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Abstract

Continual learning is a framework of learning in which we aim to move beyond the limita-
tions of standard isolated optimization of deep learning models toward a more intelligent
setting, where models or agents are able to accumulate skills and knowledge, across diverse
tasks and over extended periods of time, much like humans do. Like much of neural net-
works research, interest in continual learning has ebbed and flowed over the decades, and
ultimately saw a sharp increase over the past few years, buoyed by the successes of deep
learning thus far.

One obstacle that has dominated continual learning research over the years is the so-
called catastrophic forgetting phenomenon, which refers to the tendency of neural networks
to “forget” older skills and knowledge as soon as they are subsequently optimized for
additional tasks. Researchers have proposed various approaches to counter forgetting in
neural networks. In this dissertation, we review some of those approaches and build upon
them, and address other aspects of the continual learning problem.

We make the following four contributions.

First, we address the critical role of importance estimation in fixed-capacity models,
where the aim is to find a balance between countering forgetting and preserving a model’s
capacity to learn additional tasks. We propose a novel unit importance estimation ap-
proach, with a small memory and computational footprint. The proposed approach builds
on recent work that showed that the average of a unit’s activation values is a good indica-
tor of its importance, and extends it by taking into consideration the separation between
class-conditional distributions of activation values.

Second, we observe that most methods that aim to prevent forgetting by explicitly
penalizing changes to parameters can be seen as post hoc remedies that ultimately lead to
inefficient use of model capacity. We argue that taking into account the continual learning
objective requires a modification to the optimization approach from the start rather than
only after learning. In particular, we argue that key to the effective use of a model’s capac-
ity in the continual learning setting is to drive the optimization process toward learning
more general, reusable, and thus durable representations that are less susceptible to for-
getting. To that end, we explore the use of supervised and unsupervised auxiliary tasks as
regularization, not against forgetting, but against learning representations that narrowly
target any single classification task. We show that the approach is successful at mitigating
forgetting, even though it does not explicitly penalize forgetting.

Third, we explore the effect of inter-task similarity in sequences of image classification
tasks on the overall performance of continual learning models. We show that certain models
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are adversely affected when the learned tasks are dissimilar. Moreover, we show that, in
those cases, a small replay memory, even 1% the size of the training data, is enough to
significantly improve performance.

Fourth and lastly, we explore the performance of continual learning models in the so-
called multi-head and single-head settings and approaches to narrow the gap between the
two settings. We show that unlabelled auxiliary data, not sampled from any task in the
learning sequence, can be used to improve performance in the single-head setting.

We provide extensive empirical evaluation of the proposed approaches and compare
their performance against recent continual learning methods in the literature.
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Chapter 1

Introduction1

Over the past decade, deep learning has seen many success stories in applications ranging
from image classification (Krizhevsky et al., 2012) and segmentation (Chen et al., 2018) to
speech recognition (Chorowski et al., 2015; Amodei et al., 2016) and machine translation
(Bahdanau et al., 2015), in some cases with models rivalling human performance. These
achievements, however, are almost always confined to narrowly defined, isolated applica-
tions. The ability to design models that can rival human performance in any task—what
is commonly known as artificial general intelligence—remains an elusive goal. Consider,
for example, a human’s capacity for seemingly endless learning, their ability to accumulate
skills and knowledge and learn to recognize thousands of faces, objects, words, etc., over
a lifespan of decades. This capacity for continual learning is, as of yet, something we
cannot replicate—not even remotely—in deep learning models. Partly to blame for this is
a phenomenon known as catastrophic forgetting.

Catastrophic forgetting refers to the tendency of a neural network to “forget”, or de-
grade in performance on, a task once it has been subsequently optimized for another.
This implies that, absent a remedy for catastrophic forgetting, continual learning in neural
networks, unlike in humans, is a process of overwriting previous learning rather one of
accumulating knowledge. The ability, however, to accumulate knowledge stands to serve
many practical applications.

1Parts of this chapter are adapted from (El Khatib and Karray, 2019a), c© IEEE 2019.
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1.1 Motivation

In general, continual learning—and thus countering catastrophic forgetting—is important
in settings where there are constraints on the availability of training data and the way they
are presented to a model. Consider, for example, a social robot tasked with assisting a
human at home. Such a robot may be pre-loaded with classes of objects it can recognize
(e.g., chair, door, etc.), such that, as it moves around, it can “understand” its surroundings.
We may be interested, however, to endow such a robot with the ability to learn to identify
new classes of objects of relevance in the specific environment in which it operates. To
that end, we could design the robot such that it builds and trains a new model for every
new object class. Or, we could program it to store all training images for all classes, pre-
loaded and new, and re-train a single multi-class classification model whenever it learns
a new class. Both these strategies, however, are inefficient. The most efficient solution,
both in terms of memory and computational costs, is to be able to update a single model
to account for new object classes without significantly affecting its ability to recognize
previously learned object classes. One can think of similar scenarios in other domains as
well.

1.2 Scope

In this work, we consider continual learning of image classification tasks. That is, the ability
of a neural network to learn multiple image classification tasks sequentially, and continue
to perform well on all tasks learned, without access to the training data associated with
old tasks. Moreover, we limit our discussion to feed-forward neural networks, in particular
convolutional neural networks, optimized by gradient descent. Although the algorithms
discussed and proposed are potentially applicable to other domains (e.g., reinforcement
learning tasks), the experiments and results we provide are restricted to this scope.

1.3 Contributions

This dissertation contains four contributions:

• A class separation-based importance estimation method, described in Chapter 3;

• An approach to countering forgetting by encouraging durable representations, de-
scribed in Chapter 4;
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• An analysis of the effect of inter-task similarity on the performance of continual
learning models, described in Section 5.1; and

• An approach to narrowing the gap between single-head and multi-head continual
learning models, described in Section 5.2.

We will describe in detail the contributions in the coming chapters. Below, however, is a
brief summary of each.

1.3.1 Importance Estimation

Catastrophic forgetting is countered in the literature through different strategies. Rooted in
the stability-plasticity dilemma (Grossberg, 1987), many approaches address catastrophic
forgetting through a process of slowing down learning, masking, or otherwise consolidating
parameters that are estimated to be important to previously learned tasks, while freeing
up unused capacity to learn new tasks. Most such methods entail a process of estimating
a set of values that quantify the relative “importance” of the parameters of the model.
Until recently, most importance estimation methods were based in some form on the local
sensitivity of the loss function to parameter changes (i.e., the gradient of the loss func-
tion) (Chaudhry et al., 2018; Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al.,
2019b).

Jung et al. (2020) recently showed that the average of activation values is an effective
estimate of unit importance. The estimate has the appeal of simplicity (e.g., it does not
involve gradient computations and, hence, can be computed with forward passes only),
but tends to over-estimate importance. By that we mean that it occasionally assigns high
importance values to unimportant units. This leads to inefficient use of model capacity,
with parameters being unnecessarily constrained, which in turn prevents the model from
further learning. Jung et al. (2020) address this flaw by imposing an explicit sparsity
penalty.

In this work, we build on the importance estimation method of Jung et al. (2020).
We show that in layers closer to the classification layer, units tend to specialize, and
class-conditional distributions of unit activations become more separable. Based on this,
and rather than using the overall average of activations, we propose a class separation-
based importance estimation method that draws on the ideas of Fisher discriminant linear
analysis (Murphy, 2012, p. 274), as well as on the work on deeply supervised net by Lee
et al. (2015). We show that the proposed approach is more efficient in its use of model
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capacity and performs well on a wide array of image classification tasks, outperforming a
number of recent methods in certain cases.

This work is described in further details in Chapter 3. As of this writing, a journal
paper based on this work is in preparation.

1.3.2 Learning Durable Representations

The methods we cited so far fall under what we call regularization-based approaches to
countering forgetting (see Chapter 2.4). One could argue that most regularization-based
approaches in the literature constitute a post hoc effort to prevent forgetting, in that only
after the task is learned do we begin to consider preserving learning. At this late stage, of
course, we can only resort to explicit penalties on changes to parameters.

We attempt in this work to preempt forgetting, as it were, by encouraging the continual
learning model to learn durable representations, that are less susceptible to forgetting in and
of themselves. In particular, we argue that the ability to learn rich, reusable representations
for each task in the first place is just as crucial for efficient continual learning as the ability
to safeguard learned representations post hoc. Moreover, we argue that key to learning
such representations is the ability to draw on the content of training data, images in our
case, irrespective of how discriminative that content is to the current classification task—an
ability characteristic of unsupervised learning.

We explore multiple ways to encourage such durable representations, and show that
using auxiliary reconstruction tasks is an effective way to reduce forgetting without an
explicit penalty on it. We show that the approach is competitive with recent post hoc
methods (Kirkpatrick et al., 2017; Chaudhry et al., 2018). Moreover, using a Kullback-
Leibler (KL) divergence-based measure (Murphy, 2012), we show that the use of auxiliary
reconstruction tasks has the effect of reducing the representational changes from task to
task.

This work is described in further details in Chapter 4. Early results for this work
are published in the Proceedings of the 2019 International Joint Conference on Neural
Networks (IJCNN) (El Khatib and Karray, 2019a). As of this writing, a journal paper
with additional results is in preparation.

1.3.3 Inter-Task Similarity

In this work, we explore the effect of inter-task similarity on continual learning performance.
We focus on the Learning without Forgetting (LwF) model (Li and Hoiem, 2018) and show
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that, while it performs well in general, its performance degrades significantly when the tasks
in the sequence to be learned are dissimilar.

To overcome this degradation, we explore the use of a small replay memory, in conjunc-
tion with LwF, and show that even a memory size equivalent to only 1% of the training
set size is enough to significantly improve performance in cases of low inter-task similarity.
Moreover, we show that the proposed mechanism is applicable to other methods, such as
elastic weight consolidation (Kirkpatrick et al., 2017).

This work is described in further details in Section 5.1. As of this writing, a paper
based on this work is in preparation.

1.3.4 Single-Head Performance

Much of the continual learning literature deals with improving performance in the so-
called “multi-head” setting. In this setting, each test sample presented to the model is
accompanied by a task identifier and the model makes predictions over the set of classes
in learned in a single task only. A more challenging setting, called the “single-head” does
away with task identifiers, and the model has to make predictions over the union of all
classes learned across all tasks.

Performance in the single-head setting is typically worse than in the multi-head setting.
This is largely due to the fact that, learning the tasks in sequence (i.e., not concurrently),
the model never learns to discriminate between classes from different tasks. One way
to narrow the gap between single-head and multi-head performance is to use a replay
memory (Chaudhry et al., 2018). This, however, has a memory cost that grows with
the number of tasks. In this work, we explore the use of unlabelled auxiliary data, not
associated with the learned tasks, in lieu of a replay memory, and show that the approach
improves the single-head performance.

This work is described in further details in Section 5.2 and is published in the Proceed-
ings of the 2019 International Conference on Image Analysis and Recognition (ICIAR) (El
Khatib and Karray, 2019b).

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents an overview of
neural networks, their building blocks, and their optimization as it pertains to the proposed
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methods and the experiments presented in subsequent chapters, in addition to introducing
and reviewing the literature on continual learning and catastrophic forgetting. Chapters 3–
5 describe the four contributions summarized above. Finally, Chapter 6 concludes the
dissertation.
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Chapter 2

Background and Related Work

2.1 Background on Deep Learning

This chapter provides a review of the basic building blocks of neural networks that will be
used in the rest of this dissertation. It also introduces the continual learning framework
and catastrophic forgetting and reviews the main directions of research, old and new,
concerned with mitigating or circumventing catastrophic forgetting, as well as specific
methods that have been shown to aid continual learning. In the coming chapters, we will
gradually expand on and formalize many of the concepts that are only briefly and informally
introduced here. The intent from this chapter is to set the scene, as it were. Readers
familiar with the fundamentals of neural networks may want to start from Section 2.2.

2.1.1 Deep Models and Their Many Layers

The term “deep learning” has come to be used to refer to neural networks in general, which
are parametric machine learning models characterized by a layered structure. Each layer is
made up of a collection of “neurons”, or units, each of which, in turn, constitutes a linear
or non-linear mapping. Although commonly motivated by analogy to the animal brain,
neural networks, complex and structured as they may be, can be seen simply as non-linear
functions mapping inputs to outputs.
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Fully Connected Layers

Fully connected layers, sometimes called dense layers, perform linear transformations of
the form:

y = W>x, (2.1)

where W is an m × n weight matrix representing the layer’s parameters, x is the m × 1
input to the layer, and y is its n× 1 output. Figure 2.1 depicts a fully connected layer.

x1

x2

xm

y1

y2

yn

w11

wmn

∑
j=1

m

wj1xj

∑
j=1

m

wj2xj

∑
j=1

m

wjnxj

Figure 2.1: Fully connected layer.

Activation Layers

Stacking linear layers sequentially produces a still-linear overall mapping. Given the fact
that real-world phenomena are seldom well represented with linear models, neural net-
works generally intersperse linear layers with non-linear activation layers. These activation
functions are most commonly applied element-wise on the inputs. Until recently, the most
common activation functions used were the sigmoid and the hyperbolic tangent. Nowa-
days, many have adopted the so-called Rectified Linear Unit (ReLU) activation (Goodfel-
low et al., 2016), given by max(0, x). Although not differentiable everywhere, the ReLU
activation function has two important advantages: 1) it is computationally efficient, having
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a gradient that is either 1 or 0 almost everywhere; and 2) unlike the sigmoid and the hy-
perbolic tangent, the ReLU is non-saturating, allowing for stronger gradient signals during
training.

That it kills negative inputs, and consequently the corresponding gradients flowing
backwards, is a potential weakness of ReLU activation. The leaky ReLU is designed to
alleviate this by attenuating, rather than totally eliminating, negative inputs. The output
of a leaky ReLU is thus given by {

αx, if x < 0

x, otherwise,
(2.2)

where 0 < α < 1 is a hyperparameter.

Convolution Layers

Convolution layers (LeCun et al., 1989) can be seen as a restricted version of linear layers.
In particular, convolution layers are characterized by local connectivity, in contrast to fully
connected units, meaning each convolution unit is connected only to a local neighbourhood
of its input (see Figure 2.2). For example, if the input is an image, a convolution unit,
sometimes called a kernel or a filter, is connected only to a small region of it at a time.
Spatially sampled data, such as images, exhibit local structure (e.g., pixels close together
in an image tend to be more correlated than those far apart) that can be exploited by such
locally connected units. In addition to local connectivity, convolution units are constrained
by what is known as parameter tying. One way to understand this is as if there are replicas
of each kernel across different regions of the input. Alternatively, we could interpret these
replicas as a single kernel “sliding” across the input. Such a sliding kernel (or a set of
replicated kernels collectively) can be seen as learning a detector for a single feature (e.g.,
an eye) that can appear across the input (e.g., an image).

Mathematically, the convolution of two functions x and w defined over the same domain
t is given by ∫ ∞

−∞
x(τ)w(t− τ)dτ, (2.3)

or, in discrete domains
∞∑

τ=−∞

x[τ ]w[t− τ ]. (2.4)
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Figure 2.2: Locally connected layer. If the 3 output units are constrained to have tied
parameters, then collectively they are equivalent to a single convolution unit.

The term convolution layers, however, is a misnomer: what is called convolution in the
literature on neural networks, and what is implemented in machine learning libraries, is in
fact cross-correlation, given by

∞∑
τ=−∞

x[τ ]w[t+ τ ]. (2.5)

Many applications entail processing multidimensional data. For example, images are
2-dimensional (2D) spatially, and 3D considering the “channels” dimension that encodes
colour. Convolution can be extended to handle such multidimensional data. For example,
2D convolution (by which we mean, hereinafter, cross-correlation), often used with image
data, is given by

∞∑
i=−∞

∞∑
j=−∞

x[i, j]w[m+ i, n+ j]. (2.6)

In the case of RGB (colour) images, 2D convolution is applied per-channel (i.e., across
the spatial dimensions with 3 distinct 2D kernels), and the 3 resultant feature maps are
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summed together.

Convolutional Neural Networks (CNN) have been applied most successfully to spatially
sampled data, such as images. Recently, however, they have been shown to perform well
also on sequential data, such as text, which, in contrast to sampled data, do not easily
bend to interpretation in frequency domain.

Pooling Layers

Pooling layers tend to follow convolution layers in CNNs. Many variants of pooling layers
exist, but their function is generally one, and that is to summarize feature maps into
more compact versions, thus reducing computational costs. A pooling layer replaces small
regions in feature maps with summary statistics, such as the maximum or the average.
Figure 2.3 shows an example of applying max pooling to a 4× 4 image.

25 32 35

25 27 35 40

30 35 40 45

28 30 34 38

22

27 40

35 45

Figure 2.3: 2D max pooling with a 2 × 2 kernel and a stride of 2. The values shown
represent pixel intensities.

In addition to computational savings, pooling introduces a degree of translation invari-
ance in a model. This is useful in image classification applications, for example, because
when processing images, the pixel-exact positions of features (e.g., eyes in a face) are not
generalizable.
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Transposed Convolution Layers

A situation arises often where there is a need to “invert” a convolution layer (Dumoulin
et al., 2017). This is particularly relevant in encoder-decoder models (such as the one pro-
posed in Chapter 4). Transposed convolution layers (Dumoulin and Visin, 2016) serve this
purpose only insofar as shape is concerned. In fact, transposed convolution is convolution,
only with the input padded with zeros to achieve a desired output shape consistent with
inversion. Nonetheless, transposed convolution, which is sometimes confusingly called de-
convolution, is not a mathematical inverse of convolution—which is called deconvolution.

Normalization layers

Owing to the difficulties involved in optimizing neural networks, especially deep ones,
many heuristics appear in the literature that have been shown empirically to lead to better
solutions and/or faster convergence. Among those are normalization layers. In the coming
chapters, we will make use of a version called batch normalization (Ioffe and Szegedy, 2015).
Premised on the observation that changes to the distributions of the inputs to a network’s
layers can have a negative effect on the optimization, batch normalization normalizes layer
inputs using batch statistics such that they approximate a standard normal distribution
throughout training.

Normalizing the input, however, can also have unintended consequences. For example,
it can constrain the input to a sigmoid activation to remain within the linear region of
the sigmoid. Noting this, the authors augment the normalization step with a learned
linear transformation, guaranteeing that the batch normalization layer can learn an identity
mapping if needed. Thus batch normalization is given by

y = γ
x− µ√
σ2 + ε

+ β, (2.7)

where µ and σ are the batch mean and standard deviation, respectively; ε is a small
number added for numerical stability; and γ and β are learned parameters. Note that the
normalization is applied per parameter, and thus ignores correlations between parameters.

To obtain a deterministic inference function after training (i.e., one that does not change
across batches), batch statistics are replaced with population statistics.

Batch normalization have been shown empirically to lead to faster convergence and
better solutions in some cases.
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2.1.2 Training Neural Networks

The first step toward training or optimizing a neural network is selecting a loss function.
The loss function quantifies how well a neural network performs on the task at hand.
The optimization of neural networks is an iterative process that involves computing the
gradient of the loss with respect to the network parameters. This necessitates that the loss
be differentiable with respect to the network parameters.

The choice of loss function is dependent on the nature of the task. The most commonly
used loss function for regression tasks (where the output is a continuous variable) is the
mean squared error, defined as

L(Ŷ , Y ) =
1

ND

N∑
i=1

D∑
j=1

(Ŷij − Yij)2, (2.8)

where Ŷ is the prediction, Y the true value, and D and N are the output dimension and
the number of samples, respectively.

