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Abstract

Shared resource extraction among profit-seeking individuals involves
a tension between individual benefit and the collective well-being repre-
sented by the persistence of the resource. Many game theoretic models
explore this scenario, but these models tend to assume either best response
dynamics (where individuals instantly switch to better paying strategies)
or imitation dynamics (where individuals copy successful strategies from
neighbours), and do not systematically compare predictions under the two
assumptions. Here we propose an iterated game on a social network with
payoff functions that depend on the state of the resource. Agents harvest
the resource, and the strategy composition of the population evolves un-
til an equilibrium is reached. The system is then repeatedly perturbed
and allowed to re-equilibrate. We compare model predictions under best
response and imitation dynamics. Compared to imitation dynamics, best
response dynamics increase sustainability of the system, the persistence
of cooperation while decreasing inequality and debt corresponding to the
Gini index in the agents’ cumulative payoffs. Additionally, for best re-
sponse dynamics, the number of strategy switches before equilibrium fits
a power-law distribution under a subset of the parameter space, suggest-
ing the system is in a state of self-organized criticality. We find little
variation in most mean results over different network topologies; however,
there is significant variation in the distributions of the raw data, equality
of payoff, clustering of like strategies and power-law fit. We suggest the
primary mechanisms driving the difference in sustainability between the
two strategy update rules to be the clustering of like strategies as well
as the time delay imposed by an imitation processes. Given the strik-
ingly different outcomes for best response versus imitation dynamics for
common-pool resource systems, our results suggest that modellers should
choose strategy update rules that best represent decision-making in their
study systems.
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1 Introduction

Common-pool resources are resources such as forests and fisheries which are
both available for public extraction and finite, therefore being very susceptible
to overuse by profit-seeking individuals [17, 44, 46, 3]. This fragility in the face of
individual self-interest has led to the study of common-pool resources in many
diverse fields such as economics, sociology, applied mathematics, and ecology
[55, 8, 7, 59, 17, 50, 52, 57, 44, 54, 25]. A pervasive idea regarding the outcome
of common-pool resources is known as the tragedy of the commons. The under-
lying argument is that given a resource shared among rational individuals, each
individual can increase their personal profit by increasing their level of resource
extraction. There is an associated cost to the health of the resource; however,
this cost is shared by all individuals accessing the commons and is consequently
less than the expected profit of increased extraction. The conclusion of the
tragedy of the commons is that any common-pool resource is doomed to deple-
tion in the absence of control by a central government or private ownership [24].
Following the inception of this paradigm, there have been many studies investi-
gating its validity. Scholars have now found that many human communities are
in fact able to sustainably harvest common-pool resources without a centralized
governing body [27, 44, 43, 17, 31]. One important reason for these successes
are the value systems that these communities follow regarding proper resource
use. These value systems, known as social norms, can encourage individuals to
harvest sustainably and also punish those who do not. These social norms are
dynamic and can evolve among individuals and communities due to external
and internal pressures [17, 43, 44, 35, 36, 27].

Evolutionary game theory offers a framework to model the propagation of
social norms in which individuals are represented by players of a game, and
social norms are the game strategies. There have been many types of models
exploring the persistence of common-pool resources as well as the tragedy of the
commons in general. These models range from systems of ordinary differential
equations assuming a well-mixed population to discrete spatial models where the
agents interact on a network or a lattice [18, 20, 23, 39, 38, 45, 49, 57, 59, 30,
47, 28, 40, 13, 56, 34, 15, 51]. In spatial models, cooperative strategies, which
are not favoured in well-mixed models, are shown to be much more resilient,
challenging the base assumptions of the tragedy of the commons. This can be
explained through the formation of cooperative spatial clusters, where defection
becomes disadvantageous at the boundaries and cannot invade [39, 38, 51].

