
Understanding Scalability Issues in
Sharded Blockchains

by

Anh Duong Nguyen

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2020

© Anh Duong Nguyen 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Some of the source code, text and figures in Chapter 3 are borrowed from our joint poster
publication co-authored by myself, my supervisor, Dr. Golab, and a PhD student, Mr.
Chunyu Mao [51]. The system architecture discussed in this thesis was jointly designed
by me, Dr. Golab and Mr. Mao, and the software prototypes were co-developed with Mr.
Mao. I implemented the additional components described in Chapter 4, developed the
testing scripts and carried out the experiments in Sections 3.4 and 4.3.

iii

Abstract

Since the release of Bitcoin in 2008, cryptocurrencies have attracted attention from
academia, government, and enterprises. Blockchain, the backbone ledger in many cryp-
tocurrencies, has shown its potential to be a data structure carrying information over the
network securely without the need for a centralized trust party. In this thesis, I delve into
the consensus protocols used in permissioned blockchains and analyze the sharding tech-
nique that aims to improve the scalability in blockchain systems. I discuss a permissioned
sharded blockchain that I use to examine different methods to interleave blocks, referred
to as strong temporal coupling and weak temporal coupling. I provide empirical exper-
iments to show the roles of lightweight nodes in solving the scalability issues in sharded
blockchain systems. The results suggest that the weak temporal coupling method performs
worse than the strong temporal coupling method and is more susceptible to an increase in
network latency. The results also show the importance of separating the roles of nodes and
adding lightweight nodes to improve the performance and scalability of sharded blockchain
systems.

iv

Acknowledgements

I would like to thank my supervisor, Dr. Wojciech Golab, for all of the support and
motivation throughout my study at the University of Waterloo. This thesis would not be
possible without his keen insights and advice. I would also like to thank Dr. Paul Ward and
Dr. Mahesh V. Tripunitara for providing their valuable feedback on my thesis. In addition,
I would like to thank Mr. Chunyu Mao for his collaboration in our ICBC poster paper [51].
I want to thank Ripple and the Faculty of Engineering for sponsoring this research. Last
but not least, I also want to express my gratitude to our former Dean of Engineering,
Dr. Pearl Sullivan, for her enormous contribution to the Faculty of Engineering and the
University of Waterloo.

v

Dedication

This is dedicated to my family and my significant other. Thank you for your constant
love and support.

vi

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Permissionless vs. Permissioned Blockchain 2

1.2 Scalability Issues of Blockchain . 3

1.3 Sharding in Blockchain . 3

1.4 Contributions and Organization . 4

2 Literature Review 5

2.1 The Consensus Problem . 5

2.1.1 Paxos and Egalitarian Paxos . 7

2.2 Blockchain Protocols . 10

2.2.1 Permissionless Blockchain and BFT Protocols 11

2.2.2 Permissioned Blockchain and BFT Protocols 15

2.3 Sharded Blockchain Protocols . 17

2.3.1 Elastico . 18

2.3.2 OmniLedger . 19

2.3.3 Rapid Chain . 20

2.3.4 Learnings . 21

vii

3 Interleaving Blocks in a Sharded Permissioned Blockchain 23

3.1 Methods of Interleaving . 24

3.2 System Architecture . 25

3.3 Implementation . 28

3.3.1 Protocol Buffers and gRPC . 28

3.3.2 Concurrency in Go . 30

3.3.3 Functionalities in Front-End Servers 30

3.3.4 Pseudo-Code Description . 31

3.4 Evaluation . 34

3.4.1 Simulated Environment . 34

3.4.2 On AWS EC2 . 39

3.4.3 Summary . 41

4 Lightweight Front-End Servers 42

4.1 Motivation . 42

4.1.1 Simplified Payment Verification . 42

4.1.2 Bloom Filter . 43

4.2 Implementation . 45

4.3 Evaluation . 49

4.3.1 Adding Lightweight Front-End Servers to the System 50

4.3.2 Varying Bloom Filter Sizes . 53

4.3.3 Ratio of Full Front-End Servers in a System 55

5 Conclusion and Future Work 57

References 59

APPENDICES 67

A FLP Impossibility 68

viii

List of Figures

2.1 Bitcoin block structure . 12

2.2 Bitcoin transaction structure . 12

2.3 A typical sharding mechanism in blockchain. 18

3.1 Methods of interleaving . 24

3.2 System design for comparing methods of interleaving. 26

3.3 Block structure . 27

3.4 Transaction structure . 27

3.5 Common functions of strong and weak coupling FE servers 34

3.6 Strong-coupling front-end servers pseudo-code 35

3.7 Weak-coupling front-end servers pseudo-code 36

3.8 Performance of strong and weak temporal coupling methods in simulated
environment with no simulated network latency 37

3.9 Performance of strong and weak temporal coupling methods in simulated
environment with a 10ms round trip simulated latency 38

3.10 Performance of strong and weak temporal coupling methods on AWS EC2 40

4.1 A Bloom filter with m = 8, n = 2 and k = 2. 44

4.2 A Bloom filter with a collision vector. 44

4.3 Adding lightweight front-end servers to the system design 46

4.4 Common functions in full and lightweight front-end servers 47

4.5 Strong-coupling full front-end servers pseudo-code 48

ix

4.6 Weak-coupling full front-end servers pseudo-code 49

4.7 Lightweight front-end servers pseudo-code 50

4.8 Four ways to distribute blocks from back-end servers to front-end servers . 52

4.9 Compare the performances of strong and weak coupling methods, with and
without using lightweight front-end servers. 53

4.10 Performance with and without using Bloom filters to check double-spending
within each block. 54

4.11 Peak throughputs with different number of full front-end servers 56

x

List of Tables

3.1 Round-trip latency across AWS regions . 39

xi

Chapter 1

Introduction

Over the past decade, blockchain technology has attracted attention from both academia
and industry. After its introduction in the Bitcoin white paper [61] in 2008, blockchain
has been serving as the backbone of Bitcoin and other succeeding cryptocurrencies, such
as Ethereum [76], Litecoin [26], etc. Blockchain technology has emerged with a promise to
securely send and share a large amount of data in a peer-to-peer manner without the need
for traditional centralized authority. Besides the cryptocurrency markets, governments,
academia, and private companies are exploring other areas where blockchain technology
can be applied [53, 81]. Some of the potential applications include smart contracts (insur-
ance, legally binding agreements, etc.), data confidentiality in healthcare, and supply-chain
management [13, 54, 66]. Contrary to the traditional financial system, each participant in
a blockchain actively contributes to the correctness of the system and may not trust each
other. Blockchain systems can provide distributed, highly fault-tolerant systems while the
participants can remain pseudo-anonymous. The content of a blockchain is shared publicly
and resistant to modification. There is no central authority that can corrupt a blockchain
or tamper with its content. Any modification requires the collaboration and agreement
of a majority of participants in the network. Diminishing the role of a central authority
allows blockchain systems to enhance their security and eliminate a single point of failure.

Despite its promising applications, blockchain has been facing challenges to compete
with existing centralized services. At the heart of those challenges is the widely discussed
issue of scalability [12, 34]. Several blockchain systems have used the sharding technique
to improve scalability and reduce space overhead [24, 37, 50, 79]. In sharded blockchain
systems, the computational workload and blocks are partitioned into multiple shards, where
each shard maintains an independent blockchain and communicates with each other to
handle cross-shard transactions.

1

In this thesis, I compare different methods to interleave blocks in sharded blockchains
and propose a novel architecture that improves the scalability. Concretely, I first analyze
several existing sharded blockchains, their consensus protocols, and their mechanisms to
handle intra-shard and cross-shard transactions. Second, I present the design and imple-
mentation of a novel permissioned sharded blockchain. Using this blockchain, I compare
two methods to interleave blocks from different shards, referred to as strong and weak tem-
poral coupling. I show that under less-than-ideal network conditions, the strong temporal
coupling method improves the scalability of the blockchain system. Finally, I propose,
implement, and show that using lightweight nodes coupled with a Bloom filter to check
double-spending can substantially improve the scalability of the blockchain system.

1.1 Permissionless vs. Permissioned Blockchain

There are two categories of blockchain systems: permissionless and permissioned. In a
permissionless blockchain, any node can join and leave the network without permission.
To join a permissionless blockchain network such as Bitcoin [61], a node only needs a pair
of public and private keys to sign their messages and create an address to receive coins.
This allows any user to join anonymously and makes it possible for an adversary to create
multiple identities to increase the weight of their vote in the system. This type of attack
is referred to as a Sybil attack [21]. Permissionless blockchains have proposed different
types of consensus to solve this problem, such as Proof-of-Work [60] and Proof-of-Stake
[27], where nodes cast their votes using their computational power or the number of stakes.
These types of consensus protocols do not limit the number of participants and are public
and decentralized, but inefficient in scaling [80].

A permissioned blockchain controls the group of participants, as opposed to permis-
sionless blockchains [29, 64]. That can be suitable for applications where participants need
permission to join and need to share their identities, although they may not need to have
mutual trust. By granting permissions to a specific group of participants, permissioned
blockchains can generally solve more complex problems with higher throughput and lower
latency. They can be particularly useful in permissioned enterprises where they need per-
mission to access information in blockchains. The applications of permissioned blockchains
have attracted attention in private enterprises. For example, the Hyperledger Fabric [3] is
a permissioned blockchain protocol that can serve as a foundation of blockchain systems
in private companies. Each node in the Hyperledger Fabric must have a known identity
and requires permission to access information in the network. In some sectors, such as fi-
nance and healthcare, it is essential to share and manage permissions to access data while

2

maintaining privacy. Such applications can benefit from using private blocks for regulating
data storage, permission, and distribution.

1.2 Scalability Issues of Blockchain

Scalability is a characteristic of a system that can improve performance by adding more
resources. In blockchain, scalability is a term related to several quantitative metrics. For
example, in [18], scaling a blockchain system refers to any improvement in the perspective
of throughput, latency, bootstrap time, or cost per transaction. A widely-discussed metric
in evaluating a blockchain system is its peak throughput, which is the maximum number
of requests that a blockchain system can process per unit of time. In blockchain protocols
similar to Bitcoin, each request is a transaction. The throughput of a blockchain system
is generally affected by the frequency of blocks and their sizes. For example, in Bitcoin,
those parameters are fixed. One block can have a maximum of 1MB transactions, and
one block is mined approximately every 10 minutes [60]. A Bitcoin transaction with one
input and two outputs takes about 250 bytes, which means Bitcoin can have a maximum
of 4200 transactions every 10 minutes. A second metric to measure the performance of a
blockchain system is latency. A transaction is processed when it is confirmed in a valid
block, and the latency indicates the time it takes to confirm a transaction. A shorter
latency means a shorter waiting time, and hence extends the ability of blockchains to serve
in various applications.

Currently, Bitcoin has an average throughput of only 7 transactions per second [74],
and the chain adds around 50GB of data every year. Meanwhile, on average, Visa processes
2000 transactions per second. Besides, it takes Bitcoin around 10 minutes to create a block
and an hour to confirm the validity of the transactions [61]. Improving the scalability in
blockchains is crucial to exploit its full potential, making it possible for blockchain-based
applications to achieve performance comparable to existing centralized technologies. This
has raised new challenges and questions to the future designs of blockchain so that it can
handle a higher workload while maintaining its decentralized nature.

1.3 Sharding in Blockchain

Sharding is a well-known approach used in the traditional database to spread the load
horizontally [5], widely used in distributed databases such as Spanner [15]. It allows the

3

distribution of data on a wide range of data centers, and this approach can improve per-
formance when a query requires only a subset of shards. Several works have been using
the sharding technique to solve the scalability problem of blockchain [24, 37, 50, 79]. In
blockchains, sharding is a way to partition consensus workload and transactions to multi-
ple nodes. The blocks and the computational workload are separated into smaller chunks
and distributed to different nodes and not all nodes need to store the entire chain or do
all of the computational work (such as verifying cryptographic signatures). The nodes are
partitioned into shards, where each shard can act independently as a secure, distributed
ledger. This technique enables the parallelization of processing, storage, and computing.
Hence it can help to achieve a scale-out blockchain system by reducing the overhead of
communication, computation, and data storage. However, sharding has also brought some
problems in designing the intra-shard and cross-shard consensus. This issue will be later
discussed in detail in Section 2.3.

1.4 Contributions and Organization

The thesis is organized as follows. In Chapter 2, I discuss several consensus protocols
in blockchains, analyze the sharding technique, and how it is used in sharded blockchain
systems. I present and compare two popular approaches to handle cross-shard transactions,
which are maintaining a root chain or building a full-mesh connection among shards. In
Chapter 3, I present a novel permissioned sharded blockchain and investigate two methods
to interleave blocks from different shards to form a root chain and refer to them as strong
and weak temporal coupling methods. I show that the weak temporal coupling method
is more susceptible to the increase in network latency and using this method reduces the
throughput of the blockchain system. In Chapter 4, I propose a novel way to use Bloom
filters to help check double-spending transactions and use lightweight servers to improve
the scalability. I also show how the size of the Bloom filter impacts the overall throughput
and latency of the system. I provide empirical results to show the importance of assigning
roles to nodes and choosing the constants (such as the number of validators and committee
sizes) in sharded blockchains. In Chapter 5, I summarize the overall results and propose
future works.

4

Chapter 2

Literature Review

Over the past decade, blockchain has become an emerging technology that allows secure in-
formation sharing over peer-to-peer networks. It has shown enormous potential to perform
digital transactions without a centralized authority. An example of such a system is Bit-
coin - the first cryptocurrency implemented using a blockchain. The novelty in blockchain
design was derived from research results in distributed computing, cryptography, and game
theory over several decades. The core of a blockchain system is a secure, distributed ledger
with a consensus protocol that guarantees consistency despite the presence of malicious
participants and attacks. Therefore, to understand the scalability problem in blockchain,
it is important to study different consensus mechanisms in distributed computing in depth.

2.1 The Consensus Problem

The consensus problem is a classical problem in distributed computing. Informally speak-
ing, a multi-processes system reaches consensus when a single value or action among the
proposed values is chosen, despite some processes being faulty. A process is faulty if it does
not fulfill its role in the protocol and is unreliable in some ways. For example, it may fail
to respond to messages, send erroneous messages, or give conflicting information to differ-
ent peers. A secure consensus protocol must tolerate such faults under some assumptions
of the system model. These assumptions must indicate what is the minimum required
number of non-faulty nodes, how a process can fail (e.g., crash-failure, Byzantine failure,
etc.), and the type of network under which the protocol is operating (e.g., synchronous
or asynchronous message-passing mechanisms; reliable or unreliable communication links;
unicast or multicast communication, etc.). A crash failure happens when a process works

5

correctly until it abruptly halts and fails to respond to or send messages. A consensus
protocol that can tolerate crash failures must satisfy 3 properties:

• Termination: Eventually, every non-faulty process must decide on some value.

• Agreement: No two processes can decide on different values.

• Validity: If a value v is decided, it must be proposed by some process.

A Byzantine failure happens when a system fails arbitrarily due to a Byzantine fault. In
the Byzantine failure model, a faulty process can exhibit any behavior. For example, it can
change its state arbitrarily, delay sending messages, send no message or erroneous messages
to peers, or send different messages to different peers. The Byzantine fault is named after
the “Byzantine Generals Problem,” first described in [42]. The problem describes a scenario
when multiple generals are attacking a common enemy and at least 3 of them must agree on
a time to attack. All generals have to communicate with and send messages to each other
while one or more generals can lie about their choice. The Byzantine failure is considered
the most general and difficult class of failures. The 3 properties for a consensus protocol
that can tolerate Byzantine failures are:

• Termination: Eventually, every non-faulty process must decide on some value.

• Agreement: No two correct processes can decide on different values.

• Validity: If a value v is proposed by every non-faulty process, then all of them must
decide on v.

A consensus protocol that provides safety must satisfy two properties Agreement and
Validity, and guarantees liveness when it satisfies the Termination property.

In a system model, most consensus protocols are assumed to work under reliable com-
munication links. Processes use message-passing mechanisms to coordinate and communi-
cate with each other. There are two types of message-passing environment: synchronous
and asynchronous [75]. Synchronous models presume that all processes must receive a
message, complete some work, and reply within a bound time. If other peers fail to receive
some responses from a process P within the bound time, they presume that process P has
crashed. In an asynchronous setting, there is no upper bound time that processes may
take to receive, process, and reply to an incoming message. It is impossible to detect if a
process has crashed, or it is just taking a long time to finish.