In classification settings, where the output is a categorical variable, we use the Negative
Log-Likelihood (NLL), sometimes called cross entropy, as the loss. For a single sample,
NLL is given by

L(ŷ,y) = −
∑
i

yi log(ŷi), (2.9)

where i indexes the class, y is the one-hot-encoded true class, and ŷ is the predicted
probability distribution over the classes. Note that, given y is a one-hot-encoded vector,
the summand is nonzero only for a single value of i, the one corresponding to the true class.
When processing more than one sample at a time, the loss is averaged over the samples.

Training a neural network is equivalent to minimizing the loss function. This is gen-
erally a non-convex optimization problem. Neural networks thus are normally optimized
iteratively using gradient descent:

w ← w − η ∂L
∂w

, (2.10)

where η, called the learning rate, controls the magnitude of the update in each iteration.
The partial derivative of the loss with respect to a parameter, ∂L

∂w
, is computed using

the chain rule of derivatives, starting from the output layer and traversing the network
backwards. This process is known in the neural networks literature as backpropagation.
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Mini-Batch and Stochastic Gradient Descent

While the loss we seek to minimize is the average over all the samples in the training set, for
practical reasons we normally update based on mini batches of the training set. The mini
batch loss is an estimate of the training set loss. Being cheaper to compute (along with
its gradients), and due to redundancies in the training set, mini-batch loss leads to faster
convergence. When an update is made per training sample, the optimization is known as
Stochastic Gradient Descent (SGD).1

2.1.3 Overfitting and Regularization

Optimizing a neural network involves minimizing a loss function over a training set of
samples. However, our interest is generally in the expected performance of the network
on future samples, not on training samples. This dichotomy between what we actually
optimize and what we want to optimize adds another layer of complexity—in addition to
non-convexity—to the process of training neural networks.

The general practice in training neural networks is to use a proxy set, called a validation
set, separate from the training set and not used in the optimization process, to gauge the
expected future performance of a network. When monitoring both training and validation
error rates during training, we commonly note that validation error follows but lags behind
training error (i.e., validation error tends to be higher). In many cases, this trend continues
only up to a point, after which the two error rates diverge, with training error decreasing
and validation error increasing. This phenomenon is called overfitting, and overcoming it
is arguably the crux of learning.

Overfitting occurs whenever a high-capacity model is coupled with insufficient training
data. This results in the model “memorizing” the peculiarities of the training set, such
as any noisiness or outliers in the data, that are not reflected in the validation set or any
future test data. Given a small training set, it is usually straight-forward to fit a high-
capacity model to it with an error rate approaching 0%. Such a model, however, would not
generalize to future data. Alternatively, we could choose a low-capacity model that cannot
overfit. However, such an approach can introduce a bias to the model (e.g., choosing a
linear model when the data cannot be modelled linearly) and generally leads to poorer
performance compared to more sophisticated approaches.

1Note, however, that there is no consensus on this naming convention. Some authors use SGD to refer
to the case where a subset of more than one sample is used per update, while others still use it to refer to
gradient descent in general.
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This trade-off between the capacity of a model and the bias introduced by it is known
in the statistical learning literature as the bias-variance dilemma (Geman et al., 1992).
Given data generated from the model y = f(x) + ε, where ε is a zero-mean noise with a
variance of σ2, the expected mean squared error (MSE) between any learned model, f̂ , and
the true model on a test sample can be decomposed as

E[(y − f̂(x))2] = E2[f̂(x)− f(x)]︸ ︷︷ ︸
bias2(f̂)

+ E[f̂ 2(x)]− E2[f̂(x)]︸ ︷︷ ︸
variance(f̂)

+σ2. (2.11)

Rather than starting with a low-capacity model, overfitting is commonly countered by
regularizing high-capacity models. Regularization refers to constraining the optimization
of machine learning models, usually by penalizing model complexity. L2 regularization,
sometimes called weight decay, penalizes the L2 norm of the parameters of a model. Thus
for a task loss Ltask, we minimize

Ltask + λ‖w‖22, (2.12)

where λ is a regularization coefficient, and w represents the vectorized model parameters.
The addition of an L2 penalty drives the parameters toward lower values. For a linear
model, it can be shown that it is equivalent to adding a zero-mean Gaussian prior on the
parameters. L1 regularization, on the other hand, penalizes the L1 norm in the same way.
It is commonly used to enforce sparsity.

While regularization is often used to refer to penalties to overfitting, it can be more
generally understood to refer to any constraints imposed on the optimization of machine
learning models. Over the coming chapters, we will introduce various regularization penal-
ties designed to counter forgetting in continual learning models.

2.2 Continual Learning

Neural networks are normally optimized for, and subsequently deployed to handle, a single
task. Between optimization and deployment, the networks are not altered or optimized for
other tasks, and thus retain their optimized parameters. Different tasks are handled with
different models trained in this way. The knowledge learned by any model does not affect
the learning process of any subsequent task, which in turn does not alter previously acquired
knowledge in other models. This framework of learning, where each model learns a single
task, is sometimes called isolated learning (Chen and Liu, 2016). Contrast this with the
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human learning process, where acquired knowledge aids future learning and is continually
being refined and expanded by new experiences. If the goal of artificial intelligence research
is to advance ever closer toward human intelligence—ultimately to achieve what is known
as Artificial General Intelligence (AGI)—it is necessary to move away from the isolated
learning framework, where models are tailored to specific tasks, toward the more flexible
and extendable continual learning framework.

The focus of this dissertation is on supervised learning tasks, and on image classification,
in particular. Moreover, we consider neural network models only, and thus focus our
exposition on their peculiarities. We note, however, that continual learning, or lifelong
learning, is a more general framework that is not necessarily restricted to a single domain
of tasks or family of models.

Consider a set of K tasks T = {T0, T1, ..., Tk, ..., TK−1}, each of which is an image classi-
fication problem with an associated data set {(xkn, ykn)}N−1n=0 . Under our restricted continual
learning framework, we are interested in learning a single function, f̂ , parameterized by a
neural network,2 that maximizes the average accuracy on all tasks

max
f̂

1

K

K−1∑
k=0

E([yk = f̂(xk)]), (2.13)

where [·] is the Iverson bracket notation, which evaluates to 1 if the condition in the bracket
is true and to 0 otherwise. The kth expectation in the summation is taken with respect to
the test distribution of the kth task. In addition, the tasks are to be presented to the model,
and must be learned, sequentially: once the model is trained on a task it will no longer have
access to the data associated with it (except for evaluation purposes). The challenge, then,
is to maintain performance on a task once the network has been subsequently optimized
for other tasks.

Below we discuss three other learning frameworks—online learning, transfer learning,
and multi-task learning—that bear a resemblance to continual learning.

2.2.1 Relation to Online Learning

Between the two extremes of isolated learning and continual learning lies online learning.
Here, a model is optimized for a single task and is updated continuously or periodically
as new data for the same task become available. The distinction between online learning

2There is more to say about the output layer, which in one setting may be task-specific. See Section 5.2
for more details.
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and continual learning is for practical purposes, as ultimately both update a conditional
distribution of the form p(y|x; w) in response to new data. In practice, however, continual
learning stands as a more challenging problem, as the perturbations to model parameters
induced by learning new tasks can be significantly larger. Other practical considerations,
such as learning tasks with different output layers, adapting to different input domains,
and combining the set of learned tasks, justify treating continual learning as a distinct
problem.

Both online and continual learning are referred to as incremental learning in the liter-
ature.

2.2.2 Relation to Transfer Learning

Transfer learning, like continual learning, entails adapting a model’s parameters sequen-
tially for a set of tasks, usually only two. Unlike with continual learning, however, the
only performance we seek to optimize with transfer learning is performance on the final
task in the sequence. In other words, pre-training on the initial task or set of tasks acts to
position the optimization of the final task at a favourable initial point; but once training
on the final task begins, all other previous tasks become irrelevant.

Transfer learning is used to overcome scarcity of resources and/or data by making use
of models pre-trained on large data sets and adapting them to different but related data
sets. For transfer learning to bear fruit, the source and target domains must share at least
some of their low-level features.

2.2.3 Relation to Multi-Task Learning

Multi-task learning is similar to continual learning in that in both frameworks we are
interested in optimizing a model for a set of tasks. The main difference is that learning
occurs simultaneously in the multi-task framework: the model parameters are optimized
for all tasks jointly. In a way, each task here can be seen as a regularizer with respect to
the remaining tasks. The approach proposed in Chapter 4 exploits this effect of multi-task
learning as regularization to aid the continual learning process.
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2.3 Catastrophic Forgetting

Catastrophic forgetting is a rather sensational expression of the fact that performance
of a neural network on a task—as one would expect—hinges on the preservation of the
parameters optimized for that task. In the course of learning multiple tasks sequentially,
parameters optimized for a task are modified when the model learns a new task, causing
performance on the initial task to drop. In general, as the number of intervening tasks
between optimization and testing increases, the parameters drift farther and farther from
their optimized values, and consequently the performance drop increases.

On the face of it, catastrophic forgetting may seem inherent to the way neural networks
are optimized. After all, there is no obvious reason why performance on a task would persist
once the model has been optimized for another. There are, however, a number of reasons
to expect persistent performance in continual learning models.

Consider, for example, a set of image classification tasks. We expect a large overlap in
the low-level features (e.g., oriented edges), as well as some of the higher-level ones, among
the tasks. Consequently, while sequential optimization for multiple tasks in this case does
still modify model parameters from one task to another, the overlap in features among the
tasks should lead to a higher degree of stability in the learned representations.

Another way of approaching this is to note that neural network models are often over-
parameterized, and thus can have more capacity than is needed to learn all the tasks in
a set. The question then becomes, how can the model make efficient use of its available
capacity such that it can learn all the tasks in a set? This is known in the literature
as the stability-plasticity dilemma (Grossberg, 1987). In other words, how can the model
consolidate what it has learned so far (stability) while simultaneously freeing up unused
capacity to learn additional tasks (plasticity)?

2.4 Literature Review

Researchers began to take notice of catastrophic forgetting around the time back-propa-
gation was adopted as a method to compute gradients in neural networks and update
weights (Rumelhart et al., 1986). McCloskey and Cohen (1989) observed that training
neural networks sequentially led to old knowledge being overwritten by more recently
learned representations. They termed this phenomenon catastrophic interference. The
dramatic epithet “catastrophic” was used to emphasize that the forgetting of a task can
be severe even in response to small changes in the corresponding optimized parameters
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(French, 1999; Kolen and Pollack, 1990). With the advances made in deep learning research
over the past decade, catastrophic forgetting has gained increased attention as the next
problem to be re-examined.

Research efforts to contain or mitigate catastrophic forgetting in continual learning
models generally follow one (or more) of three strategies: rehearsal, compartmentalization,
and/or regularization.

2.4.1 Rehearsal-based continual learning

Rehearsal was one of the earliest strategies to be put forward in the literature to counter
catastrophic forgetting (Ratcliff, 1990; Robins, 1993). It refers to the process of periodically
training a model with samples from previously learned tasks as the model learns new
tasks. As updates corresponding to new data are interleaved or averaged with updates
corresponding to old data, catastrophic forgetting is checked and the drop in performance
on old tasks tempered. Rehearsal requires that training data from all tasks learned be
stored to be used in future re-training. As such, it can be considered a brute-force approach.

There has been recent work on optimal ways to update memory samples (Aljundi
et al., 2019a). Chrysakis and Moens (2020), for example, explore memory sample selection
in cases imbalanced data.

Pseudo-rehearsal is an extension of rehearsal, introduced to circumvent the latter’s need
for access to training data from previous tasks. Like rehearsal, it acts to drive the model to
maintain performance on previously learned tasks through a process of periodic re-training.
However, unlike rehearsal, it does so without access to training data from previous tasks.
Researchers have proposed many pseudo-rehearsal approaches, but they all generally use
surrogate data as a substitute for training data from previously learned tasks. In one
approach, surrogate data are generated by passing random noise through the model and
using the corresponding output as target labels (Robins, 1995; Frean and Robins, 1999).
As the model learns a new task, it is concurrently trained with the surrogate data. This
drives the model to maintain the same outputs for the surrogate data as the target labels,
which implicitly constrains the model parameters.

Li and Hoiem (2016) and Furlanello et al. (2016) independently propose using the new
task’s training data, instead of random data, as the surrogate data. Their model3 is made
up of layers shared across tasks and a set of task-specific layers (this is referred to as
the “multi-head” setting of continual learning and will be described further in the coming

3This description is based on the model described in (Li and Hoiem, 2018).
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chapters). Prior to learning a new task, its input training data are passed through the
shared layers and the task-specific layers to generate a set of outputs, Y i

o , one corresponding
to each old task i. These generated outputs are stored and used while learning the current
task to minimize forgetting. The model is optimized to minimize a weighted sum of losses
of the form

L(Yn, Ŷn) + λo
∑
i

LKD(Y i
o , Ŷ

i
o ), (2.14)

where the first term corresponds to the loss on the current training task and the second
term is a penalty on the changes to the input-output mapping represented by the model
for previous tasks. We used the subscript KD to denote the distillation loss (Hinton et al.,
2015) used by the authors.

Jung et al. (2018) propose a similar strategy but with the penalty imposed on changes
to the mapping up to the penultimate layer of the network (as opposed to the full input-
output mapping).

The underlying assumption of pseudo-rehearsal methods—and key to their success—
is that preserving the input-output mapping represented by the model for the surrogate
data (be they random noise or the training data for a subsequent task), has the effect
of preserving the input-output mapping for the data of previous tasks. For this to be
true, though, the surrogate data must approximately represent a random sample from
the distribution of the training data of previous tasks. While using the training data of
the current training task as a proxy for previous training data is more likely to satisfy
this condition than using random noise, this is nonetheless not guaranteed. We address
this issue further when we discuss the effect of inter-task similarity on continual learning
performance in Section 5.1.

A better solution would be to learn to generate samples from the distribution of previous
tasks. In recent years, adversarial training has become a powerful framework for learning
generative models (Goodfellow et al., 2014). Shin et al. (2017) propose using a Generative
Adversarial Network (GAN) to generate surrogate data for previous tasks. In other words,
they propose using a pair of models, one trained to learn all the tasks and another, the
generator, trained to learn the distribution of all the tasks seen so far. When a new task
is introduced, the training data associated with it are augmented with data for previous
tasks generated by the generator. This augmented data set is used to re-train the solver
and the generator to account for the new task. It is clear that, given a perfect generator,
the learned model approaches the performance of a multi-task model (that is, a model
trained on all the tasks jointly). Thus continual learning approaches that learn to generate
samples from the learned tasks hinge only on the successful learning of such generators.
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Pseudo-rehearsal can be seen as a form of regularization, where the penalty is a function
of the output rather than a function of its parameters. Unlike regularization approaches
that we will review in the coming sections, however, pseudo-rehearsal approaches in a way
circumvent, rather than solve, the catastrophic forgetting issue. Continual learning models
based on pseudo-rehearsal can be trained from scratch for each new task, since they have
access to training data (that is, surrogate data) for all previously learned tasks. Thus,
while the real training data for each task is accessible only when that task is first learned,
the model, viewed during learning a single new task, by using surrogate data, is actually
trained in a multi-task framework, which is not subject to catastrophic forgetting.

In other words, in contrast to the strategies described in the coming sections, rehearsal
methods pass on knowledge about previous tasks through the surrogate data rather than
through the model’s learned parameters.

2.4.2 Continual learning by compartmentalizing knowledge

In this section, we discuss approaches that counter catastrophic forgetting by reducing
representation overlap across tasks. Early on, the representation overlap characteristic of
distributed models like neural networks was identified as one of the causes of catastrophic
forgetting (Murre, 1992; French, 1991). As a result, many research efforts went into design-
ing models that reduce representation overlap, whether at the input layer or at the hidden
layers. One suggestion was to use “activation sharpening” (French, 1991)—the process of
slightly amplifying large activations and attenuating small ones during optimization, with
the aim of encouraging orthogonality of representations through sparsity. (French (1994)
subsequently criticized encouraging sparsity, suggesting it has an adverse effect on repre-
sentational capacity.) Since then, researchers have proposed more sophisticated approaches
with the same goal.

The underlying idea common to these approaches, to an extent, is to compartmentalize
knowledge within the neural network such that learning a new task modifies only a sub-
set of the network’s parameters without significantly affecting the representations learned
from previous tasks. There are generally two strategies to achieve this: 1) to start with a
small network and gradually grow it (by adding new units or columns) as new tasks are
encountered; or 2) to start with a high-capacity network and limit the share of the param-
eters dedicated to each task by masking or pruning. In either case, the end result is that
different subsets of the model’s parameters get optimized with respect to different tasks,
and that parameters do not get modified after they have been assigned to and optimized
for a task.
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Terekhov et al. (2015) propose what they call block-modular neural networks, which
gradually grow to cope with new tasks (Rusu et al. (2016) propose a very similar model,
which they call progressive neural networks. For a new task, they instantiate a “block”
of new layers (more commonly called a column in the literature) to be joined with the
existing network. The units in the new layers have two types of connections: 1) vertical
connections to the units in the preceding and following layers within the new block; and 2)
lateral connection to the units in the corresponding preceding layer in the existing network.
Only the newly added connections can be optimized for the new task, whereas existing
connections remain set to their previously learned values. Thus the new layers, through
the lateral connections, can make use of representations that were previously learned if
they are relevant to the new task. However, existing connections cannot be modified in
learning the new task. The end result is that each task has a corresponding block or
column optimized for it, while simultaneously having access to the layers optimized for
previous tasks. The sharing of knowledge through lateral connections serves to make the
model more efficient than having an isolated model per task. Nonetheless, the fact that
the model grows with the number of tasks learned represents a major weakness of this
strategy.

The alternative strategy is to start with a high-capacity model and “divide” it across
multiple tasks. Mallya and Lazebnik (2018) propose a strategy of pruning and masking
to limit the share of the model’s parameters optimized for each task. In this strategy,
a model is trained on the first task, then its weight are pruned. They employ a simple
pruning approach based on the magnitude of the parameters learned, setting the smallest-
magnitude weights to zero. After pruning, the remaining weights are fine-tuned and a
binary mask indicating which weights are relevant to the current task is stored. The
process is repeated for subsequent tasks, using the previously pruned weights, until all
the model’s parameters have been optimized. As with previous approaches we reviewed,
new tasks have access to previously optimized weights, but cannot modify them. While it
overcomes the growing model issue of the previous strategy, this approach is limited by the
fact that model parameters eventually run out, preventing subsequent learning. Moreover,
there is a need to store a binary mask over all model parameters for each task learned,
which creates a memory overhead that grows with the number of tasks.

In a somewhat similar approach, Mallya et al. (2018) propose to learn task-specific
binary masks in an end-to-end fashion. Here, the first learned task serves as a base task,
and the parameters optimized for it are not modified subsequently. When a new task
is to be learned, they learn a binary mask over the parameters (in addition to an output
layer), whose values, nonetheless, remain unchanged. As each task has an associated mask,
and the base parameters do not change with additional tasks, the model is not subject to
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catastrophic forgetting. However, the representational capacity of such a model hinges on
the parameters learned for the first task, which is rather arbitrary.

Yoon et al. (2018) propose a dynamically expanding network to alleviate model capacity
saturation, expanding the model when the loss on a new task hangs above a pre-defined
threshold. Zhang et al. (2020) propose a similarly expandable network, however, they
advocate for using AutoML for automatic architecture search when expanding the network.

2.4.3 Regularization-based continual learning

When a model is optimized for a task, performance on that task hinges on the preservation
of the optimized model parameters. Most regularization approaches work by imposing a
penalty on deviating from the weights optimized for previous tasks. Not all optimized
parameters, however, are equally important for “remembering” a task. As such, these
approaches tend to penalize modifications to important weights more heavily, resulting
in a compromise between maintaining previous parameter values and the ability to learn
new tasks by utilizing free (that is, less constrained) parameters. (Note how the masking
approaches described in the previous section can be viewed, to an extent, in terms of
regularization with a binary penalty on parameters.)