Although there have been many studies on abstract tragedy of the commons
games, there is little literature presenting models which structure a human pop-
ulation on a network from which the population harvests an ecological resource.
Models that explore this interaction can give significant insight into common-
pool resources since most human interactions are determined by social networks
rather than physical location within a community [16, 11]. One study that has
explored this analyzed an empirical network common-pool resource model where
cooperators maximize their payoffs over a longer time horizon than defectors.
Using a single strategy update rule, more links between cooperators, as well
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as smaller networks, were found to promote cooperation and efficient resource
management [28]. A second study investigated agents on a lattice informed by
both social norms and organizational rules when harvesting a forest; however,
the long term dynamics were governed by sampling strategies from a normal dis-
tribution [1]. A third study modelling agents on a network found that in most
cases increasing the probability of rewiring cooperator-defector links increased
cooperation in the system [32]. In the previous studies, as well as the majority
of game theoretic models, one mechanism for the evolution of strategies among
agents is assumed. Rarely in the literature are the dependence of model pre-
dictions on this choice of mechanism compared. In evolutionary game theory,
there are two evolutionary dynamics widely used. One involves a given agent
comparing their payoff with their neighbours and changing their strategy to
that of their highest-earning neighbour (“imitation dynamics”) [26]. The other
involves a given agent comparing the expected payoff of their current strategy
to that of a different strategy for the next time step and choosing the strategy
with the highest expected payoff (“best-response dynamics”) [18]. Both of these
mechanisms are supported by the literature; however, their direct comparison
in a single model could shed light on the qualitative differences resulting from
these contrasting psychological inclinations [22, 12]. The closest we have seen to
this is a study that systematically compared imitation dynamics and strategy
evolution using genetic algorithms with an N-player Prisoner’s Dilemma game
on a lattice. The authors found evolution to significantly promote cooperation
and increase strategy convergence rates in their system. The genetic algorithm
incorporated aspects of imitation and the model did not include payoffs cou-
pled to a common-pool resource [13]. In our model, we are using best-response
dynamics instead of genetic modification as well as an explicit common-pool
resource, allowing us to further separate social learning from independent pre-
diction in a human-environment system.

Another concept that is important in the literature regarding evolution-
ary game-theoretic models is the systems’ sensitivity to external perturbations
[18, 26]. This is often investigated by changing the strategy of an agent re-
gardless of its perceived benefit when the system is at equilibrium. Then, the
resulting time steps that the system takes in order to reach equilibrium are
counted, and this number of time steps is referred to as a cascade. What has
been found in previous studies is that the cascade size can vary quite drastically
covering many orders of magnitude and in many cases, it behaves in line with
the criteria for self-organized criticality proposed by Bak et al. [4, 26, 18]. Self-
organized criticality posits that many complex systems with local interactions
tune themselves into a critical state that displays scale-invariant spatial or tem-
poral characteristics. In this state, small perturbations can cascade throughout
the system with the cascade size-distribution fitting a power law [4]. Power law
distributions are scale-invariant, having the form,

p(x) ∝ x−α (1)

which forms a straight line when graphed on a log-log plot. These distributions
are found in many physical systems and are most prominent when the system
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is in a critical state and extremely sensitive to perturbations [29].
The model presented in this paper explores a human population arranged

on various network topologies that harvest a well-mixed ecological resource rep-
resented with a logistic growth difference equation. Both strategy evolving
mechanisms are compared over identical model parameters. Topologies are also
compared since spatial structure has often been found to influence outcomes in
tragedy of the commons scenarios [20, 23, 53, 50]. Through running this model
across a large parameter space, insight will be gained regarding the mechanisms
which lead to cooperation and the persistence of resources in common-pool re-
source systems.

