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Abstract

Bacteria are the oldest, most abundant life form on the planet, and every other organ-
ism’s livelihood is dependent on them. The bacteria Escherichia coli (E. coli) is commonly
used in microbiology as a model organism to give insight into the functions of bacteria and
cells in general. Of particular interest in these studies is the methods with which bacteria
grow and evolve. Growth is what propagates a bacteria’s species; whereas evolution is what
allows them to adapt to the ever-changing world. Evolution is made possible by mutations
which change a bacterium’s DNA. In 1943, Luria and Delbrück developed a method, called
a “fluctuation test”, to estimate mutation rates from the number of mutants in a collection
of parallel cultures exposed to a selecting agent after growth. The original fluctuation
test methodology suffers from two major limitations. First, the bacteria are not in a re-
producible, balanced state of growth throughout the test. Second, the new phenotype
resulting from a mutation may not be immediately expressed (referred to as “phenotypic
lag”) resulting in an underestimated mutation rate. To overcome these issues, I developed
a refined experimental protocol that ensures cells are in balanced growth and a suite of
analysis tools that account for the effects of phenotypic lag. To test the methodology, I
compared the mutation rate and phenotypic lag in fast growing E. coli (23 minutes per
doubling) and slow growing E. coli (48 minutes per doubling). It is found that when not
accounting for phenotypic lag, fast growing E. coli have a markedly lower mutation rate
than slow growing E. coli, but when phenotypic lag is accounted for, the faster growing
cells have a longer phenotypic lag, resulting in an indistinguishable mutation rate for fast
and slow growing populations. The implications of mutation rate being coupled to growth
rate, as well as possible explanations for why it and phenotypic lag would be growth rate
dependent are discussed. Finally, possible ways to improve the experimental methodology
and analysis protocols, in addition to future experiments that can be performed to further
explore mutation rate - growth rate coupling are proposed.
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Chapter 1

Introduction

1.1 Bacteria

Life of all forms pervades our planet, but it is bacteria which have been here the longest
and are the most abundant [152, 192]. As a result, bacteria have come to play a big role in
the lives of all other creatures, as well as the planet itself [192, 100]. So how did bacteria
become so prevalent? Simple, they are masters of survival [123]. There are two essential
aspects to survival. The first is the survival of an individual bacterium, while the second is
the survival of the species through reproduction. Being masters of survival means bacteria
are resilient, capable of adapting to a wide variety of environments, and are proficient at
proliferation [120, 123]. These survival skills have come about through approximately 3.75
billion years of evolution [192]. In this time bacteria have come to occupy nearly every
corner of the earth and grown to an estimated population of 1030 [192]. They have also
come to have the most genetic diversity of any type of life on the planet [79], which is well
communicated by the evolutionary tree in Fig. 1.1.

Bacteria are prokaryotes, meaning they are single celled organisms with all of their
major components floating around together inside a single wall1 [163]. Essentially, bacteria
are tiny bags of salt water primarily filled with deoxyribonucleic acid (DNA), ribonucleic
acid (RNA), and proteins [163, 12, 152]. The “bag”, often called a membrane, is made of
lipids and most commonly comes in one of two forms, Gram-negative and Gram-positive
[123]. The difference between these forms is that Gram-negative bacteria have two layers

1As opposed to eukaryotes, which have internal cellular organisation in the form of a membrane-bound
nucleus and organelles, and can combine into multicellular organisms [152].
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Figure 1.1: Evolutionary tree emphasising genetic diversity. An evolutionary tree
of life which emphasises how much genetic diversity there is among bacteria versus other
kingdoms. Figure 1 from Hug et al. (2016) / CC BY 4.0 [79].
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Figure 1.2: Common bacteria shapes. A) Spiral shaped bacteria (Borrelia burgdorferi).
B) Gram-negative rod shaped bacilli bacteria (Escherichia coli). C) Kidney bean shaped
vibrio bacteria (unknown Vibrio). D) Gram-positive spherical cocci bacteria (Staphylococ-
cus aureus). (A) “Spirochete”, (B) “Single Rod (bacillus)”, (C) “Vibrio”, and (D) “Tetrad
Arrangement: Direct Stain” by Gary E. Kaiser / CC BY 3.0 [85].

of lipids while Gram-positive bacteria only have one. The name “Gram” comes from
a stain which will turn Gram-positive bacteria purple and Gram-negative bacteria pink
(D versus B in Fig. 1.2). Bacteria come in all sorts of shapes, sizes, and compositions.
Common shapes for bacteria are rods, spheres, spirals, and something resembling a kidney
bean (Fig. 1.2) [85, 163]. Size wise, bacteria have a huge range, but being smaller is
beneficial because it increases their surface area to volume ratio, making diffusion of food
through their membrane more efficient [192]. The smallest known bacterium, Mycoplasma
genitalium, is about 0.2µm long, which is the size of a large virus, while the largest known
bacterium, Thiomargarita namibiensis, can be up to 0.75mm long, which is large enough
to see with the naked eye (Fig. 1.3) [192, 163].

Beyond speculation, humans knew nothing of bacteria until we invented the microscope
[24]. Despite this, humans are dependent on bacteria for survival through the billions of
bacteria that live in and on our bodies [161, 187]. Even though bacteria clearly live in the
same ecosystems as us, due to their size, the physics they experience is foreign to us and
dominated by stochastic effects [12]. This makes relating to bacteria and understanding
them on an intuitive level difficult. Fortunately, one important repercussion of bacteria’s
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Figure 1.3: Size comparison of different microbes. E coli and Epulopiscium are
bacteria while Paramecium is a eukaryotic algae. Figure 9 from Lane (2017) / CC BY 4.0
[98].

size is that they’re not capable of having very many parts, at least compared to other
life forms [158]. Put together with the fact that bacteria have had so long to evolve into
efficient machines [123], it can be argued that they are the simplest life form on the planet.
This relative simplicity facilitates the creation of meaningful quantitative descriptions for
their functions and behaviours.

1.2 Escherichia Coli

Escherichia coli (E. coli) are a species of bacteria that are commonly found in the large
intestines of warm-blooded creatures [180, 17] and often used for studies in the biological
sciences because of their rapid growth rate and simple nutritional requirements [154]. E.
coli are Gram-negative, rod shaped, and their size is on the order of a micrometer (see
Figures 1.4 and 1.5) [154].

An E. coli ’s ideal environment is a 37◦C, pH neutral, aerated liquid full of glucose,
nucleotides, amino acids, and trace amounts of a variety of elements [121]. In this ideal
environment, E. coli are capable of doubling their population every 22 minutes [123]. In
less ideal environments, this rate of population growth can decrease to the point where the
bacteria stop growing and use what little resources they have to maintain themselves in
the hopes that more, better resources will arrive later [123]. To grow, at a bare minimum
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Figure 1.4: Electron micrograph of E. coli. Note the scale bar at the bottom right.
“E. coli Bacteria” from the National Institute of Allergy and Infectious Diseases / CC BY
2.0 [131].

Figure 1.5: Toy model of a bacillus bacterium such as Escherichia coli.

they need a complex carbon source, nitrogen, phosphorous, sulphur and trace amounts of
several different metals [121].

E. coli has been used in the lab for over a century, with its scientific journey starting
when Theodor Escherich isolated it from infants with diarrhea in 1886 [3]. Scientists have
studied it continuously since, resulting in us probably understanding it better than any
other living thing on the planet [154, 91, 17]. So how did E. coli come to be studied with
such vigour? In the early days of bacteriology scientists looked for easily accessible species
that weren’t overly virulent, grew quickly in a variety of commonly used medias, and were
easily identifiable [154, 3]. E. coli checked all those boxes. The most common E. coli strains
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used in the lab are ancestors of a strain called K-12. E. coli K-12 was first isolated in 1922
from the stool of a convalescent diphtheria patient and started being used for experiments
not long after [13]. In 1947 Edward L. Tatum and Joshua Lederberg discovered that the
K-12 strain was capable of conjugation [174], which was the first time the sexual transfer
of genes was observed in prokaryotes [13, 3]. Since most E. coli strains found in nature
are not capable of performing conjugation [13, 3], this boosted the popularity of K-12 and
solidified E. coli as the bacteria of choice in microbiology [154]. Furthermore, due to the
environment that E. coli evolved in, they are versatile creatures able to survive on many
different foods and adapt quickly to changes in their environment [3]. This makes E. coli
ideal for the lab because it allows one to easily test many different scenarios. The dedicated
use of E. coli in scientific exploration has led to many genetic engineering protocols that
uniquely work on the species, allowing for creative science that has given us things like
insulin producing bacteria, which are microscopic factories that cultivate a life saving drug
for humans [64].

Due to the long time continuous use of E. coli in the lab, we have in many ways
domesticated the strains we have come to know the most about. This means popular lab
strains have adapted to their comfortable lab lives and may not behave similarly to most
of the E. coli one would find in nature [50, 105]. Furthermore, there is so much diversity
among bacteria that how a specific strain works most certainly is not how another does,
even within a single species. So how do we validate only studying a handful of mostly
domesticated E. coli strains? To answer this, we must first ask the question, how do we
expect to understand any life on a cellular level if we don’t first understand to the best of
our abilities how one specific species of bacteria behaves? The deep understanding of one
species not only gives us intuition on how better to study and understand other organisms,
but also gives us something to compare to. As such, all data and concepts moving forward
will specifically be in the context of E. coli unless stated otherwise.

1.3 Bacterial Growth

Bacteria’s entire existence is centred around growth. They’re either growing, or they’re
waiting for the right conditions to grow. This is because growth is reproduction for them,
so it’s necessary for the propagation of their species [123].

E. coli reproduce through binary fission, which is a type of asexual reproduction that
results in a bacterium splitting into two bacteria [152]. Accordingly, from the time a
bacterium is born, it spends its whole life growing to double its original size, building up
all of its components, including its genome, to double its original amount, so when it splits
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Figure 1.6: E. coli replication toy model. The bacterium lengthens and increases all
of its components to double the original amount. Once the chromosome is fully replicated,
the two chromosomes are moved to opposite ends and the cell septates in the middle, giving
two complete bacteria.

it can create two nearly identical, fully functioning children (Fig. 1.6) [34]. The cycle is
then repeated by the two children, giving four bacteria, who then double to eight bacteria,
and so on. Mathematically this looks like,

Nt = N02t/τ = N02ηt , (1.1)

where Nt is the total number of bacteria at time t, N0 is the initial number of bacteria,
τ is the doubling time, and η is the doubling rate [34]. Since exponentials follow a well
defined set of rules, we can define a more mathematically convenient growth rate,

λ = η ln 2 , (1.2)

which allows the growth to be represented using the natural base e,

Nt = N0e
λt , (1.3)

where λ is called the specific growth rate [159]. When the derivative of Eq. (1.3) is taken
with respect to t, we get,

dNt

dt
= λNt , (1.4)

which is a famously simple differential equation. It also helps clarify why λ is considered
the growth rate because the equation says that the rate of change in population over
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Figure 1.7: The growth curve of a bacteria culture. The culture in this plot is seeded
from bacteria in stationary phase or from a different media. The curve represents the life
cycle of a newly introduced bacteria culture in a limited medium.

time equals the current population times the growth rate. Consequently, unless stated
otherwise, when people talk about bacterial growth they are generally referring to the
population average growth instead of the growth dynamics of a single bacterium.

When bacteria are introduced to a new environment that contains the nutrients they
need for growth, the population starts off in a state of no growth called lag phase, where the
cells are building the necessary machinery for growth in that particular environment and
increasing their size [117, 90]. The bacteria eventually start doubling and quickly accelerate
the rate at which they replicate until they reach a constant exponential rate. The bacteria
maintain this constant exponential rate of growth, called the log or exponential phase, until
they start to run out of one of the necessary nutrients or the concentration of toxic waste
gets too high, at which point they decelerate their net growth to zero2. The growthless
phase is called the stationary phase, during which the bacteria simplify their machinery,
shrink in size, and focus on maintaining homeostasis. When left in stationary phase for a
long time, the bacteria eventually lose the ability to maintain homeostasis and start to die,
which is called the death phase. If cells in the stationary or death phase are re-introduced
to a medium sufficient for exponential growth, the process restarts and the cells enter lag
phase. The pattern of growth phases, often referred to as the growth curve, is graphically
represented in Fig. 1.7 [117]. The growth curve was considered such an essential part of
the study of bacterial growth during the early years of microbiology that in a 1949 review,

2It is possible that not all cells stop growing, but instead some cells continue to grow more slowly, while
others die, and others halt growth all together, which leads to net zero population growth.
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Cornelius Bernardus van Niel stated that “nearly all that is known about the kinetics of
growth of microorganisms has been learned from studies of so-called growth curves” [186].

In 1939 Alfred Hershey changed the field of microbiology by using cells that were
already in exponential phase to inoculate a culture [76]. Hershey saw that the bacteria
skipped the lag phase and continued to grow as they do in exponential phase when he
did this, sparking a new era of research where the exponential phase of bacteria was the
primary focus. Because bacteria grow at their maximal rate possible for the entirety of
the exponential phase, this allows for reproducible growth [150]. In 1957, Allan Campbell
communicated the importance of these attributes when he referred to the growth that takes
place in the exponential phase as “balanced growth”, because all cell constituents double
at the same rate [27]. The significance of this logic is made clear by Moselio Schaechter,
who said that “moving from the observation of log phase to the concept of balanced growth
is like going from watching apples fall to thinking of gravity” [150]. Another term used
to describe the growth that often takes place in the exponential phase is “steady state
growth” because the distributions of cell attributes in a culture are time independent
[134, 84]. When bacterial growth is discussed throughout this thesis, assume it is balanced
growth unless stated otherwise.

1.4 Mutation

The mechanism that allows life to evolve is mutation [54, 66, 67]. Many even consider
the capability of mutation a defining attribute of life, on the same level as having a cell
wall [146]. With a basic understanding of what mutation is, it is easy to see that without
it, life as we know it would not exist because it would not have the ability to adapt
and change. So what exactly is a mutation? To answer this we must first understand
what Deoxyribonucleic acid (DNA) is. DNA forms the chromosome, which codes for the
nature of a living thing and is often referred to as the “blueprint of life” [152, 72]. The
chemical structure of DNA is what allows it to complete this task [193, 60, 196]. DNA is
a chemical with a double helix structure composed of hydrogen, oxygen, nitrogen, carbon,
and phosphorous [140]. The phosphorous combines with sugars to build a “backbone” that
holds the nucleobases in the centre, all together forming a nucleotide (Fig. 1.8). There are
four distinct nucleobases that are used to form nucleotides, which are placed in sequences to
code information into DNA. These nucleobases are adenine (A), cytosine (C), guanine (G),
and thymine (T). Hydrogen bonds between opposing nucleobases are what holds the two
halves of DNA together and promotes the preferred pairings of adenine with thymine, and
cytosine with guanine [140]. The preferred pairings allow one to have all the information
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Figure 1.8: Basic model of DNA with shape and structure. Adenine, thymine,
cytosine, and guanine are nucleobases, the order of which codes for proteins and other cell
functions. “Simple diagram of double-stranded DNA” by Forluvoft [56].

held within a strand of DNA even when only in possession of one half of the strand; an
important attribute for DNA replication. The ordering of the nucleobases is a base four
information system reminiscent of the base two system of computers [61, 74]. A mutation
is whenever this ordering changes [11].

A mutation can occur through three different types of alterations to the DNA: base
substitution, insertion, and deletion [152]. A base substitution is when one or multiple of
the nucleotides are traded out for nucleotides with different nucleobases, generally resulting
in a less favourable hydrogen bond. When just one nucleotide is substituted, it is called
a point substitution, and this is the most common mutation type [101]. An insertion is
when a new nucleotide, or sequence of nucleotides are inserted into the DNA. A deletion
is when a nucleotide or sequence of nucleotides are deleted from the DNA. See Fig. 1.9 for
a visualisation of how these different types of mutations affect a gene.

How is the information held within the DNA’s sequences of nucleobases converted into
what we see as life? Bacteria’s functions can largely be reduced to a complex series of
chemical reactions which are catalysed by proteins made of amino acids coded for in the
DNA [123]. The DNA codes for proteins by having a sequence of three base pairs uniquely
represent an amino acid so that a sequence of DNA, or a gene, represents an ordered
compilation of amino acids that when combined fold into proteins [152]. The DNA is
converted to these amino acid compilations, called polypeptides, by the combination of
two processes: transcription and translation [152]. Transcription is when a protein called
RNA polymerase reads the DNA and creates messenger RNA (mRNA) which codes for the
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Figure 1.9: How different mutation types affect a gene. A, T, C, and G represent
the different nucleobases. The red bases are where mutations have occurred. Two different
types of point substitutions are shown; one where a pair is substituted, and one where only
one base is substituted, resulting in a mismatched pair.

amino acids in a protein. Translation is when a ribosome reads the mRNA and combines
the described amino acids to form a polypeptide (see Fig. 1.10) [20]. This means that
different DNA results in different RNA which results in different proteins. The process is
referred to as the central dogma of molecular biology and was first described by Francis
Crick in 1957 [40, 41]. The implication is that when the DNA is altered through mutation,
there can be changes in the proteins that are expressed. The change in protein expression
can lead to new functionality for the bacteria, which is called a change in phenotype. Most
commonly the change in functionality is that the protein will stop working, but occasionally
there are less predictable results such as the protein becoming more efficient or gaining a
whole new ability [75]. Because bacteria’s phenotypes are a result of the proteins being
expressed and how they work, there can be a delay between when a mutation occurs and
when the new phenotype is expressed [166, 124]; this is called phenotypic lag and will be
discussed in length in Section 3.2.

For bacteria to reproduce, they need to create at least two complete copies of their
chromosome so that each child can inherit one. In an ideal growth environment, mutations
commonly occur during this DNA replication [152, 57, 11]. For E. coli, the chromosome
is a closed loop which is folded up to preserve space [152]. Replicating the chromosome
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Figure 1.10: The central dogma of molecular biology. Transcription: RNA poly-
merase produces mRNA from DNA. Translation: ribosomes read mRNA and create
polypeptides from amino acids which are transported by tRNA. After translation the
polypeptides fold to create proteins.

requires a conglomerate of proteins. The replication starts at a point on the chromosome
called the origin and begins with proteins “unwinding” and “unzipping” the DNA in each
direction so that the two halves of the double helix are no longer connected [123]. Proteins
called DNA polymerases then move along each strand of the DNA reading the nucleotides
and placing the respective nucleotide pairs to make a complete strand of DNA (Fig. 1.11)
[115, 123]. This process continues until the proteins reach the terminus on the other end
of the DNA, resulting in two complete chromosomes.

Mutations primarily come about when the DNA polymerases make mistakes during
DNA replication [57, 152]. There are proteins that proofread the replicated DNA and fix
many of the mistakes, but they also make errors, resulting in bona fide mutations [152].
How many mutations come about from DNA replication is a delicate balance because if
there are too many, the bacteria is likely to end up with a detrimental mutation, but if
there are not enough, the bacteria’s evolution could stagnate [46].

Mutations don’t only come about during DNA replication. Another common source
of mutations are external factors called mutagens [152]. Common mutagens are UV light
and DNA-targeting antibiotics such at mitomycin-c. These particular mutagens introduce
cross-links which jam DNA and RNA polymerases and cause double-strand breaks in the
DNA; whereas other mutagens3 can damage DNA in several different ways. Because the

3Many types of radiation, and a wide variety of chemicals and molecules can cause mutations.
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Figure 1.11: DNA replication. This is a simplified representation of DNA replication
because many more proteins than are shown in this diagram take part in the process. The
DNA polymerase is what builds the DNA and proofreads it, and as such, is the main source
for mutations. “DNA Replication” by OpenStax / CC BY 4.0 / removed chromosome from
original [132].

affects of mutagens can be lethal, bacteria have a system for repairing the damages. This
system is called the SOS response, but the proteins that take part in the response are
especially prone to errors, resulting in a high number of mutations [53].

1.5 Bacterial Growth With Mutations

1.5.1 Luria-Delbrück Fluctuation Test

In 1943, a decade before the discovery of DNA’s structure, Salvador Luria and Max
Delbrück set out to answer a question on many scientist’s minds. The question was whether
bacteria evolve in the same way as multicellular organisms [106, 205].

In Charles Darwin’s seminal work “On the Origin of Species”, he proposed that plants,
animals, and fungi evolve by means of natural selection. This is to say that organisms
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Figure 1.12: Max Delbrück and Salvador Luria. Left picture: Max Delbrück (left)
and Salvador Luria (right) at Cold Spring Harbour Laboratory in 1946; Courtesy of the
Archives at NCBS [6]. Right picture: Delbrück (left) and Luria (right) at Cold Spring
Harbour Laboratory in 1953; Courtesy of Cold Spring Harbor Laboratory Archives, NY
[62].

randomly gain mutations that change their phenotype, and then this phenotype is selected
for through competition in nature [43]. Since bacteria appear to adapt very quickly to
selective conditions, it was thought that maybe they instead mutate in response to the
selection [149]. To test this, Luria and Delbrück designed an elaborate experiment with
controlled growth and selection to probe for bacterial mutations. Luria, originally a medical
doctor, came up with the idea for the experiment when he was watching a slot machine at
a faculty dance at Indiana University [62, 205]. The logic went like this: since mutations
are hereditary, if there is an equal probability of mutation per cell at each generation, then
there is a small chance that a mutation can happen early in growth, resulting in many
mutants later in time. Luria called this a jackpot and went on to design an experiment
which would be able to identify these jackpots if they appear. The experiment came to be
known as a fluctuation test because the jackpots result in large fluctuations in the number
of mutant bacteria between parallel cultures after a period of growth. Delbrück, a physicist
with a special interest in biology, helped with the mathematical modelling and analysis of
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the experiment. Part of what makes this work so beautiful is the synergistic relationship
between the experiment and the model.

A fluctuation test works by inoculating a set of tubes containing the same media with
a consistent small number of cells4. The cells are then left to grow overnight. The next
morning, each tube is plated separately with a selecting agent5 and left to incubate. After
a period of time, each plate is checked for bacterial colonies, where each colony would have
been seeded by a single cell (called a colony forming unit (CFU)) that evolved a resistance
to the selecting agent through mutation. The idea is that if the bacteria all have the same
probability of mutation at the point of selection, called the induced mutation case, the
distribution of cells that mutated a resistance to the selecting agent would be Poissonian
(assuming a low probability of mutation), and therefore have a variance equal to its mean.
Alternatively, if the cells have a constant probability of mutation per generation, called
the spontaneous mutation case, then the variance in the number of resistant cells will
be noticeably higher than the mean because each mutation will be passed onto the cell’s
children, resulting in the number of cells with the mutation growing exponentially and
giving more plates with many mutants. See Fig. 1.13 for a comparison of how each case
would play out in an experiment.

Though the induced mutation case is a straightforward Poisson process, the spontaneous
mutation case required a novel mathematical analysis from Delbrück to determine estimates
on the mean and variance in the number of mutants at the end of a fluctuation test. The
idea is that in each time interval dt there is a probability µ that a cell will mutate and
become resistant. This means that in a population of cells, you get that the total number
of mutations in dt is,

dm = µNtdt , (1.5)

where m is the number of mutations6 and Nt is the total number of bacteria. With time
t measured in generations multiplied by ln(2), during exponential growth the bacterial
population is governed by Nt = N0e

t. Equation (1.5) can then be integrated over the
entire length of the experiment to get,

m = µ(Nt −N0) , (1.6)

4Luria used the bacteria Escherichia coli B for his original experiments [106].
5Luria used T1 phage as his selecting agent, which is a bactriophage (virus) that will infect non-resistant

E. coli and cause them to lyse [106, 142, 77].
6Note that a mutation results in a single mutant, which will then grow and produce more mutants.

Consequently, a single mutation can result in many mutants. It is important that the difference between
a mutation and a mutant is kept in mind throughout the thesis.
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Figure 1.13: Fluctuation tests for induced mutation and spontaneous mutation
cases. The left most column describes the general protocol for a fluctuation test while the
two columns on the right show how the induced mutation and spontaneous mutation cases
would appear in a fluctuation test. The “Induced mutation” represents the case where
some cells mutate a resistance at the time of selection. The “Spontaneous mutation”
represents the Darwinian case where some cells mutate a resistance during growth and
is later selected for. When a tube containing cells is plated with a selecting agent, all
non-resistant cells die, leaving only the resistant mutants to form colonies. Notice how
the spontaneous mutation case has a higher variance in the number of resistant mutants
amongst the different cultures.

which gives a straightforward way for going between the average number of mutations, m,
and the probability of mutation (also known as the mutation rate), µ. This also gives that
the units for µ are mutations per cell per generation because (Nt−N0) is the average number
of cell replications that occurred in a culture. In the induced mutation case, if the selection
is performed at time t, Eq. (1.6) also gives the average number of resistant mutants, which
we will represent as r, and the variance in the number of mutants. Assuming Nt >> N0,
Eq. (1.6) can be approximated as m = µNt, which for the induced mutation case gives
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r = µNt and varr = µNt. For the spontaneous mutation case, Delbrück determined
the mean and variance in the number of mutants by extending Eq. (1.5) [106]. In the
spontaneous mutation case, two factors cause the number of resistant cells in a culture,
r, to increase in a time interval dt: new mutants appearing through mutation and old
mutants growing. The result is,

dr = (µNt + r)dt , (1.7)

where the bacterial growth rate is assumed to be the same for mutants and non-mutants.
Equation (1.7) is a linear ordinary differential equation which can be integrated to find
that,

r = tµNt , (1.8)

assuming there are no mutants present at the beginning of growth. Equation (1.8) gives
the average number of resistant bacteria in a culture at time t, which is often taken to be
the end of the experiment. To determine the variance we must consider a new timescale,
t̃, which starts at the time of a mutation and follows the growth of the resulting lineage of
mutant cells. The result is a new representation for Eq. (1.5),

dm = µNt̃dt̃ = µNte
−t̃dt̃ , (1.9)

because dt̃ starts at (t − t̃) so Nt̃ = N0e
t−t̃ = N0e

te−t̃ = Nte
−t̃. Consider that because

a mutation will result in an exponentially growing lineage of mutants, the number of
mutations, Eq. (1.9) can be multiplied by et̃ to give the number of resistant bacteria and
then integrated from t̃ = 0 to t to get Eq. (1.8). Furthermore, assuming growth is a simple
birth-death process, then the variance in the number of resistant mutants will grow at
approximately twice the rate of the average [88, 185], meaning we can multiply Eq. (1.9)
by e2t̃ to get,

vardr = µNte
t̃dt̃ , (1.10)

which can then be integrated from t̃ = 0 to t to get,

varr = µNt(e
t − 1) , (1.11)

which is the variance in the number of mutants in a culture. Comparing Eq. (1.8) and
Eq. (1.11), it is clear that the variance is indeed significantly higher than the mean in the
spontaneous mutation case. With Delbrück’s derived form of the mean and variance for
both cases, which have been compiled in Table 1.1, the variance in the fluctuation test data
could then be confidently analysed to determine if bacteria evolved by means of induced
or spontaneous mutations.
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Induced Mutation Spontaneous Mutation
Mean Number of Mutants µNt tµNt

Variance in Number of Mutants µNt µNt(e
t − 1)

Table 1.1: Fluctuation test mean and variance in total number of mutants for
induced and spontaneous mutation cases. Assume Nt >> N0. µ represents the
probability of mutation per cell per generation, meaning t is the number of generations
multiplied by ln(2). As determined by Delbrück in [106].

Figure 1.14: Luria and Delbrück’s fluctuation test data. Fluctuation test data
showing the “distribution of the number of resistant bacteria in a series of similar cultures”.
Of particular interest is the right column where they plated the entire culture instead of just
a sample. Note how the variance in the number of resistant bacteria is significantly higher
than the average, implying bacteria evolve by means of spontaneous mutations as opposed
to induced mutations. The mutation rates in this table are calculated using Delbrück’s
method of the mean7. Table 3 from Luria and Delbrück (1943) [106].
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Luria and Delbrück found in their fluctuation tests that the variance in the number of
resistant mutants was significantly higher than the mean number of mutants per culture,
as seen in their data in Fig. 1.14. This result strongly implied that bacteria evolve
through spontaneous mutations as opposed to induced mutations, meaning they obey the
same rules of evolution by means of natural selection as all other life forms on the planet.

In addition to making a strong case for spontaneous mutation, Luria and Delbrück also
came up with a simple, yet powerful, method for approximating the average mutation rate
of the bacteria [106]. For this, one must consider that in an infinitesimal interval of time,
dt, because all bacteria are independent in terms of likelihood of mutation, the number of
mutations, or new mutants, will be Poisson distributed assuming µ is sufficiently small.
Then note that if one were to take a large number of similar, independent cultures, the
fraction of cultures with k mutations in dt will also be Poissonian,

P (k) =
dmke−dm

k!
, (1.12)

where dm is the average number of mutations that take place during time interval dt. If
one looks at only the probability that there are no new mutants, k = 0, and extends the
time interval dt to the entire experiment, then they have the probability that there are
no mutants in a culture at the end of an experiment. Because there are no mutants in
these cultures, there is no issue of inherited mutations making the distribution differ from
the Poisson distribution. Accordingly, that proportion of cultures with zero mutants in a
fluctuation test should approximately equal,

p0 = e−m , (1.13)

where m is the average number of mutations across all cultures. Consequently, one can do
a fluctuation test, determine the proportion of plates without any mutants, p0, and then
plug the fraction into µ = − ln(p0)

Nt−N0
, which comes from combining Equations (1.6) and (1.13),

to find an estimate on the average spontaneous mutation rate. The calculation requires
knowing the average initial and final populations of the cultures in the fluctuation test,
which can be determined experimentally.

Lastly, Delbrück loosely laid out a framework for how one could go about building a
probability distribution for the number of mutants in the spontaneous mutation case, which
has come to be known as the Luria-Delbrück distribution. The distribution looks a lot like
a Poisson distribution, but with a thicker, longer tail (see Fig. 1.15 for comparison). Note

7Mutation rate estimators that use the mean number of resistant cells between parallel cultures are no
longer commonly used because they rely on an assumption that no mutations will occur before a certain
time, meaning jackpots will cause the estimate to be an overestimate [144].
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Figure 1.15: Comparison of the probability distribution functions of the Luria-
Delbrück and Poisson distributions for various different means. The ”mean” of
the Luria-Delbrück distribution is the mean number of mutations per culture, but the
distribution is of the number of mutants per culture. Note that the scale of the y-axis
changes to help emphasise differences in shape.

that the distributions have the same p0, or y-intercept, and that they are uniquely defined
by the average number of mutations per culture, m, which is what leads to the p0 method
described above. The data from a fluctuation test can be expressed as a distribution if one
has sufficiently many parallel cultures and calculates the proportion of cultures with each
number of mutants (Fig. 1.16).

Luria and Delbrück’s 1943 work in part earned them a Nobel Prize in 1969, but pri-
marily for their use of bacteriophage. This fact emphasises just how monumental the work
was because not only did they show the general pattern with which bacteria evolve and
determined a way for approximating their mutation rates, they also helped develop the
study of bacteriophage which underpins molecular biology and gives insight into how all
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Figure 1.16: How a fluctuation test translates to the Luria-Delbrück distribution.
Assuming a fluctuation test is performed with sufficiently many cultures, then each point
on the probability distribution function is the proportion of cultures that have that many
mutants.

viruses work [127, 126]. The use of fluctuation tests to approximate an average spontaneous
mutation rate will be the main topic of discussion throughout this thesis.

1.5.2 Lea-Coulson Model

Luria and Delbrück’s fluctuation test has been of particular interest to a number of biolo-
gists, physicists, and mathematicians since its conception [201]. Delbrück’s mathematical
description of the system, though clever and elegant, was not very thorough and only gave
a rough approximation of the mutation rate. Since Luria and Delbrück’s original paper,
many have added rigour and depth to our mathematical understanding of the system, with
the most powerful tool being a probability generating function (PGF) for the distribution of
the number of mutants across the samples of a fluctuation test [99, 201, 4, 10]. People have
of course tried to take it further, but an analytic solution for the probability distribution
function (PDF) of the Luria-Delbrück distribution has eluded formulation [201].

The most common model that is used to this day was first developed by Douglas Lea
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and Charles Coulson in 1947 [99]. The model was extended by Maurice Bartlett for a text in
1955 [10]. Bartlett’s extension, unlike Lea and Coulson, does not rely on the simplification
that the initial population is negligible compared to the final population, resulting in a
more complete description of the system. The version by Bartlett will be used in this
thesis, but will generally be referred to as the Lea-Coulson model to adhere to convention.