The most näıve regularization approach is to anchor the solution for a task around the
solution to the previous task with an isotropic penalty. For example, one could penalize
‖θt+1 − θ̄t‖22, the L2-norm between solutions to consecutive tasks (̄· indicates the final
parameter values after optimizing for that task)

min
θt+1

L(θt+1) + λ‖θt+1 − θ̄t‖22, (2.15)

where λ is a regularization coefficient. To learn more than two tasks, more penalties
are added, each anchored at the solution to a different previous task. This approach,
however, is overly restrictive in that it constraints even irrelevant parameters. The effect is
compounded as more tasks are learned, and the inefficient use of capacity quickly paralyzes
the model, preventing future learning. Noting this, Kirkpatrick et al. (2017) propose Elastic
Weight Consolidation (EWC), in which the strength of the regularization is tied to the
importance of the parameter to previous tasks. The main contribution of EWC lies in how
they estimate parameter importance. For a data set D, consisting of 2 training sets DA
and DB corresponding to 2 tasks A and B, one could write the log-posterior probability as

log p(θ|D) = log p(DB|θ) + log p(θ|DA)− log p(DB). (2.16)
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When optimizing for task B, we normally try to maximize log p(DB|θ), the log-likelihood.
The posterior p(θ|DA) summarizes all the information contained in task A, including pa-
rameter importance with respect to that task; and were we to somehow estimate this
posterior, we can use it to take task A into account while learning task B. EWC ap-
proximates the posterior by a Gaussian distribution, centred at the optimized parameters
of task A, θ̄A, and with a diagonal precision matrix. The precision values are estimated
using a diagonal Fisher information matrix. Thus, the regularized cost function for task
B becomes

log p(DB|θ) + λ
∑
i

Fi(θi − θ̄Ai )2, (2.17)

where i indexes model parameters, and Fi is the precision corresponding to the ith parame-
ter. Intuitively, the penalty represents the steepness of the loss function along the direction
of each parameter, and thus the importance of the parameter (i.e., parameters that can
vary without affecting the the loss have a small effective regularization coefficient λFi).

In the same vein as EWC, French and Chater (2002) had previously proposed using the
hessian of the loss function to estimate its steepness around previous optimized parameters.
Most other importance-based regularization approaches differ only in how they estimate
parameter importance (Zenke et al., 2017).

Farajtabar et al. (2020) propose orthogonal gradient descent, an approach to counter-
ing forgetting by restricting gradient descent updates of parameters to directions in the
parameter space that do not affect performance on previous tasks.

In some cases, regularization can be implicit. Serra et al. (2018), for example, use
parameter importance to scale per-parameter updates rather than adding an explicit
penalty. In their model, parameter importance is learned concurrently with the current
task through an attention mechanism. That is, layer activations are multiplied element-
wise with learned, almost-binary attention vectors. The attention vectors are encouraged
to be sparse, thus leading to efficient use of capacity. Parameters corresponding to high
attention vector values are deemed important and hence their gradient descent updates
are scaled down.

Finally, we noted earlier that some pseudo-rehearsal approaches can be interpreted in
terms of regularization (Li and Hoiem, 2016; Shmelkov et al., 2017). For example, when
the training data (xB, yB) for the current task are augmented with some surrogate data for
a previous task,(xA, yA), the optimized cost function can be seen as a regularized objective

L(ŷB, yB) + λL(ŷA, yA). (2.18)
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We end this section by highlighting that most of the approaches we reviewed here have
a common weakness: overcoming catastrophic forgetting appears in the continual learning
framework as an afterthought, a remedy applied after learning to prevent forgetting. In
Chapter 4, we will propose an alternative, more preemptive approach, in which we attempt
to learn representations from the start that are relatively less susceptible to catastrophic
forgetting.

2.5 Summary

In this chapter, we reviewed neural networks, their building blocks, and how they are
optimized. Moreover, we introduced the continual learning framework and discussed how
catastrophic forgetting arises in this context. We also reviewed the literature on overcoming
catastrophic forgetting. Starting with the next chapter, we begin describing the main
contributions of this dissertation.
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Chapter 3

Estimating Importance in Continual
Learning Models

We reviewed in the previous chapter the various approaches researchers have taken to
counter catastrophic forgetting in continual learning models. We saw that in one approach
a regularization term may be used to penalize changes to model parameters, and thus
reduce forgetting. It is an approach that addresses forgetting in fixed capacity models and
absent any replay memory. With only a finite number of parameters, fixed architecture, and
no access to rehearsal data, countering catastrophic forgetting becomes entirely dependent
on the update mechanism of model parameters.

In the most basic regularization strategy, one could penalize changes to all the pa-
rameters of the model after it had learned its first task. The problem with this strategy,
however, is that it prevents subsequent learning. And hence, while the model may not
forget, it also cannot learn, which defeats the continual learning purpose.

As we noted in surveying the literature in the previous chapter, a more intelligent way
to penalize changes to the model is to scale a per-parameter penalty by an estimate of
the parameter importance. Parameters that are deemed important are strongly penalized,
while unimportant parameters are allowed to change freely. In this way, the model achieves
a balance between countering forgetting and preserving its capacity to learn additional
tasks.

This raises the question: how do we define importance and how can we estimate it?

Researchers have proposed various answers to this question, some defining importance
on a per-parameter basis (Kirkpatrick et al., 2017; Chaudhry et al., 2018), while others
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assigned importance per unit or filter (Jung et al., 2020; Aljundi et al., 2019b). In most
cases, however, importance is derived, one way or another, from the sensitivity of the loss
function to changes to parameters or units.

Recently, Jung et al. (2020) proposed using the average activation value of a unit as an
estimate of its importance. The approach has its advantages, including the low memory
and computational cost of being a per-unit rather than per-parameter estimate, that it
only requires a single pass over the training samples, and that, unlike many methods
that estimate importance from the loss gradient, it does not require back-propagation.
However, it also suffers from a significant disadvantage, namely, that it has a tendency to
assign high importance values to unimportant units (as we will show). This tendency is
more pronounced in network layers closer to the output classification layer. Assigning high
importance values to unimportant units leads to inefficient usage of model capacity, which
in turn leads to intransigence (i.e., resistance to learning) (Chaudhry et al., 2018).

In this chapter, we propose a novel importance estimate that addresses the limitations
of using the average activations estimate by Jung et al. (2020), while maintaining its
positive aspects. We observe empirically that units in the layers closer to the output
classification layer tend to specialize and become more discriminative. Moreover, as the
average activation value for a unit is not an accurate indicator of the degree to which it is
discriminative (as we will show), we propose replacing the activations average importance
estimate for layers closer to the output with what we call a class separation importance
estimate. The proposed estimate assigns higher importance values to units that are more
discriminative and lower values to units that are less discriminative (even if the latter have
an overall high average activations across classes). We hypothesize that discriminative
units are more important to preserving learned skills and avoiding forgetting. Moreover,
for layers that are farther away from the output layer, we propose an explicit penalty,
similar to the work on deeply supervised nets by Lee et al. (2015), that induces the model
to learn discriminative units at any hidden layer.

We evaluate the proposed approach on a diverse set of task sequences and compare its
performance against several parameter and unit importance estimation methods. We show
that the proposed approach outperforms the other methods in most cases, all while having
a small memory and computational cost. We also show that it alleviates the intransigence
problem of the activations average method.

The rest of this chapter is organized as follows. Section 3.1 provides an overview of
the continual learning setting and reviews the relevant literature. Section 3.2 outlines
importance estimation and formulations of regularization-based continual learning meth-
ods. Section 3.3 describes the proposed approach. We provide experimental results in
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Section 3.4 and conclude the chapter in Section 3.5.

3.1 Background and Related Work

This section formally introduces the continual learning problem and reviews the literature
on catastrophic forgetting. In surveying the literature, we will discuss briefly the concept
of importance, which we formalize in Section 3.2.

Recall from Section 2.2 that a continual learning framework consists of a sequence of
tasks [T0, T1, T2, · · · ], with associated training data sets [D0, D1, D2, · · · ]. Each training
data set Dk consists of a set of training samples {(xki , yki )}Nk−1i=0 , where Nk is the number
of training samples in the kth data set.

In this work, we focus solely on image classification tasks. Therefore, each Tk corre-
sponds to an image classification task, xki is the ith training sample for Tk, and yki is the
corresponding target class.

Moreover, we consider only mutually exclusive tasks. In other words, the classes ap-
pearing in Dk appear only in that training set.

The training sets are available, or presented to the model, one after the other, such
that the model loses access to Dk after learning task Tk. The goal in this framework is
to preserve the performance of the model on all the tasks in the sequence as it progresses
to learn the tasks. In other words, at all times, the objective of continual learning is to
maximize:

1

M

M−1∑
k=0

E([yk = ŷk]), (3.1)

where M is the total number of training tasks in the sequence that the model has been
trained on (including the active training task), ŷk is the class predicted by the model, and
the [·] is the Iverson bracket notation, which evaluates to 1 if the condition in the bracket
is true and to 0 otherwise. The kth expectation in the summation is taken with respect
to the test distribution of the kth task. That is, we seek to train the model on the task
sequence such that the average accuracy on all the tasks it is trained on remains maximized
throughout the training process. This despite the constraint that each training data set
Dk is available only for one part of the training sequence.

We consider in this work the multi-head setting, in which each task Tk has a corre-
sponding output “head” (i.e., a set of output units), and in which the model is assumed
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to have perfect knowledge of the correct head to use for each test input sample. In other
words, for each test sample, the model has to make a decision by predicting a class from
the set of classes in one of the heads only (by contrast, in the single-head setting, the model
has to predict from the union of all the sets of classes of all the output heads). We will
discuss the difference between the single-head and multi-head settings in more details in
Section 5.2.

As we discussed earlier, the objective of continual learning to maintain performance on
all learned tasks is hindered by catastrophic forgetting (we will formally define forgetting
when we introduce the evaluation metrics we use in Section 3.4.3). Continual learning re-
searchers have proposed different approaches to address forgetting, including architecture-
based approaches (Terekhov et al., 2015; Rusu et al., 2016; Mallya and Lazebnik, 2018;
Mallya et al., 2018), replay-based approaches (Ratcliff, 1990; Robins, 1993; Li and Hoiem,
2016; Furlanello et al., 2016; Shin et al., 2017; Li and Hoiem, 2018), and regularization-
based approaches (refer to Section 2.4 for a broader review of the literature).

Regularization-based approaches, which are most relevant to our work, involve explicit
penalties on changes to optimized parameters. EWC (Kirkpatrick et al., 2017) introduced
a per-parameter importance estimate based on a diagonalized Fisher information matrix.
The original EWC method has since seen many extensions. Huszar (2018) proposed a
variant of EWC that keeps track of a single set of importance values (rather than one set
per learned task) and uses a single penalty centered at the most recent optimized parameter
vector. Schwarz et al. (2018) proposed an online version of EWC with lower computational
costs. Riemannian Walk (RWalk) (Chaudhry et al., 2018) combines an online version of
EWC with a path integral-based estimate of importance (Zenke et al., 2017). Most of these
methods estimate parameter importance from the loss gradient (Aljundi et al., 2019b).
More recently, Jung et al. (2020) proposed using the average activation value of a unit as
a measure of its importance. This approach has 2 advantages over the previous methods:
1) it assigns importance to units rather than parameters, and thus incurs less memory
costs; and 2) it involves only a single forward pass through the training data and does
not require back-propagation, and thus incurs low computational cost to compute. In the
coming sections, we will examine this importance estimate more closely, identify some of
its weak points, and propose a method that builds on it while addressing its limitations.
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3.2 Importance Estimation

As we saw in Chapter 2, the standard cost function used in classification tasks is the
negative log-likelihood (NLL) or cross-entropy loss function. For task Tk, this is given by:

Lkcls = − 1

Nk

Nk−1∑
i=0

Ck−1∑
j=0

pki,j log(p̂ki,j), (3.2)

where Ck is the number of classes in task Tk, p
k
i,j is the target probability that sample xki

belongs to class j (for a one-hot encoded target, this evaluates to 1 for only one class, and
evaluates to 0 for the remaining classes), and p̂ki,j is the corresponding probability predicted
by the model.

During optimization, we seek to minimize this loss function with respect to the model’s
parameters. In the multi-head continual learning, it is common to have a set of parameters
shared across tasks, θ, and a set of task-specific parameters, θk, associated with each task.
With this convention, the model’s prediction is given by:

zki = fθk(gθ(x
k
i )). (3.3)

In this work, gθ represents the core network: a sequence of convolution and fully connected
layers that are shared across all tasks. fθk , on the other hand, represents a set of output
fully connected units (i.e., a linear transformation) that is specifically optimized for each
task. Given zki , the predicted probabilities are given by a softmax over the model’s output:

p̂ki,j =
ez
k
i,j∑

m e
zki,m

. (3.4)

Hence, it is clear that, for a single sample, the loss function Lkcls(x
k
i , y

k
i ) is a parametric

function of both θ and θk: Lkcls(x
k
i , y

k
i ; θ, θk).

For two tasks, T0 and T1, learned one after the other, the model begins by optimizing
θ and θ0 for T0. At the risk of introducing confusing notation, let’s denote the optimized
value of θ after learning task T0 by θ∗(0). To subsequently learn T1, the model optimizes
again θ, as well as a separate set of task-specific parameters θ1. As a consequence of this
re-optimization, one would expect θ to start drifting away from θ∗(0), leading to worsening
performance on T0 (i.e., we say the model forgets task T0).

Perhaps the most näıve way to prevent this worsening of performance on T0 while
learning T1 is to add an L2 regularization penalty to the cost function L1

cls of the form:

L1
reg = ||θ − θ∗(0)||22, (3.5)
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to obtain the regularized cost function:

L1 = − 1

N1

N1−1∑
i=0

C1−1∑
j=0

p1i,j log(p̂1i,j) + λ||θ − θ∗(0)||22, (3.6)

where λ is a hyper-parameter controlling the regularization strength. Thus, the L2 penalty
prevents changes away from the optimized parameter vector θ∗(0), which in turn prevents
forgetting T0. The downside to this penalty, however, is that it is isotropic: it penalizes
all individual parameters with the same strength. This means that the model will have no
capacity—no free parameters—left to learn T1 or subsequent tasks. This is a phenomenon
sometimes referred to as intransigence or negative forward transfer (Chaudhry et al., 2018).

3.2.1 Per-Parameter Importance

A more intelligent approach would be to penalize changes to parameters that are “im-
portant” to T0 while allowing less important parameters to change more freely. To do
this, recent methods estimate the importance of each parameter in the model and apply a
per-parameter penalty, to obtain a loss function of the form:

L1 = − 1

N1

N1−1∑
i=0

C1−1∑
j=0

p1i,j log(p̂1i,j) + λ
P−1∑
r=0

Ωr||θr − θ∗(0)r ||22, (3.7)

where we use P to denote the total number of parameters in the shared part of the network
and Ωr represents a penalty on changes to the rth parameter. Researchers have proposed
many different approaches to estimate Ωr, including the previously mentioned EWC and
RWalk. Most of these approaches, however, use in some form the partial derivatives of the
loss with resepct to a parameter, ∂L

∂θr
, to estimate the importance of that parameter.

3.2.2 Per-Unit Importance

Instead of computing and tracking per-parameter importance values, some approaches
estimate the importance of units (e.g., a convolution or a fully connected unit). One
advantage of this approach is that it is less computationally demanding. Another is that
it is more open to interpretation to consider units rather than individual weights (we can
more easily understand units as filters or feature detectors).
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Recent work by Jung et al. (2020) explored the use of the average value of a unit
activation on the training set samples as a measure of its importance. In other words, for
unit l, we estimate an importance value as:

Ωk
l =

1

Nk

Nk−1∑
i=0

hl(x
k
i ), (3.8)

where hl(x
k
i ) denotes the output of unit l for training sample xki . We will refer to this

approach as activations average in the rest of this chapter.

Our proposed approach to estimating unit importance will take the activations average
approach by Jung et al. (2020) as a starting point. In the next section, we will highlight
the latter’s primary weakness, and describe the approach proposed in this work.

3.3 Proposed Approach

While the activations average approach has its advantages, it can be inefficient in its use of
model capacity. This is more clearly noticeable in the model’s layers closer to the output.
As an example, consider the results shown in Fig. 3.1 and Fig. 3.2. The figures show the
activation values for the units in the last 2 layers before the classification layer for a 2-class
classification problem. On the right side of each figure, we see the average activation value
corresponding to each unit (shown in green). We also see a measure of how discriminative
each unit is (shown in blue). We will discuss these figures in more detail in the next
section, but for now we observe that the units with the highest activations average are not
necessarily the units that are most discriminative. In fact, some of the units with the lowest
activations average are among the most discriminative, while some of the units with the
highest activations average are among the least discriminative.1 This means that assigning
a high importance estimate to the units with high activations average is unnecessarily
using up the model’s capacity, by preventing the parameters of those units from changing,
while at the same time missing important units that should be preserved. In other words,
using activations average as an importance estimate leads to both intransigence as well as
a degree of forgetting.2

1Note that this ignores correlations between the units, which is a simplification common in importance
estimation approaches, given the high computational and memory costs of accounting for them.

2Jung et al. (2020) propose a sparsity-inducing approach in their paper to address the intransigence
issue. Our focus in this work, however, is on the importance estimate only.
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Figure 3.1: Left: activation values for the first fully connected layer for the 11th task in the
c100-2 task sequence (refer to Section 3.4). The activation values are shown for all units
and training samples. The training samples for the 2 classes are shown separately. Right:
The importance values assigned by both methods to the corresponding unit. All plots are
ordered according to the activations average values.
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Figure 3.2: Left: activation values for the second fully connected layer for the 11th task
in the c100-2 task sequence (refer to Section 3.4). The activation values are shown for all
units and training samples. The training samples for the 2 classes are shown separately.
Right: The importance values assigned by both methods to the corresponding unit. All
plots are ordered according to the activations average values.
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In view of this observation, we propose using a measure of how discriminative a unit
is as an estimate of its importance—especially for layers closer to the classification layer.
The emphasis on layers closer to the output aligns with how neural networks are thought
to operate: units in the initial layers learn common low-level features, while later layers
specialize and learn to identify higher-level, discriminative features. The emphasis is also
driven by empirical observation that supports this understanding of neural networks.

3.3.1 Class Separation as an Estimate of Importance

To quantify how discriminative a unit is, we draw inspiration from the literature on Fisher
Linear Discriminant Analysis (FLDA) (Murphy, 2012, p. 274). FLDA is a method used
to find the linear projection of a set of features to a low-dimension space that is most
conducive to classification purposes. That is, the low-dimension space that maximizes
class separation. To that end, FLDA is formulated to maximize the distance between the
class means in the projection space and minimize the within-class spread of each class. For
2 classes, this is equivalent to:

max
(µ1 − µ0)

2

σ2
1 + σ2

0

, (3.9)

where µj and σ2
j denote class j mean and variance in the projected space, respectively.

The objective of FLDA is to find the projection that maximizes this quantity. In this
work, however, we will use (3.9) as a measure of each unit’s importance. Hence, for unit l
and 2 classes, we have:

µkl,j =
1

Nk,j

∑
i:pki,j=1

hl(x
k
i ), (3.10)

where µkl,j is the activations average of class j training samples for unit l after learning

task Tk, Nk,j is the number of training samples from class j, and pki,j is jth element of the
one-hot encoded target of the class label yki .

