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Abstract

A pluggable type system is a light-weight approach for compile-time program verification,
which provides more powerful types to both developers and compilers. Developers use
pluggable types to boost program understanding, while compilers leverage the new types
to enforce interesting properties, e.g., NullPointerException freedom. This thesis presents
a new type system, the Crypto Checker, to help developers prevent cryptographic APIs
misuse. In addition, this thesis presents the Property File Handler and the Network Request
Checker as two type system extensions. The Property File Handler performs type refinement
to Java Properties by reading property files at compile time, while the Network Request
Checker reports all the possible network requests to prevent potential information leakage
in Java and Android applications.

Using cryptographic APIs to encrypt and decrypt data, calculate digital signatures,
or compute hashes is error prone. Weak or unsupported cryptographic algorithms can
cause information leakage and runtime exceptions, such as a NoSuchAlgorithmException
in Java. Using the wrong cryptographic service provider can also lead to unsupported
cryptographic algorithms. Moreover, for Android developers who want to store their key
material in the Android Keystore, misused cryptographic algorithms and providers make
the key material unsafe. This thesis presents the Crypto Checker, a pluggable type system
that detects the use of forbidden algorithms and providers at compile time. For typechecked
code, the Crypto Checker guarantees that only trusted algorithms and providers are used,
and thereby ensures that the cryptographic APIs never cause runtime exceptions or use
weak algorithms or providers. The type system consists of an easy-to-understand type
qualifier hierarchy. The Crypto Checker is flexible and easy-to-use—it allows developers to
determine which algorithms and providers are permitted by writing specifications using
type qualifiers. We implemented the Crypto Checker for Java and evaluated it with 32
open-source Java applications (over 2 million LOC). We found 2 issues that cause runtime
exceptions and 62 violations of security recommendations and best practices. We also used
the Crypto Checker to analyze 65 examples from a public benchmark of hard security issues
and discuss the differences between our approach and a different static analysis in detail.

Malicious or unsafe applications collect and send users’ data to untrusted external
servers via network requests, e.g., HTTP and socket requests, which will cause information
leakage. Detecting the possible network requests on the source code level without running
the applications is a light-weight approach to solve the problem. Application stores that
have the source code of the uploaded apps can take advantage of this to ensure application
security. Security teams in companies also use similar technologies to guarantee compliance.
This thesis presents the Network Request Checker, a type system extension for Java to
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detect and report all the possible network requests to developers at compile time. The
Network Request Checker can be integrated into any other pluggable type system or be
seen as a stand-alone type system depending on developers’ needs. We evaluated this
type system with 6 real-world Java and Android applications and discuss the experimental
results.

To improve the Crypto Checker, the Network Request Checker, and other type systems’
precision, i.e., to obtain more valuable information from the program at compile time, this
thesis presents the Property File Handler, a type system extension that reads property
files to perform type refinement on Java Properties. When an application reads property
files, the Property File Handler will also try to load, store, and propagate the information
from property files. A simple type hierarchy is proposed to achieve this functionality. By
using the Property File Handler, we found and fixed a potential false negative with Java
Properties, while other static analysis tools, e.g., SonarSource, did not handle that code
correctly.
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Chapter 1

Introduction

1.1 Motivation

Many developers are suffering from cryptographic APIs misuse: most developers are not
cryptography experts, which means that it is easy for them to make mistakes when the
documentation is not clear and easy enough. Some of the misuses, e.g., using weak
cryptographic algorithms, will not cause runtime exceptions, which makes the misuses hard
to be reproduced and fixed as the programs will not throw errors to alert the developers.
There are many security tools, both static and dynamic, created to detect weak cryptographic
algorithm misuses. But most of them cannot provide developers a convenient way to specify
custom security rules: some security tools hardcode security rules in their source code; for
the security tools that support custom rules, users always have to learn template models or
write sub checkers themselves. Furthermore, currently, there are no such tools for detecting
cryptographic algorithm providers, which is also important to avoid runtime exceptions and
make it possible for developers to specify the security providers they want to use. Because
static tools run at compile time, i.e., they do not put extra burdens on the runtime of the
program, we want to create a static tool which not only supports detecting both forbidden
cryptographic algorithms and providers but also offers developers the flexibility to indicate
their own security rules easily. A pluggable type system meets our requirements as 1) it
performs type checking at compile time, 2) its type qualifier can express developer-defined
security rules easily, and 3) it also improves program understanding.

Information leakage can cause major harm to applications and users: malicious applica-
tions collect and send the users’ or other applications’ information to untrusted external
servers by sending network requests, e.g., HTTP and socket requests. This helps attackers
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learn more about applications. The leak of users’ sensitive data causes a loss of money.
We create a type system extension which can detect all the possible network requests at
compile time, so that developers can leverage this type system extension to perform security
and privacy checking when building applications. As a type system extension, it can be
used by any arbitrary type systems.

Property files in applications always store valuable information. For instance, to
enforce a common security standard and allow global reconfiguration easily, applications
save cryptographic parameters such as cryptographic algorithms and providers in project
property files. Similarly, the hostnames and ports for network requests are commonly stored
in property files. Thus, getting such information at compile time helps static analysis tools
perform more comprehensive and precise analysis. Unfortunately, the current existing static
analysis tools cannot handle property files, which introduces false positives, and even false
negatives. We create a type system extension that handles property files to provide more
compile-time constant values.

1.2 Thesis Contributions and Organization

The thesis contains the following main contributions:

Firstly, we present the Crypto Checker, which is a pluggable type system aimed at
ensuring that there are no uses of forbidden cryptographic algorithms and providers in a
program. For the Crypto Checker, we provide several pre-defined security rules for Java
and Android applications. We evaluate the Crypto Checker with over 2 million lines of code
and performed a case study with a comprehensive cryptographic APIs misuse benchmark.
See Chapter 3 for detailed information.

Secondly, we present the Property File Handler as a type system extension performing
flow-sensitive type refinement to enhance the compile-time constant value inference in
Chapter 4.1. The Property File Handler tries to read the programs’ property files and
propagates the values in the property files to Java properties. The Property File Handler
can collaborate with any Checker Framework based type system. The Crypto Checker and
the other type systems benefit from the Property File Handler as it improves precision and
reduces false positives.

Thirdly, we present the Network Request Checker, another type system extension that
reports all the possible network requests at compile time. The Network Request Checker
supports several popular network request libraries by default, and it can also be extended
easily to be compatible with more libraries. We evaluate the Network Request Checker
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with 6 real-world Java and Android applications, and discuss the experimental results. See
Chapter 4.2 for detailed information.

The rest of the thesis is structured as follows: Chapter 2 discusses the basic knowledge
of type systems and the Checker Framework, which is the fundamental of the pluggable
type system and extensions presented in the thesis. Chapter 3 introduces the type system
and the implementation of the Crypto Checker. Chapter 4 describes two type system
extensions, the Property File Handler and the Network Request Checker. Chapter 5 talks
about case studies. Chapter 6 discusses the related work. Chapter 7 records possible future
work and concludes the whole thesis.
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Chapter 2

Background

This chapter discusses the background knowledge that is needed to understand the thesis.

2.1 Type Systems

Type systems are always an important component of statically-typed programming languages
as the type systems provide a set of rules to the programs, which improves both the security
and the performance of the programs. To ensure developers follow the provided rules,
programming languages utilize type checking algorithms, which will report errors when the
rules are violated. After passing the type checking, guarantees of the correct use of the
types are given to the programs [34, 38, 46]. Compilers can also optimize the code after
knowing that the type rules are respected.

As a statically typed language, Java’s built-in type system is strong and helps prevent
many errors during compilation, e.g., as the following code is shown, assigning a string literal
to an integer type variable will cause an incompatible types error. This helps developers fix
errors at compile time.

int i = "123"; // incompatible types error

However, Java’s built-in type system is not strong enough to find all kinds of errors at
compile time. For example, even though the Java compiler does not complain, developers
still may face NoSuchAlgorithmException and NoSuchProviderException when using Java
cryptographic APIs. We will discuss how to prevent these two exceptions in Chapter 3. To
make Java’s type system more powerful, the Checker Framework is introduced.
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void foo(Object nn, @Nullable Object nbl) {

nn.toString(); // OK

nbl.toString(); // Error

}

Figure 2.1: An example of the Nullness Checker.

2.2 Checker Framework

The Checker Framework is a framework that enhances Java’s original type system to perform
extra type checking for interesting properties, e.g., null-pointer freedom and freedom of
certain taints [7, 10, 17, 21]. The pluggable type system and extensions presented in this
thesis are all built on the Checker Framework. For a specific property that passes pluggable
type checking, the Checker Framework gives users the guarantee that there will be no
runtime errors with this property. “Pluggable” here indicates that the type checking is
optional: Users can freely choose which type checking they want to perform at every
compilation. Also, the type annotations will be only validated at compile time, which will
not put extra burdens on the run time. Thus, pluggable type checking is light-weight and
flexible. The Checker Framework leverages Java type annotations which were introduced in
JDK 8 to achieve the Checker Framework’s core functionalities. Currently, the Checker
Framework supports both JDK 8 and 11. An example of the Checker Framework’s Nullness
Checker extracted from the Checker Framework Live Demo1 is shown in Figure 2.1. In
this example, developers use the annotation @Nullable provided by the Nullness Checker
to indicate that null can be passed as the argument to the parameter Object nbl. Thus,
nbl.toString() is a dangerous operation that may cause NullPointerException at run time
and should be avoided. The Nullness Checker will report this to developers at compile time.