The Lea-Coulson model is built on the following assumptions [58]:

1. The cells are growing exponentially.

2. The probability of mutation is independent of previous mutations.

3. The probability of mutation is constant through a cell’s lifetime.

4. The growth rates are the same for mutants and non-mutants.

5. The proportion of mutants in the total population is always small.

6. No mutants are present in the initial inoculum.

7. Reverse mutations are negligible.

8. Cell death is negligible.

9. All mutants are detected at the time of selection.

10. No mutants arise after selection.

The Lea-Coulson model is set up as a stochastic birth-death model in which mutants
are born, but do not die due to assumptions 7 and 8. To build the model, imagine a
culture is inoculated at time t = 0 with N0 normal (non-mutant) cells. These cells then
grow exponentially such that at time t the total population will be Nt. We will use r to
represent the total number of mutants, or resistant cells, and pr to represent the probability
that a bacteria culture has r mutants at time t. In terms of a fluctuation test, assuming
one has a sufficiently large number of parallel cultures, pr represents the proportion of
cultures with r mutants. Again, measuring time in generations, the population will grow
exponentially as dNt

dt
= Nt, meaning rdt = r

Nt
dNt represents the probability that one of the

r mutants will divide during the time interval dt. Furthermore, the probability of having
a cell mutate in time interval dt is µdNt as per how µ was defined in the previous section.
This means that at time t+ dt the probability of having r mutants, pr + dpr, is,

pr + dpr = pr−1

(
µdNt +

r − 1

Nt

dNt

)
+ pr

(
1− µdNt −

r

Nt

dNt

)
. (1.14)
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The first term on the right hand side represents the probability of having (r − 1) mutants
at time t and having either a normal cell mutate or a mutant cell double. The second term
represents the probability of having r mutants at time t and having none of those cells
double as well as having no more normal cells mutate. We can then rewrite the left hand
side as pr + dpr

dNt
dNt and rearrange to get,

dpr
dNt

= pr−1

(
µ+

r − 1

Nt

)
− pr

(
µ+

r

Nt

)
. (1.15)

Now consider that a probability generating function, G, will have the general form,

G(z,Nt) =
∞∑
r=0

prz
r , (1.16)

where z is the usual auxiliary variable and the pr’s are functions dependent on Nt as
described by Eq. (1.15). The first partial derivatives of the probability generating function
are given by,

∂G(z,Nt)

∂z
=
∞∑
r=0

rzr−1pr ,

∂G(z,Nt)

∂Nt

=
∞∑
r=0

zr
dpr
dNt

.

(1.17)

If we multiply Eq. (1.15) by zr and sum from r = 0 to r =∞ we get,

∞∑
r=0

zr
dpr
dNt

=
∞∑
r=0

zrpr−1

(
µ+

r − 1

Nt

)
−
∞∑
r=0

zrpr

(
µ+

r

Nt

)
. (1.18)

Note that since it doesn’t make sense to have negative mutants, pr = 0 for all r < 0,
meaning that the r = 0 case in the first sum on the right hand side equals zero, so (1.18)
can be rewritten as,

∞∑
r=0

zr
dpr
dNt

=
∞∑
r=0

zr+1pr

(
µ+

r

Nt

)
−
∞∑
r=0

zrpr

(
µ+

r

Nt

)
. (1.19)

Expanding, using
∑
zr+1 = z

∑
zr, and rearranging gives,

∞∑
r=0

zr
dpr
dNt

= µ(z − 1)
∞∑
r=0

zrpr +
z − 1

Nt

∞∑
r=0

rzrpr . (1.20)
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Adding and subtracting 1 to the exponent of z in the second sum on the right hand side
and once again using

∑
zr+1 = z

∑
zr then gives,

∞∑
r=0

zr
dpr
dNt

= µ(z − 1)
∞∑
r=0

zrpr +
z(z − 1)

Nt

∞∑
r=0

rzr−1pr . (1.21)

Substituting in the first partial derivatives from Equations (1.17) then reduces Eq. (1.21)
to the first-order partial differential equation (PDE),

∂G(z,Nt)

∂Nt

= µ(z − 1)G(z,Nt) +
z(z − 1)

Nt

∂G(z,Nt)

∂z
, (1.22)

which is a quasi-linear PDE that can be solved using the method of characteristics. Ac-
cordingly, the characteristic equations are,

dNt

ds
= 1 ,

dz

ds
=
−z(z − 1)

Nt

,

dG

ds
= µ(z − 1)G ,

(1.23)

where s is the parameterisation variable of the characteristic curves. Isolating ds in each
characteristic equation and equating then gives,

dNt =
−Ntdz

z(z − 1)
=

dG

µ(z − 1)G
. (1.24)

Equation (1.24) can now be used to determine ordinary differential equations (ODE) which
can be solved to find Nt and G. Firstly, Eq. (1.24) can be rearranged to give,

dNt

dz
=

Nt

z(1− z)
, (1.25)

which is an ODE for Nt with respect to z. Solving this equation by separating the variables
and integrating gives,

Nt =
Cz

1− z
, (1.26)

where C is an integration constant. By rearranging (1.24) we also find that,

dG

dz
=
−NtµG

z
, (1.27)
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which is an ODE for G with respect to z, but has a dependence on Nt. Because Nt has
already been solved for, Eq. (1.27) can be combined with Eq. (1.26) to give,

dG

dz
=
−CµG
1− z

, (1.28)

which is now an ODE only dependent on G and z. Once again solving by separating the
variables and integrating, we get,

G = D(1− z)Cµ , (1.29)

where D is another integration constant. Notice that from Eq. (1.26) we know that

C = Nt(1−z)
z

, so we only have to find D to have a complete solution for G. To do this,
consider that at t = 0 there are only normal cells, meaning G(z0, N0) = p0 = 1, so that,

1 = D(1− z0)Cµ . (1.30)

Now notice that from (1.26) we also have that z = Nt
C+Nt

so that at t = 0 we have z0 = N0

C+N0
.

Substituting this into (1.30) then manipulating and rearranging gives,

D =

(
1 +

N0

C

)Cµ
. (1.31)

We can then substitute this form for D as well as our form for C into (1.29) to get,

G(z,Nt) =

(
1− z +

N0

Nt

z

)µNt(1−z)
z

, (1.32)

which is the completed probability generating function (PGF).

From the probability generating function, the mean and variance of the distribution
can be calculated. To calculate the mean, the derivative of the PGF is taken with respect
to z and then z is set to 1, approaching from the left. In other words, if X is a discrete
random variable, then E[X] = limz→1−

∂G(z,Nt)
∂z

. When applied to the Lea-Coulson PGF
this gives,

E[X] = tµNt , (1.33)

which is the same as the mean calculated by Delbrück. On the other hand, the variance is

calculated with V ar[X] = limz→1− [∂
2G(z,Nt)
∂z2

+ ∂G(z,Nt)
∂z

− (∂G(z,Nt)
∂z

)2] to give,

V ar[X] = 2µNt(e
t − 1)− tµNt , (1.34)
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which differs from the variance calculated by Delbrück. The variance calculated from the
Lea-Coulson model is the same as Delbrück’s in the t → 0 limit, but is two times larger
in the t → ∞ limit. The variance is larger in the Lea-Coulson formulation because the
growth of the mutants is stochastic, while in the Delbrück formulation it is deterministic
[10].

To date, an analytic inverse of the probability generating function (Eq. (1.16)) for the
Lea-Coulson model (Eq. (1.32)) has not been found for pr, making a closed form expression
for the probability distribution function of the Luria-Delbrück distribution unattainable
[201]. Fortunately, the probabilities can instead be constructed by a recursive relation
found by Sarkar, Ma, and Sandri [148, 108]. To derive the recursive relation for pr, one
must first assume that p0 6= 0 so that G(z = 0) 6= 0, causing ln(G(z)) to be analytic for all
z. Note that the written dependence on Nt of G(z,Nt) has been dropped for readability.
A new function ζ(z) can be defined such that,

ζ(z) = ln

(
G(z)

G(0)

)
, (1.35)

which means that G(z) = G(0)eζ(z). Taking the derivative of G(z) with respect to z then
gives,

G′(z) = G(0)eζ(z)ζ ′(z) = G(z)ζ ′(z) , (1.36)

which can be further differentiated to give,

G(r)(z) =
r−1∑
i=0

(
r − 1

i

)
G(i)(z)ζ(r−i)(z) , (1.37)

where G(r)(z) represents the rth derivative of G(z) with respect to z and
(
r−1
i

)
= (r−1)!

i!(r−i−1)!

are the binomial coefficients. Now note that because ζ(z) is analytic, it has a power series
around z = 0 that can be written as,

ζ(z) =
∞∑
r=0

arz
r , (1.38)

where ar are constants. Taking the kth derivative with respect to z of the power series
forms for G(z) and ζ(z) (Equations (1.16) and (1.38) respectively) gives,

G(k)(z) =
∞∑
r=k

r!

(r − k)!
prz

r−k ,

ζ(k)(z) =
∞∑
r=k

r!

(r − k)!
arz

r−k ,

(1.39)
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which when evaluated at z = 0 gives,

G(k)(0) = k!pk , (1.40)

ζ(k)(0) = k!ak , (1.41)

because only the first term in Eqs. (1.39) are independent of z. Now evaluate Eq. (1.37)
at z = 0,

G(r)(0) =
r−1∑
i=0

(
r − 1

i

)
G(i)(0)ζ(r−i)(0) , (1.42)

then substitute in Eq. (1.40) with k = i, Eq. (1.41) with k = r − i, and the definition of
the binomial coefficients to get,

G(r)(0) =
r−1∑
i=0

(r − 1)!

i!(r − i− 1)!
i!pi(r − i)!ar−i . (1.43)

Rearranging and cancelling out terms then gives,

G(r)(0) = (r − 1)!
r−1∑
i=0

(r − i)ar−ipi . (1.44)

Notice that the left hand side of Eq. (1.44) can be replaced with Eq. (1.40) where k = r,

r!pr = (r − 1)!
r−1∑
i=0

(r − i)ar−ipi , (1.45)

which simplified is,

pr =
1

r

r−1∑
i=0

(r − i)ar−ipi . (1.46)

This is a general recursive relation that can be used to find the probabilities of any discrete
distribution as long as G(0) 6= 0 and the ar−i are computable [148]. To find the probabilities
of the Luria-Delbrück distribution, the ar−i can be found from the Lea-Coulson probability
generating function. First, we will rewrite the Lea-Coulson PGF (Eq. (1.32)) in a more
amenable form,

G(z) = (1− φz)
m
φ

( 1−z
z

) = exp

[
m

φ

(
1− z
z

)
ln(1− φz)

]
, (1.47)
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where φ = 1 − N0

Nt
is a scaling factor which accounts for the difference between the initial

and final populations8, and m = µ(Nt − N0) as defined by Delbrück. Using L’Hôpital’s
rule to compute the limit, limz→0G(z) gives,

G(0) = e−m , (1.48)

which agrees with Delbrück’s original result. Substituting our expressions for G(z) and
G(0) (Eqs. (1.47) and (1.48) respectively) into the definition of ζ(z) (Eq. (1.35)),

ζ(z) = ln

(
exp

[
m
φ

(
1−z
z

)
ln(1− φz)

]
exp(−m)

)
=
m

φ

[(1− z
z

)
ln(1− φz) + φ

]
. (1.49)

The Taylor expansion of ζ(z) about z = 0 can then be taken to get,

ζ(z) =
∞∑
k=1

m
φk−1

k

(
1− kφ

k + 1

)
zk . (1.50)

Comparing with the general power series form of ζ(z) from Eq. (1.38),

a0 +
∞∑
k=1

akz
k =

∞∑
k=1

m
φk−1

k

(
1− kφ

k + 1

)
zk , (1.51)

clearly gives that,

a0 = 0 ,

ak = m
φk−1

k

(
1− kφ

k + 1

)
(k ≥ 1) .

(1.52)

Finally, substituting the Lea-Coulson form for ak (Eq. (1.52)) with k = r − i into the
general expression for pr (Eq. (1.46)),

pr =
m

r

r−1∑
i=0

φr−i−1

(
1− (r − i)φ

r − i+ 1

)
pi , (1.53)

then letting j = r−i and reversing the order of the summation gives the complete recursive
relation,

p0 = e−m ,

pr =
m

r

r∑
j=1

φj−1

(
1− jφ

j + 1

)
pr−j (r ≥ 1) .

(1.54)

8Note how φ ≈ 1 in the Nt >> N0 case.
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Using the recursive relation in Eq. (1.54)9, one can calculate the probability of having
r mutants in a culture when the average number of mutations per culture is m and the
growth scaling factor is φ = 1− N0

Nt
where N0 and Nt are the initial and final populations

respectively. By computing the probabilities for all values of r, the probability distribution
function can be determined. This recursive relation is used by the most popular analysis
programs that numerically approximate the distribution and estimate a best fit for fluctu-
ation test data [210, 112]. The numerical implementation of the relation by Zheng will be
explored further in the Section 3.1.2.

Due to the idealistic assumptions of the Lea-Coulson model, extensions that loosen
these assumptions and incorporate the effects of different laboratory practices have become
common. The most popular extension is to assume that the normal and mutant cells have
different growth rates. This was first explored by Arthur Koch [92] and has come to be
considered the more general description because the equal growth rate case is simply a
special case of it. Another common adjustment is to account for a non-perfect plating
efficiency, or in other words, only taking a sample of the culture for the selection phase of
the fluctuation test [63, 206, 208, 82]. This is of particular interest if the cells are grown to
a very high final population. People have also explored the effects of phenotypic lag on the
model, but the resulting extensions have been of little practical use [4, 87, 201, 10, 42, 94].
I will be using the unaltered Lea-Coulson model throughout the thesis, putting extra
emphasis on careful experimental design so that I don’t have to resort to using any of
these model extensions.

1.5.3 Haldane Model

Another common model, popular for its understandability, is the unpublished model by
J.B.S. Haldane. Haldane’s model is similar in nature to the Lea-Coulson model, but has
all the cells inside a culture dividing simultaneously instead of stochastically and was built
from combinatorics instead of a birth-death model [147, 204]. Most importantly, it allows
for figures such as Fig. 1.17, which are easy to follow and allow for the visualisation of
the affects of mutants appearing at different times in growth. Haldane’s model will be
used throughout the thesis for more qualitative descriptions of the systems, particularly in
regards to phenotypic lag and its effects.

9This is Zheng’s form of Sarkar et al.’s recursive relation [203].
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Figure 1.17: Haldane trees describing different combinatorical ways a culture
can gain mutants. Each Haldane tree starts with one non-mutant cell that grows for
4 doublings, giving 5 generations total. In each panel, a yellow cell is a non-mutant (or
normal) cell, and each red cell is a mutant cell. Panels (D), (E), and (F) show three
separate methods in which a culture can have four mutant cells.

1.6 Bacterial Physiology

Physiology is simply the study of the functioning of living organisms [155]. Accordingly,
bacterial physiology is the study of how bacteria function. In 1943 when Luria and Delbrück
designed the fluctuation test, not much was known about bacterial physiology and as
a result people did not put much importance on it. This changed in the 1950’s with
work led by Jacques Monod and Ole Maaløe that implied that most results pertaining to
bacteria were contingent on their physiology [150]. In practice there are three “levels” of
bacterial function that one can study: the intracellular level which is largely characterised
by the protein dynamics within the cell, the single cell level which is characterised by
the composition and growth dynamics of a single cell, and the population level which is
characterised by the accumulation of the compositions and growth dynamics of all the
cells within the population. As one goes from the more microscopic systems to the more
macroscopic systems, the law of large numbers takes affect and their descriptions go from
primarily being complex and often noisy to being simple phenomenological models [1,
145]. The relationship between the three “levels” of bacterial function and the types of
models commonly used to describe each is reminiscent of the relationship between quantum
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mechanics, statistical mechanics, and thermodynamics. In the context of mutations, the
intracellular level is the system that causes mutations in a cell (primarily mistakes during
DNA replication), the single cell level is observing which cells in the population are mutants
and how many resistant offspring each will create, and the population level is what Luria
and Delbrück studied by looking at how many total mutants there are in many populations.
Luria and Delbrück furthered the scope of the research by using mathematics to probe for
what single cell effects would lead to what they saw at the population level, giving insight
into the way bacteria mutate and developing a method for calculating the average mutation
rate for a single cell per generation [106]. In its essence, this is what the field commonly
referred to as “bacterial physiology” is all about; quantitatively studying characteristics of
bacterial populations in an attempt to illuminate the inner workings of the cells [35]. Even
more specifically, “bacterial physiology” is most commonly associated with the study of
the functions that allow bacteria to grow and reproduce, and the resulting dynamics [119].

1.6.1 Growth Physiology

Due to the relatively simplistic nature of bacteria and the restrictions balanced growth
put on them, people realised that quantitative descriptions of their physiology could be
practical. The idea of growing cells at steady state and using mathematics to describe their
physiology started with Jacques Monod in 1942 [150]. Monod grew E. coli cells hoping
to study logistic growth, but instead found what is now known as “Monod kinetics” (Fig.
1.18) [117]. He discovered that the doubling rate, η, of the cells is dependent on the
concentration of a growth limiting substrate (such as a carbon source like glucose) and
could be modelled using Michaelis-Menten kinetics,

η = ηmax
S

S +KD

, (1.55)

where ηmax is the maximal doubling rate10, S represents the concentration of the growth
limiting substrate, and KD is the Michaelis constant which is determined by the nature of
the substrate and bacterial strain [117]. Note that because η = λ

ln 2
, both sides of Eq. (1.55)

can be multiplied by ln 2 and rewritten in terms of the specific growth rate, λ. Monod
also found that the final yield of the cells was determined by the initial concentration
of the growth limiting substrate (Fig. 1.19) [117]. The discovery of “Monod’s kinetics”
was a monumental step towards doing reproducible microbiology that was amenable to
simple, quantitative descriptions [117]. Monod quickly moved on from the field of bacterial

10The growth rate when the growth limiting substrate is in saturation.
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Figure 1.18: Monod kinetics: Relationship between doubling rate and glucose
concentration. The doubling rate, η, of E. coli versus the concentration of glucose in the
growth medium. Fitted line gives ηmax = 1.35 doublings/hour and KD = 22µM for Eq.
(1.55). Figure 4 in Monod (1949) [117].

Figure 1.19: Total bacterial growth versus carbon source concentration in E.
coli. The final concentration of E. coli is linearly proportional to the concentration of
carbon source (mannitol) in the growth medium. Figure 3 from Monod (1949) [117].

physiology saying “The study of the growth of bacterial cultures does not constitute a
specialised subject or branch of research: it is the basic method of Microbiology” [150]. In
this comment he both outlined the importance of having a comprehensive understanding
of growth, and alluded to his belief that studying growth simply for its own sake would
prove sterile.
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Figure 1.20: The macromolecular composition of Salmonella typhimurium ver-
sus growth rate. The points come from Salmonella typhimurium cells in balanced growth
in several different defined media of varying quality. A) The mass/cell, M , increases ap-
proximately exponentially with doubling rate, η; M ∝ 2η. B) The RNA/cell, R, increases
approximately exponentially with doubling rate, and faster than Mass/cell; R ∝ 21.5η. C)
The DNA/cell, D, increases approximately exponentially with doubling rate, and slower
than Mass/cell; D ∝ 20.8η. In all three panels, the units for the x-axes are doublings/hour,
and the y-axes are on a log-scale. Panels (A), (B), and (C) are Figures 1, 2, and 3 respec-
tively from Schaechter et. al (1958) [153].

Luckily, a select few did not heed Monod’s warning and the field of bacterial growth
physiology took off in the mid 1950’s. Much of this early work came out of Ole Maaløe’s
lab in Copenhagen [150]. In 1958, Schaechter, Maaløe, and Kjeldgaard released a paper
showing that the macromolecular composition of Salmonella typhimurium cells in balanced
growth is primarily dependent on their growth rate, not the details of the growth media
[153]. Specifically, they changed the growth rate by changing the quality of nutrients in
the growth medium11. This was primarily done by using different carbon sources, but
they also supplemented some media with amino acids and/or nucleotides. Surprisingly,
the relations between the quantity of studied components per cell and growth rate were all
approximately log linear (Fig. 1.20) [153]. The work from Maaløe’s lab helped motivate
the idea that growth rate is an empirically significant “state variable” (like temperature in
a thermodynamic system) that can be useful in describing the state of the cell [19].

From Schaeter et. al’s work, it was now known that the DNA/cell, D, increases ap-
proximately exponentially with doubling rate, D ∝ 20.8η [153]. The reason why faster

11Changing nutrient quality is the way growth rate is modulated throughout the thesis (unless stated
otherwise).

33



growing cells would have more DNA was unclear though. Assuming bacteria require at
least one chromosome to function and that the size of the chromosome is independent
of the bacteria’s physiology, then the implication of having more DNA per cell in faster
growing cells would be that the cells have multiple copies of the chromosome. But why
would they need multiple copies? Cooper and Helmstetter answered this question in 1968
by studying the DNA synthesis rate in E. coli growing at different speeds [36] . They found
that the bacteria commence and end DNA synthesis in discrete patterns, and that faster
growing cells have a higher rate of DNA synthesis as compared to slower growing cells,
as seen in the left hand portion of Fig. 1.21. Consequently, they concluded that the fast
growing bacteria must be replicating several strands of DNA in parallel (right hand side of
Fig. 1.21), which would be necessary if the cells doubled in a shorter amount of time than
it took a chromosome to replicate. Cooper and Helmstetter determined that replication
of a single chromosome takes a fixed amount of time which is approximately 40 minutes
and then the cell requires a further 20 minutes to segregate the chromosomes and divide.
The result being that cells growing with a doubling time of less than 60 minutes would re-
quire parallelisation of DNA replication12 and the cells should not be able to double faster
than every 20 minutes. The parallelisation works through “forking” replications where a
chromosome will start being replicated while itself is still being replicated, as seen in Fig.
1.22.

In 1996, Hans Bremer and Patrick Dennis compiled decades of work confirming and
expanding on much of the previously completed work in bacterial physiology. The compre-
hensive review discussed and experimentally showed the composition of E. coli B/r cells
and how they relate to growth rate [19]. The results can be found in Fig. 1.23. The
compilation of all these physiological parameters was also accompanied by a compilation
of simple mathematical rules that describe the origins and growth rate dependence of many
of these parameters, which can be seen in Fig. 1.24. Having all of these parameters and
rules comprehensively laid out for a single strain of E. coli facilitates further quantita-
tive modelling of the macromolecular composition of bacterial cells and makes it easier for
researchers to consider the consequences of the growth rate in their systems.

All of the bacterial physiology that has been discussed up to this point has involved cul-
tures seeded with a large numbers of cells. A consequence is that the law of large numbers
smooths over the variations in the single cell dynamics, resulting in smooth empirical rules
describing the systems well [19, 145, 1]. When a culture is seeded from a small number
of cells, such as in a fluctuation test, this effect weakens and more variance can be found
culture to culture [2, 1]. This is especially apparent when comparing the number of cells
in many parallel cultures after a long period of growth starting from small inocula. The

12This means fast growing cells’ grandparents would have had to start building their chromosomes.
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Figure 1.21: Relative DNA synthesis rates and the consequences on DNA repli-
cation in E. coli with different doubling times. The left hand portion shows the
relative rate of DNA synthesis during a cell’s lifetime for cells with different doubling times.
The right hand portion shows the resulting DNA replication forks. Figure 1 from Cooper
and Helmstetter (1968) [36].
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Figure 1.22: A simplified representation of E. coli chromosome replication. The
“origin” is where DNA replication begins, splitting off in both directions and eventually
meeting again at the “terminus” where DNA replication ends. A) Chromosome replica-
tion for slow growing E. coli cells where there is no parallel replication. B) Chromosome
replication for fast growing cells, where there are multiple replication forks running simul-
taneously.

culture to culture variance is largely due to the fact that within a culture, the doubling
time between cells can often vary by upwards of 10% around the mean [190]. When there
are many cells, there are minimal consequences to the cell-to-cell variation, but when there
are few cells, the resulting noise becomes noticeable [2, 1].
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Figure 1.23: Important physiological parameters in E. coli. The upper table shows
values for important growth rate independent physiological parameters in E. coli. The
lower table gives values for important growth rate dependent physiological parameters in
E. coli growing at several different rates. Tables 1 and 2 from Bremer (1996) [19].
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Figure 1.24: Simple mathematical rules of bacterial physiology. Mathematical
equations describing the composition of E. coli and how it relates to growth rate. Table 5
from Bremer (1996) [19].
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1.6.2 Protein Partitioning Constraints

In 1960, Neidhardt and Magasanik discovered that ribosomes play a catalytic role in protein
synthesis by showing that the RNA/protein ratio increases linearly with growth rate (above
0.6 doublings/hour) (Fig. 1.25) [122].

Figure 1.25: Doubling rate versus RNA/protein ratio in Aerobacter aerogenes.
The y-axis “k” is doubling rate in doublings/hour while the x-axis is the ratio of RNA to
protein in a culture of Aerobacter aerogenes. For sufficiently fast growth rates (above 0.6
doublings/hour) the RNA/protein ratio is linearly proportional to growth rate. Figure 2
from Neidhardt and Magasanik (1960) [122].

Due to the constraints of balanced growth, the total protein mass, MP , grows exponentially
with time at the same constant rate (λ) as the bacterial population, dMP

dt
= λMP . Assuming

that proteins are built by NRb ribosomes translating polypeptides at a constant rate, k
amino acids per ribosome per second, then the change in protein mass through time will
be,

λMP = kNRb , (1.56)

which rearranged gives,
NRb

MP

=
λ

k
. (1.57)

Consequently, the ratio of ribosome number to protein mass is a constant. Ribosomes
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are composed of ribosomal RNA (rRNA) and protein, the ratio13 of which is growth rate
independent [19]. Furthermore, a growth rate independent proportion of the total RNA
in a cell is rRNA14. As a result, the total quantity of RNA, R, is a direct proxy for the
number of ribosomes, meaning,

R

MP

∝ λ

k
, (1.58)

which is what Neidhardt and Magasanik observed in cells growing faster than 0.6 doublings
per hour [122]. Another result of the relation in Eq. (1.57) and the fixed composition of
ribosomes is that the quantity of total protein mass that is ribosomal, MrP , is also growth
rate dependent,

MrP

MP

∝ λ

k
. (1.59)

Consequently, fast growing cells have more of their total protein resources allocated to
ribosomes [160].

How the total protein mass15 is allocated among different types of proteins is called
the proteome. It has been shown that the proteome is split into three major categories.
One category, which composes approximately half of the proteome, is a basal expression of
proteins that is independent of growth rate [160, 199, 81]. The other half of the proteome
is flexible and is split into two categories; one primarily includes proteins that relate to
protein production, such as ribosomes, and the other includes the remaining proteins. In
fast growing cells the protein producing category dominates the flexible half of the proteome
while in slow growing cells it is the opposite (Fig. 1.26) [160]. The non-protein producing
proteins dominate in slow growing cells because they relate to metabolism and the slow
growing cells are using more complex carbon sources which require more work to turn into
useful chemicals [199, 81].

13Approximately 2 mg rRNA to 1 mg protein [19].
14It has been found to be approximately 86% [19].
15It can be deduced from Schaechter et. al’s work that the quantity of protein per cell is largely a

function of growth rate alone and that it increases with growth rate.
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Figure 1.26: Protein partitioning in slow and fast growing E. coli cells. A) The
RNA/protein ratio, which is a direct proxy for the amount of ribosomal protein (rep-
resented by “R” in (C)), with different nutrient-modulated growth rates. B) The mass
fraction of a constitutive protein (β-galactosidase under the control of a synthetic TetO1
promoter)(part of “P” in (C)) with different nutrient-modulated growth rates. C) A pie
chart representation of the proteome at different growth rates. The proteome is larger for
fast growing cells because the protein/cell is positively correlated with growth rate. The
partitioning is different due to the positive correlation of ribosomal protein with growth
rate, meaning the other proteins are necessarily anti-correlated (as seen in panel (B)). The
“Q” portion represents a basal protein expression that is growth rate independent, “R”
represents ribosomal proteins which are proteins that participate in protein production,
and “P” represents the remaining proteins. Panels (A) and (B) are Figures 2A and 2C
respectively from Scott et al. (2010) [160].
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1.7 Growth Rate - Mutation Rate Coupling

Like most science, my journey started with a question: Is a bacteria’s mutation rate
dependent on their balanced growth rate? I believe both potential answers to this question
have interesting implications. If no, this means bacterial mutation is either decoupled from
the rest of its physiology, or there are at least two cellular mechanisms that are cancelling
each other out in order to maintain a constant mutation rate across all exponential growth
rates. If yes, this means the genotype of the cell is intricately connected to the bacteria’s
environment. A coupling between the mutation rate and the growth rate also implies that
the cells have developed an evolutionary feedback loop based on how well they are growing.

In a simple minded sense, it is reasonable to expect some coupling between the mutation
rate and the growth rate simply because most of a cell’s physiological attributes are coupled
to the growth rate. A more convincing argument would lay out the mechanisms which could
cause the coupling. The most obvious framework for this argument would be based on the
proteome’s growth rate dependence. It has already been discussed that DNA replication
is performed by proteins, so the next question would be which category of the proteome
do these proteins reside? Of particular interest are the DNA repair proteins that correct
the errors that the primary DNA polymerases make. To further this argument, one can
employ the fact that both the quantity of DNA/cell and protein/cell increases with growth
rate, but the increase is slower in the DNA/cell [19]. In addition, the amount of DNA
synthesis being performed in a cell during its life increases with growth rate. How do the
cells then manage their proteins that tend to the DNA as the growth rate increases? Are
the DNA repair proteins increased in a way that is exactly proportional to the increase in
the amount of DNA replication being performed or otherwise, and how would either affect
the mutation rate? Despite there being one primary cause of mutations in the absence
of mutagens, there are many routes towards mutation rate - growth rate coupling, all of
which can be combined in difficult-to-predict ways.

With all this in mind, it is of no surprise that people have questioned if mutation rate
is growth rate dependent in the past [106, 124, 4, 87, 201, 10, 42, 94, 92]. In fact, even
Luria and Delbrück mentioned it in their original 1943 paper by saying “the chance (of
mutation) may vary in some manner during the life cycle of each bacterium and may also
vary when the physiological conditions of the culture vary...it seems reasonable to assume
that the chance (of mutation) is proportional to the growth rate of the bacteria”16 [106].

Another argument to motivate the question of growth rate - mutation rate coupling

16The particular quote comes from a point in the paper when developing the mathematical theory and
arguing for the choice of the doubling time as the base time unit, but its implications are far reaching.
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comes in the context of stress induced mutation. It is known that the SOS response results
in a higher expression of a number of proteins that perform the task of DNA repair, often
in an error prone manner [53]. These proteins are not co-regulated with ribosomal proteins,
and so they are anti-correlated with the growth rate (Fig. 1.27). Consequently, it seems
reasonable to hypothesise that there would be some form of growth rate dependence for
mutation rate in the presence of a mutagen that activates the SOS response.

Figure 1.27: Growth rate dependence of SOS response proteins. The SOS response
is regulated by the protein LexA which acts to repress the SOS response until it senses
DNA damage at a stalled replication fork [49, 25]. The DNA damaging antibiotic Mito-
mycin C (MMC) is introduced at two different concentrations. At higher concentrations of
MMC, the activity of the LexA promoter increases, implying the induction of the SOS re-
sponse. On the graph, the open circle relates to 0 mg/mL MMC, the squares relate to 0.02
mg/mL MMC, and the triangles relate to 0.2 mg/mL MMC. This figure is of unpublished
preliminary data from Matthew Scott.

Only a few other groups have attempted to experimentally probe for coupling between
the spontaneous mutation rate and the bacteria’s environment to my knowledge. One of
these was performed by Ram Maharjan and Thomas Ferenci in 2018 when they performed
fluctuation tests by growing cells in a turbidostat17 with different media [110]. They
modified the media in two ways, by changing the concentration of glucose, and by changing
if the culture had access to oxygen. Of particular interest is the change in concentration of
glucose, as it changes the growth rate in much the same way as that discussed throughout
Section 1.6.1 [117]. Maharjan and Ferenci found that, in the presence of oxygen, the

17A turbidostat is a machine which produces continuous cultures. See Appendix A.3.2 for more infor-
mation.
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mutation rate increases in slower growing cells [110]. Though this is a step in the right
direction towards addressing the question about whether the mutation rate and growth rate
are coupled, their methodology is problematic because fluctuation tests were not designed
to be performed in continuous cultures, and it doesn’t explore the modulation of growth
rate through varying the carbon source itself.

The purpose of this thesis is to attempt to observe the relationship between the sponta-
neous mutation rate and the exponential growth rate of E. coli by performing fluctuation
tests that, as closely as possible, follow the assumptions of the Lea-Coulson model while
varying growth rate by changing the nutrient quality, as is traditional to studies of bacterial
physiology. The experimental methodology I developed to do this is detailed in Chapter
2. In Chapter 3, the analysis tools developed and used to analyse the results of the exper-
iments are presented and explored. Next, the results of the experiments are provided in
Chapter 4. Finally, in Chapter 5, I summarise the results, discuss their implications, and
detail potential future work on the subject.
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Chapter 2

Experimental Methods

To test the coupling between a bacteria’s growth physiology and mutation rate requires a
careful growth protocol. In this chapter, I discuss issues with the traditional fluctuation test
methodology and motivate a new approach. I then detail the experimental methodology
of this new approach, including data from control experiments and an in depth discussion
on the selection agent chosen for my fluctuation tests.

