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Abstract

Neuroplasticity is a phenomenon that refers to the brain’s ability to reorganize,

strengthen, and form neural connections, a process that becomes increasingly more difficult

with age. Gamma amino-butyric acid (GABA), the primary inhibitory neurotransmitter

in the brain, is thought to gate neuroplasticity, with increasing concentrations related to

the closure of the critical period of development. As a result, the modulation of neuroplas-

ticity and GABA concentration may have implications in the recovery and rehabilitation

of neural functions.

This research addresses neuroplasticity in the visual cortex by applying rapid visual

stimulation and non-invasive brain stimulation using both physiological and psychophysical

outcome measures. One fundamental mechanism of neuroplasticity is known as long-term

potentiation (LTP), a synaptic strengthening mechanism characterized by changes in cor-

tical physiology and underlies the processes of learning and memory formation. While LTP

can be induced in animal models of the brain through invasive electrical stimulation, recent

studies have demonstrated LTP-like effects induced by rapid visual stimulation. Another

technique that modulates neuroplasticity is non-invasive brain stimulation. Anodal tran-

scranial direct current stimulation (a-tDCS) has been reported to decrease GABA concen-

tration in the motor cortex, while a form of magnetic stimulation, continuous theta-burst

stimulation (cTBS) has the opposite effect. Cortical GABA concentration is measured di-

rectly using magnetic resonance spectroscopy (MRS) an imaging technique that quantifies

neural metabolites within a small region of interest. Binocular rivalry—a phenomenon

wherein perception alternates stochastically when two different images are shown to each
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eye—has been directly and indirectly associated with visual cortex GABA concentration,

which poses the question of whether binocular rivalry dynamics can be used as an indirect

measure of GABA concentration.

First, we tested the hypothesis that rapid monocular visual stimulation would increase

the dominance of the stimulated eye during a binocular rivalry task. Unexpectedly, we

found that rapid monocular visual stimulation strengthens the non-stimulated eye, a result

which was not explained by adaptation, suggesting that the shift in dominance towards

the non-stimulated eye may result from a homeostatic gain control mechanism.

Secondly, we investigated the effects of two opposing forms of non-invasive brain stimu-

lation, a-tDCS and cTBS, on binocular rivalry dynamics. We hypothesized that a reduction

of GABA using a-tDCS would result in an increase in binocular rivalry alternation rates,

while cTBS would have the opposite effect. Although binocular rivalry alternation rates

did not change with either stimulation method, duration of mixed perception increased

significantly following cTBS. An increase in the inhibitory neurotransmitter GABA may

translate to a reduction in neural noise, a complement to the phenomenon of stochastic

resonance where increased neural noise may increase the detection of weak signals.

Finally, we investigated the effects of a-tDCS on visual cortex GABA and glutamate

concentration. Although many studies report a reduction in motor cortex GABA con-

centration following a-tDCS, our results showed that visual cortex GABA concentration

remained the same. Unexpectedly, we found a trend for an increase in glutamate following

active a-tDCS, supporting the possibility that a-tDCS effects the visual cortex and motor

cortex differently.
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It is evident that there are many complex mechanisms that gate plasticity, and that

modulating neuroplasticity is not as simple as we may have thought. Understanding

these mechanisms, however, and the effects of modulatory techniques such as rapid vi-

sual stimulation and non-invasive brain stimulation on visual cortex plasticity, will provide

a foundation for improving the recovery and rehabilitation potential of neurodevelopmental

disorders and brain damage.
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Chapter 1

Introduction

1.1 Overview of the Visual System

The human brain is a complex and dynamic structure that governs everything from

our thoughts and behaviours, to our vision and perception. The normal development and

function of the human visual system, as well as other neural systems, is highly dependent

on early childhood experiences. While the eye is the light-sensing organ that interacts with

the world physically, the processing, understanding, and interpretation of everything we

see occurs in the complex neural networks of the brain.

When light enters the eye, it is captured by photoreceptor cells in the retina, then

transmitted as an electrical signal to the brain. Retinal ganglion cells encode the features

of the visual world such as colour, contrast, and motion, before conducting the information

in three distinct pathways to the lateral geniculate nucleus (LGN) in the thalamus, as well
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as forming other minor pathways to other brainstem structures. The parvocellular (P)

pathway is generally sensitive to high spatial and low temporal frequencies, and is thought

to relay colour information (Braddick and Atkinson, 2011; Derrington and Lennie, 1984;

Merigan and Maunsell, 1993). In contrast, the magnocellular (M) pathway is sensitive to

low spatial and high temporal frequencies, and is understood to relay luminance, contrast,

and motion information to the brain (Gordon and McCulloch, 1999; Gori et al., 2015).

Finally, the koniocellular (K) pathway is believed to be heterogenous, transmitting both

colour and motion information (Derrington and Lennie, 1984; Hendry and Reid, 2000;

Merigan and Maunsell, 1993). All three pathways primarily process and relay organized

visual information mostly between the LGN and the primary visual cortex. LGN con-

nectivity is complex and involves an estimated 90% more feedback cells than feedforward

(Artal, 2017), demonstrating the role of both the LGN and V1 as the main cortical region

for the next stage of visual processing.

The primary visual cortex, commonly referred to as V1, is only the first step in cortical

visual processing. Information is relayed to extrastriate regions as either the dorsal stream

or ventral stream pathway. The M pathway typically leads into the dorsal stream to

process spatial information and motion perception, known as the “where” pathway. The

P pathway leads into the ventral stream, encompassing visual areas V2 and V4, and is

primarily responsible for form perception, known as the “what” pathway (Simic and Rovet,

2016).