6

As proved in [63], if faulty processes are allowed to lie, a synchronous system that has
reliable communication links needs at least 3n+1 processes to tolerate n failures. In [23], the
Fischer-Lynch-Paterson (FLP) proof shows that in an asynchronous setting where messages
can be delayed, there is no deterministic consensus protocol that is guaranteed to terminate
(i.e., achieves liveness) if there is at least one crash (see Appendix A). There are two ways
to circumvent the FLP result: 1 using randomization to achieve liveness and safety with
an arbitrarily high probability, and 2 using some synchrony assumptions. For example,
Paxos [40] works in an asynchronous setting and guarantees safety but fails to guarantee
liveness. PBFT [10] can achieve safety under asynchrony, but requires synchrony to achieve
liveness. In Bitcoin, the average time between the creation of two consecutive blocks is
roughly 10 minutes. The environment is loosely synchronous under the assumption that
after 10 minutes, a block reaches every process despite any prolonged propagation time.
In Bitcoin, safety is achieved with a high probability. If the hashing power of an adversary
in Bitcoin is 10% and there are 5 blocks linked after a block B, the probability for the
adversary to create a longer chain and invalidate block B is 0.1% [61]. The current total
hashing power of Bitcoin is over 100 quintillion hashes per second [7]. That means to have
0.1% chance of reversing a block with 5 subsequent blocks, an adversary must be able to
perform over 10 quintillion hashes per second. Thus, in practice, a Bitcoin transaction
requires at least 5 further attached blocks to be considered valid. HoneyBadger [56] takes
a random approach and uses an algorithm that randomly bundles transactions and uses
threshold signatures [8] to achieve liveness and safety with a high probability of success.

2.1.1 Paxos and Egalitarian Paxos

Paxos is a well-known algorithm in distributed computing for solving consensus in a net-
work where some nodes are unreliable [40, 42]. Egalitarian Paxos [58] is an efficient,
leaderless variant of Paxos. It better tolerates slow replicas by decoupling them from the
fastest and balancing load among replicas both in the local and wide area. Its open-source
implementation is our consensus protocol for the prototypes in Chapters 3 and 4.

Paxos

Paxos [40] solves the consensus problem in an asynchronous setting under the assumption
that there is no Byzantine fault. It is a protocol that helps a group of processes agree on
a proposed value and other processes learn that value. For safety, only a single proposed
value can be chosen, and a process cannot learn a value until it has been decided. We
assume that all processes have access to stable storage and remember all messages they

7

have received and promised. There are 3 types of agents in Paxos: proposers, acceptors,
and learners. Paxos processes can play multiple roles and even all of them. Proposers and
acceptors actively participate in the consensus protocol to decide the output value. Each
proposer sends a value v to a group of acceptors, and if a majority of acceptors accept the
value, it is accepted, and then learners can learn the accepted value. Before beginning the
protocol, all processes must know how many processes are there and how many acceptors
makes a majority, because any two majorities must overlap at least one process. There are
two phases in the algorithm:

1. Phase 1:

- A proposer p sends a PREPARE IDp message to at least a majority of acceptors.
The id IDp must be unique among different proposers and PREPARE messages
sent by the same proposer. For example, it can be the timestamp in nanoseconds
concatenated with the proposer identity. Note that the id IDp is not related to the
value v that the proposer p wants to propose. If the PREPARE IDp message is timed
out, the proposer retries with a higher id.

- When an acceptor receives a message PREPARE IDp, it will ignore this message if it
has accepted an id higher than IDp. Otherwise, it accepts this message and promises
to ignore all messages with an id lower than IDp. It replies to the proposer with a
PROMISE IDp message. If the acceptor has previously accepted a different message
with an id IDq and a value vq, it also sends that id and value to the proposer.

2. Phase 2:

- Once a proposer receives a majority of PROMISE IDp messages from acceptors,
it sends a message ACCEPT-REQUEST IDp, VALUE vp to at least a majority of
acceptors. The value vp is the value vq from the message with the highest id IDq that
the proposer has received from the acceptors. If no such message exists, the proposer
p can assign its own value to vp.

- When an acceptor receives an ACCEPT-REQUEST IDp, VALUE vp message, it
ignores the message if it has promised to do so. Otherwise, it accepts this value and
sends a message ACCEPT IDp, VALUE vp to all the processes, including learners.

A proposer or learner knows that the consensus is reached on a value vp if it receives the
ACCEPT messages from a majority of acceptors. Paxos can tolerate up to f crash failures
with 2f + 1 processes because a majority of acceptors would be f + 1. Paxos guarantees

8

safety properties. However, it does not guarantee liveness. Livelock occurs when a proposer
finishes phase 1 right before another proposer enters phase 2. This happens when two or
more proposers think that they are the leader of the current run. The result is supported
by the FLP impossibility proof [23], which suggests that in a fully asynchronous message-
passing distributed system, if at least one process may fail, it is impossible to have a
deterministic algorithm that can achieve both safety and liveness.

Egalitarian Paxos

In a Paxos system where there is a stable leader, we can omit phase 1. Many variants
of Paxos take this approach [41, 43]. An example is Multi-Paxos [11], where a leader is
chosen once, and only it can propose values and broadcast messages to all acceptors and
learners. If this leader fails, the protocol requires another round of consensus to elect a new
leader. However, Egalitarian Paxos (EPaxos) [58] is a variant where there is no designated
leader, and hence it can avoid performance bottleneck and a single point of failure in the
system. Clients can send requests to any replica, usually the closest one to reduce network
overhead. When there are at most f faulty processes and f + bf+1

2
c of replicas agree on a

value, the system commits within a single round of network communication. The number
f + bf+1

2
c is called a fast-path quorum and for three and five replicas, this number is

optimal (two and three replicas respectively).

EPaxos is evaluated in the context of a key-value store. Their read operations are com-
mutative, and hence two different replicas can have different orders of read operations but
remain in the same state. Two operations interfere if they operate on the same value and
one of them is a write. The key idea in EPaxos is to find dependencies among concurrent
operations across different replicas and in each replica. EPaxos runs in 3 phases:

1. Phase 1: Establish ordering constraints

- When a replica L receives a command γ from a client, it becomes a command leader.
It prepares a dependency list dep of all instances (i.e., command slots) whose com-
mands interfere with γ and a sequence number seq, which is greater than those of all
commands in dep. Then, it sends a message PREACCEPT γ, dep, seq to all replicas.

- When a replica R receives a PREACCEPT message, it learns the given dep and seq
and records command γ in its command log. It replies with its updated dep and seq.

- If L receives replies from a fast-path quorum of replicas and all replies are the same,
it will move to the commit phase (phase 3). Otherwise, it goes to the Paxos-Accept
phase (phase 2), which means some replies are different from the others.

9

2. Phase 2: Paxos-Accept phase

- L generates the unions of all dep variables and chooses the highest seq number. After
updating the attributes in its internal state, it tells all other replicas to accept the
updated attributes by sending a message ACCEPT dep′, seq′.

- If L hears from a majority of replicas, it moves to the commit phase.

3. Phase 3: Commit phase

- L sends the commit messages to other replicas.

- All replicas log the command as committed.

- L notifies the commit to the client.

After running the above protocol, every non-failing replica can generate a dependency
graph of commands and go to the execution phase. Then, each replica finds strongly con-
nected components and sorts them topologically. In each strongly connected component,
it sorts all commands using their seq and executes the commands in the order.

2.2 Blockchain Protocols

Blockchain is a peer-to-peer ledger containing a growing list of blocks, linked using cryptog-
raphy. It was introduced by Satoshi Nakamoto [61] to serve as a ledger for the cryptocur-
rency Bitcoin, making Bitcoin the first cryptocurrency that solves the double-spending
problem. In digital cryptocurrency, the double-spending problem occurs when the holder
of a digital coin sends it to more than one recipient. Blockchain is now used by most cryp-
tocurrencies and its applications are extended to smart contracts and banking systems.
Besides cryptocurrencies and finance-related services, blockchain has the potential to be
used in other areas such as identity management (online authentication, privacy-preserving
identity, ownership rights), and data security [69].

Blockchain is decentralized and distributed across many computers in the network,
so no single one has full control. Blockchain is resistant to data modification and is a
suitable option in a distributed network where nodes do not trust each other and every
node can have a copy of the data. State-machine replication is a traditional approach to
fault tolerance [52]. The data and service are replicated among multiple nodes so that
the system continues to work despite the failure of one or more nodes. A blockchain is

10

considered secure if no node can alter the data in a given block without changing the data
in all of its subsequent blocks. By design, this modification is very difficult to make on
a blockchain, and the details will be explored later in this chapter. There is no trusted
third party, and authentication is achieved by collaboration between participants. No
participant is trusted more than another, centralized points of vulnerability are eliminated
in blockchain, and so it is considered secure by design.

Blocks are added to a blockchain, one after another, by any node in the network. The
first block in a chain is called the genesis block, which generally contains some hardcoded
information. Some blockchain systems allow forking, which happens when the chain of
blocks diverges into more than one path. In this case, all nodes agree that the longest
chain is the only valid one. If a node is working on a chain and later learns that another
chain is longer, it immediately switches to the longest chain. If there is more than one
longest chain, each node considers the first chain it receives as the longest one. To ensure
a global agreement on the state of the blocks, many blockchain systems depend on an
underlying consensus mechanism which is Byzantine fault-tolerant (BFT).

2.2.1 Permissionless Blockchain and BFT Protocols

In a permissionless blockchain, anyone can join as a user to send transactions or act as a
node that participates in the consensus protocol. Malicious actors can have multiple fake
identities to cast faulty votes and modify the content of blocks. This type of attack is
referred to as a Sybil attack [21]. Permissionless BFT protocols have been using various
techniques such as Proof-Of-Work [61] and Proof-Of-Stake [27] to overcome that problem.

Bitcoin

Blockchain was first introduced by Nakamoto in 2008 in the white paper of Bitcoin [61].
The blockchain in Bitcoin stores the exchange of digital coins from one user to another.
Each block has a constant magic number of 0xD9B4BEF9, a blocksize which is the number
of bytes in the block, a block header, and a list of valid transactions represented by a
Merkle-tree. Each transaction is a data structure that represents a transfer of digital coins
between two or more users. It contains the list of inputs, outputs, and scripts that specify
the transaction’s source, destination, and the condition for the transfer to happen. The
header of a block contains a cryptographic hash of its parent block, Merkle-tree root hash,
timestamp, nBits (difficulty target), nonce, and block version [80] (see Figure 2.1). The
block version field helps nodes keep track of changes and updates throughout the protocol.

11

Magic Number Blocksize

Version Previous Block Hash

Merkle root Timestamp

Difficulty target Nonce

Transaction Counter

Transaction list
…
...

B
lock header

Figure 2.1: Bitcoin block structure

Version Flag

Number of inputs

List of inputs

Number of outputs

List of outputs

Witnesses

lock_time

Each input - Txin

Unspent Transaction Hash

Previous Txout-index

Script length Script

sequence_no

Each output - Txout

Number of coins transferred

Script length Script

Figure 2.2: Bitcoin transaction structure

The timestamp field is an estimate of the block creation time. A Merkle-tree is a tree of
hashes, and each leaf in the tree stores the hash of a transaction. Only the root of the tree is
included in the block header. This data structure allows efficient query operations: checking
whether a transaction is in the block takes logarithmic time. The previous block hash is a
hash of the most recently added block of the blockchain, calculated by applying the SHA-
256 cryptographic function twice on the previous block-header. With this design, modifying
any transaction in a block will probabilistically change its hash. As a consequence, that
will change the previous block hash fields in every subsequent block. This modification
is hard to make, and the probability for an adversary to alter a transaction is very low.
As shown in [61], if the hashing power of an adversary in Bitcoin is 10% and there are 5
blocks linked after a block B, the probability for the adversary to create a longer chain and
invalidate block B is 0.1%. Hence, in practice, the transactions in a block are considered
valid and completed if the block has at least 5 subsequent blocks appended after it.

To participate in the network, each user must own a Bitcoin wallet, which contains
one private key and one public key to verify their identity. Each wallet has an address
to receive transactions from other users, and the address is a hashed version of the public
key. The private key is kept secret and used to encrypt data sent to other users. There
are typically two phases involved in the digital signature. The first phase is signing: the
sender encrypts the data they want to send using their private key. The second phase is
verification: another node ensures that it was the sender that encrypted the data. Bitcoin
uses the elliptic curve digital signature algorithm (ECDSA) [31] for signing and verifying
digital signatures.

Unlike in the traditional banking system, there is no concept of account in the Bitcoin
blockchain. To check one’s balance, we go through every block and sum up the number
of coins that are sent to a Bitcoin wallet and not yet spent. A transaction is considered

12

spent if its hash is an input of another transaction in a subsequent block. To send a
transaction to a receiver, a sender creates a transaction and defines the list of inputs and
outputs. The inputs are represented on a list of unspent transactions owned by the sender,
and the outputs include a list of addresses of the recipients and the number of transferred
coins. After the sender encrypts a transaction, it sends the transaction to a mem pool.
Miners compete with each other to get the right to add a new block to the blockchain.
The successful miner obtains a batch of transactions from the mem pool, forms a block,
and broadcasts it to other nodes in the network. Each node acts independently to decide
whether the new block is valid. After 5 subsequent blocks, the transaction is considered
valid, and the receiver can spend the coins by including the transaction hash in the input
list of another transaction.

Bitcoin solved the BFT problem using Proof-Of-Work, where a participant’s vote is not
based on their number of identities but their computational power. Any Proof-Of-Work
scheme involves a puzzle that is difficult to solve but trivial to verify the answer. For
each Bitcoin block that a miner mines, it gets a certain amount of Bitcoin as a reward.
In Bitcoin, the puzzle for miners is to calculate the hash of the block and adjust the
nonce, which is a 32-bit field in the block header. After appending the nonce to the hashed
contents of the block and then rehashing the result, we must get a number that is smaller or
equal to the target value in the most recent block appended to the chain. Bitcoin uses the
SHA-256 hash function, and the strategy to find a correct nonce is to try different nonces
until we find a correct one. That is a random process that requires computational effort,
so any adversary that wishes to alter a transaction content must invest in computational
power. This is referred to as the 51% attack [9], where one or a group of miners own
more than 50% of the total computational power of the network. This group can disrupt
the Bitcoin payment system, prevent new transactions from gaining confirmation, reverse
transactions in previously mined blocks, and double-spend coins.

Algorand

Algorand [27] is a high-performance permissionless blockchain system that uses a new
Byzantine Agreement (BA*) protocol [27]. All users in the Algorand network use BA*
to reach consensus on the next valid block to append to the blockchain. BA* uses veri-
fiable random functions [55] (VRFs) to randomly and non-interactively select a subset of
participants (a committee) to decide the outcome in each step. Algorand offers four main
features:

- Weighted users (i.e., Proof-of-Weight): Sybil attacks are easy to launch in a system

13

that cheaply generates identities. To avoid them, Algorand weights each user by the
number of coins in their account. BA* guarantees consensus when honest users own
more than 2/3 of the total user weight. Hence, it is only possible for an adversary to
attack the system if they possess more than 1/3 of the total number of coins.

- Using committees: To scale the system, Algorand uses committees to reach consen-
sus in each step of the protocol. In each step, it uses the BA* to randomly select
a committee, i.e., a small set of users, based on their weights. Then, committee
members must broadcast their messages to other peers in the network. To avoid
the possibility of a targeted attack on a committee member, BA* uses cryptographic
sortition, which lets users determine their eligibility to join a committee by checking
if they obtain a hash value below a certain target.

- Participant replacement: An adversary may choose to attack a committee member
after they broadcast a message. To avoid targeted attacks, BA* replaces committee
members in every step of the protocol. BA* does not keep any private state, and
once a committee member speaks, they immediately become irrelevant to BA*.

Algorand requires a weak synchrony assumption for safety, where the network can be
asynchronous for a long but bounded period. To achieve liveness, Algorand requires a
strong synchronous assumption and assumes that most of the honest nodes communicate
with each other in a bounded time. Under this assumption, Algorand prevents an adversary
from creating network partitions or controlling a group of honest users. To recover liveness,
Algorand assumes all users have loosely synchronized clocks so that they can kick off the
recovery at approximately the same time.