Likewise, we compute class j spread for unit l after learning task Tk as:

σkl,j =
1

Nk,j − 1

∑
i:pki,j=1

(hl(x
k
i )− µkl,j)2, (3.11)

where we divide by Nk,j − 1 to compute the unbiased sample variance.
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With class means and variances computed, we estimate importance for unit l after task
Tk by:

Ωk
l =

(µkl,1 − µkl,0)2

σkl,1 + σkl,0
. (3.12)

The description so far has addressed the regularization up to the second task only,
where there is only a single penalty centred around the first task’s optimized parameter
vector. There are mainly 2 ways in the literature by which researchers address subsequent
tasks: 1) a separate penalty centred around every task’s optimized parameters (e.g., the
original EWC approach (Kirkpatrick et al., 2017), or 2) a single penalty centred around
the last task’s optimized parameter vector (e.g., RWalk (Chaudhry et al., 2018; Huszar,
2018)). We follow the second approach in this paper. Therefore, starting with the third
task in the sequence, we use:

Lksep =
∑
l

Ω̃k−1
l

∑
rl

||θrl − θ∗(k−1)rl
||22, (3.13)

where rl is used to index parameters of unit l and Ω̃k−1
l is a normalized weighted average

of importance parameters:
Ω̂k−1
l = α(Ωk−1

l + Ω̂k−2
l ) (3.14)

Ω̃k−1
l =

Ω̂k−1
l

maxn:n∈Ll Ω̂k−1
n

, (3.15)

where α is a hyper-parameter and we introduce Ll to denote the set of units in the layer
containing unit l. That is, the normalization is applied on a layer-by-layer basis.

We refer to this proposed importance estimation method as class separation.

3.3.2 Enhancing Class Separation via Hidden Layer Supervision

We noted earlier that the class separation-based importance estimates are especially tar-
geted at the layers closer to the output classification layer. This is because we expect those
layers to be most discriminative under standard gradient descent optimization.

In order to apply the class separation method on earlier layers more effectively, we
explicitly induce those layers to be more discriminative by introducing a supervision signal
at the targeted hidden layers. The approach draws on the “deeply supervised nets” work
by Lee et al. (2015), where they introduce the concept of “companion losses” at the hidden
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layers, in order to increase network transparency, discriminative ability of hidden layer
features, and overall performance of deep networks.

In our work, we use a single-layer softmax classifier at each targeted hidden layer that
is trained to take as input the hidden layer’s activations and predict the class labels for
the task’s training data.

Let the activation values for hidden layer u for input sample xki be hku,i = qu(x
k
i ), where

we use qu(·) to denote the mapping from the input layer to the output of hidden layer u.
We add as a regularization term to the overall objective function the following classification
loss:

Lkhidden = − 1

Nk

∑
u

Nk−1∑
i=0

Ck−1∑
j=0

pki,j log(ŝku,i,j), (3.16)

where ŝku,i,j are the probabilities predicted by hidden layer u’s classifier:

ŝku,i,j =
e(w

k>
u hku,i)j∑

m e
(wk>u hku,i)m

, (3.17)

where wku is the single-layer classifier’s weight vector for hidden layer u and task Tk. Note
that these hidden layer classifiers are only needed during training, and are discarded after
learning each task.

Putting together (3.2), (3.13), and (3.16), we obtain the full proposed objective function:

Lk = Lkcls + λsL
k
sep + λhL

k
hidden, (3.18)

where λs and λh are hyper-parameters.

3.4 Experimental Findings

In this section, we report experimental findings for the proposed approach, evaluating it
against recent continual learning methods. We begin by describing the experimental setting
and the task sequences used. Then we provide hyper-parameter and other implementation
details. In Subsection 3.4.3, we describe the evaluation metrics used and formally define
forgetting and intransigence. Finally, we provide detailed results for accuracy and capacity
usage.
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3.4.1 Task Sequences

We evaluate the proposed approach in the setting of image classification tasks. We limit
this work to binary classification tasks and design the task sequences to cover a variety of
scenarios, to test the effectiveness of each method under various conditions. The tasks are
drawn from the following data sets: CIFAR10, CIFAR100 (Krizhevsky, 2009), MNIST (Le-
Cun et al., 1998), KMNIST (Clanuwat et al., 2018), FashionMNIST (Xiao et al., 2017),
STL-10 (Coates et al., 2011), and SVHN (Netzer et al., 2011).

We define the following sequences of tasks:

• c10-2: CIFAR10 classes, 2 classes per task: [(0, 1), (2, 3), · · · ]. 5 tasks.

• c100-2: CIFAR100 classes, 2 classes per task. 50 tasks.

• c10-k-2: 2 classes from CIFAR10 followed by 2 classes from KMNIST, repeated:
[CIFAR10(0, 1),KMNIST(0, 1),CIFAR10(2, 3), · · · ]. 10 tasks.

• k-c10-2: Same as c10-k-2, but starting with [KMNIST(0, 1), · · · ]. 10 tasks.

• k-2: KMNIST classes, 2 classes per task. 5 tasks.

• diverse-2: CIFAR10 classes, followed by KMNIST, then MNIST, then FMNIST, and
then STL-10, 2 classes per task. 25 tasks.

The sequences are chosen to test performance with long and short sequences, similar,
dissimilar, easy and difficult tasks, and with different sequence orderings.

For all tasks and sequences, we use 100 training samples per class. We tune hyper-
parameters on a validation set extracted from the original training set associated with
each data set, using an 80/20 split. We evaluate the models on the test set of each data
set. For the diverse-2 task sequence, we use 100 test samples per class for evaluation. The
remaining sequences use the full test sets. All input images are scaled to be 3× 32× 32 in
size (gray scale images are replicated across the 3 channels).

3.4.2 Implementation Details

We use the following architecture for all networks: 3 convolution layers, with 128 units
each, followed by 2 fully connected layers, with 1024 and 256 units respectively. All units
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use ReLU activation. All convolution layers are followed by batch normalization, and the
first 2 convolution layers are also followed by 2× 2 max-pooling.

We use the Adam optimizer with a learning rate of 1e − 4 for all experiments. We
repeat each experiment 10 times and report average values.

For all sequences, we use a batch size of 100. For c100-2 and diverse-2, we train the
model for 200 batches per task, while for the remaining sequences, we train for 400 batches.

We compare the proposed approach against a vanilla baseline model, L2-regularized
model, EWC, RWalk, and the activations average method in (3.8).

For L2 and EWC, we use a regularization coefficient of 1e4 and 1e7, respectively, for
all experiments. We report results for the EWC version proposed by Huszar (2018). For
RWalk, we use a regularization coefficient of 1.0. The activations average method uses
the same normalization and averaging process outlined for the proposed class separation
method in (3.13)–(3.15). We use a regularization coefficient of 10.0 for the activations
average method for all task sequences except c100-2 and diverse-2, which use a value of
100.0. Additionally for both activations average and class separation, we set α in (3.14) to
1.0 for all sequences except c100-2 and diverse-2, where it is set to 0.5.

For the proposed class separation approach, we set λs and λh in (3.18) to 1.0 and
0.01, respectively. We apply class separation only to the fully connected layers, while the
convolution layers are regularized with activations average-based importance. We apply
hidden layer supervision only to the first fully connected layer. For convolution layers, the
activations averages are computed over the norm of the feature maps.

3.4.3 Evaluation Metrics

We make use of 3 metrics to evaluate the performance of the models: average task accuracy,
forgetting, and intransigence (Chaudhry et al., 2018). While average accuracy gives an
overview of overall performance, reporting forgetting and intransigence values gives us
more insight into the workings of each method.

By average task accuracy, we mean the average accuracy of the model on all the tasks
learned up to and including the active training task. Because tasks in a sequence vary in
difficulty, the average accuracy is not sufficient to understand the extent of forgetting and
intransigence.

To define forgetting,3 let’s first denote by At
′
t the accuracy of the model on task t having

3The definitions of forgetting and intransigence used in this work are based on those provided
by Chaudhry et al. (2018), with minor deviations.
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learned up to task t′ (we assume t ≤ t′). And let the accuracy of the model on task t at
any time after learning it be denoted by At. Forgetting of task t, then, is defined as:

Ft = Att − At. (3.19)

Intransigence is a measure of the resistance to learning introduced by the continual
learning framework or method. We define it with respect to a baseline reference point.
In this paper, the reference point is the accuracy of the same model on task t when it is
trained on all the tasks in the sequence simultaneously. For task t, we refer to this reference
point by Bt. Hence, intransigence is given by:

It = Bt − Att. (3.20)

Both forgetting and intransigence can take positive and negative values. Negative for-
getting values imply an improvement in performance on a previously learned task as a
result of subsequently learning another task (this is sometimes referred to as positive back-
ward transfer). Negative intransigence values imply that the continual learning framework
(coupled with the algorithm used) improves the performance of the model on the task
relative to the baseline reference point (this is sometimes referred to as positive forward
transfer).

3.4.4 Results

Figures 3.3–3.8 show the average accuracy results for all methods for the k-2, c10-2, c10-k-2,
k-c10-2, c100-2, and diverse-2 task sequences, respectively.

For the k-2, c10-,2 c10-k-2, c100-2, and diverse-2 task sequences, the proposed class
separation method improves on the activations average method. Only for the k-c10-2
task sequence does class separation perform slightly worse than activation average (by
about 0.8%) by the end of the final task, although for most of the training sequence,
class separation has a small advantage. We see the largest gaps in performance between
activations average and class separation in c10-k-2 (9.5%), c100-2 (5.8%), and diverse-2
(13.9%), with class separation taking the lead in all 3 cases.

The proposed class separation also performs competitively with other recent approaches
like EWC and RWalk. In fact, for the longest task sequence, c100-2, class separation
outperforms all other methods by a large margin (4.2% higher than EWC, 8.5% higher
than RWalk, and 5.8% higher than activations average), suggesting it is the most effective
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among the examined methods in striking a balance between countering forgetting and
efficient use of model capacity.

Similarly in the diverse-2 task sequence, class separation outperforms all other methods
by a significant margin (9.2% higher than EWC, 5.1% higher than RWalk, and 13.9% higher
than activations average). We note that EWC and RWalk perform comparably to class
separation at the beginning of the task sequence. By the 12th task, however, the gap
between EWC and class separation starts to grow, which is indicative of intransigence
starting to prevent additional learning (i.e., that the capacity of the model is inefficiently
used by EWC). Moreover, by the 23rd task, the gap between class separation and RWalk
also starts to increase.
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Figure 3.3: Average test accuracy on the k-2 task sequence for all tested methods. Vertical
dashed lines indicate transitions between training tasks.
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Figure 3.4: Average test accuracy on the c10-2 task sequence for all tested methods.
Vertical dashed lines indicate transitions between training tasks.
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Figure 3.5: Average test accuracy on the c10-k-2 task sequence for all tested methods.
Vertical dashed lines indicate transitions between training tasks.
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Figure 3.6: Average test accuracy on the k-c10-2 task sequence for all tested methods.
Vertical dashed lines indicate transitions between training tasks.
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Figure 3.7: Average test accuracy on the c100-2 task sequence for all tested methods.
Vertical dashed lines indicate transitions between training tasks.
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Figure 3.8: Average test accuracy on the diverse-2 task sequence for all tested methods.
Vertical dashed lines indicate transitions between training tasks.
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To gain more insight into the behaviour of these methods, we consider the forgetting
and intransigence values shown in Table 3.1 and Table 3.2, respectively, as defined in Sub-
section 3.4.3. The values shown are averages across all tasks in the sequences. We observe
that the proposed class separation method has lower intransigence values across all task
sequences when compared to activations average. The improvement is particularly signifi-
cant with longer task sequences (c100-2 and diverse-2), which partly explains the accuracy
values in Fig. 3.7 and Fig. 3.8. This is also in line with our hypothesis that using class
separation is more efficient in terms of capacity usage compared to the activations average
method, owing to the latter’s assigning high importance values to non-discriminative units.

We can also see that class separation leads to lower forgetting values in some cases
(c10-2, c10-k-2, diverse-2) compared to the activations average method.

The high intransigence values of EWC for c100-2 and diverse-2 help explain its poor
performance for these task sequences.

Overall, we see that class separation is effective at maintaining both forgetting and
intransigence low at the same time. In other words, it is effective at preventing forgetting
while still maintaining the model’s capacity to learn. It is also effective in cases of longer
sequences of tasks (c100-2 and diverse-2), where we observe that otherwise effective meth-
ods like RWalk and EWC perform poorly, due to either an inability to counter forgetting
over a long sequence or inefficient use of model capacity.
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Table 3.1: Forgetting values for all methods and task sequences.

c10-2 c10-k-2 k-c10-2 k-2 c100-2 diverse-2

Vanilla 16.9 19.5 19.9 5.3 30.6 24.4

L2 0.8 8.7 0.3 -0.1 0.8 6.0

EWC 4.7 8.8 4.7 4.8 3.3 7.0

RWalk 1.8 8.9 3.2 0.0 18.1 10.2

Activations average 4.1 15.6 4.8 0.2 5.9 11.4

Class separation 2.2 9.3 6.9 0.7 8.1 4.4

Table 3.2: Intransigence values for all methods and task sequences.

c10-2 c10-k-2 k-c10-2 k-2 c100-2 diverse-2

Vanilla 0.7 1.1 0.2 0.4 1.8 -0.5

L2 14.7 20.9 23.6 21.9 30.4 22.4

EWC 2.6 1.9 2.0 1.6 13.5 7.7

RWalk 3.1 2.1 2.5 2.1 3.0 0.4

Activations average 4.0 5.3 4.0 3.2 12.5 8.0

Class separation 3.1 2.1 2.5 1.6 4.5 1.1
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3.4.5 Capacity Usage

The intransigence values shown in Table 3.2 support our hypothesis that the proposed
class separation method is more efficient in its use of model capacity compared to the
activations average method. To explore this further, we report the percentage of units in
each layer that remains “free” after learning each task. By “free” we mean that the unit
is assigned an importance value below a specific cut-off value. We show results for a 0.1
cut-off and a 0.01 cut-off. Free units can be re-optimized without incurring large penalties.
Hence, the more free units remain in the model, the more effectively it is able to learn
subsequent tasks. Note that free capacity may increase from one task to the next due to
the normalization and averaging in (3.14) and (3.15).

Figures 3.9–3.14 show the free capacity for the two fully connected layers for the k-2,
c10-2, c10-k-2, k-c10-2, c100-2, and diverse-2 task sequences, respectively. We compare
the capacity usage of the proposed class separation method against activations average. In
each figure, we show free capacity plots for a 0.1 and 0.01 cut-off values.

For the 0.1 cut-off, we can see that in most cases the proposed approach performs better
(i.e., has higher free capacity values) than activations average. This is more clearly seen
with respect to the second fully connected layer.

When the cut-off is lowered to 0.01, we can see that class separation continues to have
significant free capacity in most cases, whereas the activations average method leads to
almost no units with importance values below the cut-off. For example, by the end of the
c100-2 sequence, class separation still leaves around 15% free capacity in the first fully
connected layer, while the activations average method is at around 0% at the same point.
Once again, these results support the hypothesis that activations average, on its own, is
inefficient in its use of model capacity, while class separation significantly reduces capacity
usage.
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Figure 3.9: Free capacity in the fully connected layers for the k-2 task sequence. Left:
free capacity in the first fully connected layer. Right: free capacity in the second fully
connected layer.
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Figure 3.10: Free capacity in the fully connected layers for the c10-2 task sequence. Left:
free capacity in the first fully connected layer. Right: free capacity in the second fully
connected layer.
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Figure 3.11: Free capacity in the fully connected layers for the c10-k-2 task sequence. Left:
free capacity in the first fully connected layer. Right: free capacity in the second fully
connected layer.
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Figure 3.12: Free capacity in the fully connected layers for the k-c10-2 task sequence. Left:
free capacity in the first fully connected layer. Right: free capacity in the second fully
connected layer.
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Figure 3.13: Free capacity in the fully connected layers for the c100-2 task sequence. Left:
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55



0 10 20
Learned tasks

0

20

40

60

80

100

La
ye

r's
 fr

ee
 c

ap
ac

ity
, \

%

diverse-2

0 10 20
Learned tasks

diverse-2

Activations average, cut-off: 0.1
Class separation, cut-off: 0.1
Activations average, cut-off: 0.01
Class separation, cut-off: 0.01
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To understand further how the two methods assign importance values to units, we
inspect the individual activation values and the corresponding importance estimates after
learning 10 tasks of the c100-2 task sequence. Fig. 3.15 and Fig. 3.16 show the activation
values for all units4 in the first and second fully connected layers, respectively, along with
the corresponding importance values assigned by activations average and class separation.
The units are sorted by class separation importance (the same plots are shown sorted by
activations average importance in Fig. 3.1 and Fig. 3.2).

Based on these figures, we observe that most of the units of high activations average are
largely not discriminative (on their own). And given these are the last two layers before
the classification layer, assigning high importance values to these units is likely a waste of
model capacity when there are much more discriminative units in the same layer. Moreover,
we note that many of the highly discriminative units are assigned relatively low importance
values with the activations average method. This highlights the main advantage of class
separation over activations average: the latter assigns importance based on the mean of
class-conditional means (for balanced classes), while the former assigns importance based
on the separation between class-conditional means (in addition to spread). Hence, we see
that in many cases units with low class-conditional means still have a large separation
between those means, and thus should be important. While, some units with high mean of
class-conditional means provide very small separation between classes, and thus, on their
own, are not discriminative.

Fig. 3.17 and Fig. 3.18 show the importance values for these layers at the same point
for activations average and class separation side by side. The figures show that class
separation importance values taper off toward 0 much faster than the activations average
values, reflecting the lower intransigence seen with the former method.

Figures 3.19–3.24 show corresponding activations and importance values in the same
c100-2 task sequence, but after learning 20 tasks (i.e., during the 21st task. The plots
show importance assignment by activations average and class separation consistent with
assignment after learning 10 tasks.

4Note: the exactly 0 values are due to “dead” ReLU units and they are excluded from the free capacity
plots in Figures 3.9–3.14.
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Figure 3.15: Left: activation values for the first fully connected layer for the 11th task in the
c100-2 task sequence. The activation values are shown for all units and training samples.
The training samples for the 2 classes are shown separately. Right: The importance values
assigned by both methods to the corresponding unit. All plots are ordered according to
the class separation values.
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Figure 3.16: Left: activation values for the second fully connected layer for the 11th task
in the c100-2 task sequence. The activation values are shown for all units and training
samples. The training samples for the 2 classes are shown separately. Right: The impor-
tance values assigned by both methods to the corresponding unit. All plots are ordered
according to the class separation values.
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Figure 3.17: Sorted importance values for activations average and class separation. The
values are shown at the 11th task in the c100-2 and for the first fully connected layer.
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Figure 3.18: Sorted importance values for activations average and class separation. The
values are shown at the 11th task in the c100-2 and for the second fully connected layer.
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Figure 3.19: Left: activation values for the first fully connected layer for the 21th task in the
c100-2 task sequence. The activation values are shown for all units and training samples.
The training samples for the 2 classes are shown separately. Right: The importance values
assigned by both methods to the corresponding unit. All plots are ordered according to
the class separation values.
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Figure 3.20: Left: activation values for the second fully connected layer for the 21th task
in the c100-2 task sequence. The activation values are shown for all units and training
samples. The training samples for the 2 classes are shown separately. Right: The impor-
tance values assigned by both methods to the corresponding unit. All plots are ordered
according to the class separation values.
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Figure 3.21: Left: activation values for the first fully connected layer for the 21th task in the
c100-2 task sequence. The activation values are shown for all units and training samples.
The training samples for the 2 classes are shown separately. Right: The importance values
assigned by both methods to the corresponding unit. All plots are ordered according to
the activation average values.
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Figure 3.22: Left: activation values for the second fully connected layer for the 21th task
in the c100-2 task sequence. The activation values are shown for all units and training
samples. The training samples for the 2 classes are shown separately. Right: The impor-
tance values assigned by both methods to the corresponding unit. All plots are ordered
according to the activation average values.
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Figure 3.23: Sorted importance values for activations average and class separation. The
values are shown at the 21th task in the c100-2 and for the first fully connected layer.
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Figure 3.24: Sorted importance values for activations average and class separation. The
values are shown at the 21th task in the c100-2 and for the second fully connected layer.
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3.4.6 Ablation Study

The method we propose in this chapter has two parts: 1) a class separation-based impor-
tance penalty (3.13) and 2) a hidden layer supervision signal (3.16). We want to see the
effect of the individual components on the overall performance. Table 3.3 shows the for-
getting and intransigence values for the class separation method with and without hidden
layer supervision for the 6 task sequences. In 5 out the 6 sequences, we see that the hidden
layer supervision reduces both forgetting and intransigence, albeit the effect is small. We
note though that this is expected, since we apply the hidden layer supervision penalty only
to the first fully connected layer, which is only one layer away from the classification layer.

