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Abstract

We examine a problem of the Neyman-Pearson type [22], in which an investor seeks the

cheapest contingent claim that achieves a minimum performance subject to a maximum

allowed risk exposure. Specifically, our problem minimizes a non-linear cost functional,

subject to both a minimum performance measure and a maximum risk measure, where all

expectations are taken in the sense of Choquet. Solutions to our problem are called cost-

efficient claims, and possess a desirable monotonicity property as shown by Ghossoub [14];

the claims are anti-comonotonic with respect to the underlying asset, and therefore a hedge

against its risk. By viewing our problem in the context of convex optimization, we apply a

Karush-Kuhn-Tucker theorem to give necessary and sufficient conditions for cost efficiency.

Such conditions also hold when the distortion functions are assumed to be absolutely

continuous, but not necessarily continuously differentiable. This allows us to consider a

broader set of risk measures, including the popular conditional value at risk (a.k.a. the

expected shortfall). Under some additional assumptions, we explicitly characterize cost-

efficient claims in closed-form, thereby extending the results of [16]. Finally, a numerical

example is provided to illustrate our results in full detail.
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Chapter 1

Introduction

In a seminal paper, Schied [22] examines problems in which an investor seeks to raise an

amount of capital P0 ≥ 0 by issuing a contingent claim with a fixed maturity. While there

are many ways to construct such a claim, the investor also desires to achieve this amount

of capital at a minimal amount of risk. The pool of available claims is represented by a

collection X of uniformly bounded random variables on a given non-atomic probability

space (Ω, E ,P), and the risk associated with a contingent claim Y ∈ X is determined by

a risk measure ρ : X → R. Furthermore, the amount of capital raised by such a claim

Y is given by a pricing functional P : X → R defined by P(Y ) = E[ξY ] =
∫
ξ · Y dP,

where ξ is a state price density (i.e., a strictly positive random variable with E[ξ] = 1).

When the risk measure ρ is simply the expectation with respect to P, this problem reduces

to the classical Neyman-Pearson problem for randomized tests - as such, Schied calls this

problem a Neyman-Pearson problem for the risk measure ρ. Such problems arise naturally

in portfolio choice theory and risk management; indeed, since the classical mean-variance

portfolio theory of Markowitz, investors’ portfolios are constructed to meet a desirable

average return while minimizing the variance, interpreted as the risk exposure. Schied [22]

shows the existence of optimal solutions to the Neyman-Pearson problem when ρ satisfies

certain properties: namely, monotonicity, convexity, and continuity from above. Moreover,

he gives a closed-form characterization of the solution when ρ is a quantile-based risk

measure, while retaining the assumption of linear pricing.

1



Ghossoub [16] interprets the aforementioned problem as one of seeking a contingent

claim with the minimal price, among those that satisfy a minimum desired level of perfor-

mance. In his case, the problem is formulated as

inf
Y ∈X

{
C(Y ) : 0 ≤ Y ≤ N, P(Y ) ≥ P0

}
, (1.1)

where C : X → R is a pricing rule and P : X → R is a performance measure. While

Schied [22] assumes the existence of a state-price density and a linear pricing rule C(Y ) =∫
ξ · Y dP, linearity is generally not exhibited by securities markets with imperfections

(e.g., the existence of bid-ask spreads). For example, such inefficiencies can be captured

by a sublinear cost functional (i.e., positive homogeneous and subadditive), which can be

represented as the maximum of a collection L of linear positive pricing rules (e.g., Jouini

and Kallal [18]). In some cases, such a maximum can be represented as a Choquet pricing

rule with respect to a submodular capacity, as examined by Chateauneuf et al. [8]. A

Choquet pricing rule is a nonlinear pricing rule of the form

C(Y ) =

∫
Y dν ,

where ν is a non-additive measure (a capacity), and integration is in the sense of Choquet.

We refer to Appendix A.2.1 for more on non-additive measures and Choquet integration.

Araujo et al. [2], Chateauneuf and Cornet [7], and Cerreia-Vioglio et al. [6] also provide

characterizations of Choquet pricing rules.

In an earlier work, Ghossoub [14] proves existence of an optimal solution to the Neyman-

Pearson problem 1.1, if the capacity ν is continuous and strongly diffuse, and if C and

P preserve uniformly bounded pointwise convergence. His results are also extended to a

similar problem with an additional risk constraint which a claim must satisfy. In particular,

the risk of a claim is given by the functionalR : X → R, also assumed to preserve uniformly

bounded pointwise convergence. Given a maximum risk tolerance level R0, the problem is

therefore

inf
Y ∈X

{
C(Y ) : 0 ≤ Y ≤ N, P(Y ) ≥ P0, R(Y ) ≤ R0

}
, (1.2)

and existence of an optimal solution is guaranteed. Such a problem arises naturally in risk

management, as financial institutions often encounter regulatory restrictions on their risk
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exposure. We note that this setup differs from that of Schied [22] in that the objective is

not to minimize the risk of a claim, but its cost, over a set of claims meeting a performance

threshold and not exceeding a risk threshold.

Ghossoub [16] fully characterizes optimal solutions to Problem 1.1, in the case when the

Choquet pricing rule and performance functional are given by expectations with respect

to a distorted probability measure: that is, a capacity of the form ν = T ◦ P, where P
is a probability measure and T is an increasing and continuous function with T (0) = 0

and T (1) = 1. However, the results obtained therein do not directly extend to optimal

solutions to Problem 1.2. For example, while a Lagrange multiplier method was applied to

Problem 1.1, such a method relies on the fact that the performance constraint will always

be attained at an optimum - this is not the case for Problem 1.2.

In this thesis, we address Problem 1.2 and the characterization of its optimal solutions.

Specifically, we consider a scenario where C,P ,and R are Choquet integrals with respect

to possibly different distortions. That is,

C(Y ) =

∫
Y dT1 ◦ P ,

P(Y ) =

∫
p(Y ) dT2 ◦ P ,

R(Y ) =

∫
r(Y ) dT3 ◦ P ,

where T1, T2, and T3 are given distortion functions, p is a concave and increasing real-

valued function, and r is a convex and increasing real-valued function. Applying similar

methods to those in [16], we can reformulate this problem using quantile functions by a

change of measure. We then show that under certain reasonable conditions, Problem 1.2

can be understood as a convex optimization problem, and therefore a Karush-Kuhn-Tucker

(KKT) theorem can be applied to obtain necessary and sufficient conditions for optimality.

These conditions are also shown to hold under the less restrictive assumption that T2 and

T3 are non-decreasing and absolutely continuous; this differs from the setting in [16] in that

these distortions no longer need to be strictly increasing and continuously differentiable.

This allows us to consider risk measures such as the expected shortfall, which can be

represented as a distorted expectation with an absolutely continuous distortion function
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[10]. Finally, under a few special conditions, similar to those imposed by Ghossoub [14],

an optimal solution can be explicitly characterized in closed form.

The rest of this thesis is organized as follows. Chapter 2 introduces the main problem

in detail and includes some definitions. Chapter 3 frames the problem in the context of

convex optimization, and introduces a KKT theorem to obtain conditions for optimality.

Chapter 4 gives two special cases in which explicit characterization is possible. Also in

Chapter 4, we provide a numerical example in which a full explicit characterization of an

optimal solution is given. Some related background and results about rearrangements,

non-additive measures, and Choquet integration are given in the Appendices.

4



Chapter 2

Problem Setup and Formulation

2.1 Contingent Claims

In a given financial market, an investor wishes to hedge the risk of a security’s random

payoff, by purchasing a contingent claim (a derivative instrument). The random payoff of

such an asset depends on a collection S of states of the world, equipped with a σ-algebra

E of events. The payoff is represented by a random variable X on the measurable space

(S, E).

Let Σ = σ{X} be the σ-algebra on S generated by X. We further assume that the space

(S,Σ) is equipped with a probability measure P, with the following additional assumptions

on X:

1. X ∈ L∞(S,Σ,P); and,

2. X is a continuous random variable with respect to P. That is, the Borel probability

measure P ◦X−1 is non-atomic.

Let B(Σ) denote the linear space of all bounded, real-valued, and Σ-measurable func-

tions on (S,Σ), and B+(Σ) its positive cone. When equipped with the supnorm1, B(Σ) is

1For all Y ∈ B(Σ), the supnorm of Y is defined by ||Y ||sup = sup{|Y (s)| : s ∈ S} < +∞ .
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a Banach space [1, Theorem 14.2]. By Doob’s measurability theorem [1, Theorem 4.41],

for any Y ∈ B(Σ), there exists a bounded, Borel-measurable map I : R → R such that

Y = I ◦ X, and Y ∈ B+(Σ) if and only if the function I is nonnegative. We can then

identify the collection of random payoffs of all contingent claims on X with B+(Σ).

2.2 Pricing rule

The market prices contingent claims through a cost functional C : B(Σ) → R, assumed

to be non-linear due to market frictions. Specifically, we consider a Choquet pricing rule,

with respect to the distortion of the measure P. Appendix A.2.1 provides background on

non-additive measures and Choquet integration.

Assumption 2.2.1. (Choquet Pricing) There exists a distortion function T1 : [0, 1]→ [0, 1]

such that:

1. T1(0) = 0 and T1(1) = 1;

2. T1 is strictly increasing and continuously differentiable on [0, 1];

3. C(Y ) =
∫
Y dT1 ◦ P.

Here, we assume neither convexity nor concavity of the distortion function T1.

2.3 Performance and Risk Measurement

Assumption 2.3.1. There exists distortion functions T2, T3, a function p, and a function

r such that:

1. T2(0) = T3(0) = 0 and T2(1) = T3(1) = 1;

2. T2 and T3 are non-decreasing and absolutely continuous on [0, 1];

3. p is strictly increasing and strictly concave;
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4. r is strictly increasing and strictly convex;

5. P(Y ) =
∫
p(Y ) dT2 ◦ P;

6. R(Y ) =
∫
r(Y ) dT3 ◦ P.

One could interpret the function p as a utility function for the investor. Therefore,

concavity of p agrees with the notion of diminishing marginal utility. We could similarly

interpret the convexity of r through the notion of disutility, using a symmetric argument.

2.4 The Investor’s Problem

The investor desires a minimum performance P0 ∈ R+, subject to a maximum risk tolerance

level R0 ∈ R+. We also assume that the payoffs of all contingent claims available to the

investor are bounded by some sufficiently large N ∈ (0,+∞). Hence, the investor’s problem

can be summarized as

inf
Y ∈B+(Σ)

{∫
Y dT1 ◦ P : 0 ≤ Y ≤ N,

∫
p(Y ) dT2 ◦ P ≥ P0,

∫
r(Y ) dT3 ◦ P ≤ R0

}
. (2.1)

The set of contingent claims available to the investor is called the feasibility set, defined

as

F :=

{
Y ∈ B+(Σ)

∣∣∣Y ≤ N,

∫
p(Y ) dT2 ◦ P ≥ P0,

∫
r(Y ) dT3 ◦ P ≤ R0

}
.

It is possible that F = ∅, e.g., if the performance constraint or the risk measure

constraint cannot be met. For example, if P0 > p(N) =
∫
p(N) dT2 ◦ P, the performance

constraint can never be met. To rule out trivial situations, we further assume the following:

Assumption 2.4.1. 0 ≤ P0 ≤ p(N).