The Checker Framework provides a good encapsulation of the Java’s internal compiler
APIs, i.e., for most of the time developers do not need to work with them. In addition, the
Checker Framework also provides default implementations which reduces the code efforts to
create a new checker, i.e., a new checker normally only needs to override some of the specific
methods to meet its need. Thus, even the developers who do not have deep knowledge
with type system and javac can easily create custom annotations and enforce certain type
rules. To design and develop a new pluggable type system, the following 5 components are
critical:

1http://eisop.uwaterloo.ca/live/
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• Type qualifiers and hierarchy. Each type system has at least one type qualifier and
one type hierarchy. You need to define the subtyping relationship among different
type qualifiers and the default type qualifier in the type system.

• Interface to the compiler. This is the entry point of the type checker. The command-
line options and the sub checkers can be indicated here.

• Type rules. Type rules represent type system semantics. The type checker will report
errors to developers when type rules are broken.

• Type introduction rules. For each of the type locations, type introduction rules
indicate the suitable type annotations to it. Developers can create a tree annotator
to express their own introduction rules.

• Dataflow rules. The Checker Framework performs flow-sensitive type refinement
following the provided dataflow rules. Chapter 4.1 gives an example of creating and
implementing dataflow rules.

The Checker Framework’s manual2 provides plenty of documentation that guides devel-
opers to get started and dive into. The Checker Framework’s community is also responsive
and friendly.

2https://checkerframework.org/manual/
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Chapter 3

Crypto Checker Type System

Cryptographic APIs are hard to understand and use for developers who are not cryptogra-
phers [36], which causes significant security vulnerabilities. This thesis focuses on one aspect
of cryptographic API misuse: the inadvertent use of weak, unsupported, or disallowed
cryptographic algorithms or providers.

A key method to select cryptographic algorithms in Java is Cipher.getInstance(String

transformation)1. The transformation can be in one of two formats: "algorithm/mode/pad-

ding" or simply "algorithm". In the latter case, default mode and padding values will
be used. This method uses the installed providers, which offer the implementation of
algorithms and other security services, to find the implementation for the requested trans-
formation. Alternatively, developers can specify the provider via Cipher.getInstance(String

transformation, String provider).

A NoSuchAlgorithmException occurs when an algorithm that is unavailable in the envi-
ronment is requested [24]. This can be caused by a misspelling or an incorrect assumption
about the execution environment. For instance, Cipher.getInstance("AESS/GCM/NoPadding")
throws a NoSuchAlgorithmException at run time, because there is no "AESS" algorithm. The
Java cryptographic APIs could have used fixed enum constants to guarantee that only valid
algorithms, modes, and paddings are used. However, strings were likely chosen because
they allow much more flexibility in the evolution and customization of the APIs and their
independent implementation by hardware and software providers.

When specifying the provider, developers must use algorithms that are supported by this
provider. The following code compiles successfully, but throws a NoSuchAlgorithmException

1https://docs.oracle.com/javase/8/docs/api/javax/crypto/Cipher.html
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at run time since PKCS7PADDING is not a valid padding for the provider SunJCE. Developers
should use the BouncyCastle (BC) provider instead.

// runtime error

Cipher.getInstance("AES/CBC/PKCS7PADDING", "SunJCE");

For Android developers who want to store the key material in the Android Keystore, when
generating security keys, AndroidKeyStore needs to be used explicitly as the cryptographic
service provider. Otherwise, the Android Keystore system cannot protect the key material
from unauthorized use. Also, only a subset of algorithms is supported by the Android
Keystore, which means that a wrong algorithm will lead to a runtime exception. Currently,
there are no tools that enforce the security rules for the Android Keystore.

Similar to NoSuchAlgorithmException, NoSuchProviderException occurs at run time when
the requested provider does not exist in the environment. For example:

// runtime error

KeyPairGenerator.getInstance("RSA", "WrongProvider");

Unsupported algorithms or providers result in runtime exceptions, which can be hard to
reproduce and fix. Using weak algorithms is even worse, as applications continue to operate
and there will be no errors at compile or run time. Using weak algorithms may cause
the exposure of sensitive information [16]. Some common symmetric ciphers such as DES,
IDEA, and RC4 are considered very insecure, because their 64-bit keys are too short and
susceptible to brute-force attacks [2]. Similarly, hash functions MD5, MD4, SHA-1, and the
mode of operation ECB, are prone to vulnerabilities. The compiler will not warn against
using weak algorithms and, as there is no runtime exception when a weak algorithm is used,
an application can use weak algorithms for a long time. Therefore, finding the use of weak
cryptographic primitives at compile time is essential to protect sensitive information.

Many companies have security policies that specify what cryptographic algorithms
and providers must be used. Human code reviewers can easily miss the use of incorrect
algorithms and providers. Many static analysis tools have hard-coded security rules, which
makes them useless for this situation. Tools which support custom rules require writing
rules in some rule language, which is an additional learning effort and source of possible
errors.

In this chapter, we present the Crypto Checker, which validates the possible values used
for cryptographic algorithms and providers at compile time. It gives a strong guarantee
that no forbidden algorithms or providers are used in an application, which helps developers
keep sensitive information safe and avoids runtime exceptions. The Crypto Checker enforces

8



several default security rules of allowed algorithms and providers. Users can also indicate
their own rules to meet their particular requirements by adding type annotations, which is
very convenient and easy to understand.

Part of our work, weak algorithm detection, was inspired by the AWS Crypto Policy
Compliance Checker [30]. Our work provides security rules for the Android Keystore [5]
and supports provider checking. Furthermore, to handle the case that a program reads
cryptographic parameters from property files, we designed a Property File Handler that
performs type refinements for Java property file APIs. The Property File Handler will be
discussed in 4.1.

The Crypto Checker is a pluggable type system [8] built on the Checker Framework [17].
To the best of our knowledge, this is the first open-source static analysis tool providing a
comprehensive solution to ensuring the correct usage of both cryptographic algorithms and
providers at compile time. The source code is available on GitHub: https://github.com/
vehiloco/crypto-checker.

Overall, our contributions are:

• a type system to enforce the correct usage of algorithms and providers at compile
time (Section 3.1),

• an implementation of the type system for Java (Section 3.2.1),

• a flexible way to define custom security rules (Section 3.2.2),

• well-defined security rules for Java and Android applications (Section 3.2.3),

• a property file handler performing type refinement (Section 4.1), and

• case studies on 2 million LOC of Java and Android applications (Section 5.1).

Section 6 reviews related work and Section 7.1 concludes.

3.1 Type System

In this section, we present the Crypto Checker type system, which guarantees that only
allowed algorithms and providers are used. The presented ideas can be applied to any
language, but we use Java for examples. Section 3.1.1 describes the type qualifiers of the
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type system. Section 3.1.2 discusses the qualifier hierarchy. Section 3.1.3 defines the type
rules for assignments and pseudo-assignments.

The type system performs a modular, conservative over-approximation of all possible
executions of a program. The type system reports a false positive when it cannot guarantee
a correct usage. In our case studies, there were no false positives.

3.1.1 Type Qualifiers

Type qualifiers are used to specify properties that cannot be expressed by the standard type
system [8,23]. Java’s type annotation syntax can be used to represent type qualifiers [44].
Developers use the annotations in source code to specify properties of the program. In
our type system, there are five type qualifiers: @AllowedAlgorithms, @AllowedProviders, and
@StringVal provide information about allowed algorithms, providers, and string values,
respectively; @Unknown and @Bottom complete the type lattice (see Section 3.1.2).

Type qualifiers @AllowedAlgorithms and @AllowedProviders record the permitted al-
gorithms and providers, in a String[] value annotation type element. For example,
@AllowedAlgorithms({"AES/GCM/NoPadding", "RSA"}) indicates that there are only two le-
gal cipher transformations, AES/GCM/NoPadding and RSA. Developers can also use regu-
lar expressions to make the type qualifiers more expressive. For example, @Allowed-

Algorithms({"HmacSHA(1|224|256)"}) expresses that algorithms HmacSHA1, HmacSHA224, and
HmacSHA256 are allowed. In addition, algorithm names in the Java Cryptography Architec-
ture (JCA) are case-insensitive [28]. Our type system also supports that—for example,
HMACSHA224 is equal to HmacSHA224 in the type system.

Type qualifier @StringVal expresses permitted String values, again as an String[] value

annotation type element. Most commonly, @StringVal is automatically determined for String
literals in the program. This constant value propagation is provided by the Constant Value
Checker [12] in the Checker Framework. For example, the String literal "RSA" has the type
qualifier @StringVal({"RSA"}). In contrast to @AllowedAlgorithms and @AllowedProviders,
@StringVal does not use regular expressions to describe possible values.

