot effectively generate
valid inputs for DL API functions. Fuzzers such as AFL [1], HonggFuzz [100], and lib-
Fuzzer [5] generate inputs in the format of a sequence of byte arrays. Thus, randomly
mutating some bytes in the input is unlikely to generate valid DL-specific data structures
(i.e., tensors) following their properties. Other test generation tools such as Randoop [82]
generate a sequence of function calls to create various states of objects under which the
function is executed. However, this approach works only for a statically-typed language
(e.g., Java) where each variable has a static type. It would fail to create valid objects in
Python, which is the most popular language used for DL libraries [9], because Python is a
dynamically-typed language where variable types are unknown until runtime.

1.1 Our approach

To fill this gap and tackle these challenges, we develop a fuzzing technique called DocTer,
which extracts constraints from API documentation to guide the generation of test inputs
for DL API functions. Since DL API functions are dominantly written in more than one
programming language, e.g., Python for the user interface code and C++ for the core
matrix calculations, DocTer, which generates inputs for the Python API functions, tests
both the Python code and the C++ code. Since API documents are written informally in a
natural language, manually extracting constraints from a large number of API documents
(e.g., TensorFlow v2.1.0 has 2,334 pages of API documents and 854,900 words) is tedious
and inefficient. In addition, since these documents are constantly evolving, it is undesirable
and error-prone to manually analyze them each time when the documents update which can
be as frequent as every commit. To address these challenges, we leverage sequential pattern
mining [42, 46] to mine frequently occurring patterns in API documents and manually
transform them into rules to extract constraints automatically.

DocTer first analyzes free-form API documentation (e.g, Fig. 1.1a) to extract input
constraints (e.g., Fig. 1.1b). DocTer uses these constraints to guide the fuzzing so that it

3



generates a valid input (e.g, Fig. 1.1c) that satisfies the constraints. DocTer then evaluates
the generated test input by checking if it runs successfully without failures, e.g., crashes. If
a failure occurs with a valid input, it is highly likely that the generated test has manifested
a bug in the implementation of the API’s core functionality.

Fig. 1.1d shows a previously unknown bug detected by DocTer in PyTorch, and its
patch that the PyTorch developers committed, after we reported the bug to them. Ac-
cording to the document in Fig. 1.1a, the shape of parameter grid is either 4-D or 5-D
tensor. Following the extracted constraints in Fig. 1.1b, DocTer automatically generates
the bug-triggering input in Fig. 1.1c. The four pairs of square brackets indicate that the
parameter grid is four-dimensional (4-D). The two elements in grid, i.e., “(2.3e+38, 0)”,
are the indices to specify a pixel in a given image (the image is another parameter of
grid sample not shown for simplicity). The large index value (2.3e+38) causes the compu-
tation to produce NaN (not a number), which leads to an invalid array access, resulting in a
segmentation fault. This bug is only triggered in the padding mode = "reflection" mode
with a large index value in the grid’s tensor. A fuzzing technique that randomly generates
inputs for this API fails to generate any input to trigger this bug.

In addition to valid inputs, DocTer generates invalid inputs that violate the constraints
to test the input validity checking code of API functions. Despite invalid inputs, DL
API functions should not crash, because anyone can invoke API functions, and may make
mistakes due to carelessness, ignorance, or malice. Thus, one expects API functions to
report the invalid input (e.g., by throwing an exception or printing an error message)
instead of crashing. This point is well confirmed by an API developer after we reported
a crash bug detected by DocTer “A segmentation fault is never OK and we should fix it
with high priority”. Thus, we also consider that serious failures such as crashes caused by
invalid inputs indicate bugs.

Since incorrect API documentation provides false information about APIs, which often
misleads developers to introduce bugs in code [102], it is important to detect bugs in API
documents as well. Different from prior work [102, 105] that detects inconsistencies between
documents/comments and code, DocTer detects inconsistencies within documents. For
example, if the shape of a parameter is dependent on another parameter, which is missing
in the API document, the document is inconsistent, indicating a documentation bug.
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1.2 Contributions

In this work, we make the following contributions:

• A technique that automatically extracts 17,919 constraints from API documentation
with the focus on four categories of input properties in DL APIs: dtype, structure,
shape, and valid values for 2,273 API functions across the three widely-used DL libraries,
TensorFlow, PyTorch, and MXNet [23]. The constraint extraction accuracy is 82.2–
90.5%.

• Use of sequential pattern mining to help identify patterns from API documentation for
constraint extraction.

• A new fuzz-testing technique capable of generating multi-dimensional array object inputs
(i.e., tensors) as well as other general inputs, guided by the four categories of constraints
above.

• A prototype DocTer that detects 46 bugs in the three libraries, while a baseline fuzzer
that has no knowledge of constraints detects 19 bugs only. DocTer detected all the
bugs that the baseline detected, i.e., 27 (46 − 19) bugs are found by DocTer but not
the baseline. Among the 46 bugs, 33 are previously unknown bugs, 26 of which have
already been fixed (13) or confirmed (13) by the developers after we report them. In
addition, DocTer detects 37 documentation bugs, 25 of which have already been fixed
(10) or confirmed (15) after we report them.
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Chapter 2

Approach

2.1 Challenges and overview

Test case evaluator
API Execution

Input generator
Conforming input

Violating input

Pattern miner

Frequent subsequences

API documents

Constraint extractor

Rules

Constraints

Rule construction

grid_sample 
 grid: ...flow-field of shape (N,Hout,Wout,2) ...
 padding_mode: ... 'zeros' | 'border' | 
'reflection'....

- shape (x, y, z, t)
- values x | y | z

grid: shape:[n,h_out,w_out,2]
padding_mode: enum:{border, 
reflection, zeros}

- of shape <shape>
- value <enum> | <enum> | <enum>

grid_sample(…)
grid: [[[[ 2.3e+38, 0]]]]
padding_mode: 'reflection'

grid: [[[[ 2.3e+38, 0, 0]]]]
padding_mode: 'reflection'

Bug-triggering Input

Failure

Fuzzing phase
C

on
st

ra
in

t e
xt

ra
ct

io
n 

ph
as

e

Figure 2.1: Overview of DocTer

Fig. 2.1 shows the overview of DocTer using an example of the PyTorch function
grid sample (whose document is in Fig. 1.1a). The constraint extraction phase takes API
documents and extracts constraints for each input parameter. The fuzzing phase takes
these constraints, generates test inputs either conforming or violating the constraints, and
evaluates the generated inputs to return bug-triggering inputs.