2.1 Steady State Fluctuation Tests in Different

Growth Media

Many fluctuation tests have been performed since Luria and Delbrück’s seminal work, but
few have strayed much from the original methodology [137, 169, 45, 124, 26, 51, 101, 18].
This is surprising considering how much has been discovered about bacterial physiology
since the original fluctuation tests, as laid out in Section 1.6. Because the primary goal
of any quantitative experiment is to have it obey the model assumptions as closely as
possible, in the case of a fluctuation test, the goal is to have the experiment obey the
Lea-Coulson assumptions in Section 1.5.2. One important assumption, which is indirectly
held in assumptions 1 and 3, is that the cells have the same physiology throughout growth.
The issue with Luria and Delbrück’s original methodology is that the bacteria are left
to grow overnight so that they reach saturation [106]. Consequently, the cells transition
from exponential phase to stationary phase at some point. Through this transition, the
physiology of the bacteria changes, which could have unexpected affects on the mutation
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rate, possibly breaking the 3rd assumption of the Lea-Coulson model1 [59, 170, 106, 124,
18]. Because the population of bacteria is close to its maximum, but still growing during the
physiological change from exponential to stationary phase, based off Delbrück’s definition
of m (Eq. (1.5): dm = µNtdt), many new mutations are likely to occur at this time, as
seen in Fig. 2.1. If there is indeed any change in the mutation rate during this period, the
effect will then be magnified by the large number of doublings occurring. The ironic part
is it seems many biologists take great care to seed their experiments with exponentially
growing cells [137] even though at the beginning of the experiment when the population is
small, the probability of a mutation occurring is very low. Furthermore, assumption 1 is
compromised by the fact that cells spend a period of time decelerating and in stationary
phase, and therefore not growing exponentially. If mutations continue to occur during
stationary phase, which there is evidence they do2 [59, 23, 113, 136], this can be especially
problematic because the model will not account for these mutations and categorically
result in an overestimate on the mutation rate. Fortunately, if the cells require a period of
growth before expressing the mutant phenotype (i.e. phenotypic lag), then it is likely that
the majority of these mutants that arise during the stationary phase will not survive the
selection phase of a fluctuation test, assuming the selection is immediate and does not also
require a period of growth to take effect. If selection is not immediate though, difficult-
to-predict dynamics could occur, diminishing the quantitative power of the fluctuation
test. Without a lot of extra analysis and control experiments, the issues caused by the
deceleration and stationary phases can not be accounted for in any reasonable way.

Fluctuation tests are labour intensive at the start and end of the experiment, but during
the long period of growth in the middle they require no input. Consequently, it is appealing
to grow the cells overnight. Furthermore, it is ideal to have some samples with zero mutants
as well as having as many countable selection plates as possible, which puts a practical
limit on how long the cells can be grown for. To keep the final populations at a desirable
number during overnight growth requires the limitation of a nutrient so that growth halts,
as described by Monod [117] (Fig. 1.19). Although this makes for easily controllable and

1This problem and its consequences are even discussed by Luria and Delbrück (1943) [106] and expanded
upon by Newcombe (1948) [124]. Newcombe attempted to run a control in which they grew cells purely in
exponential phase to see if it made a difference, but they did so on plates, making it incomparable to the
batch culture fluctuation test results. Stewart et al. (1990) [170] appears to be the first to try to adjust the
model by introducing nutrition depletion and assumptions on how nutrition would affect the mutation rate
to derive altered expressions for the expected number of mutants. Despite the problem being addressed on
a number of occasions, no one appears to have attempted to explicitly account for it in their experiments
since Newcombe.

2There is even suggestions that the mutation rate could increase during stationary phase due to stress
induced mutagenesis [59].
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Figure 2.1: Total bacterial population and expected number of new mutations in
a culture during late exponential phase into stationary phase. The total bacterial
population (blue line), Nt, is modelled using Monod kinetics and the expected number of
new mutations (red line), mt, is calculated using mt = µNt where the mutation rate, µ, is
made dependent on growth rate in three different ways. A) µ remains constant regardless
of growth rate. B) µ goes to zero when the growth rate falls below 10% of its maximal
value. C) µ is directly proportional to growth rate with proportionality constant 3

λmax
.

The time when the maximum number of new mutations are expected to appear is shown
with the dotted black line; notice how in (A) it is in stationary phase, in (B) it is near
the end of the transition from exponential phase to stationary phase, and in (C) it is
near the beginning of the transition from exponential phase to stationary phase. For all
three cases, a significant number of new mutations are arising either during the transition
from exponential to stationary phase, or in stationary phase itself. Simulated growth
with Monod kinetics by numerically solving the coupled ordinary differential equations:
dN
dt

= λN and dS
dt

= −αλN where λ = λmax
S

KD+S
, λmax = ln 2, KD = 2.2 · 10−5, α = 10−7.5,

N0 = 1, S0 = 5 · 10−5, and µ0 = 3 · 10−3.

consistent final populations, it results in the issues caused by cells transitioning to station-
ary phase. One popular way researchers have gotten around these problems, consciously
or not, is by studying mutation rates with continuous cultures instead of batch cultures
[129, 96, 110] (see Appendix A.3 for descriptions of batch and continuous cultures). The
method used to determine mutation rates from continuous cultures is different than a fluc-
tuation test in that it is based on mutant accumulation [58]. In order for this method
to work, there must be a significant number of mutants, which requires a long period of
growth. Unfortunately, continuous cultures have a number of problems, most of which are
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exacerbated by long growth. One problem with continuous cultures is that the machines
preferentially select mutations that promote surface growth because these mutants will not
get removed during dilution, introducing a selection bias [194]. Another problem is that
it is easier for fast growing mutants to take over continuous cultures, which could result
in a bias in which phenotypes make it to the end of the experiment [194]. Both of these
problems show that the machines which maintain continuous cultures do not perform a
neutral selection, which imposes a practical limitation on how long a continuous culture ex-
periment can be run. Moreover, the fluctuations that are inherent to Luria and Delbrück’s
system can be detrimental to the mutant accumulation method [58, 8] Consequently, using
continuous cultures potentially introduces just as many issues as it resolves [52].

The lack of care for physiology during fluctuation tests has led to an uncertainty in the
results of the past century, especially regarding their reproducability. Their significance
can also be brought into question, though I don’t believe it necessary to discard all earlier
results. The problem is simply that earlier results aren’t describing what they claim to be
describing. Instead, the experiments are determining the average spontaneous mutation
rate over several generations of exponential growth, the deceleration phase, and potentially
an unknown amount of time in stationary phase. This is likely just as indicative of what
cells experience in nature [91], but it is difficult to determine how the specific attributes of
the media, as well as the amount of time spent in stationary phase, affected the mutation
rate, taking away any potential for a deeper quantitative understanding of the process.

With all of the issues of growing bacteria to saturation and using continuous cultures
in mind, I set out to do fluctuation tests in a different way, which would keep the cells
in exponential phase for the entirety of their growth3 while in batch culture. In addi-
tion, my fluctuation tests would be done in different growth media, allowing for different
exponential growth rates. With the cells being in balanced growth throughout the experi-
ment, they will have reproducibly different physiologies in different mediums as described
in Section 1.6. Consequently, direct analysis of whether the bacteria’s physiology, and by
extension environment, affects the mutation rate of bacteria in a quantitatively verifiable
and reproducible way can be performed.

3With the exception of potentially at the very beginning, but as mentioned earlier, this should have
minimal consequences.

48



2.2 Strain and Media

The experiments discussed in this thesis are completed using a wild-type Escherichia coli
strain called NCM3722 which, like many strains used in the lab, is a K12 derivative.
NCM3722 was chosen over MG1655, a particularly popular strain, because NCM3722 ap-
pears to be genetically closer to the original E. coli K12 [167]. The hope is that since
K12 was directly cultivated from nature, then NCM3722 should be a better proxy for
naturally occurring E. coli, as well as being less likely to have genetic adaptations to lab
growth, which could mean it has a wider variety of robust physiological phenotypes [107].
NCM3722 has a 4.7 · 106 base pair chromosome and 6.7 · 104 base pair F-like plasmid that
have been fully sequenced [21]. The cells lack flagella, meaning they have no control over
movement, which should make it easier to get homogeneous solutions of cells in culture.
Figure 2.2 shows microscope images of E. coli NCM3722 cells growing in differing qualities
of growth medium and therefore expressing different physiologies, as apparent from their
differing sizes.

There are two types of growth media that can be used in the lab: defined media and
undefined media. Undefined media are ill-defined chemical solutions that allow for cell
growth. Lysogeny broth (LB), an undefined medium, is the most popular medium used
in microbiology because it is cheap and gives incredibly fast growth. It is made from
tryptone, sodium chloride, and yeast extract [14]. The problem is that yeast extract is
produced by growing and lysing yeast with little care for the specifics of how they are
grown, so the details of its contents are mostly unknown [93, 141]. Furthermore, none
of the nutrients in yeast extract are present in saturating amounts, meaning the bacteria
undergo many minor nutrient shifts, resulting in the cells never truly being in balanced
growth [125, 162]. Another consequence is that the inconsistencies in yeast extract are
likely to result in chemical differences between different batches of LB which can be a large
hindrance on reproducability [188]. As such, when a quantitative approach that requires
reproducible growth is being employed in the lab, undefined media are best not used, and
instead defined media should be used. Defined media are media in which the concentrations
of all the components are fully understood, allowing for much greater reproducibility and
confidence in the cells’ physiology experiment to experiment. For the experiments discussed
in this thesis, defined media were used. The media which were used during the growth
phase of the fluctuation test use 3-(N-morpholino)propanesulfonic acid (MOPS) as a buffer,
with variable carbon sources. The MOPS based media were developed in the 1970’s by
Frederick Neidhardt specifically for use in quantitative studies of bacterial physiology [121].
The complete MOPS media recipes can be found in Appendix B.1.

The carbon source used in the MOPS medium can be changed to give a different growth
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Figure 2.2: E. coli NCM3722 microscope images. Microscope images of E. coli
NCM3722 taken from exponential growth in different medias. The doubling time for each
media is given below the medium name. Note how cells with shorter doubling times, and
therefore faster growth rates, are larger.

rate while having every other attribute of the medium stay the same. In this thesis we
report full data from experiments using glucose and maltose as the carbon source, as well
as some preliminary data using α-ketoglutarate (αKG) and acetate as carbon sources. The
main growth media used in this study were minimal maltose medium (0.2% (w/v) maltose
in MOPS minimal buffer; recipe in Appendix B.1.5.), and rich defined glucose medium
(0.2% (w/v) glucose in MOPS minimal buffer supplemented with nucleotides (ACGU) and
amino acids (EZ); recipes in Appendices B.1.4, B.1.2, and B.1.3). The minimal maltose
medium will be colloquially referred to as “maltose minimal” and the rich defined glucose
medium will be referred to as “RDM glucose”. Acetate and α-ketoglutarate were both
used to form a MOPS based minimal medium like maltose minimal.

The exponential growth rates of the cells in all relevant media were determined using
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the turbidity of the culture (i.e. light scattering at 600nm, called the optical density (OD)
or more specifically OD600) and the viable cell count (called colony forming units (CFU))4.
Although turbidity should be proportional to the cell number density [168], the growth rate
as determined by CFU was categorically faster than the growth rate determined by OD
when CFU growth is started from a small number of cells and less than fifteen doublings
were observed5. The growth rates as determined by OD and CFU for NCM3722 in RDM
glucose, maltose minimal, and αKG minimal can be found in Table 2.1. These growth rates
and their standard deviations were determined by averaging and comparing the slopes of
the lines of best fit for several independent log-linear growth curves such as those shown
in Fig. 2.3.

Media OD λ (/hr) OD τ (min) CFU λ (/hr) CFU τ (min)
RDM glucose 1.727 ± 0.067 24.10 ± 0.93 1.796 ± 0.037 23.16 ± 0.49

Maltose minimal 0.741 ± 0.018 56.14 ± 1.41 0.877 ± 0.093 47.78 ± 4.89
αKG minimal 0.150 ± 0.004 277.08 ± 6.88 0.393 ± 0.033 106.29 ± 8.70

Table 2.1: E. coli NCM3772 growth rates and doubling times. Specific growth rates
(λ) and doubling times (τ) plus or minus one standard deviation for E. coli NCM3772 in
RDM glucose, maltose minimal, and αKG minimal MOPS based media as determined
using both OD600 and CFU. Means and standard deviations are from comparing several
independent growth curves. See Fig. 2.3 for respective R2 values.

OD works as a relative measure when determining growth rate because it is a proxy
for cell mass6, but without calibration it cannot give a reliable indication of the number
cells that are in a sample due to the growth dependence in the average cell size, as seen
in Figures 1.20 and 2.2 [168, 153]. Because fluctuation tests require a consistent seed of
a small number of cells, it is imperative that a cell concentration can be determined from
a measured OD. As such, several growth curves were completed where the OD and CFU
were measured simultaneously at each time point. This allows one to create a plot for
CFU vs. OD where the equation of the line of best fit can be used to determine the cell
concentration at any OD as seen in Table 2.2 and Fig. 2.4.

4See Appendix A for more info on OD and CFU.
5This apparent inconsistency is discussed in more detail in Section 4.4.
6See Appendix A.1 for details.
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Figure 2.3: E. coli NCM3722 OD600 and CFU growth curves. A) The 600nm optical
density (OD600) of a sample of culture growing in exponential phase at different times is
plotted on a semi-log plot for RDM glucose, maltose minimal, and αKG minimal. B) The
number of colony forming units (CFU) in a sample of culture at different times during
exponential growth is plotted on a semi-log plot for RDM glucose, maltose minimal, and
αKG minimal. In both plots the slope of the line of best fit is the growth rate and the
coefficient of determination, R2, is provided for each line. The data is a compilation of
several independent growth experiments.
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Medium OD600 to Cell Concentration
RDM glucose CFU/mL = 5.67 · 108 × OD600 - 7.50 · 106

Maltose minimal CFU/mL = 1.09 · 109 × OD600 + 5.18 · 106

αKG minimal CFU/mL = 3.54 · 109 × OD600 - 4.86 · 107

Table 2.2: E. coli NCM3772 OD600 to cell concentration. Equations for determining
the number of viable cells (CFU) per millilitre from the optical density of a culture at 600nm
(OD600). Note that the intercept is at least two orders of magnitude smaller than the slope
in all three cases, meaning it can reasonably be ignored in most cases. See Fig. 2.4 for
respective R2 values.

Figure 2.4: E. coli NCM3772 viable cell counts (CFU) versus optical density
(OD600). The number of colony forming units (CFU) in a sample of culture is plotted
versus its 600nm optical density (OD600) for RDM glucose, maltose minimal, and αKG
minimal. The equation of the line of best fit for each medium allows for the calculation
of the cell concentration from the OD600. The difference in slopes is due to fast growing,
larger cells (black) being more efficient light scatterers than the slow growing, smaller cells
(red). The coefficient of determination, R2, is provided for each line.
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2.3 Mutant Selection

Potentially the most important experimental choice when designing a fluctuation test is
how mutants will be distinguished from the wild type bacteria. The selecting agent is
what probes for the mutation and allows one to make this distinction. Consequently, it
is imperative that a good selecting agent which will accurately select a mutation in a
well defined gene, is chosen. In other words, a good selecting agent should only have one
path towards selection, otherwise it would probe for a variety of mutations in different
genes, which would be very difficult to account for [51]. Also, the mutation which allows
the mutants to survive the selection should ideally not affect the growth rate of the cells
[51, 99, 106]. If this cannot be achieved, it can be mathematically accounted for in the
models [92, 201, 210], but one will have to do many control experiments to determine the
average growth rate of the mutants. Lastly, the mutations that are selected for should be
of any type (point mutations, insertions, deletions) [51]. A lot of commonly used selection
agents don’t satisfy all these conditions [51, 48].

One selecting agent that has all of the attributes of a good selector is D-cycloserine
(often referred to as just cycloserine or cyc) [51]. Cycloserine is an antibiotic that is an
analogue of the amino acid D-alanine [55, 9]. It is cyclic in shape (Fig. 2.5) and is trans-
ported into the cell by the same permease protein that transports D-alanine, L-alanine,
D-serine, and glycine into the cell [37, 143, 191]. Once in the cell, cycloserine inhibits
D-alanyl-D-alanine ligases A and B, and alanine racemase activities, which interrupts cell
wall creation [97, 128]. The permease protein that transports cycloserine resides on the
outer membrane of E. coli K12 and is coded for by a single copy 1413-bp gene called
cycA [51]. If cycA is disabled through mutation, the cells stop making these permease
proteins (referred to as CycA), and cycloserine can no longer enter the cell; this is a simple

Figure 2.5: D-cycloserine chemical structure. Note the cyclic shape of the chemical.
“Cycloserine” by Yikrazuul [184].
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genotype-phenotype relationship which is ideal. It has also been suggested that cycA can
be disabled through any type of mutation on any part of the gene7, and the mutation does
not change the growth rate in minimal media [51]. When growing E. coli in media with
amino acids, one may expect some sort of growth inhibition when cycA is switched off, but
since it would only partially inhibit the uptake of three amino acids and most mutations
happen near the end of the experiment, the resulting effects should be negligible. The
bigger issue with cycloserine as a selection agent comes from the fact that it selects for
the absence of a permease protein. As a result, the CycA proteins present at the time
of mutation must be diluted out through growth in order for the cell to become resistant
to cycloserine, resulting in phenotypic lag (details in Section 3.2) [29]. Phenotypic lag
can be adjusted for during model fitting (details in Section 3.3), but this is certainly not
ideal. Regardless of the issue of phenotypic lag, cycloserine still makes for arguably the
best selecting agent in fluctuation tests because its advantages over other popular agents
are clear and abundant, and the other commonly used selecting agents also likely suffer
from phenotypic lag [124, 18, 170, 101, 29]. As such, cycloserine is used as the selecting
agent in the experiments discussed throughout this thesis.

In order to use a selecting agent, one must know at which concentrations it works
on the cells being studied. Accordingly, cycloserine inhibition curves were experimentally
determined for all relevant media. This was done by growing the cells in the medium
of interest with several different concentrations of cycloserine. First they were grown
overnight so the bacteria could adapt their physiology to the media with antibiotic. The
cells were then diluted into the same medium and concentration of cycloserine they adapted
to, and growth rates were measured using OD once they reached exponential phase. The
susceptibility to the antibiotic was quantified by the concentration of antibiotic which
causes the growth rate to be half of what it is in the absence of the antibiotic (called
the half-inhibition concentration (IC50)). The inhibition curves for RDM glucose, glucose
minimal, maltose minimal, and acetate minimal can be seen in Fig. 2.6 while the IC50’s can
be seen in Fig. 2.7, from which it is clear that slower growing cells are more susceptible to
cycloserine. It was found that a cycloserine concentration of 100µM consistently results in
zero growth, so this concentration was chosen to be used for all media during the selection
phase of the fluctuation tests.

7It has been found that a wide variety of mutation types and locations resulted in a defective cycA
gene, which was taken as evidence that “any” mutation will disable the gene [51].
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Figure 2.6: E. coli NCM3722 cycloserine inhibition curves. E. coli are grown in
different concentrations of cycloserine for which their exponential growth rates are de-
termined then divided by the drug-free growth rate. These normalised growth rates are
plotted versus their respective cycloserine concentrations. A) The inhibition curves for
E. coli NCM3722 in glucose minimal, maltose minimal, and acetate minimal. B) The
inhibition curves from (A) plus RDM glucose, which requires much more cycloserine to
be inhibited. For both plots error bars are plus or minus one standard deviation where
applicable.
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Figure 2.7: E. coli NCM3722 cycloserine half-inhibition concentration versus
drug-free growth rate. The concentrations of cycloserine at which cultures grow at
half their uninhibited rate (IC50), as determined by Fig. 2.6, are plotted versus their
uninhibited growth rate.
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2.4 Experimental Outline

A fresh stock plate was prepared monthly by streaking a -80◦C glycerol stock of E. coli
NCM3722 onto a sterile 1.5% agar + LB plate, which was then incubated for 12-18 hours,
sealed with parafilm, and stored in a 4◦C fridge. A single colony was taken from the stock
plate, inoculated into a test tube with LB, and then incubated in a 37◦C water bath,
shaking at 250 rotations per minute (rpm). Once the tube of LB and cells was noticeably
turbid, 10µL was transferred to a tube with 1mL of the medium of interest (RDM glucose,
maltose minimal, or αKG minimal). This tube was then put in the shaker bath overnight
to allow for the bacteria to fully adapt to the new medium. The next morning the OD
was measured in order to calculate the necessary dilution for the cells to reach an OD of
approximately 0.3 after one to two hours of growth, which is sufficient time for the cells
to reach exponential phase. The calculated dilution was then performed in a tube with
1mL of medium and put in the shaker bath to grow. When the culture was at an OD of
0.3-0.4, the cell concentration was calculated using the data from Table 2.2. The cells were
then serial diluted in 4◦C MOPS buffer solution and a 14.2mL “master mix” was prepared
at a concentration of 1000 cells per 200µL of buffer. For RDM glucose experiments this
master mix was then left to sit for 30 minutes89, while in the maltose minimal and αKG
minimal experiments the next phase was immediately commenced. 60 tubes were prepared
beforehand with 300µL of buffer plus sufficient carbon source (and supplements for RDM)
for a 500µL final volume and put in the shaker bath for approximately 30 minutes to warm
to 37◦C. 200µL of master mix was then put into all 60 tubes at intervals of 30 seconds,
retrieving the tube from the shaker bath at the beginning of the 30 seconds, and returning
it at the end. After the 200µL of master mix was added to each tube, the tube was swirled
by hand in order to mix the cells with the carbon solution. After every fifteen tubes were
inoculated, a 5 minute and 30 second break was taken, during which 50µL of the master
mix was pour plated10 onto one or two LB + agar plates in order to determine the initial
inoculum size and how it varies over the inoculation period. Initial inoculum plates were
also made at the beginning and end of the inoculation period.

The tubes were then left to grow in the shaker bath to reach a final population of

8When exponentially growing bacteria’s carbon sources are removed, they continue growing for a period
of time. This effect is more noticeable in fast growing cells, so in order to make sure that the variance in
number of cells per inoculum between the beginning and end of the inoculation period are comparable,
one needs a settling period. Data for how much the cells continue to grow after being diluted into cold
buffer can be found in Appendix C.1.

9The calculation of the number of cells in a sample from the OD must be adjusted for the extra growth
during the settling period in the buffer.

10See Appendix A.2 for information about the plating protocol
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approximately 4.5·105 cells11. During their growth, a fresh solution of 10mM cycloserine
was made from powder and filter sterilised. In addition, 60 plates with a base layer of
1.5% agar plus M9 minimal12 with glucose (“M9 glucose”) were prepared for selection and
cell counting, 50 of which contained cycloserine at a concentration of 100µM. Once growth
was complete, 1mL of ice cold MOPS buffer solution was added to each tube at the same
30 second intervals as the inoculation period. The buffer added to 50 of the tubes had
cycloserine in it for a final concentration of 100µM in the 1.5mL solution. The buffer added
to tubes 13, 14, 15, 29, 30, 44, 45, 58, 59, and 60 did not have cycloserine; these tubes were
serial diluted and plated during the 5 minute and 30 second breaks in order to determine
the final cell population.

After adding the buffer, the outside of the remaining tubes were cleaned with ethanol
and the entire contents of the tubes were plated on the plates containing cycloserine by
adding 3mL of 1% agar + M9 glucose + 100µM cycloserine to the tube, swirling, and
pouring directly onto the plate. All the plates were then placed in a 37◦C air incubator.
The initial inoculum plates were left to incubate overnight, while the population plates
were left to incubate until colonies were reasonably sized for counting (generally 18-36
hours). All initial and final population plates were counted by hand. The selection plates
were left to incubate for approximately 48 hours in the RDM glucose experiment or 60
hours in the maltose minimal experiment. The selection plates were counted and objects
of unclear origin were marked. The selection plates were then incubated for another 12
hours and counted again, with special focus on checking the unclear objects for further
growth to see if they were colonies. The data was then recorded and analysed using the
methods described in Chapter 3. Figure 2.8 outlines the experiment’s key steps in the form
of a flow chart while Table 2.3 has links to videos of me performing the experiment.

Length Link
1 minute https://youtu.be/B5FfjP6Vm9w

3 minutes https://youtu.be/gct4ji-V0yA

5 minutes https://youtu.be/Z1Ft_cqK_oU

Table 2.3: Links to videos of a fluctuation test being performed. An 8 hour
fluctuation test with E. coli NCM3722 in RDM glucose was recorded and sped up to be 1
minute, 3 minutes, and 5 minutes.

113 hours and 33/34 minutes for RDM glucose; 7 hours and 6 minutes for maltose minimal; 18 hours
and 45 minutes for αKG minimal.

12See Appendix B.2 for recipe.
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Figure 2.8: Fluctuation test experimental procedure flowchart. A flowchart outlin-
ing the key steps in the fluctuation test procedure developed and used for this thesis.
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Chapter 3

Analysis

To gain meaning from fluctuation test data an analysis must be performed. In this chapter,
I will introduce some of the most popular analysis methods used. Then I will introduce the
concept and repercussions of a delayed phenotypic expression after mutation, and detail
a few protocols that attempt to adjust for these effects, which will be tested through
application to simulated and historical data. Finally, how one would go about comparing
results from different fluctuation tests is discussed in preparation for determining if the
growth rate affects the mutation rate.

3.1 Mutation Rate Estimation

Besides designing and performing the experiment to obey as many of the model assump-
tions as possible, the most important aspect of a fluctuation test is the fitting of the data to
the model in order to determine the average number of mutations. There are several ways
to do this and several tools have been developed to make the process easy and accurate
for experimentalists. Historically scalar estimators were used, but in modern times the
most commonly used tools are maximum likelihood estimators. In this section two scalar
estimators, an implementation of a maximum likelihood estimator, and a more flexible
total sum of squares fitting mechanism will be detailed. Additionally, how to convert the
average number of mutations to the mutation rate and the associated error is discussed.
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3.1.1 Scalar Estimators

When the fluctuation test was first described by Luria and Delbrück in 1943, Delbrück
proposed a method for approximating the average number of mutations, m, called the
p0 method [106]. The p0 method uses the fact that the zero point (or probability that
no events occurred) is the same for both the Poisson distribution and the Luria-Delbrück
distribution. Noting that the zero point of the Poisson distribution with mean m is,

p0 = e−m , (3.1)

then an estimate on the average number of mutations per culture in a fluctuation test, m̂,
can be found with,

m̂ = − ln p0 , (3.2)

where p0 is the proportion of cultures that don’t have any mutants [106]. The p0 method
works particularly well when estimating data with 0.1 ≤ p0 ≤ 0.7, which corresponds to
0.3 ≤ m ≤ 2.3 [58]. To determine the error on an estimate from the p0 method, the
probability of having zero mutants in a culture, p0, is considered binomial [99], giving a
variance of,

σ2
p0

=
p0(1− p0)

ν
, (3.3)

where ν is the number of parallel cultures that were selected for mutants. Plugging Eq.
(3.1) into Eq. (3.3) and noting that the variance in m will be e2m times bigger than the
variance in p0 gives [99],

σ2
m̂ =

em̂ − 1

ν
. (3.4)

To calculate the 95% confidence interval, the error is assumed to be normal distributed,
giving the interval, (

m̂− 1.96

√
em̂ − 1

ν
, m̂+ 1.96

√
em̂ − 1

ν

)
. (3.5)

The p0 estimate will be used as an initial guess during the maximum likelihood estimate as
well as a simple estimator when analysing data in the next chapter, primarily for historical
reasons.

Another popular scalar estimate is a median estimator developed by Jones et al. [83].
The estimate is of the form,

m̂ =
rm − ln 2

ln rm − ln(ln 2)
, (3.6)
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where rm is the number of mutants in the median culture. The estimate is derived by
deducing a dilution which is likely to halve the number of plates with mutants. The Jones
median estimator works well when estimating data in the range 3 ≤ rm ≤ 40, which
corresponds to 1.5 ≤ m ≤ 10 [58]. Errors for this method are not explored because the
method is only used as a potential initial guess in the maximum likelihood estimator to
follow [203].

3.1.2 Maximum Likelihood Estimation

A commonly used package for analysing fluctuation tests is called rSalvador and was created
by Qi Zheng in the programming language R [210]. The package is quite comprehensive
and incorporates much of the work Zheng has done on the study of the Luria-Delbrück
distribution in the last two decades, meaning rSalvador is capable of many different tasks;
regardless, for my purposes only the base analysis tools were used. The most useful of
these tools fits fluctuation test data to the Lea-Coulson model, and determines a confidence
interval (CI) for the estimated average number of mutations, m̂.

The following derivations follow Qi Zheng’s work in [203]. The fitting tool determines
an optimal m̂ with a maximum likelihood estimation (MLE) method that uses the log-
likelihood function,

l(X,m) =
ν∑
i=1

log p(Xi,m) , (3.7)

where X = (X1, X2, ..., Xν) is the experimental data from a fluctuation test ran with ν
samples, so each Xi is the number of resistant mutants found in one experimental sample
and is necessarily an integer. The goal of the fitting method is to find the value of m which
makes the derivative with respect to m of the log-likelihood function, also known as the
score,

U(X,m) =
∂l(X,m)

∂m
=

ν∑
i=1

∂p(Xi,m)
∂m

p(Xi,m)
, (3.8)

go to zero. In order to do this, the probabilities and their derivatives with respect to m
must be found. First, the probabilities of the Luria-Delbrück distribution are determined
using the recursive method described by Sarkar et al. [148, 203]. The relation is of the
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form1,

p0 = e−m ,

pr =
m

r

r∑
j=1

φj−1(1− jφ

j + 1
)pr−j (r ≥ 1) ,

(3.9)

where pr is the probability that a culture has r mutants, m is the average number of
mutations per culture, and φ = 1− N0

Nt
is a known constant that scales for total growth (N0

and Nt are the initial and final populations respectively). Now to determine the derivative
of the probabilities with respect to m, the ith derivative of the probability generating
function (Eq. (1.47)) with respect to m is taken,

∂iG

∂mi
=

[
1

φ

(
1− z
z

)
ln(1− φz)

]i
exp

[
m

φ

(
1− z
z

)
ln(1− φz)

]
, (3.10)

where G is the probability generation function (PGF) and z in the usual auxiliary variable.
Equation (3.10) can then be written in terms of a power series by using the definition of
the PGF (Eq. (1.16)), taking the Taylor expansion around z=0 of the coefficient in front
of the exponential, and noting that the exponential term is the Lea-Coulson PGF (Eq.
(1.47)),

∂ip0

∂mi
+
∞∑
r=1

∂ipr
∂mi

zr =

[
− 1 +

∞∑
r=1

φr−1

r

(
1− rφ

r + 1

)
zr

]i(
p0 +

∞∑
r=1

prz
r

)
. (3.11)

Equating the coefficients of zr in Eq. (3.11) then gives,

p(1)
r = −pr +

r∑
k=1

φk−1

k

(
1− kφ

k + 1

)
pr−k ,

p(2)
r = −p(1)

r +
r∑

k=1

φk−1

k

(
1− kφ

k + 1

)
p

(1)
r−k ,

(3.12)

where p
(i)
r = ∂ipr

∂mi
.

Newton’s method will now be used to find the root of the score function on the m axis,
meaning the derivative with respect to m of the score function must also be determined.

1See Section 1.5.2 for the derivation of this relation.
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The negative derivative of the score function, which is often referred to as the Fisher
information, has the form,

J(X,m) = −∂
2l(X,m)

∂m2
=

ν∑
i=1

[(
p(1)(Xi,m)

p(Xi,m)

)2

− p(2)(Xi,m)

p(Xi,m)

]
. (3.13)

The Newton’s method algorithm can then be written as,

m̃j+1 = m̃j +
U(X, m̃j)

J(X, m̃j)
, (3.14)

where m̃ is an estimate on m, the score function U(X,m) is as defined in Eq. (3.8), and
the Fisher information J(X,m) is as defined in Eq. (3.13). For the initial guess m̃0 the
Jones median estimate [83] or the p0 estimate [106] is used. The root that Eq. (3.14) finds
is the optimal estimate on the average number of mutations per culture, m̂.

The tool that calculates the confidence interval on the estimate m̂ works by first recog-
nising that 2(l(X, m̂) − l(X,m0)) asymptotically has a chi-squared distribution with one
degree of freedom, where l(X,m) is again the log-likelihood function (Eq. (3.7)). Assuming
a large sample size, this leads to,

l(X,m) = l(X, m̂)− 1

2
χ2
α,1 , (3.15)

where χ2
α,1 is the (1 − α)th quantile of the chi-squared distribution with one degree of

freedom. The log-likelihood, l(X,m), is then assumed to have its only maximum at m̂,
meaning two points, m̂− and m̂+, will satisfy Equation (3.15) when 0 < α < 1. Newton’s
method can be used to determine m̂− and m̂+ using the algorithm,

m̃±j+1 = m̃±j −
l(X, m̃±j )− l(X, m̂) + 1

2
χ2
α,1

U(X, m̃±j )
. (3.16)

For the initial guess, m̃0, the log-likelihood function is assumed the be quadratic in m so
that it has two easily found roots. These two roots, m̃−0 and m̃+

0 , are then used as the
initial guesses for m̂− and m̂+ respectively,

m̃±0 = m̂± 1

2

√
χ2
α,1

J(X, m̂j)
. (3.17)

One can determine the confidence interval, (m̂−, m̂+), by choosing the desired value for α.
For a 95% confidence interval (CI95%), α = 0.05, and for a 84% confidence interval (CI84%),
α = 0.16, which are the two intervals that will be looked at in this thesis.
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3.1.3 Total Sum of Squares Fitting

A fitting method that does not rely on the assumption that the data is solely composed of
integers and is also capable of fitting only specific portions of the data, in order to accom-
modate for phenotypic lag, which will be discussed later in this chapter. Consequently,
I developed a simple least squares fitting method that relies on the total sum of squares
(TSS) of the difference between the data and the theoretical distribution (see Appendix
D.2 for the R code). It works by first turning the data into a cumulative distribution
function (CDF) and then looping through a sequence of theoretical average number of mu-
tations, m̃, at steps of 0.001. For each m̃, a theoretical CDF is produced using rSalvador
and the square difference between every point in the experimental CDF and its theoretical
counterpart is found and summed, giving a fitting measure (see Fig. 3.1). The m̃ which
gives the smallest sum of squared differences is considered the optimal fit, m̂. This fitting
method exhibits good agreement with the MLE fitting, especially for high sample numbers,
n (Fig 3.2).