3.5 Summary

We proposed in this chapter a novel unit importance estimation method for use in fixed-
capacity, regularization-based continual learning models. The proposed approach builds
on the activations average methods recently proposed by Jung et al. (2020), and addresses
some of its limitations in the layers closer to the output classification layer. The underlying
idea of the proposed method is that the extent to which a unit is discriminative is an
indicator of how important it is, particularly in the final layers. Based on the work on
Fisher linear discriminant analysis, we use class-conditional mean separation and within-
class spreads as an estimate of how discriminative a unit is. Moreover, we use the idea of
companion losses proposed by Lee et al. (2015) to induce units hidden layers to become
more discriminative. Through extensive evaluation on diverse image classification tasks, we
showed that the proposed approach is competitive with recent methods in the literature,
and attains an effective balance between countering forgetting and allowing additional
learning.

In the next chapter, we address a different aspect of fixed-capacity continual learning
models, namely, the durability of the learned representations absent an explicit penalty on
forgetting.
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Table 3.3: Class separation ablation study.

c10-2 c10-k-2 k-c10-2 k-2 c100-2 diverse-2

Forgetting

With hidden layer supervision 2.2 9.3 6.9 0.7 8.1 4.4

Without hidden layer supervision 3.3 10.0 4.2 0.9 8.2 6.4

Intransigence

With hidden layer supervision 3.1 2.1 2.5 1.6 4.5 1.1

Without hidden layer supervision 3.3 2.4 2.8 2.1 4.3 1.2
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Chapter 4

Learning Durable Representations1

We have learned so far that catastrophic forgetting is a major obstacle to building continual
learning models. In the previous chapter, we saw how regularization-based approaches that
penalize change to optimized parameter values can be used to counter forgetting. The
underlying logic of those methods is that, if the parameters are prevented from changing
after learning a task and while learning a subsequent task, then performance on the former
will remain at its previously optimized level. While this clearly serves to prevent forgetting,
it has the unintended consequence of preventing future learning. This remains true, to an
extent, even with the more sophisticated regularization methods we saw, such as elastic
weight consolidation (EWC) (Kirkpatrick et al., 2017).

We refer to methods like EWC as post hoc regularization approaches, because they
involve optimizing the model in the usual way, as one would optimizing for an isolated task,
and only after the act of learning do they attempt to counter forgetting. At that point,
the only option is to force the remembering of the learned representations—representations
that may not be suitable for a continual learning setting. In other words, with post hoc
regularization, the fact that we are optimizing a continual learning model does not influence
our approach to representation learning (aside from penalizing large changes to parameter
values).

In this chapter, we argue that the continual learning setting must be factored in from
the start, and should influence our approach to representation learning. A key factor that
should drive learning representations in the continual learning setting is that these rep-
resentations should be as general, as reusable, and as rich as possible. To clarify this,
consider a neural network trained on a binary image classification task. It may be enough

1This chapter is partly based on (El Khatib and Karray, 2019a).
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to solve this task by learning a small set of low-level features that happen to be discrim-
inative for the given data distribution. In fact, recent research by Jo and Bengio (2017)
suggests that conventional optimization tends to do just that. That may be acceptable
in the isolated learning setting, where our only concern is to learn a narrowly defined,
isolated task. We conjecture, however, that this contributes to catastrophic forgetting in
the continual learning setting.

In the continual learning setting, the model is expected to continue to learn new tasks
and experience new data over time. And so, learning representations that capture only
the minimum set of discriminative low-level features for the current training task will
necessitate significant re-optimization of the parameters to learn subsequent tasks, which
in turn gives rise to forgetting. On the other hand, learning reusable representations
reduces the extent of re-optimization, and thus reduces forgetting.

This leads to the question that we seek to address here: Given training data for some
supervised classification task,2 can we drive the optimization process such that the repre-
sentations learned are reusable for a subsequent task of the same nature? We conjecture
that there are two factors that lead to reusable representations while learning classifica-
tion tasks: 1) representations should capture abstract or high-level features, rather than
low-level statistics; and 2) representations should capture all the features present in the
training data, not only the discriminative ones.

We explore in this chapter various approaches that have the potential to encourage
reusable representations. In particular, we explore the effect of pre-training and auxiliary
tasks, both supervised and unsupervised, on the performance of continual learning models.
In addition, we propose a Kullback–Leibler (KL) divergence metric to track changes in
learned representations across training tasks. We show that the use of unsupervised auxil-
iary tasks is the most effective among the approaches we consider at countering forgetting,
rivalling in performance recent continual learning methods, such as EWC, even without
explicitly penalizing forgetting.

The rest of this chapter is organized as follows. Section 4.1 presents the approaches
we explore. Section 4.2 introduces the KL divergence metric. Section 4.3 introduces our
experimental setting and results. We conclude the chapter in Section 4.4 with a discussion
of future directions.

2In this work, we consider image classification tasks.
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4.1 Encouraging Durable Representations

As we have seen in Section 2.4, a large number of continual learning approaches in the
literature work by penalizing changes to model parameters after those parameters have
been optimized for a task at an earlier point. With fixed-capacity models having finite
representational capacity, there is always a balance to be struck between forcing a model
to remember earlier experiences (i.e., preventing forgetting) and leaving room for it to
learn new experiences (i.e., preventing intransigence (Chaudhry et al., 2018)). Approaches
that penalize changes too severely, such as L2 regularization, often remember the first task
learned but fail to learn any new task afterwards. More sophisticated methods, such as
EWC (Kirkpatrick et al., 2017) and RWalk (Chaudhry et al., 2018), still have to wrestle
with the same issue, but can generally achieve lower intransigence by making use of per-
parameter penalties that are scaled by each parameter’s importance, as we saw in the
previous chapter. We refer to such regularization approaches as post hoc methods (El
Khatib and Karray, 2019a) because they do not factor in the continual learning requirement
from the start (this is evident in the way such models learn the very first task), and only
attempt to force remembering after the fact of learning.

We attempt here to tackle the continual learning problem from another angle: driving
models toward learning durable representations that are less susceptible to forgetting in
the first place. Considering that forgetting is a by-product of the series of re-optimizations
that a model goes through when learning tasks in sequence, our hypothesis is that a model
that can learn more general, reusable representations will require a lower degree of re-
optimization and consequently will be less susceptible to forgetting.

In this section, we describe methods that have the potential to achieve more durable
representations. We evaluate the effectiveness of these methods in Section 4.3.

4.1.1 Auxiliary Tasks

One way to drive continual learning models toward learning durable representations is to
encourage the learning of parameters that are more general than the training task at hand.
For example, for a continual learning model that at some point is learning two classes of
images, consider these two optimization strategies:

1. Dedicating the entire capacity of the model toward performing well on this single
task; or
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2. Dedicating the model’s capacity toward capturing as much information as is available
in the input data, regardless of whether it is discriminative in the current training
task, while simultaneously performing well on the task at hand.

The first strategy is the standard isolated learning framework, which when ported to
the continual learning setting results in frequent re-optimization of the model’s parameters.
And thus, to prevent forgetting, post hoc continual learning methods, which adopt this
strategy, resort to explicit penalties on forgetting, which in turn hinder future learning, to
varying degrees.

We hypothesize that the second strategy is more suited for continual learning mod-
els that are expected to accumulate knowledge and tasks over time, and that it reduces
forgetting without an explicit penalty on it. We validate this hypothesis in section 4.3.

The question then becomes: how do we drive models to learn more general and reusable
representations from the same training data? We explore two types of auxiliary tasks to
answer this: unsupervised and supervised. In both cases, we constrain the model to use only
the training data of the current training task (i.e., the auxiliary tasks have to be derived in
real-time during learning from the primary task). Thus, we explore only approaches that
do not require a replay memory or access to external sources of data.

Unsupervised Auxiliary Tasks

Figure 4.1 shows the architecture we use for unsupervised auxiliary tasks. As is standard
in image classification models, such as convolutional neural networks (CNN), the model
consists of a sequence of layers (the “core network”) that encode the input images into a
higher-level representation. An output layer subsequently computes class scores from this
higher-level representation. We extend this standard architecture with a “reconstruction
network”. The auxiliary task then is to reconstruct an input image given its higher-level
representation at the output of the core network.

Formally, given an input image x and its one-hot encoded target class t, the output of
the core network is given by:

z = fθc(x),

where θc stands for the core network’s parameters and fθc is the input-output function cor-
responding to the core network. The output of the output layer is a probability distribution
over classes:

s = θo
>z,
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ŷi =
esi∑
j e

sj
,

where si and yi are class score and class probability for class i, respectively, and ŷ =
[ŷ1, · · · , ŷC ] is the softmax of s = [s1, · · · , sC ], C being the number of classes.

The output of the reconstruction network is given by:

x̂ = gθr(z),

where θr represents the parameters of the reconstruction network and gθr is the input-
output mapping represented by the reconstruction network.

To simultaneously optimize for the primary and auxiliary tasks, we minimize the fol-
lowing loss function:

Lcls(ŷ, t) + λLrec(x̂,x),

where Lrec(x̂,x) is the auxiliary unsupervised reconstruction loss, λ is a regularization coef-
ficient, and Lcls(ŷ, t) is the standard negative log likelihood loss for the current classification
task, given by:

− 1

N

N∑
j=1

C∑
i=1

t
(j)
i log ŷ

(j)
i , (4.1)

where we have introduced the superscript (j) to denote the jth training sample, and N
represents the number of training samples.

For Lrec, we experimented with both a mean squared error loss and a binary cross
entropy loss. Based on our initial experiments, we found the latter to perform better, and
therefore for the rest of this work, we use:

Lrec = − 1

D

∑
ijk

[xijk log x̂ijk + (1− xijk)(1− log x̂ijk)],

where i, j, and k index the width, height, and depth of the input, and D is the flattened
dimension of the input space. For simplicity, we show this loss here for a single sample.
Note that we apply a sigmoid transformation at the end of the reconstruction network.
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Figure 4.1: The architecture used with unsupervised auxiliary tasks. The core network
maps the input images to a higher-level representation. The reconstruction network maps
the higher-level network back to the input space to reconstruct the images.
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Supervised Auxiliary Tasks

In the same way that we use unsupervised reconstruction auxiliary tasks to encourage
more general, reusable representations, we also explore the use of supervised auxiliary
tasks. However, we again constrain ourselves to using only the training data available
as part of each task, without additional human supervision. In order to create auxiliary
supervised tasks automatically, we rely on the clustering-based framework described in
Algorithm 1. For each new task and its corresponding training images, we automatically
create additional label assignments over the images using multiple clustering algorithms,
and then use the new image-label pairs as auxiliary supervised tasks. The premise of this
approach is that the clustering algorithms will assign images to clusters based on patterns
that are not discriminative in the primary task, thus driving the core network to capture
more of the features in the training data.

Fig. 4.2 depicts the architecture used with supervised auxiliary tasks.

During training, we optimize the following loss function (shown for a single training
sample j):

Lcls(ŷ
(j), t(j)) + λ

∑
k

Lcls(ŷ
(j,k), t(j,k)), (4.2)

where k indexes the auxiliary task heads, λ is a regularization coefficient, and ŷ(j,k) is the
predicted probability distribution for sample j at the output of auxiliary head k. Lcls in
both cases is the standard classification loss shown in (4.1).

The K output heads and auxiliary sets of labels are stored temporarily, and are dis-
carded after each training task.
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Core network

Output
heads

Input
images

Figure 4.2: The architecture used with supervised auxiliary tasks. The core network maps
the input images to a higher-level representation. A set of auxiliary output heads is added
to the primary classification head. Each auxiliary head corresponds to a different clustering
of the training images.
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Algorithm 1 Continual learning process for task T using supervised auxiliary tasks

Require: input samples {(x(j), t(j))}Nj=1 for task T
Require: set of clustering algorithms {R1,R2, ...RK}
Require: continual learning model, core parameters θc
Require: gradient descent algorithm

1: add new head to model corresponding to task T
2: for k in {1, 2, ..., K} do
3: use Rk to cluster samples {x(j)}Nj=1

4: store cluster label assignments {t(j,k)}Nj=1

5: add new head to model corresponding to {t(j,k)}Nj=1

6: end for
7: use gradient descent to minimize cost function (4.2)
8: discard the K temporary heads and label assignments
9: return θc, and trained head for task T
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4.1.2 Pre-training

So far, we have described auxiliary tasks that are learned simultaneously with the primary
tasks. We also explore and evaluate the use pre-training in continual learning models.
As with auxiliary tasks, we explore both supervised and unsupervised pre-training. The
pre-training tasks are exactly the same as the ones described in Subsection 4.1.1, except
they are derived from the training data of the first task in the training task sequence. In
other words, we continue to constrain the model to the data available with each training
task.

Pre-training, supervised or unsupervised, is performed for a certain number of epochs
before the very first primary training task. We test whether such a framework leads to
a better starting position for the subsequent optimizations, and whether it has a lasting,
positive effect on performance.

4.2 Tracking Representation Changes

4.2.1 KL Divergence

Our hypothesis is that learning more general, reusable representations, as opposed to
representations that are specific to solving the training task at hand, will reduce the amount
of re-optimization per task, and consequently reduce forgetting.

To test this hypothesis, we introduce here a KL divergence-based measure to track
internal changes in the model (rather than simply monitoring the performance on specific
tasks). This gives us greater insight into representational shifts during optimization that
are induced by the methods we test.

The KL divergence between two discrete probability distributions p and q is defined as:

DKL(p||q) =
∑
y∈Y

p(y) log(
p(y)

q(y)
). (4.3)

Or, as an expectation:

DKL(p||q) = Ey∼p(y)[log(p(y))− log(q(y))]. (4.4)
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Now, let pθ1(y|x) represent the probability distribution over task T1 classes, given input
x, represented by the model after learning T1.3 And let pθ2(y|x) be the corresponding
distribution (i.e., over task T1 classes) after learning task T2. For the model to continue
to perform well on task T1 after having learned task T2, pθ2(y|x) should remain “close” to
pθ1(y|x). Referring to (4.4), the shift in model distribution over task T1 classes going from
θ1 to θ2 can be written as:

DKL(pθ1||pθ2) = Ex∼DT1 ,y∼pθ1 (y|x)[log(pθ1(y|x))− log(pθ2(y|x))], (4.5)

where DT1 is the input distribution of task T1.

Therefore, to estimate the representational shift going from any task Ti to any subse-
quent task Tj, one can use DKL(pθi ||pθj) shown in (4.5). A larger shift in KL divergence is,
in general (but not necessarily), associated with a larger degree of forgetting.

In our implementation, we use a slightly simplified version of (4.5). First, we sample x
from the union of all training datasets in the task sequence. Second, instead of monitoring
the distribution shift over the classes of each task separately, we use a dummy, fixed output
layer, and monitor the distribution over its classes instead. This allows us to monitor a
single average representational drift in the core network with respect to all tasks.

4.2.2 Other Measures

While we use the KL divergence-based measure in this work, it is by no means the only
measure applicable. One could similarly make use of other measures that quantify distance
between distributions, such as the Jensen-Shannon divergence, for example.

We have also explored other measures that could potentially be used to monitor repre-
sentation changes. Perhaps the simplest approach is to use a direct distance measure (e.g.,
||θ1−θ2||) or monitor the angle between the two parameter vectors (El Khatib and Karray,
2019a). However, we find that a KL divergence measure is more predictive of performance
than such direct measures. For one, a change in the value of θ does not necessarily translate
into a change in pθ(y|x).4

3Note the change in notation here: we used ŷ earlier to denote the probability distribution. In this
case, y denotes the class variable.

4A trivial case of this is a single layer network whose parameter vector is perpendicular to all input
samples x. One can scale the parameter vector without affecting θ>x.
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4.3 Experiments

In this section, we evaluate the auxiliary tasks and pre-training approaches described in
Section 4.1, in their supervised and unsupervised variants. We begin by describing the
evaluation metrics that will be used and the experimental setup.

4.3.1 Evaluation Metrics

We report results using three metrics: average accuracy, forgetting, and intransigence—the
same metrics used in Chapter 3. Refer to Section 3.4 for the definitions of these metrics.
As a reminder, though, note that the overall performance (i.e., the average accuracy) of a
continual learning model depends on the sum of forgetting and intransigence. Inspecting
forgetting and intransigence separately reveals more insights about the learning dynamics
and the strengths and weaknesses of each method.

In addition to these metrics, we will also report the performance of the models on
individual tasks, where needed.

Finally, we will use the KL divergence-based measure described in Subsection 4.2.1 to
monitor internal representation shifts.

4.3.2 Datasets, Methods, and Testing Framework

Once again, our focus in this work is on image classification tasks. To define the sequences
of tasks, we make use of these five data sets: CIFAR10, CIFAR100, MNIST, KMNIST,
and SVHN (Netzer et al., 2011).

The testing framework uses sequences of tasks similar to those used in Section 3.4 of
the previous chapter. Each task is sampled from the classes of the five data sets. The
model is optimized for each task for a certain number of iterations, after which it loses
access to the corresponding training data. In addition to the c10-2, c10-k-2, and k-c10-2
task sequences defined in Section 3.4, we define the following task sequences:

• c10-k: Learning CIFAR10 followed by KMNIST. 2 tasks, 10 classes/task.

• sv-m: Learning SVHN followed by learning MNIST. 2 tasks, 10 classes/task.

• c100-20: Learning the classes of CIFAR100, 20 at a time. 5 tasks, 20 classes/task.
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• c100-5: Learning the classes of CIFAR100, 5 at a time. 20 tasks, 5 classes/task.

Again, the data sets and sequences are chosen to test performance in diverse conditions:
long vs. short task sequences (e.g., c100-5 vs. c10-2), small vs. large tasks (c10-2 vs.
c100-20), and similar vs. dissimilar tasks (e.g., c10-2 vs. c10-k).

In addition to the models used in Section 3.4 (vanilla, L2, EWC, and RWalk), we also
compare against the Learning without Forgetting (LwF) method by Li and Hoiem (2018).
We will use the following notation to denote the approaches described in Section 4.1.

• Aux-us: Unsupervised auxiliary tasks.

• Aux-s: Supervised auxiliary tasks.

• Pre-us: Unsupervised pre-training.

• Pre-s-v1: Supervised pre-training, first version (see below for more details).

• Pre-s-v2: Supervised pre-training, second version.