Each component comes with its own challenges. A major challenge of the constraint
extraction phase is analyzing free-form API documentation written in a natural lan-
guage [118, 105, 18, 124, 37, 29, 130, 84]. We leverage sequential pattern mining [42, 46]
(SPM) to collect frequently occurring patterns and manually transform them into con-
straint extraction rules (or rules for short) to automatically extract constraints from API
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documents. Our semi-automated process reduces the manual effort required to discover
useful patterns in a large number of documents. The constraint extraction works together
with the rules, matches certain keywords relevant to the properties of a parameter such as
dtype and shape, and outputs the parameter’s constraints.

One challenge for the fuzzing phase is satisfying the constraint dependencies (i.e., the
relation between the properties of different parameters). Generating inputs that follow
such constraints requires DocTer to determine the parameters generation order correctly
to ensure that the generated values of earlier parameters do not break the constraint
dependency with later parameters. We address this by generating the values for parameters
using the topological order of the dependency graph. This graph is a directed acyclic graph
that represents the parameter dependencies, where a node represents a parameter and a
directed edge represents a dependency.

The semi-automatic constraint extraction phase consists of two components, Pattern
miner and Constraint extractor. The pattern miner automatically finds frequent sub-
sequences from the sentences in the API documents. These subsequences are manually
verified and transformed into rules (up to 15 hours per project). The constraint extractor
takes these rules and automatically extracts a set of constraints for each input parameter.

For example, in PyTorch documents (e.g., Fig. 1.1a), subsequences “shape (x, ...)”
often specify the shape of a corresponding parameter. Using these frequent subsequences,
we create a rule that extracts the shape of parameters using regular expressions (as shown
in Fig. 1.1b). For grid sample, the extracted shape constraint indicates that grid must be
a 4-D or 5-D tensor.

During the fuzzing phase, for each DL API function, DocTer takes the extracted con-
straints and iteratively performs two steps: generating an input (Input generator) and
evaluating that input (Test case evaluator). By either following or violating the extracted
constraints, the input generator generates Conforming inputs (CIs) or Violating inputs
(VIs), respectively. Since the extracted constraints may be incorrect or incomplete, the
CIs are not always valid and the VIs are not always invalid. In this work, we consider an
input a valid input or invalid input if it follows or violates, respectively, the ground-truth
constraints, as opposed to extracted constraints. The test case evaluator uses the generated
input to invoke the API function and returns the bug-triggering inputs that cause severe
failures (e.g., segmentation faults).

For the function grid sample (whose API document is in Fig. 1.1a), the extracted
constraints (as shown in Fig. 1.1b) indicate that grid must be a 4-D or 5-D tensor and
parameter padding mode expects one of three options: "border","reflection","zeros".
By following these constraints, the input generator creates an input (as shown in Fig. 1.1c
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and explained in the Introduction). The test case evaluator executes grid sample with this
input and detects a segmentation fault. This PyTorch bug is previously unknown and has
been fixed after we report it.

2.2 Pattern miner

Since API documentation is presented informally in natural language, manually extract-
ing rules from the documents is expensive. For example, there are 2,334 pages of API
documents and 854,900 words in TensorFlow v2.1.0. It is a daunting and tedious task for
developers to manually examine such a large set of API documents to identify constraints.
Following prior work [18, 105], we use rules to match potential API documents and extract
relevant constraints. Different from the prior work where the authors designed rules man-
ually, we semi-automate this process by using SPM to identify recurring patterns in API
documents. In addition, our rules are designed for analyzing DL API documents, which
have not been explored by existing work.

Specifically, DocTer automatically applies SPM on sentences of API documents to find
frequent subsequences. These subsequences provide insight and templates that save manual
efforts required to construct rules from scratch.

2.2.1 API document collection and preprocessing

Before applying SPM, DocTer collects API documents from DL libraries’ websites. We
focus on two sources in API documents for pattern mining: parameter descriptions and
parameter names. Parameter descriptions in API documents often specify useful con-
straints such as the parameter type. Parameter names often imply additional constraints
(e.g., parameter name implies its dtype to be String).

To extract information from API documents, we first parse the HTML documents to
obtain function signatures and parameter descriptions using an HTML parsing tool [3].
Since sentences are a natural unit of organizing constraints, we split the description into
sentences using regular expressions. Parameter names are extracted from API signatures.
We tokenize the sentences and parameter names into words using white spaces and " "

respectively. These extracted sequences of words are fed into the SPM process as lists of
items.

To improve the effectiveness of SPM, we normalize data types (e.g., int32 and int64)
as D TYPE and structure types (e.g., array, list, and tuple) as D STRUCTURE. This way,
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references to different data and structure types could be grouped into the same frequent
sequential pattern, reducing the number of frequent subsequences for less manual inspection
effort. Fortunately, each library provides a list of supported data types. There are 23, 13,
and 13 dtypes in these lists for TensorFlow, PyTorch, and MXNet, respectively. Since the
lists use the exact data types (e.g., np.int32), we add informal variations (e.g., “int32”
and “integer”) to match the format of API documents. We also add a common dtype that
is missing such as String. In total, we use 30, 18, and 18 type phrases for TensorFlow,
PyTorch, and MXNet, respectively. We manually collected 7 structure types that are
shared by all three libraries.

2.2.2 Sequential pattern mining

It is hard to manually discover rules, because API documents use many different ways
to specify the same content. For example, one common way to specify the dtype of a
parameter is “must be one of the following types: D TYPE1, ... D TYPEn”, which occurs 175
times in all API documents. Another way is “tensor type D TYPE” (occurs 135 times).
In addition, the sentence “If set to `true`,...” implies that the dtype of the parameter is
boolean (found by the pattern “set true/false” which occurs 110 times). These examples
show that it would be difficult, tedious, and error-prone for developers to manually design
extraction rules.