When a user receives some messages, it broadcasts those messages to the surrounding
peers via a gossip protocol. To initiate each round, all peers run the cryptographic sortition
algorithm to create a committee. Each member of this committee proposes one block.
Other users will wait to receive the proposed blocks and only keep the block with the
highest priority. The priority of a block is obtained by hashing the output hash h of the
VRF function concatenated with the sub-user index. After that, the users who received
some blocks will initiate BA*. If an adversary proposes a block with the highest priority
in a round, they can propose an empty block and prevent any transactions from being
confirmed. However, this happens with a probability of at most 1 − t, where t is the
proportion of honest users. By Algorand’s assumption, at least t > 2/3 of the weighted
users are honest. BA* runs in 2 phases. The first phase is called Reduction, where the
committee members reach consensus on either a proposed block or an empty one. The
second phase is BinaryBA(), where all users decide on either an empty block or the block

14

passed from the reduction phase. However, a major drawback of Proof-of-Weight is the lack
of incentive and its strong synchrony assumption for liveness. It does not give participants
any reward to participate in a committee.

2.2.2 Permissioned Blockchain and BFT Protocols

As shown in the previous section, to preserve the anonymous property of a permissionless
blockchain, its consensus protocol has to be resilient against Sybil attacks, which creates
some overhead. For example, a Proof-Of-Work scheme requires a large amount of com-
putational power. In June 2018, the yearly energy consumption of Bitcoin was estimated
to be between 15 and 50 TWh [38]. Another approach is using a Proof-Of-Stake scheme
which is used by Ethereum 2.0 [24] and Algorand [27]. In Proof-Of-Stake, there is a group
of validators that mine the blocks. To determine the mining power, a validator “stakes”
its coins to validate a block. The more stakes it gives, the higher chance it gets the right
to decide the next block to append to the chain. When an attacker tries to validate an
invalid block, it loses its stake and is not allowed to validate future blocks. To avoid the
richest member having centralized power, there are different variants to the Proof-Of-Stake
scheme, such as randomized block selection and coin-age-based selection [33, 35]. A Proof-
Of-Stake protocol generally requires less power consumption, provides higher throughput
and lower latency than Proof-of-Work. However, it can be challenging at bootstrapping to
convince a new validator about the validity of the chain [27].

Unlike permissionless blockchains, in a permissioned blockchain, the set of participants
is identified and controlled. A permissioned blockchain can be a suitable fit where par-
ticipants are willing to share their identities, although they may not need to trust each
other. In the next section, I will take a look at RedBelly [17], a promising permissioned
blockchain under development, and RCanopus [32], an ordering service for permissioned
blockchains. Some notable permissioned blockchains that are not discussed in this thesis
include HyperLedger Fabric [3] and Ripple [67].

RedBelly

Red Belly Blockchain [17] is a blockchain system built on top of the consensus protocol
DBFT [16]. It allows transactions submitted by public nodes, and a set of private nodes
aggregate them into blocks and decide their order. Unlike traditional BFT protocols, it
can scale up to 1000 processes across different regions and claim a transaction finality
within 3 seconds. With 1000 processes across 14 regions on AWS, it achieves up to 30000

15

transactions per second with a latency around 3100ms [17]. For future work, Red Belly
should be able to identify and punish misbehavior and gives rewards to honest nodes.

The set of n private nodes that participate in validating blocks is recorded in the genesis
block, and they reach consensus using the DBFT protocol. The public nodes propose the
transactions to the blockchain through the n private nodes. At every round, a subset of
n′ nodes, named a configuration, participate in the consensus protocol. The nodes in this
configuration validate transactions using the ECDSA algorithm [31], and they may reach
agreement on reconfiguration and renew the memberships of the subset.

The core of Red Belly Blockchain is its leaderless consensus protocol, DBFT [16]. In
DBFT, the participating nodes run asynchronously and sequentially, meaning they process
requests at their own speed and do not know about the progress of the others, but execute
the steps in the same order. When nodes run asynchronously, the system achieves the
safety property. To ensure the consensus termination property (i.e., liveness), the system
operates under a partial synchrony assumption: After a finite time, there is an upper
bound on message transfer and process computation delays. When there are n nodes in
the system, it is secure when there are at most t < n

3
Byzantine failure nodes. In DBFT,

the authors introduced a binary Byzantine consensus Psync where the decision is either
True or False. Psync does not use signatures or randomization, terminates in O(1) message
delays when all non-failing processes propose the same value, and in O(t) message delays
otherwise. DBFT relies on a reduction from multivalue consensus to Psync to build a
consensus algorithm for blockchains.

RCanopus

RCanopus [32] is a scalable, leaderless distributed consensus protocol that ensures that
live nodes in a system agree on an ordered sequence of operations. This can be used as
an ordering service for permissioned blockchains such as HyperLedger [3]. This work is an
extended version of Canopus [65] that deals with Byzantine failures. The key idea is to
use a virtual tree overlay for organizing participants, thus disseminating messages to limit
network traffic across oversubscribed links. This hierarchical structure helps break down
the consensus into smaller independent chunks where it is more efficient to reach consensus.
To achieve safety and liveness, RCanopus requires synchrony within datacenters and weak
synchrony across datacenters.

There are 2 layers in RCanopus: SuperLeafs (SL) and Byzantine Groups (BG). Each
SL lets a leader participate in the BFT consensus protocol and replicate the result to the

16

other nodes within its SL. A BG is a group of several geographically proximate SLs. BGs
enable RCanopus consensus to execute in parallel and thus improves throughput.

The RCanopus protocol runs in cycles. During a consensus cycle, the protocol deter-
mines the order of pending transaction requests and performs the requests in the same
order at every node in the group. There are 3 phases in each cycle. In round 1, nodes
within each SL reach consensus on a transaction block. Clients send transactions to the
servers in SLs, and servers group those transactions into a block. Then, each SL elects a
server as a leader to participate in round 2. In round 2, the elected SL leaders commit
the transactions within each BG using an existing BFT protocol such as PBFT [10], BFT-
SMART [6], or SBFT [28]. In a system with n = 3f + 1 processes, these protocols allow f
Byzantine failures and thus require at least 2f + 1 SL leaders to commit a block. Round
3 is the exchange of transactions across remote BGs. The SLs in one BG independently
fetch BFT results from BGs in different regions and replicate the results within each SL.

For an RCanopus system to scale well, it is important to design the leaf-only tree
carefully. The time it takes to complete the operations within an SL is less than the
round-trip time between SLs. In the RCanopus paper [32], the authors discussed several
possible faults that RCanopus can tolerate, such as Byzantine fault.

2.3 Sharded Blockchain Protocols

Figure 2.3 describes a typical sharding mechanism where each color represents a shard.
In some protocols, one node can participate in multiple shards. The nodes in each shard
accept transactions from clients, propose blocks and reach agreement using an intra-shard
consensus, generally a Byzantine Fault Tolerant (BFT) [42] protocol. Ideally, the nodes in
each shard are geographically proximate to each other but located in different data centers
to increase the efficiency and safety of each shard. Then, for transactions that require
cross-shard validation (e.g., a transaction whose inputs are from two shards), the protocol
requires a cross-shard mechanism to ensure there is no double-spent transaction.

Recent works have been focusing more on sharding in permissionless blockchain systems.
An example of a sharded permissioned blockchain is RSCoin [19]. However, it was designed
to work with centralized banking systems, relied on a centralized point of authority, and
did not consider the Byzantine environment. In general, there is more study for sharding
in permissionless blockchains since the network is often geographically distributed and
the number of participants is big. In this section, I summarize some of the most well-
known sharding techniques used in permissionless blockchains and discuss their scalability,
performance, and issues.

17

Intra-shard
consensus ...

...

...

Cross-shard
consensus

C
ro

ss
-s

ha
rd

co

ns
en

su
s

C
ross-shard

consensus

Cross-shard
consensus

Intra-shard
consensus

...

Intra-shard
consensus

Intra-shard
consensus

The nodes are partitioned into 4 shards represented by 4 colors: red, green, blue and
yellow. In some sharding protocols, it is possible for one node to participate in multiple
shards. Each shard runs an intra-shard consensus to compute a blockchain within each
shard, and the protocol requires a mechanism to validate cross-shard transactions.

Figure 2.3: A typical sharding mechanism in blockchain.

2.3.1 Elastico

Elastico is a distributed agreement protocol for permissionless blockchains [50]. Elastico
aims to solve the scalability problem by merging two paradigms: sharding and Byzantine
fault-tolerant transactions. It is the first secure sharding protocol in Byzantine settings.
In Elastico, incoming transactions are partitioned into shards. Each shard is verified in
parallel by disjoint committees of nodes.

Elastico proceeds in epochs, each epoch has 5 steps: 1 Identity establishment and
committee formation; 2 Overlay setup for committees; 3 Intra-committee consensus; 4

Final consensus broadcast; 5 Epoch randomness generation. Nodes can not be allowed
to choose a committee to join since this would allow adversaries to overpower some par-
ticular shards. In the first step, to join the network, a node must solve a Proof-Of-Work
puzzle, and then their identity is established. Each node must find a nonce, similarly
to what the miners do in Bitcoin [61]. The ID is derived from a hash function as fol-
lows: ID = H(EpochRandomness, IP, Public key, Nonce) < D, where D is the difficulty,
EpochRandomness is a random number generated every epoch by the consensus commit-
tee, the IP and public key are inputs from the node, and the nonce is the puzzle that the

18

node must solve. Then, Elastico fairly distributes identities to committees using the last k
bits of their ID. In step 2, to broadcast all identities, Elastico takes a hierarchical approach
and uses directory committees. The first C identities become directory servers, where C
is the number of committees and hardcoded in a global configuration file. Each commit-
tee must have at least C members. The other nodes send their identities to directories
and directories broadcast the list of identities. This way reduces the number of messages
from O(N2) to O(NC). In step 3, once the committees are established, an existing BFT
protocol such as PBFT is used to reach consensus within each committee (i.e., intra-shard
consensus). Each transaction requires signatures from more than half of the committee
members and then the value is sent to the final consensus committee. In step 4, a final
committee is formed. Committee members in the final committee verify every transaction
using a Byzantine consensus protocol and in step 5, the final committee runs a distributed
commit-and-xor scheme to generate EpochRandomness for the next epoch. The downside
of Elastico lies in the unscalability of PBFT as the intra-shard consensus protocol and the
weakness of the commit-and-xor scheme to generate EpochRandomness [78], which are
improved in OmniLedger and RapidChain.

2.3.2 OmniLedger

OmniLedger aims to be a secure permissionless distributed ledger that provides scalability
and performance on par with centralized payment systems such as Visa [37]. OmniLedger
consists of multiple shards, combining different techniques such as RandHound [70], cryp-
tographic sortition [27], ByzCoinX (OmniLedger’s enhanced version of ByzCoin [36]), and
Atomix (OmniLedger’s novel two-step atomic commit protocol) to ensure security and
correctness within and across shards while achieving high performance and scalability.

Validators are nodes that verify there is no double-spent transaction in blocks. To
securely shard validators, OmniLedger uses a global identity blockchain and a distributed
randomness generation protocol. Similarly to what happens in step 1 of an Elastico epoch
(see Section 2.3.1), validators who wish to join OmniLedger have to first register to the
identity blockchain. Their identities and respective proofs are broadcast on the gossip
network. Similarly to Elastico, validators themselves can not be allowed to choose a shard
to join. When validators are assigned randomly, with high probability malicious nodes
are distributed evenly in all shards. In OmniLedger, the source of randomness comes from
RandHound [70] and cryptographic sortition. At the beginning of each epoch, OmniLedger
uses RandHound to assign new validators and reassign existing validators to new shards
and groups within shards. The number of groups in each shard is specified in a shard pol-
icy file. RandHound is a large-scale distributed protocol that “provides publicly-verifiable,

19

unpredictable, and unbiasable randomness against Byzantine adversaries.” RandHound
requires a leader, so OmniLedger utilizes cryptographic sortition, which is based on veri-
fiable random functions VRFs [55], to randomly select a leader at the beginning of each
epoch. The leader requests a collective signature and appends the block to the identity
blockchain if the block is valid (i.e., endorsed by at least 2/3 of the validators).

Each shard runs ByzCoinX internally to reach consensus. ByzCoinX is a protocol
based on ByzCoin [36] with enhanced performance and robustness. ByzCoin uses a tree
communication pattern to distribute blocks and provides a slow-path for fault-tolerance.
OmniLedger introduces a new communication pattern to increase robustness but trades off
some scalability. OmniLedger modifies the message propagation mechanism and chooses
a leader in each group. Each group leader is responsible for managing communication
between the protocol leader and the respective group. During the setup described above,
validators are evenly assigned to not only every shard, but also each group within the
shards. Transactions that do not conflict and have no UTXO dependencies can be processed
in parallel. To process transactions across shards atomically, OmniLedger uses a Byzantine
Shard Atomic Commit protocol named Atomix. In the first phase (Initialize), a cross-shard
transaction is created and gossiped on the network, and eventually reaches all input shards.
In the second phase (Lock), each input shard validates the transaction to ensure the input
has not been spent. In the third phase (Unlock), the client unlocks-to-commit if all shards
accept the transaction and unlocks-to-abort otherwise.

Compared to Elastico, OmniLedger provides a more secure mechanism to assign nodes
to shards, proposes an atomic protocol for inter-shard communication, and further reduces
communication overheads. However, there are several problems that OmniLedger has yet
to solve. OmniLedger requires a trusted setup to generate an initial configuration to seed
VRF. Clients must actively participate in cross-shard transactions, and malicious clients
can cause infinite blocking in the lock and unlock phases.

2.3.3 Rapid Chain

RapidChain is the first full-sharding-based permissionless blockchain protocol that is Byzan-
tine fault-tolerant and requires no trusted setup [79]. It achieves high throughput and good
scalability by using a novel intra-committee consensus algorithm. RapidChain has 3 main
phases: Bootstrap, Consensus, and Reconfiguration. The bootstrap phase is executed only
once at the beginning. Then, RapidChain proceeds in epochs, each epoch consists of one
Consensus phase and one Reconfiguration phase. RapidChain bootstraps by choosing a
root group that consists of O(

√
n) nodes, where n is the total number of nodes. This group

20

creates and distributes a sequence of random bits used to establish a reference committee of
size O(log n). Then, the reference committee creates k random committees (shards), each
committee has m = c log n members where n is the number of nodes, and c is a security
parameter typically set to 20. In every epoch, nodes that want to join or stay must solve a
Proof-Of-Work puzzle, which is randomly generated every epoch. The referenced commit-
tee verifies their solutions, produces a reference block with the list of all active nodes and
their committees, and sends the block to all other committees. To make reconfiguration
secure and protected against a slowly-adaptive Byzantine adversary, RapidChain builds on
the Cuckoo rule [68], which is a selective random shuffling mechanism. This makes it hard
for adversaries to target a specific committee. Once committees are formed (or reformed),
within each committee, an intra-committee consensus protocol is used to reach consensus.
The protocol is built on a gossiping protocol to propagate the messages (e.g., transactions
and blocks) among committee members, and a synchronous consensus protocol to agree on
the header and hash of the block. The gossiping protocol is derived from the Information
Dispersal Algorithm (IDA) and the erasure coding mechanism. A large message is divided
into chunks, including one parity chunk. A Merkle-tree is built and uses the chunks as
leaves. Each neighbor receives a unique subset of chunks and their Merkle-proofs. The
IDA-Gossip protocol reduces communication overhead and is faster than reliable broad-
cast protocols. However, it is not reliable and requires a consensus protocol to run on the
root to achieve consistency. The consensus protocol used in RapidChain is a variant of
Abraham et al.’s Efficient Synchronous Byzantine Consensus [1].

Transactions whose inputs and outputs are from different committees require cross-
shard verification. The input committees of a transaction store the inputs of the transaction
and the output committees are chosen based on the hash of the transaction id. Cross-shard
communication in RapidChain uses the Kademlia routing algorithm. Each node stores
information about their committee members and log log n nodes in each of their log n
closest committees. When a message arrives, all nodes in the sender committee send it to
all nodes they know. Each receiver invokes the IDA-gossip protocol to send the message
to their committee members. Compared to Elastico and OmniLedger, RapidChain does
not require a trusted setup and further improves the performance. However, it still relies
on synchrony for liveness and there is no incentive mechanism for active nodes.

2.3.4 Learnings

As we observe from the sharding protocols in Section 2.3, BFT protocols for permission-
less blockchains such as Proof-Of-Work and Proof-Of-Stake are widely used to establish
identities and allow nodes to join/rejoin the network. In order to maintain the security

21

of a sharded blockchain system, it is essential to prevent shard takeovers. A node cannot
be allowed to choose a particular shard to join, otherwise, malicious nodes can take over
a shard and corrupt the corresponding portion of data. Therefore, randomness generation
protocols such as RandHound are used to distribute nodes randomly. As a result, the
percentage of malicious nodes in each shard is roughly equal. Once shards are established,
BFT algorithms are used to reach consensus and validate transactions within and across
all shards.