Assumption 2.4.2. 0 ≤ R0 ≤ r(N).
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However, it is important to note that these assumptions do not cover all possible sce-

narios that would admit an empty feasibility set. For a given performance measure P0,

it is possible that the risk tolerance level R0 is so low that every contingent claim with

sufficient performance is too risky for the investor. To avoid this, we impose the following

additional assumption:

Assumption 2.4.3. There exists a Y0 ∈ B+(Σ) such that∫
p(Y0) dT2 ◦ P > P0,

∫
r(Y0) dT3 ◦ P < R0.

This ensures that the performance level P0 and risk tolerance level R0 are selected so that

there is still at least one contingent claim that is feasible for the investor. The strictness

of the inequality is also important, as will become clear when trying to characterize the

optimal claim.

2.5 Cost-Efficient Claims

Definition 2.5.1. A contingent claim Y ∈ B+(Σ) is cost-efficient if

1. Y ∈ F , i.e., it is feasible for the investor; and,

2. C(Y ) ≤ C(Z), ∀Z ∈ F .

A contingent claim Y is strictly cost-efficient if it is cost-efficient, and there does not exist

Z ∈ F such that

(i) P(Y 6= Z) > 0 , and,

(ii) C(Z) = C(Y ) .

That is, for all Z ∈ F such that P(Y 6= Z) > 0, we have C(Y ) < C(Z).

8



Since the cost functional, the performance measure, and the risk measure are all law-

invariant (i.e., they depend only on the distribution of the contingent claim Y ), Proposition

2.5.5 below gives a characterization of the shape of cost-efficient claims. The following

arguments are adapted from Ghossoub [14, 16], and are summarized here.

Definition 2.5.2. Two functions Y1, Y2 ∈ B(E) are said to be comonotonic if

[Y1(s)− Y1(s′)] [Y2(s)− Y2(s′)] ≥ 0, for all s, s′ ∈ S.

Similarly, the functions Y1, Y2 are said to be anti-comonotonic or countermonotonic if

[Y1(s)− Y1(s′)] [Y2(s)− Y2(s′)] ≤ 0, for all s, s′ ∈ S.

Lemma 2.5.3. Let F↓ ⊆ F denote all the elements of F that are anti-comonotonic with

X. Then for each Y ∈ F , there exists a Ỹ ∈ F↓ such that C(Y ) = C(Ỹ ), P(Y ) = P(Ỹ ),

and R(Y ) = R(Ỹ ).

Proof. Define Ỹ to be the non-increasing P-upper-equimeasurable rearrangement of Y with

respect to X, as defined in Appendix A.2.2. Then Ỹ ≤ N , and

C(Y ) =

∫
Y dT1 ◦ P

=

∫ ∞
0

T1(P({s ∈ S : Y (s) > t})) dt

=

∫ ∞
0

T1(P({s ∈ S : Ỹ (s) > t})) dt

=

∫
Ỹ dT1 ◦ P

= C(Ỹ ) .

Similarly, one can show that P(Y ) = P(Ỹ ) and R(Y ) = R(Ỹ ).

Lemma 2.5.4. (Helly’s Compactness Theorem) If (fn)n is a uniformly bounded sequence

of non-increasing real-valued functions on a closed interval I in R with bound N , then

there exists a non-increasing real-valued bounded function f ∗ on I, also with bound N , and

a subsequence of (fn)n that converges pointwise to f ∗ on I.
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Proof. See [11, pp. 165-166].

Proposition 2.5.5. (Ghossoub [14]) Assuming that Problem 2.1 has a non-empty feasi-

bility set, it admits a solution which is anti-comonotonic with X. Moreover, any strictly

cost-efficient claim is necessarily anti-comonotonic with X.

Proof. By Lemma 2.5.3, we see that if F 6= ∅, then F↓ 6= ∅. Also, we can choose a

minimizing sequence {Yn}n in F↓, that is,

lim
n→∞

C(Yn) = H := inf
Y ∈F
C(Y ) .

Since 0 ≤ Yn ≤ N for all n, the sequence {Yn}n is uniformly bounded. Also, for each n we

have Yn = In ◦X, and consequently, the sequence {In}n is a uniformly bounded sequence

of non-decreasing Borel-measurable functions. Therefore by Lemma 2.5.4, there exists a

non-decreasing function I∗ and a subsequence {Im}m of {In}n converging pointwise to I∗.

Since I∗ is also Borel-measurable, Y ∗ := I∗ ◦X ∈ B+(Σ) and 0 ≤ Y ∗ ≤ N , and Y ∗ is anti-

comonotonic with X. Moreover, the sequence {Ym}m defined by Ym := Im ◦X converges

pointwise to Y ∗.

Recall that the distortion functions T1, T2, and T3 were assumed to be continuous.

Since P is a probability measure, it is a continuous capacity [15], and hence so are T1 ◦ P,

T2 ◦ P, and T3 ◦ P. Since p and r are continuous and non-decreasing, they are also Borel-

measurable and bounded on any closed and bounded subset of R. Since the Choquet

integral with respect to a continuous capacity is an operator on B+(Σ) which preserves

uniformly bounded convergence, it follows that C, P , andR all preserve uniformly bounded

pointwise convergence. Therefore it follows that Y ∗ ∈ F↓. Also,

C(Y ∗) = lim
m→∞

C(Ym) = lim
n→∞

(Yn) = H .

Hence, Y ∗ solves Problem 2.1, and is anti-comonotonic with X.

Finally, suppose for the sake of contradiction that there exists a strictly cost-efficient

claim Y0 not anti-comonotonic with X. Then taking Ỹ0 in the sense of Lemma 2.5.3, we

have C(Y0) = C(Ỹ0), and Ỹ0 ∈ F , contradicting the strict cost-efficiency of Y0.
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Chapter 3

Towards a Characterization of

Optimal Solutions

3.1 Quantile Formulation and Change of Variables

For each Y ∈ B+(Σ), let FY (t) := P({s ∈ S : Y (s) ≤ t}) be the cumulative distribution

function (cdf) of Y with respect to the probability measure P. Let F−1
Y (t) denote the

left-continuous inverse of the cdf FY (i.e., a quantile of Y ), defined as

F−1
Y (t) := inf

{
z ∈ R+

∣∣∣FY (z) ≥ t
}
, ∀t ∈ [0, 1].

Let Q denote the collection of all quantile functions, and let Q∗ denote the collection

of all quantile functions f which satisfy 0 ≤ f(t) ≤ N for all t ∈ (0, 1). Then

Q =
{
f : (0, 1)→ R

∣∣∣ f is non-decreasing and left-continuous
}
,

and

Q∗ = {f ∈ Q : 0 ≤ f(t) ≤ N, ∀ 0 < t < 1}.

Then the following uniform transform is instrumental in reformulating our problem in

terms of quantiles.
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Lemma 3.1.1. The following conditions hold:

i) U := FX(X) is a random variable on (S,Σ,P) with a uniform distribution on (0, 1),

ii) X = F−1
X (U) almost surely (with respect to P); and,

iii) for each Y ∈ F , the function Y ∗ := F−1
Y (1− FX(X)) = F−1

Y (1− U) satisfies:

(a) Y ∗ ∈ F↓;

(b) Y and Y ∗ have the same distribution with respect to P; and,

(c) C(Y ) = C(Y ∗),P(Y ) = P(Y ∗), and R(Y ) = R(Y ∗).

Proof. See Lemma 9.3 of [14].

Now consider the problem:

inf
f∈Q∗

{∫ 1

0

T ′1(t)f(1− t) dt :

∫ 1

0

T ′2(t)p(f(1− t)) dt ≥ P0,

∫ 1

0

T ′3(t)r(f(1− t)) dt ≤ R0

}
.

(3.1)

Lemma 3.1.2. If f ∗ is optimal for Problem 3.1, then Y ∗ := f ∗(1−FX(X)) is optimal for

Problem 2.1 and anti-comonotonic with X.

Proof. Since each distortion is absolutely continuous, by Lemma 3.1.1, we have

C(Y ) =

∫
Y dT1 ◦ P

=

∫
T ′1(1− U)F−1

Y (U) dP

=

∫ 1

0

T ′1(1− t)F−1
Y (t) dt

=

∫ 1

0

T ′1(t)F−1
Y (1− t) dt .

A similar calculation for T2 and T3 yields

P(Y ) =

∫ 1

0

T ′2(t)p
(
F−1
Y

)
(1− t) dt ,

12



and

R(Y ) =

∫ 1

0

T ′3(t)r
(
F−1
Y

)
(1− t) dt .

Now, let f ∗ be optimal for Problem 3.1. Then since Q∗ is a collection of quantile

functions, then there exists Z∗ ∈ B+(Σ) such that f ∗ is the quantile of Z∗. Hence 0 ≤
Z∗ ≤ N , and the feasibility of f ∗ gives

P(Z∗) =

∫ 1

0

T ′2(t)p
(
F−1
Z∗

)
(1− t) dt

=

∫ 1

0

T ′2(t)p(f ∗(1− t)) dt

≥ P0 ,

and

R(Z∗) =

∫ 1

0

T ′2(t)r
(
F−1
Z∗

)
(1− t) dt

=

∫ 1

0

T ′2(t)r(f ∗(1− t)) dt

≥ R0 .

Therefore Z∗ is feasible for Problem 2.1. Hence, by Lemma 3.1.1, defining Y ∗ := f ∗(1 −
FX(X)) is feasible for Problem 2.1, anti-comonotonic with X, and such that C(Z∗) =

C(Y ∗),P(Z∗) = P(Y ∗), and R(Z∗) = R(Y ∗).

It remains to show optimality of Y ∗. If Y is any other feasible claim for Problem 2.1,

then by Lemma 3.1.1, the function Z = F−1
Y (1 − FX(X)) is feasible for Problem 2.1 and

anti-comonotonic with X. Moreover, FZ = FY . Let f = F−1
Y so that Z = f(1− U). Then

we have

P(Z) =

∫
p(Z) dT2 ◦ P =

∫ 1

0

T ′2(t)p(f(1− t)) dt ≥ P0 ,

and

R(Z) =

∫
r(Z) dT3 ◦ P =

∫ 1

0

T ′3(t)r(f(1− t)) dt ≤ R0 .

13



Therefore f is feasible for Problem 3.1. Since f ∗ is optimal for Problem 3.1, then∫
Z dT1 ◦ P =

∫ 1

0

T ′1(t)f(1− t) dt

≥
∫ 1

0

T ′1(t)f ∗(1− t) dt

=

∫
Z∗ dT1 ◦ P ,

showing optimality of Y ∗.

By Lemma 3.1.2, if we can solve the quantile reformulation problem 3.1, then we can

recover a cost-efficient claim for the original problem 2.1.

Using the substitution v(t) = 1 − T−1
1 (1 − t) and z = v−1(t), the objective can be

rewritten as ∫ 1

0

T ′1(t)f(1− t) dt =

∫ 1

0

T ′1(1− t)f(t) dt

=

∫ 1

0

f(t) d(1− T1(1− t))

=

∫ 1

0

f(t) dv−1(t)

=

∫ 1

0

f(v(z)) dz

=

∫ 1

0

q(z) dz,

where q = f ◦ v is increasing and can be viewed as a quantile function. The performance
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constraint can also be rewritten, as∫ 1

0

T ′2(t)p(f(1− t)) dt =

∫ 1

0

T ′2(1− t)p(f(t)) dt

=

∫ 1

0

T ′2(1− v(z))p(f(v(z))) dv(z)

=

∫ 1

0

T ′2(1− v(z))p(q(z))v′(z) dz

=

∫ 1

0

T ′2(T−1
1 (1− t))p(q(t))(T−1

1 )′(1− t) dt

=

∫ 1

0

p(q(t))
T ′2(T−1

1 (1− t))
T ′1(T−1

1 (1− t))
dt

=

∫ 1

0

p(q(t))ψ′2(t) dt,

where we define ψ2(t) := 1−T2(T−1
1 (1− t)). Similarly, the risk constraint can be rewritten

as ∫ 1

0

T ′3(t)r(f(1− t)) dt =

∫ 1

0

r(q(t))ψ′3(t) dt,

with ψ3(t) := 1− T3(T−1
1 (1− t)).