4.3.3 Implementation Details

We use the same core network for all methods, consisting of 3 convolutional layers with
128 units each, followed by 2 fully connected layers with 1024 and 256 units, respectively.
All layers have leaky ReLU activation, with a 0.1 coefficient. All convolutional layers are
followed by batch normalization, and the first 2 convolutional layers are also followed by
2× 2 max-pooling.

All input images are scaled to have the same 3× 32× 32 dimension (gray scale images
are expanded across the channels dimension).

We use 100 training samples per class for all tasks, and optimize the model for 400
batches per task, with a batch size of 100 samples. We use 20% of the full training data
set for validation and hyper-parameter tuning, and report results on the test set of each
data set. We use an Adam optimizer for all experiments, with a learning rate of 10−4. We
repeat each experiment 10 times and report average values for all metrics.

Note that in most cases, hyper-parameter tuning was performed on the C10-2 task
and the parameter values were carried over to the other tasks. We believe this to be a
reasonable process in that a method should not need extensive tuning for every different
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task sequence. However, we note that some methods may be more susceptible to this
process than others.

We use a regularization coefficient of 1e3 for L2, 1e7 for EWC, 1.0 for RWalk and LwF,
1e3 for Aux-us, and 1e − 3 for Aux-s. Moreover, the regularization coefficient in the case
of Aux-s is reduced by a factor of 6 after each training task.

For Aux-s, we use KMeans to find clusters in the training images (refer to Algorithm 1),
with 2, 3, 4, 5, 6, 7, 8, and 10 clusters (that gives a total of 8 auxiliary tasks).

The two versions of supervised pre-training differ in how the auxiliary tasks are pre-
sented to the model. For pre-s-v1, the 8 tasks are presented simultaneously, and the model
is pre-trained for 400 epochs. For pre-s-v2, we use a random curriculum, where a single
auxiliary task is randomly selected and learned for 2 epochs. This process is repeated 200
times (for a total of 400 epochs, as well).

4.3.4 Results

Table 4.1 and Table 4.2 show forgetting and intransigence values, respectively, for all models
and experiments. We make the following observations:

• Unsupervised auxiliary tasks (Aux-us) generally lead to significant reduction in for-
getting, with performance comparable to explicit forgetting penalties such as EWC
and RWalk.

• The use of supervised auxiliary tasks (Aux-s) shows mixed results. In some cases
(c10-2), it does improve performance, albeit not as much as unsupervised tasks.
However, for most experiments, Aux-s did not show significant improvement.

• Unsupervised pre-training (Pre-us) shows a small reduction in forgetting in most
cases. However the improvement is not significant, and there are cases where it leads
to poorer performance (sv-m).

• Supervised pre-training (Pre-s-v1 and Pre-s-v2) shows mixed effects. In some cases
(c10-2, c10-k), it shows a reduction in forgetting. In those cases, pre-training with a
random curriculum (Pre-s-v2) induces a larger reduction in forgetting compared to
parallel pre-training (Pre-s-v1) (11.4% vs. 14.9% for c10-2; 24.3% vs. 28.7% for c10-
k). In other cases, however, supervised pre-training did not show significant effects,
and in one case (sv-m) led to increased forgetting.
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• Unsupervised auxiliary tasks (Aux-us) is relatively more effective with tasks with a
small number of classes (c10-2, c10-k-2, k-c10-2, c100-5). With larger tasks (c100-20,
sv-m, c10-k), Aux-us tends to induce higher intransigence. (See Subection 4.3.4 for
more on the forgetting-intransigence trade-off.)

• All models perform relatively worse when the tasks involved are dissimilar. Dissimilar
tasks include, for example, learning MNIST after SVHN (sv-m). While both are tasks
to recognize digits from “0” to “9”, their input distributions are significantly different
(e.g., images in the former are gray scale and handwritten, unlike those in the latter
task).

• With regard to the baseline models, we note that EWC does address the weakness of
the isotropic L2 penalty. This is reflected in the lower intransigence values for EWC,
reflecting the fact that, while it penalizes parameter changes (like L2), it does so
in a more intelligent manner, allowing less critical parameters more leeway to learn
additional tasks. Nonetheless, we still see that with a long or large task sequence
(c100-5, c100-20), EWC still suffers from high intransigence. We believe this is a
consequence of the purely post hoc regularization strategy, which leads to inefficient
use of model capacity (not as inefficient as L2, but still with limitations).

• We note that RWalk suffers from a higher degree of forgetting than EWC, especially
with long task sequences (c100-5) and large tasks (c100-20). We believe this is a
consequence of its use of a running Fisher information matrix estimate (Chaudhry
et al., 2018), which, as the model sees more training batches, de-emphasizes contri-
butions from older training batches. This again highlights the important trade-off
between forgetting and intransigence that continual learning models must balance
(Subsection 4.3.4).

• Finally, we note that LwF is a strong contender in cases of high inter-task similarity
(c100-5, c10-2, c100-20). However, because it relies on the current training data as
a proxy for older training data (Li and Hoiem, 2018), it shows poor performance
when the the task sequence contains highly dissimilar tasks (c10-k, c10-k-2, k-c10-2,
sv-m). (We will discuss LwF and the effect of inter-task similarity in more detail in
Section 5.1.)

In the remainder of this section, we discuss how different methods are impacted by
representation changes during training, as measured by the KL divergence-based metric
proposed in Subsection 4.2.1. Moreover, we highlight noteworthy observations about in-
dividual task accuracy over the training sequence, and draw insights about the different
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Table 4.1: Forgetting for the tested methods on diverse task sequences.

c10-2 c10-k c10-k-2 k-c10-2 sv-m c100-20 c100-5

Vanilla 15.3 30.3 17.5 16.6 36.5 33.5 44.1

L2 0.7 13.1 8.3 0.4 24.1 0.3 2.1

EWC 2.8 18.6 8.0 3.3 32.0 0.2 2.2

RWalk 2.7 18.2 9.2 3.6 29.2 11.0 22.2

LwF 0.4 16.1 12.1 9.3 22.5 6.5 4.1

Aux-us 2.6 10.6 7.4 5.5 4.0 4.3 14.7

Aux-s 8.8 27.1 18.9 15.0 36.1 34.3 42.8

Pre-us 14.3 26.9 16.4 16.4 42.7 31.7 41.2

Pre-s-v1 14.9 28.7 19.7 15.6 43.1 30.8 44.7

Pre-s-v2 11.4 24.3 18.2 16.9 40.6 28.4 39.7

Table 4.2: Intransigence for the studied methods on diverse task sequences.

c10-2 c10-k c10-k-2 k-c10-2 sv-m c100-20 c100-5

Vanilla 0.7 -3.1 -0.6 -0.1 -3.2 -5.7 -4.5

L2 14.3 20.4 19.2 22.1 5.6 12.4 25.7

EWC 2.2 -1.3 0.4 0.9 -2.6 11.9 13.2

RWalk 2.8 1.1 0.4 0.7 -2.0 1.6 -0.1

LwF 1.2 -2.7 -0.7 -0.2 -2.8 -5.7 -4.4

Aux-us 3.7 18.5 1.8 2.3 25.1 19.4 5.3

Aux-s 1.2 -2.8 -0.7 -0.6 -2.7 -5.9 -4.6

Pre-us 0.8 -2.1 -0.1 -0.2 -3.1 -5.9 -4.6

Pre-s-v1 0.7 -1.9 -0.1 -0.6 -0.3 -3.1 -3.7

Pre-s-v2 1.2 -0.3 0.1 0.1 1.0 -2.5 -3.0
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methods from them. We also discuss further the trade-off between forgetting and intran-
sigence, and how it affects the different models.

Representation Changes

We attempt here to understand the internal dynamics of the proposed approaches, in
particular Aux-us, in terms of the KL divergence measure in (4.5), and relative to the
other methods tested.

Fig. 4.3 shows the KL divergence values for the c10-2 task. The first observation
we make is that without any intervention (“Vanilla”), the model’s distribution exhibits a
relatively large KL divergence with every new training task, and a large accumulated change
across the full task sequence (“1− 5”). We can also see that the L2 model almost entirely
prevents any change to the model’s distribution across tasks. This is due to the explicit
and strong penalty it imposes on changes to any model parameter. As a consequence, the
L2 model exhibits high intransigence, as we saw in Table 4.2. Comparing L2 to EWC, we
can see the advantage of the latter’s more sophisticated approach to penalizing parameter
changes. EWC allows parameters to change in an inverse-proportionate manner to their
importance, as we saw in Chapter 3. Thus, it does allow for larger changes in the model’s
distribution than L2 (but still smaller than the Vanilla model), which again is reflected in
its lower intransigence values. We also note that EWC allows larger changes early on in
the training sequence (we talk more about this below). We note as well that RWalk and
LwF result in KL divergence reductions from task to task. In the case of LwF, however,
the accumulated changes across the entire task sequence can be larger than the Vanilla
model in some cases (e.g., Fig. 4.4). This is possibly explained by the way LwF prevents
forgetting, which does not involve an explicit penalty on changes to parameters.5

Considering the behaviour of the proposed approaches, Aux-us and Aux-s, we can see
that both reduce changes in the model’s distribution; however, Aux-us does so to a sig-
nificant extent. Aside from the L2 model which suffers from significant intransigence,
Aux-us has the lowest accumulated change across the task sequence (“1− 5”). This indi-
cates 1) that Aux-us learns representations that are better suited to the continual learning
setting, and 2) that those representations are durable (i.e., less susceptible to significant
re-optimization). Note that unlike the other methods, Aux-us does not impose any ex-
plicit penalty on forgetting and that the training data it uses are only the training data for

5This observation merits further investigation. We conjecture that our use of the simplified KL diver-
gence measure described in Subsection 4.2.1 may be obscuring some of the details of the behaviour of LwF.
One may explore this issue further in future work, using a per-task KL divergence measure.
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Figure 4.3: KL divergence values for the c10-2 task sequence. The last bar (in red) in
each plot shows the overall accumulated change after the first task. Note: Aux-1 refers to
Aux-us and Aux-2 refers to Aux-s.
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each new task. In other words, Aux-us is not explicitly penalizing changes to the model’s
parameters or distribution. Instead, the model is able to learn each new task without
significant changes to the distribution. We emphasize this point because it is critical to
the distinction between post hoc regularization methods (e.g., EWC) and what we are
proposing. Post hoc methods penalize changes after the fact; whereas our proposal is to
make changes unnecessary in the first place by learning reusable representations.

Fig. 4.4 shows the KL divergence values for the c10-k-2 task. We see again the same
consistent behaviour of the methods. Of note here is that the c10-k-2 alternates between 2
sets of highly dissimilar tasks (CIFAR10 classes and KMNIST classes). Hence, we see that
for most methods, the 1-step KL divergence is larger than the 2-step KL divergence shown
in Fig. 4.5 (e.g., “1−2” tends to be larger than “1−3”). In other words, there is a roughly
cyclical nature to the way the model’s distribution changes, where there is a large change
learning a KMNIST task after a CIFAR10 task, which is partially reversed after learning
another CIFAR10 task. For all but the LwF method, this results in an accumulated change
(“1− 10”) that is smaller than the sum of all 1-step changes.

The last task sequence we consider here is c100-5, which demonstrates the behaviour
for longer task sequences. The KL divergence values are shown in Fig. 4.6. We see that
EWC, RWalk, and Aux-us result in lower KL divergence values compared to the Vanilla
model. Fig. 4.7 shows a zoomed-in version of the same plots, and demonstrates noteworthy
differences in the 3 methods. First, we note that EWC allows larger changes in the model’s
distribution toward the beginning of the task sequence. This means that initially a large
potion of the model’s parameters are “unimportant” to previous performance and thus are
allowed to change significantly, which in turn allows the model’s distribution to change.
However, as the model learns more tasks, EWC starts to behave much like L2, in that
most of its parameters become “important”, and thus the model’s distribution does not
change significantly after. This again is the weakness of post hoc regularization: the
model’s capacity is used inefficiently and is used up quickly. By comparison, we can see
that RWalk continues to allow larger changes in the model’s distribution, due to its use of
a running Fisher information matrix estimate (Chaudhry et al., 2018), and this is reflected
in its higher forgetting and lower intransigence for this sequence (Table 4.1 and Table 4.2).
As for Aux-us, we see that again it reduces changes in model distribution at each step.
However, because the task sequence is long and Aux-us does not penalize change explicitly,
we see that the overall accumulated change (“1− 20”) is relatively large, which is reflected
in the forgetting value in Table 4.1.

As we end this treatment of KL divergence, we emphasize that the metric is not meant
as a general predictor of performance. In fact, as we saw in the results, some successful
methods allow significant change to the model’s distribution without suffering significant
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Figure 4.4: KL divergence values for the c10-k-2 task sequence. The last bar (in red) in
each plot shows the overall accumulated change after the first task. Note: Aux-1 refers to
Aux-us and Aux-2 refers to Aux-s.
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Figure 4.5: Two-step KL divergence values for the c10-k-2 task sequence. The values
represent the change in distribution after learning 2 tasks in the sequence. Because the task
sequence alternates between highly dissimilar sets of tasks (from CIFAR10 and KMNIST),
we see a roughly cyclical change in the model’s distribution for many methods.
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forgetting. However, for methods that do rely on the durability of the learned repre-
sentations, such as Aux-us and Aux-s, the KL divergence metric is a good indicator of
performance. And for the remaining methods, we use the metric to gain insight into their
internal workings.

Single task trends

The preceding discussion is perhaps a good segue to Fig. 4.8, which shows the performance
of EWC, RWalk, and Aux-us on individual tasks in the c100-5 task sequence. These plots
reaffirm the points we have made so far. 1) We see that EWC is able to maintain accuracy
on earlier tasks in the sequence (Tasks 1–2) better than RWalk and Aux-us, however at
the expense of not being able to adequately learn later tasks (Tasks 18–20). EWC’s lower
performance on later tasks is what drives its average intransigence higher than RWalk’s. On
the flip side, RWalk does a better job at learning later tasks, because of its less restrictive
regularization approach that de-emphasizes earlier tasks. As for Aux-us, we first note
that the learning curve for each task tend to be slower.6 Moreover, aside from the higher
intransigence early on, Aux-us follows a similar trend to RWalk, performing on later tasks
better than EWC, but seeing higher forgetting for early tasks.

Forgetting-Intransigence Trade-off

We have noted earlier that there is almost always a trade-off with continual learning models
between forgetting and intransigence. Methods that restrict the model too much (e.g., L2)
have low forgetting at the expense of high intransigence. Not restricting the model at all
(e.g., the Vanilla model) causes high forgetting with low intransigence.

Each method tends to have its own forgetting-intransigence curve. Fig. 4.9 shows this
curve for L2, EWC, and Aux-us. The ideal continual learning method should have low
forgetting and low intransigence, and hence its curve should be closer to the origin. We
can see that L2, for example, is a weak approach, as its forgetting-intransigence curve
always lies in the high intransigence region. Our proposed approach is more similar to the
EWC curve. Both can exhibit low forgetting at a small cost in intransigence.

Of course, the forgetting-intransigence curve is task-specific. And we have seen in
Table 4.2 that for certain tasks, both EWC and Aux-us will exhibit high intransigence.

6Allowing Aux-us to train for more epochs per task reduces its intransigence values. However, for a
fair comparison, and due to limited computational resources, we limit all experiments to 400 iterations per
task.
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Figure 4.6: KL divergence values for the c100-5 task sequence. The last bar (in red) in
each plot shows the overall accumulated change after the first task. Note: Aux-1 refers to
Aux-us.
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Figure 4.8: Single task behaviour for the c100-5 task sequence.
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The goal of a successful regularization-based continual learning method is to attain a
favourable forgetting-intransigence curve for all possible task sequences.

4.4 Summary

We presented in this chapter an alternative approach to post hoc regularization methods
that relies on learning durable representations that are more suited to continual learning.
We explored multiple methods, including supervised and unsupervised auxiliary tasks, and
supervised and unsupervised pre-training. Our experiments suggest that unsupervised
auxiliary tasks (Aux-us) is the most promising direction to pursue.

Using the KL divergence-based metric we proposed, we were able to show that Aux-
us was able to reduce changes to the model’s distribution across tasks, and consequently
reduce forgetting, without explicitly penalizing forgetting. Moreover, we presented an
extensive evaluation of the proposed method and multiple strong contenders from the
literature, and used the proposed metric to gain insight into the internal dynamics of each
method. There remain interesting questions about the behaviour of some of the models
(e.g., the ability of LwF to allow significant changes to the model’s distribution without
affecting performance).

As far as computational and memory consideration is concerned, we note that the
complexity of Aux-us is not a function of the number of tasks learned. The method only
requires additional fixed memory to store the decoder layers, and additional computations
to forward-pass and back-propagate through those layers.

As for possible extensions to this work, we believe there is potential for coupling durable
representations with explicit penalties on forgetting. We saw that explicit post hoc penal-
ties, like EWC, are inefficient with longer task sequences. We believe with better repre-
sentation learning from the start, we could improve on such methods.
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Chapter 5

Other Challenges to Continual
Learning

In the previous chapters, we reviewed and proposed various methods to counter forgetting,
through regularization and other mechanisms. As we stated earlier, catastrophic forgetting
is seen in the literature as a major obstacle to continual learning. In this chapter, we
address other challenges facing continual learning research. In particular, in Section 5.1, we
explore the effect of task properties, specifically inter-task similarity, on continual learning
performance and propose a mechanism to increase the resiliency of continual learning
models to changes in inter-task similarity. In Section 5.2, we examine the performance gap
between single-head and multi-head continual learning models and propose a strategy to
improve performance in the single-head setting.

5.1 On the Effect of Inter-Task Similarity

Our discussion of continual learning and catastrophic forgetting so far, however, can be
described as task sequence-agnostic. In most of these efforts, the tasks to be learned are
treated merely as replaceable evaluation tools, and do not factor in in the design decisions of
the algorithms put forward. We argue in this chapter that some characteristics of the tasks
to be learned, specifically inter-task similarity, bear a significant impact on forgetting, as
well as on the success or failure of certain continual learning methods. We seek to explore
this relationship and examine its effect on continual learning methods, focusing mainly on
the learning without forgetting (LwF) model (Li and Hoiem, 2016; Li and Hoiem, 2018),
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which is particularly susceptible to it. But we also show that the effect of inter-task
similarity on performance extends to continual learning models more generally, including
the EWC model (Kirkpatrick et al., 2017) we saw in previous chapters. From the insights
gained, we propose a rehearsal-based modification to LwF, EWC, and potentially other
methods, that addresses their vulnerability to sequences of low inter-task similarity. We
show that the proposed extension improves performance in various testing scenarios, at a
modest memory and computational cost.

5.1.1 Related Work

Inter-task similarity and the relation between tasks has been studied before in the context
of multi-task learning (Zhang and Yeung, 2013; Luo et al., 2017; Shui et al., 2019; Zhang
et al., 2018). The goal there is often to exploit the similarities between tasks to the model’s
advantage. To our knowledge, the effect of inter-task similarity has not been explored before
in the context of continual learning.

The use of replay was on of the earliest approaches explored in the literature to counter
forgetting (Ratcliff, 1990; Robins, 1993; Aljundi et al., 2019a). However, this to our knowl-
edge is the first attempt to use replay mechanisms to alleviate forgetting induced by low
similarity in regularization-based models. Replay has also been used recently to narrow the
gap between single-head and multi-head continual learning performance (Chaudhry et al.,
2018; El Khatib and Karray, 2019b).

Shin et al. (2017) demonstrated recently that their deep generative replay model can
be effectively used in conjunction with LwF. Our work differs from (Shin et al., 2017) in
that we focus on the effect of inter-task similarity on performance and use the LwF model
only to demonstrate the effectiveness of memory replay. Moreover, while Shin et al. (2017)
use a generative adversarial (Goodfellow et al., 2014) model to generate replay samples, we
show that a far less costly—computationally and in terms of memory—replay mechanism,
namely a small replay memory, is enough to reduce forgetting significantly when the tasks
learned are dissimilar.