Therefore, DocTer uses SPM to automatically find frequent subsequences from the
sentences in the API documents. SPM discovers frequent subsequences within a sequence
dataset [69]. For example, an input sequence dataset D can consist of a set of sequences:
D = {< a, b, c, d >,< a, c, d, b >,< a, e, c, d, f >,< b, a, e, d >}. If a subsequence <
a, d > appears four times in the dataset, its support and length are 4 and 2, respectively.
From dataset D, an SPM algorithm finds all frequent subsequences that occur at least
min support times and have a length of at least min len [14] efficiently, while a naive
approach that counts the frequencies of all possible patterns does not scale. DocTer uses
PrefixSpan SPM [46], for its efficient processing. We select the same min support and
min length thresholds for all three evaluated DL libraries to demonstrate the generality.

2.3 Rule construction

We manually categorize and convert the frequent subsequences, mined by the pattern
miner, into four categories (i.e., structure, dtype, shape, and valid value) of rules. We
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Table 2.1: Rule examples and the extracted constraints
Category No. Examples of extraction rules Examples of sentences from API documents Examples of extracted constraints

structure
1 <structure> (list/tuple/...) of <dtype> n: A list of integer. n: structure={list(int)}
2 <structure> (dict/dictionary) of <dtype1> to <dtype2> features: Dict of string to `Tensor`. features: structure={dict(string:tensor)}

dtype
3 of/with type <dtype> audio: A `Tensor`of type ` float32`. input: dtype={float32},structure={tensor}
4 <ndim>-d/dimensional <dtype> tensor mask: K-D boolean tensor. mask: dtype={boolean},ndim={k},structure={tensor}
5 must have the same type/dtype as <dependency> imag: Must have the same type as `real`. imag: dtype={&real.dtype}

shape

6 <ndim>-d/dimension tensor logits: 2-D Tensor.. logits: ndim={2},structure={tensor}
7 with/of the same shape as <dependency>, target: A tensor with the same shape as `output`. target: shape={&output.shape}
8 of/with shape <shape> weights: ...of shape `[num classes, dim]`. weights: shape={[&num classes,dim]}
9 tensor of length <shape> rates: A 1-D Tensor of length 4. rates: shape={[4]}

valid value
10 only <value1>, ... <valuen> are supported data format: A string. Only `“NWC”` and `“NCW”` are supported. data format: dtype={string},enum={"NWC","NCW"}
11 non-negative <dtype> num columns: ... non-negative integer... num columns:range={[0,inf)},dtype:{int}
12 must be in the range <valid range>. axis: Must be in the range `[-rank(input), rank(input))` axis: range={[-&input.ndim,&input.ndim)}

focus on these four categories because they represent the most common properties of input
parameters of API functions in major DL libraries. With these four categories, DocTer
is able to extract constraints from almost all (97.8%) of the collected API functions in
TensorFlow, PyTorch, and MXNet. The four categories are:

• structure: the type of data structure that stores a collection of values for the input
parameter, such as list, tuple, n-dimensional array (i.e., tensor), etc.

• dtype: the data type such as int, float, boolean, String, etc., of the parameter or the
elements of structure.

• shape: the shape or number of dimensions of the input parameter. For example, in row
8 of Table 2.1, weights has a shape of [num classes, dim] (i.e., it is a 2-dimensional
array with the sizes of the first and the second dimension being num classes and dim,
respectively).

• valid value: a set of enumerated values (e.g., parameter padding can only take three
possible values: "zeros", "border", and "reflection") or the valid range of a numeric
parameter (e.g., a float between 0 and 1).

Table 2.1 shows examples of rules (column “Examples of extraction rules”) and exam-
ples of matched sentences (column “Examples of sentences from API documents”). For
example, the first rule “<structure> (list/tuple/...) of <dtype>” is used to extract the
structure of a parameter, which could be applied to “n: A list of integer” (where n is the
parameter name).

We make several reasonable assumptions when constructing the rules. For example, a
parameter is assumed to be a 0-dimensional float between 0 to 1 inclusive if the document
states it is a “probability of ...”. In addition, the dtype of a parameter’s default value is
considered to be one of the valid dtype for that parameter.

The frequent subsequences extracted from parameter names represent patterns in pa-
rameter naming. We manually investigate these patterns and add dtype constraints using
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our knowledge of DL libraries. For example, a frequent subsequence “shape” in a parame-
ter name indicates that the parameter represents the shape of a tensor. Since the shape of
a tensor is always a 1-D array with each array element specifying the size of a dimension,
parameters with names containing “shape” should be a 1-D array of non-negative integers.

2.4 Constraint extractor

The constraint extractor automatically finds matching texts in the parameter descriptions
and names, and extracts the relevant constraints according to the rules. For each rule
in the “Examples of extraction rules” column in Table 2.1, we list one example of the
sentences (column “Examples of sentences from API documents”) that can be matched.
The extractor automatically generates the corresponding constraints shown in the column
“Examples of extracted constraints”.

2.4.1 Constraint dependencies

The description of one parameter often refers to the dtype, shape, and valid value of an-
other parameter of the same API function. In such cases, DocTer extracts constraints
that involve dependencies among input parameters. Since most dependencies are direct
(i.e., the property of one parameter is the same as another parameter), we do not con-
sider less common or implied dependencies (e.g., “compatible with” or “broadcastable to”).
These constraint dependencies are useful not only for generating valid inputs but also for
determining the parameters’ generation order.

For dtype dependencies, DocTer uses extraction rules such as “must have the same
dtype as <other parameter> ” to extract the dtype dependencies among parameters. For
example, row 5 in Table 2.1 shows the constraint dependency dtype:{&real.dtype} (&
symbol in front of the <other parameter> indicates that it is a dependency) where imag’s
dtype must be the same as real.

Parameters can also have shape dependencies. The example in row 7 of Table 2.1
shows the dependency to be the shape of parameters (i.e., the parameter target has the
same shape as parameter output). The shape dependency could also involve sizes of the
parameter’s dimensions. Example in row 8 indicates that weights should have shape
[num classes,dim] (i.e., a 2-dimensional array). The first dimension of this shape is spec-
ified by another parameter num classes in the same API function. The second dimension
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dim is a constant which is used by another parameter inputs with shape [batch size,dim],
so parameter weights should have the same last dimension size as input.