Type qualifier @Unknown is the top and default type qualifier in the type system. It
indicates that no information about the algorithm or provider is known. The type sys-
tem is conservative: when the type system cannot determine a more precise type, e.g.,
@AllowedAlgorithms or @AllowedProviders, the top type will be used. Type qualifier @Bottom

is the bottom type and is used internally by the type system; developers do not need to use
it explicitly.
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@Unknown

@AllowedAlgorithms @AllowedProviders

@StringVal

@Bottom

Figure 3.1: The basic qualifier hierarchy of the Crypto Checker’s type system. Arrows
represent the subtyping relationships between types. For example, @Unknown is the supertype
of @AllowedAlgorithms and @AllowedProviders.

The type qualifiers are only used for String types in the program; uses on other types
are forbidden. For example, @Unknown int x is an illegal use of the type annotation.

3.1.2 Qualifier Hierarchy

These type qualifiers form an easy-to-understand qualifier hierarchy (type qualifier lattice),
which is shown in Figure 3.1. @AllowedAlgorithms and @AllowedProviders are subtypes of
@Unknown and supertypes of @StringVal, while @Bottom is the bottom type in the type system,
subtype of @StringVal.

When determining the subtyping relation between two @AllowedAlgorithms or two
@AllowedProviders type qualifiers, the String[] annotation type element also needs to
be considered. The following rule applies: for two types τ1 and τ2, τ1 is a subtype of τ2
if and only if the element value of τ2 contains the element value of τ1. To make it more
concrete, @AllowedAlgorithms({"a"}) is a subtype of @AllowedAlgorithms({"a", "b"}). Two
@StringVal’s subtyping relation is similar to the above rule [13]. Figure 3.2 also illustrates
the subtyping rules.

These subtyping rules are conservative but sound: it is computationally hard to de-
cide whether a regular expressions is subsumed by another regular expression, that is,
whether the set of strings accepted by two regular expressions are subsets. To resolve
this, our type system only checks whether the supertype literally contains all the values
in the subtype. For example, although the regular expression SHA−(256|512) matches SHA−256,
@AllowedAlgorithms({"SHA−(256|512)"}) is not a supertype of @AllowedAlgorithms({"SHA−256"})
while @AllowedAlgorithms({"SHA−256", "SHA−512"}) is.
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A ⊆ B

@AllowedProviders(A) <: @AllowedProviders(B)

A ⊆ B

@AllowedAlgorithms(A) <: @AllowedAlgorithms(B)

Figure 3.2: The subtyping rules for two @AllowedAlgorithms or two @AllowedProviders.

For the subtyping relation between @StringVal and @AllowedAlgorithms, or @StringVal

and @AllowedProviders, our type system has the following rule: @StringVal is a subtype of
@AllowedAlgorithms or @AllowedProviders if and only if @StringVal’s element value matches
the regular expressions in @AllowedAlgorithms or @AllowedProviders. As the arguments to
@StringVal do not use regular expression, the type system simply needs to check whether
the regular expression matches the string value.

3.1.3 Type Rules for Assignment and Pseudo-assignment

The subtyping rules from Section 3.1.2 are used wherever the underlying programming
language type system performs subtype checks, in particular for assignments and pseudo-
assignments.

For normal assignments, the type system checks whether the type of the right-hand side
is a subtype of the left-hand side’s type. An example is demonstrated below. As discussed
before, @StringVal is the default type of String literals, and has the same element value
as the String literal. Hence, the String literal "SHA-256" has type @StringVal({"SHA-256"}).
As SHA-256 matches the regular expression SHA-(256|512), i.e., @StringVal({"SHA-256"}) is
a subtype of @AllowedAlgorithms({"SHA−(256|512)"}), this assignment typechecks.

@AllowedAlgorithms({"SHA−(256|512)"}) String algo;

algo = "SHA−256"; // correct

In contrast, the following assignment check fails because type qualifier @StringVal({"SHA−384"})
is not a subtype of @AllowedAlgorithms({"SHA−(256|512)"}):
@AllowedAlgorithms({"SHA−(256|512)"}) String algo;

algo = "SHA−384"; // error

Pseudo-assignments have many forms, such as passing an argument to a method invocation.
The type system checks whether the passed argument’s type is a subtype of the parameter’s
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type. For example, for Cipher.getInstance("algorithm", "provider"), it ensures the passed
algorithm and provider argument types are subtypes of the specifications from the parameter
types.

In the following code, we annotate the parameter of the method KeyGenerator.get-

Instance(String a) with @AllowedAlgorithms to specify that only HmacSHA256 and HmacSHA512

are accepted by the method. The passed arguments, String literals "HmacSHA256" and
"HmacSHA1", have type @StringVal({"HmacSHA256"}) and @StringVal({"HmacSHA1"}), respec-
tively. The former type matches the regular expression, while the latter one does not. Thus,
@StringVal({"HmacSHA1"}) is not a subtype of @AllowedAlgorithms({"HmacSHA(256|512)"}),
and the type system reports an error.

class KeyGenerator {

static KeyGenerator getInstance(

@AllowedAlgorithms({"HmacSHA(256|512)"}) String a);

}

KeyGenerator.getInstance("HmacSHA256"); // correct

KeyGenerator.getInstance("HmacSHA1"); // error

This extended subtype checking applies everywhere the programming language performs
subtype checks, e.g., to validate that a type argument is a subtype of a type parameter
bound. We forego a soundness proof for this type system and instead rely on a standard
type lattice and extended subtyping checks, which has been successfully used for other
systems [17].

3.2 Crypto Checker

We present the Crypto Checker, a pluggable type system for Java, which implements the
type system described in Section 3.1 and enforces the correct usage of algorithms and
providers at compile time. In this section, we discuss the Crypto Checker’s implementation
and features in detail.

3.2.1 Implementation

The Crypto Checker is built using the Checker Framework [17], which helps developers
create pluggable type checkers. The Crypto Checker is written with only 376 non-blank,
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Figure 3.3: Workflow of the Crypto Checker.
Workflow of the Crypto Checker based on Checker Framework pluggable type checking.

non-comment lines of Java code. Like other checkers based on the Checker Framework,
the Crypto Checker performs modular type checking and flow-sensitive type refinement.
Modular type checking analyzes each method and class independently, which makes it fast
and light-weight. Flow-sensitive type refinement uses the control flow of the program to
refine type information. The Crypto Checker is pluggable, it can be used together with
other type checkers to enforce multiple properties, e.g., with the Checker Framework’s
built-in Nullness and Tainting Checkers. Moreover, specifications for binary-only code can
be provided through stub files (minimal Java source files that contain the annotations for
external APIs). Figure 3.3 illustrates the basic workflow of the Crypto Checker based on
the Checker Framework:

• The Java source code for a project is the input.

• The Java compiler compiles the source code and performs its standard syntactic and
semantic checks. The resulting attributed abstract syntax tree (AST) is the input to
the Checker Framework.

• In the next step, specifications of cryptographic rules are read from stub files and
incorporated into the AST.

• The Crypto Checker performs flow-sensitive type refinement (also called local type
inference) on the annotated AST to enhance available type information. The
Crypto Checker infers all compile-time constant values, e.g., the expression "Hmac"
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+ (high_security() ? "MD5" : "SHA512") will result in type @StringVal({"HmacMD5",

"HmacSHA512"}).

• To handle reading cryptographic parameters from property files, the Crypto Checker
also refines types by reading property files at compile time (Section 4.1).

• Finally, the Crypto Checker traverses the annotated AST and applies the type rules,
i.e., the subtyping rules from Section 3.1. If any forbidden algorithms or providers
are found, the Crypto Checker will report them to the user. Otherwise, it gives a
guarantee that no invalid algorithms or providers will be used at run time.

The Crytpo Checker integrates into the normal Java build process and produces error
messages in the standard Java format.

3.2.2 Flexibility of Defining Cryptographic Rules

Several tools exist to detect Java cryptographic API misuses, e.g., Coverity [15], Eclipse
CogniCrypt [31], and CryptoGuard [39]. But many of these tools use hard-coded crypto-
graphic rules, thus forcing users to follow only these rules. However, organizations have
preferences about particular cryptographic API usage; for instance, they intend to use
one or more specific algorithms or providers, or they have different security rules than
others. In such cases, the hard-coded security rules make these tools useless. For the tools
that support writing custom rules, the learning curve is always steep: users are always
requested to write a checker or detector or learn a specific template model [22,32,40], which
is time-consuming.

With the Crypto Checker, users can write their custom rules by adding annotations to
the method signatures in stub files and supply the stub files while running the checker so that
the checker can read and apply the rules. Annotations make adding rules user-friendly. An
example of a stub file which restricts to use RSA and EC as the algorithm and AndroidKeyStore

as the provider for java.security.KeyPairGenerator#getInstance(String algorithm, String

provider) is as follow:

# example.astub

package java.security;

class KeyPairGenerator {

static KeyPairGenerator getInstance(

@AllowedAlgorithms({"RSA", "EC"}) String a0,
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@AllowedProviders({"AndroidKeyStore"}) String a1);

}

Accepting the user-defined stub files that indicate the allowable algorithms and providers,
the Crypto Checker extensively enhances the flexibility and convenience of choosing users’
preferable security rules.