2 Methods

2.1 Harvesting model

The model simulated a network of N individuals or nodes harvesting from
a generalized common-pool resource. At initialization, each node is randomly
given one of two harvesting strategies; cooperation or defection, with equal
probability. At each time step, every node simultaneously harvests the resource
with cooperators harvesting less than their ‘maximal equal share’ and defectors
harvesting more than their ‘maximal equal share’. The ‘maximal equal share’ is
defined by Rt

N where Rt is the resource at time t. When harvesting, cooperators
inflict a punishment proportional to the depletion of the resource to any defec-
tive nodes to which they are directly linked. This proportionality is justified
because enforcement by social norms is often more severe when the resource is
close to depletion [42, 10, 37]. This punishment also incurs a small cost to the
cooperators’ own harvest. Each nodes respective net profit at each time step is
given by the following payoff functions,

πc =
1

N
(cRt − a · p · nd(1−Rt)), c, a < 1 (2)

πd =
1

N
(dRt − p · nc(1−Rt)), d ≥ 1 (3)

where πc and πd are the cooperators and defectors payoffs respectively, c
and d are the proportions of the ‘maximal equal share’ that the cooperative
and defective nodes harvest respectively, p is the magnitude of the punishment
inflicted by cooperative nodes on defective nodes, a is the relative cost of that
punishment for the cooperative nodes, nc and nd are the amount of cooperative
and defective nodes directly connected to any given node in the network.

The resource is updated at each time step using a logistic difference equation
from which the net harvest of all the nodes in the network is subtracted. It is
modeled by,

Rt+1 = Rt(1 + F (1−Rt))−
Rt
N

(dNd + cNc) (4)
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where Nd and Nc are the total number of defectors and cooperators in the
network respectively.

After all nodes harvest and update their payoffs, one randomly selected
node changes its strategy if it is perceived to increase its individual payoff. This
process is repeated until an equilibrium is reached where no node can change its
strategy to increase its perceived payoff. Once equilibrium is reached, the system
is then perturbed by randomly choosing a node and changing its harvesting
strategy regardless of any perceived profit increase. The system is then left
to re-equilibrate. This process continues until the resource is depleted or a
predetermined number of perturbations is reached. If at any point during the
simulation, the resource drops below a critical level, ε, the resource is extinct
and the simulation ends. This represents the resource reaching a depleted level
from which it cannot recover. The value for ε scales with the network size and
is given by 1

N ·10000 . A flowchart of this model is shown in Figure S1.

2.2 Strategy propagation

Two different mechanisms for the propagation of harvesting strategies among
nodes were compared. One is best response dynamics and the other we call
imitation. In the case of imitation, the node that is selected for strategy reas-
signment compares its cumulative payoff with that of its neighbouring nodes.
If any neighbouring node has a higher cumulative payoff, the selected node will
change its strategy to that of its highest earning neighbour. If there are multiple
highest earning neighbours, the selected node will randomly choose between the
highest earning neighbours with equal probability. In the case of best response
dynamics, the selected node will change its strategy to that which is most prof-
itable for the next time step. It does so by simulating harvesting from the
updated resource with the strategy it wasn’t previously using. If the expected
payoff from that simulation is greater than the selected node’s mean payoff over
all previous time steps, the node will change its’ harvesting strategy to the new
one.

2.3 Network simulations

Four network topologies were tested in this model; lattice, random, scale-
free and small-world networks. These were chosen as they are very common
network topologies used in the literature, and both scale-free and small-world
networks share similarities with social networks [19, 58]. In the square lattice,
the von Neumann neighbourhood was used with periodic boundary conditions.
For a random network of N nodes, the Erdös-Rényi model was used where, for
average degree of connectivity, k, an edge was created between each node with
a probability of k

N−1 [21]. For scale-free networks, the Barabási–Albert model
[5] was used and for small-world networks, the Watts-Strogatz model was used
with β, the probability of rewiring an edge in the ring equal to 0.08 [58].