Cross-shard transactions are a major factor that creates the overhead of data transmis-
sion among shards, thus they degrade the system throughput and increase confirmation la-
tency. Sharded blockchains have two major approaches to handle cross-shard transactions.
The first approach is to build a full-mesh connection among nodes (e.g., OmniLedger [37]
and RapidChain [79]). Verifying a cross-shard transaction requires communication between
the validators in different shards. OmniLedger proposes the Atomix protocol, where clients
are in charge of exchanging cross-shard transactions. Clients must get proof-of-acceptance
from all of the input shards to lock the input transactions and send the transactions and
their proofs to the output shards. RapidChain optimizes the Atomix protocol by proposing
a three-way confirmation mechanism. Each committee in each shard maintains a routing
table of log2 n committees to improve the communication among shards. This approach,
although it spreads out the storage and avoids a computation bottleneck in the main chain,
can bring communication overhead and security challenges. It generally requires nodes to
periodically reshuffle into new shards and download the ledger of the new shard they are
being reshuffled to. Since the transactions are separated into different chains, if a shard
is controlled by an adversary, other shards can no longer validate transactions that have
dependencies on the attacked shard.

Another approach is to store a global root chain, such as in Elastico [50] and the
ongoing Ethereum 2.0 [25]. After the nodes in each shard finalize and reach consensus on
local transactions, some of the nodes will send them to the final committee, and the final
block is stored in a global ledger. In Ethereum 2.0, the global chain - the beacon chain
- ensures that the transactions in all shards are in sync and discards any double-spent
transaction. The shards increase parallelism, while the root chain handles cross-shard
transactions. Comparing to the first approach, this approach reduces the overhead of data
migration when handling cross-shard transactions, and the system maintains correctness
even when one shard is controlled by an adversary. Besides, nodes can join shards without
the need to reshuffle.

The second approach brings a question of how to combine the blocks in different shards
to obtain the main chain. In Chapter 3, I will examine two approaches to interleave blocks,
referred to as strong temporal coupling and weak temporal coupling.

22

Chapter 3

Interleaving Blocks in a Sharded
Permissioned Blockchain

1

As discussed in Section 2.3.4, it is important that a sharded blockchain can efficiently
support cross-shard transactions. A notable approach is to build a global main chain
replicated among validators (e.g., Ethereum 2.0 [25], Elastico [50], and RCanopus [32]).
Each shard independently maintains and processes disjoint subsets of transactions, while
the main chain maintains the total order of transactions.

In this chapter, I discuss two different methods to interleave blocks from different
shards to build a global main chain, referring to them as strong temporal coupling and
weak temporal coupling. This chapter is organized as follows. Section 3.1 explains the
difference and trade-offs between the two methods of interleaving. Section 3.2 discusses
the design of our shared permissioned blockchain2 where we examine the performance of
interleaving blocks using strong and weak temporal coupling methods. We use EPaxos
[58] as the replicated ordering service for the blockchain. This blockchain system follows
the UTXO format, which is similar to what Elastico, OmniLedger, and RapidChain uses
and different from the account balance model in Ethereum 2.0. Section 3.3 discusses in
detail the implementation decisions and the changes that I have made compared to the
key-value store application in EPaxos [58]. Finally, in Section 3.4, I discuss the set-up of
the experiments to compare the performance of the two interleaving methods.

1Some parts of this chapter were developed jointly by me, Mr. Mao and Dr. Golab for a poster paper
at ICBC 2020 [51]

2The main design ideas were influenced by RCanopus [32] and BoscoChain [72]

23

A1	 A2	 …	Shard	A	

B1	 B2	 …	Shard	B	

C1	 C2	 …	Shard	C	

A1	 B1	 C1	 …	Main	chain	 A2	 B2	 C2	

C1	 B1	 C2	 …	Main	chain	 A1	 A2	 B2	

a.	Strong	temporal	coupling	

b.	Weak	temporal	coupling	

In strong temporal coupling, nodes predetermine the order of blocks. In weak temporal
coupling, nodes interleave blocks dynamically.

Figure 3.1: Methods of interleaving

3.1 Methods of Interleaving

Strong temporal coupling refers to the scenario where all the nodes interleave blocks in a
fixed, round-robin order. An example of strong temporal coupling is RCanopus, where the
nodes decide the global order of transaction blocks using a cycle-based consensus [32]. As
described in Figure 3.1, suppose we have three shards A, B, C, and each has their chunk
of blocks. In strong temporal coupling, every node agrees on the order of the shards. For
example, in Figure 3.1, the order is A, B, C. Each node pulls blocks in cycles, and in cycle
i, each node pulls the i -th blocks from all the shards in the predetermined order. On the
other hand, in the weak temporal coupling, the blocks are interleaved dynamically. All the
nodes must have an additional layer of communication to reach consensus on the order of
blocks.

The strong temporal coupling approach can guarantee consistency if there is no Byzan-
tine failure. All the nodes can interleave independently without communicating with other
peers. However, the system stops making progress if a shard becomes unavailable or stops
growing. On the contrary, the weak temporal coupling method can guarantee consistency
even if some shards are unavailable. However, it requires an additional layer of consensus.

Using the strong temporal coupling method requires the system to keep track of the
growing rates of the shards or another mechanism to prevent the system from stalling.
Ethereum 2.0 [24] and Elastico [50] use a weak temporal coupling mechanism to order
blocks from different shards.

24

3.2 System Architecture

We design a prototype in Golang to compare the performance between strong and weak
temporal coupling [51]. There are three layers of components in our system architecture:
Clients, Front-end (FE) servers, and Back-end (BE) servers, as shown in Figure 3.2. Clients
send transactions to front-end servers. Front-end servers verify and aggregate transactions,
then they submit blocks of transactions to back-end servers. We have multiple groups of
back-end servers, each group acts as a shard, and each shard reaches consensus using
EPaxos [58, 59]. Once each shard receives blocks from front-end servers, it fills the times-
tamp field of the block header, then EPaxos orders and replicates blocks. Then the blocks
are sent to and interleaved by the front-end servers. In strong temporal coupling, the order
of shards is predetermined and all front-end servers interleave the blocks in that order. In
weak temporal coupling, the front-end servers reach consensus on the order of blocks using
EPaxos (Figure 3.2).

Current blockchains depend on expensive consensus mechanisms to achieve consistent
replication. These consensus mechanisms pose performance bottlenecks due to sacrificing
performance for Byzantine fault tolerance [14]. As analyzed in [29], turning off PBFT in
Hyperledger Fabric and Proof-of-Work in private Ethereum, the throughputs are almost
doubled, and the latency is reduced by half. To show the difference between the two
methods of interleaving, we pick EPaxos as the ordering service. EPaxos is an open-
source, leader-less Paxos-based algorithm that achieves crash-fault tolerance. An EPaxos
shard with three replicas can process up to 25000 1KB-long requests per second when
state machine replicas and clients use two 64-bit virtual cores with 2 EC2 Compute Units
each and 7.5 GB of memory [58, 59]. Although EPaxos is not Byzantine fault-tolerant,
by reducing the bottleneck of the consensus protocol, we expect to observe a larger gap
in performance between the two methods of interleaving. We also encapsulate the services
provided by the back-end and front-end nodes so that in the future works, we can feasibly
switch to a different ordering service.

We follow the block and transaction format of Bitcoin with some simplifications, as
described in Figures 3.3 and 3.4. There is no chain code or personalized script, and each
transaction is a transfer of coins from one user to another. In Bitcoin, a sender can send a
portion of a coin to a receiver and the remainder goes to themselves. The sender may have
to pay some transaction fee to the miner. In our system, there is no transaction fee, each
transaction has one input and one output, and each transaction represents the transfer of
one coin from the input address to the output address. This is a simplified transaction
model but sufficient for comparing strong and weak temporal coupling methods. Similar
to Bitcoin, the block id is included in coinbase transactions. Since all the fields of coinbase

25

Epaxos	 Epaxos	

Epaxos	

Frontend	server	

Epaxos	 Epaxos	

Epaxos	

Epaxos	 Epaxos	

Epaxos	

Frontend	server	 Frontend	server	

Client		 Client		 Client		 Client		 Client		 Client		

Clients	send	transac3ons	to	a	FE	node	

BE	node	sends	blocks	to	an	FE	node	

FE	node	sends	blocks	to	a	BE	node		

G …	 G …	 G …	

G …Replicated	global	main	chain	 G … G …

Each back-end node has a chain containing a subset of transactions; the first block of
each chain is denoted as G. Three back-end nodes form a shard that runs EPaxos to
replicate the chain. After front-end servers receive blocks from shards, they validate the
transactions. Front-end servers interleave blocks using either strong temporal coupling or
weak temporal coupling methods to obtain the global main chain.

Figure 3.2: System design for comparing methods of interleaving.

transactions sent to a receiver are the same, the block ids are necessary to differentiate
the hashes of coinbase transactions. The coin is an unspent transaction, and only the
owner can spend it. Each user has an ECDSA public/private key pair and is identified
by a unique address, which is the SHA-256 hash of the user’s public key. Each block
consists of a timestamp, a previous block hash, and a list of at least 1 transaction and
up to 1000 transactions. The timestamp is assigned by the shard when it receives the
block, and the previous block hash is the hash of the most recent block in the global root
chain. Each transaction contains the information sent by the sender S, including their a

public key, b digital signature, c address, d the input unspent transaction hash, and
e the receiver R’s address. We use the ECDSA algorithm and S’s private key to sign d ,

generating b for validation. We keep a hash map of all the unspent transactions, and each

26

Previous Block Hash*

Merkle root Timestamp

Transaction Counter

Transaction list
…
...

B
lock header

*The hash of the most recently added block (i.e., the
tail block) of the global root chain

Figure 3.3: Block structure

Sender public key

Signature

Block Id**

Unspent Transaction Hash

Sender Address

Receiver Address

** Block id is included in coinbase
transactions

Figure 3.4: Transaction structure

transaction is validated before it is appended to the main chain of blocks. We use function
validateInputs() (see Figure 3.5) to make sure that the inputs of the transactions are not
yet spent and there is no double-spent transaction within each block. Using a , b and the
unspent transaction map, we verify that S is the receiver of d , the transaction is unspent,
and b is signed by S using ECDSA. If all of these conditions are satisfied, we append
the transaction to the main chain of blocks. Otherwise, we discard the transaction. This
transaction model is termed as an unspent transaction output model, short for UTXO,
which is commonly used in blockchain systems [3, 26, 61].

Each client, front-end, and back-end node has a host and a port number, and nodes
communicate with each other using gRPC. A client node is designed to mimic multiple users.
Each client has multiple goroutines (lightweight threads in Go), where each goroutine

represents a user trying to send a coin to another user in the same client. Each goroutine

stores a pair of private and public keys, and a pool of UTXO hashes. As in Bitcoin, the
address of a user is defined as the hash of their public key, alongside a version and a prefix.
Currently, in Bitcoin, this prefix is either 1 or 3, which respectively represent Pay-To-
Public-Hash and Pay-To-Script-Hash types of transactions [60]. Each goroutine acts as
a sender, pulls an unspent transaction hash from its pool of UTXO hashes to generate
a transaction, sends it to an FE server, and waits for a response. After a transaction is
validated, the FE server reports whether the transaction is appended successfully to the
main chain, or discarded. If the transaction succeeds, the FE server sends the transaction
hash to the sender, and the transaction hash is pushed to the pool of UTXO hashes of the
receiving user. After processing the response, the sender continues spending more coins.

27

In the prototype, the sender and the receiver are always in the same client process to
minimize the communication overhead among different clients.

Each FE server acts as an intermediary between clients and BE servers. Each FE server
concurrently receives and saves the input transactions from multiple clients. It batches and
inserts the transactions into a block, and then sends the block to the closest shard. Each
shard is implemented using an EPaxos state machine with three replicas, where each replica
is a BE server. Once a quorum of BE servers in a shard reach consensus, modify the block
header and store the block, one of them sends the response to the FE server. Meanwhile,
some concurrent goroutines in the FE server continue pulling the blocks stored in shards.
For the strong coupling method, another goroutine in the FE server interleaves the pulled
blocks in a fixed order. For the weak coupling method, the FE servers run another EPaxos
state machine for interleaving blocks. Each FE server proposes the pulled blocks and waits
for the other FE servers to agree on its proposal. Once the FE servers reach consensus, the
block is confirmed and appended to the main chain. In both cases, all FE servers compute
the same main chain of blocks.

3.3 Implementation

In EPaxos [58] and their open-source code base [59], the authors evaluate the protocol
in the context of a key-value store. Clients send updates (read or write) requests to the
servers, which replicate the key-value store using EPaxos. In this section, I discuss the
changes I have made to EPaxos to make it feasible to replicate blocks and transactions, as
well as provide the pseudo-code of the system.

3.3.1 Protocol Buffers and gRPC

EPaxos uses a custom message encoding with net/rpc, the Go standard library, for the
communication among nodes within a shard and the client-server communication [59]. In
net/rpc library, each request is independent, where a client writes one request to the server
and receives one response. Even though net/rpc is easy to set up and allows customized
message encoding, I observe that this is not a good fit for our blockchain system and creates
performance bottlenecks. Unlike the key-value store example in EPaxos, each client in
our blockchain protocol continuously sends transactions to a front-end server. Front-end
servers and back-end servers frequently exchange messages: Front-end servers periodically
batch transactions into blocks and send them to back-end servers, while back-end servers

28

distribute blocks to front-end servers. We need an RPC protocol that allows data streaming
to improve the utilization of connections. net/rpc does not support streaming, so I change
the protocol to gRPC (general Remote Procedure Call), a high-performance RPC framework
developed at Google.

gRPC is a remote procedure call running over HTTP/2.0 [47]. It allows services to
communicate and run functions on different machines efficiently. When a client wants
to call a method in a server, it creates a local object that stubs the implementation of
the methods of the corresponding service in the server. The client sends a gRPC request
with the method name and parameters, wrapped inside a protocol buffer message, to the
server. After decoding the client request, the server processes the client call, executes the
service method, and possibly sends the result back to the client. Compared to net/rpc,
gRPC supports net/context and net/trace, which in turn allow clients to cancel pending
requests, set timeout and deadline, and trace RPC requests and long-lived objects [46].
Besides, we can easily change the fields of the objects without the need to implement
customized message encodings.

gRPC is compatible with various serialization formats, including Thrift, JSON, and
Flatbuffers [47]. However, in this design, I choose to use Protocol Buffer [48], a serialization
mechanism developed by Google and the default Interface Definition Language (IDL) of
gRPC. Compared to other formats such as JSON, protocol buffer provides a lightweight
message in binary format. Protocol buffer automatically generates client and server-side
stubs after we define services in a .proto file. I implement all client requests and server
responses as protocol buffer objects.

gRPC can provide efficient processing service through multiplexed streams, where multi-
ple requests can be processed with a single connection. gRPC supports four types of service
methods: 1 Unary RPCs: Similar to a typical function call, clients send a single request
and receive a single response. 2 Server streaming RPCs: Clients send a single request to
the server. gRPC establishes a one-directional stream from the server to the client where the
server keeps sending messages to the client. 3 Client streaming RPCs: gRPC establishes
a one-directional stream from the client to the server where the client continues sending
messages to the server. The server reads incoming requests and returns a response when
there are no more messages (e.g., after receiving an EOF message). And 4 bidirectional
streaming RPCs: A bidirectional stream is established between a client and a server, which
allows both sides to read and write messages independently. In our blockchain protocol,
I set up a bidirectional stream between each user and front-end server, and let back-end
servers send blocks to front-end servers via a server streaming RPC. In Chapter 4, I use
a unary RPC to establish connections between full and lightweight front-end servers, a
server streaming RPC to distribute blocks metadata and Bloom filters from full front-end

29

servers to lightweight front-end servers, and a bidirectional stream for lightweight front-end
servers to request blocks from full front-end servers.

3.3.2 Concurrency in Go

Go is a programming language developed at Google in 2009 that aims to solve problems
that software engineers at Google encounter in their daily works [45]. Go reduces code
build time, provides easy-to-understand code, and famously supports concurrency via a
built-in mechanism named goroutine and a built-in type channel. goroutine are sim-
ilar to threads, but more lightweight and easy to create as we can execute thousands of
goroutine on a single core. Go channel works as a synchronized FIFO queue, which
multiple goroutines can push to and pull from concurrently. Go channel works well as a
synchronization primitive for intra-process communication among Go goroutines.