Valid value dependencies such as range dependencies arise when a parameter’s elements
should be in a certain range using another parameter’s constraints. For example, row 12 in
Table 2.1 shows that the value of the parameter axis should be within a range determined
by the rank (i.e., number of dimensions) of another parameter input.

2.4.2 Documentation bug detection

As discussed in the Introduction, DocTer detects inconsistencies within documents as doc-
umentation bugs. For example, the parameter names in the description should match the
names specified in the function signature. If they mismatch, there is an inconsistency
in the document. Since DocTer is capable of analyzing constraint dependencies, Doc-
Ter also detects dependency inconsistencies in documents. For example, in the document
of tf.keras.backend.moving average update, the description for parameter value is “A
tensor with the same shape as `variable`,...”. However, parameter variable is not docu-
mented, which indicates a documentation bug of unclear constraint dependency. DocTer
detects this document inconsistency, which has been fixed after we report it.

2.5 Fuzzing process

For each API function, DocTer performs fuzzing by iteratively generating an input and
evaluating that input. It generates two types of input: conforming input (CI) and violating
input (VI). The conforming inputs are designed to test the core functionality of the API
function while the violating inputs are designed to test the API functions’ input validity
checking code. In both cases, DocTer reports bug-triggering inputs that cause serious
crashes (e.g., segmentation fault). DocTer tests each API function with maxIter number
of inputs, and the ratio of inputs allocated to each mode (CI or VI) is determined by the
ratio conformRatio.

2.5.1 Input generator

The input generator generates one Python input for each fuzzing iteration. Given a set of
extracted constraints, DocTer generates a value for each parameter following the generation
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order (determined by the constraint dependencies as described in Section 2.1). For a con-
forming input, all generated arguments satisfy extracted constraints. Specifically, for each
parameter, the input generator picks a value that conforms to the relevant dtype, shape,
valid value, and structure constraints. If concrete values are specified in the constraints,
the input generator uses those values. Otherwise, it chooses a dtype from the list of dtypes
specified in the parameter constraints and creates a shape following the constraints. If
the constraints do not specify a list of valid dtypes , DocTer selects a dtype from a default
list of all possible dtype described in Section 2.2. While the input generator is choosing
dtype and shape for a parameter, it ensures they are generated according to the parameter
dependencies if any. For example, parameters often have matching dimension(s), so the
input generator needs to ensure such shape consistency.

Once the dtype and shape are determined, the input generator generates an n-dimensional
array based on the given dtype and shape. If there is a valid range constraint (e.g., must
be a value between 0 and 1), the input generator only generates values within the speci-
fied range. Finally, the structure constraints are checked and satisfied. Specifically, if the
generated value is a 1-dimensional array and the constraints specify the parameter should
be an explicit structure (e.g., a tuple or a list), the input generator converts the generated
value accordingly.

To generate an invalid input to violate the extracted constraints, the input generator
randomly selects one parameter as the constraint violating parameter. For this chosen
parameter, DocTer generates a value that violates one or multiple relevant constraints.
For all other parameters, DocTer generates their values in the same way as conforming
inputs (i.e., conforming to all constraints).

2.5.2 Test case evaluator

The test case evaluator invokes the target function with the generated input. If a severe
failure occurs, DocTer reports the input as a bug-triggering input for both conforming
and violating inputs. More precisely, DocTer returns those inputs causing a segmentation
fault, floating-point exception, bad memory allocation, and hang in C++ core-level as bug-
triggering inputs. Core-level C++ signals indicate severe problems because DL libraries
use C++ code to handle computationally-intensive tasks. DocTer finds many abort signals
that occurred due to C++ assertion failures. We do not view this behavior as buggy, but
as bad coding practice because users mostly invoke the API functions in Python-level.
Therefore, DocTer does not report C++ assertion failures as bug-triggering inputs.
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Chapter 3

Experiments and Results

3.1 Data collection

We choose three popular DL libraries (TensorFlow 2.1.0, PyTorch 1.5.0, and MXNet 1.6.0)
as testing subjects. There are 144,541–854,900 words in the API documents among the
subjects. We collect documents for 949, 415, and 959 relevant API functions in the three
libraries, respectively. A function is considered irrelevant if it (1) is deprecated, (2) is from
an old version, (3) is a class constructor, (4) has no input argument, (5) has API document
without a “Parameter” description section, or (6) has a detected documentation bug (e.g.,
format and mismatch issues).

3.2 Constraint extraction

We apply PrefixSpan [46] SPM on parameter names and parameter descriptions with
NLTK [17] English stop words excluded. For parameter names, we set min len = 1 to
target short patterns (e.g, “shape” or “name”). These patterns imply the dtype of the
parameter (e.g., String for “name”). For parameter descriptions, we set min len = 2 to
catch more descriptive patterns (e.g., “positive D TYPE” or “tensor of length ...”)). We
set min support = 5 for both parameter names and descriptions so that we can cover
most of subsequences with reasonable manual inspection effort. Depending on resources
available, one can decrease min support to find more rules with increased manual effort or
increase this number for a quicker manual inspection at the risk of missing rules.
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3.3 Fuzzing

Since all three libraries heavily depend on numpy package, DocTer uses numpy array format
to generate input values. In this way, the subject library conveniently adapts the generated
input. For each generated input, once a timeout of 10 seconds is reached, DocTer terminates
the evaluation process and moves on to the next iteration.

3.4 Constraint extraction results

3.4.1 Approach

We apply DocTer to extract constraints in our subjects and study the number and quality
of constraints. We randomly sample 5% of input parameters of API functions from each
subject, which results in a total of 534 parameters. For each sampled parameter, we
extract relevant constraints manually to build the ground truth that we use to evaluate
the accuracy of our semi-automated constraint extraction. We extract constraints of the
four categories: dtype, structure, shape, and valid value, because other constraints are out
of scope by design of our approach. Chapter 4 discusses other categories which remain
as future work. The ground truth constraints of the sampled parameter are extracted
independently by two authors who have reached 91% agreement. For any disagreement,
we reach a consensus after discussing it with a third author. The extracted constraints by
DocTer are compared against manually extracted ground truth constraints for evaluation.