5



2.4 Parameters

Each network was generated with N = 15 × 15 = 225 nodes and average
degree of connectivity, k = 4.0. These values were chosen to allow for direct
comparison with the square lattice (as N is a perfect square) using a von Neu-
mann neighbourhood while at the same time being within the range of those
used in Ebel & Bornholdts Prisoner’s Dilemma network study [18]. For each
network topology, all combinations of parameters shown in Table S1 were run.
Cooperators harvest was limited to c ≤ 0.6 since cooperators are conservation-
ists, thus committing to harvest significantly less than their fair share of the
resource. For values of c > 0.6, the resource was depleted very quickly while
being initialized with half of the nodes harvesting at d ≥ 1.0. Defectors harvest
was limited to d ≤ 1.9 since values larger than this result in immediate resource
depletion. Fecundity was limited to 0.5 ≤ F ≤ 0.9 to agree with values that
allowed for the persistence of the resource within realistic constraints. For pun-
ishment, values larger than 0.3 were not included since they made punishment
and its cost too severe to be realistic. For the cost of punishment, a = 0.1 such
that this cost would not be high enough to disincentivize cooperation. This
parameter space resulted in 450 parameter sets that were simulated for each
network topology. Baseline parameter values were chosen based on mid-range
parameter values which allowed for the persistence of the resource over multi-
parameter variations (see Table S1). This was done as resource persistence is
a pre-condition for gathering much of the data that will be analysed. The re-
source was initialized at R = 1.0 to simulate a community harvesting a resource
that has not been harvested previously. For each parameter set and topology,
50 networks were generated and each network was perturbed 100 times.

2.5 Outcome metrics

From the simulations, the cascade size, defined as the amount of strategy
switches taken for the system re-equilibrate after a perturbation, was recorded.
The perturbed node’s degree and clustering coefficient were collected as well.
For each cascade, the average number of strategy switches per time step was
also logged. The rest of the data was collected every time the system reached
equilibrium after a perturbation. This data consisted of the level of the resource
and the number of cooperators at equilibrium. Average local clustering coeffi-
cient and network transitivity over the whole network and over the subnetworks
of same strategy-types were recorded as well as network modularity. The Gini
index for total node payoff was also recorded over the whole network to inves-
tigate the role of the distribution of wealth in the system [45]. The Gini index
was calculated using, ∑N

i=1

∑N
j=1 |Pi − Pj |

2N
∑N
i=1 Pi

(5)

where Pm, m = {1, 2, ..., N} is the cumulative payoff of a given node, m. [48].

6



Finally, the sustainability level of each parameter combination was calcu-
lated. Here, sustainability is defined by whether the resource can persist and is
quantified by the frequency of simulations in which the resource is not depleted
to a value less than ε. Therefore, this sustainability level is a value between 0 and
1, with 1 being maximally sustainable and 0 being completely unsustainable.

Figure 1: Mean metrics relating to the systems’ sustainability level defined as the
frequency of simulations in which the resource is not depleted below ε. Best response
dynamics promote higher sustainability (a), cooperator frequency (b) and resource
level (d) at equilibrium while also having lower coefficients of variation (CV) (c,e).
Error bars represent the 95% confidence interval.

7



3 Results

3.1 Sustainability of the resource

Over the parameter space and all topologies, the systems with best response
dynamics were more sustainable than those employing imitation. However, these
differences were not statistically significant, due to many simulations having ex-
treme values for sustainability. Two important variables related to sustainability
are the number of cooperators and the level of the resource. These variables
were recorded when the system was at equilibrium and the analysis of their
means and coefficients of variation (CV) over all topologies were conducted as
seen in Figure 1. Similar to the sustainability of the system, the mean coopera-
tor frequency and resource level were both significantly higher for best response
dynamics; however, there was a greater differential between the mean resource
levels for each network topology. The CV of the cooperator frequency was low
(relative to that of the resource) for both best response dynamics and imitation;
however, the difference between them was statistically significant with imitation
having a higher CV. Additionally, over all topologies imitation had a higher CV
for the resource level. This difference can be explained by the underlying distri-
butions of the data. Here, best response dynamics have single values with very
high frequency surrounded by much lower frequency values whereas imitation
dynamics result in distributions closer to a skewed Gaussian with many values
having mid range frequencies over a larger range (Figure S2). The mechanism
driving these distributions is that best response dynamics converge to a global
optimum rapidly as each node evolving its strategy at a given time step is always
able to access the strategy it is not using. In contrast, imitation dynamics allow
only for sampling strategies that are in use by connected nodes. Therefore, the
system can drastically change between perturbations as seen in Figure 2.