In accordance with animal and human studies, visual functions become adult-like and

fully developed at different rates (Daw, 1998; Simic and Rovet, 2016). Generally, more

complex visual functions that require higher cortical processing take longer to mature

2



than visual functions that are processed at early cortical sites, such as motion and colour

perception (Braddick, 1996; Hyvarinen et al., 2014; Leat et al., 2009). Throughout early

childhood development, each visual function develops rapidly during a specific time of

heightened plasticity, known as the critical period (Hooks and Chen, 2007; Power and

Schlaggar, 2016). During this period, visual experience is essential for normal structural

and functional development, such that deprivation or little input throughout this time will

result in abnormal vision. Several studies on the critical period of visual functions in mice

were compiled by Hooks and Chen (2007) to illustrate the timeline of development and

demonstrate that there is a small window of high plasticity in early life specific to each

function. This process of development is thought to be similar to that of humans, which

lasts for a relatively short period of time. Studies have found varying evidence for the

closure of the critical period in animal models depending on the visual function, ranging

from approximately three to nine months in cats (Daw, 1998; Wiesel and Hubel, 1963), to

four to five weeks in rats and mice (Fagiolini et al., 1994; Gordon and Stryker, 1996). In

humans, the closure of the critical period for most visual functions is thought to be around

five years of age (Bui Quoc and Milleret, 2014).

The concept of the critical period was first suggested by Hubel and Wiesel, where they

discovered that visual deprivation in the early development of kittens led to altered cortical

organization and response, whereas the same deprivation later in life had no effect (Wiesel

and Hubel, 1963). Ocular dominance—the relative response of visual cortex neurons to

input from each eye—was significantly weakened for the eye that was deprived during the

critical period. This led to the discovery of a period of heightened plasticity, where visual

stimulation is necessary for normal cortical and functional development in both animals
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and humans.

1.1.1 Binocular Vision - Normal and Abnormal Development

Humans, and many other species have binocular vision, the ability to create a single

image from two slightly displaced visual inputs. When processed as a single image, a

sense of depth and a measure of distance is made possible. Visual input from each eye

remains separated in early visual processing as both the LGN and the input layers of the

primary visual cortex are systematically organized as right eye and left eye layers (LGN)

and columns (layer 4B of V1) (Blake, 2001; Casagrande and Boyd, 1996; Parker and

Cumming, 2001). While some evidence suggests that binocular rivalry is processed in the

LGN (Haynes, 2005), there is evidence that integrating information from both eyes occurs

early in the upper and lower layers of the primary visual cortex where cells respond to

signals from both eyes equally (Dougherty et al., 2019).

Equal visual stimulation to both eyes in early development is essential for normal binoc-

ular vision to mature (Spiegel et al., 2017; Wiesel and Hubel, 1963). If one eye is deprived

of stimulation for an extended period of time or receives little to no visual information

during the critical period, long-lasting binocular deficits can result. Amblyopia, a neu-

rodevelopmental disorder in which the lack of a clear visual input from one eye disrupts

the typical development of visual cortex processing, is an example of the abnormal binoc-

ular vision that can result, and is prevalent in 1-4% of the adult population (Levi et al.,

2015; McKean-Cowdin et al., 2013; MEPEDS, 2009; Williams et al., 2008). Long-lasting

effects impacting many aspects of normal vision, such as visual acuity, stereoacuity, and
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contrast sensitivity can occur as a result of untreated amblyopia prior to the closure of

the critical period of development (Burke and Barnes, 2006). Studies have looked at the

effects of early abnormal binocular visual input in humans, as well as treatments to re-

verse the effects of abnormal development or strengthen structural and functional neural

networks, including visual perceptual learning (Levi and Li, 2009), binocular games and

training (Hess et al., 2014; Hess et al., 2010; Li et al., 2014), and occlusion therapy of

the amblyopic or deprived eye (Lunghi et al., 2016; Ramamurthy and Blaser, 2018). The

success of these treatments relies on the brain’s potential and ability to learn and adapt.

1.2 Neuroplasticity

The human brain has a remarkable ability to form, reorganize, and strengthen neural

connections throughout early development. This phenomenon is known as neuroplasticity

and can be classified as either structural or functional changes of the brain. Structural

plasticity refers to physical changes in the connections or formation of neurons, as well

as changes in the relative amount of grey matter (Demarin et al., 2014; Pascual-Leone

et al., 2011; Shaw, 2013). One example of structural plasticity is neurogenesis, the process

of generating new neuronal cells, which occurs extensively throughout childhood and may

continue into adulthood, albeit at a slower rate (Rakic, 2001). Functional plasticity, on the

other hand, refers specifically to changes in the strength of neural connections without any

anatomical changes of neural wiring (Butz et al., 2009). More broadly, functional plasticity

includes the brain’s ability to learn or recover function from neurodevelopmental disorders

such as amblyopia, or following brain damage in later adulthood (Finger and Almli, 1985;
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Horton et al., 2017). Changes in neural function are typically related to repeated activity

within a circuit, known as activity-dependent plasticity (Butz et al., 2009).