To estimate the quality of extracted rules, we calculate the accuracy of the constraint
extraction for the sampled parameters (i.e., the percentage of correctly analyzed parameters
over the total number of sampled parameters). We use a very strict definition of accuracy—
a parameter is correctly analyzed if DocTer accurately extracts all constraints of the four
categories for this parameter. For example, parameter size of tf.slice can be either int32
or int64. The extracted dtype constraint size:dtype={int32,int64} is deemed correct,
while size:dtype={int32} is considered incorrect. If a parameter’s document contains
no constraints of the four categories, the parameter is excluded from this accuracy and
subsequent precision and recall computation. While it is reasonable to include such no-
constraint parameters in our calculation because DocTer can trivially extract nothing, the
accuracy may be inflated if there is a large portion of no-constraint parameters. Among the
sampled parameters, the numbers of no-constraint parameters are 10 (6.0%), 8 (11.3%),
and 49 (16.6%) for TensorFlow, PyTorch, and MXNet, respectively (details in Extraction
result section below).
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Table 3.1: Quality of constraint extraction

TensorFlow PyTorch MXNet Total/Avg

# APIs with constr. extracted 915 404 954 2,273
# constr. extracted 6,729 2,201 8,989 17,919
# constr. per API: Avg (Min-Max) 7.4 (1-44) 5.4 (1-34) 9.4 (1-143) 7.9 (1-74)

# examined param. 167 71 296 534
# examined param. with constr. 157 63 247 467
# examined constr. 341 108 442 891

Accuracy (%) 82.2±5.8 90.5±7.1 90.3±3.6 87.7

Precision/Recall for structure (%) 97.4/96.2 96.8/96.8 98.3/99.1 97.5/97.4
Precision/Recall for dtype (%) 93.4/90.4 97.4/97.4 96.9/94.5 95.9/94.1
Precision/Recall for shape (%) 92.3/93.2 90.9/93.8 95.9/90.6 93.0/92.5
Precision/Recall for valid value (%) 90.3/82.4 100/83.3 94.3/97.1 94.9/87.6
Precision/Recall for All (%) 93.7/91.8 95.4/95.4 96.8/94.8 95.3/94.0

To show the quality of constraints extracted for each parameter, we compute the preci-
sion and recall of the extracted constraints of the sampled parameters for each constraint
category. Precision is the percentage of the correctly extracted constraints (i.e., extracted
constraints that match the ground truth) over the number of all extracted constraints. Re-
call is the percentage of correctly extracted constraints over the total number of all ground
truth constraints.

3.4.2 Extraction results

Table 3.1 shows the quality of extraction. In total, DocTer extracts 17,919 constraints
from the three libraries (row “# constr. extracted”). Specifically, DocTer extracts a total
of 3,773 and 533 frequent subsequences from 18,754 sentences in the parameter description
and 10,772 parameter names, respectively. We exclude 56.7% subsequences that either
contains no constraints (49.9%), e.g., functionality description of the API functions, or de-
scribes constraints out of the scope of DocTer (6.8%), e.g., complex constraints (discussed
in Chapter 4). For example, we exclude subsequence “cudnn operator” because some sen-
tences that contain this subsequence, e.g., “Do not select CUDNN operator, if available.”,
do not contain the constraints in our scope. After removing irrelevant subsequences, we
keep 1,757 frequent subsequences from parameter descriptions and 108 from parameter
names. We then group the relevant subsequences together and obtain in total 239 con-
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straint extraction rules, where each rule is merged from 7.8 subsequences on average. For
example, we group “the input array” and “the output array” together to get the rule “the
input/output array” which indicates array as one of the valid structure. Using these rules,
DocTer extracts on average 7.4 constraints per API for TensorFlow, 5.4 for PyTorch, and
9.4 for MXNet (row # constr. per API: Avg (Min-Max) Table 3.1). Overall, DocTer
is able to extract constraints from 96.4%, 97.3%, and 99.5% of relevant APIs (details in
Chapter 3) for TensorFlow, PyTorch, and MXNet, respectively.

For each subject, Table 3.1 shows the number of manually examined parameters (row
# examined param.), the number of manually examined constraints (row # examined
constr.), and the number of examined parameters with at least one constraint (row #
examined param. with constr.). The Total/Avg column shows the total number of examined
parameters and constraints as well as the average accuracy, precision, and recall. The
confidence intervals of accuracy are computed with 95% confidence level.

Overall, DocTer achieves a high accuracy of constraints extraction (87.7%) across all
three subjects. DocTer is the most accurate in extracting constraints for PyTorch and
MXNet with a high accuracy over 90%, precision over 95%, and recall over 94%. DocTer is
less accurate when extracting constraints for TensorFlow with a good but lower accuracy
(82.2±5.8%). The reason is that sentences in TensorFlow’s API documents are longer and
more free-form compared to other subjects. Hence, it is much harder for DocTer to extract
a complete set of constraints for each parameter. However, we can still extract thousands
of correct constraints for TensorFlow, which helps generate valid inputs and detect more
bugs.

DocTer achieves high precision and recall (over 90%) for structure, dtype, and shape
constraints. For valid value constraints, we achieved lower recall for TensorFlow and Py-
Torch because we miss some uncommon patterns in the mining stage (due to high threshold
min support = 5). Reducing the threshold of our sequential pattern mining could help us
extract more rules, which remains as future work.

3.4.3 Generality of rules

Since all three subjects are DL libraries, one may wonder the amount of similarity in their
API documents and extraction rules. Table 3.2 shows the number of rules (column Rules)
and the corresponding extracted constraints (column Constraints) for each category of each
library. The last column shows the number of rules that are shared among the libraries.
The overlapping ratio is the number of shared rules divided by the minimum number of
rules in the three libraries. For example, 12 of the dtype rules are the same across the
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Table 3.2: Rule overlap across the three libraries

Category
TensorFlow PyTorch MXNet Rule Overlap

Rules Constraints Rules Constraints Rules Constraints Rules (Ratio)

dtype 41 2,662 38 855 47 3,208 12 (31.6%)
structure 13 1,245 12 643 16 2,454 4 (33.3%)
shape 16 2,235 13 623 11 2,584 2 (18.2%)
valid value 15 587 5 80 11 743 0 (0.0%)

Total 85 6,729 68 2,201 85 8,989 18 (26.5%)

libraries, resulting in an overlapping ratio of 31.6%, which is 12
min(41,38,47)

, since at most

only min(41, 38, 47) number of rules can be shared across the libraries.