As discussed in Section 3.3.1, we mimic the behaviors of multiple users by providing
each user a goroutine. We control the number of users and the throughput of the system
indirectly by adjusting the number of goroutines in each client program. For each user,
I use a Go channel to store their unspent transaction hashes (UTXHash). When a user S
sends a transaction tx to user R, S proposes tx to the front-end server. After it is appended
to the main chain, S pushes the hash of tx to the corresponding UTXHash Go channel of
the recipient R. The efficiency of using Go channel reduces the overhead of exchanging
UTXHashes between users on the client-side.

3.3.3 Functionalities in Front-End Servers

The ease of concurrency control in Golang brings intuition to separate the functionalities
of a system into multiple goroutines. Each front-end server has four tasks that can run in
parallel, and they can communicate with each other using Go channel objects. The four
main tasks are:

1 Receive and verify signatures of proposed transactions from multiple clients. Once
the transaction is appended to the main chain, send a response with the transaction
hash to the client.

2 Aggregate transactions from multiple users to form blocks and send the blocks to a
back-end server.

3 Download blocks from one or more shards.

30

4a Interleave downloaded blocks in a pre-determined order to form the main chain (i.e.,
strong temporal coupling), or

4b Propose downloaded blocks to other front-end servers to form the main chain (i.e.,
weak temporal coupling).

Task 1 is an RPC method which is defined in a .proto file. When a client calls this
method via RPC, it kicks off a goroutine to handle the client connection. If transactions
have valid signatures, they are pushed to a channel c0. Periodically, task 2 pulls trans-
actions from channel c0 to form and propose a block to a front-end server. Meanwhile,
task 3 runs in k goroutines to download blocks from shards and push them to channels

c1, ..., ck, where k is equal to the number of shards from which it downloads. Either task
4a or task 4b runs in a concurrent goroutine, pulling transactions from the downloaded
channels c1, ..., ck to form the main chain. Task 1 and task 2 are the producer and
subscriber of the channel c0 of proposed transactions, while task 3 and task 4 are the
producer and subscriber of channels c1, ..., ck of downloaded blocks.

3.3.4 Pseudo-Code Description

Figure 3.5 describes the pseudo-code of the common functions that both strong and weak
coupling FE servers use for functionalities 1 - 3 (see Section 3.3.3). Each FE server has
the input of the host and port numbers of BE servers, where the ith back-end server comes
from the ith shard. In the init() function, the FE server creates connections to BE servers
using the given host and port numbers. It generates a new blockchain β that contains a
genesis block, a new hashmap H that contains unspent transaction hashes, a channel q of
transactions pending to the proposed, and starts a server s that accepts transactions from
clients. As a client sends a gRPC request to s, they kick off a receive tx() goroutine

(Task 1). Over a single connection, the client can submit multiple transactions through a
stream of transactions, and the server replies through of stream of transaction hashes. The
client can batch transactions and send them over the stream, and will receive the responses
of the transactions at the same time. In the experiments described in Section 3.4, there
is no batching in this step and each client only sends one transaction to the stream. The
function waits until the transaction hashes appear in H and then informs the sender about
the transactions. The sender waits for the response from the function before letting the
receiver know the transaction hash. In function receive tx(), the channel q works as a
synchronized queue to which proposed transactions are pushed. Function append() (Task
2) periodically pulls transactions from q to form blocks and sends them to back-end

31

servers. In receive tx(), for each transaction in stream, we check if the input transaction
hash exists in the unspent transaction pool H, and if the receiver address of the unspent
transaction matches the given address and public key. Then, we use the ECDSA algorithm
to verify if the message, which is the signed utxHash, is signed by the owner of the given
public key. ECDSA signature verification creates a performance bottleneck in the system,
so the validation step is executed in a goroutine, denoted as go in the pseudo-code. This
helps the receive tx() function continuously receive transactions and allows transactions
to be verified in parallel. After initializing Π, β, H, s, and q, the init() function kicks
off the append() function in a goroutine. In append(), the FE servers can pick the
destination BE server (e.g., choose the nearest BE server) or send blocks to different BE
servers in a round-robin order. In the experiments described in Section 3.4, the front-end
servers send blocks to the nearest back-end server.

The blockchain β is replicated among all FE servers, so all the β in all FE servers
have the same genesis block. H stores the hashes of unspent transactions, which is
used in Tasks 1 and 4 (i.e., functions receive tx(), and either interleave() or
execute proposal()) to check if a transaction is not yet spent. In Task 4 , after a
block b is validated to have no double-spent transaction, the input transaction hashes of
transactions in b are deleted from H. The FE servers compute the previous transaction
hash of block b and appends block b to the main chain. Then they can safely process the
next block. In a separated goroutine, the hashes of the transactions in b are appended
to H.

Given the back-end shard id i, the get blocks() function creates a server-side stream
that lets a back-end server in shard i continuously distributes blocks to the FE server,
which in turn saves the block to a channel qi. As described in Figure 3.6, a strong-
coupling FE server downloads blocks from all the shards by calling multiple get blocks()

goroutines. As the get blocks() functions push blocks to channels q1, q2, ..., qn, the
interleave() function reads blocks from the channels in an order pre-determined by all
FE servers. If a block b has no double-spent transaction, it is appended to the main chain
β and their transaction hashes are added to H. Meanwhile, as described in Figure 3.7, a
weak-coupling FE server downloads blocks from one shard given an id by calling a single
goroutine get blocks(). It uses EPaxos to connect with other FE servers and proposes
its downloaded blocks. As a weak-coupling FE server receives a block proposal b, it starts
the execute proposal() function that validates the block, adds b to β, and adds their
transaction hashes to H.

32

1 Function init(L)
Input : A list of hosts and port numbers L of backend servers

2 Π ← ∅ a global FIFO channel of connections to backend servers
3 foreach host, port ∈ L do
4 con ← TCP connection to backend server at host:port
5 add con to Π

6 end
7 β ← a new global main chain
8 H ← {} a new global unspent transaction hashmap
9 q ← ∅ a new global transaction channel

10 s ← a new server accepting transactions from clients
11 go append(q, Π)

12 end

13 Function receive tx(stream, client, q, H) // Task 1

Input : A stream of transactions from client
The global transaction channel q
The global unspent transaction hashmap H

14 local-q ← ∅ a new local transaction channel
15 while (tx← a transaction from stream) 6= EOF do
16 utxHash, pubKey, sig, msg ← UTX hash, public key, signature, and
17 signed message in tx
18 go:
19 valid ← utxHash ∈ H && utxHash.receiver owns pubKey
20 && ecdsa.verify(pubKey, sig, msg)
21 if valid = TRUE then
22 add tx to local-q
23 add tx to q

24 end

25 end

26 end
27 while local-q not empty do
28 tx ← a transaction in local-q
29 if tx ∈ H then
30 send tx.hash to client
31 remove tx from local-q

32 end

33 end

34 end

35 Function append(q, Π) // Task 2

Input : The global transaction channel q
The global channel Π of connections to backend servers

36 prevTime ← currentTime()
37 while q.size() > 100 or (currentTime() − prevTime) > 100ms do
38 b ← a block created from transactions in q
39 con ← the first connection in Π
40 send b to a backend server using con
41 append con to the end of Π
42 prevTime ← currentTime()

43 end

44 end

continued on next page →

33

43 Function get blocks(i, L, qi) // Task 3

Input : The backend server id i
A list of hosts and port numbers L of backend servers
The global channel qi containing blocks downloaded from shard i

44 stream ← a server-side gRPC stream using the host and port numbers in L[i]
45 while TRUE do
46 add (b ← a block from stream) to qi
47 end

48 end

49 Function validateInputs(H, b)

Input : The global unspent transaction hashmap H
A block b

Output: If block b is valid and has no fake/double-spent transaction

50 m ← {} a set of input UTX hashes
51 foreach tx ∈ b do
52 in ← input UTX hash of tx
53 if in /∈ H or in ∈ m then return FALSE // tx is fake/double-spent

54 add in to m

55 end
56 return TRUE

57 end

Figure 3.5: Common functions of strong and weak coupling FE servers

3.4 Evaluation

This section presents the evaluation of the blockchain system using strong and weak cou-
pling methods to interleave blocks. I analyze the peak throughput and latency of the
system in a simulated environment and on Amazon Elastic Compute Cloud (EC2).

3.4.1 Simulated Environment

I first experiment in a simulated environment using a 20-core Intel(R) Xeon(R) Gold 6230
CPU @ 2.10GHz. The operating system is Ubuntu 20.04.1 LTS and the Golang version
is go1.13.8 Linux/amd64. The back-end, front-end, and client processes run in separated
cores, and the network latency is simulated using the tc command. There are two settings

34

Algorithm 1: Pseudo-code of strong-coupling FE servers

1 Function main(L, #shards)
Input : A list of hosts and port numbers L of backend servers

Number of BE shards #shards
2 Π, β, H, s, q ← init(L)
3 for i ← 1 to #shards do
4 qi ← ∅ a channel containing blocks downloaded from shard i
5 go get blocks(i, L, qi)

6 end
7 go interleave(β, H, q1, q2, ..., qn, #shards)

8 end

9 Function interleave(β, H, q1, q2, ..., qn, #shards) // Task 4a

Input : The global main chain β
The global unspent transaction hashmap H
A list of channels of downloaded blocks q1, q2, ..., qn
Number of BE shards #shards

10 while true do
11 for i ← 1 to #shards do
12 b ← the next block from qi

// If b has a fake/double-spent transaction, discard b

13 if validateInputs(H, b) = FALSE then Go to line 11
// Delete spent transactions

14 foreach tx ∈ b do
15 delete (in ← input UTX hash of tx) from H
16 end

// Append b

17 b.prevTxHash ← the hash of the last block in β
18 append b to the main chain β

// Add new transactions to H in parallel

19 go:
20 foreach tx ∈ b do add tx.hash to H
21 end

22 end

23 end

24 end

Figure 3.6: Strong-coupling front-end servers pseudo-code

shown in Figure 3.8, one using 3 BE shards and the other using 5. In each setting, the
number of front-end servers is equal to the number of shards, and each front-end server
has a dedicated client program that continuously proposes transactions. I use taskset to
assign the number of cores for each component. Each BE server runs in 1 core, each FE
server runs in 4 cores, and each client program runs in 2 cores. The number of cores for each

35

Algorithm 2: Pseudo-code of weak-coupling FE servers

// Each weak-coupling FE server has an id id

1 Function main(L, id)
Input : A list of hosts and port numbers L of backend servers

The id of the server
2 Π, β, H, s, q ← init(L)
3 qid ← ∅ a channel containing blocks downloaded from shard id
4 go get blocks(id, L, qid)
5 Γ ← the list of other FE servers connected using EPaxos
6 while TRUE do

7 go propose the next block in qid to Γ // Task 4b : propose a block

8 end

9 end

// Each FE server in Γ executes this function after receiving b

10 Function execute proposal(b, β, H) // Task 4b : process a proposed block

Input : A proposed block b
The global main chain β
The global unspent transaction hashmap H

11 if validateInputs(H, b) = FALSE then return
12 foreach tx ∈ b do
13 delete (in ← input UTX hash of tx) from H
14 end
15 b.prevTxHash ← the hash of the last block in β
16 append b to the main chain β
17 go:
18 foreach tx ∈ b do add tx.hash to H
19 end

20 end

Figure 3.7: Weak-coupling front-end servers pseudo-code

process is chosen by observing the CPU usage of each process using the htop command.
Each client program has multiple goroutines, each goroutine mimics the behavior of
one user. Each user goroutine in the client program has a pair of ecdsa private and
public keys, which are used to sign and verify transactions. Each goroutine has a pool
of unspent transactions, from which it pulls and proposes the transactions one by one to
the front-end server. At initialization, each user goroutine sends coinbase transactions
to their pool. After initialization, I record the total number of processed transactions and
the end-to-end latency in the client program, and calculate the median latency, as shown
in Figure 3.8.

I indirectly control the throughput by changing the number of goroutines per client,
from 100, 200, 400, 600, 800 to 1000. Each of these numbers is corresponding to a dot in

36

(a) 3 shards (b) 5 shards

Each dot, respectively from left to right, represents the latency and throughput when each
client has 100, 200, 400, 600, 800, and 1000 goroutines.

Figure 3.8: Performance of strong and weak temporal coupling methods in simulated
environment with no simulated network latency

Figure 3.8, which shows the trade-off between throughput and latency. For each setting, I
conduct the experiment three times, and each run lasts for 20 seconds. The experiment that
is shown in Figure 3.8 has no simulated network latency added. The error bar represents
the standard deviation of the latency and throughput.

Having three shards (Figure 3.8a), both strong and weak temporal coupling methods
reach the same peak throughput at around 19100 transactions per second (tps). The
median round-trip latency falls in the range from 22ms to 120ms in both strong and
weak coupling methods. The two lines almost overlap with a negligible difference. As
I increase the number of goroutines per client from 600 to 1000, the throughput does
not significantly improve but the median latency increases from 70ms to 120ms. In the
second experiment with 5 shards (Figure 3.8b), the strong coupling method has a peak
throughput at 29600 tps and the median round-trip latency falls in the range from 22 to
135ms. The strong coupling method outperforms the weak coupling method when the
number of goroutines per client is more than 400. The weak coupling system reaches
the peak throughput at 26700 tps, and the median round-trip latency falls in the range
from 22ms to 148ms. In the weak coupling method, increasing the number of goroutines
per client from 600 to 800 does not significantly improve the throughput but the median
latency increases.

37

(a) 3 shards (b) 5 shards

Each dot, respectively from left to right, represents the latency and throughput when each
client has 100, 200, 400, 600, 800, and 1000 goroutines.

Figure 3.9: Performance of strong and weak temporal coupling methods in simulated
environment with a 10ms round trip simulated latency

I repeat the same experiment and use the tc command to add 10ms round-trip latency
to the system to simulate geographical distribution. The result is shown in Figure 3.9.
With the added latency, the gap between the strong and weak coupling methods is widened
and the strong coupling method outperforms in both cases with 3 shards and 5 shards.
EPaxos commits commands in 1 round-trip time (RTT) in the common case and 2 RTTs
when there is a conflict (i.e., when two interfering commands arrive at different acceptors
in different orders) [58]. Hence, the simulated latency adds 1 RTT between clients and
FE servers, 1 RTT between FE and BE servers to submit and download blocks, and 1-2
RTTs for EPaxos in each shard to order a block. In the weak coupling case, the latency
additionally adds 1-2 RTTs for FE servers to order blocks. In Figure 3.9a, the throughput
of the weak coupling method is 10% less than that of the strong coupling method, and it
has an additional 15 - 20ms latency. In Figure 3.9b, the throughput of the weak coupling
method is 5% less than that of the strong coupling method, and it has an additional 10 -
20ms latency.

We observe that both strong and weak temporal coupling systems reach similar peak
throughput with a 10-20ms difference in latency. This result is consistent with the simu-
lated latency we add. In both strong and weak coupling methods, blocks are downloaded
from the shards in parallel. Meanwhile, in the weak temporal coupling methods, FE servers

38

Source
Destination

us-east-1 us-east-2 us-west-1 us-west-2 ca-central-1

us-east-1 N/A 11 ms 61 ms 82 ms 16 ms
us-east-2 11 ms N/A 50 ms 49 ms 26 ms
us-west-1 62 ms 50 ms N/A 21 ms 79 ms
us-west-2 81 ms 49 ms 20 ms N/A 60 ms

ca-central-1 15 ms 26 ms 79 ms 60 ms N/A

Table 3.1: Round-trip latency across AWS regions

take turns to propose blocks using EPaxos, which takes 1 - 2 additional RTTs [58]. In Sec-
tion 3.4.2, I bring the experiment to Amazon Elastic Compute Cloud (AWS EC2) across
different regions.

3.4.2 On AWS EC2

To experiment with real-world latency, I repeat the same experiment in different Amazon
AWS regions. In the case of having 3 shards, I set up the servers in regions us-east-1,
us-west-1, and ca-central-1. In the 5-shard case, I set up the servers in regions us-east-1,
us-east-2, us-west-1, us-west-2 and ca-central-1. It is an appropriate assumption that an
FE server would like to connect to the nearest BE server, and a client would likely send
transactions to the nearest FE server. Therefore, in each region, I set up one shard of 3
BE servers, one FE server, and one client program that continuously sends transactions
to the FE server in the same region. The round-trip latency is measured across regions,
as shown in Table 3.1. The number of cores assigned to each server is similar to those
used in Section 3.4.1. Each BE server runs in a t2-micro instance that has 1 vCPU, each
FE server runs in a t2-xlarge instance that has 4 vCPUs, and each client program runs
in a t2-medium instance that has 2 vCPUs. Similar to what we do in Section 3.4.1, the
throughput is controlled indirectly by varying the number of goroutines per client. Each
dot in Figure 3.10 is corresponding to having 100, 200, 400, 600, 800, and 1000 goroutines

per client.