Children can learn, understand, and adapt to the world around them in extraordinary

ways as their brain grows and develops, and as approximately one million neural synapses

are added every second from the third trimester to about 2 years of age (Levitt and Ea-

gleson, 2018). This remarkable extent of growth and development allows for the recovery

of neural function in children, particularly during critical periods (Hooks and Chen, 2007;

Power and Schlaggar, 2016; Wiesel and Hubel, 1963). This complex phenomenon of neu-

roplasticity was previously thought to cease in adulthood. Specifically, the belief was that

neural connections were hardwired after a certain age. However, recent discoveries have

demonstrated that there is potential for neuroplasticity in adulthood—albeit to a lesser

degree—allowing for changes, and recovery of neural connections later in life (El Mallah

et al., 2000; Kupfer, 1957; Maino, 2012; Park and Bischof, 2013). Further investigation

has looked into modulating neuroplasticity in adults with visual stimulation (Abuleil et al.,

2019; Kirk et al., 2010; Teyler et al., 2005), auditory stimulation (Clapp et al., 2005a; Za-

ehle et al., 2007), aerobic exercise (Zhou et al., 2017), and non-invasive brain stimulation

techniques (Antal et al., 2006; Nitsche et al., 2008). Understanding how to harness and

strengthen neuroplasticity in adults has been the focus of recent research in animal models

as well as humans, with the goal of playing a role in recovery and rehabilitation of neural

functions.
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1.2.1 Mechanisms of Neuroplasticity

Although the process of learning and memory formation is not fully understood, Heb-

bian plasticity is a widely accepted mechanism for how information is created and solidified

in neurons within the brain. In his book, Organization of Behaviour, Donald Hebb, a Cana-

dian psychologist states:

When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A’s efficiency, as one of the cells firing

B, is increased. (Hebb, 1949)

The theory of cognition and learning explains that neural circuits can be strengthened

over time with repeated stimulation, summarized by Carla Shatz as neurons that fire

together, wire together (Cooper, 2005; Pincus, 2008; Power and Schlaggar, 2016; Shatz,

1992). Following Hubel and Wiesel’s findings on visual plasticity in cats (Hubel and Wiesel,

1962), a complementary statement to Hebb’s finding was extended:

When the presynaptic axon of cell A repeatedly and persistently fails to excite

the postsynaptic cell B while cell B is firing under the influence of other presy-

naptic axons, metabolic change takes place in one or both cells such that A’s

efficiency, as one of the cells firing B, is decreased. (Stent, 1973)

In other words, connections and synapses are weakened if neuronal activity is not corre-

lated. These fundamental concepts of strengthening and weakening synapses provide an
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explanation for two phenomena, namely long-term potentiation and long-term depression,

respectively.

1.2.2 Long-Term Potentiation

A fundamental mechanism of neural plasticity and a widely accepted example of Heb-

bian plasticity is known as long-term potentiation (LTP) (Cooper, 2005). LTP is a synaptic

strengthening mechanism underlying learning and memory formation, a process which en-

compasses structural as well as functional changes of neural networks (Bliss and Lomo,

1973; Cooper, 2005; Nicoll, 2017). In 1973, Bliss and Lømo unequivocally demonstrated

the phenomenon of LTP by measuring changes in synaptic amplitude in the rabbit hip-

pocampus following electrical stimulation (Bliss and Lomo, 1973). Following the discovery

of LTP, it quickly became apparent that there must be different forms of LTP, depending

on the region of the brain, the neurons involved and the type of input the neuron receives

(Blundon and Zakharenko, 2008; Nicoll, 2017).

1.2.2.1 Physiology of LTP

The induction of LTP is typically assessed physiologically by directly measuring synap-

tic activity and increases in molecules within the brain (Nicoll, 2017). Many studies over

the years contributed to the understanding of the mechanisms which underly LTP, and have

generally concluded that LTP is associated with the excitatory neurotransmitter glutamate

as well as changes in the expression of the glutamate receptors alpha-amino-3-hydroxy-

5-methyl-4-isoxazole propionate (AMPA) and N-methyl D-aspartate (NMDA) (Hasan et

8



al., 2013; Nicoll, 2017; Ouardouz and Sastry, 2000). Additionally, there is evidence for

structural and functional changes in the presynaptic neuron (Bliss and Collingridge, 2013;

Emptage et al., 2003; Ward et al., 2006) as well as the postsynaptic neuron (Harvey and

Svoboda, 2007; Lee et al., 2009; Tønnesen et al., 2014) as measures of the induction and

expression of LTP. Inducing LTP in the brain is thought to begin a cascade of physiolog-

ical events that act on the specific neural circuit and result in long-lasting changes in the

expression of glutamate, receptor sensitivity and even the size of the neuron indicating

strength of the circuit (see Nicoll, 2017 for a full review).

1.2.2.2 LTP in Animals

LTP has been demonstrated extensively in animal models, cellularly, molecularly, and

behaviourally (Bliss and Lomo, 1973; Cooke and Bliss, 2006; Eckert et al., 2013). LTP

induction in an animal model can be used to understand the neurochemical changes that

occur in the brain. For instance, a study with rats proved that high frequency electrical

stimulation to the dentate gyrus resulted in increased activity of that particular neural

circuit (Abraham et al., 2002). Further investigation demonstrated that this phenomenon

occurred in different areas of the brain including the cerebral neocortex (Fox, 2002), the

hippocampus (Bliss and Lomo, 1973), the motor cortex (Hasan et al., 2013), and the visual

cortex (Eckert et al., 2013).

The translation of LTP from animal models to humans is a more recent venture (Clapp

et al., 2012). Since direct electrical stimulation of a neuron is a largely invasive technique in

animal models, attempts to induce LTP non-invasively led to the discovery that the same
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effect can be achieved by rapid visual stimulation in animal models, referred to as a photic

tetanus (Heynen and Bear, 2001; Zhang et al., 2000). This allowed for the non-invasive

translation of LTP induction to human subjects.