Figure 3.1: The total sum of squares fitting measure for a sequence of estimated
mutation numbers. The total sum of squares (TSS) fitting measure is the sum of the
square distances between all the points in an experimental CDF and the corresponding
points in a theoretical CDF built with rSalvador. The TSS fit is found for a set of 100
simulated samples with an average number of mutations, m = 0.5. A sequence of guesses
(0 ≤ m̃ ≤ 1.2) for m is made, and for each m̃ the fitting measure is calculated. These
fitting measures are plotted versus their corresponding guess, m̃. Note how there is a clear
minimum (represented by a solid red point), which is chosen as the optimal estimate, m̂.
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Figure 3.2: Comparison of the rSalvador maximum likelihood (MLE) and the
total sum of squares (TSS) estimates. Data with three different sample sizes (ν =
100, 1000, and 10000) was simulated using rSalvador. For each sample size, four different
average mutation numbers (m = 0.25, 0.5, 1, and 2) are simulated. For each data set
the rSalvador maximum likelihood estimator and my total sum of squares estimator are
used to estimate the average number of mutations. A) A comparison of the MLE and
TSS estimates for data simulated with 100 samples. B) The same as (A), but with 1000
simulated samples. C) The same as A and B, but with 10000 simulated samples. The black
line, y = x, is provided in order to easily gauge how far from the true value the estimates
are.

The developed TSS fitting method does not lead to a straight-forward way for determin-
ing the confidence intervals such as the one used by rSalvador. Therefore, a bootstrapping
method is used to determine the confidence intervals on the TSS fit [133]. The boot-
strapping method used is a generic nonparametric bootstrap implemented with the “boot”
package in R [28]. While using bootstrapping to determine the confidence intervals on
the experimental data, 10000 replicates were used to find a bias-corrected and accelerated
bootstrap interval [47] with the “boot” package.

3.1.4 Determining the Mutation Rate

All three types of analysis methods detailed in this section find an estimate for the average
number of mutations per culture. The average number of mutations is not a particularly
meaningful parameter though, because the more doublings in the culture, the more chances
for mutation, the higher the average number of mutations. In other words, the number
of mutations is dependent on the amount of growth. As a result, the average number of
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mutations per culture must be converted to a parameter that is independent of experi-
mental variables if one wishes to easily discuss and compare how prone bacteria are to
mutation. The most common parameter of choice is the mutation rate, which gives the
average number of mutations per cell per generation. To get the mutation rate, µ, the
average number of mutations, m, is divided by the total change in population during the
experiment, (Nf −N0), which is equivalent to the average number of doublings performed
in each culture because if a culture starts with N0 cells, ends with Nf cells, and bacteria
grow by doubling, then the only way to get that growth is by having Nf −N0 cells double
or grow a generation. The result,

µ =
m

(Nf −N0)
, (3.18)

can be interpreted as a rate of mutation or a probability of mutation. The mutation rate
can be further generalised by accounting for the size of the gene that results in resistance
when mutated. This is done by dividing the per cell mutation rate in Eq. (3.18) by the
length of the target gene in base pairs (bp), giving a mutation rate with units of mutations
per base pair per generation, µbp. Mutation rates are often given in this form because it is
the most general. The ability to give a per base pair mutation rate is dependent on knowing
which gene is being mutated, which is difficult if there are multiple pathways to resistance.
Another form for mutation rate that is sometimes discussed is the per genome mutation
rate, µgenome. To calculate the per genome mutation rate, the per base pair mutation rate
is multiplied by the length of the organism’s genome.

Of course, when the conversion from the average number of mutations to the mutation
rate is done for estimates from experimental data, there are errors involved. The error on
the estimate of the average number of mutations, m̂, comes in the form of a confidence
interval either found from the log-likelihood for the MLE estimate or bootstrapping for the
TSS estimate. When the estimate of the mutation rate, µ̂, is calculated, the error on m̂ will
propagate through and be combined with the error in the initial and final populations (σN0

and σNf respectively) which are experimentally determined standard deviations. To do this,
the confidence interval for m̂ must first be converted into a standard deviation. Because
the confidence intervals are not symmetric, the portion on each side of the mean must
be considered separately and the maximum and minimum of the interval will be denoted
C+ and C− respectively. To convert the confidence interval into a standard deviation, the
error m̂ is assumed to be normally distributed around the mean [135], giving,

C±m̂ = m̂± Zσ±m̂ , (3.19)

where Z is a statistical number related to the normal distribution that equals 1.96 for 95%
confidence intervals and 1.4 for 84% confidence intervals (i.e. Z95% = 1.96 and Z84% = 1.40)
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[135], which are the two confidence intervals that will be discussed in this thesis (see Section
3.4). Rearranging Eq. (3.19) for the upper and lower standard deviations (SD) gives,

σ±m̂ =
1

Z
(±C±m̂ ∓ m̂) . (3.20)

Now using error propagation rules [195] and assuming there is no covariance between m̂
and (Nf −N0), the right and left standard deviations of µ̂ are found to be,

σ±µ̂ = µ̂

√√√√√(σ±m̂
m̂

)2

+

(√
σ2
N0

+ σ2
Nf

Nf −N0

)2

. (3.21)

The standard deviations of µ̂ can then be converted to confidence intervals by again as-
suming that the error in µ̂ is normally distributed, giving,

C±µ̂ = µ̂± Zσ±µ̂ , (3.22)

which can be used to compare mutation rates from different experiments.

All discussed estimators for the average number of mutations, and by extension the
mutation rate, are designed under the assumptions of the Lea and Coulson model found
in Section 1.5.2 [58]. The experiments performed for this thesis were designed to obey
as many of these assumptions as possible, but there are physical limitations that make
assumption 9, that all mutants are detected at the time of selection, nearly impossible
to obey when selecting for the absence or presence of an active protein [29]. In other
words, once a mutation happens, the cell that first inherits the mutant chromosome and
all of its subsequent children are considered mutants, but they may not be selected for
because their mutant phenotype takes time to manifest due to the time it takes to dilute or
accumulate proteins [29]. This period of time between when the mutation occurs and when
the mutant phenotype is expressed is called phenotypic lag, and it results in fewer mutants
appearing in fluctuation tests causing underestimates on the average number of mutations
[10, 4, 170, 29, 18]. Methods for how to adjust for the bias caused by phenotypic lag are
proposed in this chapter, but to understand them phenotypic lag and its consequences
must first be discussed in detail.
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3.2 Phenotypic Lag

Phenotypic lag is how long it takes for a mutant phenotype to be expressed after a mutation
occurs [124, 4]. One of the most common and consequential forms of phenotypic lag
is a repercussion of proteins needing to be accumulated or diluted out in order for the
mutant cells to express the mutant phenotype [29]. To better understand the details and
consequences of phenotypic lag, I will focus on protein dilution leading to resistance, but
many of the arguments to follow can also be used to describe protein accumulation with
minimal adjustments2. Imagine that the gene that codes for a protein, which we will refer
to as the α-protein, gains a mutation during replication and one of the children inherit
it. The mutation will likely affect the expression of the α-protein in some way. The
most common effect will be that the cell stops making functional α-proteins, which for
the sake of this argument is the same as producing no α-proteins; we will employ this
simplification moving forward. At birth, the new mutant cell will inherit a portion of its
non-mutated parent’s α-proteins. What portion of the α-proteins that each progeny will
inherit is dependent on how the cell manages this protein, but each child will likely inherit
on average half of the α-proteins, subject to some partition error [80, 29]. Assuming there
are P0 α-proteins independently distributed around the parent cell at the time of division,
the number of α-proteins inherited by one child will be a binomial random number of
probability 0.5 and P0 trials, while the other child will inherit the remainder [80, 29].
The new mutant cell then starts growing, doubling all of its components except the α-
proteins. When this cell eventually splits, each of its children will inherit approximately
half of all its proteins, giving two cells with on average one half the normal number of
α-proteins at birth. The doubling process continues in this fashion, giving the pattern seen
in Fig. 3.3. As growth continues, the number of α-proteins in the mutant children decays
exponentially3. The question now is: at what point do the mutant cells start expressing the
mutant phenotype? The answer is dependent on the details of the protein in question and
how the mutant phenotype is being selected for. Regardless, there will be a length of time
that passes called phenotypic lag. If P0 is the average number of α-proteins in a normal
cell at the time of birth, and Pr is the maximum number of α-proteins that a cell can have
while expressing the mutant phenotype, then the phenotypic lag length in generations, n, is
determined by n = log2(P0

Pr
). In the experimental system used in this thesis, the α-protein

is a permease protein coded by the gene cycA and the mutant phenotype is expressed as
resistance to the antibiotic cycloserine [51]. This means the mutant cells become resistant

2For protein accumulation one simply assumes that mutant cells produce a certain number of proteins
each generation, and once they have enough, they become resistant [29].

3Due to the degradation of proteins, the cells will likely reach zero sooner than predicted by this model.
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Figure 3.3: Permease dilution causing phenotypic lag. A Haldane tree in which a
normal black genome becomes red when mutated, resulting in the cell no longer producing
permease proteins. When a mutant doubles, each child inherits half of its parent’s permease
proteins. This assumes no partition error and no partial proteins.

when so many of these permease proteins have been diluted out that the cell is no longer
able to uptake a fatal amount of cycloserine.

In a deterministic system, if there are n generations of phenotypic lag, then no mutants
will appear until n generations after a mutation occurs. In this time the mutant continues
to grow, meaning when the mutant phenotype does get expressed, there are now 2n resistant
cells, as apparent in Fig. 3.4. Consequently, in a fluctuation test, the samples with a small
number of mutants (r < 2n) will not appear in the CDF, except to artificially increase
the number of apparent samples with zero mutants (see Fig. 3.5). It also means that in
cultures that have had multiple mutation events, the mutant lineages that are less than
n generations old will not appear, resulting in some of the samples with greater than 2n

mutants appearing with artificially low mutant counts that are still greater than or equal
to 2n. The consequence of these two affects is a discontinuous CDF with an artificially
high y-intercept and a slightly flatter shape. In reality, partition error will mean that there
is a chance cultures with greater than zero, but less than 2n, mutants will appear. The
quantity of these cultures compared to the no lag case will be significantly reduced though,
meaning the y-intercept will still be artificially high and the CDF will still appear more
flat. See Fig. 3.5 for a comparison of simulated fluctuation test data with phenotypic lag
both accounting and not accounting for partition error.

Another common form of phenotypic lag is a repercussion of having multiple copies of
the chromosome (generally due to fast growth) which is called effective polyploidy [171].
Phenotypic lag as a consequence of effective polyploidy can have different effects depending
on the type of mutation. The two types of mutation are recessive and dominant, where
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Figure 3.4: Haldane trees for different phenotypic lag lengths. The length of
phenotypic lag in generations is represented by n. In each case, the culture starts from
1 normal cell and is grown for 4 generations, with one new mutant appearing in each
generation. After 4 generations, a selector is introduced to the culture so that only the
cells that are expressing the mutant phenotype survive. For n = 0, all mutants appear,
giving 15 resistant cells. For n = 1, cells must grow for at least 1 generation to become
resistant, meaning the D lineage will not become resistant, resulting in 14 resistant cells.
For n = 2, the C and D lineages do not grow for long enough, giving 12 resistant cells.
For n = 3, only the A lineage grows for enough time, giving 8 resistant cells. For n ≥ 4,
no lineage has sufficient time to grow and hence there are no resistant cells. This is all
assuming no partition error.

a recessive mutation means that the mutant phenotype is fully expressed after all the
chromosomes in a cell have the mutation, while a dominant mutation requires the cell to
only have one mutant chromosome to express the phenotype [171]; if the selecting agent
chemically combines with its target, as is often the case with antibiotics, then the mutation
which grants resistance is recessive [29]. In the context of a fluctuation test, polyploidy with
a dominant mutation will cause a different type of phenotypic lag than described above, in
that after a mutation occurs a mutant will immediately appear, but only one of its children
will be a mutant for several generations until the mutant chromosome becomes homozygous
(i.e. there will be only one mutant for several generations before the mutants start doubling
as described in the Luria-Delbrück model) [171]. In combination with the higher number of
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Figure 3.5: Simulated fluctuation test data with phenotypic lag. The cumulative
distributions of 10000 simulated cultures with initial population N0 = 1 · 103, final popu-
lation Nf = 5 · 105, mutation rate µ = 1 · 10−6, and phenotypic lag lengths n = 0, 1, 2, 3.
A) No phenotypic lag (n=0). B) Deterministic phenotypic lag: no partition error result-
ing in a discontinuous CDF. C) Stochastic phenotypic lag: protein dilution with binomial
partition error and an initial number of active proteins, P0 = 100.
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chromosomes giving more opportunities for mutational events, the result is a larger number
of measured mutations and therefore a higher measured mutation rate. On the other hand,
polyploidy with a recessive mutation will have no affect on fluctuation test data because the
effects of there being more chromosomes to mutate cancel out the effects of the phenotypic
lag [171, 29]. But if polyploidy with a recessive mutation is combined with protein dilution,
it can have an effect on fluctuation test data that is different than in the presence of just
protein dilution [29]. When a cell has multiple copies of a gene, it will use all of them to
build proteins [29]. Consequently, if some of the genes have a mutation which causes the α-
protein to stop being produced, but the cell keeps sending resources to them in an attempt
to make the protein, then the cell will start producing less α-proteins. The result would
be a gradual decrease in α-protein numbers in the parent cells even before the mutant
chromosome monopolises the cells, giving a shorter time needed to become resistant once
the cell contains only mutated chromosomes. Because polyploidy is a growth dependent
physiological parameter as described in Section 1.6.1, the phenotypic lag length could
become dependent on growth rate when protein dilution is required. Furthermore, due to
the constraints of the proteome described in Section 1.6.2, there is reason to believe that
most α-protein concentrations would be dependent on growth rate, adding another avenue
for which phenotypic lag length can couple to growth rate. Finally, because the cell size,
and by extension surface area, is growth rate dependent, if chemical diffusion is dependent
on the surface area and density of permease proteins (as one may expect), then there is
further potential for phenotypic lag length to be coupled to growth rate, especially when
the α-protein is a permease. There being three separate routes to phenotypic lag length
coupling to the cells’ physiology, all of which likely present and potentially combining in
non-linear ways, makes inferring the exact effect very difficult. Regardless, it is beneficial
to be aware of this potential coupling when designing experiments and simulations.

3.2.1 Simulating Phenotypic Lag

In order to study the effects of phenotypic lag on fluctuation test data, and by extension,
the estimated average number of mutations, a method for simulating data with phenotypic
lag was developed. The simulation uses the code from Sun et. al [171, 172] as a base, in
which they use the ideas of Zheng [202], and Hamon and Ycart [68]. For the simulation, the
initial population N0, final population Nf , and mutation rate µ are input and the number
of mutations that will appear during growth is drawn from a Poisson distribution with
probability µ(Nf −N0) (cf. Eq. (1.6)). The times at which each of these mutants appear
are then drawn from an exponential distribution with rate λ = ln(2), so that the time
is in generations, as in the derivations by Delbrück, and Lea and Coulson (see Sections
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1.5.1 and 1.5.2).. The number that is drawn from the exponential distribution gives how
long prior to the end of the experiment the mutant appears (i.e. tbirth = tfinal − texp). The
mutant is then grown by drawing replication times from the same exponential distribution
for each mutant and doubling them at these drawn times until the end of the experiment is
reached. The method allows for the tracking of all the mutant lineages (which start from
a single mutant). At the end of the “experiment” when all the mutant lineages have been
realised, the number of mutants which are alive (i.e. have not yet doubled) are counted to
get a total number of mutants in the culture. The mutant number from this “experiment”
constitutes one point in a set of fluctuation test data, so to create meaningful simulated
data, this protocol must be repeated many times.

To include the effects of phenotypic lag in the simulation required adding my own
elements to the code and inputting an average initial protein number, P0, and average
phenotypic lag length in generations, n. For deterministic phenotypic lag, at the time of
adding up all the mutants in a culture, all the lineages that are less than n generations
old, meaning they are composed of less than 2n mutant cells, are discarded. For stochastic
phenotypic lag, whenever a new mutant lineage appears, the first mutant is born with a
number of proteins, P̃ , which is equal to a binomial random number with probability 0.5

and 2P0 trials. When this cell doubles, one child inherits a number of proteins, ˜̃P , equal
to a binomial random number with probability 0.5 and P̃ trials, while the other child

inherits the remaining P̃ − ˜̃P proteins. This process repeats until the cells no longer have
time to double and the original P̃ proteins are distributed between all live mutants in the
lineage. To include phenotypic lag, at the end of the “experiment” if a mutant has less
than P0

2n
proteins then it is counted. The effects of different starting protein numbers are

shown in Fig. 3.6. Based off measured protein numbers of the CycA permease protein
[189, 102] (which will be the active protein during selection in the experiments throughout
this thesis), and motivated by the fact that the simulated distribution does not appear to
have a strong dependence on the number of proteins, for future simulations the average
starting protein number will be chosen as P0 = 100.
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Figure 3.6: Simulated fluctuation test data with average phenotypic lag of 1, 2,
and 3 generations and varying starting protein amounts. Cumulative distributions
for 10000 simulated cultures with initial population N0 = 1000, final population Nf =
500000, and mutation rate µ = 1 ·10−6. A) Simulated phenotypic lag length of 1 generation
and starting protein numbers P0 = 2, 4, 8, 20, 100, and 200. B) Simulated phenotypic
lag length of 2 generations and starting protein numbers P0 = 4, 8, 20, 100, and 200.
C) Simulated phenotypic lag length of 3 generations and starting protein numbers P0 =
8, 20, 100, and 200. The protein number P0 is never allowed to be less than 2n where
n is the average length of phenotypic lag in generations. Note how the shape of the
distribution becomes more dependent on P0 with increasing phenotypic lag, but in all
cases the differences are not large for P0 > 2n.

3.3 Adjusting Fit for Phenotypic Lag

Adjustments to model fitting are a necessity when aspects of an experiment fail to satisfy all
the assumptions of the model. Many such adjustments exist for the Luria-Delbrück system,
but few have investigated and implemented a system for adjusting for phenotypic lag. In
the case of phenotypic lag, assumption 9 of the Lea-Coulson model (Section 1.5.2), which
is that all mutants are detected at the time of selection, fails. Instead, the young mutant
lineages go undetected, as explained in Section 3.2. The result is that in the presence of
phenotypic lag, the usual fitting mechanisms described in Section 3.1 categorically give
underestimates for the average number of mutations, m.
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3.3.1 Koch Adjustment

In 1981, Arthur Koch laid out a basic protocol to adjust for phenotypic lag [92]. His
protocol was to divide the number of observed mutants4 by 2n (where n is the number of
generations of phenotypic lag), fit a Luria-Delbrück distribution to the adjusted data, and
then multiply the fitted m̂′ by 2n to get a more accurate estimate, m̂ 5. By dividing the
original distribution by 2n, one is essentially looking at what the distribution looked like
n generations earlier if there was no phenotypic lag. Fitting to this adjusted distribution
then gives an estimate, m̂′, on the average number of mutations n generations earlier in a
hypothetical system free of phenotypic lag. Multiplying this fitted m̂′ by 2n then adjusts
for the growth of all the mutants during the n generations of lag that were removed by the
original division by 2n. The concept of this adjustment is straight-forward and logical, but
it is not without flaws. The main flaw is that the protocol on average gives over-estimates
for m̂ when applied to simulated data. I believe the primary reason for this is that the
adjusted data still includes mutants that would not have been present n generations earlier,
resulting in a higher estimate for m̂′. In particular, some of the cultures with many mutants
could be from several younger lineages of mutants that would not have existed n generations
earlier, but the adjustment protocol instead treats them like a single, old, large lineage.

To implement Koch’s adjustment protocol, I used the programming language R as well
as tools from rSalvador [210]. The protocol allows for a prediction of both the length of
phenotypic lag, n̂, and an associated average number of mutations, m̂. First, the fluctuation
test data, which is a set of numbers specifying the number of resistant mutants in each
sample, is turned into a cumulative distribution with all samples that have greater than
300 mutants binned6 at 300. A sequence of guesses on the length of phenotypic lag, ñ,
is then cycled through and for each ñ the number of mutants, which is the x-axis of the
CDF, is divided by 2ñ. The TSS fitting mechanism is then employed to get an associated
estimate on the mutation number, m̃, and the associated error, which is the total sum
squared difference. The TSS errors for each ñ are then compared and the minimum is
chosen to give a prediction for phenotypic lag length, n̂. The associated optimal average
number of mutations m̂′ is finally multiplied by 2n̂ to get an adjusted estimate, m̂. See
Fig. 3.7 for an infographic of the protocol being applied to a set of simulated data.

4Koch worked with quartiles due to computational limitations, but the concept remains the same when
applied to the entire cumulative distribution.

5In Koch’s original paper he multiplies by 2n − 1 at this stage, but this doesn’t make sense because it
fails in the n = 0 case.

6Foster claims that high mutant counts can be truncated at 150 with “little loss of precision” as long
as there aren’t too many outliers [58], while the program flan bins mutants at r = 1024 [112]. I took a
sort of middle ground approach, leaning more towards the side of Foster to reduce computational costs.

77



Figure 3.7: Infographic for the Koch adjustment protocol. The Koch adjustment
system is applied to simulated fluctuation test data with 100 samples, initial population
N0 = 1000, final population Nf = 500000, mutation rate µ = 1 · 10−6, average number
of mutations m = 0.499, and phenotypic lag length n = 2 generations. A) The data’s
cumulative distribution with the CDF’s for the TSS estimate m̂TSS and the true m. B)
The number of mutants in each tube divided by 2ñ where ñ = 1, 2, and 3 generations, and
the CDF for the TSS estimate m̃TSS. C) The TSS fitting error and the estimated average
number of mutations, m̃, for each ñ; the solid red points are the optimal estimates, n̂ and
m̂′. D) The estimated m̃ from (C) converted to average number of mutations estimates
by multiplying by 2ñ; the solid red point is the optimal estimate, m̂K . E) The unadjusted
data with the CDF’s corresponding to the Koch estimate m̂K , the TSS estimate m̂TSS, and
the true m.
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To study the efficacy of the Koch adjustment method, it was implemented on three
sets of simulated fluctuation test data with stochastic phenotypic lag. One set is 100
simulations of 100 samples each, one is 10 simulations of 1000 samples each, and one is
1 simulation of 10000 samples. All simulations have the parameters: initial population
N0 = 1 · 103 cells, final population Nf = 5 · 105 cells, mutation rate µ = 1 · 10−6 mutations
per cell per generation, and initial protein number P0 = 100 proteins, which corresponds
to an average number of mutations per culture m = 0.499. These values are chosen such
that the simulations have similar parameters to my experiments. Furthermore, each set of
simulations is done for several phenotypic leg lengths, n = 0, 1, log2(3), 2, log2(5), log2(6),
log2(7), and 3 generations7. Results from the Koch adjustment protocol being applied to
each simulation set can be found in Fig. 3.8.

When the Koch protocol is applied to the simulations, as already mentioned, overesti-
mates on the average number of mutations, m, are given on average, and this appears to
be independent of sample size. Conversely, the estimates on the phenotypic lag length, n,
are underestimates when long phenotypic lag (n ≥ 2) is present, and slight overestimates
for short lag (n < 2). In particular, the system is quite good at telling when there is no
phenotypic lag present. Regardless of the estimates of m on average being overestimates,
the average adjusted estimate on m is still much closer to the true value inputted into
the simulations than the unadjusted MLE fits. Furthermore, the fact that the system can
tell there is phenotypic lag present and can generally predict if there’s more lag in one set
of data than another is beneficial, even if the magnitude is not correct on average. One
especially nice attribute of the Koch protocol is that the distribution of TSS errors always
creates a smooth quadratic-like shape with a clear minimum, making the choice for n̂ very
straightforward (Panel (C) in Fig. 3.7). Arguably the biggest problem with the protocol is
the magnitude of standard deviation in its estimates of m across the 100 simulations with
100 samples, though the edges of the error bars still lay closer to the true m than the MLE
fit. In addition, the standard deviations in the predictions on n are also fairly substantial.
Despite the apparent issues with the Koch adjustment protocol, as made clear through its
use on simulations, it remains a clearly beneficial tool for making better predictions on
the average number of mutations than the traditional maximum likelihood estimate when
phenotypic lag is present.

7These numbers will be referred to as log2 integers.
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Figure 3.8: Koch adjustment protocol applied to simulated fluctuation test data
with phenotypic lag. Fluctuation test data is simulated with an average number of
mutations m = 0.499 and log2 integer phenotypic lag lengths (n). Three sets of data are
simulated, one with 100 simulates of 100 samples (100;100), one with 10 simulates of 1000
samples (10;1000), and one with 1 simulate of 10000 samples (1;10000). A) The MLE fitting
method and the Koch phenotypic lag adjustment protocol are applied to the 100;100 and
1;10000 data sets, and the average estimated number of mutations (〈m̂〉) ± one standard
deviation (SD) is plotted for each simulated phenotypic lag. B) The Koch protocol is
applied to the 100;100 and 1;10000 data sets, and the average estimated phenotypic lag
length (〈n̂〉) ± SD is plotted for each simulated phenotypic lag. C) The MLE fitting method
and the Koch protocol are applied to the 10;1000 and 1;10000 data sets, and 〈m̂〉 ± SD is
plotted for each simulated n. D) The Koch protocol is applied to the 10;1000 and 1;10000
data sets, and 〈n̂〉 ± SD is plotted for each simulated n. In (B) and (D) the black line,
y = x, is provided in order to easily gauge how far from the true value the estimates are.
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3.3.2 Reduced CDF Adjustment

Another adjustment method, which has been alluded to by Foster and others [58, 4],
has been extended and implemented by me. In this method, only the latter part of the
experimental cumulative distribution (CDF) is considered while fitting. Accordingly, I will
refer to the method as the “reduced CDF (rCDF)” adjustment protocol. With phenotypic
lag present, the left portion of the CDF experiences the most noise from partition errors
because the cultures with many mutants have a smaller proportion of mutants not being
selected due to a significant number of these mutants coming from mutations early in
growth. Consequently, the latter part of the experimental CDF matches the true CDF
much closer, as is made clear by Fig. 3.5. As a result, if one only fits to the later portion
of the CDF, one should theoretically get a more accurate estimate of the average number
of mutations, m. The main downfall of this adjustment method is that by ignoring early
points of the CDF, one then has to fit to a smaller number of points. If there are many
samples, this is not a problem, but when there aren’t, the error in the fit has the potential
to be troublesome. Furthermore, the reduced CDF fitting procedure on average gives an
underestimate for the average number of mutations per culture, m. An underestimate on
m is given because, as seen in Fig. 3.5, the cumulative distribution for simulated data
with phenotypic lag is flatter than the Luria-Delbrück distribution, and a more flat curve
leads to a smaller fitted mutation rate. Though removing the beginning of the distribution
allows one to ignore the most dominant effects of phenotypic lag, it does not entirely rid
the data of the effects. The underestimate of m is a consequence of missing young mutant
lineages in cultures with multiple mutant lineages, as well as partition error.

To implement the reduced CDF adjustment protocol, the computer program R is once
again used. Like the Koch protocol, the data is first turned into a CDF with all cultures
with mutant numbers greater than or equal to 300 being binned at 300. Then a sequence of
phenotypic lag guesses ñ, which are all equal to log2 integers, is cycled through. For each ñ,
all points with mutant number less than 2ñ are removed. The reduced CDF is then fitted
using the TSS fitting protocol to find an associate estimate on the mutation number, m̃.
Also for each ñ, the theoretical distribution is adjusted to mimic deterministic phenotypic
lag by moving all points with x < 2ñ to zero, making the y-intercept artificially high. Next,
the sum squared distance between the zero mutant point of the experimental data and the
adjusted theoretical data is calculated because the zero point is the point which is most
sensitive to phenotypic lag. Comparing the zero point of the theoretical CDF adjusted to
mimic deterministic phenotypic lag and the experimental zero point can give insight into
the length of phenotypic lag. The TSS fitting error for the reduced CDF and the zero
point error are then added together to get a total fitting error. Finally, the ñ which gives
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the minimum total fitting error is used as the optimal estimate on the phenotypic lag, n̂,
and the associated m̃ is chosen as the optimal average number of mutations estimate, m̂.
The algorithm is laid out in the form of an infographic in Fig. 3.9.

The reduced CDF adjustement protocol was applied to the same simulation data as
the Koch fitting protocol to study its efficacy. The results of this study can be found in
Fig. 3.10.

It can be seen from the results of the application of the reduced CDF adjustment
protocol to simulated data that the protocol on average gives an underestimate for the
average number of mutations as predicted. The protocol also gives an underestimate on
the length of phenotypic lag for all lags greater than or equal to two generations. On the
other hand, the protocol does a good job of predicting phenotypic lags of length less than
2 generations. Furthermore, the standard deviation in the estimates of both mutation
number and phenotypic lag length have a noticeably lower standard deviation than the
Koch protocol. Finally, though not made clear through the simulation data8, the reduced
CDF adjustment protocol fails when there are no samples with zero mutants because it uses
the difference between the experimental zero and theoretical zero to estimate the length of
phenotypic lag.

8This was found by applying the rCDF method to several sets of historical data.
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Figure 3.9: Infographic for the reduced CDF adjustment protocol. The reduced
CDF (rCDF) adjustment system is applied to simulated fluctuation test data with 100
samples, initial population N0 = 1000, final population Nf = 500000, mutation rate µ =
1 · 10−6,, average number of mutations m = 0.499, and phenotypic lag length n = 2
generations. A) The data’s cumulative distribution with the CDF’s for the TSS estimate
m̂TSS and the true m. B) All data points with number of mutants less than 2ñ where ñ = 1,
2, and 3 generations are removed, and the reduced CDF is fitted with TSS; the zero point
of the fitted CDF is adjusted to include all points < 2ñ to mimic deterministic phenotypic
lag. C) The TSS fitting error and the estimated average number of mutations, m̃, for each
ñ; the solid red points are the optimal estimates, n̂ and m̂. D) The unadjusted data with
the CDF’s corresponding to the rCDF estimate m̂rCDF , the TSS estimate, m̂TSS, and the
true m.
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Figure 3.10: Reduced CDF adjustment protocol applied to simulated fluctuation
test data with phenotypic lag. Fluctuation test data is simulated with and average
number of mutations m = 0.499 and log2 integer phenotypic lag lengths (n). Three sets of
data are simulated, one with 100 simulates of 100 samples (100;100), one with 10 simulates
of 1000 samples (10;1000), and one with 1 simulate of 10000 samples (1;10000). A) The
MLE fitting method and the reduced CDF (rCDF) phenotypic lag adjustment protocol
are applied to the 100;100 and 1;10000 data sets, and the average estimated number of
mutations (〈m̂〉) ± one standard deviation (SD) is plotted for each simulated phenotypic
lag. B) The rCDF protocol is applied to the 100;100 and 1;10000 data sets, and the average
estimated phenotypic lag length (〈n̂〉) ± SD is plotted for each simulated phenotypic lag.
C) The MLE fitting method and the rCDF protocol are applied to the 10;1000 and 1;10000
data sets, and 〈m̂〉 ± SD is plotted for each simulated n. D) The rCDF protocol is applied
to the 10;1000 and 1;10000 data sets, and 〈n̂〉 ± SD is plotted for each simulated n. In (B)
and (D) the black line, y = x, is provided for easy comparison.
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3.3.3 Combination Reduced CDF & Koch Adjustment

It is clear from the results of applying the Koch and reduced CDF protocols to simulated
data that there are flaws in each system, but is it possible to use the best parts of each to
get an even better adjustment protocol? First off, the Koch system is the more obvious
choice for predicting the length of the phenotypic lag, n, primarily due to the smooth
fitting landscape leading to an obvious choice for n̂ on every occasion regardless of sample
size. On the other hand, it appears that the reduced CDF method is a better choice for
predicting the average number of mutations, m, because the Koch adjusted estimate m̂K

increases exponentially with phenotypic lag length, meaning variability in phenotypic lag
estimates, n̂, can result in larger variability in m̂K

9. Consequently, a potentially good
protocol would be to use the Koch system to determine the phenotypic lag length, n̂, and
then the reduced CDF system to determine the associated average number of mutations,
m̂. This method will be referred to as the “reduced CDF + Koch (rCDF+K)” protocol.