5.1.2 Characteristics of Forgetting

In this section, we explore some of the characteristics of catastrophic forgetting, in partic-
ular, how inter-task similarity affects the extent of forgetting. As a start, we look at these
characteristics in the context of a generic neural network. Later, however, we narrow down
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on a specific continual learning model that is particularly affected by these characteristics
and that can benefit from taking inter-task similarity into account.

Effect of Inter-Task Similarity

Perhaps not surprisingly, when a neural network is trained on a sequence of tasks, one
after another, the similarity of each task to the previously learned and yet-to-be-learned
tasks has an impact on the overall performance of the model and the severity of forgetting
it experiences. Learning a sequence of tasks that are relatively more similar induces lower
forgetting than learning tasks that share no common features. An intuitive explanation of
this phenomenon is that inter-task similarity affects the amount of re-optimization of model
parameters with each new task—the more dissimilar the tasks are, the more significantly
the parameters drift, and that translates into more severe forgetting.

We focus again on forgetting in the context of image classification tasks. In this context,
inter-task similarity refers to the similarity between the images from different tasks.1 Two
tasks with significant overlap between their data distributions or content features, or where
the average image-to-image distance (with images taken from different tasks) is small, have
high inter-task similarity. For example, two binary image classification tasks where all
four classes are drawn from, say, CIFAR10 (Krizhevsky, 2009) have a higher inter-task
similarity, on the average, than two tasks drawn, respectively, from CIFAR10 and, say,
MNIST (LeCun et al., 1998).

To demonstrate this point, consider the performance of a baseline neural network
trained on the different sequences of tasks shown in Table 5.1 (values to the left of the
arrows). We can see that the most severe cases of forgetting occur when learning sequences
with low inter-task similarity (bottom two rows).

The effect of inter-task similarity on forgetting can be stated in terms of the so-called
backward transfer (Lopez-Paz and Ranzato, 2017) phenomenon: the effect of learning a
task on the performance of a previously learned task. Forgetting occurs in cases where, due
to different factors, the sequence of training tasks results in negative backward transfer.

Interestingly in some cases, a training sequence can result in positive backward transfer.
Fig. 5.1 shows such a case. We can see that every time the model transitions to learning a
task from CIFAR10, there is an increase in the accuracy on the original CIFAR10 task (even

1We note that this does not account for the effect introduced by the labelling over the image samples
in each task. However, this effect is tempered by the availability of task-specific parameters in the output
layer (i.e., the multi-head setting).
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Table 5.1: Average forgetting values for a baseline model and LwF. (Refer to Fig. 5.2 for
sample images from these data sets.)

Tasks Forgetting

Baseline → LwF

CIFAR10, 2 classes at a time 12.5%→ 0.6%

STL-10 → CIFAR10 10.4%→ 0.5%

CIFAR10 → KMNIST 29%→ 18.3%

SVHN → MNIST 39.1%→ 19.0%

though the model is never re-trained on that original task). This means that inter-task
similarity can even induce a reversal of forgetting after the fact.
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Figure 5.1: Accuracy on CIFAR10 classes (0,1) as the model is trained on the c10-k-2 task
sequence described in Section 3.4 (2-class tasks sampled from CIFAR10 and KMNIST in
alternating fashion). Shaded regions indicate the current training task (labelled above).

Figure 5.2: From top to bottom: samples from CIFAR10 (Krizhevsky, 2009), KM-
NIST (Clanuwat et al., 2018), STL-10 (Coates et al., 2011), and SVHN (Netzer et al.,
2011)
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Impact of Inter-Task Similarity on Continual Learning Approaches

While positive and negative backward (and forward) transfer in continual learning have
been noted before (Lopez-Paz and Ranzato, 2017; Chaudhry et al., 2018), in almost all
cases, they are not used to influence algorithmic design decisions or how forgetting is
approached, and are merely used as evaluation tools. In this work, we seek to use these
insights about the effect of inter-task similarity on backward transfer in improving on
continual learning approaches.

One of the more susceptible continual learning models to changes in inter-task similarity
is the Learning without Forgetting (LwF) model introduced by Li and Hoiem (2016). We
delve into the details of this model and what makes it susceptible to inter-task similarity
in the next section. Consider for now the results in Table 5.1. We can see again that
dissimilar tasks (the bottom two rows) induce a higher degree of forgetting in the first
place. We also see that LwF is relatively unsuccessful in countering forgetting in those
same cases.

5.1.3 Accounting for Dissimilar Tasks

In this section, we describe the rehearsal-based mechanism we propose to counter the
adverse effect of low inter-task similarity. We describe the proposed mechanism in the
context of the learning without forgetting model (LwF), and thus we begin with an overview
of LwF.

Learning Without Forgetting

We saw in Chapter 3 how fixed-capacity models counter forgetting through a regularization
mechanism (Kirkpatrick et al., 2017; Chaudhry et al., 2018; El Khatib and Karray, 2019a).
These methods work by imposing an explicit penalty on parameter drift, scaled by an
estimate of the importance of each parameter. By contrast, the learning without forgetting
(LwF) (Li and Hoiem, 2016; Li and Hoiem, 2018) model imposes a penalty on changes to
the input-output mapping represented by the model. This means that there is only an
implicit penalty on parameter drift. Moreover, in principle, model parameters are allowed
to change without penalty, provided the overall input-output mapping does not change.
In this respect, it is less restrictive than the methods we saw in Chapter 3 that impose
explicit penalties on changes to model parameters.
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The cost function used by LwF to prevent forgetting a previously learned task Tk−1
while being optimized for task Tk is of the form

Lkcls + λLk−1lwf (5.1)

where Lkcls is the standard cross entropy loss for the current training task:

Lkcls = − 1

Nk

Nk−1∑
i=0

Ck−1∑
j=0

pki,j log(p̂ki,j), (5.2)

and Lk−1lwf is the LwF penalty designed to penalize changes to the previously learned input-
output mapping. Ck is the number of classes in task Tk, p

k
i,j is the target probability that

sample xki belongs to class j, and p̂ki,j is the corresponding probability predicted by the
model.

Li and Hoiem (2018) use a distillation loss (Hinton et al., 2015) for Lk−1lwf :

Lk−1lwf = − 1

Nk

Nk−1∑
i=0

Ck−1∑
j=0

p̃∗k−1i,j log(p̂∗k−1i,j ), (5.3)

where

p̂∗k−1i,j =
(p̂k−1i,j )

1
r∑

m(p̂k−1i,m )
1
r

, (5.4)

and

p̃∗k−1i,j =
(p̃k−1i,j )

1
r∑

m(p̃k−1i,m )
1
r

. (5.5)

These two equations perform the transformations proposed by Hinton et al. (2015) on the
model’s output probability distribution .

p̃k−1i,j represents the output on task Tk−1 just before training on task Tk. p̂k−1i,j here
denotes the output on task Tk−1 while learning task Tk. Hence, the penalty drives the
outputs for task Tk−1 to remain close to their initial values prior to learning task Tk, which
in turn preserves the input-output mapping on task Tk−1.

A missing detail from the description above is the input images that are used to produce
responses p̃k−1i,j and p̂k−1i,j . Ideally, in order to counter forgetting of task Tk−1, one would
want to maintain the input-output mapping for inputs sampled from the data distribution
of Tk−1. This, however, would imply that the model still has access to this data set, which

102



is not consistent with the continual learning framework (with the exception of rehearsal
approaches). Instead—and this is where inter-task similarity becomes important—the
authors use the training data set for task Tk as a proxy for the training data set of task
Tk−1.

The use of the current training data set as a proxy for earlier data explains why LwF
is relatively unsuccessful in cases of low inter-task similarity: the current data are not a
representative sampling of the data over which LwF seeks to preserve the input-output
mapping.

Extending LwF With A Memory Component

In order to remedy this weakness in the original LwF approach (as well as in other continual
learning models), we propose extending LwF with a modest replay memory component.
As we show in the next section, even a memory budget of 1% the size of the training data
can be an effective remedy in cases of low inter-task similarity. Algorithm 2 summarizes
the proposed approach.2 Note that we show the steps for 2 tasks and without going over
batching details, but the algorithm is extensible to the general case.

As can be seen, we use a basic replay approach, where, after learning each task, we
store b samples from the associated training set in the replay memory. When learning
subsequent tasks, the model is trained on memory samples periodically, according to a
pre-defined schedule. In this implementation, the model rehearses memory samples after
every r iterations, and for s rehearsal epochs.

We argue in this work that many otherwise successful continual learning methods per-
form poorly when the learning sequence includes highly dissimilar tasks. As we show in
Subsection 5.1.4, the performance gains achieved by augmenting such methods with a small
replay memory outweigh the memory and computational costs incurred as a result.

Applicability to Other Methods

We developed Algorithm 2 using LwF as a base model. The approach, however, is ap-
plicable to other regularization-based continual learning methods. As we show in Subsec-
tion 5.1.4, the performance of the EWC model, for example, on dissimilar tasks improves
significantly when augmented with a replay memory.

2Note that we deviate from the original LwF approach slightly, in that we do not re-optimize θk−1 and
we do not use weight decay with any model.
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Algorithm 2 LWF-REPLAY for continual learning of 2 tasks

Require: sequence of tasks T0, T1 and corresponding data sets (X0, Y0), (X1, Y1)
Require: continual learning model, core parameters θg

Require: memory M , memory budget per task b, replay interval r, replay steps s
1: for k in [0, 1] do
2: if k > 0 then
3: compute starting old task responses p̃k−1i,j using Xk and θk−1

4: end if
5: initialize task-specific output head, θk

6: for step in training steps do
7: compute current task responses p̂ki,j using Xk and θk

8: compute Lkcls using (5.2)
9: if k > 0 then

10: compute current old task responses p̂k−1i,j using Xk and θk−1

11: compute penalty Lk−1lwf using (5.3)
12: L = Lkcls + λLk−1lwf // Eq. (5.1)
13: end if
14: update model parameters θg and θk using gradient descent on L
15: if k > 0 and replay interval r passed then
16: for h in [0, · · · , s] do
17: compute Lcls over memory samples
18: update core parameters θg using gradient descent // rehearsal updates
19: end for
20: end if
21: end for
22: Store b samples from (Xk, Yk) in memory M // update memory
23: end for
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5.1.4 Experiments

As before, our experimental setup consists of a set of continual learning problems, in each
of which a model is trained on a sequence of image classification tasks. The problems
are designed to evaluate the effect of inter-task similarity on catastrophic forgetting and
the sensitivity of different continual learning approaches to changes in this similarity. We
make use of the c10-2, c10-k, and sv-m task sequences from Section 3.4 and Section 4.3.
In addition, we define the following task sequence:

• k-m-f: KMNIST (Clanuwat et al., 2018) followed by MNIST (LeCun et al., 1998)
followed by FashionMNIST (Xiao et al., 2017).

We use c10-2 and k-m-f to test performance on sequences with high inter-task similarity,
and use c10-k and sv-m to test performance on sequences with low inter-task similarity.

Implementation Details

For all tasks and data sets, we use 100 training samples per class. This makes each task
relatively more challenging, as well as reduces the training time required for executing the
set of experiments. All images are resized to 32 × 32 pixels and normalized to the range
[0, 1]. Gray scale images are replicated across the channels dimension, so that they have
the same shape as the RGB images and can be processed by the same model. All models
share the same base architecture. With the exception of task-specific output units, all
the parameters of each model are shared across tasks (which gives rise to forgetting). We
report the average of 10 runs for all experiments. We use λ = 1.0 for the LwF coefficient
(Eq. (5.1)). For the 1% budget cases, we use a replay interval (r in Algorithm 2) of 1
(memory samples are rehearsed with every batch) and 1 replay step (s in Algorithm 2).
For the 5% budget cases, we use a replay interval of 10 and 5 replay steps. We use a batch
size of 100. We use a 1e7 coefficient for the EWC model.

We use the same core architecture for all the tested models, with 3 convolution layers,
each with 128 units of 3 × 3 kernel size. Each convolution layer is followed by batch
normalization. The first 2 convolution layers are also followed by 2× 2 max-pooling. The
convolution layers are then followed by 2 fully-connected layers, with 1024 and 256 units,
respectively. All layers use a leaky ReLU activation, with a negative slope of 0.1.

All models are trained for 400 batches of size 100 per task and evaluated in 100-batch
intervals.
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All of the data sets used have a pre-defined train/test split. We use 20% of the original
training data (i.e., not the reduced-size version used in training) for hyper-parameter
tuning. The reported results are on the test set.

For all experiments, we use the Adam optimizer (Kingma and Ba, 2015), with a learning
rate of 1e− 4, and 0.9 and 0.999 for β1 and β2, respectively.

Evaluation Metrics

As we did in the last two chapters, we will make use of forgetting and intransigence (defined
in Subsection 3.4.3) to monitor performance.

Results

We evaluate the following models: a vanilla baseline model; replay with 1% memory bud-
get per task (Replay-1); replay with 5% memory budget per task (Replay-5); LwF; the
proposed extension to LwF (LwF-Replay-1 and LwF-Replay-5); EWC; and a memory-
augmented version of EWC with 1% memory budget (EWC-Replay-1) and with 5% mem-
ory budget (EWC-Replay-5).

Table 5.2 and Table 5.3 show forgetting and intransigence values, respectively, for all
models. We note the following observations.

First, both baseline EWC and LwF perform relatively poorly in the low inter-task
similarity cases, with EWC resulting in 16.5% forgetting for c10-k and 29.5% for sv-m,
and LwF resulting in 18.3% and 19.0% for the same tasks, respectively. By contrast, both
EWC and LwF reduce forgetting to a very low degree when dealing with sequences of high
inter-task similarity, with EWC reducing forgetting to 4.4% for k-m-f and 3.7% for c10-2,
and LwF resulting in 2.3% for k-m-f and 0.6% for c10-2.

In the two experiments with low inter-task similarity (c10-k, sv-m), the addition of
the replay memory to EWC and LwF significantly improves performance. EWC-Replay-1
reduces forgetting to 6.6% in c10-k (from 16.5% with EWC) and to 11.7% in sv-m (from
29.5% with EWC). We note that increasing the size of the replay memory from 1% to 5%
does not improve the performance of EWC-Replay. LwF-Replay-5 reduces forgetting to
7.8% in c10-k (from 18.3% with LwF) and to 8.4% in sv-m (from 19.0% with LwF).

Overall, when dealing with dissimilar tasks, the memory-augmented models outperform
the other variants, and outperform replay-only models with similar memory budgets, by a
significant margin.
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Table 5.2: Average forgetting percentage values.

Model k-m-f c10-k c10-2 sv-m

Vanilla 21.9 29.1 12.5 39.1

Replay-1 14.6 17.8 10.7 23.7

Replay-5 6.7 12.9 5.2 17.5

EWC 4.4 16.5 3.7 29.5

EWC-Replay-1 1.7 6.6 2.2 11.7

EWC-Replay-5 1.9 7.6 1.5 12.8

LwF 2.3 18.3 0.6 19.0

LwF-Replay-1 2.7 11.9 2.1 15.0

LwF-Replay-5 2.5 7.8 0.7 8.4

Table 5.3: Average intransigence percentage values.

Model k-m-f c10-k c10-2 sv-m

Vanilla −1.5 −2.3 0.4 −2.5

Replay-1 −1.0 0.3 1.2 −1.9

Replay-5 −1.0 −0.6 0.7 −1.8

EWC 0.9 −0.6 1.9 −2.0

EWC-Replay-1 1.2 0.0 2.7 -1.7

EWC-Replay-5 6.1 0.7 2.9 -1.8

LwF −1.3 −1.7 0.5 −2.1

LwF-Replay-1 −1.0 −0.7 1.9 −1.8

LwF-Replay-5 −0.8 −0.5 1.4 −2.0
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Complexity Considerations

The results show that a memory budget as low as 1% of training data can be sufficient
to improve performance. For example, for the c10-k task sequence, the memory budget
per task is only 10 samples. For the 3 × 32 × 32 images we are using, that’s equivalent
to 30, 720 parameters to store—a small fraction of the model’s size. That is a small cost
to pay given the improvement in performance. In our implementation, memory size scales
linearly with the number of tasks. The added computational cost is also small (optimizing
for the samples in memory), but also scales linearly with the number of tasks in our
implementation.

5.2 Single-Head Continual Learning3

So far, we have seen various aspects of the continual learning problem. In Chapter 3, we
discussed the role of parameter importance in countering catastrophic forgetting. In Chap-
ter 4, we discussed representation learning and emphasized the role of durable, reusable
representations in preempting forgetting. We explored the effect of inter-task similarity
on the performance of certain continual learning methods in the previous section. In this
section, we turn to another aspect of the continual learning problem, namely, performance
in the single-head setting.

Most of the research effort in continual learning has focused primarily on ways to counter
catastrophic forgetting and, in so doing, retain knowledge in a model’s parameters over mul-
tiple optimizations with different objectives. Various approaches have been proposed over
the years, including parameter regularization strategies, rehearsal and pseudo-rehearsal,
and network growing.

We argue in this section that, in being mainly focused on countering forgetting, con-
tinual learning research has neglected what we see as an equally important issue facing
continual learning—the performance gap between single-head and multi-head models.

Continual learning models are usually presented in one of two settings: multi-head or
single-head, with the latter’s performance usually being much worse. (Chaudhry et al.,
2018). We look more closely at the source of performance degradation in single-head
models and propose a strategy to remedy it. We show that the commonly used softmax
cross entropy loss is not well aligned with the single-head framework. Instead we propose

3Parts of this section are adapted by permission from Springer Nature: Springer Lecture Notes in
Computer Science, vol 11662 (El Khatib and Karray, 2019b), c© Springer Nature Switzerland AG 2019.
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using multiple binary cross entropy losses. We argue that, coupled with auxiliary unlabelled
data, this leads to single-head models that are more robust to the addition of new classes
during future learning.

5.2.1 Background

The literature on continual learning does not dedicate much attention to the single-head
vs. multi-head question. In most cases, models are evaluated in either setting without
explicit reasoning. In other cases, researchers argue that reporting results in the multi-
head setting is justified by the fact that it is often significantly more feasible to predict
the task from which an input sample is drawn than to classify that sample into one of the
classes of that task. Some researchers, on the other hand, have argued, correctly in our
view, that reporting results in the multi-head setting paints an overly optimistic picture
for the performance of continual learning models, compared to single-head performance,
and that it is not always straightforward to distinguish between tasks without external
input (Chaudhry et al., 2018).

Single-Head vs. Multi-Head

As we now discuss continual learning in two settings—multi-head and single-head—it is
fitting to refine some of the terminology we have been using in the previous chapters, to
simplify the presentation of this chapter. We define the following concepts:

• A learning experience is the process of presenting a set of training data to a model and
the corresponding optimization of the model’s parameters. Each learning experience
derives from a different, possibly mutually exclusive, data set. The subset of classes
present in the training data of one experience is also different from, and possibly
mutually exclusive with, the subset present in another.

• An episode4 is a sequence of learning experiences (i.e., what we have been referring
to as a task sequence).

• A task encapsulates a set of classes among which a model should learn to discriminate.
When evaluating a model on a task, no external information is given to the model
that would allow it to narrow down the subset of classes from which a test image

4Note that our use of the term episode differs from its usage in the reinforcement learning literature.
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comes. On the other hand, when evaluating a model’s performance on a set of
tasks, the model is told the task (and hence the subset of classes) from which each
test image is drawn. In terms of network architecture, each task corresponds to a
different output head (a subset of output units grouped together). The subset of
classes corresponding to each task (or head) can be expanded over time. We provide
this definition to remove any ambiguities when discussing single-head and multi-head
settings.