1.2.2.3 LTP in Humans

Earlier research demonstrated the possible induction of LTP in isolated human cortical

tissue (Beck et al., 2000; Chen et al., 1996); however, investigating changes in vivo are

relatively recent with the advancement of research and technology. While there are imaging

techniques that allow for the quantification of metabolites within a particular region of

the brain in vivo, assessing changes in receptors and cascades is not as easily accessible in

humans. As a result, evoked potentials including visual evoked potentials (VEPs) have been

used to assess the electrical changes in a human brain following rapid visual stimulation

(Teyler et al., 2005). Specifically, an increase in VEP amplitude of the N1b component

was found following 2 minutes of rapid visual stimulation (Teyler et al., 2005). While this

result suggests an increase in cortical activity and possibly increased plasticity, it is referred

to as an LTP-like phenomenon, as direct changes in chemical activity are not measured.

The study by Teyler et al. (2005) was the first to demonstrate the non-invasive induction

of LTP in the visual cortex, as measured by changes in VEP amplitudes. The assumption

is that changes in the neurochemistry are similar to that of previous studies in animal

models, although the behavioural and perceptual effects of rapid visual stimulation remain

unclear.
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1.2.3 Neuroplasticity in the Human Visual Cortex

The human visual system responds to its surrounding environment at a cellular and

molecular level, a concept known as experience-dependent plasticity (Karmarkar and Dan,

2006). The relationship between visual input and neural changes has proven important

to understanding the physiology and mechanisms of neuroplasticity, particularly because

of its potential role in recovery and rehabilitation of memory and neural functions in

humans (Särkämö et al., 2014). While it is widely accepted that children generally have

higher plasticity than adults, the mechanisms and changes that occur with age are not

quite understood. Similarly, the neural changes that occur into older adulthood remain

a mystery. Various manipulations to the visual system have been used in humans to

understand how to increase plasticity in adults, such as rapid visual stimulation (Klöppel

et al., 2015; Lahr et al., 2014; Norman et al., 2007; Teyler et al., 2005), visual perceptual

learning (Fahle and Poggio, 2002; Furmanski et al., 2004; Maertens and Pollmann, 2005)

and visual deprivation (Lunghi et al., 2015a; Lunghi et al., 2011; Lunghi et al., 2015b).

Such visual manipulations may strengthen neural connections through the mechanism of

LTP, weaken neural connections through the opposing mechanism of long-term depression

(LTD), or result in short-term effects caused by visual adaptation.

1.2.3.1 Adaptation

Visual adaptation refers to the temporary change in visual sensitivity to a perceived

stimulus or image, and the aftereffects that follow (Webster, 2015). Typically, sensitivity

to a particular stimulus is reduced following prolonged viewing of a high-contrast image
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(Webster, 2011). A key characteristic of adaptation is its specificity; the strength of the

effect is specific to colour, orientation, form and motion (Kohn, 2007; Webster, 2015).

Additionally, studies have demonstrated that this short-term form of plasticity lasts ap-

proximately as long as the period of perception (Başgöze et al., 2018; Greenlee et al.,

1991).

Since both long-term potentiation and adaptation are experience-dependent forms of

plasticity, it has been difficult to discern the two phenomena both physiologically and

mechanistically (Harris et al., 2012; McGovern et al., 2012). This suggests a possible

interaction between LTP and adaptation, since both act on similar neural mechanisms but

create opposite perceptual effects (McGovern et al., 2012). Although the differences and

characteristics of both mechanisms are still under investigation, both phenomena play a

key role in understanding the mechanisms of plasticity in humans.

1.2.3.2 Amblyopia as a Model of Neuroplasticity

The perceptual and behavioural effects of neuroplasticity are often studied using ambly-

opia as a model. Amblyopia is a neurodevelopmental disorder in which the lack of a clear

visual input from one eye disrupts the typical development of visual cortex structure and

function. In the past, amblyopia, as well as other developmental disorders, were deemed

permanent if not treated during the critical period, due to the presumed lack of plasticity

in the brain (Burke and Barnes, 2006). However, recent visual techniques and processes of

visual manipulation demonstrate the potential for the reorganization and strengthening of

neuronal connections to occur well past the critical period of development. These methods
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provide new approaches to treatment and rehabilitation of amblyopia applicable to both

children and adults. Since amblyopia results in binocular deficits, it has been commonly

used as a model for understanding the development of binocular vision in both children

and adults (Birch, 2013; Levi and Polat, 1996).

Amblyopia can develop as a result of deprivation, a complete lack of visual input to

one eye throughout early development. However, the more common causes of amblyopia in

human children are strabismus, an eye turn resulting in the misalignment of images from

each eye, and/or anisometropia, a large, uncorrected difference in refractive error between

the two eyes early in life (Holmes and Clarke, 2006). In each case, structural and functional

changes take place within the visual cortex (Dai et al., 2019; Lu et al., 2019; Shatz and

Stryker, 1978; Yang et al., 2019).

Not only does amblyopia result in reduced visual acuity in the amblyopic eye, there

are also several other deficits including but not limited to reduced contrast sensitivity,

reduced fixation stability, and reduced stereoacuity (Kanonidou, 2011; Levi, 2006; Li et

al., 2007; Webber, 2018). If detected in childhood, typically before the age of 9, amblyopia

is conventionally treated by patching the non-amblyopic eye, or fellow eye, to encourage

the development of the amblyopic eye. Some patients recover completely, while most

may recover some binocular function and improve slightly in visual acuity, or show no

improvements at all (Mintz-Hittner and Fernandez, 2000; West and Williams, 2016).