Compared to Section 3.4.1, we observe a more significant gap between the strong and
weak coupling lines in Figure 3.10. This is due to the higher latency across different AWS
regions, compared to the 10ms simulated latency I add in Section 3.4.1. The additional 2

39

(a) 3 shards (b) 5 shards

Each dot, respectively from left to right, represents the latency and throughput when each
client has 100, 200, 400, 600, 800, and 1000 goroutines.

Figure 3.10: Performance of strong and weak temporal coupling methods on AWS EC2

RTTs for weak-coupling FE servers to order blocks is roughly 100ms, as shown in Table
3.1. In Figure 3.10a, using the method of weak temporal coupling, the system reaches
the peak throughput of 13500 tps and the latency falls in the range of 130ms to 180ms.
In Figure 3.10b, it reaches the peak throughput of 21200 tps and the latency falls in the
range of 125ms to 190ms. Meanwhile, the strong temporal coupling method significantly
outperforms the weak temporal coupling method. In Figure 3.10a, the system reaches the
peak throughput of 22500 tps and the latency falls in the range of 30ms to 110ms. In Figure
3.10b, it reaches the peak throughput of 27800 tps and the latency falls in the range of 35ms
to 110ms. The latency difference between the strong and weak temporal coupling is due
to the additional rounds of EPaxos consensus among FE servers in different AWS regions,
similar to the difference we observe between Figure 3.8 and 3.9. In the weak coupling
method, each FE server takes turns to propose their blocks, which creates two additional
RTTs among FE servers [58]. The higher latency, the longer it takes for line 7 in Fig. 3.7
to finish. Thus, the higher latency causes a delay for a transaction tx to appear in H, and
it takes more time for the second while loop in the receive tx() function (line 27 - line
33 in Fig. 3.5) to finish. In addition, there is a limit on the number of concurrent streams
that gRPC can handle, which means at any given time, there is a limit on the number of
receive tx() functions running. When a receive tx() function takes too long to finish,
it is possible that another client has to wait before it can kick off a receive tx() function.

40

In the weak-coupling case, even though each FE server downloads blocks to their channel
in parallel, they have to propose blocks in sequence. As a consequence, the throughput
decreases, and the latency increases in the weak-coupling case.

3.4.3 Summary

Under the same setup and number of cores, the experiments described in Figures 3.8, 3.9
and 3.10 show a different gap between the strong and weak coupling methods. This is due
to the difference in network latency among processes. When there is no simulated network
latency (Fig. 3.8), the difference between the two coupling methods is small. The more
latency we add to the system, the wider the gap between the two methods (Fig. 3.9 and
3.10). This indicates that the weak coupling method is more susceptible to the increase
in latency, which is due to the communication overhead in the consensus layer of weak
coupling FE servers. Using EPaxos, the weak-coupling method requires 2 addition RTTs
to order blocks among FE servers. However, as discussed in section 3.1, the weak coupling
method allows the shards to grow at different rates, while in the strong coupling method,
the system stalls if any of the shards fails to respond. Thus, the strong coupling method
is desirable when the shards grow at similar rates and allow the servers to be located in
a wider location range, while in the weak coupling method, the system continues to work
even when one shard fails, but it requires the servers to be in close proximity. Currently, the
system depends on EPaxos to batch blocks. In future work, we will try different batching
mechanisms and observe whether they improve the performance of the weak-coupling FE
servers.

Our system is resilient against malicious clients who want to double-spend transactions.
However, a weakness is the inability to handle Byzantine failures among front-end and
back-end servers. In future work, we will replace EPaxos with a high-performance BFT
consensus protocol. Because we already separate the system into layers (clients, FE servers,
and BE servers), we can replace the consensus protocol in the BE servers without interfering
with the implementation of the FE servers and clients. The weak-coupling FE servers can
also use another BFT consensus protocol. This is because we separate the functionalities of
the FE servers into different goroutines, where they communicate with each other using
concurrent Go channel. As shown in Section 3.3.3, we only need to change the goroutine

for Task 4b and use a different BFT consensus protocol to order blocks.

41

Chapter 4

Lightweight Front-End Servers

This chapter presents the use of lightweight front-end servers to help scale up the system.
They can validate signatures and help detect double spending but rely on full front-end
servers for block verification and interleaving. This chapter is organized as follows. In Sec-
tion 4.1, I discuss the motivation to use lightweight front-end servers, the use of lightweight
nodes in Bitcoin, and the Bloom filter data structure. I describe how I use a vector to check
for collision in each Bloom filter, and how collision vectors can be used to check double-
spending within each block. In Section 4.2, I explain the change in the system design after
adding the lightweight front-end servers and describe the pseudo-code. I also describe a
novel use of Bloom filters to help detect double-spent transactions within each block. In
Section 4.3, I provide empirical results to show the role of lightweight FE servers in im-
proving the performance, measure the system performance with different sizes of Bloom
filters, and show how the ratio of full front-end servers affects the performance of a sharded
blockchain.

4.1 Motivation

4.1.1 Simplified Payment Verification

Section 8 of the Bitcoin white paper introduces the concept of Simplified Payment Verifica-
tion (SPV) [61]. It is a mechanism that helps nodes verify Bitcoin transactions without the
need to store the entire blockchain. Instead of having the full copy of the blockchain, an
SPV node maintains the chain of block headers. To check if a transaction is in a block, an

42

SPV node requests a Merkle proof from the sender. If the Merkle proof leads to a Merkle
root in a block header, it means the transaction is in that block. Compared to the full
nodes in Bitcoin, SPV nodes cannot detect if the transactions in a block are double-spent
or in the correct format, and hence they cannot be miners. SPV nodes rely on full nodes
and place their trust in the full nodes to verify a block or transaction. The SPV mechanism
is lightweight in terms of storage and network bandwidth, which helps more nodes access
the blockchain and scale up the system.

We can find the idea of using lightweight nodes along with full nodes in several sharded
blockchain systems. In Elastico [50], OmniLedger [37], and RapidChain [79], only a portion
of members participate in block verification and ordering. Thus, to scale up our current
system, I add lightweight front-end servers and design a Bloom filter that helps summarize
the transactions and check for double-spent transactions within each block.

4.1.2 Bloom Filter

The Bloom filter has been a widely used data structure that quickly tests set membership.
It supports membership queries with no false negative error and an acceptable false positive
rate. Assume that there are n elements in a set S such that S ⊆ U and U is a universal
set. The Bloom filter is a space-efficient probabilistic data structure that represents the
n elements in set S using a bit vector of size m, and k hash functions whose domain and
range are U . In the initial state, all m bits in the bit vector are set to 0. Let the bit vector
be BF = [0, 0, ..., 0]. For each element xi, we insert it into BF by setting BE[hj(xi)] = 1
for j ∈ 1, 2, ..., k, where hj is the jth hash function. To test if an element xi belongs to
set S, a Bloom filter returns True if BE[hj(xi)] = 1 for all j ∈ 1, 2, ..., k; otherwise, it
returns False. The insert and query operations are described in Figure 4.1. Thus, the
query operation in a Bloom filter has no false negative error, which means if it says an
element is not in S, it is certainly not in S. However, it allows for false positive errors.
If it says an element is in S, it may not have been inserted to S. In Figure 4.1b, c has
not been inserted to BF , but because its hash values match those added to the BF , the
Bloom filter falsely detects that c is already inserted.

For a Bloom filter that inserts n elements to a bit vector of size m and has k hash
functions, the theoretical false positive rate is fr = [1 − (1− 1

m
)nk]k [57]. Given a desired

false positive probability ε, the optimal number of bits per element is m
n

= − log2 ε
ln 2

, and the
corresponding value of k to is m

n
ln 2.

In many applications, the false positive can be capped at a certain threshold, while
Bloom filters can save a significant space. For example, in [22], proxies use Bloom filters

43

0	 0	 0	 0	 0	 0	 0	 0	
1	 2	 3	 4	 5	 6	 7	 8	

Initialization: BF =

1	 0	 1	 0	 0	 1	 0	 0	

a b
h1(a) = 1
h2(a) = 3
h1(b) = 3
h2(b) = 6

Add a and b: BF =
1	 2	 3	 4	 5	 6	 7	 8	

(a) Initialization and insertion

1	 0	 1	 0	 0	 1	 0	 0	

a d
h1(c) = 1
h2(c) = 6
h1(d) = 5
h2(d) = 3

c

Query a, c, d: BF =

Query a = True à correct
Query d = False à correct
Query c = True à false positive

(b) Query

Figure 4.1: A Bloom filter with m = 8, n = 2 and k = 2.

1	 0	 0	 1	 0	 1	 0	 1	

a bc

Add a, b, c : BF =

1	 0	 0	 1	 0	 0	 0	 0	Collision vector c =

0	 0	 0	 1	 0	 1	 0	 0	t (of b) =

Add t to BF c = c | (BF & t)
BF = BF | t

Query t in BF BF & t == t

If t collides in BF c & t == t

Assume we insert b.
Let t = (1 << h1(b))|(1 << h2(b))|...|(1 << hk(b))

Figure 4.2: A Bloom filter with a collision vector.

as summaries of their Web caches. Instead of sharing the full contents and URL lists of
their caches, each proxy builds a Bloom filter from the list of URL’s of cached documents
and shares the Bloom filter to other proxies. When a proxy P wants to know if another
proxy Q has a specific web page wp, proxy P uses its URL to compute the Bloom filter
bf that represents wp and checks if proxy Q has a page with Bloom filter bf . If so, proxy
P requests the full content of the page from proxy Q. In the case of a false positive error,
proxy Q has another webpage wp′ that has the same Bloom filter as wp, and it sends wp′

instead of wp to P . After proxy P receives the page wp′ from proxy Q, it will find out
that that page wp is not yet cached in Q. In that case, there is some additional latency
that occurs. However, the probability of such an event can be controlled by adjusting the
number of hash functions k, the number of bits m, and estimating the number of inserted
items n. In this application, the reduction in network traffic significantly outweighs the
small probability of a false positive error and its additional latency.

Using a similar idea, for each block, I use a Bloom filter to summarize the content of the
transactions. Each block has a Bloom filter that records the hashes of all the transaction
inputs (UTX Hashes). For valid transactions, each input can only be spent once, and hence
the transaction input hash can act as an identification of a transaction. The Bloom filter
can quickly check the membership of a transaction in a block by checking if its input hash
is in the Bloom filter. The lightweight front-end servers can store the Bloom filters of all

44

blocks in the main chain, and only request the full content of blocks that they propose.
Hence the lightweight FE servers do not have to store the entire chain. In addition, I use
Bloom filters to help detect double-spent transactions within each block. For each block, I
first use the global unspent transaction hash-map to check that the inputs have not been
spent in an earlier block. Then I check if a transaction is potentially double-spent within
each block by checking if its input is potentially inserted more than once to the Bloom filter.
I add an m-bit collision vector c to check for collision in each Bloom filter, as described in
Figure 4.2. For each Bloom filter bf, if the ith bit in vector c is set to 1, it means that there
are at least two inputs inserted to the ith position in bf. As UTX hashes are inserted into
the Bloom filter, if they collide, there is a potential for double-spending within a block. If
a UTX hash does not collide in c, it is guaranteed that it is not double-spent within the
block. A modified version of the validateInputs() function that utilizes Bloom filters to
check double-spending within each block is described in Figure 4.4.

4.2 Implementation

The lightweight front-end (LFE) servers submit blocks directly to back-end servers and
store the Bloom filters of all blocks of the entire chain. LFE servers do not participate in
interleaving blocks and only keep a portion of the main chain. Similar to SPV nodes in
Bitcoin, the lightweight FE servers will rely on the full front-end servers for block validation
and ordering, but they can request this information from more than one full front-end
server to check for correctness. As described in Figure 4.3, full front-end (Full FE) servers
interleave blocks and distribute blocks on request to lightweight front-end servers. Full
FE servers are similar to the front-end servers described in Chapter 3, with the additional
functionality to distribute blocks to lightweight front-end servers. From here, front-end
servers refer to both full and lightweight front-end servers, and original front-end servers
refer to the front-end servers described in Chapter 3.

The pseudo-code of full and lightweight front-end servers is described in Figures 4.5 −
4.7. The block and transaction format are the same as described in Section 3.2. Each client
has multiple goroutines that concurrently send transactions to the nearest FE server,
which can be either a full or lightweight FE server. The receive tx() and append()

functions remain the same as in Figure 3.5. Each FE server verifies the signature of the
transaction to make sure that the sender is the owner of the given public address. Then it
aggregates transactions into a block and proposes that block to an EPaxos server within a
shard. After EPaxos nodes within the shard replicate and save the block, they distribute
the blocks to full front-end servers and let them interleave the blocks, either using the

45

Epaxos	 Epaxos	

Epaxos	

Full	Frontend	server	

Epaxos	 Epaxos	

Epaxos	

Epaxos	 Epaxos	

Epaxos	

Full	Frontend	server	 Full	Frontend	server	

Light	front-end	servers	receive	blocks	and	block	metadata	from	full	Frontend	servers	

BE	node	sends	blocks	to	an	FE	node	

FE	node	sends	blocks	to	a	BE	node		

G	 …	 G	 …	 G	 …	

G …Replicated	global	main	chain	 G … G …

Light	FE	 Light	FE	 Light	FE	 Light	FE	 Light	FE	 Light	FE	

There are client processes sending transactions to both full and lightweight
front-end servers, which are omitted in this figure.

Figure 4.3: Adding lightweight front-end servers to the system design

strong temporal coupling or weak temporal coupling method. After full front-end servers
verify the transactions in each block and make sure that they are not double spent or
fake spent, they generate the block metadata and a Bloom filter bf that summarizes the
transactions of that block. The block metadata includes previous block hash, Merkle
proof, and timestamp of the block. All the UTX hashes of the transactions in the block
are inserted to bf. Then, the full FE servers send the block metadata and the Bloom filter
bf to all lightweight front-end servers (Line 25 in Fig. 4.5 and Line 26 in Fig. 4.6) in
parallel. Once a lightweight front-end server receives bf, if it matches any Bloom filter of
a block that the server has proposed, it sends a request to the full front-end server to get
the whole block content (Function receive block metadata() in Fig. 4.7).