3.2.3 Enforced Cryptographic Rules

The Crypto Checker implements several default security rules extracted from security and
static analysis papers [2, 9, 19, 37] and the cryptographic API documentation [4, 5, 27, 35] to
meet the developers’ requirements. These rules are normally considered safe and reasonable.
Stub files contain the annotated code that indicates the allowed algorithms and providers.
Developers can supply different stub files to the Crypto Checker to apply different rules:

• cipher.astub stores the security rules of javax.crypto.Cipher.

• messagedigest.astub stores the security rules of java.security.MessageDigest.

• hardwarebacked.astub stores the security rules of the Android Hardware-backed Key-
store.

• strongboxbacked.astub stores the security rules of the Android Strongbox-backed
Keystore.

Most developers only use cryptographic APIs and they can use the provided stub files
to follow best practices. Organizations may want to create their own stub files or annotate
their own cryptographic APIs with specifications. All the stub files are available with the
Crypto Checker on GitHub: https://github.com/vehiloco/crypto-checker#stub-files.
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Chapter 4

Type System Extensions

In this chapter, the thesis presents two type system extensions, for the Crypto Checker and
other type systems.

4.1 Property File Handler

Cryptographic parameters such as algorithms and providers are commonly stored in property
files. This makes enforcing a common standard easy and allows flexible reconfiguration.
We found this pattern in many Java projects, e.g., Eclipse’s jgit [3] and Apache’s commons-
cipher [6]. We added special handling for this pattern in order to avoid false positive
warnings caused by conservative over-approximation of the values returned by property
files. A simple example is:

String CIPHER_ALGORITHM = "cipher.algorithm";

Cipher cipher = Cipher.getInstance(prop.getProperty(CIPHER_ALGORITHM));

As the Crypto Checker is conservative, it would warn about the use of the value read from
the property as cryptographic algorithm. In the above example, prop is an instance of the
Properties class which contains a set of properties. prop.getProperty(String key) searches
the provided key in the property set and returns the corresponding value if this specific key
exists. Otherwise, null will be returned. There is another method prop.getProperty(String

key, String defaultValue) which will return the default value if the key does not exist.

A Properties instance is usually loaded from a property file. The following code
demonstrates the typical loading process from the property file config.properties:
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Properties prop = new Properties();

InputStream inputStream = getClass().getClassLoader().getResourceAsStream("config.

properties");

prop.load(inputStream);

This kind of design establishes a barrier for static analysis tools which need to extract the
corresponding algorithm from property files. To the best of our knowledge, there is no
security tool that can detect security flaws by looking through cryptographic parameters in
property files. SonarSource [40], a code analyzer for Java projects, has a test suite with
Properties. However, SonarSource only checks the default value, not the value from a
configuration file:

void usingJavaUtilProperties(Properties props) {

Cipher.getInstance(props.getProperty("myAlgo", "DES/ECB/PKCS5Padding"));

}

The above code is compliant when the corresponding value of the key myAlgo in props is a safe
cipher algorithm. If myAlgo does not exist, then the weak algorithm DES/ECB/PKCS5Padding

will be used, which is unsafe and should be reported to the developers. SonarSource and
other security tools do not analyse the properties file and only check the default value. If
the default value conforms to the security rules, then it will pass the static analysis checking
while the value in the properties file is ignored by the security tools. This can lead to
false positives or, even worse, false negatives: the algorithm in the property is unsafe while
the default algorithm is safe, i.e., the unsafe algorithm will be used at run time, but the
program can pass the checking because only the default value, which is a safe algorithm, is
checked.

Considering this dilemma, we designed the Property File Handler that performs
type refinement for Properties types. The Property File Handler reads the property
file, if the file can be determined at compile time, and then refines the return type of
prop.getProperty(String key) and prop.getProperty(String key, String defaultValue) to
use a @StringVal with the value from the property file. The Property File Handler is a type
system extension, which can collaborate with any other type system. In this chapter, we
used the Crypto Checker as an example. Note that the compile time property files must
match run time property files, otherwise the Property File Handler may not works properly
as expected.
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@Unknown

@PF("b.properties")@PF("a.properties") @PF("...")

@Bottom

Figure 4.1: The qualifier hierarchy of the Property File Handler’s type system.

4.1.1 Type System

In this section, we present the type qualifiers, the type hierarchy, and the type refinement
rules of the Property File Handler.

A simple type hierarchy with three type qualifiers is needed for the Property File
Handler:

• @Unknown is the top qualifier in the type hierarchy. This is also the default qualifier in
the hierarchy.

• @PropertyFile indicates the information of a property file. If an object has type
@PropertyFile("a.property"), then this object has type java.io.InputStream or java-

.util.Properties which loads the property file: a.property.

• @Bottom is the bottom qualifier in the type hierarchy in order to make the lattice
complete. Developers usually do not need to work with this qualifier.

Figure 4.1 shows the qualifier hierarchy of the Property File Handler’s type system.

We use the following property file and the code snippet as an example to illustrate the
type refinement rules:

# a.properties

cipher=DES

# PropertyFileRead.java

Properties prop = new Properties();

InputStream inputStream = getClass().getClassLoader().getResourceAsStream("a.

properties");

prop.load(inputStream);

Cipher.getInstance(prop.getProperty("cipher"));
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• From the getResourceAsStream() call, the Property File Handler propagates the prop-
erty file’s information to the return type of the method invocation. Thus, inputStream
will have type @PropertyFile("a.properties").

• When loading properties from the input stream, the Property File Handler keeps
propagating the @PropertyFile("a.properties") type to the receiver, i.e., the object
prop itself.

• Finally, when prop.getProperty() is called, the Property File Handler will try to read
from the properties file as well to identify the property value. Then, the property value
will be added to the @StringVal annotation for the return type of prop.getProperty().

For the example above, the Crypto Checker (with the Property File Handler enabled)
views the code Cipher.getInstance(prop.getProperty("cipher")); as equal to:

@StringVal({"DES"}) String cipher = prop.getProperty("cipher");

Cipher.getInstance(cipher);

Moreover, if a default value is provided when reading a property, the Property File Handler
will also add the default value to the @StringVal annotation. This will propagate both the
default value and the value determined from the file to the cryptographic APIs, ensuring
that both values are secure. Let’s add "AES" as default value to the example. It is now
equal to:

@StringVal({"DES", "AES"}) String cipher = prop.getProperty("cipher", "AES");

Cipher.getInstance(cipher);

When the key does not exist in the property file, only the default value will be added as
@StringVal annotation type element. A "key-not-found" warning will also be reported from
the Property File Handler to help users correct their configuration files.

4.1.2 Implementation

The Property File Handler is built on the Checker Framework with 583 newly-added
lines of Java code. The source code is published on Github: https://github.com/opprop/
checker-framework/pull/120.

To enable the Property File Handler with your checker, command-line option handle-

PropertyFiles should be passed to the Checker Framework:
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javacheck −processor org.checkerframework.checker.crypto.CryptoChecker −Astubs=

cipher.astub −AhandlePropertyFile A.java

The Property File Handler is designed to be conservative to keep the Crypto Checker and
other type systems sound: if the checker can not open and read a property file successfully,
for whatever reason, it will treat the result of props.getProperty() as an unknown String
value. Thus, the Crypto Checker will issue an error if that unknown String value is used in
a cryptographic API.

4.2 Network Request Checker

Previous work has shown that there are a large number of applications requiring information
access for which they do not necessarily need. This increases the risk of information leakage.
A key step to leak information is sending network requests, e.g., HTTP and socket requests
without the user’s consent. Thus, we want to create a security tool that can detect possible
network requests on the source code level at compile time. This tool should support the
popular third-party network request libraries and have the flexibility to add more libraries
in the future by users. It also should be able to integrate with the build system and CI
tools easily so that developers can use it without further study.

In this Chapter, we present the Network Request Checker, a simple type system extension
that finds all the possible network request APIs usage when building the applications. The
underlying principle is monitoring all the method invocations and constructor invocations
in the program. It is implemented as a type system extension so that it can work with
any arbitrary type system. It can also be seen as a stand-alone type system depending
on developers’ needs. The source code of the Network Request Checker is published on
Github: https://github.com/vehiloco/network-request-checker.

4.2.1 Type System

Unlike the Crypto Checker we present in Section 3.2, the Network Request Checker uses a
declaration annotation as its core annotation. A type annotation can be written on any use
of a type, while a declaration annotation can be written on any class or method declaration.
Normally, the users of the Network Request Checker do not need to write annotations in
the source code manually. When developers want to use the Network Request Checker
as a stand-alone type system, to make the type hierarchy complete, the Network Request
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Checker provides a dummy annotation which has no practical effects. Overall, the Network
Request Checker has two annotations: @NetworkRequest and @NetworkRequestDummy:

• @NetworkRequest(String[] value) is a declaration annotation. When it is found in the
source code, the type system should report it to users as a possible network request.
To get and report all the interesting information of the network request, the String[]

value type element is used to indicate the kind of the information the type system will
get. For instance, for Java network API URL(String protocol, String host, int port,

String file), we need to annotate it with annotation @NetworkRequest("PROTOCOL",

"HOST", "PORT", "FILE") in the stub file, so that the Network Request Checker knows
what each parameter means in the URL API. Then the type system can combine and
report all the information properly.