Since the brain was once thought to be ‘hard-wired’ later in life, adults are typically

untreated, as improvement was considered impossible. With a deeper understanding of

neuroplasticity in recent years and the discovery that neurons can strengthen and form
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new connections in adults, treatments for adults with amblyopia are becoming increasingly

popular (Dahlmann-Noor, 2016; Gao et al., 2018; Hess et al., 2014; Hess et al., 2010; Hess

and Thompson, 2015). The success of these new treatments of amblyopia depends on the

extent of structural and functional changes in the brain to alter perception for prolonged

periods of time, which are thought to be modulated by changes in chemicals within the

brain.

1.3 Neurotransmitters and Plasticity

The dynamic response of the brain to visual input occurs, in part, from the changes in

chemicals known as neurotransmitters that control the communication between two neu-

rons. There are several types of neurotransmitters that either encourage neurons to fire (ex-

citatory neurotransmitters), or inhibit neurons from firing (inhibitory neurotransmitters),

each needing to be present in certain concentrations for normal functioning throughout

life. As a result, neurotransmitter concentration is thought to play a role in the changes

in plasticity that occur from childhood to adulthood.

1.3.1 GABA and Glutamate

The two primary inhibitory and excitatory neurotransmitters in the brain are gamma-

aminobutyric acid (GABA) and glutamate, respectively. GABA is thought to play a

role in the increasing difficulty for the maturing brain to form new neural connections

or strengthen existing connection (Levelt et al., 2011). As a result, GABA has been as-
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sociated with the evident decrease of neural plasticity in young adults (Baroncelli et al.,

2011; Sale, 2010). Glutamate is the precursor of GABA, and therefore both neurotransmit-

ters are closely connected in a cycle mediated by the enzyme glutamic acid decarboxylase

(GAD) (Meldrum, 2000; Petroff, 2002). A homeostatic balance between excitatory and

inhibitory neurotransmitters, namely GABA and glutamate, is thought to be essential for

normal brain function (Fox and Stryker, 2017).

It is important to note, however, that the complexity of the GABAergic and glutamater-

gic neural network is not fully understood. Modulating GABA/glutamate concentration

in humans has proven to be complicated as many components of each system—such as the

neurotransmitter itself, its’ receptors, and the many enzymes and protein factors that mod-

ulate their expression—may be altered through different methods and techniques (Petroff,

2002).

1.3.1.1 GABA and the Critical Period

How plastic the brain can be changes from childhood into adulthood. The critical

period of neural development is commonly used to understand the correlation between

plasticity and cortical GABA concentration (Figure 1.1). Changes in GABA concentration

have been found to influence the critical period. Specifically, reducing GABA function

delays the onset of the critical period (Chen et al., 2001; Fagiolini et al., 2003; Morales

et al., 2002; Mower, 1991) while increasing GABA function, either directly or indirectly,

promotes the onset of the critical period at an earlier time (Fagiolini et al., 2004; Huang

et al., 1999; Iwai et al., 2003). The first experiment to discover this phenomenon in 1998
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showed that genetically reducing the synthesis of GABA in mice prevented the onset of the

critical period of ocular dominance plasticity, the window of time during which the strength

of the neural response to input from each eye can be altered (Fagiolini and Hensch, 2000;

Hensch et al., 1998). Therefore, it is hypothesized that a particular threshold of GABA

concentration is required to trigger the onset of the critical period of a particular function,

and a higher threshold closes it (Fagiolini and Hensch, 2000; Hooks and Chen, 2007).

Although the critical period closes after a short period of heightened plasticity, there is

still potential for change and strengthening of neural connections throughout adolescence

and adulthood. The extent to which plasticity exists in young and early adulthood and

the exact mechanisms that slow it down are not clear and investigating these mecha-

nisms will provide insight into new treatments for recovery and rehabilitation in later years.

1.3.1.2 Assessing GABA Concentration in Humans

While there are several techniques to assess GABA function in animal models and

isolated cortical tissue, the most common method for quantifying GABA concentration

in the human brain is by magnetic resonance spectroscopy (MRS) (Muthukumaraswamy

et al., 2009; Stagg et al., 2009b; van Loon et al., 2013). This imaging technique can

quantify GABA and glutamate concentrations in a particular region of the brain. Most

studies demonstrate the functional and behavioural changes that occur following GABA

modulation in the motor cortex (Lagas et al., 2016; Patel et al., 2019). Although MRS is

commonly used, it is expensive and time consuming. As a result, finding an indirect or

behavioural measurement of GABA concentration would be useful.
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Figure 1.1: A schematic representation of the hypothesized overall increase in GABA
concentration and decrease of neural plasticity in humans. Figure inspired by Hensch and
Quinlan Hensch and Quinlan (2018).

1.3.1.2.0.1 Binocular Rivalry as an Indirect Measure of GABA Despite its

many capabilities, the brain can resort to a state of bistable perception when presented

with conflicting images in each eye. Binocular rivalry occurs when two different images

are presented to each eye, resulting in stochastic changes from one percept to the other,

as each eye competes for dominance. The nature of the perceptual switching under such

conditions has fascinated researchers over the years and provided a method to study the

neural correlates of binocular vision, as well as conscious awareness (Lumer et al., 1998;
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Rees et al., 2002; Wunderlich et al., 2005). Since binocular rivalry appears to involve several

neural correlates and seems to be processed in different areas along the visual pathway,

it is inferred that the changes in the dynamics of binocular rivalry from childhood into

adulthood will mature behaviourally in a similar manner to the neural correlates involved.