Another protocol which is worth exploring involves also using Koch to estimate the
phenotypic lag length, but then taking the average of the associated estimates on the
mutation numbers found by the Koch and reduced CDF protocols. Interestingly, the Koch
estimate m̂K appears to often be equally an overestimate as the reduced CDF estimate
m̂rCDF is an underestimate, meaning if one takes the average of the two, they get an
estimate which is on average very close to the true m. This method will be referred to as
the “reduced CDF + Koch average (rCDF+Kavg)” protocol.

For both the rCDF+K and rCDF+Kavg protocols to work, only log2 integers can be
estimated for n̂ so that the reduced CDF fitting method works properly, meaning the
predicted n̂ may not be as accurate as in the Koch protocol. Both of the combination
protocols discussed were applied to the same simulated data as the Koch and reduced
CDF protocols in order to study their efficacy. The results can be found in Figures 3.11
and 3.12.

For both the combination protocols, the estimates of the phenotypic lag length are
nearly indistinguishable from the estimates from the Koch protocol. When the rCDF+K
protocol is applied to the simulated data, its estimates of the average number of mutations
are generally underestimates, getting more drastic at higher phenotypic lags. The main
benefit to the rCDF+K protocol is that it has the smallest standard deviation in m̂ among
all the discussed protocols when applied to the 100 simulations of 100 samples. The
rCDF+Kavg protocol on the other hand does the best job at predicting the average number

9This is a potential cause of the high standard deviation in the estimates of the number of mutations
when Koch is applied to simulated data (Fig. 3.8).
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Figure 3.11: rCDF+Koch adjustment protocol applied to simulated fluctuation
test data with phenotypic lag. Fluctuation test data is simulated with an average
number of mutations m = 0.499 and log2 integer phenotypic lag lengths (n). Three sets of
data are simulated, one with 100 simulates of 100 samples (100;100), one with 10 simulates
of 1000 samples (10;1000), and one with 1 simulate of 10000 samples (1;10000). A) The
MLE fitting method and the rCDF+Koch (rCDF+K) phenotypic lag adjustment protocol
are applied to the 100;100 and 1;10000 data sets, and the average estimated number of
mutations (〈m̂〉) ± one standard deviation (SD) is plotted for each simulated phenotypic
lag. B) The rCDF+K protocol is applied to the 100;100 and 1;10000 data sets, and
the average estimated phenotypic lag length (〈n̂〉) ± SD is plotted for each simulated
phenotypic lag. C) The MLE fitting method and the rCDF+K protocol are applied to the
10;1000 and 1;10000 data sets, and 〈m̂〉 ± SD is plotted for each simulated n. D) The
rCDF+K protocol is applied to the 10;1000 and 1;10000 data sets, and 〈n̂〉 ± SD is plotted
for each simulated n. The black line, y = x, is provided for easy comparison.
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Figure 3.12: rCDF+Koch average adjustment protocol applied to simulated fluc-
tuation test data with phenotypic lag. Fluctuation test data is simulated with an
average number of mutations m = 0.499 and log2 integer phenotypic lag lengths (n). Three
sets of data are simulated, one with 100 simulates of 100 samples (100;100), one with 10
simulates of 1000 samples (10;1000), and one with 1 simulate of 10000 samples (1;10000).
A) The MLE fitting method and the rCDF+Koch average (rCDF+Kavg) phenotypic lag
adjustment protocol are applied to the 100;100 and 1;10000 data sets, and the average
estimated number of mutations (〈m̂〉) ± one standard deviation (SD) is plotted for each
simulated phenotypic lag. B) The rCDF+Kavg protocol is applied to the 100;100 and
1;10000 data sets, and the average estimated phenotypic lag length (〈n̂〉) ± SD is plotted
for each simulated phenotypic lag. C) The MLE fitting method and the rCDF+Kavg pro-
tocol are applied to the 10;1000 and 1;10000 data sets, and 〈m̂〉 ± SD is plotted for each
simulated n. D) The rCDF+Kavg protocol is applied to the 10;1000 and 1;10000 data sets,
and 〈n̂〉 ± SD is plotted for each simulated n. In (B) and (D) the black line is y = x.
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of mutations, with the average m̂ very close to the m inputted to the simulations. Also,
the standard deviation in m̂ for rCDF+Kavg among the 100 simulations of 100 samples
is smaller than that of Koch and only a bit larger than that of the estimates from the
rCDF+K protocol, which is promising.

3.3.4 Error in Phenotypic Lag Adjusted Estimates

As with all model fitting and parameter estimating, finding errors on the predictions is
critical for determining the significance of the results. How to find confidence intervals
for the estimated average number of mutations and mutation rates for the fitting methods
which do not account for phenotypic lag were discussed throughout Section 3.1, but how
to find confidence intervals on the phenotypic lag adjusted estimates has not been touched
upon. Instead, the adjustment protocols were ran on many simulated data sets to get
an idea of what level of variance one may expect from the mechanism, but this is of no
help when applying the methods to experimental data. Because all four phenotypic lag
adjustment protocols use the total sum of squares fitting to fit the adjusted data and the
distribution being fitted to is unknown, the obvious choice is to use bootstrapping to calcu-
late confidence intervals. Unfortunately, bootstrapping is a very computationally expensive
practice, and when combined with how computationally inefficient my adjustment systems
are, the computational cost can become prohibitive. This can be worked around slightly by
assuming the predicted phenotypic lag length of the original data is the true lag, and then
plugging this lag in and only fitting for the average number of mutations. If one wishes to
estimate the phenotypic lag length as well, the run times can be forbidding and the errors
can be difficult to interpret. As such, errors on the phenotypic lag adjusted estimates will
only be provided for my experimental data and what is provided will be calculated with
the phenotypic lag fixed at the initial estimate. Furthermore, the provided error bars will
be bias-corrected and accelerated confidence intervals [47] from 10000 bootstrap replicates
as calculated by the “boot” package in R [28].

3.3.5 Application of Phenotypic Lag Adjustments to Historical
Data

In Luria and Delbrück’s original 1943 paper they mention phenotypic lag as a possible
reason for the discrepancy between the theoretical variance in the number of mutants and
their measured variance, but quickly dismiss the idea due to the abundance of samples with
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only a single mutant10 [106]. Since then, many fluctuation tests have been performed and
many have mentioned phenotypic lag in passing, but few have attempted to account for the
lag in any significant manner. One exception to this is Newcombe’s 1948 paper, “Delayed
Phenotypic Expression of Spontaneous Mutations in Escherichia Coli” [124], which was
written with the core purpose of quantifiably addressing and accounting for phenotypic lag
in fluctuation tests. Unfortunately, the computational limitations of the time meant that
their adjustments, though similar in theory to the reduced CDF protocol, are rudimentary.
I will now apply my analysis tools to some historically significant fluctuation test data.

Newcombe Data Fitting

Newcombe (1948) [124], in addition to openly discussing the probable presence of pheno-
typic lag, provides one of the few published fluctuation tests with a statistically significant
number of samples (200 samples total from 8 experiments with 25 samples, each with sim-
ilar final populations) and reported raw data. Newcombe used Escherichia coli B/r which
was grown in an undefined medium broth, presumably11 giving a doubling time of less
than 30 minutes. In four of the experiments, the cultures were inoculated with approx-
imately 10 cells, while in the other four, they were inoculated with 104 cells12. In all 8
experiments, the cultures were grown overnight to an average final population of 3.5 · 108

cells with a standard deviation between experiments of 0.7 · 108, which gives a coefficient
of variation of 20%. The selecting agent used by Newcombe to isolate mutants was T1
bacteriophage. There are several pathways towards resistance to T1 phage for E coli, but
the most common are mutations to the fhuA or tonB genes [69, 103, 70], which are 2241
base pairs [38] and 717 base pairs [138] respectively [32]. The existence of several path-
ways towards resistance poses a problem for determining mutant fitness and the per base
pair mutation rate. Another problem with Newcombe’s experiment is that even though
they attempted to address the potential physiological consequences of the different growth
phases through control experiments, insufficient care was taken to ensure balanced growth,
as made clear through the use of broth as the growth medium and allowing cells to reach

10We now know that stochastic effects can cause there to be samples with single mutants, as discussed in
Section 3.2. In addition, it is unclear what effects growing to saturation will have on phenotypic expression
in the presence of lag.

11The growth rate was not provided in the paper, but growth in broth generally results in a near-maximal
growth rate.

12Because I wish to combine the data from all 8 experiments, when calculating mutation rates I will use
the average, which is 5 · 103 cells.
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Figure 3.13: Newcombe E. coli B/r in broth fluctuation test data with MLE and
TSS fit. The compiled data from the fluctuation tests performed by Newcombe (1948)
[124] with E. coli B/r in broth are plotted as a cumulative distribution with the CDF of
best fit as determined by rSalvador’s maximum likelihood estimator (MLE) and the CDF
of best fit as determined from the total sum of squares (TSS) method.

saturation during the fluctuation tests13. Newcombe determined from their analysis that
there is likely between 2 and 6 generations of phenotypic lag on average and their ad-
justed mutation rate14 is 3.17 · 10−8 mutations per generation per cell [124]. Armitage also
analysed Newcombe’s data and estimated a phenotypic lag of 4 generations and adjusted
mutation rate15 of 2.7 · 10−8 mutations per generation per cell [5]. For the results of my
analysis protocols applied to Newcombe’s data, see Figures 3.13, 3.14, 3.15, and 3.16 and
Table 3.1.

13As with Luria and Delbrück, this work was prior to Schaechter et al.’s seminal work [153] so it is
understandable that minimal physiological care was taken.

14Newcombe adjusted for phenotypic lag by developing a method to use the cultures with a large number

of mutants to calculate the mutation rate, which has the form µ = rmax−〈r〉
νNf

where rmax is the maximum

number of resistant cells in a single culture and 〈r〉 is the average number of resistant cells across all
cultures.

15Armitage adjusted for phenotypic lag by only looking at an upper quartile of the data distribution.
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Figure 3.14: Newcombe fluctuation test data: Koch adjusted fit. The Koch adjust-
ment protocol (see Section 3.3.1) applied to a set of fluctuation test data from Newcombe
(1948) [124]. A) The Koch fitting error for a sequence of guessed phenotypic lags; the red
point is the minimum. B) The Koch estimated average number of mutations for a sequence
of guessed phenotypic lags; the red point is the chosen estimate. C) The Newcombe fluc-
tuation test data plotted as a cumulative distribution with the CDF’s from the MLE and
Koch estimated mutation numbers.
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Figure 3.15: Newcombe fluctuation test data: reduced CDF adjusted fit. The
reduced CDF (rCDF) adjustment protocol (see Section 3.3.2) applied to a set of fluctuation
test data from Newcombe (1948) [124]. A) The rCDF fitting error for a sequence of guessed
phenotypic lags; the red point is the minimum. B) The rCDF estimated average number of
mutations for a sequence of guessed phenotypic lags; the red point is the chosen estimate.
C) The Newcombe fluctuation test data plotted as a cumulative distribution with the
CDF’s from the MLE and rCDF estimated mutation numbers.
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Figure 3.16: Newcombe fluctuation test data: reduced CDF + Koch adjusted
fits. The hybrid rCDF + Koch and rCDF + Koch average adjustment protocols (see
Section 3.3.3) applied to a set of fluctuation test data from Newcombe (1948) [124]. A) The
rCDF + Koch fitting error for a sequence of guessed phenotypic lags; the red point is the
minimum. B) The rCDF + Koch estimated average number of mutations for a sequence
of guessed phenotypic lags; the red point is the chosen estimate. C) The Newcombe
fluctuation test data plotted as a cumulative distribution with the CDF’s from the MLE
and rCDF + Koch estimated mutation numbers. D) The Newcombe fluctuation test data
plotted as a cumulative distribution with the CDF’s from the MLE and rCDF + Koch
average estimated mutation numbers.
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Newcombe mutation rates of E. coli B/r in broth

Analysis
protocol

Phenotypic
lag length

in
generations

(n)

Average
number of
mutations
per culture

(m)

Average
number of
mutations

per cell
per

generation
(µcell)

(×10−8)

Average
number of
mutations

per base pair
per

generation
(µbp)

(×10−12)

p0 N/A 1.93 0.554 2.47
MLE N/A 2.40 0.688 3.07
TSS N/A 3.96 1.14 5.07
Koch 3 9.50 2.72 12.2
rCDF 4 5.70 1.63 7.30

rCDF+K 3 4.68 1.34 5.99
rCDF+Kavg 3 7.09 2.03 9.07

Table 3.1: Newcombe E. coli B/r mutation rates in broth. Mutation rates of E. coli
B/r grown in broth (likely doubling time < 30 minutes) as determined by several different
analysis methods. Data from Newcombe (1948) [124] where 200 cultures were inoculated
with an average of 5005 cells and grown to saturation with an average final population of
(3.5 ± 0.7) · 108 cells. T1 bacteriophage resistant mutants are selected and counted. To
determine the per base pair mutation rate, the per cell mutation rate is divided by the
size of the fhuA gene which is 2241 base pairs. No errors provided due to computational
limitations.
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Note that the mutation rate increases upwards of 4-fold when the data is adjusted for
phenotypic lag. Also, the Koch adjustment, which gives the highest estimate and may
be the most reliable because the reduced CDF protocol does not function optimally when
there are very few zeros, gives an almost identical estimate to Armitage. Finally, the
per base pair mutation rate appears to be about two orders of magnitude lower than the
commonly recorded 10−10 mutations per base pair per generation [101, 197, 116]. This
underestimate may be from dividing by too large a gene size, which would be the case
if the mutations must take place in a specific portion of the gene for resistance to be
gained. The underestimation may also be a repercussion of the experimental procedures
used, especially since the experiment was performed in 1948 with the very original protocol
that did not take into account bacterial growth physiology.

Boe et al. Data Fitting

Another fluctuation test with many samples and reported raw data is Boe et al. (1994)
[18]. Boe et al. famously performed 23 fluctuation tests with 48 cultures each, all with a
similar final population, giving a total of 1104 samples. Moreover, Boe et al. also addresses
the likely presence of phenotypic lag and claims it to be a potential explanation for why
their data differs from the theoretical Luria-Delbrück distribution. They grew Escherichia
coli MG1655 in defined AB minimal medium with limiting 0.05% (w/v) glucose, which
gave a doubling time of 72± 5 minutes. The cultures were inoculated with approximately
1.2 · 104 cells and grown overnight to a final population of approximately 1.2 · 109 cells16.
The selecting agent used was nalidixic acid, which is an antibiotic that affects chromosomal
DNA replication [65]. There are two main issues with Boe et al.’s experiment. The first
issue is that they grew the cells to saturation (see Section 2.1 for a detailed discussion on
the potential problems with this). The second issue is that nalidixic acid resistance can be
achieved through mutations to several different genes [78], making it difficult to confidently
say if a mutant has a change in fitness, as well as making it difficult to determine the per
base pair mutation rate. Fortunately, it has been shown that the majority of mutants that
are resistant to high levels17 of nalidixic acid have mutations in one of two regions in the
gyrA gene which code for an amino acid in DNA gyrase subunit A [104, 15]. Consequently,
it seems reasonable to determine the per base pair mutation rate by simply dividing the
per cell mutation rate by 3 or 6 to account for the commonly mutated nucleotide triplets
that code for one or both of the amino acids associated with resistance. A downside to
the majority of nalidixic acid resistance being from these particular mutations is that the

16The initial and final population numbers were not provided in detail within the paper [18].
17Boe et al. used a relatively high concentration of 100 µg/mL.
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Figure 3.17: Boe et al. E. coli MG1655 in AB minimal with glucose fluctuation
test data with MLE and TSS fits. The compiled data from the fluctuation tests per-
formed by Boe et al. (1994) [18] with E. coli MG1655 in AB minimal medium with limiting
glucose are plotted as a cumulative distribution with the CDF of best fit as determined by
rSalvador’s maximum likelihood estimator (MLE) and the CDF of best fit as determined
from the total sum of squares (TSS) method. Plot with smaller domain and range inlaid
in plot covering full domain and range.

system favours point substitution mutations, meaning the mutation rate found is more
representative of the point substitution mutation rate than the overall mutation rate.
Regardless, the data from Boe et al. was studied by applying my phenotypic lag adjustment
systems to it. See Figures 3.17, 3.18, 3.19, and 3.20 and Table 3.2 for the results.

Note that a very small amount of lag is predicted by the Koch protocol, which agrees
with Boe et al.’s prediction that if there is phenotypic lag, it is short [18]. The prediction
of lag also agrees with Carballo-Pacheco et al.’s prediction that phenotypic lag is present
in the Boe et al. system [29], though they give no indication of how long the lag is. In
addition, the unadjusted per cell18 mutation rate is only slightly higher than that of Lee
et al. (2012) [101] who also use E. coli MG1655 and nalidixic acid, but grow the cells in
LB. On the other hand, the adjusted per cell mutation rate is upwards of 2 times as large

18Lee et al. divide the per cell mutation rate by a larger gene size than me to calculate the per base
pair mutation rate.
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Figure 3.18: Boe et al. fluctuation test data: Koch adjusted fit. The Koch
adjustment protocol (see Section 3.3.1) applied to a set of fluctuation test data from Boe
et al. (1994) [18]. A) The Koch fitting error for a sequence of guessed phenotypic lags;
the red point is the minimum. B) The Koch estimated average number of mutations for
a sequence of guessed phenotypic lags; the red point is the chosen estimate. C) The Boe
et al. fluctuation test data plotted as a cumulative distribution with the CDF’s from the
MLE and Koch estimated mutation numbers.
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Figure 3.19: Boe et al. fluctuation test data: reduced CDF adjusted fit. The
reduced CDF (rCDF) adjustment protocol (see Section 3.3.2) applied to a set of fluctuation
test data from Boe et al. (1994) [18]. A) The rCDF fitting error for a sequence of guessed
phenotypic lags; the red point is the minimum. B) The rCDF estimated average number of
mutations for a sequence of guessed phenotypic lags; the red point is the chosen estimate.
C) Boe et al. fluctuation test data plotted as a cumulative distribution with the CDF’s
from the MLE and rCDF estimated mutation numbers.
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Figure 3.20: Boe et al. fluctuation test data: reduced CDF + Koch adjusted
fits. The hybrid rCDF + Koch and rCDF + Koch average adjustment protocols (see
Section 3.3.3) applied to a set of fluctuation test data from Boe et al. (1994) [18]. A) The
rCDF + Koch fitting error for a sequence of guessed phenotypic lags; the red point is the
minimum. B) The rCDF + Koch estimated average number of mutations for a sequence of
guessed phenotypic lags; the red point is the chosen estimate. C) The Boe et al. fluctuation
test data plotted as a cumulative distribution with the CDF’s from the MLE and rCDF
+ Koch estimated mutation numbers. D) The Boe et al. fluctuation test data plotted
as a cumulative distribution with the CDF’s from the MLE and rCDF + Koch average
estimated mutation numbers.
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Boe et al. mutation rates of E. coli MG1655 in AB minimal with glucose

Analysis
protocol

Phenotypic
lag length

in
generations

(n)

Average
number of
mutations
per culture

(m)

Average
number of
mutations

per cell
per

generation
(µcell)

(×10−10)

Average
number of
mutations

per base pair
per

generation
(µbp)

(×10−10)

p0 N/A 0.710 5.91 1.97
MLE N/A 0.737 6.14 2.05
TSS N/A 0.815 6.79 2.26
Koch 0.6 1.00 8.37 2.79
rCDF 0 0.815 6.79 2.26

rCDF+K 1 0.88 7.33 2.44
rCDF+Kavg 1 1.021 8.51 2.84

Table 3.2: Boe et al. E. coli MG1655 mutation rates in AB minimal medium
with glucose. Mutation rates of E. coli MG1655 grown in AB minimal media with
limiting 0.05% glucose carbon source (doubling time = 72± 5 minutes) as determined by
several different analysis methods. Data from Boe et al. (1994) [18] where 1104 cultures
were inoculated with 1.2·104 cells on average and grown to saturation with final population
of 1.2 ·109 cells on average. Nalidixic acid resistant mutants are selected and counted. The
per base pair mutation rates are calculated by dividing the per cell mutation rate by 3 base
pairs because the resistance is generally achieved through mutation of one of two specific
nucleotide triplets that code for an amino acid. No errors provided due to computational
limitations.
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as Lee et al. when phenotypic lag is accounted for. Finally, my estimates for the per base
pair mutation rate from Boe et al.’s system agrees well with the per base pair mutation
rate Lee et al. calculate with whole-genome sequencing [101].

3.4 Comparison Between Fluctuation Tests

When comparing data from different experiments, one often employs both qualitative and
quantitative methods. The qualitative methods help give intuition for the differences be-
tween the results while the quantitative methods determine just how real and significant
those differences are. The most obvious and powerful qualitative comparison one can
perform between data from different fluctuation tests is through plotting the cumulative
distribution functions (CDF) and/or probability distribution functions (PDF) from each
experiment on the same plot. One can only do this if the cells grew the same amount in
each experiment (same final populations with sufficiently small initial populations), mean-
ing the only variable that could change the shape of the data is the mutation rate, µ [207].
When the CDFs are plotted together, one can compare the medians (0.5 on the y-axis) to
get a rough estimate on the relative mutation rates between tests. How the PDF and CDF
look for a wide array of average mutation numbers is shown in Fig. 3.21.

Methods for quantitatively comparing mutation rates from separate experiments are
not abundant. The most obvious it to compare the 95% confidence intervals (CI95%) of
each experiment and see if there is overlap [156]. Though a good starting technique, it is
not definitive considering 95% confidence intervals can overlap even if the two variables
have significant difference [95]. As a result, it has been suggested that the comparison of
the 84% confidence intervals instead be conducted [109, 207]. The 84% confidence interval
is chosen because when these intervals do not overlap, it mimics a statistical test with p-
value 0.05 [109]. This test can be used to compare the average number of mutations, m, or
the mutation rates, µ, from different experiments and has showed success at distinguishing
between data simulated with different mutation rates [207]. The confidence interval test
is particularly powerful when it is used with mutation rates instead of the number of
mutations because then it no longer relies on each experiment having the same amount
of growth (or final population) [207]. The downside to using mutation rates is that the
variance in the initial and final populations will inevitably add to the uncertainty in the
mutation rate19. On the other hand, it has be shown that having variance in the final

19Most investigators seem to ignore this phenomena [207], with Foster arguing that “if the denominator
is larger than the numerator, the variance of the ratio will be smaller than the variance of the numerator,
and thus no great harm should be done by ignoring the variance of the denominator” [58], but this appears
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Figure 3.21: Luria-Delbrück PDF and CDF for several different average mutation
numbers. Each probability distribution function (PDF) is created using rSalvador and
each cumulative distribution function (CDF) is built by taking the cumulative sum of the
the associated PDF.

population will affect the estimate on the average number of mutations [198, 209] so if this
variance is not taken into account when estimating the number of mutations, then it may
be beneficial to account for it during the calculation of the mutation rate.

Another test, which was developed by Zheng, is a likelihood ratio test [207]. The
test requires that the final populations of the experiments being compared are the same
and it calculates a p-value by comparing the log-likelihood that the experiments have the
same number of mutations, m, to the log-likelihood of them having different numbers
of mutations. In the next chapter we will use all three methods (95% confidence, 84%
confidence, and likelihood ratio) to compare the mutation rates from multiple experiments
performed in the same media as well as comparing experiments performed in different
growth media in order to investigate if bacterial mutation rates are dependent on their
exponential growth rates.

to disregard the rules of error propagation.
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Chapter 4

Experimental Results

Fluctuation tests as described in Section 2.4 were performed by me in two different media,
a rich defined medium with glucose (RDM glucose) with a doubling time of 23 minutes
(Table 2.1), and a minimal medium with maltose (maltose minimal) with a doubling time
of 48 minutes (Table 2.1). In each case, several different fitting protocols were applied
to the data to estimate the average number of mutations per culture, m, as described in
Section 3.1. Adjustments for phenotypic lag were then applied in order to estimate the
length of phenotypic lag, n, and the corresponding adjusted average number of mutations.
The corresponding mutation rate, µ, which gives the average number of mutations per
cell1 per generation is then calculated for all estimates of m as described in Section 3.1.4.
The mutation rates are also given in more general units by assuming that mutations are
randomly distributed around the genome and adjusting for the size of the genome and
gene of interest. Because mutations were measured by selecting for cycloserine resistance
in my experiments, we can assume that every observed mutation took place in the cycA
gene (Section 2.3) which is 1413 base pairs (bp) long [51] (i.e. the per cell mutation rate
is effectively a per gene mutation rate). Accordingly, to get a per base pair mutation rate,
µbp, the per cell mutation rate must be divided by the length of the cycA gene (µbp = µ

1413

mutations per base pair per generation). Furthermore, to get the per genome mutation
rate, µgenome, one must multiply the per base pair mutation rate by the chromosome size,
which is 4,678,045 base pairs for E. coli NCM3722 (µbp = µ·4.68·106 mutations per genome
per generation). Errors on all estimates of m and µ are provided as described throughout
Chapter 3. The results for each medium are compared using the methods described in
Section 3.4 in order to determine if there is a significant difference in mutation rate when

1Later in the chapter this mutation rate will be represented with µcell in order to emphasise the units.
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the exponential growth rate of the bacteria is altered through changes in the quality of the
nutrients they have access to. Finally, some difficulties faced during experimentation and
preliminary results for a third medium, α-ketoglutarate minimal, are discussed.

4.1 RDM Glucose

Two fluctuation tests, performed as described in Section 2.4, were done in a MOPS based
rich defined media (RDM) using glucose as the carbon source. Each fluctuation test pro-
duced 50 samples which were selected for mutants, combining for a total of 100 points.
Additionally, 10 independent samples from which to determine the final population were
grown in each experiment, combining for 20 population points. The RDM glucose medium
used gives a very fast CFU-based specific growth rate of 1.80±0.04 /hr, which corresponds
to a doubling time of 23.2 ± 0.5 minutes. The cells were grown from an average initial
population of 975 cells with a standard deviation of 99 cells, giving a coefficient of vari-
ation (CV) of 10.1%. The growth period was 3 hours and 33 minutes in one experiment
and 3 hours and 34 minutes in the other. The result was an average final population of
(4.2±0.5) ·105 cells, giving a CV of 11.4%. Calculating the growth rate from the difference
between initial and final populations along with the growth time gives a doubling time of
24.3 minutes, which agrees well with the independently determined growth rate.

With the fluctuation test data coming from the combination of two separate runs, it
is important to confirm that they are sufficiently similar to be combined. It can be seen
that the 84% confidence intervals for their MLE estimated average number of mutations,
m̂MLE, are (0.122, 0.313) and (0.270, 0.546) which comfortably overlap. Furthermore, from
the likelihood ratio test the p-value for the results being the same is 0.105. These two
statistical measures support the decision to combine the two experiments into a single
data set. The combined raw data for all population plates as well as the mutant plates is
included in Table 4.1.

The first method used to estimate the average number of mutations, m, from the
data was Delbrück’s p0 method, and it gave an average number of mutations, m̂p0 =
0.288, with a 95% confidence interval of (0.175, 0.401) which corresponds to a mutation
rate of µ̂p0 = 6.79 · 10−7 mutations per cell per generation with 95% confidence interval
(3.73 ·10−7, 9.87 ·10−7). When the data is fit using rSalvador’s MLE system, m̂MLE = 0.294
with a 95% confidence interval of (0.193, 0.424) is found, which corresponds to a mutation
rate of µ̂MLE = 6.93 · 10−7 with CI95% = (4.10 · 10−7, 1.04 · 10−6). Impressively, the p0

estimate agrees very closely with the MLE estimate despite the difference in sophistication.
Finally, the TSS fitting method gives m̂TSS = 0.329 with CI95% = (0.217, 0.521) and
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Initial Population Final Population Number of Mutants

960
967
852

1.05 · 103

1.07 · 103

1.07 · 103

1.06 · 103

1.05 · 103

928
804
792

1.09 · 103

900
984

1.07 · 103

944

4.2 · 105

4.2 · 105

4.2 · 105

3.0 · 105

4.8 · 105

4.6 · 105

4.0 · 105

4.5 · 105

4.9 · 105

4.9 · 105

4.4 · 105

4.1 · 105

3.6 · 105

3.6 · 105

3.7 · 105

3.9 · 105

4.5 · 105

4.6 · 105

4.4 · 105

4.5 · 105

0
0
0
0
0
54
2
14
0
0
0
0
3
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
2

0
0
25
0
0
0
0
0
0
0
0
1
0
1
0
9
10
1
0
1

0
0
0
0
0
21
0
0
0
12
0
0
0
0
0
0
0
0
0
9

0
1
28
0
0
1
1
0
0
0
1
0
0
0
0
8
0
0

177
0

Mean ± SD Mean ± SD Doubling Time
975 ± 99 (4.2± 0.5) · 105 24.35 minutes

Table 4.1: RDM glucose fluctuation test data. Combined data from two fluctuation
tests with E. coli NCM3722 in a MOPS based rich defined medium with glucose as the
carbon source and D-cycloserine as the selecting agent.

µ̂TSS = 7.77 · 10−7 with CI95% = (4.60 · 10−7, 1.26 · 10−6), which also agrees well with the
MLE estimate. Plots of the experimental CDF along with the CDF’s for m̂MLE and m̂TSS

are shown in Fig. 4.1.

Attempts to account for potential phenotypic lag with the goal of getting a better
fit on the data were pursued and all four adjustment protocols discussed in Section 3.3
were applied. The Koch protocol predicts the length of phenotypic lag to be n̂K = 1.6
generations and gives an estimate of the average number of mutations of m̂K = 0.724
with CI95% = (0.464, 1.14) (Fig. 4.2). The reduced CDF protocol gives an estimate on
the phenotypic lag of n̂rCDF = 2 generations and on mutation number of m̂rCDF = 0.730
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with CI95% = (0.377, 1.30) (Fig. 4.3). The Koch and reduced CDF estimates of m agree
very well, which is especially surprising when considering that the average estimates of each
when ran on simulated data are noticeably different. The Koch estimate of m̂K = 0.724 and
the rCDF estimate of m̂rCDF = 0.730 are both approximately a 2.5 fold increase from the
MLE estimated m̂MLE = 0.294. The hybrid Koch and rCDF adjustment protocols give an
estimate on n of n̂rCDF+K = log2(3) ≈ 1.58 while the two estimates of the average number
of mutation are m̂rCDF+K = 0.559 with CI95% = (0.255, 1.09) and m̂rCDF+Kavg

= 0.638 with
CI95% = (0.363, 1.08) (Fig. 4.4). The two hybrid estimates don’t agree with the reduced
CDF and Koch estimates quite as well as the rCDF and Koch estimates agree with each
other, but they still increase the estimated average number of mutations as desired from a
phenotypic lag adjustment. All estimates are compiled in Table 4.2 and plotted together
as a histogram with errors in Fig. 4.5.