Now, define the set Q∗∗ by

Q∗∗ :=
{
q : (0, 1)→ R

∣∣∣ q is non-decreasing and left-continuous, and

0 ≤ q(t) ≤ N, for each 0 < t < 1
}
. (3.2)

Consider the following problem:

inf
q∈Q∗∗

{∫ 1

0

q(t) dt :

∫ 1

0

p(q(t))ψ′2(t) dt ≥ P0,

∫ 1

0

r(q(t))ψ′3(t) dt ≤ R0

}
. (3.3)

Lemma 3.1.3. If q∗ is optimal for Problem 3.3, then the function f ∗ defined by f ∗(t) =

q∗(1 − T1(1 − t)) is optimal for Problem 3.1. Furthermore, Y ∗ := f ∗(1 − FX(X)) =

q∗(1− T1(FX(X))) is optimal for Problem 2.1 and anti-comonotonic with X.
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Proof. Suppose q∗ is optimal for Problem 3.3, and let f ∗ = q∗ ◦ T1. Then q∗(t) = f ∗(v(t))

for all t ∈ [0, 1]. Since q∗ is feasible for Problem 3.3, we have that q∗ is non-decreasing and

left-continuous, and therefore so is f ∗: i.e., f ∗ ∈ Q. Also, since 0 ≤ q∗ ≤ N , we also have

0 ≤ f ∗ ≤ N , so f ∗ ∈ Q∗. Then by the above,∫ 1

0

T ′2(t)p(f ∗(1− t)) dt =

∫ 1

0

p(q∗(t))ψ′2(t) dt ≥ P0,

and ∫ 1

0

T ′3(t)r(f ∗(1− t)) dt =

∫ 1

0

r(q∗(t))ψ′3(t) dt ≤ R0,

showing feasibility of f ∗ for Problem 3.1.

To show optimality of f ∗ for Problem 3.1, let f be any other feasible solution, and

define q := f ◦ v. Then by the above, we have∫ 1

0

T ′1(t)f(1− t) dt =

∫ 1

0

q(z) dz.

Feasiblity of q for Problem 3.3 follows similarly as the above. Since f is feasible for

Problem 3.1, then it is non-decreasing and left-continuous, and therefore so is q. Also,

since 0 ≤ f ≤ N , we also have 0 ≤ q ≤ N . Finally, by feasibility of f , we also have∫ 1

0

T ′2(t)p(f(1− t)) dt =

∫ 1

0

p(q(t))ψ′2(t) dt ≥ P0,

and ∫ 1

0

T ′3(t)r(f(1− t)) dt =

∫ 1

0

r(q(t))ψ′3(t) dt ≤ R0.

This guarantees feasibility of q. Therefore∫ 1

0

T ′1(t)f(1− t) dt =

∫ 1

0

q(z) dz

≥
∫ 1

0

q∗(z) dz

=

∫ 1

0

T ′1(t)f ∗(1− t) dt,

showing optimality of f ∗ for Problem 3.1. The remainder follows from Lemma 3.1.2.

16



3.2 A Convex Programming Approach

The set Q∗∗ is a set of quantile functions - in this case, a set of left-continuous functions

q : [0, 1] → R. Since each q ∈ Q∗∗ is bounded by N , we can identify Q∗∗ as a subset of

L∞([0, 1]). When equipped with the essential supnorm1, L∞([0, 1]) is a Banach space [1,

Theorem 13.5], so we can appeal to the theory of convex optimization to solve Problem

3.3, provided that the objective function and the constraints satisfy certain regularity

conditions.

Definition 3.2.1. (Convex functions) Let X be a real linear space, and f : X → R a

real-valued function on X. Then f is convex if

f(t1x1 + t2x2) ≤ t1f(x1) + t2f(x2) ,

for all x1, x2 ∈ X and t1, t2 ≥ 0 with t1 + t2 = 1.

Theorem 3.2.2. (Barbu & Precupanu [3]) Let X be a real linear space and let h : X → R̄
be a given convex function. Define the feasible set FX by

FX =
{
x ∈ X

∣∣∣ gi(x) ≤ 0 ∀i = 1, . . . , n, rj(x) = 0 ∀j = 1, . . . ,m
}
,

where gi and rj are extended real-valued functions on X, convex and affine respectively.

Consider the optimization problem

min {h(x) | x ∈ FX} ,

and suppose further that this FX is nonempty. If x∗ ∈ FX is an optimal solution to this

optimization problem, that is,

h(x∗) = min {h(x) | x ∈ FX} ,

then there exist n+m+ 1 real numbers θ∗, λ∗1, . . . , λ
∗
n, µ

∗
1, . . . , µ

∗
m satisfying:

(i) θ∗ ≥ 0;

1For all q ∈ L∞([0, 1]), ||q||esssup = inf{M > 0 : |q(x)| ≤M for P-a.e.x} .
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(ii) λ∗i , µ
∗
j ≥ 0 for all i = 1, . . . , n, j = 1, . . . ,m;

(iii) θ∗h(x∗) ≤ θ∗h(x) +
∑n

i=1 λ
∗
i gi(x) +

∑m
j=1 µ

∗
jrj(x) for all x ∈ X;

(iv) λ∗i gi(x
∗) = 0 for all i = 1, . . . , n.

Proof. See Theorem 3.1 from [3] and references therein.

Note that if all gi are identically zero, then this reduces to a classical optimization

problem that can be solved by the Lagrangian multiplier method. Therefore this theorem

can be seen as an extension of the Lagrangian method for inequality constraints, and the

real numbers λ∗i and µ∗j can be interpreted as Lagrangian multipliers, as shown by the

following definition.

Definition 3.2.3. (Lagrangian function) For a convex optimization problem as above,

define its Lagrangian function as

L(x, λ, µ) = h(x) +
n∑
i=1

λigi(x) +
m∑
j=1

µjrj(x), (3.4)

for all (x, λ, µ) ∈ X × Rn
+ + Rm.

We see that Theorem 3.2.2 gives necessary conditions for an optimal solution; under

some additional assumptions, we can show that these conditions are sufficient as well.

Definition 3.2.4. (Slater condition) An optimization problem satisfies the Slater condition

if there exists a point x0 ∈ FX such that

gi(x0) < 0 ∀i = 1, . . . , n .

Theorem 3.2.5. Under the hypotheses of Theorem 3.2.2, if we further assume that the

Slater condition holds, then the necessary conditions of Theorem 3.2.2 are sufficient for

optimality, and equivalently, θ > 0. Furthermore, it suffices to optimize the Lagrangian

function L(x, λ∗, µ∗) as a function of x over X.

Proof. See Theorems 3.7-3.9 from [3].
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To apply the aforementioned convex programming technique, we can rewrite Problem

3.3 as follows:

inf
q∈Q∗∗

{∫ 1

0

q(t) dt :

∫ 1

0

−p(q(t))ψ′2(t) dt+ P0 ≤ 0,

∫ 1

0

r(q(t))ψ′3(t) dt−R0 ≤ 0

}
. (3.5)

We have two inequality constraints and no equality constraints. Define

g1(q) =

∫ 1

0

−p(q(t))ψ′2(t) dt+ P0 ;

g2(q) =

∫ 1

0

r(q(t))ψ′3(t) dt−R0 .

Then the following results show that Problem 3.5 satisfies the conditions of Theorems 3.2.2

and 3.2.5.

Proposition 3.2.6. The objective cost functional
∫ 1

0
q(t) dt is convex as a function of q.

Proof. This follows trivially by linearity of the integral.

One small detail to note is that Problem 3.5 is an optimization problem over the domain

Q∗∗, whereas the statement in Theorem 3.2.2 is a problem over a general linear space X.

This inconsistency can be resolved by noting that the set Q∗∗ is itself a convex set in the

larger space L∞([0, 1]). Define the objective h(q) over L∞([0, 1]) by

h(q) =


∫ 1

0
q(t) dt, q ∈ Q∗∗ ;

+∞, q 6∈ Q∗∗ .

Then it is straightforward to verify that in light of Proposition 3.2.6, the extension h is

also convex as a function of q. We can therefore optimize over convex domains in the same

manner as we do over real linear spaces [4].

Proposition 3.2.7. g2(q) is a convex function of q.

19



Proof. By Assumption 2.3.1, r is convex. Let 0 ≤ t1, t2 ∈ R such that t1 + t2 = 1. Then

g2(t1q1 + t2q2) =

∫ 1

0

r(t1q1(t) + t2q2(t))ψ′3(t) dt−R0

≤
∫ 1

0

[t1r(q1(t)) + t2r(q2(t))]ψ′3(t) dt−R0

= t1

(∫ 1

0

r(q1(t))ψ′3(t) dt−R0

)
+ t2

(∫ 1

0

r(q2(t))ψ′3(t) dt−R0

)
= t1g2(q1) + t2g2(q2) .

Proposition 3.2.8. g1(q) is a convex function of q.

Proof. Similar.

Proposition 3.2.9. Problem 3.5 satisfies the Slater condition.

Proof. Recall from Assumption 2.4.3 the existence of Y0 ∈ B+(Σ) such that∫
p(Y0) dT2 ◦ P > P0,

∫
r(Y0) dT3 ◦ P < R0 .

Then defining q0(t) = F−1
Y0

(1− T−1
1 (t)) gives∫

p(q0(t))ψ′2(t) dt =

∫
p(Y0) dT2 ◦ P > P0 ;

and ∫
r(q0(t))ψ′3(t) dt =

∫
r(Y0) dT3 ◦ P < R0 .

by the quantile reformulation arguments from the previous section. Furthermore, q0 ∈ Q∗∗

by definition of Q∗∗. Then q0 satisfies the Slater condition for Problem 3.5, as desired.

This shows that f, g1, g2 satisfy the regularity properties of Theorem 3.2.2. Applying

this theorem therefore gives the existence of λ ∈ R+, µ ∈ R∗, such that for any optimal

solution q̄, we have∫ 1

0

q̄(t) dt ≤
∫ 1

0

q(t) dt+ λ

(∫ 1

0

−p(q(t))ψ′2(t) dt+ P0

)
+ µ

(∫ 1

0

r(q(t))ψ′3(t) dt−R0

)
,

(3.6)
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for all q ∈ Q∗∗. Also, by part (iv) of Theorem 3.2.2, we have∫ 1

0

−p(q̄(t))ψ′2(t) dt+ P0 =

∫ 1

0

r(q̄(t))ψ′3(t) dt−R0 = 0.

Adding these terms to the left-hand side of Equation 3.6 and cancelling out the P0 and

R0 terms gives

∫ 1

0

q̄(t) dt−λ
∫ 1

0

p(q̄(t))ψ′2(t) dt+ µ

∫ 1

0

r(q̄(t))ψ′3(t) dt

≤
∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))ψ′2(t) dt+ µ

∫ 1

0

r(q(t))ψ′3(t) dt, ∀q ∈ Q∗∗.