GABA has been correlated with binocular rivalry alternation rates in young adults

(van Loon et al., 2013). Specifically, higher GABA is correlated with slower alternation

rates during binocular rivalry. However, whether this correlation is robust is unclear,

as a recent study found the opposite effect (Pitchaimuthu et al., 2017). Young adults

are found to have higher GABA concentration than children (Levelt et al., 2011; Levelt

and Hubener, 2012; Sale, 2010). This is consistent with changes in binocular rivalry

alternation rates from childhood into adulthood—alternation rates decrease while GABA

concentration (inhibition) increases. However, there is evidence for a continued increase

of GABA concentration in older adulthood (Pitchaimuthu, 2017), as well as evidence for

the opposite (Gao et al., 2013; Hua et al., 2008). Within-subject variations of GABA

concentration may be a factor. A recent magnetic resonance spectroscopy (MRS) study

in young and older adults found a significant decline in GABA concentration in older

adults within the right striatum only, suggesting non-uniform changes of GABA across

the brain (Hermans et al., 2017). As a result, it is still unclear whether the apparent

decrease in binocular rivalry alternation rates is related to an increase or decrease in GABA

concentration.
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1.3.2 Magnetic Resonance Spectroscopy

Magnetic resonance imaging (MRI) is a widely used technique for understanding brain

structure and function. MRI relies on a large magnet and the signals from protons to

form detailed images of the brain and monitor functional as well as metabolic changes that

occur over time, in response to visual stimulation, or even during rest (Lv et al., 2018;

Shen, 2015; Van Der Graaf, 2010). Two commonly used analyses to understand brain

function and dynamics are magnetic resonance spectroscopy and resting-state functional

connectivity.

Magnetic resonance spectroscopy (MRS) is a technique that uses an MRI to quantify

metabolites within a small region of the brain, or volume of interest (VOI). Spectra are

obtained from the human brain based on the characteristic response of the metabolite to

the magnet, from which the concentration is determined (Van Der Graaf, 2010; Figure

1.2). Resting state data shows the function of neural networks at rest, whereas functional

imaging shows the neural response while performing a task. These imaging techniques

give insight into the neurochemical and functional changes that occur within the brain and

allow for a better understanding of neuroplasticity in humans.

1.3.2.1 MRS and Neuroplasticity

The structural and functional changes that occur in the brain can be studied using var-

ious imaging techniques. Since neurotransmitter concentration is associated with changes

in neuroplasticity, a common method of studying neuroplasticity in humans is through

MRS. Quantifying GABA and glutamate within a region of the brain can reveal changes
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Figure 1.2: Representation of voxel of interest and edited spectrum output. Each metabo-
lite has a distinct peak at a specific frequency (parts per million, ppm). The y-axis repre-
sents the signal intensity. The quantification of each metabolite is determined as the area
under the peak. Reprinted from Progress in Nuclear Magnetic Resonance Spectroscopy, 60,
Nicolaas A.J. Puts and Richard A.E. Edden, In vivo magnetic resonance spectroscopy of
GABA: A methodological review, page 18, Copyright (2012), with permission from Elsevier
(see section 6.4)

that occur either as a result of age, or by techniques that directly or indirectly modu-

late neurochemicals. MRS has been used to investigate neuroplasticity and the chemicals

potentially associated with the age-related reduction of neuroplasticity.
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1.3.3 Modulation of GABA

Since GABA has been strongly linked to neuroplasticity and the opening and closure of

the critical period, modulating GABA concentrations has been a focus of recent research to

understand the effects on brain rehabilitation and recovery. Studies using animal models

have demonstrated the effects of GABA modulation on plasticity. In particular, decreasing

GABA using pharmacological or environmental manipulations in adult rats resulted in

enhanced visual cortex plasticity (Maddock et al., 2016; Sale et al., 2007; Vetencourt et al.,

2008). Since such invasive techniques are difficult to replicate in humans, other methods are

sought out for similar effects. For instance, as mentioned above, rapid visual stimulation

was previously found to have LTP-like effects understood as an increase in plasticity, and

therefore theoretically an influence on GABA concentration. However, this has yet to be

confirmed. One recent method commonly used to modulate GABA is non-invasive brain

stimulation.

1.3.4 Non-Invasive Brain Stimulation

Recent non-invasive methods of GABA modulation in human subjects include elec-

trical and magnetic stimulation. Although it is still unclear whether these techniques do

indeed effect GABA concentration, studies with animal models, and more recently humans,

suggest that such techniques do, in fact, alter brain neurochemistry and functionality in

some way (Stagg and Nitsche, 2011; Valero-Cabré et al., 2017). Electrical and magnetic

brain stimulation methods create an electric field in different ways and influence the brain
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differently; however, they have been used in similar ways to modify brain and behaviour.

1.3.4.1 Electrical Stimulation

Electrical stimulation relies on a weak electrical current that runs between two or more

electrodes positioned on the head. There are several different ways that the current can be

delivered to the brain, such as direct-current, alternating current, or random noise, each

having a different influence on the brain (Vosskuhl et al., 2018). Transcranial direct current

stimulation (tDCS) is the most commonly used technique and involves delivering a low

amplitude current to a particular region of the brain using electrode sponges (Fertonani

and Miniussi, 2016; Hurley and Machado, 2017; Jamil and Nitsche, 2017; Wilke et al.,

2017). Two electrodes (an anode and a cathode) are positioned on the head and a weak

electric current (typically 1-2mA) runs through them. Anodal tDCS (a-tDCS), in which

the anode is placed over the region of interest, increases the excitability of a particular

region of the brain possibly by decreasing GABA concentration (Antonenko et al., 2017a;

Heise et al., 2014; Jamil and Nitsche, 2017). In contrast, cathodal tDCS (c-tDCS), in

which the cathode is placed over the region of interest, decreases excitability by decreasing

glutamate, the GABA antagonist within the brain.