Overall, 18 rules are shared among the three libraries with an overlapping ratio of 26.5%.
On one hand, this result indicates the generality of the extracted rules and suggests that
a significant portion of the extracted rules can be reused in extracting constraints for new
libraries. For example, “<ndim>-d/dimension tensor”, one of the shared rules, captures
a common way among all three libraries to describe the number of dimensions of an input
tensor. Phrases such as “a list of `strings`” and “tuple of floats” are used in all three
libraries to describe the structure of an input parameter which can be matched with a
shared rule “<structure> of <dtype>”.

On the other hand, the 18 shared rules only account for a small portion of the total
number of rules for all three libraries. The rest of the rules are unique to one or two
libraries. For example, the valid value rule “<enum1>, <enum2> ... are supported” is
unique to TensorFlow and MXNet. To extract similar valid value constraints in PyTorch,
DocTer uses rules such as “can only be <enum1>, <enum2> ...”, e.g., “`signal ndim` can
only be 1, 2 or 3.”, which is unique to PyTorch. Given the diversity of the rules, the
proposed semi-automatic process using sequential pattern mining is essential to reduce
manual effort in applying DocTer to new libraries.

3.5 Bug detection results

3.5.1 Approach

We evaluate DocTer’s effectiveness in detecting bugs in both API documents and library
code, as both hurt software reliability now or later [102]. For the documentation bugs,
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Table 3.3: Number of verified new / new / all bugs found by DocTer and the baseline

Approach TensorFlow PyTorch MXNet Total

Baseline 5 / 8 / 14 4 / 4 / 4 1 / 1 / 1 10 / 13 / 19

All 8 / 15 / 25 10 / 10 / 11 8 / 8 / 10 26 / 33 / 46
DocTer CI 6 / 13 / 21 6 / 6 / 6 7 / 7 / 9 19 / 26 / 36

VI 8 / 13 / 21 6 / 6 / 7 8 / 8 / 9 22 / 27 / 37

we use DocTer to detect inconsistencies within API documents when analyzing them. For
library code bugs, we use DocTer to test API functions that have at least one constraint
extracted. Table 3.1 shows the numbers of these API functions (row # APIs with extracted
constr.). For each API function, with the conformRatio set to 50%, DocTer generates 1, 000
test inputs (500 conforming inputs and 500 violating inputs), evaluates them, and returns
bug-triggering inputs that cause serious failures (details in Section 2.5). We manually
examine those bug-triggering inputs to check if they reveal real bugs. For those inputs
that still trigger the same failures in the nightly version, we report the bugs to the devel-
opers. Since there are no state-of-the-art API fuzzers for DL libraries, we implement an
unguided fuzzer as the baseline for comparison. The baseline generates random inputs for
all parameters without any constraint knowledge. For a fair comparison, we convert the
generated array inputs to tensors assuming that the baseline minimally knows which input
argument should be a tensor. Without this conversion, non-tensor input arguments are
trivially rejected by PyTorch and MXNet, thus very ineffective in exercising the code in
depth.

3.5.2 Bugs in library code

Table 3.3 presents the number of verified new / new / all bugs found by DocTer and the
baseline. A bug is verified if it has been fixed or confirmed by the developers. A new bug
refers to a previously unknown bug that we have reported.

DocTer detects 46 bugs including 33 new bugs, 26 of which have been verified by the
developers (13 fixed and 13 confirmed). On the other hand, the baseline detects only 19
bugs with 13 new bugs. DocTer detects all 27 (46 − 19) bugs that the baseline cannot,
while missing no bug found by the baseline. The unverified new bugs are reproducible and
waiting for developers’ response. None of the newly reported bugs has received a ‘won’t
fix’ response from the developers, which suggests that our bug-triggering inputs are not
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false alarms and trigger the real bugs. DocTer has also uncovered 13 (all bugs − new bugs,
46− 33) known bugs that have already been fixed in the nightly versions.

Our fuzzer takes the automatically extracted constraints without any manual exami-
nation. The few incorrectly extracted constraints could potentially hurt the fuzzer’s effec-
tiveness, but in practice, the impact is small as shown by our strong bug detection results.
Alternatively, one can manually examine all extracted constraints first, if they would like
to trade manual effort of constraint verification for higher bug detection effectiveness. It
is possible that documents themselves are incorrect, causing incorrect constraints to be
extracted, leading the fuzzer to produce false alarms. Since we focus on severe bugs such
as crashes, all detected bugs are in the library code, as well said by a developer after we
reported a crash bug “A segmentation fault is never OK and we should fix it with high
priority.”

3.5.3 Conforming and violating inputs

As discussed earlier, DocTer generates both conforming inputs (CIs) and violating inputs
(VIs). Table 3.3 presents the breakdown of the bug detection result for CIs and VIs with
conformRatio = 50%. The results show that the CIs alone (with half of the test cases of the
baseline) find more bugs (36 bugs) than the baseline (19 bugs), and the VIs alone (with
half of the test cases) also find more bugs (37) than the baseline. We manually verified the
generated CIs and VIs: out of 36 CI bugs we found, 27 of them are caused by valid inputs
conforming to the ground truth constraints. The rest of the CI bugs are caused by invalid
inputs generated by conforming to inaccurate constraints; out of 37 VI bugs we found, all
of them are caused by invalid inputs violating the ground truth constraints.

It is widely known and expected that CIs find more bugs than the baseline, because
most CIs are expected to be valid inputs, exploring deeper to find hard-to-detect bugs,
while the baseline mostly generates invalid inputs which get stuck at the input validity
checking code. The reason that VIs find more bugs than the baseline is that the input
validity checking code is often complex. The baseline mostly generates inputs that violate
all parameter constraints, thus stops at the first batch of checks of input validity. On the
other hand, DocTer violates the constraints of one parameter only for each VI, thus can
pass the checking of all other parameters, going much deeper than the inputs generated by
the baseline.