Figure 2: Cooperators at equilibrium after perturbations for 5 runs on a scale-
free network with identical parameters. Each colour represents a different stochastic
realization of the model. In the best response system (a), the number of cooperators
does not vary significantly after the first perturbation; however, in the imitation system
(b) the there is much more variance.
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3.2 Multi-parameter analysis

To gain insight into the different qualitative regimes within each network
topology, the data was visualized in parameter planes visualized as heatmaps.
The parameters varied in the heatmaps were c, the cooperators harvest and d,
the defectors harvest. This is because these two parameters cover a much larger
range than the others as they can vary greatly among human systems and have
much more relaxed realism constraints [33, 41]. Examining the heatmaps for the
mean sustainability over each topology, the plots show that as both harvesting
rates are increased, the system becomes less sustainable to the point where
not a single simulation can persist (Figure 3a,b). Intuitively, an increase in
sustainability would be correlated with an increase in cooperation. However, the
heatmaps for the number of cooperators at equilibrium on all network topologies
in the imitation system show that the number of cooperators increase with both c
and d such that they are maximal at the point in which the system cannot persist
due to over-extraction of resources (Figure 3d). In this case, stress in the system
encourages cooperation. For increasing values of c, an increase in cooperation
is expected because the payoff, and therefore the incentive to cooperate, has
increased. With high values of d, the increase in number cooperators is less
obvious. When d increases, the incentive to defect is strong, which could cause
a large-scale propagation of defection in the network. However, with a large
defectors’ harvest, the resource decreases very quickly and once it reaches a
very low level, the cooperators’ punishment becomes very large, to the point
that even with few cooperators in the system, defectors adjacent to them cannot
harvest profitably and are likely to switch to the cooperator strategy.

For best response dynamics, there is a difference to this narrative as c is
increased. At high c levels (c > 0.4), there is a drastic increase in cooperators
and the average number of cooperators does in fact decrease with d. This could
be caused by having a large enough incentive to cooperate at initialization such
that there are never enough defectors to bring the resource to a level in which the
cooperators’ punishment causes defective harvesting to be unprofitable. This
agrees with the resource having its maximal value at c = 0.5 as well as the
system showing a near saturation of cooperators at c = 0.6 (Figure 3c,e). At this
saturation of cooperators, the resource level decreases for low d, demonstrating
that above c = 0.5, cooperators have taken over the system and any higher payoff
for them results in greater resource extraction as defectors are not influencing
the system. With imitation dynamics, the system does not experience the same
regime change to a saturation of cooperators, most likely due to clusters of
defective nodes which are immune to invasion by cooperators.

Regarding modularity in the best response system, for c ≤ 0.4, modularity
is maximized when both d and c are minimized (Figure 3g). This happens in
order for both cooperators and defectors to maximize payoff as now punishment
and cost of punishment play a much more significant role in reducing payoffs
for nodes connected to others with opposing strategies. For c > 0.4, modularity
approaches 0 since the network is approaching a globally homogeneous popula-
tion. In the imitation system, these phenomena are not observed (Figure 3h).
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Figure 3: Comparing mean values for best response and imitation dynamics on
the scale-free network for baseline parameters. The axes are d, corresponding to the
defectors’ harvest and c, corresponding to the cooperators’ harvest. The values shown
are sustainability (a, b), cooperators at equilibrium (c, d), resource at equilibrium
(e, f), modularity at equilibrium (g, h) and the absolute value of the Gini index at
equilibrium (i, j).
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Instead, modularity is maximized for intermediate values of d and c. The reason
it is not maximized for low values of d and c could be because the number of
cooperators is low enough that the system is approaching global homogeneity
towards defection.