• @NetworkRequestDummy is a dummy type qualifier, there is no specific type rules applying
to it.

4.2.2 Implementation

The Network Request Checker is built on the Checker Framework with 254 non-blank,
non-comment lines of Java code. It is implemented as a type system extension for Java.
Like the Crypto Checker, the Network Request Checker performs modular type checking.
The Network Request Checker can also leverage the Property File Handler to perform
flow-sensitive type refinement.

The Network Request Checker currently supports popular third-party network request
libraries via stub files:

• httpclient4.astub supports HttpGet in Apache HttpClient library.

• springframework.astub supports RestTemplate in Java Spring Framework.

It also allows developers to add other third-party libraries by putting the library method
signatures into the new stub files. In Chapter 5.2, we discuss the case studies with the
Network Request Checker using the above stub files.
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Chapter 5

Experiments

In this chapter, we discuss the case studies with the Crypto Checker and the Network
Request Checker. We did not perform case studies with the stand-alone Property File
Handler. The Property File Handler is used by the Crypto Checker and the Network
Request Checker in their case studies to improve precision.

5.1 Case Studies with the Crypto Checker

To evaluate the Crypto Checker’s capability of detecting misuses of cryptographic algorithms
and providers in Java applications, we ran the checker on 32 open-source projects consisting
of 18 standard Java applications and 14 Android applications. These projects are found
from GitHub based on their popularity and relevance to cryptography. The 18 standard
Java applications use either or both of the Cipher and MessageDigest APIs; the 14 Android
applications use either or both of the KeyGenerator or KeyPairGenerator APIs. In total, the
Crypto Checker found security issues in 15 out of the 18 standard Java applications and 5
out of the 14 Android Applications. We also used 65 test cases from the CRYPTOAPI-
BENCH [2] to evaluate the Crypto Checker’s performance. After type checking, we examined
each error reported by the checker and added annotations where necessary to ensure the
correct usages of cryptographic primitives.

We ran the Property File Handler with the Crypto Checker to improve performance.
For each standard Java project, we supplied two stub files (cipher.astub and message-

digest.astub). The results indicate insecure uses of Cipher and MessageDigest (see Sec-
tion 5.1.1). For each Android project, we supplied the hardwarebacked stub file, and the
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results indicate unsupported uses of KeyGenerator or KeyPairGenerator by the Android
Hardware-backed Keystore (see Section 5.1.2). Section 5.1.3 discusses the Crypto Checker’s
performance with CRYPTOAPI-BENCH.

Choosing cryptographic algorithms and providers depends on many factors, e.g., the
runtime environment, the hardware resources, and the communication protocols. Sometimes
unsafe algorithms or providers are used intentionally and the errors reported by the Crypto
Checker could be considered false positives. We view such reports as useful and valuable for
improving the security of applications. Firstly, by reporting all the potential insecure uses,
developers can double-check whether unsafe algorithms or providers are used deliberately
or are actually misused. When developers think it is acceptable to continue using these
algorithms or providers, they can suppress the corresponding errors. Secondly, it is good to
add documentation to the purposely insecure uses to make the project more maintainable.
Whenever a developer suppresses an error, they should document the reason for using an
insecure algorithm to allow auditing the application and reasoning about possible security
issues. Overall, as any sound static analysis, the Crypto Checker may introduce false
positives, but it is still helpful to handle these errors. In our evaluation, we have not
encountered false positives that are caused by a weakness of our static analysis.

5.1.1 Insecure Uses of Cryptographic APIs

The Crypto Checker issued 64 errors in 15 of the 18 analyzed standard Java applications
and found no issues in the remaining 3 applications. Only 9 annotations were manually
added to 3 of the 15 applications, to precisely specify the expected behavior. These errors
include two bugs from Eclipse Californium where invalid arguments were passed as the
cipher transformations, which can cause NoSuchAlgorithmException. The other 62 errors
are all defects that could cause cryptographic vulnerabilities, and they can be further
categorized into two types: 54 insecure cryptographic algorithms (see Section 5.1.1.1) and 8
unsafe public methods (see Section 5.1.1.2). Besides the 62 defects, no false positives are
found by the Crypto Checker. The evaluation results of the 15 projects are listed in Table
5.1. The repository URLs of these 18 projects and the annotated versions of 3 projects are
listed in Table 5.2.

5.1.1.1 Insecure Cryptography

Overall, the Crypto Checker found 54 insecure cryptographic algorithms in these 15
applications, which we classified into four categories:
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Java Applications NCNB
LOC

Manual
Annotations

Total
Defects C1 C2 C3 C4

Unsafe
Public
Methods

Apache Druid 639k 0 3 0 0 0 1 2
Apache Kylin 201k 0 4 2 0 0 2 0
Apache Dubbo 168k 0 2 0 0 0 2 0
redisson 149k 0 3 0 0 0 3 0
Eclipse Californium 87k 6 10 1 4 0 2 3
rapidoid 66k 2 4 0 0 0 2 2
NettyGameServer 34k 0 5 0 2 2 3 0
async-http-client 33k 0 9 4 0 5 4 0
whatsmars 28k 0 5 4 0 2 1 0
ha-bridge 18k 0 2 0 0 2 2 0
mongodb-rdbms-sync 15k 0 2 0 2 0 0 0
java-telegram-bot-api 11k 0 1 0 0 0 1 0
smart 5k 0 1 0 0 0 1 0
Eclipse Lyo Server 3k 0 2 0 2 0 0 0
aes-rsa-java 1k 1 9 0 0 0 8 1
Totals 1458k 9 62 11 10 11 32 8

Table 5.1: Case study statistics for standard Java applications. NCNB LOC stands for
non-comment, non-blank lines of code. Manual Annotations is the number of annotations
we added to each application. Columns C1 (Insecure ECB), C2 (Cipher Without Mode or
Padding), C3 (Insecure Cipher), and C4 (Insecure Hash Function) are the four categories
of insecure cryptography (Section 5.1.1.1). Unsafe Public Methods is the number of public
methods that use cryptographic APIs (Section 5.1.1.2). C1 + C2 + C3 + C4 may not be
equal to Total Defects, since some code violates multiple rules simultaneously.
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Java Applications Repository URL
Apache Druid https://github.com/apache/druid.git
Apache Kylin https://github.com/apache/kylin.git
Apache Dubbo https://github.com/apache/dubbo.git
redisson https://github.com/redisson/redisson.git

Eclipse Californium https://github.com/eclipse/californium.git
https://github.com/xwt-benchmarks/californium.git

rapidoid https://github.com/rapidoid/rapidoid.git
https://github.com/xwt-benchmarks/rapidoid.git

NettyGameServer https://github.com/jwpttcg66/NettyGameServer.git
async-http-client https://github.com/AsyncHttpClient/async-http-client.git
whatsmars https://github.com/javahongxi/whatsmars.git
ha-bridge https://github.com/bwssytems/ha-bridge.git
mongodb-rdbms-sync https://github.com/gagoyal01/mongodb-rdbms-sync.git
java-telegram-bot-api https://github.com/pengrad/java-telegram-bot-api.git
smart https://github.com/a466350665/smart.git
Eclipse Lyo Server https://github.com/eclipse/lyo.server.git

aes-rsa-java https://github.com/wustrive2008/aes-rsa-java.git
https://github.com/xwt-benchmarks/aes-rsa-java.git

Elephent https://github.com/jusu/Elephant.git
jpass https://github.com/gaborbata/jpass.git
flutter_secure_storage https://github.com/mogol/flutter_secure_storage.git

Table 5.2: Repository URLs of Java applications listed in Table 5.1.
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Android Applications Repository URL
CacheManage https://github.com/ronghao/CacheManage.git
fingerlock https://github.com/aitorvs/fingerlock.git
wigle-wifi-wardriving https://github.com/wiglenet/wigle-wifi-wardriving.git
FingerprintRecognition https://github.com/PopFisher/FingerprintRecognition.git
LolliPin https://github.com/omadahealth/LolliPin.git
PFLockScreen-Android https://github.com/thealeksandr/PFLockScreen-Android.git
secure-quick-reliable-login https://github.com/kalaspuffar/secure-quick-reliable-login.git
lock-screen https://github.com/amirarcane/lock-screen.git
BiometricPromptDemo https://github.com/gaoyangcr7/BiometricPromptDemo.git
Fingerprint https://github.com/OmarAflak/Fingerprint.git
connectbot https://github.com/connectbot/connectbot.git
revolution-irc https://github.com/MCMrARM/revolution-irc.git
Secured-Preference-Store https://github.com/iamMehedi/Secured-Preference-Store.git
jpico https://github.com/mypico/jpico

Table 5.3: Repository URLs of Android applications.