For no particularly good reason beyond the fact that the Koch adjusted and rCDF
adjusted fits are nearly indistinguishable, and the error in the Koch estimate is the smallest
among the phenotypic lag adjustment protocols, I will primarily focus on the Koch adjusted
estimate during future discussions.
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Figure 4.1: RDM glucose fluctuation test data with MLE and TSS fit. The com-
piled data from the fluctuation tests performed with E. coli NCM3722 in RDM glucose are
plotted as a cumulative distribution with the CDF of best fit as determined by rSalvador’s
maximum likelihood estimator (MLE) and the CDF of best fit as determined from the
total sum of squares (TSS) method. Plot with smaller domain and range inlaid in plot
covering full domain and range.
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Figure 4.2: RDM glucose fluctuation test data Koch adjusted fit. The Koch
adjustment protocol (see Section 3.3.1) applied to a set of fluctuation test data from E.
coli NCM3722 grown in RDM glucose. A) The Koch fitting error for a sequence of guessed
phenotypic lags; the red point is the minimum. B) The Koch estimated average number of
mutations for a sequence of guessed phenotypic lags; the red point is the chosen estimate.
C) The RDM glucose fluctuation test data plotted as a cumulative distribution with the
CDF’s from the MLE and Koch estimated mutation numbers.
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Figure 4.3: RDM glucose fluctuation test data reduced CDF adjusted fit. The
reduced CDF (rCDF) adjustment protocol (see Section 3.3.2) applied to a set of fluctuation
test data from E. coli NCM3722 grown in RDM glucose. A) The rCDF fitting error for a
sequence of guessed phenotypic lags; the red point is the minimum. B) The rCDF estimated
average number of mutations for a sequence of guessed phenotypic lags; the red point is
the chosen estimate. C) The RDM glucose fluctuation test data plotted as a cumulative
distribution with the CDF’s from the MLE and rCDF estimated mutation numbers.
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Figure 4.4: RDM glucose fluctuation test data reduced CDF + Koch adjusted
fits. The hybrid rCDF + Koch and rCDF + Koch average adjustment protocols (see
Section 3.3.3) applied to a set of fluctuation test data from E. coli NCM3722 grown in
RDM glucose. A) The rCDF + Koch fitting error for a sequence of guessed phenotypic
lags; the red point is the minimum. B) The rCDF + Koch estimated average number of
mutations for a sequence of guessed phenotypic lags; the red point is the chosen estimate.
C) The RDM glucose fluctuation test data plotted as a cumulative distribution with the
CDF’s from the MLE and rCDF + Koch estimated mutation numbers. D) The RDM
glucose fluctuation test data plotted as a cumulative distribution with the CDF’s from the
MLE and rCDF + Koch average estimated mutation numbers.
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Mutation rates of E. coli NCM3722 in RDM glucose

Analysis
protocol

Phenotypic
lag length

in
generations

(n)

Average
number of
mutations
per culture
(m) with

95%
confidence

interval

Average
number of
mutations

per cell
per

generation
(µcell) with

95%
confidence

interval
(×10−7)

Average
number of
mutations

per base pair
per

generation
(µbp) with

95%
confidence

interval
(×10−10)

Average
number of
mutations

per genome
per

generation
(µgenome) with

95%
confidence

interval
(×10−3)

p0 N/A
0.288

(0.175, 0.401)
6.79

(3.73, 9.87)
4.80

(2.64, 6.98)
2.25

(1.23, 3.27)

MLE N/A
0.294

(0.193, 0.424)
6.93

(4.10, 10.4)
4.90

(2.90, 7.36)
2.29

(1.35, 3.44)

TSS N/A
0.329

(0.217, 0.521)
7.77

(4.60, 12.6)
5.50

(3.26, 8.93)
2.57

(1.52, 4.18)

Koch 1.6
0.724

(0.464, 1.14)
17.1

(9.86, 27.6)
12.1

(6.98, 19.5)
5.66

(3.27, 9.15)

rCDF 2
0.730

(0.377, 1.30)
17.2

(8.05, 31.2)
12.2

(5.70, 22.1)
5.70

(2.67, 10.3)

rCDF+K 1.58
0.559

(0.255, 1.09)
13.2

(5.44, 26.1)
9.34

(3.85, 18.4)
4.37

(1.80, 8.63)

rCDF+Kavg 1.58
0.638

(0.363, 1.08)
15.1

(7.75, 26.0)
10.7

(5.49, 18.4)
4.99

(2.57, 8.61)

Table 4.2: E. coli NCM3772 mutation rates in RDM glucose. Mutation rates of
E. coli NCM3722 grown in MOPS based rich defined media with glucose carbon source
(doubling time = 23.2 ± 0.5 minutes) as determined by the different analysis methods
described in Chapter 3. The estimated phenotypic lag length from the rCDF+K and
rCDF+Kavg protocols is log2(3) ≈ 1.58. Errors in the phenotypic lag adjustment protocols
do not account for the error in the estimated phenotypic lag. The per base pair mutation
rate was calculated by dividing the per cell mutation rate by 1413 base pairs. The per
genome mutation rate was calculated by multiplying the per base pair mutation rate by
4.68 · 106 base pairs.
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Figure 4.5: Histogram comparing mutation rates calculated from different fitting
protocols for E. coli NCM3772 in RDM glucose. The per cell mutation rates with
their 95% confidence intervals are plotted for all fitting methods described in Chapter 3
and compiled in Table 4.4. No error provided for rCDF, rCDF+K, and rCDF+Kavg due
to computational limitations.
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4.2 Maltose Minimal

MOPS based minimal media using maltose as the carbon source was used as the growth
medium for two fluctuation tests. Each experiment was done with 50 samples to be selected
for mutants and 10 samples to be used for final population counts, giving a total of 100
mutant plates and 20 population plates. The specific growth rate produced by maltose
minimal medium as measured using CFU’s is 0.88 ± 0.09 /hr, which corresponds to a
doubling time of 47.8 ± 4.9 minutes. Each culture was seeded with an initial population
of (1.23 ± 0.16) · 103 cells, which has a CV of 12.9%. The cells were grown for 7 hours
and 6 minutes in both experiments, leading to an average final population of 4.5 · 105 cells
with a standard deviation of 1.2 · 105 cells, giving a CV of 25.6%. Calculating the growth
rate from the initial and final populations, along with the growth time, gives a doubling
time of 50 minutes, which is within the standard deviation of the growth rate which was
independently determined in control experiments.

The fluctuation test data coming from two separate runs means it is important to con-
firm that they are sufficiently similar to be combined. The 84% confidence intervals for their
MLE estimated average number of mutations, m̂MLE, are (0.586, 0.973) and (0.845, 1.32)
which overlap. Also, the p-value from the likelihood ratio test is 0.162. These two statis-
tical measures support the decision to combine the two experiments into a single data set.
The combined raw data for all population plates as well as the mutant plates is included
in Table 4.3.

Delbrück’s p0 method gives an average number of mutations of m̂p0 = 1.02 with a 95%
confidence interval of (0.760, 1.28), which corresponds to a mutation rate of µ̂p0 = 2.25·10−6

mutations per cell per generation with 95% confidence interval CI95% = (9.79 · 10−7, 3.52 ·
10−6). When the data is fit using rSalvador’s MLE system, an average mutation number
of m̂MLE = 0.908 with a 95% confidence interval of (0.710, 1.14) is found, which gives a
mutation rate of µ̂MLE = 2.00 · 10−6 with CI95% = (9.02 · 10−7, 3.13 · 10−6). The TSS
fitting method gives m̂TSS = 0.813 with CI95% = (0.641, 1.02) and µ̂TSS = 1.79 · 10−6 with
CI95% = (8.12 · 10−7, 2.80 · 10−6), which again agrees well with the MLE estimate. Plots of
the experimental CDF along with the CDF’s for m̂MLE and m̂TSS are shown in Fig. 4.6.

When all four phenotypic lag adjustment protocols described in Section 3.3 were applied
to the maltose minimal data, they predicted that there was no phenotypic lag (n̂ = 0).
See Fig. 4.7 for the fitting errors and estimated average number of mutations for the Koch
and reduced CDF methods. All estimates are compiled in Table 4.4 and plotted together
as a histogram with errors in Fig. 4.8.

Physically, the prediction of no phenotypic lag in maltose minimal is surprising consider-
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Initial Population Final Population Number of Mutants

1.33 · 103

1.17 · 103

1.24 · 103

1.29 · 103

1.20 · 103

1.40 · 103

1.38 · 103

1.42 · 103

972
1.06 · 103

1.02 · 103

1.02 · 103

1.14 · 103

1.22 · 103

1.32 · 103

1.49 · 103

4.7 · 105

4.3 · 105

4.5 · 105

3.6 · 105

3.9 · 105

3.9 · 105

5.4 · 105

6.2 · 105

6.5 · 105

5.5 · 105

2.7 · 105

4.9 · 105

7.0 · 105

3.3 · 105

3.2 · 105

3.6 · 105

4.4 · 105

5.3 · 105

3.6 · 105

4.6 · 105

2
6
2
4
0
1
1
11
1
0

139
2
0
1
1
19
0
0
1
0

0
0
0
0
0
4
0
0
2
0
1
1
2
1
2
55
3
0
1
0

0
0
2
1
0
0
3
1
0
1
0
0
1
1

103
2
0
2
4
51

2
87
1
5
2
1
4
4
1
1
0
2
2
0
1
0
1
4
0
0

4
3
0
0

292
3
0
2
2
8
0
1
2
1
1
0
11
4
0
0

Mean ± SD Mean ± SD Doubling Time
(1.23± 0.16) · 103 (4.5± 1.2) · 105 49.93 minutes

Table 4.3: Maltose minimal fluctuation test data. Combined data from two fluc-
tuation tests with E. coli NCM3722 in MOPS based minimal media with maltose as the
carbon source and D-cycloserine as the selecting agent.

ing the nature of the system. I believe the prediction is potentially a result of experimental
error because I had not quite perfected my plate counting protocol at the time of collecting
the maltose minimal data, which may have resulted in some false positives. Fortunately,
the presence of a small number of false positives would most affect the shape of the cdf
at low mutant numbers, meaning the reduced CDF method would ignore the portion of
the data with strong effects from this experimental error. Looking at the rCDF estimated
average number of mutations, m̃rCDF, for different estimated phenotypic lag lengths ((D)
in Fig. 4.7) shows that for phenotypic lag of up to log2(11) ≈ 3.46 generations, the re-

114



Figure 4.6: Maltose minimal fluctuation test data with MLE and TSS fit. The
compiled data from the fluctuation tests performed with E. coli NCM3722 in maltose
minimal media are plotted as a cumulative distribution with the CDF of best fit determined
by rSalvador’s maximum likelihood estimator (MLE) and the CDF of best fit as determined
from the total sum of squares (TSS) method. Plot with smaller domain and range inlaid
in plot covering full domain and range.

sulting estimate on m is within the 95% confidence interval2 of the TSS fitted m (i.e.
0.641 ≤ m̃rCDF ≤ 1.02 for 0 ≤ ñ ≤ 3.46). Consequently, it is likely reasonable to pro-
pose that the estimates given for the average number of mutants with no phenotypic lag
adjustment are representative of the true number of mutants regardless of potential false
positives in the data. Unfortunately a downside to this error is that it makes it impossible
to say with any confidence what the phenotypic lag may be.

2The estimate for m with phenotypic lag length of n = 2 generations is outside of the confidence interval
by 0.003, which is insignificant enough to consider it within the interval for the sake of the argument.
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Figure 4.7: Maltose minimal fluctuation test data Koch and reduced CDF fit
details. The Koch adjustment protocol (see Section 3.3.1) and reduced CDF (rCDF)
adjustment protocol (see Section 3.3.2) applied to a set of fluctuation test data from E.
coli grown in maltose minimal media. A) The Koch fitting error for a sequence of guessed
phenotypic lags; the red point is the minimum. B) The Koch estimated average number of
mutations for a sequence of guessed phenotypic lags; the red point is the chosen estimate.
C) The rCDF fitting error for a sequence of guessed phenotypic lags; the red point is the
minimum. B) The rCDF estimated average number of mutations for a sequence of guessed
phenotypic lags; the red point is the chosen estimate.
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Mutation rates of E. coli NCM3722 in maltose minimal

Analysis
protocol

Phenotypic
lag length

in
generations

(n)

Average
number of
mutations
per culture
(m) with

95%
confidence

interval

Average
number of
mutations

per cell
per

generation
(µcell) with

95%
confidence

interval
(×10−7)

Average
number of
mutations

per base pair
per

generation
(µbp) with

95%
confidence

interval
(×10−10)

Average
number of
mutations

per genome
per

generation
(µgenome) with

95%
confidence

interval
(×10−3)

p0 N/A
1.02

(0.760, 1.28)
22.5

(9.79, 35.2)
15.9

(6.93, 24.9)
7.45

(3.24, 11.6)

MLE N/A
0.908

(0.710, 1.14)
20.0

(9.02, 31.3)
14.1

(6.38, 22.1)
6.62

(2.99, 10.4)

TSS N/A
0.813

(0.641, 1.02)
17.9

(8.12, 28.0)
12.7

(5.75, 19.8)
5.93

(2.69, 9.28)

Koch 0
0.813

(0.641, 1.02)
17.9

(8.12, 28.0)
12.7

(5.75, 19.8)
5.93

(2.69, 9.28)

rCDF 0
0.813

(0.641, 1.02)
17.9

(8.12, 28.0)
12.7

(5.75, 19.8)
5.93

(2.69, 9.28)

rCDF+K 0
0.813

(0.641, 1.02)
17.9

(8.12, 28.0)
12.7

(5.75, 19.8)
5.93

(2.69, 9.28)

rCDF+Kavg 0
0.813

(0.641, 1.02)
17.9

(8.12, 28.0)
12.7

(5.75, 19.8)
5.93

(2.69, 9.28)

Table 4.4: E. coli NCM3772 mutation rates in maltose minimal. Mutation rates
of E. coli NCM3722 grown in MOPS based minimal media with maltose carbon source
(doubling time = 47.8 ± 4.9 minutes) as determined by the different analysis methods
described in Chapter 3. Errors in the phenotypic lag adjustment protocols do not account
for error in the estimated phenotypic lag length. The per base pair mutation rate was
calculated by dividing the per cell mutation rate by 1413 base pairs. The per genome
mutation rate was calculated by multiplying the per base pair mutation rate by 4.68 · 106

base pairs.
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Figure 4.8: Histogram comparing mutation rates calculated from different fitting
protocols for E. coli NCM3772 in maltose minimal. The per cell mutation rates
with their 95% confidence intervals are plotted for all fitting methods described in Chapter
3 and compiled in Table 4.4.
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4.3 Comparison

The primary objective of the research performed in this thesis was to determine if the
spontaneous mutation rate in bacteria is growth rate dependent. This was addressed by
performing fluctuation tests in different quality growth media while keeping the cells in the
physiologically consistent state of exponential growth. In order to confidently compare the
data between the fluctuation tests, the same initial and final populations were required.
The average initial population in RDM glucose was 975 ± 99 while in maltose minimal it
was (1.2± 0.2) · 103, which when compared have intersecting standard deviations, meaning
they can be considered the same for our purposes. The average final population in RDM
glucose was (4.2 ± 0.5) · 105 while in maltose minimal it was (4.5 ± 1.2) · 105, which also
have intersecting standard deviations, meaning comparison of fluctuation test data between
media can be done with confidence. Both quantitative comparison methods described in
Section 3.4 will be used for the data not adjusted for phenotypic lag, while the confidence
interval method will be used to compare estimates of the average number of mutations
that account for phenotypic lag.

When the data is not adjusted for phenotypic lag, the likelihood ratio test developed
by Zheng for rSalvador can easily be used. When applied to the RDM glucose and maltose
minimal data, it gives a p-value of 2.28 · 10−7, meaning it is unlikely that the mutation
rates for each set of data are actually the same. In addition, the 84% confidence inter-
vals of the maximum likelihood estimates (MLE) of the average number of mutations are
(0.219, 0.384) for RDM glucose and (0.763, 1.07) for maltose minimal which clearly do not
overlap, providing further evidence that the unadjusted mutation rate is likely to be dif-
ferent in each growth medium. The same holds true for the p0 and total sum of squares
estimates. Finally, from looking at Fig. 4.9 it appears that the distributions for each data
set are describing different processes..

When the data is adjusted for phenotypic lag, it is not as easy to compare the results
from the two different mediums. The only way is to observe the confidence intervals as
determined through bootstrapping, but as explained in Section 3.3.4, the errors on adjusted
data are difficult to find. Regardless, the errors on the fitted number of mutations are
calculated and it is found that the 84% confidence intervals for the Koch estimated average
number of mutations are (0.531, 1.02) for RDM glucose and (0.686, 0.955) for maltose
minimal which are comfortably overlapping. Consequently, it is possible that the two sets
of data have the same average number of mutations and therefore the bacteria may have
the same mutation rate in both media when phenotypic lag is considered. In addition,
RDM glucose is estimated to have 1.6 generations of phenotypic lag while maltose minimal
is estimated to have no phenotypic lag. The implication is that when phenotypic lag is
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Figure 4.9: RDM glucose and maltose minimal fluctuation test data with CDF’s
from the rSalvador MLE fits. Fluctuation test data for E. coli NCM3772 grown in
MOPS based rich defined media with glucose (doubling time = 23 minutes) and MOPS
based minimal media with maltose (doubling time = 48 minutes). The CDF corresponding
to the maximum likelihood estimate (MLE) of the average number of mutations per culture
for each data set are displayed in the same colour as the respective data. Plot with smaller
domain and range inlaid in plot covering full domain and range.

accounted for, the growth rate dependency shifts from the mutation rate to the phenotypic
lag length. Finally, once again looking at the cumulative distribution for the data, but now
with the CDF’s for the adjusted fit, it appears that when adjusted for phenotypic lag, the
processes being described are similar (Fig. 4.10).

In conclusion, if phenotypic lag is not accounted for, it appears that mutation rate
is growth rate dependent and slower growing E. coli have higher mutation rates. But if
phenotypic lag is accounted for, the mutation rate appears to be growth rate independent
and instead the phenotypic lag is growth rate dependent. See Table 4.5 for a compilation
of the results for each medium and Fig. 4.11 for a histogram comparing the mutation
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Figure 4.10: RDM glucose and maltose minimal fluctuation test data with CDF’s
from the Koch phenotypic lag adjusted fits. Fluctuation test data for E. coli
NCM3772 grown in MOPS based rich defined media with glucose (doubling time = 23
minutes) and MOPS based minimal media with maltose (doubling time = 48 minutes).
The CDF corresponding to the Koch phenotypic lag adjustment estimate of the average
number of mutations per culture for each data set are displayed in the same colour as
the respective data. For RDM glucose there is an an estimated phenotypic lag length of
n = 1.6 generations while for maltose minimal data there is no estimated phenotypic lag.
Plot with smaller domain and range inlaid in plot covering full domain and range.

rates. Without further experimentation it is not possible to distinguish between these two
scenarios. Possible experiments that could illuminate which is the more likely of the two
scenarios are discussed in Section 5.2.3.
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Figure 4.11: Histogram comparing mutation rates calculated from different fit-
ting protocols for E. coli NCM3772 in RDM glucose and maltose minimal.
The per cell mutation rates with their 84% confidence intervals are plotted for all fitting
methods described in Chapter 3 and compiled in Table 4.5.
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Mutation rates of E. coli NCM3722

RDM glucose
(doubling time = 23.2± 0.5 minutes)

Maltose minimal
(doubling time = 47.8± 4.9 minutes)

Analysis
protocol

Phenotypic
lag length

in
generations

(n)

Average
number of
mutations
per culture
(m) with

84%
confidence

interval

Average
number of
mutations

per cell
per

generation
(µcell) with

84%
confidence

interval
(×10−7)

Phenotypic
lag length

in
generations

(n)

Average
number of
mutations
per culture
(m) with

84%
confidence

interval

Average
number of
mutations

per cell
per

generation
(µcell) with

84%
confidence

interval
(×10−7)

p0 N/A
0.288

(0.207, 0.369)
6.79

(4.60, 9.00)
N/A

1.02
(0.834, 1.21)

22.5
(13.4, 31.5)

MLE N/A
0.294

(0.219, 0.384)
6.93

(4.54, 9.03)
N/A

0.908
(0.763, 1.07)

20.0
(12.0, 27.9)

TSS N/A
0.329

(0.248, 469)
7.77

(5.49, 11.3)
N/A

0.813
(0.686, 0.955)

17.9
(10.9, 25.1)

Koch 1.6
0.724

(0.531, 1.02)
17.1

(11.8, 24.6)
0

0.813
(0.686, 0.955)

17.9
(10.9, 25.1)

rCDF 2
0.730

(0.468, 1.13)
17.2

(10.5, 27.1)
0

0.813
(0.686, 0.955)

17.9
(10.9, 25.1)

rCDF+K 1.58
0.559

(0.322, 0.910)
13.2

(7.22, 21.7)
0

0.813
(0.686, 0.955)

17.9
(10.9, 25.1)

rCDF+Kavg 1.58
0.638

(0.432, 0.928)
15.1

(9.64, 22.3)
0

0.813
(0.686, 0.955)

17.9
(10.9, 25.1)

Table 4.5: E. coli NCM3772 mutation rates in RDM glucose and maltose mini-
mal. Mutation rates of E. coli NCM3722 grown in MOPS based rich defined media with
glucose (RDM glucose) and minimal media with maltose (maltose minimal) as determined
by the different analysis methods described in Chapter 3. 84% confidence intervals are
given for easy comparison between media. Errors in the phenotypic lag adjustment pro-
tocols do not account for error in the estimated phenotypic lag length. The per base pair
mutation rate was calculated by dividing the per cell mutation rate by 1413 base pairs.
The per genome mutation rate was calculated by multiplying the per base pair mutation
rate by 4.68 · 106 base pairs.
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4.4 Difficulties

There were two major difficulties in the experimental set-up. The first difficulty was
determining the growth rates of the cells. In particular, it was found that the growth rates
as determined by colony forming units (CFU) at low density were systematically higher
than those found with optical density (OD) at high density. Which one to use in order to
determine how long to grow the cells for in a fluctuation test was an obvious choice because
how the growth rate was determined using CFU’s mimicked the growth in a fluctuation
test, but there remained the nagging question of why the discrepancy? It was found
that the growth rates that were determined from CFU’s were similar to those determined
from OD’s while measuring the same high density cultures (found while collecting data
for Fig. 2.4). Accordingly, considering the cultures were at a much lower density for
the independent CFU growth curves (Fig. 2.3), then this suggests that the difference in
cell densities is a likely cause for the discrepancy in growth rates. At higher densities, it
is possible that there are crowding effects that either reduce the growth rate or increase
the death rate3 of the cells [33, 173]. Both these effects would give the appearance of a
decreased growth rate, making high density growth appear slower. The difference in growth
rates was most significant in slow growing media such as αKG minimal, complicating the
search for an optimal slow growth medium. I suspect the greater effect in slow growing
cells is a repercussion of the cell density being much higher in a slow growing culture of
the same OD as a fast growing culture (Fig. 2.4), meaning the crowding effects are likely
to be more pronounced at lower OD’s.

The greatest difficulty faced during the fluctuation tests was making sure that the
variance in the final population wasn’t exorbitant. The problem primarily comes from the
fact that there is variance in cell-to-cell growth rates and there is variance in the initial
populations, which is then extenuated by exponential growth. If one lets the cell-to-cell
coefficient of variation (CV) in the growth rate be σλ and the CV in the initial population
be σN0 , then one will end up with a final population CV of,

σNf =
√
σ2
N0

+ (t〈λ〉σλ)2 , (4.1)

where 〈λ〉 is the average specific growth rate and t is how long the culture is grown for
[195]. Assuming a σλ of 10% [190] and plugging in my parameters from the fluctuation

3Simply having dead cells present, which are measured by the OD but not the CFU, will not result in
the growth rate discrepancy, instead there needs to be some death rate that is effectively decreasing the
measured growth rate (i.e. Nt = N0e

(λ−δ)t where δ is a death rate and (λ− δ) is now the slope of a growth
curve on a log-linear plot).
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test, for RDM glucose one gets σNf = 64.7% and for maltose minimal σNf = 63.6%. These
two coefficients of variance should be treated as upper bounds on the amount of error one
can expect in an experiment. The actual measured final population coefficients of variance
being 11.4% and 25.6% for RDM glucose and maltose minimal respectively gives confidence
that the growth was well controlled in the experiment. In fact, by rearranging Eq. (4.1) and
plugging in the measured values for σNf , it can be estimated that the cell-to-cell coefficient
of variances were 0.8% for RDM glucose and 3.5% for maltose minimal. Regardless of this
success, fluctuation tests are traditionally done by allowing the cells to exhaust the carbon
source, resulting in a low variance in the final population [106, 209]. Because of this, the
variance in my maltose minimal final populations can appear quite high for a fluctuation
test. Furthermore, high variance in the final population can potentially cause problems
for fitting because when compiling the data from each sample in a fluctuation test, one is
implicitly assuming that they all have the same final population meaning they all had the
same number of doublings or opportunities for a mutation to occur. Zheng has explored
the effects of final population variance, noting that a CV below 20% should not lead to
many issues [209]. To account for data with high variance in the final population, Zheng
developed a distribution and fitting method that claims to account for the effects, called
the B0 method [210, 209]. When the B0 method is applied to my RDM glucose and maltose
minimal data, one gets m = 0.294 and m = 0.919 respectively, which are very close to what
is given by the normal MLE fitting (m = 0.294 and m = 0.908). Considering it has been
shown that the normal MLE methods give underestimates on m when there is variance in
the final populations [198] and Zheng’s B0 method has been shown to successfully adjust
for this [209], it can be argued that the fact that the B0 and MLE estimates agree so well
suggests that the normal MLE method is not giving an underestimate in this particular
case. Zheng argued that increasing the initial population will lead to less variance at
the end of the experiment [209]. I took this into consideration and increased the initial
population from approximately 200 cells in my early trials to approximately 1000 cells in
my final experiments. In addition, I increased the volume of media during growth from
200µL in my early trials to 500µL in my final trials. The increase in media volume was
to combat the potential evaporation of media during growth which would lead to variance
and faulty dilution calculations. The combination of these two efforts helped reduce the
variance in my final populations in RDM glucose and maltose minimal. Unfortunately, the
large variance in my acetate minimal and α-ketoglutarate minimal trials remained. Why
exactly the variance in these slow growing media was particularly high is unclear, but I
suspect it is primarily due to near unavoidable evaporation during an approximately 19
hour growth period, and the elevated opportunity for a fast growing mutant to take over
the population.
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4.4.1 α-Ketoglutarate Minimal

The original goal was to perform fluctuation tests in three different growth media with
three noticeably different growth rates. At first, for the slowest growth medium a MOPS
minimal media with acetate as the carbon source was explored, but was quickly traded out
for α-ketoglutarate (α-KG) as the carbon source. Acetate was abandoned because there
were noticeable growth rate changes during exponential growth with E. coli MG1655 and
large variances in the final population counts with E. coli NCM3722. These phenomena
were thought to be a repercussion of the idea that some E. coli strains have a propensity to
gain a mutation that makes them better at growing in acetate [157, 183], possibly similar
to that found with glycerol [200].

In terms of growth rates determined using CFU, α-KG minimal media had what I was
aiming for with a doubling time greater than 100 minutes. Unfortunately, how drastically
different the doubling times were when measured by CFU vs OD (106 minutes vs 277
minutes) raised suspicions, although a large variation between the CFU and OD measured
growth rates appeared to be an inherent feature of slow growth media. A long doubling
time was desired because it guaranteed a physiology drastically different than that of RDM
glucose and maltose minimal. Ultimately, the same difficulties of high variance in the final
populations that plagued the preliminary acetate experiments ended up plaguing the α-
KG minimal experiments, as seen in Table 4.6. Furthermore, the maximum coefficient of
variance in the final populations according to Eq. (4.1) would be 73.8% for α-KG minimal,
while the measured CV was 61.5%. All things considered, this isn’t bad, but when the
data is being used for a fluctuation test and the CV’s in the final populations of RDM
glucose and maltose minimal are significantly lower than the estimated error, this result
becomes insufficient for its purposes. I believe that the most promising approach towards
fixing the issue of variance in the final populations in slow growth media is to increase the
volume of growth medium per sample even further. The downside to this is that it would
raise the costs, difficulty, and resource use of each experiment.
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Initial Population Final Population

948
732
744
764
852
764
864
808

932
896
1028
988
940
912
1140
1048

472388
432090
454478
360448
387313
389552
539552
622388
647015
550746

268657
490299
705224
326866
317910
355970
436567
526119
355970
463433

Mean ± SD Mean ± SD
898 ± 118 (2.2± 1.3) · 105

CV = 13.2% CV = 61.5%

Table 4.6: α-ketoglutarate minimal fluctuation test population data. Data is
from two separate attempts at a fluctuation test in MOPS based minimal media with α-
ketoglutarate as the carbon source. The average growth time across the two experiments
was 18 hours and 28 minutes, giving an average doubling time of 139 minutes.
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Chapter 5

Conclusion

Evolution is the theory which underpins all of modern biology and mutations are the
mechanism that drives evolution [67]. Bacteria are the oldest, most abundant life form
on the planet, from which every other living thing descends [192]. Accordingly, the study
of bacterial evolution is important both for understanding the fundamental principles of
bacteria and potentially gaining insight into the workings of all organisms. Throughout
history, the study of evolution has often been done with a quantitative approach due
to the nature of genetics [114, 67, 54]. The study of bacteria has also lent itself to a
quantitative approach due to bacteria’s relative simplicity, especially in their behaviour
during balanced growth [150]. Luria and Delbrück had the insight to combine these two
fields and design a quantitatively inspired experiment to determine the method and rate
with which bacteria mutate [106]. Their experiment, the fluctuation test, relies on several
simplifying assumptions, one of which being that the cells are growing exponentially and
by extension have consistent physiology. Unfortunately, in their experiments they failed
to implement the special care needed for consistent physiology1, and this oversight has
continued up to present. My research set out to remedy this problem by growing cells in
the exponential phase for the entirety of a fluctuation test. Doing so results in mutation
rates consistent with the traditional order of magnitude of 10−10 to 10−9 mutations per base
pair per generation [101, 197, 116], but with a new level of confidence that the determined
mutation rate is specific to the exponential phase of growth. I used this methodology to
also observe if the mutation rate exhibits any intrinsic growth rate dependence. From
these studies it was found that when one does not consider the effects of phenotypic lag,
the mutation rate appears to be anticorrelated with the growth rate (i.e. the mutation rate

1To be fair to them, bacterial physiology was not a well developed field at the time of their first study.
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is higher for slower growing cells). But when the effects of phenotypic lag are considered,
the growth dependence in the mutation rate is lost, and instead the phenotypic lag appears
to be directly correlated with the growth rate (i.e. the phenotypic lag is longer in faster
growing cells). See Table 5.1 for a summary of the results.

Mutation rates of E. coli NCM3722

Growth
medium

Specific
growth
rate (λ)

in per hour
and

doubling
time (τ)

in minutes
±

standard
deviation

Average
number of
mutations

per base pair
per

generation
without

phenotypic
lag (MLE)
(µbp) with

84% & 95%
confidence
intervals
(×10−10)

Phenotypic
lag length

in
generations
(range from

different
protocols)

(n)

Average
number of
mutations

per base pair
per

generation
with

phenotypic
lag (Koch)
(µbp) with

84% & 95%
confidence

interval
(×10−10)

RDM
glucose

λ = 1.80± 0.04
τ = 23.2± 0.5

4.90
(3.21, 6.39)84%

(2.90, 7.36)95%

1.58− 2
12.1

(8.35, 17.4)84%

(6.98, 19.5)95%

Maltose
minimal

λ = 0.88± 0.09
τ = 47.8± 4.9

14.1
(8.49, 19.7)84%

(6.38, 22.1)95%

0
12.7

(7.71, 17.8)84%

(5.75, 19.8)95%

Table 5.1: Summary of experimental results from fluctuation tests with E. coli
NCM3722 in RDM glucose and maltose minimal. Summary of the growth rates,
the maximum likelihood estimated (MLE) per base pair mutation rate without accounting
for phenotypic lag, the estimated phenotypic lag length, and the Koch estimated per base
pair mutation rate with accounting for phenotypic lag. For the mutation rates, the 84%
and 95% confidence interval are provided for easy comparison between fitting protocols
and media. The fluctuation tests were performed in two experiments with 50 cultures
each, giving a total of 100 samples in each medium; D-cycloserine was used as the selecting
agent.
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Within the two media used for growth during the fluctuation tests in this thesis (RDM
glucose and maltose minimal), there are clear differences in the physiologies of the bacteria
grown. The high growth rate of RDM glucose results in a physiology unique to especially
fast growing cells, which can only be achieved in optimal conditions. Conversely, the lower
growth rate of maltose minimal can be achieved through a variety of conditions [153].
One characteristic of the physiology at both growth rates is the presence of multiple DNA
replication forks in the cell at some time during growth [36]. For cells growing exponentially
in RDM glucose, the number of forks is greater than one for the entirety of the cell’s life
cycle, even reaching upwards of four forks late in life. On the other hand, in maltose
minimal there is a short period of time when there is no DNA replication being performed
and the number of forks never exceeds two (See Fig. 1.21). A consequence of this is
that there will be more chromosomes in cells growing in RDM glucose than in maltose
minimal. Accordingly, effective polyploidy will play a role in both media, but will likely
be more substantial in RDM glucose. Furthermore, having more or less DNA replication
being performed in a cell at any given time could have consequences if all the proteins that
participate in the action are not proportionally scaled. Since most mutations arise during
DNA replication [152], one may extrapolate the potential for a correlation between growth
rate and mutation rate.

Physiological differences not only have the potential to directly affect the mutation rate,
but to also affect the way in which we measure it. For fluctuation tests, one must always
choose a specific mutant phenotype to select for, and the specific characteristics of these
phenotypes are also often coupled to the cell’s physiology. For the experiments in this
thesis, it is cycloserine resistance that is selected for, but there are a number of ways this
resistance can couple to physiology, causing variable phenotypic lag. If one assumes that
the CycA permease proteins are an unregulated protein, making it part of the “P” class
in Fig. 1.26, then the concentration of these proteins will be higher in slow growing cells
than in fast growing cells [160]. Also, bacteria cells growing at different growth rates have
different sizes, as made clear by Figures 1.20 and 1.4. Combining the ideas of the growth
rate dependent CycA permease protein concentration and cell size, it is possible that the
density of CycA permease proteins on the surface of the cells will be significantly lower
in fast growing cells. This could be an explanation for why the cycloserine half inhibition
concentration is so much higher in RDM glucose than in the slower growing cells, as seen
in Fig. 2.7. The difference in CycA permease protein density could also have a significant
affect on phenotypic lag.
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5.1 Implications

On first inspection, it appears that slow growing bacteria may have higher mutations rates
than fast growing bacteria. Further exploration is certainly required to say this definitively,
but it is interesting to explore the consequences regardless.