Therefore, q̄ must also be an optimal solution to the problem

min
q∈Q∗∗

{∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))ψ′2(t) dt+ µ

∫ 1

0

r(q(t))ψ′3(t) dt

}
. (3.7)

Conversely, Theorem 3.2.5 shows that an optimal solution q∗ for Problem 3.7 is also

optimal for Problem 3.3. For the remainder of this chapter, we focus on solving Problem

3.7.

3.2.1 Non-negativity of Multipliers

In the previous section, we proved the existence of the multipliers λ, µ ≥ 0. The special

case when these multipliers are actually equal to zero warrants some attention. If a mul-

tiplier is zero, then consider a similar optimization problem, but without the multiplier’s

corresponding constraint. Then by applying the methodology from the previous section,

we find that these optimization problems must have the same solution, since their solutions

are characterized by the same conditions. This implies that imposing this condition was

redundant, since it does not affect the optimum.

In our case, the performance constraint is never redundant - without the performance

constraint, we could take a contingent claim identically equal to zero, which would minimize
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the cost. This is clearly a trivial situation, so we can safely assume λ > 0. The fact that the

performance constraint is tight at optimum then follows from Theorem 3.2.2. Alternatively,

we can show this constructively, by only relying on the monotonicity properties of our

performance and risk measures, as shown below.

Proposition 3.2.10. Suppose q∗ is optimal for Problem 3.3. Then∫ 1

0

p(q∗(t))ψ′2(t) dt = P0.

Proof. Suppose, for the sake of contradiction, that
∫ 1

0
p(q∗(t))ψ′2(t) dt > P0. Then by

monotonicity of p and continuity of the integral, there exists ε > 0 such that∫ 1

0

p(q∗(t)− ε)ψ′2(t) dt = P0.

Let q̄ := max{0, q∗− ε}. Then it is clear that 0 ≤ q̄ ≤ q∗ ≤ N , and q̄ is increasing and left

continuous, implying that q∗ ∈ Q∗∗. Now note that

{t ∈ [0, 1] : q∗(t) = 0} = {t ∈ [0, 1] : q∗(t) = q̄(t)}.

To show (⊆), if q∗(t) = 0, then q̄(t) = max{0, 0− ε} = 0 = q∗(t). For the reverse direction

(⊇), suppose q∗(t) = q̄(t) but q∗(t) > 0. Then

0 < q̄(t) = q∗(t)− ε < q∗(t),

which is a contradiction. Therefore if we define the set A := {t ∈ [0, 1] : q̄(t) < q∗(t)}, we

have

P(A) = P(q∗ > 0) > 0.

Then by checking the cost functional applied to q̄, we have∫ 1

0

q̄(t) dt =

∫
A
q̄(t) dt+

∫
[0,1]\A

q̄(t) dt

=

∫
A
q̄(t) dt+

∫
[0,1]\A

q∗(t) dt

<

∫
A
q∗(t) dt+

∫
[0,1]\A

q∗(t) dt

=

∫ 1

0

q∗(t) dt.
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Therefore, q̄ has a strictly lower cost than q∗. Also, since r is increasing, it follows that∫ 1

0

r(q̄(t))ψ′3(t) dt ≤
∫ 1

0

r(q∗(t))ψ′3(t) dt ≤ R0 .

Finally, define the set B := {t ∈ [0, 1] : q∗(t)− ε > 0}. Then∫ 1

0

p(q̄(t))ψ′2(t) dt =

∫
C
p(q̄(t))ψ′2(t) dt+

∫
[0,1]\B

p(q̄(t))ψ′2(t) dt

=

∫
B
p(q∗(t)− ε)ψ′2(t) dt+ 0

=

∫ 1

0

p(q∗(t)− ε)ψ′2(t) dt−
∫

[0,1]\B
p(q∗(t)− ε)ψ′2(t) dt

= P0 −
∫

[0,1]\B
p(q∗(t)− ε︸ ︷︷ ︸

≤0

)ψ′2(t) dt

≥ P0 .

Therefore q̄ is feasible for Problem 3.3, but has a strictly lower cost than q∗. This contradicts

the optimality of q∗.

We have shown constructively that the performance constraint is always tight at opti-

mum, and it is never redundant. However, a similar construction cannot be applied to the

risk constraint, so the redundancy of the risk constraint requires separate consideration.

In fact, the risk constraint in our case can be redundant, in the case that R0 is set too

high, as shown by the following argument.

Suppose we take a similar problem as Problem 2.1, but without the risk constraint:

inf
Y ∈B+(Σ)

{∫
Y dT1 ◦ P : 0 ≤ Y ≤ N,

∫
p(Y ) dT2 ◦ P ≥ P0

}
. (3.8)

Then this is also a convex programming problem, and has a fully characterized optimal

solution, as shown in [16]. Suppose Y ∗ is optimal for Problem 3.8. We can compute the

risk measure of this claim, as

R∗ :=

∫
r(Y ∗) dT3 ◦ P.
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If our risk tolerance level R0 exceeds the value of R∗, then Y ∗ would be optimal for Problem

2.1 as well, which would imply that the risk level R0 was redundant. This would correspond

to a vanishing multiplier µ = 0. Therefore for the remainder of this analysis, we assume

Assumption 3.2.11. R0 ≤ R∗.

That is, the risk tolerance is low enough as to effect the choice of the investor. This

reflects that in the market, there are claims with higher cost for the same performance,

but at lower risk. The mathematical implication is that both multipliers λ, µ are strictly

positive, which will be important in the following section.

3.3 An Envelope Relaxation Problem

Recall Problem 3.7:

min
q∈Q∗∗

{∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))ψ′2(t) dt+ µ

∫ 1

0

r(q(t))ψ′3(t) dt

}
.

Suppose we fix a value of t in [0, 1], and consider the integrand:

y − λp(y)ψ′2(t) + µr(y)ψ′3(t) . (3.9)

Then viewing this expression as a function of y, we can define ȳt to be the argument of the

minimum

ȳt := arg min{y − λp(y)ψ′2(t) + µr(y)ψ′3(t)} .

Then by defining q̄(t) = ȳt, it follows that this q̄ would minimize the integral pointwise,

and therefore admit a possible solution to Problem 3.7. However, in order for q̄ to be

feasible, we must have q̄ ∈ Q∗∗; that is, q̄ would need to be bounded by N , non-negative,

and non-decreasing. These conditions are not necessarily met by the minimum of Equation

3.9. To guarantee monotonicity, we adopt a convex/concave envelope approach.
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3.3.1 Convex and Concave Envelopes

Definition 3.3.1. (Convex Envelope) For a real-valued function f on a non-empty convex

subset of R containing the interval [0, 1], the convex envelope of f on the interval [0, 1] is the

real-valued function g, which is the greatest convex function that is pointwise dominated

by f .

Proposition 3.3.2. Rockafellar and Wets [21, Prop. 2.31] show that for all x ∈ R,

g(x) = inf

{
n∑
i=1

λif(xi) :
n∑
i=1

λixi = x,
n∑
i=1

λi = 1, λi ≥ 0 for i = 1, · · · , n

}
. (3.10)

It is straightforward to verify that the convex envelope satisfies the following properties.

Proposition 3.3.3. If g is the convex envelope of f , then

1. g is continuous and convex on [0, 1];

2. g(0) = f(0) and g(1) = f(1);

3. for all x ∈ [0, 1], g(x) ≤ f(x);

4. g is affine on {x ∈ [0, 1] : g(x) < f(x)};

5. if f is non-decreasing, then so is g;

6. if f is strictly increasing, then so is g;

7. if f is continuously differentiable on (0, 1), then so is g.

Proof. See [17].

Definition 3.3.4. (Concave Envelope) For a real-valued function f on a non-empty convex

subset of R containing the interval [0, 1], the concave envelope of f on the interval [0, 1] is

the real-valued function g, which is the least concave function that pointwise dominates f .

The concave envelope also satisfies the following properties:
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Proposition 3.3.5. If h is the concave envelope of f , then

1. h is continuous and concave on [0, 1],

2. h(0) = f(0) and h(1) = f(1),

3. for all x ∈ [0, 1], h(x) ≥ f(x),

4. h is affine on {x ∈ [0, 1] : h(x) > f(x)},

5. if f is non-decreasing, then so is h,

6. if f is strictly increasing, then so is h,

7. if f is continuously differentiable on (0, 1), then so is h.

Proof. Similar to Proposition 3.3.3.

Now let δ2 be the convex envelope of ψ2, and let δ3 be the concave envelope of ψ3.

Consider the related problem

inf
q∈Q∗∗

{∫ 1

0

q(t) dt :

∫ 1

0

p(q(t))δ′2(t) dt ≥ P0,

∫ 1

0

r(q(t))δ′3(t) dt ≤ R0

}
, (3.11)

and its associated Lagrangian minimization problem

inf
q∈Q∗∗

{∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))δ′2(t) dt+ µ

∫ 1

0

r(q(t))δ′3(t) dt

}
. (3.12)

As in Equation 3.9, we can consider the integrand of Problem 3.12 as a function of a

variable y,

∆t(y) := y − λp(y)δ′2(t) + µr(y)δ′3(t) . (3.13)
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3.3.2 Solving the Envelope Relaxation Problem - A Special Case

Now our goal is to characterize the minimum of ∆t(y) for a fixed t. For mathematical

convenience, we assume for the time being that following additional conditions hold.

Assumption 3.3.6. The distortions T2 and T3 are strictly increasing.

Assumption 3.3.7. The distortions T2 and T3 are twice continuously differentiable.

As a consequence of Assumption 3.3.7 and Propositions 3.3.3 and 3.3.5, we can write

δ′′2(t) and δ′′3(t) to be the continuous second derivatives of δ2(t) and δ3(t) respectively.

Proposition 3.3.8. The function ∆t(y) is convex for all t ∈ [0, 1]. Under Assumption

3.3.6, it is strictly convex.

Proof. By taking the second derivative, we have

∆′′t (y) = −λp′′(y)δ′2(t) + µr′′(y)δ′3(t).

Note that since p is strictly concave and r is strictly convex, we have p′′(y) < 0 and

r′′(y) > 0. From the previous section, we know that µ, λ > 0. Also, since ψ2, ψ3 are

non-decreasing, then δ2, δ3 are non-decreasing by Propositions 3.3.3 and 3.3.5, so δ′2(t) ≥ 0

and δ′3(t) ≥ 0. Therefore

−λp′′(y)δ′2(t) + µr′′(y)δ′3(t) ≥ 0,

showing convexity of ∆t(y). Under Assumption 3.3.6, we have δ′2(t) > 0 and δ′3(t) > 0, and

−λp′′(y)δ′2(t) + µr′′(y)δ′3(t) > 0,

so ∆t(y) is strictly convex.

Recall that for a strictly convex function, checking the first order condition is enough

to guarantee a unique global minimum. Taking the first derivative of ∆t(y) gives

∆′t(y) = 1− λp′(y)δ′2(t) + µr′(y)δ′3(t).
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Setting ∆′t(y) = 0 and rearranging gives

1 = λp′(y)δ′2(t)− µr′(y)δ′3(t). (3.14)

Since ∆′t(y) is strictly increasing and continuous, it is possible to define q̄(t) such that

y = q̄(t) satisfies equation 3.14. That is, for all t ∈ [0, 1],

q̄(t) = arg min
y

∆t(y),

from which it is easy to see that

q̄ ∈ arg min
q∈L∞([0,1])

{∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))δ′2(t) dt+ µ

∫ 1

0

r(q(t))δ′3(t) dt

}
.