To give a concrete example, consider a model that learns the 10 classes of MNIST (Le-
Cun et al., 1998) in a continual learning framework, 2 classes at a time. In both single-head
and multi-head settings, this corresponds to an episode of 5 learning experiences. In the
single-head setting, all 5 learning experiences are over the same task (call it, for example,
mnist-0 ), hence there is only one output head. The output units in this head however are
expanded with each new learning experience: with the first experience, the mnist-0 head
contains 2 units, corresponding to classes 0 and 1; by the 5th experience, it contains 10
units, corresponding to the 10 classes. In each learning experience, the model is presented
with data from 2 classes only, but is evaluated on data drawn from all the classes in the
mnist-0 head. By contrast, in the multi-head setting, the model eventually contains 5
heads, each with 2 output units. With each presented image, the model is told which head
to use (by the end, this increases the probability of correctly guessing the class of an image
randomly from 1

10
in the single-head setting to 1

2
in the multi-head setting). Fig. 5.3 and

Fig. 5.4 show illustrations of the classification process in the multi-head and single-head
settings, respectively.

Sources of Performance Decay

We have seen so far two main sources of performance decay in continual learning mod-
els: forgetting and intransigence. We defined these concepts formally in Subsection 3.4.3.
Briefly though, forgetting refers to the difference between the peak or final performance
of a model on a task while optimizing for that task and the subsequent performance on it
while optimizing for other tasks. Intransigence refers to the resistance to learning a task
introduced by the continual learning setting. Both of these concepts are defined in the
multi-head setting. Fig. 5.5 shows a typical continual learning trend on a task sequence,
and Fig. 5.6 illustrates forgetting and intransigence.

In the single-head setting, we face a third source of performance decay, resulting from
having the model make classification decisions over a larger set of classes (the union of
the classes in all learning experiences). We refer to this source of decay as confusion and
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Figure 5.3: Illustration of making classification decisions in the multi-head setting. The
model at this point uses two output heads (corresponding to two tasks). For each test
input, the model selects one output head.
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Figure 5.4: Illustration of making classification decisions in the single-head setting. All
learned classes from all learning experiences are added to a single output head. For each test
image, the model makes a classification decision (i.e., outputs a probability distribution)
over all classes in the output head.
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we define it as the gap between multi-head accuracy and single-head accuracy. Fig. 5.6
illustrates confusion in a typical continual learning problem.

Understanding Confusion

Before discussing ways to alleviate confusion in the single-head setting, it is helpful to
further discuss how the phenomenon arises.

Consider the 2-class classification problem shown in Fig. 5.7. The plot on the left shows
the feature space for two classes, “red” and “blue”; the schematic on the right shows the
two units in the output layer corresponding to the two classes. When the “red” and “blue”
units are optimized to solve this classification problem, the “blue” unit learns to output
high values for samples in the blue region of the feature space and low values for samples
in the red region. The “red” unit, on the other hand, learns to output high values in the
red region and low values in the blue region.

Now consider what happens after the same model learns an additional “green” class
in the absence of training data for “red” and “blue” (shown in Fig. 5.8). Since the “red”
and “blue” units where never optimized using “green” training samples, the units do not
learn to output low values for “green” samples. In practice, some “green” samples will
output high values for the “red” and/or “blue” units, and if those values are higher than
the output of the “green” unit, those samples will be misclassified.

These misclassified samples are behind the confusion seen in the single-head setting.

5.2.2 Proposed Approach

Binary vs. Multi-Class Classification Loss

We focus in this work on image classification tasks, where the objective is to train a model
to learn to predict class y ∈ C given an image x. The cost function often used here is the
cross entropy or the multi-class negative log-likelihood:

L(θ) = − 1

N

N∑
i=1

log pθ(yi|xi), (5.6)

where N is the number of training samples and yi is the true class of xi. Note that here
the model probability distribution pθ is a softmax distribution over all the classes present
in the current learning experience:
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Figure 5.5: Typical multi-head performance on a sequence of tasks. Vertical dashed lines
indicate training task transitions. Horizontal dashed lines show baseline performance on
each task. Performance on each task is shown separately. The highlighted task is illustrated
further in Fig. 5.6.

Figure 5.6: Illustration of forgetting, intransigence, and confusion in a typical continual
learning problem.
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Figure 5.7: Understanding confusion in the single-head setting. Left: feature space for a
two-class classification problem. Right: corresponding units in the output layer.

Figure 5.8: The introduction of a third “green” class in a subsequent learning experience.
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pθ(y|x) =
ezy∑
j∈C e

zj
. (5.7)

Based on our discussion of confusion, we argue here that this cost function is not an
appropriate choice for the loss in the single-head setting. This function drives the output of
the unit corresponding to the correct class to be higher than the output of the other units
in the learning experience. Ideally, the optimization should drive the model distribution
toward the one-hot encoded ground truth. In practice, however, the resulting distribution
has higher entropy, even for correctly classified inputs. For example, a high-accuracy
model on a 4-class classification problem may correctly predict a probability distribution
[0.25, 0.25, 0.3, 0.2] for a sample from class 2 (out of classes 0−3). While this may not affect
performance in a multi-head setting, it does have the potential to degrade performance in
the single-head setting.

Consider, for example, that in a subsequent learning experience this same model learns
another 4 classes, 4 − 7, using the same cost function. When evaluating this model with
samples drawn from classes 0− 7, the predicted class of the model is the maximum output
across all output units in the output head. This would be a reasonable prediction strategy
had the model been trained to minimize a single negative log-likelihood for all 8 classes.
However, with the model being trained with 2 learning experiences, one for classes 0 − 3
and another for 4 − 7, this is no longer the case. This is because units 0 − 3 have been
optimized to output values that make sense relative to outputs from other units in the
same learning experience. The same is true for units 4 − 7. Now, presented with a test
sample, say from class 2, the output of the units from the first learning experience may
be [0.2, 0.2, 0.32, 0.28] and the output of the units from the second learning experience
may be [0.35, 0.25, 0.25, 0.15]. The maximum taken across the units of the first learning
experience corresponds to the correct class. Taken across all classes, however, it results in
a misclassification.

This example illustrates the weakness of optimizing the output of units only relative to
other units in the same learning experience. What is the alternative, though? Optimization
relative to all units in the head is not possible in the continual learning framework (assuming
one does not use a replay memory).

We conjecture that optimizing separate binary classifiers for each class in a learning
experience leads to predictions better suited to an expanding single-head that can be
extended with additional classes over time. Taken on its own, a binary classifier is optimized
to output a high probability for a correct sample and a low probability for any other sample.
Of course, the samples seen in the training set of a learning experience are still limited to
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a subset of classes from the total in the head. And so, one could argue that the binary
classifier is still making relative predictions just as the softmax classifier. Our experiments,
however, suggest this is not the case, especially when coupled with unlabelled auxiliary
data, as we discuss in the next section.

To train a binary classifier for a unit, we binarize the labels of the samples in the cor-
responding learning experience. During optimization, we jointly minimize multiple binary
cross entropy cost functions, one for each unit in the learning experience:

L(θ) =
R∑
u=1

Lu, (5.8)

where R is the number of units in the learning experience and

Lu = − 1

N

N∑
i=1

log pθ(y
(u)
i |xi). (5.9)

pθ here is a binary distribution over y(u), where y(u) = 1 for a sample from class u and 0
otherwise.

Using Auxiliary Unlabelled Data

In order to arrive at more general binary classifiers for each class (i.e., classifiers that will
not significantly deteriorate when faced with samples drawn from outside the classes they
were trained with), we propose augmenting the training sets for all learning experiences
with additional data. Ideally, one would want to have training data for all classes that will
eventually be added to an output head present for all learning experiences. But this is not
feasible in the continual learning framework. We instead propose to use unlabelled data.

Unlabelled data are relatively cheap to obtain. For a robot navigating an environment,
for example, unlabelled images can be randomly sampled from its surroundings. In web-
connected applications, random data can be scraped from the internet.

We augment the training set for each learning experience with random unlabelled data.
To train a binary classifier, these data samples are given negative labels. This assumption
may not always hold. However, for many applications, such as image classification, the
probability of a randomly sampled image to be positive for any class is so low that the
resulting data contamination, if any, ends up being negligible.
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5.2.3 Experimental Findings

In this section, we present our experimental results. We begin with a comparison of
the multi-head and single-head continual learning settings. In both settings, we train a
convolutional neural network (CNN) on CIFAR100 (Krizhevsky, 2009) incrementally. We
present results for different episode configurations. In the baseline episode, there is a single
learning experience with all 100 classes from CIFAR100. We also use episodes with 2 50-
class experiences, 5 20-class experiences, 10 10-class experiences, 20 5-class experiences,
and 50 2-class experiences. These episode configurations are designed to show how the
multi-head and single-head settings affect performance in scenarios ranging from a large
number of small learning experiences to a single large learning experience.

Fig. 5.9 and Fig. 5.10 show results in the multi-head and single-head settings, re-
spectively. We note a number of observations from these two figures. First, generally,
multi-head performance is significantly better than single-head performance. Second, us-
ing multi-head performance as a measure of forgetting can be misleading: as Fig. 5.9 shows,
performance for the baseline episode (where there is no continual learning or forgetting) is
worse than all other episodes. In fact, as the number of learning experiences increases, the
final average accuracy on all tasks in the episode increases. Which is counter-intuitive, as
one would expect the larger number of learning experiences to bring about more forgetting.
The reason behind this, of course, is that a as the number of learning experiences in an
episode increases, the difficulty of each individual task decreases, which raises the average
performance overall. Table 5.4 illustrates this point more clearly. The table shows the final
average accuracy in each case vs. the accuracy of a model that makes random guesses.

Another observation we note from these results is that the degradation in performance
that can be ascribed to catastrophic forgetting is significantly less than that which can be
ascribed to confusion in the single-head setting. This highlights the importance of learning
to recognize classes in a way that is robust to the addition of classes over time. And this
is what we try to address with the proposed strategies.
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Table 5.4: Final average accuracy on CIFAR100 for different multi-head and single-head
episode configurations. Reprinted by permission from Springer Nature: Springer Lecture
Notes in Computer Science, vol 11662 (El Khatib and Karray, 2019b), c© Springer Nature
Switzerland AG 2019.

Multi-head Single-head

Episode Trained Random ∆ Trained Random ∆

Two 50-class 34.8 2.0 32.8 20.9 1.0 19.9

Five 20-class 43.0 5.0 38.0 18.1 1.0 17.1

Ten 10-class 45.8 10.0 35.8 12.9 1.0 11.9

Twenty 5-class 53.0 20.0 33.0 8.6 1.0 7.6

Fifty 2-class 61.4 50.0 11.4 3.5 1.0 3.0

One 100-class - - - 32.5 1.0 31.5
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Figure 5.9: Average accuracy on CIFAR100 for different multi-head episode configurations.
Reprinted by permission from Springer Nature: Springer Lecture Notes in Computer Sci-
ence, vol 11662 (El Khatib and Karray, 2019b), c© Springer Nature Switzerland AG 2019.
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Figure 5.10: Average accuracy on CIFAR100 for different single-head episode configura-
tions. Reprinted by permission from Springer Nature: Springer Lecture Notes in Computer
Science, vol 11662 (El Khatib and Karray, 2019b), c© Springer Nature Switzerland AG
2019.
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Countering Confusion

We demonstrate now the effect of using our proposed approach on narrowing the gap
between single-head and multi-head performance. We begin by describing the testing
framework and implementation details.

Implementation Details

We use the following architecture for the core network: 3 convolution layers (128 units
each) followed by 2 fully connected layers (1024 and 128 units, respectively). Convolution
layers are followed by batch normalization, and the first 2 layers are also followed by 2× 2
max-pooling. All layers use a leaky ReLU activation, with a 0.1 coefficient. We use the
Adam optimizer with 1e− 4 learning rate for all experiments.

We use an episode with 8 learning experiences. Each learning experience corresponds to
a 4-class classification problem, where the classes are randomly drawn from CIFAR100. By
the end of the episode, the model learns a total of 32 classes. We use 100 training samples
per class. For the proposed approach, we also make use of 5000 unlabelled samples from
the STL-10 (Coates et al., 2011) data set. In addition, for the binary cross entropy loss,
we use a weighting coefficient of 10 for the positive class (to counter the class imbalance).

The model is trained for 700 batches per learning experiences, with a batch size of 100.
For the first 100 iterations of each learning experience, only the output units are updated,
while the core network is frozen.

We repeat all experiments 10 times and report average values.

Results

Fig. 5.11 shows the result for the proposed approach vs. a vanilla baseline model in the
multi-head and single-head settings. We can see that the proposed approach has a negligible
effect on the multi-head performance (which is expected, since it is not designed to counter
forgetting) and a significant positive effect in the single-head setting. By the end of the
episode, the proposed approach results in an 8% improvement in the single-head setting.
These gains are brought about by countering confusion (rather than forgetting). Table 5.5
shows a breakdown of performance in terms of forgetting and confusion. As we can see,
the proposed approach reduces confusion by more than 10%.
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While the proposed approach reduces confusion, it has no effect on forgetting. Hence,
it stands to result in further improvement in the single-head performance if used in con-
junction with methods that counter forgetting. Fig. 5.12 shows the result of combining the
proposed approach with EWC (Kirkpatrick et al., 2017). (We use a 10e7 regularization
coefficient for EWC, and a 10e4 coefficient for the combined model.) Again, we can see
that while EWC improves forgetting (and thus the multi-head performance), the addition
of the proposed approach does not affect multi-head performance significantly. On the
other hand, EWC does not result in a significant improvement in the single-head setting.
When the proposed approach is used with EWC, we reap the benefits of both approaches,
reducing forgetting and confusion. As we can see in Table 5.5, the overall improvement
in the single-head setting is more than 15% (25.6% vs. 10.5%). For reference, a baseline
model with the same architecture and trained on all 32 classes simultaneously achieves a
48% accuracy.
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Figure 5.11: Average accuracy in the multi-head and single-head settings. Vertical dashed
lines indicate transitions in learning experiences.
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Figure 5.12: Average accuracy in the multi-head and single-head settings, with EWC.
Vertical dashed lines indicate transitions in learning experiences.

Table 5.5: Multi-head and single-head performance of the proposed approach.

Forgetting Confusion Multi-head Single-head

Vanilla 23.1 51.1 61.6 10.5

Proposed 22.6 40.8 59.0 18.2

EWC 5.9 59.1 73.4 14.3

Proposed + EWC 6.2 46.5 72.2 25.6
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5.3 Summary

We explored in this chapter the role played by inter-task similarity in continual learning
models. We showed that inter-task similarity has a significant effect on the severity of
forgetting. Moreover, we showed that continual learning models, such as LwF and EWC,
are sensitive to changes in inter-task similarity. Building on those insights, we proposed
a rehearsal-based extension to LwF and EWC, and showed that a 1% memory budget is
enough to improve performance when learning sequences with low inter-task similarity.

In the second part of this chapter, we proposed a strategy to improve the performance
of continual learning models in the single-head setting. We showed that through a combi-
nation of a loss function more suited to this learning framework and the use of auxiliary
unlabelled data, we are able to achieve a significant improvement in the single-head average
accuracy. While the proposed approach addresses confusion and not forgetting, we showed
that combining it with a method that counters forgetting, such as EWC, results in further
improvement to single-head performance.
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Chapter 6

Conclusion

6.1 Summary

The last decade has seen significant advances in the field of deep learning. Whether in
computer vision, natural language processing, or speech recognition applications, deep
models have shown remarkable capabilities.

Nonetheless, and as success inevitably attracts scrutiny, we are becoming more aware
of the limitations of current deep learning technologies. This dissertation focused on one
of those limitations: that, while they tend to excel on isolated tasks, deep models perform
poorly in a continual learning setting.

We saw that catastrophic forgetting is often seen as the primary culprit behind this
poor performance in the continual learning setting, leading continual learning researchers
to focus on devising various methods to counter forgetting. We attempted to build on some
these methods in this dissertation. We also tackled other aspects of the continual learn-
ing problem, including the effect of task properties on performance and the gap between
performance in the multi-head and single-head settings.

We saw in Chapter 3 that importance estimation plays a critical role in fixed-capacity
continual learning models, where it is important to balance countering forgetting with free-
ing up model capacity to allow additional learning. We proposed a novel unit importance
estimation method based on class separation. The approach builds on recent work by Jung
et al. (2020), and draws on the work on Fisher linear discriminant analysis (Murphy, 2012,
p. 274). We showed that by using a unit’s ability to discriminate between classes as a
measure of its importance, we are able to mitigate forgetting while keeping intransigence
in check.
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We took a different approach to countering forgetting in Chapter 4, arguing that en-
couraging durable representations—representations that are in and of themselves less sus-
ceptible to forgetting—can be as effective at countering forgetting as using explicit post hoc
penalties (Kirkpatrick et al., 2017; Chaudhry et al., 2018; El Khatib and Karray, 2019a).
We showed that using auxiliary unsupervised tasks, we are able to reduce the amount of
re-optimization of model parameters from task to task, thus improving continual learning
performance and reducing forgetting, without an explicit forgetting penalty.

In Section 5.1, we explored the effect of task properties on the performance of continual
learning models and showed that lower inter-task similarity leads to higher forgetting.
We demonstrated this effect on recent continual learning methods, and showed that the
performance of methods such as learning without forgetting (LwF) (Li and Hoiem, 2016; Li
and Hoiem, 2018) and elastic weight consolidation (EWC) (Kirkpatrick et al., 2017) varies
significantly with inter-task similarity. We showed that using a small replay memory can
alleviate some of the performance degradation when dealing with dissimilar tasks.

Finally, in Section 5.2, we addressed the performance of continual learning models in the
single-head setting. We explored the sources of performance decay in this setting relative to
the multi-head setting and showed that improving performance in the single-head setting
requires not only countering forgetting, but also countering confusion. We proposed a
simple approach to reduce confusion in the single-head setting, using auxiliary unlabelled
data and a modified cost function, and demonstrated that it can be used effectively in
conjunction with EWC to simultaneously reduce forgetting and confusion.

6.2 Future Work

As we look toward the future, we note potential directions to extend the work presented
in this dissertation.

First, we demonstrated the effectiveness of the importance estimate presented in Chap-
ter 3 for sequences of binary tasks. We would expect similar performance gains to extend
to sequences of multi-class tasks. The extension to a multi-class setting is possible using
multi-class versions of Fisher linear discriminant analysis (Murphy, 2012, p. 274).

Second, while we presented learning durable representations in Chapter 4 as an alter-
native to post hoc regularization methods, we see the two approaches as complementary.
Depending on the setting, durable representations are still subject to forgetting, and stand
to benefit from being used in conjunction with explicit penalties on forgetting, such as those
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used in elastic weight consolidation (Kirkpatrick et al., 2017) or other regularization-based
approaches (Chaudhry et al., 2018; Lopez-Paz and Ranzato, 2017).

Third, we saw in Section 5.1 how task properties such as inter-task similarity influ-
ence the behaviour and performance of continual learning models. An interesting potential
extension to the work we presented is to use estimates of inter-task similarity to adapt con-
tinual learning methods in real-time. While it is clearly not feasible to calculate similarity
between two task distributions that are not available concurrently, one could make use
of replay memory samples, limited as they may be, to calculate an estimate of inter-task
similarity.

Finally, while we focused in this dissertation on sequences of image classification tasks,
we note that the continual learning framework is more general, and applicable to other
types of tasks. There is potential to apply some of the ideas proposed here to other
domains, such as reinforcement learning tasks, for example.
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