Mutations can be beneficial, deleterious, or neutral. Most commonly, mutations are
neutral [71, 89], meaning they have very minimal affect on the functioning of the cell. On
the other hand, when beneficial or deleterious mutations that change the fitness or growth
rate of the cell arise, there can be drastic consequences. If there is a relationship between
growth rate and mutation rate, mutations that cause changes in growth rate could result
in a feedback loop. If growth rate and mutation rate are positively correlated, a positive
feedback loop would be established. The result would be faster growing cells having a
greater ability to explore mutant phenotypes due to more mutations per generation and
more generations per time. This has the potential to allow for a cell to go from slow
growth to fast growth very quickly, but it also has the potential to result in successful
lineages dying off shortly after being established. It would also mean that slower growing
cells would have lower mutation rates, essentially trapping them in a less competitive state
with fewer opportunities to seek improvement. These combined facts would lead one to
believe that a positive correlation would not be a particularly beneficial or stable system.
Alternatively, a negative correlation between mutation rate and growth rate would result
in a negative feedback loop which has the potential to be more stable. If slower growing
cells have a higher mutation rate, it allows these cells to take more risks in their search for
improved fitness. Conversely, by having a lower mutation rate during fast growth, the cells
are more likely to maintain their success once they get it. Combining these facts makes a
negative correlation more appealing in terms of maximising fitness within a population of
bacteria. Finally, not having any correlation between mutation rate and growth rate would
likely be the most stable system. Additionally, it is often said that organisms need the
perfect balance between mutation and DNA repair in order to propagate into the future
[46], which would be easiest to manage if the mutation rate was decoupled from growth
rate.

Bacteria’s growth rates are primarily determined by their environment. Consequently,
if the mutation rate is growth rate dependent, then a change in environment can change the
bacteria’s mutation rate. Furthermore, mutations are what cause change in an organism’s
genome, and it is through the accumulation and selection of these changes that living things
evolve and diversify [54, 66, 67]. As a result, one may expect that different environments
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can promote a quicker genetic diversification of bacteria than others2. Over large time
scales, such as are commonly studied in evolutionary biology, this coupling of environment
to mutation rate has the potential to have major consequences.

It is well known that certain strains of bacteria can be very dangerous to humans [187].
To combat the dangers of bacteria, humans have developed many antibiotics which can
treat dangerous infections [86]. Unfortunately, the selective pressure that the abundant
use of antibiotics puts on bacteria has led to a popular rise of mutated strains that are
resistant to common treatments [139, 44]. As my research specifically pertains to the
characteristics of bacterial evolution towards antibiotic resistance, it seems reasonable to
suggest that there are potential applications to the work. The applications are unlikely to
be direct though, considering bacterial growth within an animal is far more complicated
than in a test tube [91, 164], especially when so much care is taken to keep the cells in
balanced growth. Regardless, different infections can grow at different rates [73, 164],
so with simplifying assumptions and an understanding of how mutation rates relate to
growth rates, one may be able to infer how likely an infection is to develop a resistance to
an antibiotic.

5.2 Future Work

5.2.1 Changes to Experiment Protocol

The study of bacterial mutation rates through fluctuation tests is predicated on a number
of assumptions, as with any research that uses a model. For fluctuation tests, it is the
assumptions laid out in Section 1.5.2 that are generally used to build the model that allows
for a quantitative analysis of the experimental results. Though extra care was taken to
satisfy more of these assumptions than is traditional, there are still inevitably discrepancies
between the experimental conditions and the model. It is likely that the most dominant
effect is that of phenotypic lag, which has been discussed in detail and attempted to be
accounted for during the analysis of the data. Other possible discrepancies could be caused
by cell death, imperfect plating efficiency, unknown effects during the potential short lag
phase at the beginning of growth, and mutations either causing changes to fitness or
mutability. Of particular interest is the potential for the cycA mutation to cause a fitness
change in media with amino acid supplements, as alluded to in Section 2.3. I attempted
to account for these effects, but a more careful job could likely have been done to better

2In many ways this is what led me to this research in the first place.
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ensure no effects on growth rate by removing alanine and glycine in addition to serine
from the rich defined growth medium. Furthermore, control experiments where selected
mutants are cultured and their growth rates measured in different media could illuminate
how significant the effects of the mutation are, especially in the presence of alanine and
glycine. Fortunately, the presence of alanine and glycine in the growth medium should not
have any major affects on selection because the mutants are grown on M9 minimal with
glucose plates during the selection phase.

In experimentation, it is a scientists job to do everything possible to remove unwanted
interactions between the environment and the system of study in order to make the exper-
iment as significant and easily reproduced as possible. In the case of my fluctuation test
methodology, by keeping the bacteria purely in exponential phase, I in theory make more
easily modelled and reproduced results3 because the cells’ physiology is then primarily a
product of the growth rate instead of the details of its growth medium (see Section 1.6.1).
That being said, there are still several places in which the methodology can be improved
and further validated. The most clear place for improvement is in the final population
numbers. If a way could be found to reduce the variance in these numbers, especially in
slow growing cells, one would be able to better explore the relationship between the growth
rate and the mutation rate by performing fluctuation tests at a wide range of growth rates.
The most obvious first step in trying to reduce this variance is by further increasing the
initial population number [209]. This comes with the risk of potentially having a mutant
in the inoculum of some of the cultures though, so finding the right balance of large ini-
tial inoculum and low probability of introducing a mutant is essential. Another way final
population numbers could be altered in an attempt to improve fluctuation test results is
by increasing the final population, and by extension the expected number of mutations,
m. Many analysis techniques work best for higher values of m than found in this thesis
[58]. Furthermore, having a higher average number of mutations would result in more data
of high mutant numbers which would be beneficial for the reduced CDF phenotypic lag
adjustment protocol because there would be more data to fit the reduced CDF to. Ev-
erything considered, I think exploring more final population numbers in order to find an
optimal number which gives at least some zeroes and not too many jackpots in all media
could be very beneficial.

The next largest problem with my methodology lays in human error. These are long,
labour intensive experiments that can lead to mistakes and back pain. Having more samples
would make fitting better and likely also decrease variance in the final population, but it
comes at a cost. In this regard, it would be beneficial if there was a way to do my version

3Unfortunately my methodology is far more difficult than the traditional fluctuation test, so this effect
may be cancelled out by the effects of human error.
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of fluctuation tests, but with a larger number of samples while not increasing the work
load. To increase sample size and decrease labour, people often use multi-well plates, but
this makes it very difficult to maintain physiological consistency because the wells are so
small, making oxidation difficult, and they must be warmed in an air incubator, which
are known to be inconsistent [168]. Using a turbidostat is also a common way to decrease
labour, though in this case I don’t think it would decrease it significantly and it would
be subject to the issues discussed in Section 2.1. A popular tool that is very versatile
is using fluorescent proteins to probe the inner workings of a cell [31]. In the case of a
fluctuation test, I suspect one could design a cell which has a gene in its chromosome that
when mutated, the cell makes a fluorescent protein. Flow cytometry could then be used
to determine the number of cells in a culture expressing the proteins, and by extension
have a mutation. The most obvious way this could be done would be by having a broken
fluorescent protein gene that “turns on” when fixed through mutation [30, 8], but this
would most likely be biased towards point mutations and, depending on the location and
nature of the “broken” portion of the gene, could cause a growth defect. This difference in
growth rate between normal and mutant cells can be adjusted for by either determining the
average mutant’s growth rate experimentally, or by fitting for a growth rate difference while
fitting for mutation rate [92, 201, 210], but the bias towards a specific type of mutation
is much more difficult to address4. For these reasons, one should be careful exploring
this path. As in all experimental biology, one must find the right balance between use of
advanced technology and reducing the amount of unknown mechanical error.

5.2.2 Improved Analysis

In this thesis I explored two novel implementations of protocols that adjust for phenotypic
lag and developed two novel hybrids of the two methods.. That being said, all four protocols
have clear issues, the most blaring of which being that there is no easy way to determine a
fitting error on the estimate of the phenotypic lag length, and by extension the associated
average number of mutations. Consequently, it is difficult to know how confident one can
be in the results of the adjustment when applied to experimental data as well as making it
difficult to compare the results between fluctuation tests. If a method could be developed
for approximating these errors, the adjustment protocols would immediately become much
more useful. Furthermore, the standard deviation in the adjusted fitting results when

4Potentially a much more clever way to have mutations of a specific gene cause the expression of
fluorescent proteins could be found, but none immediately come to mind.
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applied to simulated data of sample sizes similar to that pursued by researchers5 points
towards potential instabilities in the algorithm. It would be beneficial to explore the
stability of the algorithms and try to find ways to decrease the variability in their estimates.
Finally, it is not clear how well the phenotypic lag adjustments work for data with different
average numbers of mutations. Exploring if the system works best for specific ranges of
mutation number could help influence experimental design and analysis protocols while
also giving further insight into potential pitfalls in the adjustment algorithms.

A number of data analysis techniques were discussed in this thesis, but there are other
potential approaches that can be explored. Some possible techniques are more advanced
hybridisations of the Koch and reduced CDF protocols, the most obvious of which is where
one would use rCDF to predict phenotypic lag if it is less than two generations and Koch if
it is greater than or equal to two generations because from Figures 3.8 and 3.10 it is clear
that rCDF is slightly better at predicting short lag and Koch is slightly better at predicting
long lag. Once a better prediction for phenotypic lag length is made, the most obvious
choice to estimate the average number of mutants would be with the rCDF+K average
technique due to its apparent accuracy seen in Fig. 3.12. There are possibly more creative
combinations and alterations to the already developed analysis techniques that can also be
done. In addition, there has been a decent amount of mathematics developed to describe
the actions and consequences of phenotypic lag [201, 4, 170]. It would be great if any
of these models, most of which are extensions of the Lea-Coulson model, could be used
to develop a fitting technique. Another notable method for fitting fluctuation test data
while accounting for phenotypic lag has been indirectly alluded to recently by Carballo-
Pacheco et al. (2020) [29]. In their paper they run a simulation with parameters mimicking
that of a specific experiment and show that a discrepancy between mutation rates from
fluctuation tests and sequencing data can be explained by the presence of phenotypic lag as
a consequence of protein dilution. They also develop a highly successful statistical method
for determining if an experiment has phenotypic lag present by comparing it to simulations.
I believe it is reasonable to imagine taking this one step further and fitting data directly
to large sample size simulations in order to get estimates on parameters. This does come
with downsides though, the first of which is how computationally expensive it would be
to run so many simulations, especially with the quantity of points needed for them to be
considered a satisfactory representation of the theoretical case. Second is that it would add
another variable to fit for, in the form of the protein number. Third is that it hard-wires
the assumptions of the simulation into the fitting mechanism, which is generally considered
less convincing than fitting to a theoretical model like that of Lea and Coulson. Arguably

5Actually even 100 samples is significantly more than most people perform; more commonly people do
20-30 samples [137]
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the most debilitating of these issues is the first one, but if one has the computational power
and time, then it may have the potential to be a very advantageous methodology.

5.2.3 Future Experiments

One experiment that can be done to test the significance of my results is to do some
fluctuation tests using the traditional methodology of growing to saturation, but with all
the same conditions (strain, selecting agent, inoculum size, media, final population) as
my experiments. This would allow one to test the assumptions of Section 2.1 and better
determine the potential inconsistencies of previous fluctuation tests. It could also allow
for a rough prediction on how much the mutation rate changes during deceleration and
stationary phase.

Another experiment that could be done immediately to test and likely add to the
significance of my results is to experimentally determine the length of phenotypic lag in
my system. This could be done in a number of ways, the simplest of which is growing cells
in exponential phase and introducing a mutagen (such as UV light or some type of DNA
targeting antibiotic like mitomycin C) to the environment at a defined time [29]. Then
at discrete time intervals, samples of the culture are introduced to cycloserine and plated.
Accounting for growth, one can then look for a spike in the number of mutants a period
of time after the mutagen was introduced, giving an indication of how long the phenotypic
lag was. The biggest advantage to this experiment is it would lead to the determination of
whether phenotypic lag is present in my system and if it is growth rate dependent, allowing
for the distinction between the scenarios of “mutation rate is growth rate dependent” and
“mutation rate is growth rate independent, but phenotypic lag is growth rate dependent”
(as mentioned in Section 4.3). Another benefit to this experiment is that the phenotypic lag
adjustment protocols would no longer have to fit for phenotypic lag, as it can be manually
input. The effects of knowing the length of phenotypic lag prior to fitting were studied on
the simulated data used throughout Section 3.3 and gave promising results (Fig. 5.1).

A practical study that could shed further light on the relationship between bacterial
physiology and mutation rate would be to perform the same fluctuation tests as done in
this thesis, but while the cells are under stress so that the SOS response is turned on. The
SOS response could be turned on by including a small amount of mitomycin C (MMC),
which is a DNA targeting antibiotic, to the growth media. The goal would be to add
just enough MMC to induce the SOS response, but not enough to affect the growth rate.
Because the SOS response is mutagenic in nature (due to its up regulation of error prone
DNA polymerases), the result would be an increased mutation rate which would give insight
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Figure 5.1: Estimations of the average number of mutations in simulated data
from the Koch, reduced CDF and rCDF+Kavg protocols when the phenotypic
lag length is known. All data simulated with an average number of mutations m = 0.499.
The points on the plots are the average estimated number of mutations ± one standard
deviation for several simulated phenotypic lag lengths. Every plot includes the maximum
likelihood estimates (MLE), which clearly decrease with increasing phenotypic lag length.
A) Koch adjusted fit applied to 100 simulations of 100 cultures (100;100) and 1 simulation
of 10000 cultures (1;10000). B) rCDF applied to 100;100 and 1;10000 simulations. C)
rCDF+Kavg applied to 100;100 and 1;10000 simulations. D) Koch adjusted fit applied to
10 simulations of 1000 cultures (10;1000) and 1;10000. E) rCDF applied to 10;1000 and
1;10000 simulations. F) rCDF+Kavg applied to 10;1000 and 1;10000 simulations.
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into the magnitude of the mutational consequences of the SOS response. The SOS response
being turned on would also likely result in a stronger coupling between the mutation rate
and the growth rate because the proteins used in the SOS response are unregulated and
therefore anti-correlated with growth rate (See Fig. 1.27). One could use this experiment
to further study how bacteria behave in times of stress, which can be common in nature
[91].

Finally, experiments which probe for mutation rate - growth rate coupling can be
performed by determining the mutation rate through sequencing the DNA of a sample of
cells that are in balanced growth. The concept is similar to a fluctuation test in that the
cells must be grown for a defined amount of time in order for mutations to accumulate and a
rate determined, but the DNA will be directly observed so all mutations which occurred will
be known. As a result, the effects of phenotypic lag will not matter because mutations will
be measured directly by reading the DNA and do not need to have a phenotypic expression.
Another consequence is that all mutation types can be observed and the likelihood of each
can be determined. One way to perform this experiment while being able to monitor the
physiology and single cell dynamics is by growing the bacteria in a mother machine [190]
and taking a sample of the outflow at a specified time to be sequenced. Accordingly, one
can know the approximate physiological state of the cells being sequenced.

The study of nature through science is a never ending pursuit, with knowledge con-
stantly being stacked upon itself to build stronger and stronger theories. Even the most
insignificant appearing results in a field can open doors to studies with significant conse-
quences. Here’s to hoping that what was done in this thesis can help open one of those
doors, or at least a window.
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[162] Guennadi Sezonov, Danièle Joseleau-Petit, and Richard d’Ari. Escherichia coli phys-
iology in luria-bertani broth. Journal of bacteriology, 189(23):8746–8749, 2007.

[163] Paul Singleton and Diana Sainsbury. Introduction to bacteria : for students in the
biological sciences. Wiley, Chichester, 1981.

152

https://www.britannica.com/science/physiology
https://www.britannica.com/science/physiology


[164] Harry Smith. Pathogenicity and the microbe in vivo: The 1989 fred griffith review
lecture. Microbiology, 136(3):377–383, 1990.

[165] Jackson Smith, Cassandra Puckett, and Wendy Simon. Know the land territo-
ries campaign; indigenous allyship: An overview. http: // www. lspirg. org/

knowtheland , 2016 (accessed September 22, 2020).

[166] T. M. Sonneborn and Ruth Stocking Lynch. Hybridization and segregation in
paramecium aurelia. Journal of Experimental Zoology, 67(1):1–72, 1934.

[167] Eric Soupene, Wally C. van Heeswijk, Jacqueline Plumbridge, Valley Stewart, Daniel
Bertenthal, Haidy Lee, Gyaneshwar Prasad, Oleg Paliy, Parinya Charernnoppakul,
and Sydney Kustu. Physiological studies of escherichia coli strain mg1655: Growth
defects and apparent cross-regulation of gene expression. Journal of Bacteriology,
185(18):5611–5626, 2003.

[168] Keiran Stevenson, Alexander F. McVey, Ivan B. N. Clark, Peter S. Swain, and Teuta
Pilizota. General calibration of microbial growth in microplate readers. Scientific
reports, 6(1):1–7, 2016.

[169] F. M. Stewart. Fluctuation tests: How reliable are the estimates of mutation rates?
Genetics, 137(4):1139–1146, 1994.

[170] F. M. Stewart, D. M. Gordon, and B. R. Levin. Fluctuation analysis: The prob-
ability distribution of the number of mutants under different conditions. Genetics,
124(1):175–185, 1990.

[171] Lei Sun, Helen K. Alexander, Balazs Bogos, Daniel J. Kiviet, Martin Ackermann, and
Sebastian Bonhoeffer. Effective polyploidy causes phenotypic delay and influences
bacterial evolvability. PLOS Biology, 16(2):1–24, 02 2018.

[172] Lei Sun, Helen K. Alexander, Balazs Bogos, Daniel J. Kiviet, Martin Ackermann,
and Sebastian Bonhoeffer. Data from: Effective polyploidy causes phenotypic delay
and influences bacterial evolvability. Dryad, February 19, 2019.

[173] Sotaro Takano, Bogna J. Pawlowska, Ivana Gudelj, Tetsuya Yomo, and Saburo
Tsuru. Density-dependent recycling promotes the long-term survival of bacterial
populations during periods of starvation. MBio, 8(1), 2017.

[174] E. L. Tatum and Joshua Lederberg. Gene recombination in the bacterium escherichia
coli. The Journal of Bacteriology, 53(6):673–684, 1947-06-01.

153

http://www.lspirg.org/knowtheland
http://www.lspirg.org/knowtheland


[175] Teknova. 10x acgu solution. https: // www. teknova. com/ acgu-solution-10x.

html , (accessed September 9, 2020).

[176] Teknova. 10x mops buffer (used in ez rich defined medium kit). https: // www.

teknova. com/ mops-10x-for-ez-rich-defined-medium-kit-m2105. html , (ac-
cessed September 9, 2020).

[177] Teknova. Mops ez rich defined medium kit. https: // www. teknova. com/

mops-ez-rich-defined-medium-kit. html , (accessed September 9, 2020).

[178] Teknova. Mops minimal media kit. https: // www. teknova. com/

mops-ez-rich-minimal-media-kit. html , (accessed September 9, 2020).

[179] Teknova. Supplement ez 5x. https: // www. teknova. com/ supplement-ez-5x.

html , (accessed September 9, 2020).

[180] Olivier Tenaillon, David Skurnik, Bertrand Picard, and Erick Denamur. The pop-
ulation genetics of commensal escherichia coli. Nature Reviews Microbiology, 8(3),
March 2010.

[181] theLabRat.com. M9 minimal media recipe (1000 ml). http: // www. thelabrat.

com/ protocols/ m9minimal. shtml , 2005 (accessed September 9, 2020).

[182] P. Thomas, A. C. Sekhar, and M. M. Mujawar. Nonrecovery of varying proportions
of viable bacteria during spread plating governed by the extent of spreader usage and
proposal for an alternate spotting-spreading approach to maximize the cfu. Journal
of applied microbiology, 113(2):339–350, 2012.

[183] David S. Treves, Shannon Manning, and Julian Adams. Repeated evolution of
an acetate-crossfeeding polymorphism in long-term populations of escherichia coli.
Molecular biology and evolution, 15(7):789–797, 1998.

[184] Vaccinationist. Skeletal formula of d-cycloserine. Wikimedia Commons: https:

// commons. wikimedia. org/ wiki/ File: Cycloserine. svg , June 13, 2015.

[185] N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland
Personal Library. Elsevier Science, 1992.

[186] C. B. Van Niel. The kinetics of growth of micro-organisms. In Arthur K. Parpart,
editor, The chemistry and physiology of growth., chapter 5. New Jersey. Princeton
University Press., 1949.

154

https://www.teknova.com/acgu-solution-10x.html
https://www.teknova.com/acgu-solution-10x.html
https://www.teknova.com/mops-10x-for-ez-rich-defined-medium-kit-m2105.html
https://www.teknova.com/mops-10x-for-ez-rich-defined-medium-kit-m2105.html
https://www.teknova.com/mops-ez-rich-defined-medium-kit.html
https://www.teknova.com/mops-ez-rich-defined-medium-kit.html
https://www.teknova.com/mops-ez-rich-minimal-media-kit.html
https://www.teknova.com/mops-ez-rich-minimal-media-kit.html
https://www.teknova.com/supplement-ez-5x.html
https://www.teknova.com/supplement-ez-5x.html
http://www.thelabrat.com/protocols/m9minimal.shtml
http://www.thelabrat.com/protocols/m9minimal.shtml
https://commons.wikimedia.org/wiki/File:Cycloserine.svg
https://commons.wikimedia.org/wiki/File:Cycloserine.svg


[187] T. Venkova, C. C. Yeo, and M. Espinosa. The Good, The Bad and The Ugly: Multiple
Roles of Bacteria in Human Life. Frontiers Research Topics. Frontiers Media SA,
2018.

[188] C. H. Wang and A. L. Koch. Constancy of growth on simple and complex media.
Journal of Bacteriology, 136(3):969–975, 1978.

[189] Mingcong Wang, Christina J. Herrmann, Milan Simonovic, Damian Szklarczyk, and
Christian von Mering. Version 4.0 of paxdb: protein abundance data, integrated
across model organisms, tissues, and cell-lines. Proteomics, 15(18):3163–3168, 2015.

[190] Ping Wang, Lydia Robert, James Pelletier, Wei Lien Dang, Francois Taddei, Andrew
Wright, and Suckjoon Jun. Robust growth of escherichia coli. Current biology,
20(12):1099–1103, 2010.

[191] R. J. Wargel, C. A. Shadur, and F. C. Neuhaus. Mechanism of d-cycloserine action:
transport systems for d-alanine, d-cycloserine, l-alanine, and glycine. Journal of
bacteriology., 103(3):778–788, 1970.

[192] Trudy M. Wassenaar. Bacteria : the benign, the bad, and the beautiful. Wiley-
Blackwell, Hoboken, N. J., 2012.

[193] J. D. Watson and F. H. C. Crick. Molecular structure of nucleic acids: A structure
for deoxyribose nucleic acid. Nature (London), 171(4356):737–738, 1953.

[194] Aryeh Wides and Ron Milo. Understanding the dynamics and optimizing the perfor-
mance of chemostat selection experiments. arXiv preprint arXiv:1806.00272, 2018.

[195] The Free Encyclopedia Wikipedia. Propogation of uncertainty. https: // en.

wikipedia. org/ wiki/ Propagation_ of_ uncertainty , (accessed September 7,
2020).

[196] M. H. F. Wilkins, A. R. Stokes, and H. R Wilson. Molecular structure of nucleic acids:
Molecular structure of deoxypentose nucleic acids. Nature (London), 171(4356):738–
740, 1953.

[197] Ashley B. Williams. Spontaneous mutation rates come into focus in escherichia coli.
DNA Repair, 24:73 – 79, 2014.

[198] Bernard Ycart and Nicolas Veziris. Unbiased estimation of mutation rates under
fluctuating final counts. PLOS ONE, 9(7):1–10, 07 2014.

155

https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Propagation_of_uncertainty


[199] Conghui You, Hiroyuki Okano, Sheng Hui, Zhongge Zhang, Minsu Kim, Carl W.
Gunderson, Yi-Ping Wang, Peter Lenz, Dalai Yan, and Terence Hwa. Coordination of
bacterial proteome with metabolism by cyclic amp signalling. Nature, 500(7462):301–
306, 2013.

[200] Zhongge Zhang and Milton H. Saier, Jr. A novel mechanism of transposon-mediated
gene activation. PLOS Genetics, 5(10):1–9, 10 2009.

[201] Qi Zheng. Progress of a half century in the study of the luria–delbrück distribution.
Mathematical Biosciences, 162(1):1–32, 1999.

[202] Qi Zheng. Statistical and algorithmic methods for fluctuation analysis with salvador
as an implementation. Mathematical Biosciences, 176(2):237–252, 2002.

[203] Qi Zheng. New algorithms for luria–delbrück fluctuation analysis. Mathematical
Biosciences, 196(2):198–214, 2005.

[204] Qi Zheng. On haldane’s formulation of luria and delbrück’s mutation model. Math-
ematical Biosciences, 209(2):500–513, 2007.

[205] Qi Zheng. The luria-delbrück distribution: early statistical thinking about evolution.
Chance, 23(2):15–18, 2010.

[206] Qi Zheng. A bayesian approach for correcting for partial plating in fluctuation ex-
periments. Genetics research, 93(5):351–356, 2011.

[207] Qi Zheng. Methods for comparing mutation rates using fluctuation assay data. Mu-
tation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 777:20–22,
2015.

[208] Qi Zheng. A new practical guide to the luria–delbrück protocol. Mutation Research
- Fundamental and Molecular Mechanisms of Mutagenesis, 781:7–13, 2015.

[209] Qi Zheng. A second look at the final number of cells in a fluctuation experiment.
Journal of theoretical biology, 401:54–63, 2016.

[210] Qi Zheng. rsalvador: An r package for the fluctuation experiment. G3 (Bethesda,
Md.), 7(12):3849–3856, 2017.

156



APPENDICES

157



Appendix A

Lab Practices

In order to study bacteria in the laboratory, techniques to measure their attributes had
to be developed. Most importantly for my purposes, techniques for measuring the exact
quantity of bacteria in a culture as well as their growth rate were necessary.

A.1 Optical Density

One technique that has been used since the early days of bacterial growth physiology and
continues to be used today is optical density (OD), which measures the turbidity of a
culture. The optical density of a bacterial culture is measured with a spectrophotometer
which shines light of a specific wavelength (commonly 600nm for E. coli) through a small
liquid sample and measures how much light comes out the other side (see Fig. A.1). Be-
cause bacteria scatter the light, by measuring how much of the light is lost when travelling
through the culture one indirectly measures how much cell volume or mass is in the sample
[117, 168, 153]. Therefore, one can measure the growth of a bacteria culture by observing
the change in optical density of a culture through time when the cells’ characteristics are
constant. Due to the growth dependent nature of cell size (see Section 1.6.1) the measure
of OD does not give a measure of the number of cells without some sort of conversion
factor [168]. To find this conversion factor one plates cultures and counts the number of
colony forming units.
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Figure A.1: Spectrophotometer diagram. Light is shone through a cuvette filled with
culture and the bacteria scatter some of the light so that the light exiting the other side of
the cuvette is lower in intensity. The change in intensity between the light on either side
of the cuvette is a proxy for the number of cells. Cells not to scale.

A.2 Colony Forming Units

Colony forming units (CFU) are the bacteria in a culture which when placed on a surface
with nutrients will grow to form a colony of bacteria1 The goal when placing the bacteria
on the surface is to have all the colony forming units sufficiently dispersed so that each
formed colony was seeded by a single bacteria. If achieved, the number of colonies on the
surface will tell you how many viable bacteria were in the placed sample (also called the
viable cell count). To do this, culture samples are generally placed on small dishes/plates
that contain nutrients and agar, which works as a sort of scaffolding. The samples must
be sufficiently dilute so that there are not too many cells (generally 100-300 is ideal), and
the samples are spread evenly around the dish in the hopes that cells won’t overlap. These
dishes are then incubated at the ideal growing temperature for the bacteria. In practice,
the plated sample generally has to be serial diluted from culture in order to reach an ideal
concentration for plating (if the culture has 108 cells

mL
, then to have 200 cells on the plate,

a 5 · 105× dilution must be performed, which is usually done as a 100× then 100× then
50× dilution). Once the sample is ready, there are several different plating techniques that
can be performed, but in the experiments outlined in this thesis, pour plating is the main
technique practised. Pour plating is done by first adding a base layer of high percentage

1This colony is observed as a single goopy dot of bacteria on a surface.
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agar (1-1.5%) with nutrients and letting it solidify. Then the sample is mixed with a low
percentage agar (0.5-0.8%) with nutrients either directly on the plate, or in a tube then
poured onto the plate2 (see Fig. A.2 for the plating procedures). Once the sample is added
to the plate, it must be swirled around to assure even distribution of the cells. Other
plating techniques require direct contact with the plate and cells with tools, which can
damage or remove cells, giving less accurate counts [182]. After the plates have incubated
and the colonies counted, the number is then multiplied by the dilution amount to get the
number of cells per millilitre in the culture. To find the relation between the OD and CFU,
one must determine the CFU for a culture with different optical densities. The result will
be a linear relation which can be used to calculate the number of cells in a sample from
the OD and vice versa (see Fig. 2.4).

Figure A.2: Pour plating protocol infographic. Two different pour plating protocols
are outlined; one for plating a portion/sample of the culture, and one for plating the entire
culture.

2When plating only a portion of the culture, adding the sample directly to the plate with a pipette
then adding the agar and swirling is the better technique, but when plating the entire culture (such as in
the selection phase of a fluctuation test), combining the sample with the agar in a tube and then pouring
it onto the plate is better (see Appendix C.2 for validation).
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A.3 Measuring Bacterial Growth

Measuring the rate at which bacteria grow is essential to understanding a bacteria’s phys-
iology (see Section 1.6.1). To measure growth rate, bacteria need an environment in which
to grow and we need a way to measure said growth over time. The environments commonly
used to grow bacteria in lab settings come in two forms: batch culture and continuous cul-
ture [16]. Batch culture is when a population of bacteria is grown in a container with finite
resources for a period of time. Continuous cultures are grown in machines which remove
cells throughout growth in order to keep the bacterial population in a culture constant.
Both environments lend themselves to a straight forward way of determining growth rate.

A.3.1 Batch Culture

In batch culture growth, a container (commonly a test tube) will be filled with growth
medium and a small inoculum of bacteria. To measure the bacterial grow that ensues,
either the optical density (OD) or viable cell count (CFU) is measured periodically. If
bacteria are in constant conditions and have adapted their physiology to said conditions,
they will grow exponentially. In particular, the bacteria need consistent access to food
in non-limiting amounts, which is achieved by providing a saturating amount of nutrients
in the growth medium. During exponential growth, the natural logarithm of the OD or
CFU can be plotted versus time to get a straight line3, of which the slope is the specific
growth rate, λ [151]. Eventually the bacteria will consume so much of the nutrients that
they will no longer be in saturating amounts and the cells will stop growing exponentially
[117]. Consequently, if one wants to observe bacterial growth for a long period of time in
batch culture, they must re-dilute the cells into a tube with the same conditions as the
previous tube before the nutrients reach non-saturating levels. The resulting growth plot
is a sawtooth wave, which can be seen in Fig. A.3.

Generally, one can get sufficient information to determine the growth rate of a bacteria
by measuring only a couple doublings during the exponential phase. When I measure
growth rates, I inoculate 1-3mL of growth medium with a sample of culture that was
grown in the same growth medium overnight. I choose the dilution such that after a few
doublings the OD will be at approximately 0.1, at which point I start taking a measurement

3The coefficient of determination (R2) for this line can give insight into how exponential the data is,
and therefore how confident one can be that the cells are in balanced growth (R2 > 0.99 is good and
common).
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Figure A.3: Batch culture growth curve. When bacteria are grown in batch culture for
long periods of time they will run out of nutrients, so to keep them in exponential phase
they must be periodically re-diluted.

at approximately every half doubling for 2-3 doublings (OD ≈ 0.1, 0.15, 0.2, 0.3, 0.4)4 The
same can be down by plating samples of the culture and counting the number of colonies,
which can be done with cells at any concentration (though it is much more time and
resource consuming). In theory, using optical density and viable cell counts to determine
growth rate should be equivalent, though in practice I have found this not to be the case
at slow growth (see Section 4.4).

A.3.2 Continuous Culture

Due to the necessity of actively making measurements during batch growth, it can be
a lot of work to grow cultures in this fashion, especially for long periods of time. To
combat this, continuous culture methods were developed. Continuous culture growth is a
method of growth which keeps the population of the growing culture on average constant by
periodically removing culture and adding fresh growth medium [118]. This is usually done
by one of two machines: a turbidostat or a chemostat (see Fig. A.4) [16]. A turbidostat
measures the optical density (or turbidity) of the culture and keeps it constant through
periodic dilutions [22]. A chemostat keeps the concentration of a nutrient constant in
the culture through a constant dilution [130]. During balanced growth when bacteria are

4Every spectrophotometer has an optimal range below which it can’t properly measure the OD and
above which the cells are too dense or have begun reaching saturation [168]. This range must be considered
when planning a growth experiment.
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Figure A.4: Turbidostat diagram. Diagram of a turbidostat, which maintains a constant
turbidity (OD) of a culture through dilution. A chemostat is simply a turbidostat, but
with the light source and photodetector removed so that the dilution rate is constant.

consuming nutrients at a constant rate and the concentration of cells are increasing in the
culture at a constant rate, the turbidostat and chemostat are equivalent. To determine the
growth rate of the culture, one looks at the dilution rate of the machine. The faster the
cells are growing, the faster the culture must be diluted to maintain a constant population,
and vice versa. Upon further inspection, it can be shown that the growth rate of the culture
is exactly equivalent to the dilution rate, which can be determined from the machine [16].