There are several mechanisms that are thought to underly the effects of tDCS. The

physiological changes underlying the effect of tDCS is dependent on the shift in the polarity

of neurons. The current flows from the anode to the cathode and must also flow through

the neurons to have an effect. Early work in animal models demonstrates an excitatory

effect on the neurons under the anode, and an inhibitory effect on the neurons under the
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cathode, likely by depolarizing and hyperpolarizing, respectively (Bikson et al., 2004; Jamil

and Nitsche, 2017)

One mechanism of tDCS on the brain is thought to involve the modulation of GABA

concentration as seen in studies on the motor cortex. Specifically, studies have found a

significant reduction in motor cortex GABA concentration following a-tDCS (Kim et al.,

2014; Patel et al., 2017) and prolonged changes in GABA that lasted approximately one

hour (Patel et al., 2019). Other studies found increased cortical excitability following

a-tDCS (Nitsche and Paulus, 2001) and increased motor learning (Stagg et al., 2011a),

all attributed to a reduction in GABA concentration. In the visual cortex, electrical

stimulation has an effect on behavioural measures, such as contrast sensitivity (Battaglini

et al., 2020; Ding et al., 2016) and depth perception (Behrens et al., 2017; Castaño-

Castaño et al., 2019a; Spiegel et al., 2013b). However, the effects on the visual cortex

may not be as pronounced and direct as those observed for the motor cortex (Lang et al.,

2007). Variations across studies in electrode placement, stimulation intensity, and duration

of stimulation make it difficult to compare results within and across regions of the brain,

which may account for the wide range of results and issues of replicability of studies within

the field (DaSilva et al., 2011).

1.3.4.2 Magnetic Stimulation

Transcranial magnetic stimulation (TMS) involves the induction of low electromagnetic

current using a magnetic coil over a particular region of the brain. TMS is thought to re-

sult in long-lasting changes to the brain. Depending on the pattern and parameters of
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stimulation, TMS can either increase or decrease cortical excitability (Mix et al., 2010;

Valero-Cabré et al., 2017). A common and relatively effective pattern of stimulation is

known as repetitive TMS, wherein pulses are administered rapidly and repeatedly within a

short period of time. Two patterns of repetitive TMS are intermittent theta-burst stimu-

lation (iTBS) and continuous theta-burst stimulation (cTBS), which modulate excitability

in opposite directions (Mix et al., 2010; Valero-Cabré et al., 2017). iTBS increases motor

cortex excitability using bursts of high frequency stimulation typically separated by 200ms

intervals, while cTBS consists of rapid pulses for short periods of time, decreasing cortical

excitability (Di Lazzaro et al., 2008). Although the way in which TMS exerts its effect on

the brain is not fully understood, it is thought to have a similar mechanism as LTP or LTD

(Klomjai et al., 2015). Interestingly, the effects of TMS and which neurons the protocol

may influence depend on the region of the brain being stimulated and the profile of the

neurons present in that region (Castrillon et al., 2020). This implies that different regions

of the brain may respond differently to similar protocols, calling for further investigation

in each particular region of the brain.

1.4 Summary

Modifying cortical excitability is thought to have long-term effects on functional and

behavioural measures. Studies on the motor cortex have demonstrated the rehabilitation

effects of electrical and magnetic stimulation (Hendricks et al., 2003; Kim et al., 2014;

Nitsche and Paulus, 2001; Patel et al., 2017; Stagg et al., 2011b). Additionally, visual

stimulation has been demonstrated to increase visual evoked potential amplitudes, indi-
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cating a possible increase in plasticity (Norman et al., 2007; Teyler et al., 2005). Further

investigation is required to understand whether or not these techniques of neural modula-

tion have an effect on the visual cortex and visual function.
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Chapter 2

Objectives and Rationale

The brain has a remarkable capacity to form and strengthen neural connections dur-

ing early childhood development. As the brain matures, however, neuroplasticity becomes

increasingly difficult, thought to be associated, in part, with an increase in GABA con-

centration. Consequently, increasing neuroplasticity in adults for the purpose of recovery

and rehabilitation of behaviour and function may be achieved by increasing cortical ex-

citability and/or modulating GABA concentration in the brain. Long-term potentiation

(LTP), a mechanism of neuroplasticity which underlies learning and memory formation,

can be induced through rapid visual stimulation of a high contrast image, and is thought

to increase plasticity of the visual cortex (Teyler et al., 2005). Non-invasive brain stimu-

lation, such as transcranial direct current stimulation (tDCS) and transcranial magnetic

stimulation (TMS) are techniques that have been found to modulate GABA concentration

in the motor cortex; specifically, anodal tDCS (a-tDCS) decreases GABA while continuous

theta burst stimulation (cTBS) increases GABA (Heise et al., 2014; Kim et al., 2014; Stagg
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et al., 2009a; Stagg et al., 2009b). Whether or not tDCS and TMS have the same effect

on visual cortex GABA concentration is not yet known. In order to investigate the effects

of these modulatory techniques, visual cortex GABA concentration must be measured. A

possible indirect and behavioural method to measure GABA concentration is binocular

rivalry, a phenomenon that occurs when two different images are shown to each eye. Pre-

viously, GABA concentration has been associated with binocular rivalry alternation rates

(van Loon et al., 2013). A direct measure of GABA concentration can be achieved using

magnetic resonance spectroscopy (MRS), an imagine technique that quantifies GABA in

a particular region of the brain.

The objective of my research is to investigate the effects of current neural modulation

techniques on visual cortex GABA concentration in the adult brain.

Project 1: To explore the behavioural effects of rapid visual stimulation by inves-

tigating whether monocular rapid visual stimulation has an LTP-like effect on binocular

rivalry dynamics in young adults.