Furthermore, by strict convexity of the integrand, any function minimizing the above

integral coincides with q̄ almost everywhere, as shown in the following result:

Proposition 3.3.9. If q̃ is an element of

arg min
q∈L∞([0,1])

{∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))δ′2(t) dt+ µ

∫ 1

0

r(q(t))δ′3(t) dt

}
, (3.15)

then q̃(t) = q̄(t) for almost all t ∈ [0, 1].

Proof. Define

L(q) =

∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))δ′2(t) dt+ µ

∫ 1

0

r(q(t))δ′3(t) dt,

and suppose q̃ minimizes L(q). Define V = L(q̃) = L(q̄) as the optimum value. Suppose

for the sake of contradiction that q̃ and q̄ are not equal almost everywhere - that is, they

differ on a set of strictly positive measure.

By strict convexity of r and strict concavity of p, L is strictly convex. Furthermore, for

α ∈ (0, 1), the convex combination αq̃+ (1−α)q̄ is a strict convex combination. Therefore

L(αq̃ + (1− α)q̄) < αL(q̃) + (1− α)L(q̄)

= αV + (1− α)V

= V .

Therefore the function αq̃+ (1− α)q̄ is a strict improvement over both q̃ and q̄ - a contra-

diction.

28



In order for q̄ to also solve Problem 3.12, we need to show that q̄ is in Q∗∗. Therefore

q̄ needs to satisfy two additional properties; it must be bounded between 0 and N , and

it must be non-decreasing. For the first property, since q̄ does not necessarily take values

in between 0 and N , we must restrict its range. If we can also confirm that q̄ is non-

decreasing, then we recover an optimal solution to Problem 3.12, as shown by Proposition

3.3.10 below.

Proposition 3.3.10. Let µ, λ > 0 be strictly positive constants, and let δ2, δ3 : [0, 1] →
[0, 1] be strictly increasing, twice continuously differentiable functions, convex and concave

respectively. Let q̄(t) be as defined above, and define q∗(t) := max{0,min{N, q̄(t)}}. Then

q∗ ∈ arg min
q∈Q∗∗

{∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))δ′2(t) dt+ µ

∫ 1

0

r(q(t))δ′3(t) dt

}
,

and any other minimizer q is equivalent to q∗ almost everywhere.

Proof. We begin by noticing that by definition, 0 ≤ q∗(t) ≤ N for all t ∈ [0, 1]. Also, if

q̄(t) 6= q∗(t), then q̄(t) < 0 or q̄(t) > N , and we can consider these cases separately.

If q̄(t) < 0, then this means that the strictly convex function ∆t(y) obtained its mini-

mum at a value of y < 0. Since ∆t(y) is convex, it is increasing after its minimum, and so

it is increasing on [0, N ]. It follows that the value of y ∈ [0, N ] to minimize ∆t(y) on [0, N ]

is y = 0. Hence, in this case, q∗(t) = max{0,min{N, q̄(t)}} = 0 obtains the minimum.

Similarly, if q̄(t) > N , then ∆t(y) is decreasing on [0, N ]. In this case, q∗(t) =

max{0,min{N, q̄(t)}} = N obtains the minimum. This justifies the choice of q∗(t) as

the argument to minimize ∆t(y), given the restriction that it must be bounded from below

by 0 and from above by N .

It remains to show that q∗(t) is left-continuous and non-decreasing. It suffices to show

these properties for q̄. By implicitly differentiating Equation 3.14, we obtain

0 = λp′(y)δ′′2(t) + λp′′(y)δ′2(t)
dy

dt
− µr′(y)δ′′3(t)− µr′′(y)δ′3(t)

dy

dt
;

dy

dt
=
µr′(y)δ′′3(t)− λp′(y)δ′′2(t)

λp′′(y)δ′2(t)− µr′′(y)δ′3(t)
.
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Recall that p is strictly increasing and concave, and r is strictly increasing and convex.

Furthermore, δ2 is strictly increasing and convex, and δ3 is strictly increasing and concave.

This implies

µr′(y)δ′′3(t)− λp′(y)δ′′2(t) ≤ 0,

and

λp′′(y)δ′2(t)− µr′′(y)δ′3(t) < 0,

which shows that
dy

dt
≥ 0 .

So q̄ is monotone and continuous (and therefore left-continuous), and hence so is q∗. There-

fore q∗ ∈ Q∗∗, and we have

q∗ ∈ arg min
q∈Q∗∗

{∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))δ′2(t) dt+ µ

∫ 1

0

r(q(t))δ′3(t) dt

}
,

as desired. Finally, any other minimizer is equivalent to q∗ almost everywhere by the

argument of Proposition 3.3.9.

The later steps in this proof show the necessity of taking the envelopes δ2 and δ3 instead

of ψ2 and ψ3: the second order conditions are essential for ensuring monotonicity of q∗.

3.3.3 The Envelope Relaxation Problem - The General Case

We turn our attention to removing Assumptions 3.3.6 and 3.3.7. These lead to a few

technical difficulties, but the underlying structure of the solution remains the same.

Non-decreasing Distortions

The first assumption was that T2 and T3 were strictly increasing. This was important in

guaranteeing δ′2(t) > 0 and δ′3(t) > 0 for all t ∈ [0, 1]. If we relax this assumption and allow

T2 and T3 to be non-decreasing, then we have the possibility of δ′2(t) = δ′3(t) = 0, which

would give a non-strict convex ∆t(y) as in Proposition 3.3.8.
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If δ′2(t) = δ′3(t) = 0, then the implication is that ∆t(y) = y, which is minimized as y

tends to −∞. Restricting the domain of ∆t(y) to [0, N ] shows that defining q∗(t) = 0 in

this case would be the correct choice to minimize ∆t(y). It is also necessary to verify that

q∗ defined in this way is still monotone.

Note that since δ2 is convex, the only way it can be flat (i.e., δ′2(t) = 0) is if it was flat

all the way from zero: that is,

δ′2(t) = 0 =⇒ δ′2(s) = 0 ∀s ∈ [0, t].

So for all s ∈ [0, t], it follows that ∆s(y) = s + µr(y)δ′3(s), and since r is increasing,

this function obtains its minimum at y = 0, so whenever we have t ∈ [0, 1] such that

δ′2(t) = δ′3(t) = 0, we define q∗(s) = 0 for all 0 ≤ s ≤ t. This is the unique choice to

minimize ∆s(y), so we see that our construction of q∗(t) as the minimizer of ∆t(y) is still

unique in this case. Furthermore, this is consistent with the condition that q∗ must be

monotone.

Absolutely Continuous Distortions

The second assumption was that T2 and T3 were twice continuously differentiable. If

instead, T2 and T3 are assumed to just be absolutely continuous, then although δ2 and δ3 are

differentiable almost everywhere, they are no longer necessarily continuously differentiable.

In particular, we can no longer use the implicit differentiation method from Proposition

3.3.10, since the derivative dy
dx

does not necessarily exist for all t ∈ [0, 1].

Note that by convexity and concavity of the absolutely continuous functions δ2(t) and

δ3(t) respectively, we can still define δ′2(t) and δ′3(t) as their non-decreasing and non-

increasing first derivatives almost everywhere. Given this, we can still prove that q̄(t)

is monotone.

Proposition 3.3.11. Suppose δ2 and δ3 are absolutely continuous, with derivatives δ′2(t)

and δ′3(t) defined almost everywhere on [0, 1]. Define q̄ on the subset D of [0, 1] where the

aforementioned derivatives exist, such that q̄(t) satisfies

1 = λp′(q̄(t))δ′2(t)− µr′(q̄(t))δ′3(t), ∀t ∈ D . (3.16)
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Then q̄(t) is non-decreasing.

Proof. Let t1, t2 ∈ D with t1 < t2. Then by Equation 3.16,

λp′(q̄(t1))δ′2(t1)− µr′(q̄(t1))δ′3(t1) = λp′(q̄(t2))δ′2(t2)− µr′(q̄(t2))δ′3(t2).

Rearranging yields

λp′(q̄(t1))δ′2(t1)− λp′(q̄(t2))δ′2(t2) = µr′(q̄(t1))δ′3(t1)− µr′(q̄(t2))δ′3(t2).

Looking at the left-hand side, we can write the expression as

λp′(q̄(t1))δ′2(t1)− λp′(q̄(t2))δ′2(t2)

= λp′(q̄(t1))δ′2(t1)− λp′(q̄(t2))δ′2(t1) + λp′(q̄(t2))δ′2(t1)− λp′(q̄(t2))δ′2(t2)

= λδ′2(t1) [p′(q̄(t1))− p′(q̄(t2))] + λp′(q̄(t2)) [δ′2(t1)− δ′2(t2)] .

Similarly, the right hand side can be rewritten as

µδ′3(t1)[r′(q̄(t1)− r′(q̄(t2))] + µr′(q̄(t2))[δ′3(t1)− δ′3(t2)] .

Therefore we have

λδ′2(t1)[p′(q̄(t1))−p′(q̄(t2))] + λp′(q̄(t2))[δ′2(t1)− δ′2(t2)]

= µδ′3(t1)[r′(q̄(t1))− r′(q̄(t2))] + µr′(q̄(t2))[δ′3(t1)− δ′3(t2)];

λδ′2(t1)[p′(q̄(t1))−p′(q̄(t2))] + µδ′3(t1)[r′(q̄(t2))− r′(q̄(t1))]

= λp′(q̄(t2))[δ′2(t2)− δ′2(t1)] + µr′(q̄(t2))[δ′3(t1)− δ′3(t2)].

Since p and r are increasing, p′(q̄(t2)), r′(q̄(t2)) ≥ 0. Also, since δ′2 is non-decreasing and

δ′3 is non-increasing, we have

λp′(q̄(t2))[δ′2(t2)− δ′2(t1)] + µr′(q̄(t2))[δ′3(t1)− δ′3(t2)] ≥ 0,

which implies

λδ′2(t1)[p′(q̄(t1))− p′(q̄(t2))] + µδ′3(t1)[r′(q̄(t2))− r′(q̄(t1))] ≥ 0.

From this, we see that at least one of p′(q̄(t1))− p′(q̄(t2)) and r′(q̄(t2))− r′(q̄(t1)) is no less

than zero. In either case, since p′ is strictly decreasing and r′ is strictly increasing, we have

q̄(t1) ≤ q̄(t2), and so q̄(t) is non-decreasing as a function of t.
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We summarize these results in the following theorem.

Theorem 3.3.12. Let µ, λ > 0 be strictly positive constants, and let δ2, δ3 : [0, 1] → [0, 1]

be non-decreasing absolutely continuous functions, convex and concave respectively. Denote

by δ′2 and δ′3 the derivatives of δ2 and δ3 respectively, and denote by D the set on which

both these derivatives exist. Suppose that q̄ satisfies

1 = λp′(q̄(t))δ′2(t)− µr′(q̄(t))δ′3(t) ∀t ∈ D,

and define q∗(t) := max{0,min{N, q̄(t)}} for all t ∈ D. Then

q∗ ∈ arg min
q∈Q∗∗

{∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))δ′2(t) dt+ µ

∫ 1

0

r(q(t))δ′3(t) dt

}
,

and any other minimizer q is equivalent to q∗ almost everywhere.

Proof. Follows from the above arguments as well as the proof of Proposition 3.3.10.
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Chapter 4

Closing the Optimization Gap

While Theorem 3.3.12 gives an explicit characterization of the optimal solution for the

envelope relaxation problem, this does not immediately imply a solution to Problem 3.3.