Though continuous cultures require little active input, they do require a larger amount
of time to set up and calibrate. Furthermore, they impose a selection bias on the culture
by constantly removing cells [194]. In particular, they favour cells that stick to the walls
of the growth container and allow for fast growing mutants to completely take over the
population (unlike in batch culture where a fast growing mutant can only compose a
portion of the total population). Consequently, even though continuous cultures seem
ideal for long growth experiments, there are practical restrictions on how long they are
useful before unaccountable effects dominate.
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Appendix B

Media Recipes

B.1 MOPS Based Media

B.1.1 10× MOPS Buffer

Chemical Concentration Mass in 100mL H2O
3-(N-morpholino)propanesulfonic acid (MOPS) 400mM 8.372g
Tricine 40mM 716.8mg
Iron Sulfate 0.10mM 2.78mg
Ammonium Chloride 95mM 508.2mg
Potassium Sulfate 2.76mM 48.1mg
Calcium Chloride 5µM 73.5µg
Magnesium Chloride 5.25mM 106.8mg
Sodium Chloride 500mM 2.922g
Ammonium Molybdate 2.92·10−6mM 3.6µg
Boric Acid 4.0·10−4mM 24.74µg
Cobalt Chloride 3.02·10−5mM 7.18µg
Copper Sulfate 9.62·10−6mM 2.4µg
Manganese Chloride 8.08·10−5mM 16µg
Zinc Sulfate 9.74·10−6mM 2.8µg

Table B.1: 10× MOPS buffer recipe. Supplied by Teknova [176].
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B.1.2 5× EZ Supplement

Chemical Concentration Mass in 100mL H2O
L-Alanine 4.0mM 35.6mg
L-Arginine HCl 26mM 548.6mg
L-Asparagine 2.0mM 26.4mg
L-Aspartic Acid, Potassium Salt 2.0mM 26.6mg
L-Glutamic Acid, Potassium Salt 3.0mM 44.1mg
L-Glutamine 3.0mM 43.8mg
L-Glycine 4.0mM 30.0mg
L-Histidine HCl H2O 1.0mM 21.0mg
L-Isoleucine 2.0mM 26.2mg
L-Proline 2.0mM 23.0mg
L-Threonine 2.0mM 23.8mg
L-Tryptophan 0.5mM 10.2mg
L-Valine 3.0mM 35.2mg
L-Leucine 4.0mM 52.5mg
L-Lysine HCl 2.0mM 36.5mg
L-Methionine 1.0mM 14.9mg
L-Phenylalanine 2.0mM 33.0mg
L-Cysteine HCl 0.5mM 7.9mg
L-Tyrosine 1.0mM 18.1mg
Thiamine HCl 0.05mM 1.3mg
Calcium Pantothenate 0.05mM 1.2mg
para-Hydroxy Benzoic Acid 0.05mM 0.7mg

Table B.2: 5× EZ supplement recipe. Adapted from Teknova’s recipe [179] to not
include L-Serine (Teknova’s normal 5× EZ supplement has a L-Serine concentration of
50mM).
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B.1.3 10× ACGU Supplement

Chemical Concentration Mass in 100mL H2O
Guanine 1.99mM 30.1mg
Adenine 1.99mM 26.9mg
Cytosine 1.99mM 22.1mg
Uracil 1.99mM 22.3mg

Table B.3: 5× ACGU supplement recipe. Supplied by Teknova [175].

B.1.4 Rich Defined Media (MOPS)

Solution Volume in 100mL H2O
10× MOPS buffer 10mL
0.132M K2HPO4 1mL
20% (w/v) glucose 1mL
5× EZ supplement 20mL
10× ACGU supplement 10mL

Table B.4: MOPS based rich defined media with glucose (RDM glucose) recipe.
Recipe from Teknova [177].

To use the rich defined medium with glucose, first the 10×MOPS buffer, 0.132M K2HPO4,
and 20% (w/v) glucose are combined at the volumes described in Table B.4 then adjusted
to 70mL with sterile Milli-Q H2O (which can be stored at 4◦C for extended periods of time).
Then in each individual tube to be used for bacterial growth, the above buffer+glucose
solution is added to be 70% of the total volume, 5× EZ is added at 20%, and 10× ACGU
is added at 10% (i.e. for 3mL of growth medium, one combines 2.1mL buffer+glucose,
600µL 5× EZ, and 300µL 10× ACGU).
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B.1.5 Minimal Defined Media (MOPS)

Solution Volume in 100mL H2O
10× MOPS buffer 10mL
0.132M K2HPO4 1mL
20% (w/v) maltose
or
2M α-ketoglutaric acid
or
4M acetate

1mL

Table B.5: MOPS based minimal media recipe. Three possible carbon sources are
provided; adding maltose gives the maltose minimal media predominantly used throughout
the thesis. Recipe from Teknova [178].
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B.2 M9 Based Media

B.2.1 M9 Salts

Chemical Mass in 1L H2O
Na2HPO4-7H2O 64g
KH2PO4 15g
NaCl 2.5g
NH4Cl 5.0g

Table B.6: M9 salts recipe. M9 salts used for M9 minimal media. Recipe from the-
LabRat.com [181].

B.2.2 M9 Minimal Media

1. Make M9 salts and sterilize by autoclaving.

2. Measure approximately 700mL of sterile distilled H2O.

3. Add 200mL of M9 salts.

4. Add 2mL of sterile 1M MgSO4.

5. Add 20mL of sterile 20% (w/v) glucose (or other carbon source).

6. Add 100µL of 1M CaCl2.

7. Adjust to 1000mL with sterile distilled H2O.

Recipe from theLabRat.com [181]
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Appendix C

Control Experiments

C.1 Continued Growth After Dilution

The inoculation period of my fluctuation test is lengthy at 55 minutes, during which the
cells are sitting in buffer. This means that the cells in the last inoculum will have been
sitting in buffer for approximately 50 minutes longer than the cells in the first inoculum. If
the cells continue to grow during this time in the buffer, the variance between inocula could
end up being substantial. Accordingly, a control experiment was performed to observe
how much growth there is after the cells are diluted into buffer from each relevant growth
medium. Escherichia coli NCM3722 cells were grown in three different MOPS based
media (RDM glucose, maltose minimal, and acetate minimal) to exponential phase after
an adaption period and then serial diluted in cold buffer composed of MOPS and K2HPO4

(Recipe from Appendix B.1.5 excluding carbon source). Cells were left in the buffer and
samples of the same quantity were plated periodically to track growth. See Table C.1 for
RDM glucose results, Table C.2 for maltose minimal results, and Table C.3 for acetate
minimal results.

From the results of the observation of growth in buffer, it appears that cells from RDM
glucose continue growing for approximately 30 minutes and then settle. On the other hand,
cells from maltose minimal and acetate minimal appear to be stable for approximately 60
minutes and then begin to show growth. Because the cells sit in buffer for the entire 55
minutes of my inoculation period, it appears the best protocol for reducing the variance
in the initial inoculua is to let cells from RDM glucose sit in the buffer for 30 minutes
before commencing inoculation. Conversely, for cells from minimal media, it appears best
to begin the inoculations immediately.
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Time in buffer 5 mins 15 mins 30 mins 45 mins 60 mins
Colonies ± SD 337± 21 396± 44 450± 27 455± 21 450± 39

Table C.1: E. coli NCM3722 growth in buffer after dilution from RDM glucose
balanced growth. E. coli NCM3722 grown in MOPS based rich defined medium with
glucose until well established in balanced growth and then serial diluted in cold MOPS
based buffer and let sit. Three plates are made from a constant sample of the buffer+culture
periodically to track growth. At each time point the average number of colonies on the
plate ± one standard deviation are presented.

Time in buffer 6 mins 22 mins 62 mins 123 mins
Colonies ± SD 263± 25 281± 5 342± 18 437± 19

Table C.2: E. coli NCM3722 growth in buffer after dilution from maltose mini-
mal balanced growth. E. coli NCM3722 grown in MOPS based minimal medium with
maltose until well established in balanced growth and then serial diluted in cold MOPS
based buffer and let sit. Three plates are made from a constant sample of the buffer+culture
periodically to track growth. At each time point the average number of colonies on the
plate ± one standard deviation are presented.

Time in buffer 5 mins 20 mins 50 mins 100 mins 150 mins
Colonies 840 837 827 979 1177

Table C.3: E. coli NCM3722 growth in buffer after dilution from acetate minimal
balanced growth. E. coli NCM3722 grown in MOPS based minimal medium with acetate
until well established in balanced growth and then serial diluted in cold MOPS based buffer
and let sit. One plate is made from a constant sample of the buffer+culture periodically
to track growth.
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C.2 Comparison of Pour Plating Techniques

Escherichia coli NCM3722 cells were grown in MOPS based rich defined medium to expo-
nential phase after an adaption period and then serial diluted and distributed evenly among
10 test tubes. Each test tube was levelled to 1mL of culture with buffer. Five tubes were
poured directly onto a petri dish with a base of 1% agar with LB, and then approximately
3mL of 0.7% agar with LB was poured onto the plate and swirled to mix the culture and
agar (this method will be referred to as the “plate then agar” method). The other five
tubes had 4mL of 0.7% agar with LB added to them, were swirled by hand, and then were
poured onto a petri dish with a base of 1% agar with LB and swirled (this method will
be referred to as the “agar then plate” method). The “plate then agar” method resulted
in an average colony count plus or minus one standard deviation of 407 ± 35 cells while
the “agar then plate” method resulted in 426± 26 cells. Notice that the “agar then plate”
method produces both a marginally higher count (meaning there are likely fewer cells lost
in the process) and a marginally lower variance, making it a more efficient and reliable
plating technique. Consequently, the “agar then plate” method was used while plating
the selection plates during the fluctuation test (the cultures with selecting agent used to
determine mutant numbers).
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Appendix D

Code

D.1 Convert Data to a Cumulative Distribution

# data is fluctuation test data as a vector

# bin all samples with more than "top" mutants

top <- 300

for (i in 1:length(data)){

if (data[i] >= top){

data[i] <- top

}

}

# make function take takes in data and returns a cdf

cdf.data <- function(data){

# sort data by number of mutants

nums <- sort(unique(data))

# count how many samples have each number of mutants

counts <- integer(length(nums))

for (i in 1:length(data)){

for (j in 1:length(nums)){

if (data[i] == nums[j]){

counts[j] <- counts[j]+1

}

}
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}

# turn data into a probability distribution function

pdf <- counts/(sum(counts))

# turn into a cumulative distribution function

cdf <- cumsum(pdf)

# compile mutant numbers (x-axis) and

#cumulative probabilities (y-axis) in a matrix

C <- matrix(nrow=2,ncol=length(nums))

C[1,] <- nums

C[2,] <- cdf

return(C)

}

D.2 Total Sum of Squares Fitting

# load necessary packages

library("rsalvador")

# create function which estimates m by fitting data to a Luria-Delbruck

#CDF through minimisation of the total sum of squares distance

# m0 is the rsalvador MLE estimate of m

# cdf is a vector of the experimental cumulative probabilities

# nums is a vector of the number of mutants corresponding to cdf

TSS.fit.LD <- function(m0,cdf,nums){

l <- 0

fit_TSS <- c()

# loop through sequence of guesses on m and

#calculate TSS error for each

m <- seq(0,m0*2,by=0.001)

for (b in m){

l <- l+1
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# build theoretical pdf with rSalvador then turn into cdf

k <- 0:(floor(max(nums))+1)

pdf_t <- prob.LD(b,k=(floor(max(nums))+1))

cdf_t <- cumsum(pdf_t)

# reduce & interpolate theoretical cdf to only include same points

#as experimental cdf

intercdf <- c()

for (a in 1:length(nums)){

interp <- approx(k,cdf_t,nums[a],method="linear")

intercdf[a] <- interp[2]

}

intercdf <- as.vector(intercdf,mode="numeric")

# calculate total sum of squares distance

f <- sum((intercdf-cdf)^2)

fit_TSS[l] <- f

}

# find which m gives best TSS fit

for (t in 1:length(fit_TSS)){

if (fit_TSS[t] == min(fit_TSS)){

m_best_TSS <- m[t]

}

}

# compile best m and its associated fit

m_and_fit <- c(m_best_TSS,min(fit_TSS))

return(m_and_fit)

}
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D.3 Fluctuation Test Simulation

The following code is adapted from Sun et al. (2018) [171, 172], which is in the public
domain.

# load necessary packages

library(data.table)

# simulate growth of one culture

# treats normal cells deterministically and mutant lineages

#stochastically like the Lea-Coulson formulation

# INPUTS:

# N0: initial number of cells

# Nf: final number of cells after growth

# divdist: name of the distribution of interdivision times;

#can be ’exp’ or ’const’

# mu: probability of mutation per division

# pheno: length of phenotypic lag in generations

# protein: number of selected proteins a normal cell is

#born with on average

# OUTPUT:

# nmuts: total number of mutants

# nmuts_pheno: number of resistant bacteria

simculture.lag.partition <- function(N0,Nf,divdist,mu,pheno,protein){

# determine number of generations of growth

growthgens <- log2(Nf/N0)

# calculate final number of normal cells in culture

# number of mutants assumed negligible in comparison

Nf <- N0*2^growthgens

# define exponential growth rate of non-mutant cells

beta <- log(2)
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# calculate mean number of mutations that occur during culture growth

mmut <- mu*(Nf-N0)

# draw actual number of mutations from Poisson distribution

#with mean=nmut

# gives number of mutant lineages to be simulated

numdnmut <- rpois(1,mmut)

# if no mutations occur, return this and stop simulation

if(numdnmut==0){

nmuts <- 0

nmuts_pheno <- nmuts

NMUTS <- c(nmuts,nmuts_pheno)

return(NMUTS)

}

# draw "developing time" of each mutant lineage from

#exponential distribution

Tclones <- rexp(numdnmut,rate=beta)

# define vectors needed later

muts <- c()

muts_pheno <- c()

# analyse each mutant lineage

for(clone in 1:numdnmut){

Tclone <- Tclones[clone]

# initialize data table to keep track of all cells, at first

#containing only the progenitor

# columns: phyloID is a string of L’s and R’s uniquely specifying

#line of descent from the progenitor

# tb is cell’s birth time, measured from time lineage is initiated

# td is cell’s division time, measured from time lineage is initiated

# proteins is the number of selected protein in the cell
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switch(divdist$name,

exp = {newtd <- rexp(1,rate=beta)},

const = {newtd <- 1},

)

protein_0<-rbinom(1,2*protein,0.5)

newgen <- data.table(phyloID="",tb=0, td=newtd,proteins=protein_0)

cells <- newgen

setkey(newgen,td)

while(newgen[1,td] <= Tclone){

# iterate until there is no mother cell left that still divides

#before end of clone’s growth time

mothers <- newgen[td<=Tclone]

# produce two daughter cells for each mother cell in current gen

# append "L" and "R" to each mother’s ID

newIDs <- c(paste(mothers[,phyloID],"L",sep=""),

paste(mothers[,phyloID],"R",sep=""))

# daughters’ birth times are their mothers’ division times

newtb <- rep(mothers[,td],2)

# daughters’ division times are their birth times plus

#independent random number drawn from interdivision time distribution

switch(divdist$name,

exp = {newtd <- newtb + rexp(length(newtb),rate=beta)},

const = {newtd <- newtb + 1},

)

# split proteins in mother between children binomially with p=0.5

nprot1 <- rbinom(length(mothers[,proteins]),mothers[,proteins],0.5)

nprot1 <- ifelse(nprot1<0,0,nprot1)

nprot2 <- mothers[,proteins]-nprot1

nprot2 <- ifelse(nprot2<0,0,nprot2)

newprotein <- c(nprot1,nprot2)

# build information table for daughters

newgen <- data.table(phyloID=newIDs, tb=newtb, td=newtd,

proteins=newprotein)

cells <- rbindlist(list(cells,newgen))
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setkey(newgen,td)

}

# cells "alive" at end of clone’s growth time: those that did not

#yet divide by end of clone growth time

setkey(cells,td)

livecells <- cells[td>Tclone]

muts <- c(muts,dim(livecells)[1])

# determine which cells have diluted out sufficient protein

#to be resistant

muts_pheno_0 <- c()

prot_live <- livecells[,proteins]

for (i in 1:length(prot_live)){

if (prot_live[i] < (protein/(2^pheno))){

muts_pheno_0 <- c(muts_pheno_0,1)

}

else if (prot_live[i] >= (protein/(2^pheno))){

muts_pheno_0 <- c(muts_pheno_0,0)

}

}

muts_pheno <- c(muts_pheno,sum(muts_pheno_0))

}

# count number of total mutants

nmuts <- sum(muts)

# count number of resistant mutants

nmuts_pheno <- sum(muts_pheno)

# compile into a vector

NMUTS <- c(nmuts,nmuts_pheno)

return(NMUTS)

}
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D.4 Adjusting Fit for Phenotypic Lag

All proceeding procedures require loading the rSalvador package as well as the “Convert
Data to a Cumulative Distribution” function and the “Total Sum of Squares Fitting”
function. The following procedures also require the input of fluctuation test data:

# compile data

data <- #insert fluctuation test data as a vector here

popmean <- #insert average final population per culture here

pop0 <- #insert average initial population per culture here

phi <- 1-(pop0/popmean)

D.4.1 Koch Adjustment

# prep vectors

mvec_K <- c()

fitpheno_K <- c()

# bin all samples with more than "top" mutants

top <- 300

for (i in 1:length(data)){

if (data[i] >= top){

data[i] <- top

}

}

# turn fluctuation test data into a cdf

C <- cdf.data(data)

nums <- C[1,]

cdf <- C[2,]

# fit data using rSalvador MLE

m0 <- newton.LD(data)

#build theoretical pdf for MLE fit

k0 <- 0:max(data)

p0 <-prob.LD(m0,k=max(data))

#turn into cdf
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c0 <- cumsum(p0)

# loop through potential phenotypic lags (in generations)

pheno_tot_K <- seq(0,4,0.1)

w <- 0

for (p in pheno_tot_K){

w <- w+1

# adjust data for phenotypic lag

nums <- nums/(2^p)

# find optimal m using TSS fitting and its associated error

m_and_error <- TSS.fit.LD(m0*2,cdf,nums)

mlag <- m_and_error[1]

# adjust estimated m for lag and save it

mvec_K[w] <- mlag*(2^p)

# record error for best TTS m estimate

fitpheno_K[w] <- m_and_error[2]

# compute theoretical pdf for optimal m

k <- 0:(max(nums)+1)

plag <- prob.LD(mlag,k=(max(nums)+1))

#turn into cdf

clag <- cumsum(plag)

# plot experimental & theoretical cdfs

plot(mutnum,cdf,col="red",xlab="Number of mutants",

ylab="Cumulative probability",ylim=c(0,1),xlim=c(0,50))

lines(k,clag,col="blue")

legend("bottomright",c("Adjusted data","Fitted CDF"),

fill=c("red","blue"))

}

# find lag which gives best fit

for (t in 1:length(fitpheno_K)){

if (fitpheno_K[t] == min(fitpheno_K)){

pheno_best_K <- pheno_tot_K[t]
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t_best <- t

}

}

# save optimal lag length and m estimate for Koch adjustment

lag_K <- pheno_best_K

mlag_K <- mvec_K[t_best]

# plot how the fitting error changes with phenotypic lag length

plot(pheno_tot_K,fitpheno_K/fitpheno_K[1],col="black",

xlab="Estimated phenotypic lag (gens)",

ylab="Normalised Koch TSS error",main="Koch Fitting Error",

ylim=c(0,max(fitpheno_K/fitpheno_K[1])))

points(pch=19,lag_K,fitpheno_K[t_best]/fitpheno_K[1],col="red")

# plot how m estimate changes with phenotypic lag length

plot(pheno_tot_K,mvec_K,col="black",

xlab="Estimated phenotypic lag (gens)",

ylab="Estimated mutation number",

main="Koch Mutation Number Estimates",ylim=c(0,max(mvec_K)))

points(pch=19,lag_K,mlag_K,col="red")

# build cdf for theoretical distribution with Koch estimate of m

pdf_K <- prob.LD(mlag_K,k=max(data))

cdf_K <- cumsum(pdf_K)

# plot the cdf of the data, Koch estimate CDF, and MLE estimate CDF

plot(nums,cdf,col="red",main="Koch Adjustment Result",

xlab="Number of mutants",ylab="Cumulative probability",

ylim=c(0,1),xlim=c(0,50))

lines(k0,c0,col="blue")

lines(0:(max(data)),cdf_K,col="green")

legend("bottomright",c("Data","MLE","Koch"),fill=c("red","blue","green"))

D.4.2 Reduced CDF Adjustment

# prep vectors
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mvec_rCDF<-c()

fitpheno_rCDF<-c()

# bin all samples with more than "top" mutants

top <- 300

for (i in 1:length(data)){

if (data[i] >= top){

data[i] <- top

}

}

# turn fluctuation test data into a cdf

C <- cdf.data(data)

nums <- C[1,]

cdf <- C[2,]

# fit data using rSalvador MLE

m0 <- newton.LD(data)

#build theoretical pdf for MLE fit

k0 <- 0:max(data)

p0 <-prob.LD(m0,k=max(data))

#turn into cdf

c0 <- cumsum(p0)

# loop through potential phenotypic lags (in generations)

pheno_tot_rCDF <- c(0,1,log2(3),2,log2(5),log2(6),log2(7),3,log2(9),log2(10),

log2(11),log2(12),log2(13),log2(14),log2(15),4)

w <- 0

for (p in pheno_tot_rCDF){

w <- w+1

# reduce cdf to only include points with

#greater than or equal to 2^p mutants

cdf_r <- c()

nums_r <- c()

z <- 1

if (p == 0){

cdf_r <- cdf
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nums_r <- nums

} else {

for (i in 1:length(cdf)){

if (nums[i] >= (2^p)){

cdf_r[z] <- cdf[i]

nums_r[z] <- nums[i]

z <- z+1

}

}

}

# find optimal m using TSS fitting and its associated error

m_and_error <- TSS.fit.LD(m0*2,cdf_r,nums_r)

mlag <- m_and_error[1]

# save optimal rCDF m estimate

mvec_rCDF[w] <- mlag

# compute theoretical pdf for optimal m

k <- 0:(max(nums)+1)

plag <- prob.LD(mlag,k=(max(nums)+1))

#turn into cdf

clag <- cumsum(plag)

# error from TSS fitting of reduced cdf

d <- m_and_error[2]

# note the zero point of the experimental data

cdf_0 <- cdf[1]

# compress all theoretical points < 2^p into 0

i_best<-0

for (i in 1:min(length(k),ceiling(2^(max(pheno_tot_rCDF)+1)))){

if (k[i] < 2^p){

i_best <- i_best + 1

}

}

clag_0 <- clag[i_best]
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# calculate difference between theoretical and experimental zeros

d0 <- (clag_0-cdf_0)^2

# calculate rCDF fitting error

fitpheno_rCDF[w] <- d0+d

# another choice is:

#fitpheno_rCDF[w] <- (((sum(counts_0)-sum(counts))*d0)+

((sum(counts))*d))/(sum(counts_0))

#which more explicitly accounts for lost information when removing

#points through a taking a weighted average

# plot experimental & theoretical cdfs

plot(mutnum,cdf,col="red",xlab="Number of mutants",

ylab="Cumulative probability",ylim=c(0,1),xlim=c(0,50))

lines(k,clag,col="blue")

points(pch=19,0,cdf_0,col="orange")

points(pch=19,0,clag_0,col="cyan")

legend("bottomright",c("Adjusted data", "Experimental zero",

"Fitted CDF", "Theoretical zero"),

fill=c("red","orange","blue","cyan"))

}

# find lag which gives best fit

for (t in 1:length(fitpheno_rCDF)){

if (fitpheno_rCDF[t] == min(fitpheno_rCDF)){

pheno_best_rCDF <- pheno_tot_rCDF[t]

t_best <- t

}

}

# save optimal lag length and m estimate for Koch adjustment

lag_rCDF <- pheno_best_rCDF

mlag_rCDF <- mvec_rCDF[t_best]

# plot how the fitting error changes with phenotypic lag length

plot(pheno_tot_rCDF,fitpheno_rCDF/fitpheno_rCDF[1],col="black",
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xlab="Estimated phenotypic lag (gens)",

ylab="Normalised rCDF error",main="rCDF Fitting Error",

ylim=c(0,max(fitpheno_rCDF/fitpheno_rCDF[1])))

points(pch=19,lag_rCDF,fitpheno_rCDF[t_best]/fitpheno_rCDF[1],col="red")

# plot how m estimate changes with phenotypic lag length

plot(pheno_tot_rCDF,mvec_rCDF,col="black",

xlab="Estimated phenotypic lag (gens)",

ylab="Estimated mutation number",

main="rCDF Mutation Number Estimates",ylim=c(0,max(mvec_rCDF)))

points(pch=19,lag_rCDF,mlag_rCDF,col="red")

# build cdf for theoretical distribution with rCDF estimate of m

pdf_rCDF <- prob.LD(mlag_rCDF,k=max(data))

cdf_rCDF <- cumsum(pdf_rCDF)

# plot the cdf of the data, rCDF estimate CDF, and MLE estimate CDF

plot(nums,cdf,col="red",main="rCDF Adjustment Result",

xlab="Number of mutants",ylab="Cumulative probability",

ylim=c(0,1),xlim=c(0,50))

lines(k0,c0,col="blue")

lines(0:(max(data)),cdf_rCDF,col="green")

legend("bottomright",c("Data","MLE","rCDF"),fill=c("red","blue","green"))

D.4.3 rCDF & Koch Hybrid Adjustments

# prep vectors

mvec_rCDFK_K<-c()

fitpheno_rCDFK<-c()

# bin all samples with more than "top" mutants

top <- 300

for (i in 1:length(data)){

if (data[i] >= top){

data[i] <- top

}
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}

# turn fluctuation test data into a cdf

C <- cdf.data(data)

nums <- C[1,]

cdf <- C[2,]

# fit data using rSalvador MLE

m0 <- newton.LD(data)

#build theoretical pdf for MLE fit

k0 <- 0:max(data)

p0 <-prob.LD(m0,k=max(data))

#turn into cdf

c0 <- cumsum(p0)

# loop through potential phenotypic lags (in generations)

pheno_tot_rCDF <- c(0,1,log2(3),2,log2(5),log2(6),log2(7),3,log2(9),log2(10),

log2(11),log2(12),log2(13),log2(14),log2(15),4)

w <- 0

for (p in pheno_tot_rCDF){

w <- w+1

# adjust data for phenotypic lag

nums <- nums/(2^p)

# find optimal m using TSS fitting and its associated error

m_and_error <- TSS.fit.LD(m0*2,cdf,nums)

mlag <- m_and_error[1]

# adjust estimated m for lag and save it

mvec_rCDFK_K[w] <- mlag*(2^p)

# record error for best TTS m estimate

fitpheno_rCDFK[w] <- m_and_error[2]

}

# find lag which gives best fit

for (t in 1:length(fitpheno_rCDFK)){
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if (fitpheno_rCDFK[t] == min(fitpheno_rCDFK)){

pheno_best_rCDFK <- pheno_tot_rCDFK[t]

t_best <- t

}

}

# save optimal lag length

lag_rCDFK <- pheno_best_rCDFK

# determine optimal rCDF estimate of m

#(use calculated mvec_rCDF from the rCDF algorithm)

mlag_rCDFK <- mvec_rCDF[t_best]

# save Koch estimate for the same lag

mlag_rCDFK_K <- mvec_rCDFK_K[t_best]

# plot how the fitting error changes with phenotypic lag length

plot(pheno_tot_rCDF,fitpheno_rCDFK/fitpheno_rCDFK[1],col="black",

xlab="Estimated phenotypic lag (gens)",

ylab="Normalised Koch error",main="rCDF+Koch Fitting Error",

ylim=c(0,max(fitpheno_rCDFK/fitpheno_rCDFK[1])))

points(pch=19,lag_rCDFK,fitpheno_rCDFK[t_best]/fitpheno_rCDFK[1],col="red")

# plot how m estimate changes with phenotypic lag length

plot(pheno_tot_rCDF,mvec_rCDFK,col="black",

xlab="Estimated phenotypic lag (gens)",

ylab="Estimated mutation number",

main="rCDF+Koch Mutation Number Estimates",ylim=c(0,max(mvec_rCDFK)))

points(pch=19,lag_rCDFK,mlag_rCDFK,col="red")

# build cdf for theoretical distribution with rCDF+K estimate of m

pdf_rCDFK <- prob.LD(mlag_rCDFK,k=max(data))

cdf_rCDFK <- cumsum(pdf_rCDFK)

# plot the cdf of the data, rCDF+K estimate CDF, and MLE estimate CDF

plot(nums,cdf,col="red",main="rCDF+Koch Adjustment Result",

xlab="Number of mutants",ylab="Cumulative probability",

ylim=c(0,1),xlim=c(0,50))

lines(k0,c0,col="blue")

lines(0:(max(data)),cdf_rCDFK,col="green")
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legend("bottomright",c("Data","MLE","rCDF+K"),fill=c("red","blue","green"))

# take the average of the rCDF and Koch estimated m with determined lag

mlag_rCDFKavg <- (mlag_rCDFK+mlag_rCDFK_K)/2

# build cdf for theoretical distribution with rCDF+K_avg estimate of m

pdf_rCDFKavg <- prob.LD(mlag_rCDFKavg,k=max(data))

cdf_rCDFKavg <- cumsum(pdf_rCDFKavg)

# plot the cdf of the data, rCDF+K_avg estimate CDF, and MLE estimate CDF

plot(nums,cdf,col="red",main="rCDF+K_avg Adjustment Result",

xlab="Number of mutants",ylab="Cumulative probability",

ylim=c(0,1),xlim=c(0,50))

lines(k0,c0,col="blue")

lines(0:(max(data)),cdf_rCDFKavg,col="green")

legend("bottomright",c("Data","MLE","rCDF+K_avg"),

fill=c("red","blue","green"))
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Glossary

amino acids Organic compounds composed of an amino group, carboxyl group, and a
side chain which is unique to each different amino acid. Amino acids are the building
blocks of proteins. 4

bacteria A single-celled organism that constitutes one of the kingdoms of life. 1

bacterial physiology The study of the functions which allow bacteria to grow and re-
produce, and the resulting dynamics. Historically done by observing population
dynamics and using mathematics to infer cellular behaviour. 30

chromosome A DNA molecule which is a single, long, tangled circle of DNA in bacteria;
often equivalent to the genome in bacteria. 9

coefficient of variation The standard deviation of a variable divided by its mean. 104

colony forming units A measure of the number of viable cells in a culture found from
plating a sample of the culture and counting the number of colonies, each of which
was established by a single cell. 51

conjugation The direct transfer of DNA between two proteins through cell to cell contact.
6

cumulative distribution function A function which gives the probability that a ran-
dom variable will be less than or equal to a value. 66

DNA polymerases Proteins which move along the DNA, replicating the nucleotide se-
quence and correcting errors. Come in five different types. 12

doubling rate How many doublings a bacterial culture completes in a period of time.
Generally measured as doublings/hour. 7
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doubling time How long it takes a bacterial culture to double its population on average.
Generally measured in minutes. 7

eukaryote An organism whose cells have internal membrane-bound organisation; of par-
ticular importance is the nucleus, which holds the cell’s DNA. Eukaryotes can form
multicellular or single celled organisms. 1

fluctuation test An experiment which observes the number of mutants in many parallel
cultures after a period of growth and uses the data to determine attributes of the
mutation process. First developed by Salvador Luria and Max Delbrück in 1943. 14

gene A portion of the genome which codes for the synthesis of material, commonly protein.
10

genome The total genetic information of a living organism. 6

half-inhibition concentration (IC50) The concentration of antibiotic which causes the
balanced growth rate of a bacteria to be half of what it is when there is no antibiotic
present. 55

inoculate To introduce cells to a new medium. 9

mutagens External factors that cause mutations such as chemicals or light. 12

mutation A change in the sequence of nucleotides in a strand of DNA. 9

nucleotides A molecule composed of phosphorous, sugar, and nucleobases; nucleotides
are stacked together to form DNA. 4

optical density A measure of the amount of light that passes through a liquid. Com-
monly performed using 600nm light, denoted OD600. When used to measure bacterial
cultures in liquid medium, the optical density is proportional to the total cell mass
in the culture. 51

phenotype The observable physical properties of an organism; these include the organ-
ism’s appearance, development, and behaviour. 11

probability distribution function A function which gives the probability that a ran-
dom variable will equal a value. 21
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probability generating function A representation of the probability distribution func-
tion in power series form. 21

prokaryote A single celled organism with no internal membrane-bound organisation. 1

proteome How the total amount of protein in a cell is allocated amongst the different
types of proteins. 40

ribosome The molecule which makes proteins. 11

selecting agent An agent that selects for a specific phenotype. Commonly an antibiotic
or phage. 15, 54

SOS response A stress response system in which bacteria up-regulate error prone DNA
polymerases; commonly used to quickly repair DNA damage caused by mutagens.
13, 43

turbidostat A machine which periodically measures the optical density of a growing bac-
teria culture and dilutes the culture with fresh media. These are used to maintain
exponential growth and population density. 43
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