46

Algorithm 3: Utilizing Bloom filters to check double-spending within each block

1 Function receive tx(stream, client, q, H)
Input : A stream of transactions from client

The global transaction channel q
The global unspent transaction hashmap H
The number of bits in Bloom filter m

2 local-q ← ∅ a new local transaction channel
3 while (tx← a transaction from stream) 6= EOF do
4 utxHash, pubKey, sig, msg ← UTX hash, public key, signature, and
5 signed message in tx
6 go:
7 valid ← utxHash ∈ H && utxHash.receiver owns pubKey
8 && ecdsa.verify(pubKey, sig, msg)
9 if valid = TRUE then

10 in ← input UTX hash of tx
11 tx.loc ← (murmur128 hash of in) % m // Location of tx in the

Bloom filter

12 add tx to local-q
13 add tx to q

14 end

15 end

16 end
17...22 Line 27 - 33 in Figure 3.5

18 end
19 Function setBloomfilter(b)

Input : A block b
The number of bits in Bloom filter m

20 〈bf, c〉 ← two vectors, each has m bits set to 0
21 foreach tx ∈ b.Transactions do
22 t ← 1 � tx.loc
23 c ← c | (bf & t)
24 bf ← bf | t
25 end
26 〈b.bloomfilter, b.c〉 ← 〈bf, c〉
27 end

// Modify validateInputs() and use Bloom filters to help check double-spending

within each block

28 Function validateInputs(H, b)
Input : The global unspent transaction hashmap H

A block b
Output: If block b is valid and has no fake/double-spent transaction

29 m ← {} a set of input UTX hashes
30 foreach tx ∈ b do
31 in ← input UTX hash of tx
32 if in /∈ H then return FALSE // tx is fake/double-spent

33 if in collides in b.c then
34 if in ∈ m then return FALSE // tx is fake/double-spent

35 add in to m

36 end

37 end
38 return TRUE

39 end

Figure 4.4: Common functions in full and lightweight front-end servers

47

Algorithm 4: Pseudo-code of strong-coupling full FE servers

1 Function main(L, #shards)
Input : A list of hosts and port numbers L of backend servers

2 init(L)
3 for i ← 1 to #shards do
4 qi ← ∅ a channel containing blocks downloaded from shard i
5 go get blocks(i, L, qi)

6 end
7 Ψ ← host and port numbers of lightweight FE servers registering using gRPC

8 go interleave(β, H, q1, q2, ..., qn, #shards, Ψ)

9 end

10 Function interleave(β, H, q1, q2, ..., qn, #shards, Ψ) // Task 4a

Input : The global main chain β
The global unspent transaction hashmap H
A list of channels of downloaded blocks q1, q2, ..., qn
Number of BE shards #shards
The list of lightweight front-end servers Ψ

11 while true do
12 for i ← 1 to #shards do
13 b ← the next block from qi
14 setBloomfilter(b)
15 if validateInputs(H, b) = FALSE then Go to line 12
16 foreach tx ∈ b do
17 delete (in ← input UTX hash of tx) from H
18 end
19 b.prevTxHash ← the hash of the last block in β
20 append b to the main chain β
21 go:
22 foreach tx ∈ b do add tx.hash to H
23 end
24 foreach lfe ∈ Ψ do
25 go send b.bloomfilter and b.metadata to lfe
26 end

27 end

28 end

29 end

Figure 4.5: Strong-coupling full front-end servers pseudo-code

48

Algorithm 5: Pseudo-code of weak-coupling full FE servers

1 Function main(L, id)
Input : A list of hosts and port numbers L of backend servers

The id of the server
2 Π, β, H, s, q ← init(L)
3 qid ← ∅ a channel containing blocks downloaded from shard id
4 go get blocks(id, L, qid)
5 Γ ← the list of other FE servers connected using EPaxos
6 Ψ ← host and port numbers of lightweight FE servers registering using gRPC

7 while TRUE do
8 go:
9 b ← the next block in qid

10 setBloomfilter(b)

11 propose b to Γ // Task 4b : propose a block

12 end

13 end

14 end

15 Function execute proposal(b, β, H, Ψ) // Task 4b : process a proposal

Input : A proposed block b
The global main chain β
The global unspent transaction hashmap H
The list of lightweight front-end servers Ψ

16...24 Line 11 - 19 in Figure 3.7
25 foreach lfe ∈ Ψ do
26 go send b.bloomfilter and b.metadata to lfe
27 end

28 end

Figure 4.6: Weak-coupling full front-end servers pseudo-code

4.3 Evaluation

This section presents the evaluation of the blockchain system with lightweight FE servers
and Bloom filters. Section 4.3.1 shows the difference of interleaving blocks using the strong
and weak coupling methods, with and without using lightweight FE servers. In Section
4.3.2, I show the how the sizes of Bloom filters can affect the throughputs. In Section
4.3.3, I explore how the ratio of full and lightweight FE servers affect the throughput of
the blockchain system.

49

Algorithm 6: Pseudo-code of lightweight FE servers

1 Function main(L)
Input : A list of hosts and port numbers L of backend servers

2 Π, β, H, s, q ← init(L)
3 bfSet ← a set of bloomfilters
4 go receive block metadata()

5 end

6 Function append(q, Π) // Modified version of Task 2

Input : The global transaction channel q
The global channel Π of connections to backend servers

7 prevTime ← currentTime()
8 while q.size() > 100 or (currentTime() − prevTime) > 100ms do

9...13 Line 38 - 42 in Figure 3.5
14 add b.bloomfilter to bfSet

15 end

16 end

17 Function receive block metadata()
Input : A stream stream of block metadata and Bloom filter from a full FE

server
18 while true do
19 bf, bmeta ← Bloom filter and metadata of a block received from stream
20 if bf ∈ bfSet then
21 b ← block with bmeta.bid from a full FE server
22 delete bf from bfSet
23 go:
24 foreach tx ∈ b do add tx.hash to H
25 end

26 end

27 end

28 end

Figure 4.7: Lightweight front-end servers pseudo-code

4.3.1 Adding Lightweight Front-End Servers to the System

In this section, I describe the experiment on AWS EC2 to test the throughput enhancement
by introducing lightweight front-end servers. I set up the shards in 3 different regions: us-
east-1, us-west-1, and ca-central-1. In each region, there is one BE shard, three front-end
servers, and three clients, which means there are 9 FE servers in total. I compare the

50

performance of the system with 4 setups as follows. 1 All 9 FE servers are the original
strong-coupling FE servers using the pseudo-code described in Figure 3.6. 2 All 9 FE
servers are the original weak-coupling FE servers using the pseudo-code described in Figure
3.7. 3 In each region, there are 2 lightweight front-end servers and 1 full front-end servers,
and the 3 full FE servers in 3 regions interleave using the strong-coupling method. The
pseudo-code is described in Figures 4.5 and 4.7. And 4 In each region, there are 2
lightweight front-end servers and 1 full front-end servers, and the 3 full FE servers in
3 regions interleave using the weak-coupling method. The pseudo-code is described in
Figures 4.6 and 4.7. Each setup has a different way of distributing blocks, as described in
Figure 4.8.

A full FE server connects to the nearest BE server, a lightweight FE server receives
blocks from the nearest full FE server, and each client sends transactions to a full/lightweight
FE server in the same AWS region. Each BE shard runs in a t2-micro instance that has
1 vCPU, each FE server runs in a t2-xlarge instance that has 4 vCPUs, and each client
program runs in a t2-medium instance that has 2 vCPUs. Similar to what we do in Sec-
tions 3.4.1 and 3.4.2, the throughput is controlled indirectly by varying the number of
goroutines per client. Each dot in Figure 4.9 is corresponding to having 100, 200, 400,
600, 800, and 1000 goroutines per client. The error bar in the figure represents the
standard deviation of the latency and throughput.

As I increase the number of FE servers from 3 to 9, the performance gap between the
original strong-coupling FE servers and the original weak-coupling FE servers is widened.
The original strong-coupling FE servers (the green line) reach the peak throughput at
45000 transactions per second, and as I increase the number of goroutines per client
from 600 to 1000, the throughput does not improve, but the latency increases. Meanwhile,
the original weak-coupling FE servers (the yellow line) reach the peak throughput at 12500
transactions per second, and the latency falls in the range of 150ms to 875ms.

Adding lightweight front-end servers significantly improves the throughput and de-
creases the latency, as shown in the gap between the red and green lines and between the
blue and the yellow lines. When using lightweight FE servers and letting only 3 full FE
servers interleave blocks, the system reaches the peak throughput at 56000 transactions
per second, and the latency range is 45ms to 110ms. When full FE servers interleave using
the weak-coupling method, the system reaches the peak throughput at 36000 transactions
per second. Adding lightweight FE servers helps scale up the system, and compared to the
original setup, the throughput is not quickly saturated. This improvement is due to the
reduction in storage and network bandwidth requirements. On average, each lightweight
FE server only saves 1

9
blocks of the main chain. The communication overhead is reduced

as the size of block metadata and Bloom filter is small (48 bytes in total) compared to that

51

(a) No lightweight FE server. All FE servers interleave
blocks using the strong coupling method.

(b) No lightweight FE server. All FE servers interleave
blocks using the weak coupling method.

(c) Full FE servers interleave blocks using the
strong coupling method and distribute blocks

to LFE servers.

(d) Full FE servers interleave blocks using the
weak coupling method and distribute blocks to

LFE servers.

Processes with the same color are co-located in the same regions.
O us-east-1 O us-west-1 O ca-central-1

Figure 4.8: Four ways to distribute blocks from back-end servers to front-end servers

52

−− Original strong-coupling FE servers - no lightweight FE server (See Fig. 4.8a)
−− Original weak-coupling FE servers - no lightweight FE server (See Fig. 4.8b)
−− Strong-coupling full FE servers with lightweight FE servers (See Fig. 4.8c)
−− Weak-coupling full FE servers with lightweight FE servers (See Fig. Fig. 4.8d)

Each dot, respectively from left to right, represents the latency and throughput when each
client has 100, 200, 400, 600, 800, and 1000 goroutines.

Figure 4.9: Compare the performances of strong and weak coupling methods, with and
without using lightweight front-end servers.

of a block (A block with 1000 transactions is 160-KB long).

4.3.2 Varying Bloom Filter Sizes

In this experiment, I vary the number of bits of the Bloom filters. As shown in Section
4.1.2, the false positive error of a system depends on the number of hash functions k,
the number of bits m, and the number of inserted transaction hashes n. I fix k = 1 and
n = 50, and experiment with different values of m ∈ {64, 128, 256}-bits. Using AWS EC2
instances in 3 regions, I set up 4 experiments, one experiment does not use Bloom filter to
check double-spending within each block (See function validateInputs() in Figure 3.5),
and 3 experiments that use Bloom filters (See function validateInputs() in Figure 4.4).
In each of the three experiments, the size of the Bloom filters is m ∈ {64, 128, 256}-bits,

53

(a) Strong coupling with different m (b) Weak coupling with different m

• Each dot, respectively from left to right, represents the latency and throughput when
each client has 100, 200, 400, 600, 800, and 1000 goroutines.
• The red line represents the performance when the system does not use Bloom filters to
check for double-spending within each block. The blue, green, and yellow lines represent
the performance when using different sizes of Bloom filters m ∈ {64, 128, 256}-bits.
• The number of hash functions k = 1. The number of transactions per block n = 50.

m = 64 128 256
False positive rate 0.55 0.32 0.18

Figure 4.10: Performance with and without using Bloom filters to check double-spending
within each block.

respectively. The higher m, the lower the false positive rate, but the more bandwidth
required to transmit block data. In each region, I set up 1 BE shard that consists of 3
EPaxos servers, 1 full front-end server, 2 lightweight FE servers, and 3 client processes
where each client sends transactions to an FE server. Each BE server runs in a t2-micro
instance with 1 vCPU, each FE server runs in a t2-xlarge server with 4 vCPUs, and each
client runs in a t2-medium server with 2 vCPUs. Each experiment is executed 3 times,
each run lasts for 20 seconds, and the throughputs, median latency, and standard deviation
errors are shown in Figure 4.10.

As we observe in Figure 4.10b, when the FE servers interleave using the weak coupling
method, using Bloom filters to check double-spending within each block does not improve
the performance of the system. This is because the consensus layer among FE servers
remains the bottleneck, and improving the transaction validation speed does not affect the

54

overall performance. However, in Figure 4.10a, when the system uses the strong coupling
method, we can see that Bloom filters help speed up the system when the number of
goroutine per client is more than 600. This is because the more goroutine per client,
the higher the growth rate in each shard. Thus, it is easier to see the benefits of reducing
the running time of the validateInputs() function. An interesting observation here is
that, even though 128-bit Bloom filters have higher false positive rates, they outperform
256-bit Bloom filters. Compared to using 128-bit Bloom filters, using 256-bit Bloom filters
doubles the number of required bits but only reduces the false positive rate by 14%. The
result suggests that to further improve the performance of strong-coupling FE servers, we
should pick the Bloom filter size based on the estimated number of transactions per block.

4.3.3 Ratio of Full Front-End Servers in a System

As discussed in Section 2.3, several sharded blockchain systems hardcode the number of
validators and committee sizes in a configuration file before building the blockchain. These
numbers are fixed despite the number of active participants in a system. In this section, I
discuss the importance of choosing these constants by showing how the ratio of full front-
end servers affects the throughputs in our blockchain system. Using AWS EC2 instances, I
set up 3 experiments, each has 3 BE shards where each shard consists of 3 EPaxos servers,
36 front-end servers, and 36 client processes where each client sends transactions to an FE
server. The servers are separated into 3 regions: us-east-1, us-west-1, and ca-central-1.
Each region has 1 BE shard, 12 FE servers, and 12 client processes. Each BE server runs
in a t2-micro instance with 1 vCPU, each FE server runs in a t2-xlarge server with 4
vCPUs, and each client runs in a t2-medium server with 2 vCPUs. To calculate the peak
throughputs, I adjust the number of goroutines per client process from 100, 200, 400,
600, 800 to 1000.

In this experiment, I vary the number of full front-end servers. There are three settings:
1 3 full FE servers and 33 lightweight FE servers; 2 6 full FE servers and 30 lightweight

FE servers; and 3 9 full FE servers and 27 lightweight FE servers. As we observe from
Figure 4.11, the fewer full FE servers in the system, the smaller the gap between the
performance between the strong and weak temporal coupling methods. In addition, the
more full FE servers in the systems, the smaller the peak throughput is. In the strong
coupling case, when there are more full FE servers, the BE servers have to send blocks to
more FE servers. In the weak coupling case, when there are more full FE servers, there are
more nodes participating in the consensus protocol of the blockchain system, which hurts
the throughput. This explains why the gap between the strong and weak coupling methods
is widened when the number of full FE servers increases. On the other hand, when there

55

Figure 4.11: Peak throughputs with different number of full front-end servers

are more full FE servers, the system is more fault-tolerant as it can stand more failures of
full FE servers. This shows the trade-off between fault-tolerance and performance when
adjusting the number of full front-end servers.

56

Chapter 5

Conclusion and Future Work

This thesis discusses the principles of the sharding concept used in blockchain designs
and how current sharding blockchain systems use it to scale out. Section 2.3 discusses
the general mechanism used in sharded blockchains, examines different BFT consensus
protocols and their approaches to achieve intra-shard and cross-shard consensus.

There are two major approaches to validate cross-shard transactions. One is to build
full-mesh connections among nodes, and the other is to build a global root chain. Using
the second approach - maintaining a global root chain, we can reduce the data migration
overhead when handling cross-shard transactions, replicate the total order of blocks, and
maintain security when one shard is controlled by an adversary. This approach raises the
question of how we can maintain a global chain of blocks from different shards. In Chapters
3 and 4, I examine two methods to interleave blocks and discuss the role of lightweight
servers in a blockchain system. The experimental results in Chapter 3 suggest that when
there is negligible latency among servers, both strong and weak temporal coupling methods
perform similarly in terms of throughput and end-to-end latency. The weak temporal
coupling method can tolerate the crash failures of back-end shards and does not stall if
the shards grow at different speeds. However, it requires an additional layer of consensus
among front-end servers and hence is more susceptible to the increase in latency among
servers. While the strong temporal coupling method requires the shards to grow at a similar
rate and cannot tolerate shard failures, using this method to interleave blocks provides a
higher throughput compared to using the weak temporal coupling method.

The experimental results in Chapter 4 suggest that adding lightweight front-end servers
helps scale out the system. Lightweight front-end servers can help parallelize signatures
verification of transactions in blocks and rely on validators - a portion of front-end servers

57

referred to as full front-end servers - to validate and order blocks. Similar ideas are discussed
in Section 2.3, where only a portion of members participate in block verification and
ordering. In addition, I propose a novel usage of Bloom filters and collision vectors to
summarize of contents of transactions and help check double-spending transactions within
each block. Bloom filter sizes are much smaller than the whole content of blocks, which
helps save bandwidth and reduce the communication overhead between full and lightweight
front-end servers. I also show that the number of bits in Bloom filters can impact the
performance. To further improve the throughput, we should pick the number of bits of
Bloom filters based on the estimated number of transactions per block.

Several sharded blockchain systems hardcode the number of validators and commit-
tee sizes in a configuration file before building the blockchain. Section 4.3.3 shows that
the ratio of full front-end servers over lightweight front-end servers in a blockchain sys-
tem can impact the peak throughput. The more full front-end servers, the more available
nodes that can interleave blocks, and the lower the throughput is. This suggests a fu-
ture sharded blockchain system considers dynamicity instead of depending on constant
parameters, specifically when the number of active participants is not fixed. If it needs
to hardcode some constants (such as the number of validators and committee size), they
should be carefully measured to maximize the performance of the system.

For future implementations, we are going to investigate the data traffic and bandwidth
bottlenecks for the system to evaluate data propagation among processes and further im-
prove the throughput and reduce latency. We will change the consensus protocol and
replace EPaxos with a BFT consensus protocol, preventing the system from Byzantine
faults.

58

References

[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Efficient
synchronous Byzantine consensus. arXiv preprint arXiv:1704.02397, 2017.

[2] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. Parblockchain:
Leveraging transaction parallelism in permissioned blockchain systems. In 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS), pages
1337–1347. IEEE, 2019.

[3] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Chris-
tidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov
Manevich, et al. Hyperledger fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the thirteenth EuroSys conference, pages 1–15, 2018.

[4] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.
Prism: Deconstructing the blockchain to approach physical limits. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pages 585–602, 2019.

[5] Sikha Bagui and Loi Tang Nguyen. Database sharding: to provide fault tolerance and
scalability of big data on the cloud. International Journal of Cloud Applications and
Computing (IJCAC), 5(2):36–52, 2015.