• Category 1: 11 uses of insecure mode (ECB) for encryption;

• Category 2: 10 uses of cipher transformations without providing cipher mode or
padding schema;

• Category 3: 11 uses of insecure ciphers; and

• Category 4: 32 uses of insecure hash functions.

The sum of the misuses in the list above is 64 rather than 54 since some cipher
transformations break multiple rules, such as DES/ECB/PKCS5Padding insecurely applies
ECB and and insecure cipher. We only count each of these misuses as one defect.

In Section 3.2.3, we presented the references used for the definition of the Crypto Checker
rules in stub files. We use these same references to establish the four categories of violations.

The results for each app in each of the four categories are summarized in Table 5.1, and
we discussion each category with examples next.
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Category 1 Electronic Codebook (ECB) mode encrypts the same plaintext blocks to
identical ciphertext blocks, which makes it possible to leak information. Hence, it should
not be used as the mode of operation to encrypt data. Here is an example from class
EncryptUtil in Apache Kylin that uses insecure ECB mode:

// insecure ECB mode

Cipher.getInstance("AES/ECB/PKCS5Padding");

However, RSA/ECB/OAEPPADDING is secure to use since ECB processes on blocks while
RSA does not break the message into blocks, which indicates that RSA does not really apply
the ECB mode [27,45]. Hence, the Crypto Checker treats RSA/ECB/OAEPPADDING as
a safe transformation.

Category 2 When generating a cipher instance, introducing the cipher algorithm without
the mode of operation or the padding schema is not encouraged. The reason is that a default
mode of operation and padding schema will be used at run time, which could result in a false
sense of security. The following example is extracted from class FileSystemConsumerStore in
Eclipse’s lyo.server. The standalone cipher algorithm, AES, defaults to insecure ECB mode
that triggers a misuse of the mode of operations:

// defaults to AES/ECB/..., which is insecure

Cipher.getInstance("AES");

However, there is an exception for RSA. It is allowed to only specify RSA in a cipher
transformation, without providing the mode of operation and padding schema. RSA defaults
to RSA/ECB/PKCS1Padding [42], which is secure. Therefore Cipher.getInstance("RSA")

is secure, which is used frequently in real-world applications.

Category 3 The insecure ciphers should be forbidden when creating cipher objects since
insecure ciphers such as DES, Blowfish, and RC4 could make brute-force attacks possible.
The following example from class DESUtils in whatsmars uses one of the insecure ciphers,
DES:

private static final String PADDING = "DES/ECB/PKCS5Padding";

...

// use of insecure cipher algorithm

Cipher cipher = Cipher.getInstance(PADDING);
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Category 4 An insecure hash function such as SHA1, MD4, and MD5 could cause
collisions, which take different input but generate the same output. Hence, we only
permit using strong hash functions to produce hash values or message digests. The cipher
transformation could also apply an insecure hash function, such as PBEWithMD5AndDES,
which uses insecure hash function and insecure cipher simultaneously.

Here is an example, from class MessageDigestUtils in async-http-client, that uses insecure
hash function, SHA-1:

try {

return MessageDigest.getInstance("SHA−1");
} catch (NoSuchAlgorithmException e) {

throw new InternalError("SHA1 not supported on this platform");

}

For project smart, one developer opened an issue [25] to point out that one insecure hash
function, MD5, is used in this project. The Crypto Checker reports that MD5 is indeed used
by the project and that such a use is insecure. For another project flutter_secure_storage
(one of the three projects that have no cryptographic misuses, which is listed in Table
5.2), developers have opened an issue [26] to question whether the cipher transformation,
RSA/ECB/PKCS1Padding, is weak or not. They argued about this issue and did not reach
an agreement. Checking the whole project, the Crypto Checker reports that, according to
our defined rules, RSA/ECB/PKCS1Padding is secure.

5.1.1.2 Exposure of Cryptographic APIs through Public Methods

Sometimes cryptographic APIs are exposed by an application’s public methods. These
methods take the cryptographic algorithm as a parameter and are accessible to outside callers.
In this situation, insecure algorithms might be used and make the program vulnerable to
malicious attacks.

The Crypto Checker reported 8 occurrences of this vulnerability. Here we demonstrate
one example from class Crypto in the project rapidoid:

public static Cipher cipher(String transformation) {

try {

return Cipher.getInstance(transformation);

} catch (NoSuchAlgorithmException e) {

...

}
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}

In this case, calling Cipher.getInstance(transformation) could raise security issues, since
there is no guarantee for the correct use of cryptographic algorithms. There are two
possible solutions to this problem, depending on whether callers should be trusted or
not. The Crypto Checker performs modular type checking, which allows developers to
write specifications by adding annotations. If callers of the method can be trusted, for
example, because they also use the Crypto Checker, developers can add @AllowedAlgorithms

to the transformation parameter. This will ensure that the transformation parameter must
take an allowed algorithm. For example, if only AES/GCM/PKCS5Padding should be allowed,
the parameter can be annotated as @AllowedAlgorithm({"AES/GCM/PKCS5Padding"}) String

transformation.

If the public method can also be invoked by untrusted third parties, the method should
perform a runtime check on the parameter to ensure a valid cryptographic algorithm is
selected. Annotating the parameter specifies the allowed algorithms for trusted users and
allows the Crypto Checker to ensure valid usage from trusted code. Runtime checks are
needed only in places where untrusted external invocations are possible. When annotating
code, the developer can decide what the right solution is for each situation.

5.1.2 Android Keystore Case Study

In Android, key material can be exposed unintentionally, which may cause information
leakage. To make it difficult to extract sensitive data from an Android device, Google
introduced the Android Keystore System in Android 4.3. Keystore is used to keep key
material in secure hardware, such as a Trusted Execution Environment (TEE) [5, 14]. This
mechanism takes effect only if the following two conditions are satisfied: 1) AndroidKeyStore
is used as the cryptographic service provider, and 2) the device’s secure hardware supports
the particular combination of transformations with which the key is authorized to be
used [5].

However, developers might not use AndroidKeystore as the provider even though their
applications require the high security and reliability. If they do not specify the provider, it
is not guaranteed that AndroidKeyStore will be chosen as the provider; therefore, the key
material may be unsafe. In another case, developers possibly use the legacy or general
key algorithms that are not supported by the AndroidKeyStore provider. For example,
HmacMD5 is not supported by AndroidKeyStore but can be used with other providers.

Aiming to handle the cases mentioned above, we supplied the Crypto Checker with
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hardwarebacked.astub to find three underlying vulnerabilities: 1) KeyGenerator.getInst-

ance(algorithm) where the provider is not specified, 2) KeyGenerator.getInstance(algorithm,
provider) where the provider is not stated as AndroidKeyStore, and 3) KeyGenerator.get-

Instance(algorithm, "AndroidKeyStore") where the algorithm is not supported by Android-

KeyStore.

We used the Crypto Checker to test 14 security-sensitive Android applications listed
in Table 5.3 without having to add any annotations. The Crypto Checker found that 4
out of the 14 projects were not using AndroidKeyStore as the provider when generating
keys, which corresponds to vulnerability 1). We further manually checked the source code
of these 4 projects and observed that for two of them, AndroidKeyStore was never used
across the whole program. In the remaining two projects, AndroidKeyStore was not used
consistently: some of the cryptographic API uses designate AndroidKeyStore as the provider
while some do not. In this case, the key material may not always be stored in the Android
Hardware-backed Keystore. Both of the situations that miss the AndroidKeyStore could
contribute to an insecure environment, which can lead to unauthorized uses of key material.
For vulnerability 2), one project was found using a provider other than AndroidKeyStore to
generate keys. For vulnerability 3), we did not find any violation among these 14 projects,
which indicates that all the algorithms were used correctly.

The Crypto Checker can give a guarantee of correct usage only for checked source code.
It gives no guarantees for sources it did not check, for example, third-party libraries. It also
cannot control the environment in which the application is deployed. Users must make sure
that their phone hardware and operating system support the Android Hardware-backed
Keystore. Consequently, the Crypto Checker forces developers to take account of the
Android Keystore system to use cryptography in Android applications correctly.

5.1.3 CRYPTOAPI-BENCH Case Study

The benchmark CRYPTOAPI-BENCH [2] consists of 171 test cases to evaluate the quality
of cryptographic vulnerability detection tools. 65 out of the 171 test cases in the benchmark
are about misuses of cipher and hash functions. We used these test cases as unit tests1 to
test the Crypto Checker’s performance. The Crypto Checker found all the errors that are
expected by the benchmark, and nine additional errors that we believe are noteworthy.