Equivalently, this does not characterize the solution to the original Problem 2.1. However,

in two special cases, it can be shown that the solution to the envelope relaxation problem

is also optimal for the original problem.

Throughout this section, define D to be the set of all t ∈ [0, 1] on which the derivatives

of ψ2, δ2, ψ3, δ3 exist. Then since T2, T3 are assumed to be absolutely continuous, these

derivatives exist almost everywhere; hence, D differs from [0, 1] by a set of measure zero.

4.1 A Special Case: An Ambiguity Averse Risk Mea-

sure

The first case is when the envelope relaxation, Problem 3.12, is the same as Problem 3.7 -

that is, we have ψ′2(t) = δ′2(t) and ψ′3(t) = δ′3(t). This situation can occur when the investor

is ambiguity averse in their risk evaluation, as outlined below.
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Definition 4.1.1. (Ambiguity Aversion Index) For a given distortion function T assumed

to be twice differentiable, define the ambiguity aversion index of T as the ratio

AAT :=
T ′′

T ′
.

Given two twice differentiable distortion functions T1 and T2, T2 is said to be less ambiguity

averse than T1 if AAT2 ≤ AAT1 .

The indexAAT was introduced by Carlier and Dana [5], by comparison with the classical

Arrow-Pratt index of risk aversion.

The assumption that the distortion T is twice differentiable can also be relaxed to an

absolutely continuous T . In this case, as in the previous section, the proofs become more

technical, but the underlying intuition and methodology remain the same. In the following

discussion, for simplicity, we assume the existence of a continuous second derivative, but

as in Proposition 3.3.11, the proofs can be extended; the details are not given here.

Lemma 4.1.2. Suppose that T2 is less ambiguity averse than T1. Then ψ2(t) = 1 −
T2(T−1

1 (1− t)) is concave as a function of t.

Proof. By proposition, we have for all t,

T ′′2 (1− t)
T ′2(1− t)

≤ T ′′1 (1− t)
T ′1(1− t)

,

from which it follows that

0 ≤ T ′2(1− t)T ′′1 (1− t)− T ′1(1− t)T ′′2 (1− t)
[T ′1(1− t)]2

0 ≤ d

dt

(
T ′2(1− t)
T ′1(1− t)

)
.

Therefore the function t 7→ T ′2(1−t)
T ′1(1−t) is a non-decreasing function of t. Since T−1

1 (1 − t)

decreases as 1−t decreases, it follows that t 7→ T ′2(T−1
1 (1−t))

T ′1(T−1
1 (1−t)) is also a non-decreasing function

of t. That is, ψ′2(t) is non-decreasing, and so ψ2(t) is convex.

Corollary 4.1.3. Suppose that T3 is more ambiguity averse than T1. Then ψ3(t) = 1 −
T3(T−1

1 (1− t)) is concave as a function of t.
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Proof. Similar.

Then in this case, we have the following result, which consolidates all the arguments

from this section so far.

Theorem 4.1.4. Suppose that T2 is less ambiguity averse than T1, and T3 is more am-

biguity averse than T1. Then an optimal contingent claim Y ∗ to minimize Problem 2.1

is

Y ∗ := max{0,min{N, q̄(1− FX(X))}},

where q̄ satisfies

1 = λp′(q̄(t))ψ′2(t)− µr′(q̄(t))ψ′3(t),

with

ψi(t) = 1− Ti(T−1
1 (1− t)), i = 2, 3,

and λ, µ are the Lagrange multipliers satisfying∫ 1

0

p(q̄(t))ψ′2(t) dt = P0

and ∫ 1

0

r(q̄(t))ψ′3(t) dt = R0.

Proof. By the quantile reformulation shown by Problem 3.3, we can solve the related

problem

inf
f∈Q∗

{∫ 1

0

T ′1(t)f(1− t) dt :

∫ 1

0

T ′2(t)p(f(1− t)) dt ≥ P0,

∫ 1

0

T ′3(t)r(f(1− t)) dt ≤ R0

}
.

This is a convex programming problem, so by applying Theorem 3.2.2, we guarantee the

existence of λ, µ > 0 such that the solution of the related Problem 3.7

min
q∈Q∗∗

{∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))ψ′2(t) dt+ µ

∫ 1

0

r(q(t))ψ′3(t) dt

}

36



coincides with the solution of Problem 3.3. Now note that by Lemma 4.1.2, since T2 is less

ambiguity averse than T1, then ψ2 is convex. Similarly, by Corollary 4.1.3, ψ3 is concave.

Therefore, it follows that

δ2(t) = ψ2(t); and,

δ3(t) = ψ3(t) for all t ∈ D .

Therefore we can directly apply Proposition 3.3.10. Hence, defining q̄ such that

1 = λp′(q̄(t))ψ′2(t)− µr′(q̄(t))ψ′3(t) ∀t ∈ D,

it follows that q∗ := max{0,min{N, q̄}} is optimal for Problem 3.7. By Lemma 3.1.3, the

claim Y ∗ := q∗(1− FX(X)) = max{0,min{N, q̄(1− FX(X))}} is optimal for Problem 2.1,

as desired.

Finally, by optimality of q∗ and assertion (iv) of Theorem 3.7, it follows that∫ 1

0

p(q∗(t))ψ′2(t) dt = P0,

and ∫ 1

0

r(q∗(t))ψ′3(t) dt = R0.

In the case when the cost function exhibits ambiguity neutrality, we can simplify the

statement of Theorem 4.1.4 even further. Note that ambiguity neutrality of the cost

function means that the distortion T is the identity function. Then we have the following

characterization:

Proposition 4.1.5. Let T1 : [0, 1] → [0, 1] be the identity function - i.e., T1(t) = t. Then

a distortion function T2 : [0, 1]→ [0, 1] is less ambiguity averse then T1 if and only if T2 is

concave.

Proof. By definition, we have

T ′′2 (t)

T ′2(t)
≤ T ′′1 (t)

T ′1(t)
= 0 ∀t ∈ D,

which happens if and only if T ′′2 (t) ≤ 0 for all t ∈ D.
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Corollary 4.1.6. Let T1 : [0, 1] → [0, 1] be the identity function - i.e., T1(t) = t. Then a

distortion function T3 : [0, 1]→ [0, 1] is more ambiguity averse then T1 if and only if T3 is

convex.

Proof. Similar.

The following results are direct corollaries of the above.

Corollary 4.1.7. Let T1 be the identity, and T2 concave. Then ψ2(t) is convex.

Proof. Direct consequence of Proposition 4.1.5 and Proposition 4.1.3.

Corollary 4.1.8. Let T1 be the identity, and T3 convex. Then ψ3(t) is concave.

Proof. Similar.

Then we have the following statement, a simple case of Theorem 4.1.4:

Corollary 4.1.9. Suppose that T1 is the identity, T2 is concave, and T3 is convex. Then

an optimal contingent claim Y ∗ for Problem 2.1 is

Y ∗ := max{0,min{N, q̄(1− FX(X))}},

where q̄ satisfies

1 = λp′(q̄(t))ψ′2(t)− µr′(q̄(t))ψ′3(t) ∀t ∈ D,

with

ψi(t) = 1− Ti(1− t), ∀t ∈ D and i = 2, 3,

and λ, µ are the Lagrange multipliers satisfying∫ 1

0

p(q̄(t))ψ′2(t) dt = P0,

and ∫ 1

0

r(q̄(t))ψ′3(t) dt = R0.

Proof. A consequence of Theorem 4.1.4, after applying Corollaries 4.1.7 and 4.1.8.
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4.1.1 A Numerical Example

We now consider a simple numerical example to illustrate the result of Theorem 4.1.4.

Suppose that the distortion function T1 is given by an inverse S-shaped distortion function,

such as the one used in Cumulative Prospect Theory [19, 23]. That is, for all t ∈ [0, 1],

T1(t) =
tγ

(tγ + (1− t)γ)
1
γ

.

We take γ = 3
4
, so that for all t ∈ [0, 1],

T1(t) =
t
3
4

(t
3
4 + (1− t) 3

4 )
4
3

.

Then it is straightforward to verify that T1 is continuous and strictly increasing on [0, 1].

Furthermore, suppose that the performance functional is a proportional hazard risk

measure, as in [24]. That is, for all t ∈ [0, 1],

T2(t) = tα ,

for 0 < α ≤ 1. Here, let α = 1
2
, so that T2(t) =

√
t for all t ∈ [0, 1]. Finally, take T3 to be

the conjugate of T2, that is, T3(t) = 1−
√

1− t. The three distortions are shown in Figure

4.1.

Then by taking derivatives, it can be shown that these distortions satisfy the conditions

of Theorem 4.1.4. In particular, T2 is less ambiguity averse than T1, and T3 is more

ambiguity averse than T1. The ambiguity aversion indices of each distortion are shown in

Figure 4.2.

Next, suppose that the functions p and r have an exponential form:

u(t) =

(1− e−at)/a, a 6= 0 ,

t, a = 0 ,
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Figure 4.1: Distortions

for some a ∈ R. For p, take a = 1, and for r, take a = −1. For clarity, we scale both

functions by a factor of 100, so that for all t ∈ R, we have

p(t) = 100(1− e−t)
r(t) = 100(et − 1) .

In the context of decision-making under uncertainty, the class of exponential utilities is

popular because it displays constant absolute risk aversion (CARA).

Then it is straightforward to verify that p is concave and r is convex. Take N =

100, P0 = 37.55, and consider the problem without a risk constraint:

inf
Y ∈B+(Σ)

{∫
Y dT1 ◦ P : 0 ≤ Y ≤ 100,

∫
p(Y ) dT2 ◦ P ≥ 37.55

}
.

Through the results of Section 3.1, this can be rewritten as

inf
q∈Q∗∗

{∫ 1

0

q(t) dt :

∫ 1

0

p(q(t))ψ′2(t) dt ≥ 37.55

}
. (4.1)
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Figure 4.2: Ambiguity Aversion Indices

Then by methods from [16], it can be show that Problem 4.1 admits a solution q∗1(t)

with the value for the Lagrange multiplier λ ≈ 0.0129. The same result can be obtained

from the results of Section 3.3, by taking a large value for R0, forcing the multiplier µ to

vanish. Checking both performance and risk functions for q∗1(t), we obtain∫ 1

0

p(q∗1(t))ψ′2(t) dt = 37.55 ,∫ 1

0

r(q∗1(t))ψ′3(t) dt = 22.44 .

Now suppose we take R0 = 21.75, and consider the problem

inf
Y ∈B+(Σ)

{∫
Y dT1 ◦ P : 0 ≤ Y ≤ 100,

∫
p(Y ) dT2 ◦ P ≥ 37.55,

∫
r(Y ) dT3 ◦ P ≤ 21.75

}
.

(4.2)

Then it is clear that q∗1 is no longer feasible for Problem 4.2, since its risk is too high.

By the result of Theorem 4.1.4, it follows that Problem 4.2 admits a solution q∗2 with
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(λ, µ) ≈ (11.50, 8.26). Comparing the objective for both q∗1 and q∗2, we obtain∫ 1

0

q∗1(t) dt = 0.3075 ,∫ 1

0

q∗2(t) dt = 0.3114 .

Notice that q∗2 has a higher cost than q∗1, while attaining the same performance at a

lower level of risk. This is consistent with the intuition that in order to attain the same

performance at lower risk, a premium needs to be paid, i.e., the price of a hedge. The plots

for q∗1 and q∗2 are shown in Figure 4.3.