Finally, the distribution of payoffs across the network was quantified using
the Gini index. This metric can be interpreted as zero being complete equality
with the distance from zero measuring the extent of inequality among agents.
Usually the index is in the range [0, 1]; however, including negative individual
payoffs in its calculation can take it out of this range. Additionally, a negative
Gini index means that the net total payoff of the system is negative. When
comparing systems with heatmaps, the absolute value of the Gini index is used
in order to have a suitable resolution to compare both systems. Under the
baseline parameters, the best response system has much lower Gini index values
(Figure 3i,j). The inequality in the system increases with d and decreases with
c. This is seen across all parameters for best response dynamics; however, the
negative correlation with c is much stronger for the complete parameter space.
This correlation with d and c follows from the fact that as the two parameters
approach each other so do πd and πc, increasing equality in the system. There is
also a sudden decrease in Gini index in the same high c region where the number
of cooperators and network modularity also experience a drastic transition. This
regime experiences the highest equality because the system is saturated with
cooperators and therefore all payoffs are equal. For imitation dynamics, the Gini
index is much higher and does not show a strong correlation with any parameters
or variables. The reason for the drastic inequalities in payoff could be due to
defective nodes which only share edges with like strategy nodes. These nodes
will not receive any punishment and will harvest every round at the highest
possible level. Unless the neighbouring nodes are perturbed, they will continue
to imitate the high earning defector which could result in accumulation of debt
if they share edges with cooperators, especially when the resource is at a low
level. As the modularity is still relatively low for these high magnitude Gini
index values, these groups of like strategies must not reach a significantly large
size. To differentiate these from clusters around multiple nodes large enough
to significantly influence the modularity, we will call this phenomenon ‘micro-
clustering’.

Consistently across all network topologies for best response dynamics, the
extrema for Gini index values are positive and less than 1, meaning that there
is no excessive debt among individual nodes and all systems have a net positive
cumulative payoff (Figure 4c). For imitation dynamics, the extrema of the Gini
index surpass those of best response dynamics by several orders of magnitude
and in fact vary significantly across network topologies. Regarding the frequency
of debt in the system, global and individual debt is most prevalent in scale-
free networks and rarest in small-world networks (Figure 4d). This could be
explained by separately examining the clustering of individual strategies in each
network quantified by the relative transitivity for each strategy type (Figure
4a,b). Transitivity offers a metric for clustering through the presence of triadic
closure in the network. Due to the impossibility of triads in lattice networks,
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this topology was excluded from the transitivity analysis. When looking at
same-strategy clustering, transitivity was calculated over the whole network
as well as a subset of the network made up of nodes with a single strategy
and the edges they share. Since the transitivity over the entire network varied
significantly across topologies, to compare topologies, the transitivity of a given
strategy type was scaled by the transitivity of the entire network. This gives us
the relative transitivity, which measures whether or not the presence of triadic
closure in a given strategy type is greater than that found in the entire network.

Figure 4: The clustering of like strategies as quantified by relative transitivity varies
significantly across network topologies (top). Wealth distribution across network
topologies (bottom). In imitation systems there is much more inequality than best
response systems as seen in the Gini index extrema (c). There are also systems with
debt in imitation dynamics (d) which is not seen in best response systems.

For scale-free networks with imitation dynamics, the transitivity of coop-
erators is significantly lower than that of the entire network (giving a relative
transitivity less than 1) and the transitivity of defectors is significantly higher
(giving a relative transitivity greater than 1). This is due to the scale-free de-
gree distribution which allows a small number of very high-degree nodes which
are not found in other the other network topologies. If these high-degree nodes
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are initialized as defectors, they can be central in much larger ‘micro-clusters’
than are possible on other network topologies. The central defecting node of
this ‘micro-cluster’ is then able to influence a greater number of nodes to remain
defectors when it is unprofitable at low resource levels, resulting in a larger num-
ber of nodes accumulating debt. Interestingly, in best response systems, these
‘micro-clusters’ found in scale-free networks would more likely be surrounding a
cooperative node. In small-world networks, the transitivity of each strategy is
very close to the transitivity of the whole network. This is because having nodes
with degrees as high as those found in scale-free networks has a low probability
in this system since the re-wiring probability is low (β = 0.08). Additionally,
these networks have a low degree of separation between any given pair of nodes,
making it difficult for ‘micro-clusters’ to form, which are strong against inva-
sion from the opposite strategy as there is a greater probability of high-earning
cooperators to be connected to defectors by a very short path.