The benchmark covers field- and path-sensitive cases. As the Crypto Checker is a type
system that performs modular type checking, we expect developers to add annotations

1https://github.com/vehiloco/crypto-checker/tree/master/tests/cryptoapibench
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to indicate the specifications. With the 79 added annotations, the Crypto Checker can
handle the field-sensitive cases. For path-sensitive cases, the Crypto Checker issues nine
cryptographic misuses. One example is shown below:

method2(2); // 2 is passed as the value of choice

public void method2(int choice) {

Cipher cipher = Cipher.getInstance(insecureCipherAlgorithm);

if (choice > 1) {

cipher = Cipher.getInstance(secureCipherAlgorithm);

}

}

The benchmark supposes that the above code is safe because the only observed call of
the method uses a value that applies the secure cipher algorithm. This test case aims to
evaluate whether a static analysis tool can properly perform whole-program value analysis
and path-sensitive refinement. In contrast, we believe that this method is unsafe and
should not be trusted. Developers could pass values <= 1 to method2, which triggers the
creation of an insecure cipher instance. Also, specifying the insecure cipher algorithm in
the conditional branch is a code smell. Hence, we do not consider these 9 errors to be
false positives. Moreover, it is rare for real-world applications to apply a secure or insecure
cryptographic algorithm depending on the value of a parameter. This pattern did not come
up in the 32 real-world applications.

5.2 Case Studies with the Network Request Checker

For the Network Request Checker, we performed a simple case study with 6 real-world Java
and Android applications to illustrate the functionality of the Network Request Checker.
In total, the Network Request Checker found 17 potential network requests in 5 out of
6 Java and Android applications. For each of the applications, we provided three stub
files: jdk8.astub for Java native Network Request APIs, httpclient4.astub for Apache
HTTPClient Network Request APIs, and springframework.astub for Spring Framework
Network Request APIs. The experimental result is shown in Table 5.4. After manual
inspection, we confirm that the Network Request Checker finds all the target APIs’ usage.
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Applications NCNB
LOC

Manual
Annotations

Total
Network Requests C1 C2 C3

MITREid Connect 45k 0 2 0 1 1
PFLockScreen-Android 38k 0 0 0 0 0
wigle-wifi-wardriving 35k 0 2 2 0 0
termux-api 6k 0 1 1 0 0
elasticsearch-analysis-ik 4k 0 1 0 1 0
Eclipse Lyo Server 3k 0 11 11 0 0
Totals 131k 0 17 14 2 1

Table 5.4: Case study statistics for Java and Android applications. NCNB LOC stands for
non-comment, non-blank lines of code. Manual Annotations is the number of annotations we
added to each application. Columns C1 (Java native Network Request APIs), C2 (Apache
HTTPClient Network Request APIs), C3 (Spring Framework Network Request APIs) are
the three categories of network request APIs.
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Chapter 6

Related Work

There is a large body of work on static analyses for many different domains. In the following
we can only review the most directly related work. We discuss work that focuses on
detecting misuses of cryptographic APIs and compare them to the Crypto Checker. Since
our approach focuses on forbidden algorithms and providers, this will be our main focus. As
the Network Request Checker is a type system extension, we will not discuss the Network
Request Checker’s related work in this chapter. However, the Property File Handler’s
related work is discussed because the Crypto Checker leverages the Property File Handler
to enhance Java Properties types.

6.1 Algorithm Checking

The AWS Crypto Policy Compliance Checker (AWS Checker for short) is a type checker
built on the Checker Framework [17], which checks if there are any usages of weak cipher
algorithms in Java applications. Part of our work, weak algorithms detection, is based on the
idea of this checker. The AWS Checker has two main type qualifiers, @CryptoBlackListed and
@CryptoWhiteListed, to indicate the algorithms that are forbidden or allowed. It additionally
has the @SuppressCryptoWarning annotation, which is used to suppress errors from non-
whitelisted algorithms. This annotation can be used to document policy exceptions. For
whitelisted algorithms, AWS Checker offers an option to issue warnings for algorithms that
should not be used. For algorithm checking, compared to the AWS Checker, the Crypto
Checker supports checking Android applications and also supplies a more comprehensive
set of security rules to developers.
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CRYPTOGUARD [39] uses on-demand slicing algorithms to detect cryptographic
vulnerabilities. It can handle path and field-sensitive cases. CRYPTOGUARD additionally
covers a large number of vulnerabilities, such as Rule 3 (Hardcoded Store Password),
Rule 6 (Used Improper Socket), and Rule 7 (Used HTTP). For weak algorithm uses,
it has the following related rules: Rule 14 (Symmetric Ciphers) and Rule 16 (Insecure
Cryptographic Hash). CRYPTOAPI-BENCH, which we used as a case study in Section
5.1.3, also had an evaluation on CRYPTOGUARD. CRYPTOGUARD produced 10 false
positives on the 65 test cases. By manually adding annotations to some of the test cases,
the Crypto Checker achieved zero false positives. However, adding annotations may become
a burden to programmers as 79 annotations were added to these test cases. Compared
with CRYPTOGUARD’s slicing algorithm, the Crypto Checker’s modular type checking
analyzes less information, which makes it more efficient but imprecise. Besides, modular
type checking is more conservative: it does not believe the outside world of the method or
class which is currently being checked, which may find more potential vulnerabilities, such
as exposures of public methods (Section 5.1.1.2).

Error Prone [22] is a famous open-source static analysis tool for Java. For cryptographic
algorithm misuses, it has one bug pattern called InsecureCryptoUsage which includes three
particular security rules: 1) Cipher instance should not be created with the insecure ECB
mode, 2) Diffie-Hellman protocol is insecure and Elliptic Curves Diffie-Hellman (ECDH)
should be used instead, and 3) do not use DSA for digital signatures.

Compared with Error Prone and CRYPTOGUARD, the Crypto Checker gives developers
the freedom to set their permitted algorithms and providers’ rules easily: users of Error
Prone have to learn how to write a new checker to enforce new rules, and CRYPTOGUARD
has its rules hard-coded in the source code. Moreover, the Crypto Checker supplies
developers with a type system, which can improve the code style, program understanding,
and documentation.

There are also some other static analysis tools supporting cryptographic algorithm
checking, such as Coverity [15], SonarSource [40], SpotBugs [41], and LGTM [33]. Sonar-
Source and SpotBugs are open-sourced, while Coverity and LGTM are not. SonarSource,
SpotBugs, and LGTM support writing custom rules, but that requires learning internal
APIs.

6.2 Provider Checking

We are not aware of any other tools that support provider checking. Correspondingly, there
are no such tools supplying security rules for the AndroidKeyStore provider.
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6.3 Java Properties Handling

Compared with all the above tools, only the Crypto Checker can perform type refinement
to Java Properties, which reduces both false positives and false negatives, making the
static analysis more comprehensive and expressive. However, developers must ensure that
the compile-time configuration files match the runtime configuration files. Otherwise, the
Property File Handler cannot work as expected.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

One important cause of security vulnerabilities are cryptographic algorithm and provider
misuses. To resolve this, we present a pluggable type system for Java-like programming
languages and implement it for Java. It performs modular type checking to find forbidden
algorithm and provider usages at compile time. To the best of our knowledge, this is the first
open-source tool that checks cryptographic providers, analyses property files, and enforces
security rules for the Android Keystore system. We evaluated the Crypto Checker pluggable
type system on 32 open-source Java applications and found 2 bugs and 62 potential security
vulnerabilities including in well-maintained projects such as Apache Dubbo and Apache
Kylin. More broadly, we demonstrate that pluggable type systems are an excellent option for
source code analysis: sound and robust infrastructure for analysis designers and flexibility
for tool users to use annotations to customize specifications, all while staying within a
standard programming language.

We also present two type system extensions, the Property File Handler and the Network
Request Checker, to enhance the Crypto Checker and other type systems’ performance
and help developers avoid potential information leakage. The Property File Handler tries
to load applications’ property files at compile time and then performs path-sensitive type
refinement to gain more valuable compile-time constant values. The Network Request
Checker uses declaration annotations to check all the usage of network APIs. The Network
Request Checker can also be seen as a stand-alone type system depending on developers’
needs.
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7.2 Future Work

In this thesis, we present our work on Java cryptographic APIs misuse. Clearly, the work
in this domain is not finished yet. The following ideas can be considered as future work:

• Check more cryptographic APIs misuses. Currently, the Crypto Checker focuses on
the weak or unsupported cryptographic algorithms and providers. More different
security rules can be checked in the future, e.g., non-random initialization vector
for CBC encryption, HTTP, constant salts for PBE, constant encryption keys, and
constant seeds for the secure random number generator.

• Infer Crypto Checker annotations automatically. To reduce the developers’ burden of
adding annotation manually, whole-program type inference should be investigated as
solution [18,47].

• Adapt the Network Request Checker to also support allow/deny lists like the Crypto
Checker. The current Network Request Checker reports all the possible network
requests, which will produce a lot of information. Allow/deny lists can help developers
find the potential malicious behaviors faster.

• To handle more complicated cryptographic APIs misuse and indirect information
leakage, object capability can be a comprehensive and general solution: immutability,
readonly, and allowing to copy and pass the reference but not allow to dereference.
This idea can be started based on PICO, the ownership and immutability framework
for typechecking and inference [43].

38



References

[1] Sharmin Afrose, Sazzadur Rahaman, and Danfeng Yao. CryptoAPI-Bench: A Compre-
hensive Benchmark on Java Cryptographic API Misuses. In Cybersecurity Development
(SecDev), pages 49–61. IEEE, 2019.

[2] Sharmin Afrose, Sazzadur Rahaman, and Danfeng Yao. A Comprehensive Benchmark
on Java Cryptographic API Misuses. In Data and Application Security and Privacy,
pages 177–178, 2020.