By comparing the “All” row with the “CI” and “VI” rows, we can see that many bugs
are detected by both CIs and VIs. This is because DocTer violates the constraints of one
parameter only when generating VIs. When a crash is caused by one of the conforming
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parameters of a VI, it is also likely to be triggered by a CI. However, both CIs and VIs
detect unique bugs that cannot be detected by the other, thus both types of inputs are
effective in detecting bugs.

While the optimal ratio between the CIs and VIs may depend on the type of applications
and maturity of code (for example, there may be more bugs in the input validity checking
and exception handling code in mature projects as the norm cases have been tested more
thoroughly), we study how this ratio (conformRatio) affects the testing effectiveness on the
three DL libraries. We perform our study by varying conformRatio between 0% to 100%
with a 10% increment. Overall, the numbers of bugs detected using ratio between 20% to
90% differ by at most three bugs which indicates that DocTer is insensitive to this ratio.
Thus, we use conformRatio = 50% as the default ratio to be more general.

Although the optimal ratio of conforming and violating constraints may change for
different projects, it is crucial to know the constraints. We have observed that without
the constraints, a baseline is much worse than the results from any of the ratio setups.
Table 3.3 shows that a key contribution of our work is the ability to extract constraints
from documents. Regardless of what inputs (valid or invalid) to focus on, one cannot make
such a choice without knowing the definition of valid inputs for an API. DocTer enables this
choice by extracting input constraints from DL API documents, and use these constraints
to guide fuzzing to find more bugs.

3.5.4 Bugs in API documents

In addition to the bugs in the library code, DocTer also detects documentation bugs during
the constraint extraction phase. DocTer can detect three types of documentation bugs:
(1) formatting bugs (e.g., indentation issue); (2) signature-description mismatch (e.g., the
description refers to a parameter that is not specified in the API signature); and (3) unclear
constraint dependency (e.g., as discussed in Section 2.4, some properties of one parameter
depend on those of a missing parameter). We detect the first two types during the API
documents collection and the third when extracting constraints with rules.

DocTer detects 37 previously unknown documentation bugs for 53 API functions in
three libraries (including 9 formatting bugs, 25 signature-description mismatches, and 3
unclear constraint dependencies). We report all 37 documentation bugs, 25 of which have
been fixed or confirmed by the developers (including all 3 unclear dependencies). The result
suggests that, in addition to code bugs, DocTer is effective in detecting documentation bugs
that developers care to fix.
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3.6 Bug examples

We present three examples of bugs detected by DocTer that the baseline fails to detect.
All of them have been fixed by developers after we report them. Bug 1 is the previously
unknown bug in PyTorch API grid sample discussed in the Introduction (Fig. 1.1).

3.6.1 Bug 2

DocTer detects a floating-point exception bug in API mxnet.ndarray.InstanceNorm. The
bug involves three parameters, data, gamma and beta, which have shape dependency on
each other: gamma and beta must have the same length which should be equal to the size
of the second dimension of data. When at least one of the sizes of the first two dimensions
of data is 0, e.g., when it is of shape such as (0,1,...) or (1,0,...), a division by zero
exception occurs. The fix adds code to check zero before the division.

3.6.2 Bug 3

DocTer detects a segmentation fault in API torch.cholesky solve. This function requires
two input tensors to be at least 2-D, and their second to last dimensions should match. The
API function takes these two tensors and performs broadcasting (i.e., making their shapes
to be compatible for the arithmetic operations). However, the API execution fails to check
the shapes for compatibility and attempts to perform broadcasting with the incompatible
tensors. This causes a segmentation fault due to an invalid array access. The fix calls a
different function that properly checks the shape compatibility before broadcasting.

3.6.3 Discussion

The baseline approach fails to generate valid inputs and cannot trigger any of these bugs.
Unless generated inputs conform with the strict constraints, the input validity checking
of the API functions rejects the inputs by throwing exceptions. Therefore, the inputs
generated by the baseline do not exercise the core functionality, which contains bugs. The
inputs generated by DocTer, however, pass the validity check and find the bugs by exploring
deeper into the program.
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Figure 3.1: Ratio of passing inputs

3.7 Valid-input generation results

3.7.1 Approach

As discussed in the Introduction, generating valid inputs is essential to exercise the core
functionality of the API function. While DocTer attempts to generate CIs, these CIs may
still be invalid if the constraints extracted are incorrect or incomplete. We study what
percentage of generated CIs are valid inputs. For a fair comparison, we compare 1,000 CIs
with 1,000 baseline inputs. The ratio of valid inputs is computed out of 1, 000 total inputs
generated for each API function.

Since manually examining the validity of all inputs for all API functions under test
is impractical, we approximate the number of valid inputs by counting the number of
passing inputs whose executions terminates without any exceptions or crashes from both
Python and C++ level. Since the validity checking of mature projects (e.g., our subjects)
is generally reliable, the passing inputs that have not been rejected by the API functions
are likely valid inputs.

3.7.2 Results

Fig. 3.1 presents the ratio of passing inputs for each subject and the average. DocTer
outperforms the baseline approach by generating more than three times of passing inputs
that the baseline generates on average. The results suggest that DocTer is likely much
more effective in generating valid input than the baseline to test the core functionality
code to detect more bugs.

Although DocTer outperforms the baseline for all DL libraries, the ratio of passing
inputs is relatively low at 25% on average. This is because API documents are often
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incomplete. For example, many API documents specify only ndim of a tensor and often
do not specify the size of each dimension. Thus, even though our input conforms to
all constraints given in the document, the source code throws an exception to complain
that the input is invalid. Therefore, the effectiveness of generating valid inputs relies on
the quality of documents. We hope that DocTer can convince developers to write more
complete API documents after learning that API documents can help them find bugs.
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Chapter 4

Threats to Validity

4.1 Practicality of generated inputs

Many inputs DocTer generates are boundary inputs that are too large or too small because
for each dtype, DocTer draws values from the uniformly distributed value range. However,
these corner case inputs are beneficial to improve the robustness of standalone API func-
tions by detecting 26 new bugs that developers have already fixed or confirmed after we
report them.