3.3 Power-law analysis

In this section, all power-law fitting was conducted using the powerlaw
Python package [2]. As smaller values in empirical data usually do not follow
power laws and power-law fitting is often performed on the tails of probability
distributions, the data was fit on cascades larger than the size of the system,
N = 225 [14].

To quantify which cascade size distributions fit a power-law, the Kolmogorov–
Smirnov goodness-of-fit test was performed on the data. As the Kolmogorov–
Smirnov test is extremely sensitive to noise, instead of testing whether the dis-
tribution is a power law, the fit of a power law is compared to that of an
exponential distribution. If the distribution is closer to that of an exponential,
we can rule out that it is a power law fit, and if it is closer to a power law we
can at least be certain that it is a heavy-tailed distribution [14, 2].

From the results of the Kolmogorov– Smirnov test, all of the cascade size
distributions for imitation dynamics fit an exponential distribution more closely
than a power law distribution, immediately ruling out the potential for self-
organized criticality in these systems. However, for best response dynamics,
about 21% of the parameter space had distributions that were closer to a power
law for lattice (20.89%), random (22.44%) and small-world (21.77%) networks
and therefore confirm the existence of heavy-tailed distributions suggesting the
occurrence of self-organized criticality in these systems. For scale-free networks,
only 6.67% of the parameter space had distributions closer to a power law. This
could be due in part to the existence of larger ‘micro-clusters’ surrounding high
degree nodes as these have a very low probability of invasion by the opposite
strategy and could decrease the probability of very large cascade sizes leading
to much fewer heavy-tailed cascade size distributions.

Along with displaying a power law distribution, self-organized critical sys-
tems must display system-wide effects that are triggered by small perturbations
[4]. In terms of this model, the extent of system-wide cascades can be examined
through the maximum cascade size as well as the proportion of cascades larger
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Figure 5: Metrics of self-organized criticality. Best response dynamics show evidence
of self-organized criticality due to large maximum cascade sizes and a significant fre-
quency of system wide cascades (top). All topologies in the best response systems
show similarities in the mean standard error (MSE) and slope (α) of the power-law fit
(bottom).

than the number of nodes in the system (see Figure 5b). For the simulation pre-
sented in this paper, it would be the proportion of cascades larger than N = 225.
For system wide cascades, systems with best response dynamics had a signifi-
cantly larger maximum cascade size (by 6-7 orders of magnitude) as well as a
significantly greater proportion of cascades of size greater than N (Figure 5a).
Interestingly, scale-free networks have a much higher proportion of cascade sizes
larger than N suggesting that the high-degree nodes unique to this system can
in fact promote strategy switching up to a point (Figure 5b). This, along with
the results from the Kolmogorov– Smirnov test strongly suggests that systems
with best response dynamics exhibit self-organized criticality much more than
those with imitation; however, the existence of high-degree nodes in scale-free
networks acts contrary to this phenomenon.

Finally, there are similarities across all network topologies regarding fitting
the cascade size distribution to a power-law. The mean standard error, which
determines the closeness of the power-law fit over the entire parameter space is
similar across all topologies despite scale-free networks scoring much lower as
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a power-law distribution in the Kolmogorov– Smirnov test (Figure 5c). Addi-
tionally, the slope of the power-law fit given by α does not significantly differ
across topologies (Figure 5d). This implies an element of universality in the
shape of the cascade distributions over all network types, even as the scale-free
network distributions are less heavy-tailed. Regarding properties of the node
being perturbed before each cascade, neither the local clustering coefficient nor
the degree of the perturbed node were correlated with the cascade sizes.

4 Discussion

In this model, a tragedy of the commons was averted in many cases, with
best response dynamics increasing the amount of sustainable runs compared to
imitation dynamics. Just as importantly, outcomes were more equitable under
best response dynamics, as measured by individual debt and the population’s
Gini index. Additionally, the cascade size distribution in systems with best
response dynamics had a closer fit to a power-law and larger cascade sizes in
general, demonstrating evidence of self-organized criticality.