Figure 4.3: Two Optimal Claims
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4.2 Another Special Case: An Ambiguity Seeking Risk

Measure

Now suppose the opposite scenario: suppose T2 is more ambiguity averse than T1, and T3

is less ambiguity averse than T1. By Corollary 4.1.3 and Proposition 4.1.2, ψ2 is concave

and ψ3 is convex.

Note that since ψ2(0) = 0, ψ2(1) = 1, and ψ2 is concave on [0, 1], then its convex

envelope is the line segment connecting its endpoints. In particular, this implies δ2 is the

identity, i.e., δ2(t) = t. Similarly, we have δ3(t) = t. So in this case, we have ψ2 6= δ2 and

ψ3 6= δ3, but we are still able to characterize the optimal solution of Problem 2.1. We start

with the following result.

Lemma 4.2.1. Let q ∈ Q, q ≥ 0 be a non-negative quantile function. Then∫ 1

0

q(t)ψ′2(t) dt ≤
∫ 1

0

q(t)δ′2(t) dt.

Proof. Consider the following integral:∫ 1

0

[ψ2(t)− δ2(t)] dq(t) .

By applying Fubini’s theorem, we can rewrite this expression as follows:∫ 1

0

[δ2(t)− ψ2(t)] dq(t) =

∫ 1

0

[(ψ2(1)− δ2(1))− (ψ2(t)− δ2(t))] dq(t)

=

∫ 1

0

∫ 1

t

[ψ′2(s)− δ′2(s)] ds dq(t)

=

∫ 1

0

∫ s

0

[ψ′2(s)− δ′2(s)] dq(t) ds

=

∫ 1

0

[∫ s

0

dq(t)

]
[ψ′2(s)− δ′2(s)] ds

=

∫ 1

0

q(s)[ψ′2(s)− δ′2(s)] ds

=

∫ 1

0

q(t)[ψ′2(t)− δ′2(t)] dt . (4.3)
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Equation 4.3 is particularly useful, and will appear several times in the proceeding analysis.

Now note that since δ2 is the convex envelope of ψ2, it follows that

δ2(t) ≤ ψ2(t),∀t ∈ [0, 1],

implying that

0 ≥
∫ 1

0

[δ(t)− ψ2(t)] dq(t) =

∫ 1

0

q(t)[ψ′2(t)− δ′2(t)] dt .

Therefore, ∫ 1

0

q(t)δ′2(t) dt ≥
∫ 1

0

q(t)ψ′2(t) dt,

as desired.

In the previous proof, it is interesting to note that the convexity of δ2 is never applied. In

fact, we only required that δ2 and ψ2 be equal at their endpoints, and that δ2 is dominated

by ψ2. From this, we can conclude a similar result for δ3 and ψ3, noting that ψ3 dominates

δ3, therefore switching the two functions’ roles in the proof.

Corollary 4.2.2. Let q ∈ Q, q ≥ 0 be a non-negative quantile function. Then∫ 1

0

q(t)ψ′3(t) dt ≥
∫ 1

0

q(t)δ′3(t) dt.

Proof. Similar to Lemma 4.2.1, by the preceding discussion.

Lemma 4.2.3. Suppose T2 is more ambiguity averse than T1, and T3 is less ambiguity

averse than T1. Then if q∗ is an optimal solution of Problem 3.11, then∫ 1

0

δ′2(t)p(q∗(t)) dt =

∫ 1

0

ψ′2(t)p(q∗(t)) dt,

and ∫ 1

0

δ′3(t)r(q∗(t)) dt =

∫ 1

0

ψ′3(t)r(q∗(t)) dt.
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Proof. We show the first equality, as the second is similar. Note that since p is continuous

and increasing, we have p ◦ q∗ is non-decreasing and left-continuous, so it can be viewed as

a quantile function. Therefore applying Equation 4.3 gives∫ 1

0

[δ2(t)− ψ2(t)] dp(q∗(t)) =

∫ 1

0

p(q∗(t))[ψ′2(t)− δ′2(t)] dt .

Let q̄ and q∗ be defined as in the proof of Proposition 3.3.10. Since q∗ is flat at 0 or N

when q∗ 6= q̄, we see that

dq∗(t) =

0, q∗(t) 6= q̄(t) ;

dq̄(t), q∗(t) = q̄(t) .

Recall that the expression for the derivative dq̄(t) is

dq̄(t) =
µr′(q̄(t))δ′′3(t)− λp′(q̄(t))δ′′2(t)

λp′′(q̄(t))δ′2(t)− µr′′(q̄(t))δ′3(t)
, ∀t ∈ D.

However, since T2 is more ambiguity averse than T1, by Corollary 4.1.3, ψ2 is concave

and δ2 is the identity, i.e., δ2(t) = t, and δ′′2(t) = 0. Similarly, δ′′3(t) = 0, implying that

dq̄(t) = 0 for all t. Therefore

0 =

∫ 1

0

[δ2(t)− ψ2(t)] dp(q∗(t)) =

∫ 1

0

p(q∗(t))[ψ′2(t)− δ′2(t)] dt .

Hence, ∫ 1

0

δ′2(t)p(q∗(t)) dt =

∫ 1

0

ψ′2(t)p(q∗(t)) dt ,

as desired. The other equation follows similarly.

Note that instead of using the argument of Proposition 3.3.10, we could have also used

the more general Theorem 3.3.12 and reached the same conclusion. The details are more

complicated, but as usual, the underlying method is the same.

Theorem 4.2.4. Suppose that T2 is more ambiguity averse than T1, and T3 is less ambi-

guity averse than T1. Then an optimal contingent claim Y ∗ to minimize Problem 2.1 is a

constant, satisfying

Y ∗ := max{0,min{N, q̄}},
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where q̄ satisfies

1 = λp′(q̄)− µr′(q̄),

and λ, µ are the Lagrange multipliers satisfying

p(Y ∗) = P0 ,

and

r(Y ∗) = R0 .

Proof. First, recall Problem 3.11

inf
q∈Q∗∗

{∫ 1

0

q(t) dt :

∫ 1

0

p(q(t))δ′2(t) dt ≥ P0,

∫ 1

0

r(q(t))δ′3(t) dt ≤ R0

}
,

and its associated Lagrangian∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))δ′2(t) dt+ µ

∫ 1

0

r(q(t))δ′3(t) dt .

Suppose q is feasible for Problem 3.3: that is, the problem before taking the envelope.

Then by Proposition 4.2.1 and Corollary 4.2.2, it follows that q is feasible for Problem 3.11

as well. This guarantees that the feasibility set of Problem 3.11 is non-empty; in fact, it

contains the feasibility set of Problem 3.3.

Note now that the arguments of subsection 3.2.1 apply to Problem 3.11 as well. Firstly,

the performance constraint is always tight at optimum, implying λ > 0. Furthermore, the

results of [16] show that in the absence of a risk constraint, Problem 3.3 and Problem

3.11 have equivalent solutions. That is, if the multiplier µ of Problem 3.3 is zero, then

equivalently, so is the multiplier for Problem 3.11. It then follows from Assumption 3.2.11

that when solving Problem 3.11, we will have strictly positive multipliers.

By the above, since the feasibility set of Problem 3.3 is non-empty, a solution must

exist; denote this solution by q̃. By Theorem 3.2.2 and the arguments of Section 3.2.1, we

guarantee a choice of λ, µ > 0 such that

(i) ∫ 1

0

p(q̃(t))δ′2(t) dt = P0,
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(ii) ∫ 1

0

r(q̃(t))δ′3(t) dt = R0,

(iii) q̃ minimizes the Lagrangian∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))δ′2(t) dt+ µ

∫ 1

0

r(q(t))δ′3(t) dt.

However, by Theorem 3.3.12, the unique minimizer of the Lagrangian, for a given λ, µ,

takes the form q∗(t) := max{0,min{N, q̄(t)}}, with q̄(t) defined to satisfy

1 = λp′(q̄(t))δ′2(t)− µr′(q̄(t))δ′3(t) .

By uniqueness of this minimizer, q∗ = q̃ almost everywhere, so it follows that q∗ is optimal

and

(i) ∫ 1

0

p(q∗(t))δ′2(t) dt =

∫ 1

0

p(q̃(t))δ′2(t) dt = P0 ,

(ii) ∫ 1

0

r(q∗(t))δ′3(t) dt =

∫ 1

0

r(q̃(t))δ′3(t) dt = R0 .

Now recall that T2 was assumed to be less ambiguity averse than T1, and T3 more

ambiguity averse. Then δ2(t) = δ3(t) = t, so we can rewrite the above equations as

(i) ∫ 1

0

p(q∗(t)) dt =

∫ 1

0

p(q̃(t)) dt = P0 ,

(ii) ∫ 1

0

r(q∗(t)) dt =

∫ 1

0

r(q̃(t)) dt = R0 .
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But also, from the proof of Lemma 4.2.3, it followed that q∗(t) was flat everywhere -

i.e., it can be written as a constant y∗ := q∗(t). It remains to show optimality of y∗ for

Problem 3.3. For this, we invoke Proposition 3.2.5, by showing that this choice of y∗ and

λ, µ satisfy all the sufficient conditions.

Firstly, by the above and Lemma 4.2.3, since y∗ is optimal for Problem 3.11,

(i) ∫ 1

0

p(y∗) dt =

∫ 1

0

p(y∗)ψ′2(t) dt = P0 ,

(ii) ∫ 1

0

r(y∗) dt =

∫ 1

0

r(y∗)ψ′3(t) dt = R0 ,

showing that the choice of y∗ binds both performance and risk constraints. Furthermore,

by Proposition 4.2.1, Corollary 4.2.2, and Lemma 4.2.3, we have∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))ψ′2(t) dt+ µ

∫ 1

0

r(q(t))ψ′3(t) dt

≥
∫ 1

0

q(t) dt− λ
∫ 1

0

p(q(t))δ′2(t) dt+ µ

∫ 1

0

r(q(t))δ′3(t) dt

≥
∫ 1

0

y∗ dt− λ
∫ 1

0

p(y∗)δ′2(t) dt+ µ

∫ 1

0

r(y∗)δ′3(t) dt

=

∫ 1

0

y∗ dt− λ
∫ 1

0

p(y∗)ψ′2(t) dt+ µ

∫ 1

0

r(y∗)ψ′3(t) dt ,

showing that the Lagrange condition is satisfied as well. Therefore y∗ is optimal for Problem

3.3, and so the constant claim Y ∗ := y∗ is optimal for Problem 2.1 by Lemma 3.1.3.

The statement of this theorem requires some further interpretation. Since we obtain

p(Y ∗) = P0 and r(Y ∗) = R0, this implies that R0 = r(p−1(P0)). This value also only

depends on the fixed functions p, r and performance level P0. Therefore, there is only

one possible value for R0 for which the risk constraint is not redundant in the sense of

Assumption 3.2.11, and such that the problem is feasible. However, this value must coincide
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with the value R∗. Therefore in this special case, the risk constraint never affects the

optimal contingent claim, except by possibly making the problem infeasible.

The intuition behind this is as follows. Suppose that T1, T2, and T3 satisfy the conditions

of Theorem 4.2.4, and suppose we solve the problem without including a risk constraint.

Then by results from [16], we see that the optimal contingent claim is a constant. Upon

introduction of a risk constraint, we might be forced to obtain another claim attaining the

same performance, but is less risky. We can intuitively understand a claim’s risk to be

how “flat” it is. Since we already have a constant claim, this claim is “flat” enough that

it is not possible to reduce the risk while maintaining the same performance. Of course,

since we are dealing with distorted probability measures, the result of Theorem 4.2.4 is not

obvious.