[6] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine replication for
the masses with bft-smart. In 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 355–362. IEEE, 2014.

[7] Blockchain.com. Bitcoin total hash rate. https://www.blockchain.com/charts/

hash-rate. Accessed on 2020-12-08.

59

https://www.blockchain.com/charts/hash-rate
https://www.blockchain.com/charts/hash-rate

[8] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-diffie-hellman-group signature scheme. In International Workshop
on Public Key Cryptography, pages 31–46. Springer, 2003.

[9] Danny Bradbury. The problem with bitcoin. Computer Fraud & Security, 2013(11):5–
8, 2013.

[10] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

[11] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an
engineering perspective. In Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing, pages 398–407, 2007.

[12] Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejinder Singh Mor.
Blockchain and scalability. In 2018 IEEE International Conference on Software Qual-
ity, Reliability and Security Companion (QRS-C), pages 122–128. IEEE, 2018.

[13] Wubing Chen, Zhiying Xu, Shuyu Shi, Yang Zhao, and Jun Zhao. A survey of
blockchain applications in different domains. In Proceedings of the 2018 International
Conference on Blockchain Technology and Application, pages 17–21, 2018.

[14] D. Collins, R. Guerraoui, J. Komatovic, P. Kuznetsov, M. Monti, M. Pavlovic, Y. Pig-
nolet, D. Seredinschi, A. Tonkikh, and A. Xygkis. Online payments by merely broad-
casting messages. In 2020 50th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), pages 26–38, 2020.

[15] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. Spanner: Google’s globally distributed database. ACM Transactions
on Computer Systems (TOCS), 31(3):1–22, 2013.

[16] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. Dbft: Efficient
leaderless Byzantine consensus and its application to blockchains. In 2018 IEEE 17th
International Symposium on Network Computing and Applications (NCA), pages 1–8.
IEEE, 2018.

[17] Tyler Crain, Christopher Natoli, and Vincent Gramoli. Evaluating the red belly
blockchain. arXiv preprint arXiv:1812.11747, 2018.

60

[18] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. On scaling
decentralized blockchains. In International conference on financial cryptography and
data security, pages 106–125. Springer, 2016.

[19] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies. arXiv
preprint arXiv:1505.06895, 2015.

[20] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, and
Beng Chin Ooi. Towards scaling blockchain systems via sharding. In Proceedings of
the 2019 international conference on management of data, pages 123–140, 2019.

[21] John R Douceur. The sybil attack. In International workshop on peer-to-peer systems,
pages 251–260. Springer, 2002.

[22] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: a scal-
able wide-area web cache sharing protocol. IEEE/ACM transactions on networking,
8(3):281–293, 2000.

[23] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[24] Ethereum Foundation. Ethereum 2.0. https://ethereum.org/en/eth2. Accessed
on 2020-10-02.

[25] Ethereum Foundation. Ethereum 2.0 - The beacon chain. https://ethereum.org/

en/eth2/the-beacon-chain/. Accessed on 2020-10-02.

[26] Litecoin Foundation. Litecoin.org. https://www.litecoin.org/. Accessed on 2020-
10-02.

[27] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling Byzantine agreements for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 51–68, 2017.

[28] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft: a
scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP in-
ternational conference on dependable systems and networks (DSN), pages 568–580.
IEEE, 2019.

61

https://ethereum.org/en/eth2
https://ethereum.org/en/eth2/the-beacon-chain/
https://ethereum.org/en/eth2/the-beacon-chain/
https://www.litecoin.org/

[29] Yue Hao, Yi Li, Xinghua Dong, Li Fang, and Ping Chen. Performance analysis of con-
sensus algorithm in private blockchain. In 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 280–285. IEEE, 2018.

[30] Algorand, Inc. Algorand.com. https://www.algorand.com/. Accessed on 2020-10-02.

[31] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signature
algorithm (ecdsa). International journal of information security, 1(1):36–63, 2001.

[32] Srinivasan Keshav, M. Wojciech Golab, Bernard Wong, Sajjad Rizvi, and Sergey
Gorbunov. Rcanopus: Making canopus resilient to failures and Byzantine faults.
arXiv: Distributed, Parallel, and Cluster Computing, 2018.

[33] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual Interna-
tional Cryptology Conference, pages 357–388. Springer, 2017.

[34] Soohyeong Kim, Yongseok Kwon, and Sunghyun Cho. A survey of scalability solutions
on blockchain. In 2018 International Conference on Information and Communication
Technology Convergence (ICTC), pages 1204–1207. IEEE, 2018.

[35] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-
stake. self-published paper, August, 19, 2012.

[36] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. Enhancing bitcoin security and performance with strong
consistency via collective signing. In 25th {usenix} security symposium ({usenix}
security 16), pages 279–296, 2016.

[37] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta,
and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 583–598. IEEE, 2018.

[38] Sinan Küfeoğlu and Mahmut Özkuran. Bitcoin mining: A global review of energy and
power demand. Energy Research & Social Science, 58:101273, 2019.

[39] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16:133–169,
1998.

[40] Leslie Lamport. Paxos made simple. ACM SIGACT News, 2001.

[41] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

62

https://www.algorand.com/

[42] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals prob-
lem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[43] Leslie B Lamport. Generalized paxos, April 13 2010. US Patent 7,698,465.

[44] Wenting Li, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan Karame. Securing
proof-of-stake blockchain protocols. In Data Privacy Management, Cryptocurrencies
and Blockchain Technology, pages 297–315. Springer, 2017.

[45] Google, LLC. golang.org/. https://golang.org/. Accessed on 2020-10-02.

[46] Google, LLC. golang.org/x/net. https://godoc.org/golang.org/x/net. Accessed
on 2020-10-02.

[47] Google, LLC. grpc.io. https://grpc.io/. Accessed on 2020-10-02.

[48] Google, LLC. Protocol buffers documentation. https://developers.google.com/

protocol-buffers. Accessed on 2020-10-02.

[49] Lailong Luo, Deke Guo, Richard TB Ma, Ori Rottenstreich, and Xueshan Luo. Opti-
mizing bloom filter: Challenges, solutions, and comparisons. IEEE Communications
Surveys & Tutorials, 21(2):1912–1949, 2018.

[50] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 17–30, 2016.

[51] Chunyu Mao, Anh-Duong Nguyen, and Wojciech Golab. Performance and fault tol-
erance trade-offs in sharded permissioned blockchains. In 2020 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pages 1–3. IEEE, 2020.

[52] Parisa Jalili Marandi, Carlos Eduardo Bezerra, and Fernando Pedone. Rethinking
state-machine replication for parallelism. In 2014 IEEE 34th International Conference
on Distributed Computing Systems, pages 368–377. IEEE, 2014.

[53] Thomas McGhin, Kim-Kwang Raymond Choo, Charles Zhechao Liu, and Debiao He.
Blockchain in healthcare applications: Research challenges and opportunities. Journal
of Network and Computer Applications, 135:62–75, 2019.

63

https://golang.org/
https://godoc.org/golang.org/x/net
https://grpc.io/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

[54] Esther Mengelkamp, Benedikt Notheisen, Carolin Beer, David Dauer, and Christof
Weinhardt. A blockchain-based smart grid: towards sustainable local energy markets.
Computer Science-Research and Development, 33(1-2):207–214, 2018.

[55] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In 40th
annual symposium on foundations of computer science (cat. No. 99CB37039), pages
120–130. IEEE, 1999.

[56] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 31–42, 2016.

[57] Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM transactions on net-
working, 10(5):604–612, 2002.

[58] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There Is More Consensus
in Egalitarian Parliaments. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 358–372, 2013.

[59] Iulian Moraru, David G. Andersen, and Michael Kaminsky. Epaxos code base.
https://github.com/efficient/epaxos, 2015.

[60] Satoshi Nakamoto. Bitcoin. https://github.com/bitcoin/bitcoin, 2020.

[61] Satoshi Nakamoto and A Bitcoin. A peer-to-peer electronic cash system. Bitcoin.–
URL: https://bitcoin.org/bitcoin.pdf, 2008.

[62] Lan N Nguyen, Truc DT Nguyen, Thang N Dinh, and My T Thai. Optchain: optimal
transactions placement for scalable blockchain sharding. In 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pages 525–535. IEEE,
2019.

[63] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[64] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong. Performance analysis
of private blockchain platforms in varying workloads. In 2017 26th International
Conference on Computer Communication and Networks (ICCCN), pages 1–6, 2017.

[65] Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav. Canopus: A scalable and mas-
sively parallel consensus protocol. In Proceedings of the 13th International Conference
on emerging Networking EXperiments and Technologies, pages 426–438, 2017.

64

https://github.com/bitcoin/bitcoin

[66] Sara Saberi, Mahtab Kouhizadeh, Joseph Sarkis, and Lejia Shen. Blockchain tech-
nology and its relationships to sustainable supply chain management. International
Journal of Production Research, 57(7):2117–2135, 2019.

[67] David Schwartz, Noah Youngs, Arthur Britto, et al. The ripple protocol consensus
algorithm. Ripple Labs Inc White Paper, 5(8), 2014.

[68] Siddhartha Sen and Michael J Freedman. Commensal cuckoo: Secure group parti-
tioning for large-scale services. ACM SIGOPS Operating Systems Review, 46(1):33–39,
2012.

[69] David Shrier, Weige Wu, and Alex Pentland. Blockchain & infrastructure (identity,
data security). Massachusetts Institute of Technology-Connection Science, 1(3):1–19,
2016.

[70] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser,
Ismail Khoffi, Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributed
randomness. In 2017 IEEE Symposium on Security and Privacy (SP), pages 444–460.
Ieee, 2017.

[71] Florian Tschorsch and Björn Scheuermann. Bitcoin and beyond: A technical sur-
vey on decentralized digital currencies. IEEE Communications Surveys & Tutorials,
18(3):2084–2123, 2016.

[72] Robbert van Renesse. BoscoChain: Keeping Byzantine consensus for bockchains sim-
ple and flexible. Presentation at University of Waterloo, November 2017.

[73] Marie Vasek, Micah Thornton, and Tyler Moore. Empirical analysis of denial-of-
service attacks in the bitcoin ecosystem. In International conference on financial
cryptography and data security, pages 57–71. Springer, 2014.

[74] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft repli-
cation. In Jan Camenisch and Doğan Kesdoğan, editors, Open Problems in Network
Security, pages 112–125, Cham, 2016. Springer International Publishing.

[75] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. Sok: Sharding on
blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, AFT ’19, page 41–61, New York, NY, USA, 2019. Association for Com-
puting Machinery.

65

[76] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

[77] Lei Yang, Vivek Bagaria, Gerui Wang, Mohammad Alizadeh, David Tse, Giulia
Fanti, and Pramod Viswanath. Prism: Scaling bitcoin by 10,000 x. arXiv preprint
arXiv:1909.11261, 2019.

[78] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu. Survey: Sharding in
blockchains. IEEE Access, 8:14155–14181, 2020.

[79] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 931–948, 2018.

[80] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. An
overview of blockchain technology: Architecture, consensus, and future trends. In
2017 IEEE international congress on big data (BigData congress), pages 557–564.
IEEE, 2017.

[81] Qiheng Zhou, Huawei Huang, Zibin Zheng, and Jing Bian. Solutions to scalability of
blockchain: A survey. IEEE Access, 8:16440–16455, 2020.

66

APPENDICES

67

Appendix A

FLP Impossibility

The famous short paper Impossibility of Distributed Consensus with One Faulty Process
[23], often referred to as the FLP impossibility proof, defines the upper bound of the
possible goals with distributed processes in an asynchronous environment.

In short, the FLP impossibility proof shows that in an asynchronous distributed system,
if there is at least one process crash, no deterministic algorithm can solve the consensus
problem. The paper formally defines the system model as follows. Assume there are
N > 2 processes that communicate with each other. For simplicity, the paper assumes
that these processes need to agree on one of the values {0, 1}. They send messages of
form (p,m) where p is the receiving process, and m is the contents of the message. There
are two supported operations on messages: send(p,m) places the message (p,m) in the
message buffer, and receive(p) returns either m from a message (p,m) sent to p, or a
null message θ if the message buffer is empty. The messages can come in any order and
may be delayed arbitrarily, but not lost. By calling receive(p) indefinitely, a process will
eventually receive all the messages. A configuration is defined as the internal state of all
processes and their message buffers. An event or step happens when a process p performs
receive(p) and transitions from the current state to another. In the paper, a schedule
is defined as execution with a sequence of events, and such sequence is referred to as a
run. A run is admissible when there is at most one faulty process and every message is
delivered eventually. A run is deciding when a process eventually decides on a proposed
value according to the consensus properties. A consensus protocol is totally correct if all
admissible runs are deciding runs.

Let P be a totally correct consensus protocol despite one faulty process. A configuration
C is bivalent if there are two decision values of configurations reachable from C, and i-valent

68

if it results in only one value i. The paper states three lemmas as follows:

LEMMA 1. Suppose that from some configuration C, the schedules σ1, σ2 lead
to configurations C1, C2, respectively. If the sets of processes taking steps in σ1
and σ2, respectively, are disjoint, then σ2 can be applied to C1 and σ1 can be
applied to C2, and both lead to the same configuration C.

The first lemma expresses a commutativity property of schedules. Since σ1 and σ2 do not
interact, the result above follows from the system definition.

LEMMA 2. P has a bivalent initial configuration.

Suppose that the opposite is true. Since all results must be possible, some initial configu-
rations result in a ’0’ being decided and some result in an ’1’ being decided. We can order
all possible initial configurations in a chain where two adjacent configurations only differ
in the starting value of one process p. Along this chain, there must exist two adjacent
configurations where one results in ’0’ and the other results in ’1’. We name them C0 and
C1, respectively. If p fails, it neither sends nor receives any messages and its initial value
cannot be seen by any other process. C0 must still decide on 0, and C1 must sti ll decide
on 1, because the consensus protocol P is totally correct despite one faulty process. As
a consequence, C0 and C1 decide on different values although they take the exactly same
sequence of steps, which contradicts the assumption that the result is predetermined by
the initial configurations. Hence, there exists some initial configuration C in which the
decision is not predetermined but a result of the order of received messages and whether
there is any crash.

LEMMA 3. Let C be a bivalent configuration of P , and let e = (p,m) be an
event that is applicable to C. Let C be the set of configurations reachable from C
without applying e, and let D = e(C) = {e(E)|E ∈ C and e is applicable to E}.
Then, D contains a bivalent configuration.

Suppose that D does not contain a bivalent configuration. First, the authors show that
D must contain both 0- and 1-valent configurations if it has no bivalent configuration.
Since C is bivalent, there must exist at least one 0-valent configuration and one 1-valent
configuration reachable from C. Let them be E0 and E1, respectively. If E0 6∈ C, let
F0 = e(E0), which belongs to D. Otherwise, there must exist a configuration F0 that
precedes E0 and belongs to D. Since one of E0 and F0 is reachable from each other and F0

69

is univalent since it is in D, F0 must be 0-valent. The same argument goes to E1 and F1,
hence D contains both 0-valent and 1-valent configurations. Applying a similar argument
from lemma 2, D must contain a bivalent configuration. From lemma 2 and 3, any process
must start from a bivalent initial configuration C0. From C0 we can reach to another
bivalent configuration, and this may continue forever if a message is delayed arbitrarily to
a process. Not all admissible runs are deciding, hence the protocol is not totally correct.

70

	List of Figures
	List of Tables
	Introduction
	Permissionless vs. Permissioned Blockchain
	Scalability Issues of Blockchain
	Sharding in Blockchain
	Contributions and Organization

	Literature Review
	The Consensus Problem
	Paxos and Egalitarian Paxos

	Blockchain Protocols
	Permissionless Blockchain and BFT Protocols
	Permissioned Blockchain and BFT Protocols

	Sharded Blockchain Protocols
	Elastico
	OmniLedger
	Rapid Chain
	Learnings

	Interleaving Blocks in a Sharded Permissioned Blockchain
	Methods of Interleaving
	System Architecture
	Implementation
	Protocol Buffers and gRPC
	Concurrency in Go
	Functionalities in Front-End Servers
	Pseudo-Code Description

	Evaluation
	Simulated Environment
	On AWS EC2
	Summary

	Lightweight Front-End Servers
	Motivation
	Simplified Payment Verification
	Bloom Filter

	Implementation
	Evaluation
	Adding Lightweight Front-End Servers to the System
	Varying Bloom Filter Sizes
	Ratio of Full Front-End Servers in a System

	Conclusion and Future Work
	References
	APPENDICES
	FLP Impossibility