Spatial structure, however, did not have a drastic effect on the persistence
of the resource or number of cooperators at equilibrium. This agrees with the
2012 empirical study by Gracia-Lázarao et al. in which humans played a spatial
Prisoner’s Dilemma on a lattice and a scale-free network. In this study, there
was no significant difference in cooperation among the two network topologies
and in fact, the level of cooperation was comparable to that which arose in
unstructured populations [23]. This spatial independence is surprising given
the importance of local interaction in this model. However for other metrics,
the network topology did have a significant effect, such as for the Gini index, the
clustering of strategies and the goodness-of-fit of the cascade size distribution
to a power-law. Most of these differences can be attributed to the existence of
high-degree nodes in scale-free networks which can be central in ‘micro-clusters’
of the same strategy type.

The strategy propagation mechanism proved to be extremely important in
determining system sustainability. In all cases, best response dynamics were
much more successful than imitation at averting the tragedy of the commons.
This, along with the rapid convergence of best response dynamics, complements
similar findings when comparing strategy propagation in the N-player iterated
Prisoner’s Dilemma game [13]. These results hint at the importance of context-
dependent foresight as opposed to pure imitation of peers regardless of context
for the sustainability of common-pool resource-dependent human systems. They
also suggest that in systems where imitation is important, more sustainable
outcomes might be achievable by increasing the rate of social learning. This
finding is consistent with other recent research social-climate systems [9]. In
both strategy update rules, each agent is acting in its own self interest; however,
the agent who makes choices based on its current state and relation to others
benefits itself and the overall community more than a self-interested agent who
defaults to following another individual’s path to success.
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Imitation can be seen as a representation of social learning through copy-
ing others. History has shown social learning to be highly adaptive, primarily
through the propagation of information such as technology and survival skills.
However, in the past, this social learning has been practised with a combined
knowledge of an individual’s context and social norms, as modelled with best
response dynamics [6]. In this model, pure social learning is less sustainable
in comparison to independent prediction modelled by best response dynamics.
This could be due to the fact that best response dynamics take into account the
current state of the resource while imitation dynamics do not. Consequently,
agents using a best response strategy update rule are aware of the consequences
of over-harvesting a resource near depletion. Therefore, they explicitly take
into account the social norms of the community when making a decision on
how to harvest. Imitating agents however, are only trying to increase their
profitability using a strategy that was advantageous for others in the past, thus
only indirectly accounting for social norms. This implicit time delay in decision
making can have significant detriment to the wealth of the resource as well as
the individual.

The hypothesis of the benefit of best response dynamics versus imitation
dynamics for common-pool resource problems should be further tested with ex-
isting models in the literature that employ either update rule. An identical
model with the other update rule can then be analysed and the results of both
models can be compared to investigate whether best response dynamics do in
fact prove more beneficial to the community than imitation over a diverse ar-
ray of model assumptions. Finally, this model could be tested with empirical
networks and case studies to verify whether the assumptions and conclusions
gleaned from this study remain true in practice.
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5 Supplementary Material
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is updated
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A random node
attempts to up-

date strategy

Simulation ends

Steady state?

Max perturbations?
A random node

changes its strategy

yes

no

yes

no

yesno

Figure S1: Flowchart of the model

Parameter Minimum Maximum Step Baseline

Cooperators Harvest (c) 0.2 0.6 0.1 0.3

Defectors Harvest (d) 1.0 1.9 0.1 1.4

Fecundity (F ) 0.5 0.9 0.2 0.9

Punishment (p) 0.1 0.3 0.2 0.2

Cost of Punishment (a) – – – 0.1

Table S1: Parameter ranges used in model simulations: minimum and maximum of
parameter range, increments sampled, and baseline values.
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Figure S2: The frequency distribution of cooperators (a, b) and resource (c, d) at
equilibrium, normalized with a Gaussian kernel density estimate
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