4.2 Complex constraints

This work does not use some complex constraints: constraints that require (1) a class
object, (2) a pointer to a function, (3) a nested structure, and (4) indirect dependency
with the constraints of another parameter (discussed in Section 2.4). However, these
complex constraints are uncommon in DL libraries (appeared in only 6.4% of our sampled
parameters), thus excluding them should not affect the effectiveness of DocTer much.

4.3 Manual rule construction

The extraction rules need to be manually constructed from the frequent subsequences. For
the three libraries in this work, it takes one person up to 15 hours per library. The process
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is also only a one-time cost. We hope DocTer’s results can convince developers to write
documentation in more consistent formats/expression patterns, so tools such as DocTer
can more easily extract useful information to help detect bugs in the libraries.

4.4 Python test inputs

One may argue that DL libraries’ core computations are in C++, so directly testing C++
code is more appropriate. However, since Python APIs are the most popular for DL,
testing them is more aligned to the popular use case. DocTer test the Python APIs which
invoke the computations in C++, so DocTer can find bugs in both Python and C++ code.
DocTer found one bug in Python, which hangs with an infinite loop. Since DocTer focus
on severe failures (section 2.5.2), the rest of the 45 bugs DocTer found are in C++ code.
Other indicator(s) is need to find more bugs in Python.
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Chapter 5

Related Work

5.1 Testing DL libraries

Among all DL library testing techniques from research and industry, DocTer is the first
that extracts input constraints semi-automatically to guide testing. The handful of DL
libraries testing techniques focus on addressing the test oracle challenge. They leverage
differential testing [90, 112, 116, 99, 28, 44] or oracle approximation [74, 129] to obtain
oracles. DocTer uses only crashes as an indicator of unexpected behaviors, and addresses
the challenge of obtaining input constraints automatically.

Existing techniques are designed to detect specific types of bugs such as shape-related
(e.g., tensor shape mismatch) [28, 56], numerical [44, 28] (e.g., returns NaN/Inf), decreased
accuracy [28], and performance [108]. To do this, they leverage user-specified template
to generate numerical values from the specified probability distribution [28], modeling
of library semantics with respect to tensor shape [56], different combinations of structure,
parameters, weights, and data input of a DNN model [44], and performance clustering [108].
DocTer can find general bugs that lead to severe crashes by generating input arguments of
API functions based on the constraints specified in the documentation.

TensorFlow developers use OSS-Fuzz [7] along with libFuzzer [5] to test only 19 Tensor-
Flow’s C++ API functions. It requires developers to manually add constraints about data
structures and properties for each API to reinterpret the sequence of byte-arrays returned
by libFuzzer. This would take prohibitive amount of manual effort to test on the same scale
of APIs that DocTer is capable to do. DocTer extracts input constraints automatically
from API documents and use the constraints to generate valid inputs to test on 2,273 APIs
across three libraries.
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5.2 Unit test generation and fuzzing

DocTer belongs to a large body of work that generates unit tests. Random and search-based
techniques [82, 25, 109, 32] generate a sequence of methods as a test case. Our work is a
random testing technique that generates API function arguments (not method sequences)
for DL libraries that require DL-specific constraints. Dynamic symbolic execution engines
for unit testing [36, 96] generate inputs for API functions. However, these tools require
heavy program analysis, causing scalability issues. In contrast, we extract constraints from
API documents, which is light-weight.

DocTer is a generation-based black-box fuzzer [70]. The state-of-the-art fuzzers such as
AFL [1] and libFuzzer [5] are mutation-based grey-box fuzzers guided by code coverage [70]
and have been adopted to test various non-DL libraries [20, 19, 33, 58, 59, 89, 91]. However,
they would not work well for DL libraries that enforce DL specific constraints for valid
inputs.

5.3 Analyzing software text to detect bugs

Previous work leverages comments [102, 104, 132, 103, 18] and documents [22, 105, 130]
to detect inconsistency bugs between code and its specifications. Some prior work uses
software text to extract input constraints for testing by leveraging UML statecharts for
test case generation [78] and translating software specifications into oracles [29, 37, 72].
Different from these techniques, DocTer uses sequential pattern mining to aid the extraction
of constraints from API documents to guide input generation for testing DL libraries.
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Chapter 6

Future Work

6.1 Complex constraints

DocTer currently focuses on four categories of constraints (i.e., structure, dtype, shape, and
valid value), but there are more complex constraints such as requiring a parameter to be
a class object or two parameters to be broadcastable. We plan to extract more complex
constraints and expand DocTer’s capability in handling these complex constraints.

6.2 Input minimization

DocTer is useful to generate bug-triggering input, but the inputs generated are not always
minimal. Users of DocTer may need to manually minimize the generated input to produce
the minimal reproducible test input to help locate the actual bug. We could explore
approaches that can help reduce the bug-triggering input to further reduce DocTer users’
workload to detect and understand the bug.

6.3 Feedback-directed fuzzing

DocTer leverages constraints as guidance and currently does not use feedback to improve
its generation. We could establish metrics to dynamically improve the generation. For ex-
ample, we could record the distribution of dtype of previously generated inputs, and direct
DocTer to generate unseen dtype to diversify the generated inputs as much as possible.
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6.4 Use address sanitizer

DocTer uses severe crashes (such as Segmentation Fault) as indicators for bugs. An im-
provement could be compiling the target libraries with address sanitizer, so DocTer could
potentially find more bugs with address sanitizer enabled.
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Chapter 7

Conclusion

We propose a fuzzing technique called DocTer that tests API functions of deep learning
libraries. The technique leverages sequential pattern mining to extract input constraints
from API documentation. It uses the constraints to guide the input generation for (1)
valid inputs that conform to the constraints to test API function’s core functionality, and
(2) invalid inputs that violate the constraints to test the input validity checking code.
Our results show that DocTer achieves 82.2–90.5% accuracy for the constraint extraction.
DocTer detects 46 bugs, 33 of which are previously unknown including 26 of them fixed or
confirmed by developers after we report. In addition, DocTer finds 37 inconsistencies in
API documents, and 25 of them have been fixed or confirmed by developers. In the future,
it would be conceivable to extract other categories of DL constraints and more complex
dependency-related constraints from API documents to further fuzz-test DL libraries.
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