Corollary 4.2.5. Suppose that T1 is the identity, T2 is convex, and T3 is concave. Then

an optimal contingent claim Y ∗ to minimize Problem 2.1 is a constant claim, satisfying

Y ∗ := max{0,min{N, q̄}},

where q̄ satisfies

1 = λp′(q̄)− µr′(q̄),

and λ, µ are the Lagrange multipliers satisfying

p(Y ∗) = P0 ,

and

r(Y ∗) = R0.

Proof. Direct consequence of Theorem 4.2.4 and Corollaries 4.1.7 and 4.1.8.

As an example of a concave distortion function, for a fixed p ∈ [0, 1), consider

T3(t) := min

{
t

1− p
, 1

}
, t ∈ [0, 1] .

Then the corresponding distorted expectation is the expected shortfall [10]:∫ 1

0

r(Y ) dT3 ◦ P = ESp[r(Y )] =
1

1− p

∫ 1

p

F−1
r(Y )(t) dt .
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Corollary 4.2.6. Suppose the investor has the following problem:

inf
Y ∈B+(Σ)

{∫
Y dP : 0 ≤ Y ≤ N,

∫
p(Y ) dT2 ◦ P ≥ P0, ESp[r(Y )] ≤ R0

}
,

where p ∈ [0, 1) is a given constant, and T2 is convex, indicating ambiguity aversion when

calculating the performance measure. Then Y ∗ is optimal, where

Y ∗ := max{0,min{N, q̄}},

where q̄ satisfies

1 = λp′(q̄)− µr′(q̄),

and λ, µ are the Lagrange multipliers satisfying

p(y∗) = P0 ,

and

r(y∗) = R0.

That is, a constant claim is optimal.
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Appendix A

Equimeasurable Rearrangements and

Supermodularity

All of the results in this Appendix are taken from Ghossoub [14] and references therein, to

which we refer for proofs, additional results, and additional references.

A.1 Rearrangement with Respect to a Probability Mea-

sure

Let (S,G, µ) be a probability space and let V ∈ L∞(S,G, µ) be a continuous random

variable (i.e., µ ◦ V −1 is nonatomic) with range V (S) ⊂ R+.

For each Z ∈ L∞(S,G, µ), let FZ,µ(t) = µ
(
{s ∈ S : Z(s) ≤ t}

)
denote the cumulative

distribution function of Z with respect to the probability measure µ, and let F−1
Z,µ(t) be

the left-continuous inverse of the distribution function FZ,µ (that is, the quantile function

of Z w.r.t. µ), defined by

F−1
Z,µ(t) = inf

{
z ∈ R+ : FZ,µ(z) ≥ t

}
, ∀t ∈ [0, 1] . (A.1)

Proposition A.1.1. For any Y ∈ L∞(S,G, µ), define Ỹµ and Y µ as follows:

Y µ = F−1
Y,µ(FV,µ(V )) and Ỹµ = F−1

Y,µ(1− FV,µ(V )).
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Then,

(i) Y , Ỹµ, and Y µ have the same distribution under µ.

(ii) Y µ is comonotonic with V .

(iii) Ỹµ is anti-comonotonic with V .

(iv) For each L ∈ R, if 0 ≤ Y ≤ L, then 0 ≤ Ỹµ ≤ L, and 0 ≤ Y µ ≤ L.

(v) For each Z ∈ L∞(S,G, µ), If 0 ≤ Y ≤ Z, then 0 ≤ Ỹµ ≤ Z̃µ, and 0 ≤ Y µ ≤ Zµ.

(vi) If Z∗ is any other element of L∞(S,G, µ) that has the same distribution as Y under

µ and that is comonotonic with V , then Z∗ = Y µ, µ-a.s.

(vii) If Z∗∗ is any other element of L∞(S,G, µ) that has the same distribution as Y under

µ and that is anti-comonotonic with V , then Z∗∗ = Ỹµ, µ-a.s.

Ỹµ is called the nonincreasing µ-rearrangement of Y with respect to V , and Y µ is called

the non-decreasing µ-rearrangement of Y with respect to V .

Since µ◦V −1 is nonatomic, it follows that FV,µ(V ) has a uniform distribution over (0, 1)

[13, Lemma A.25]. Letting U := FV,µ(V ), it follows that U is a random variable on the

probability space (S,Σ, µ) with a uniform distribution on (0, 1) and that V = F−1
V,µ(U), µ-

a.s., that is, V µ = V, µ-a.s.

A.2 Rearrangement with Respect to a Capacity

A.2.1 Non-Additive Measures and Choquet Integration

Definition A.2.1. (Capacities) A (normalized) capacity on a measurable space (S,Σ) is

a set function υ : Σ→ [0, 1] such that

1. υ(∅) = 0;

2. υ(S) = 1; and,
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3. υ is monotone: for any A,B ∈ Σ, A ⊆ B ⇒ υ(A) ≤ υ(B).

The capacity υ is said to be:

� supermodular (or convex) if υ(A ∪ B) + υ(A ∩ B) ≥ υ(A) + υ(B), for all A,B ∈ Σ;

and,

� submodular (or concave) if υ(A ∪B) + υ(A ∩B) ≤ υ(A) + υ(B), for all A,B ∈ Σ.

For instance, if (S,Σ,P) is a probability space and T : [0, 1] → [0, 1] is an increasing

function, such that T (0) = 0 and T (1) = 1, then the set function υ := T ◦P is a capacity on

(S,Σ) called a distorted probability measure. The function T is usually called a probability

distortion. If, moreover, the distortion function T is convex (resp. concave), then the

capacity υ = T ◦ P is supermodular (resp. submodular) [9, Ex. 2.1].

Definition A.2.2. (Choquet Integral) Let υ be a capacity on (S,Σ). The Choquet integral

of Y ∈ B(Σ) with respect to υ is defined by∫
Y dυ :=

∫ +∞

0

υ({s ∈ S : Y (s) ≥ t}) dt+

∫ 0

−∞
[υ({s ∈ S : Y (s) ≥ t})− 1] dt,

where the integrals are taken in the sense of Riemann.

Remark A.2.3. The Choquet integral with respect to a measure is simply the usual Lebesgue

integral with respect to that measure [20, p. 59].

The following proposition gives some additional properties of the Choquet integral.

Proposition A.2.4. Let ν be a capacity on (S,G).

1. If φ1, φ2 ∈ B(G) are comonotonic, then
∫

(φ1 + φ2) dν =
∫
φ1 dν +

∫
φ2 dν.

2. If φ ∈ B(G) and c ∈ R, then
∫

(φ+ c) dν =
∫
φ dν + c.

3. If A ∈ G then
∫

1A dν = ν(A).

4. If φ ∈ B(G) and a ≥ 0, then
∫
a φ dν = a

∫
φ dν.

5. If φ1, φ2 ∈ B(G) are such that φ1 ≤ φ2, then
∫
φ1 dν ≤

∫
φ2 dν.

6. If ν is submodular, then for any φ1, φ2 ∈ B(G),
∫

(φ1 + φ2) dν ≤
∫
φ1 dν +

∫
φ2 dν.
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A.2.2 Rearrangements with Respect to a Capacity

Definition A.2.5. The capacity ν ◦ X−1 is said to be diffuse if for any t ∈ R, we have

ν ◦X−1({t}) = 0.

Definition A.2.6 (Ghossoub [15]). The capacity ν is said to be strongly diffuse with

respect to X if for any a, b ∈ R with a ≤ b,

ν ◦X−1
(

(a, b)
)

= ν ◦X−1
(

[a, b]
)
.

When ν is strongly diffuse with respect to X, the capacity ν ◦X−1 will be called strongly

diffuse. Strong diffuseness implies diffuseness. For capacities that are distortions of a

probability measure, we have the following stronger result.

Proposition A.2.7 (Ghossoub [15]). Let ν be a capacity on (S,Σ) and let X be a random

variable on (S,Σ), and suppose that ν is a distorted probability measure of the form ν = T ◦
P, for some probability measure P on (S,Σ) and some distortion function T : [0, 1]→ [0, 1],

strictly increasing with T (0) = 0 and T (1) = 1. Then the following are equivalent.

1. ν ◦X−1 is strongly diffuse;

2. ν ◦X−1 is diffuse; and,

3. P ◦X−1 is diffuse (i.e., nonatomic).

Definition A.2.8. (Upper distribution) Let ν be a capacity on the measurable space (S,Σ)

and let φ ∈ B(Σ). Define the upper-distribution of φ with respect to ν as the function

Gν,φ : R→ [0, 1]

t 7→ Gν,φ(t) := ν
(
{s ∈ S : φ(s) > t}

)
.

If φ1, φ2 ∈ B(Σ), we write φ1
ν∼ φ2 to mean that φ1 and φ2 have the same upper-distribution

with respect to ν. Then a mapping V : B(Σ) → R is said to be ν-upper-law-invariant if

for any φ1, φ2 ∈ B(Σ),

φ1
ν∼ φ2 =⇒ V (φ1) = V (φ2).
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The Choquet integral is an example of a ν-upper-law-invariant functional on B(Σ).

Note that Gν,ψ is nonincreasing, and if ν is continuous from below, then Gν,ψ is right-

continuous [9, p. 46]. Moreover, if ν = T ◦P, for some probability measure P on (S,Σ) and

some distortion function T : [0, 1] → [0, 1], then for any φ1, φ2 ∈ B(Σ), if φ1 and φ2 are

identically distributed1 according to P, then they have the same upper-distribution with

respect to ν. Finally, if ν is a bone fide additive measure, then two functions have the

same upper-distribution with respect to ν if and only if they are identically distributed

according to ν.

Remark A.2.9. In particular, if φ = I ◦ X, the previous definition is equivalent to the

map

Gν,X,I : R→ [0, 1]

t 7→ Gν,X,I(t) := ν ◦X−1(z ∈ [0,M ] : I(z) > t) .

Definition A.2.10. (Non-Decreasing Upper-Equimeasurable Rearrangement) Define the

function Ĩ : R+ → R+ by

Ĩ(t) := inf
{
z ∈ R+ : Gν,X,I(z) ≤ ν ◦X−1([0, t])

}
,

and for each Y = I ◦X, define the function Ỹ := Ĩ ◦X. Then Ỹ is called the non-decreasing

ν-upper-equimeasurable rearrangement of Y with respect to X.

Proposition A.2.11. If ν is continuous and strongly diffuse with respect to X, the fol-

lowing hold:

1. Ĩ is nonincreasing and Borel-measurable.

2. Ĩ is right-continuous.

3. For all t ∈ R+, Gν,X,I(Ĩ(t)) ≤ ν ◦X−1
(

[0, t]
)
.

4. If I1, I2 : [0,M ]→ R+ are such that I1 ≤ I2, then Ĩ1 ≤ Ĩ2.

5. I and Ĩ have the same upper-distribution with respect to ν ◦X−1.

1That is, P ◦ φ−11 (B) = P ◦ φ−12 (B), for any Borel set B.
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6. If ‖I‖sup = N (< +∞), then ‖Ĩ‖sup ≤ N .

7. If {In}n is a sequence of bounded Borel-measurable functions from [0,M ] into R+

such that In ↑ I, for some bounded Borel-measurable function I : [0,M ]→ R+, then

Ĩn ↑ Ĩ.
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