[3] An implementation of the Git version control system in pure Java. URL: https:
//github.com/eclipse/jgit.

[4] Android Keystore Provider. URL: https://developer.android.com/training/articles/
keystore#SupportedAlgorithms.

[5] Android Keystore System. URL: https://developer.android.com/training/articles/
keystore#HardwareSecurityModule.

[6] Apache Commons Crypto. URL: https://github.com/apache/commons-crypto.

[7] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. d’Amorim, and M. D. Ernst.
Static analysis of implicit control flow: Resolving Java reflection and Android intents.
In Automated Software Engineering (ASE), November 2015.

[8] Gilad Bracha. Pluggable type systems. In OOPSLA Workshop on Revival of Dynamic
Languages, 2004.

[9] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios Karopoulos, and Chris-
tos Xenakis. Evaluation of cryptography usage in Android applications. In Bio-inspired
Information and Communications Technologies (formerly BIONETICS), pages 83–90,
2016.

39

https://github.com/eclipse/jgit
https://github.com/eclipse/jgit
https://developer.android.com/training/articles/keystore#SupportedAlgorithms
https://developer.android.com/training/articles/keystore#SupportedAlgorithms
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://github.com/apache/commons-crypto


[10] C.Z. Chen and W. Dietl. Don’t miss the end: Preventing unsafe end-of-file comparisons.
In NASA Formal Methods, 2018.

[11] Class KeyGenerator. URL: https://docs.oracle.com/javase/8/docs/api/javax/crypto/
KeyGenerator.html.

[12] Constant Value Checker. URL: https://checkerframework.org/manual/
#constant-value-checker.

[13] Constant Value Checker Qualifier Hierarchy. URL: https://checkerframework.org/
manual/#fig-value-hierarchy.

[14] Tim Cooijmans, Joeri de Ruiter, and Erik Poll. Analysis of secure key storage solutions
on android. In Workshop on Security and Privacy in Smartphones & Mobile Devices,
pages 11–20, 2014.

[15] Coverity Static Application Security Testing (SAST). URL: https://www.synopsys.
com/software-integrity/security-testing/static-analysis-sast.html.

[16] CWE-327: Use of a Broken or Risky Cryptographic Algorithm. URL: https://cwe.
mitre.org/data/definitions/327.html.

[17] W. Dietl, S. Dietzel, M. D. Ernst, K. Muslu, and T. W. Schiller. Building and Using
Pluggable Type-Checkers. In Software Engineering in Practice Track, International
Conference on Software Engineering (ICSE), May 2011.

[18] W. Dietl, M. D. Ernst, and P. Müller. Tunable Static Inference for Generic Universe
Types. In European Conference on Object-Oriented Programming (ECOOP), July
2011.

[19] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An
empirical study of cryptographic misuse in Android applications. In Computer and
Communications Security (CCS), pages 73–84, 2013.

[20] ElementType (Java Platform SE 8). URL: https://docs.oracle.com/javase/specs/jls/
se8/html/jls-4.html.

[21] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner, K. Koscher,
P. Barros, R. Bhoraskar, S. Han, P. Vines, and E. X. Wu. Collaborative verification of
information flow for a high-assurance app store. In Computer and Communications
Security (CCS), November 2014.

40

https://docs.oracle.com/javase/8/docs/api/javax/crypto/KeyGenerator.html
https://docs.oracle.com/javase/8/docs/api/javax/crypto/KeyGenerator.html
https://checkerframework.org/manual/#constant-value-checker
https://checkerframework.org/manual/#constant-value-checker
https://checkerframework.org/manual/#fig-value-hierarchy
https://checkerframework.org/manual/#fig-value-hierarchy
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/327.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html


[22] Error Prone Bug Pattern: InsecureCryptoUsage. URL: https://errorprone.info/
bugpattern/InsecureCryptoUsage.

[23] Jeffrey S Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In
Programming Language Design and Implementation (PLDI), pages 1–12, 2002.

[24] David Hook. Beginning cryptography with Java. John Wiley & Sons, 2005.

[25] Issue: Cryptographic API misuse detected. URL: https://github.com/a466350665/
smart/issues/47.

[26] Issue: ECBMode is Insecure. URL: https://github.com/mogol/flutter_secure_storage/
issues/60.

[27] Java Cryptography Architecture (JCA) Reference Guide. URL: https://docs.oracle.
com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html.

[28] Java™ Cryptography Architecture Standard Algorithm Name Documenta-
tion. URL: https://docs.oracle.com/javase/8/docs/technotes/guides/security/
StandardNames.html.

[29] Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D Ernst. Lightweight
verification of array indexing. In International Symposium on Software Testing and
Analysis (ISSTA), pages 3–14, 2018.

[30] Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst. Continuous com-
pliance. In Automated Software Engineering (ASE), Melbourne, Australia, September
2020.

[31] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden,
Florian Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, et al. Cognicrypt:
supporting developers in using cryptography. In Automated Software Engineering
(ASE), pages 931–936. IEEE, 2017.

[32] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. Crysl:
An extensible approach to validating the correct usage of cryptographic APIs. In
European Conference on Object-Oriented Programming (ECOOP). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[33] LGTM: Continuous security analysis. URL: https://lgtm.com/.

41

https://errorprone.info/bugpattern/InsecureCryptoUsage
https://errorprone.info/bugpattern/InsecureCryptoUsage
https://github.com/a466350665/smart/issues/47
https://github.com/a466350665/smart/issues/47
https://github.com/mogol/flutter_secure_storage/issues/60
https://github.com/mogol/flutter_secure_storage/issues/60
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html
https://lgtm.com/


[34] Robin Milner. A theory of type polymorphism in programming. Journal of computer
and system sciences, 17(3):348–375, 1978.

[35] MSC61-J. Do not use insecure or weak cryptographic algorithms. URL:
https://wiki.sei.cmu.edu/confluence/display/java/MSC61-J.+Do+not+use+
insecure+or+weak+cryptographic+algorithms.

[36] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping through hoops:
Why do Java developers struggle with cryptography APIs? In International Conference
on Software Engineering (ICSE), pages 935–946, 2016.

[37] Rumen Paletov, Petar Tsankov, Veselin Raychev, and Martin Vechev. Inferring crypto
API rules from code changes. In Programming Language Design and Implementation
(PLDI), pages 450–464, 2018.

[38] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[39] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,
Murat Kantarcioglu, and Danfeng Yao. Cryptoguard: High precision detection of
cryptographic vulnerabilities in massive-sized Java projects. In Computer and Com-
munications Security (CCS), pages 2455–2472, 2019.

[40] SonarSource builds world-class products for Code Quality & Security. URL: https:
//www.sonarsource.com/.

[41] SpotBugs: Find bugs in Java Programs. URL: https://spotbugs.github.io/.

[42] Stack Overflow: Java - Default RSA padding in SUN JCE/Oracle JCE. URL: https:
//stackoverflow.com/questions/21066902/default-rsa-padding-in-sun-jce-oracle-jce.

[43] Mier Ta. Context sensitive typechecking and inference: Ownership and immutability,
2018. URL: http://hdl.handle.net/10012/13185.

[44] Type Annotations (JSR 308). URL: https://jcp.org/en/jsr/detail?id=308.

[45] John R Vacca. Cyber Security and IT Infrastructure Protection. Syngress, 2013.

[46] A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38 – 94, 1994.

[47] Tongtong Xiang, Jeff Y Luo, and Werner Dietl. Precise inference of expressive
units of measurement types. Proceedings of the ACM on Programming Languages,
4(OOPSLA):1–28, 2020.

42

https://wiki.sei.cmu.edu/confluence/display/java/MSC61-J.+Do+not+use+insecure+or+weak+cryptographic+algorithms
https://wiki.sei.cmu.edu/confluence/display/java/MSC61-J.+Do+not+use+insecure+or+weak+cryptographic+algorithms
https://www.sonarsource.com/
https://www.sonarsource.com/
https://spotbugs.github.io/
https://stackoverflow.com/questions/21066902/default-rsa-padding-in-sun-jce-oracle-jce
https://stackoverflow.com/questions/21066902/default-rsa-padding-in-sun-jce-oracle-jce
http://hdl.handle.net/10012/13185
https://jcp.org/en/jsr/detail?id=308

	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Contributions and Organization

	Background
	Type Systems
	Checker Framework

	Crypto Checker Type System
	Type System
	Type Qualifiers
	Qualifier Hierarchy
	Type Rules for Assignment and Pseudo-assignment

	Crypto Checker
	Implementation
	Flexibility of Defining Cryptographic Rules
	Enforced Cryptographic Rules


	Type System Extensions
	Property File Handler
	Type System
	Implementation

	Network Request Checker
	Type System
	Implementation


	Experiments
	Case Studies with the Crypto Checker
	Insecure Uses of Cryptographic APIs
	Android Keystore Case Study
	CRYPTOAPI-BENCH Case Study

	Case Studies with the Network Request Checker

	Related Work
	Algorithm Checking
	Provider Checking
	Java Properties Handling

	Conclusions and Future Work
	Conclusions
	Future Work

	References