Project 2: To investigate the effects of a-tDCS and cTBS—techniques which have

opposite effects on GABA concentration—on binocular rivalry dynamics in young adults.

Project 3: To investigate the effects of a-tDCS on visual cortex GABA concentra-

tion by measuring visual cortex GABA concentration using MRS before and after a-tDCS

in young healthy adults.
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Projects 1 and 2 were completed in tandem and led to project 3 in order to pro-

vide a more direct answer to the modulation of visual cortex GABA concentration (Figure

2.1).

Figure 2.1: Timeline and rationale of projects.

2.1 Hypotheses

Project 1: Monocular rapid visual stimulation will cause the stimulated eye to dominate

in binocular rivalry as a result of an LTP-like increase in excitability of neurons driven by

the stimulated eye.

Project 2: A-tDCS will cause an increase in mixed percept duration as a result

of reduced GABA concentration of the primary visual cortex. cTBS will have the opposite

effect.

Project 3: A-tDCS will reduce visual cortex GABA concentration.
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Chapter 3

Modulation of binocular rivalry with

rapid monocular visual stimulation

3.1 Overview

Rapid visual stimulation can increase synaptic efficacy by repeated synaptic activa-

tion. This long-term potentiation-like (LTP-like) effect can induce increased excitability

in the human visual cortex. To examine the effect of rapid visual stimulation on per-

ception, we tested the hypothesis that rapid monocular visual stimulation would increase

the dominance of the stimulated eye in a binocular rivalry task. Participants (n = 25)

viewed orthogonal 0.5 cpd gratings presented in a dichoptic anaglyph to induce binocular

rivalry. Rivalry dynamics (alternation rate, dominance, and mixed percept durations) were

recorded before and after 2 min of rapid monocular stimulation (9Hz flicker of one grat-
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ing) or a binocular control condition (9Hz alternation of the orthogonal gratings viewed

binocularly). Rapid monocular stimulation did not affect alternation rates or mixed per-

cept duration. Unexpectedly, rivalry dominance of the stimulated eye was significantly

reduced. A further experiment revealed that this effect could not be explained by monoc-

ular adaptation. Together, the results suggest that rapid monocular stimulation boosts

dominance in the non-stimulated eye, possibly by activating homeostatic interocular gain

control mechanisms.

3.2 Introduction

Long-term potentiation (LTP) is the process of strengthening synaptic efficacy through

repeated activation. This fundamental mechanism of neuroplasticity involves a cascade

of cellular and molecular changes and underpins the processes of learning and memory

formation (Bliss and Collingridge, 1993; Bliss and Lomo, 1973). Early research revealed

that rapid electrical stimulation of presynaptic cells within the rabbit hippocampus induced

a lasting increase in the response amplitude of postsynaptic cells (Bliss and Lomo, 1973).

Subsequent studies demonstrated similar effects (Bröcher et al., 1992) and characterized the

neurochemical changes that occurred as a result of the stimulation (Hayashi2000; Teyler

and DiScenna, 1987). These changes included a rise in postsynaptic calcium, the release of

glutamate, and the activation of N-methyl-D-aspartate (NMDA) receptors (Malenka and

Nicoll, 1999). While LTP is typically induced using electrical stimulation in vitro, similar

effects (a strengthening of neural responses following stimulation) have been reported in

the visual cortex using rapid visual stimulation in adult rats (Frenkel et al., 2006; Heynen
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and Bear, 2001) and in humans (Clapp et al., 2005b; Normann et al., 2007; Teyler et al.,

2005).

In human adults, 2-minutes of rapid visual stimulation of a high-contrast checkerboard

increased the amplitude of the N1b component of visual evoked potentials (VEPs) (Norman

et al., 2007; Sanders et al., 2018; Teyler et al., 2005). Rapid visual stimulation, sometimes

referred to as visual tetanus, has been delivered in a number of ways including 9Hz flicker of

checkerboard or grating stimuli and 2 Hz pattern reversal of checkerboard stimuli (Norman

et al., 2007; Teyler et al., 2005). To account for the effect of visual adaptation that can

reduce visual cortex excitability and VEP amplitude (Blakemore and Campbell, 1969),

most studies of rapid visual stimulation include a period of eye closure that at least matches

the duration of rapid visual stimulation (Magnussen and Greenlee, 1985). The effect of

rapid visual stimulation on VEP amplitude is stimulus specific (Ross et al., 2008; Vassilev

et al., 1994), reliant on NMDA receptors in animal models (Clapp et al., 2006a), and may

also involve an increase in glutamate receptor expression (Eckert et al., 2013), suggesting

that it involves an LTP-like mechanism.

The majority of studies on rapid visual stimulation in humans have used electrophys-

iology or neuroimaging to measure visual cortex excitability before and after stimulation

(Sanders et al., 2018). Therefore, the perceptual effects of rapid visual stimulation, if any,

are not well understood. This is an important issue. If the LTP-like changes in cortical

excitability induced by rapid visual stimulation can modulate perception, rapid visual stim-

ulation may have therapeutic applications. For example, repetitive transcranial magnetic

stimulation of the visual cortex can transiently improve visual functions such as contrast

sensitivity in adults with amblyopia, a neurodevelopmental disorder of vision (Clavagnier
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et al., 2013; Thompson et al., 2008; Tuna et al., 2020). Like rapid visual stimulation, the

effects of repetitive transcranial magnetic stimulation on cortical excitability likely involve

LTP-like mechanisms (Hoogendam et al., 2010). Therefore, rapid visual stimulation may

have similar effects and, unlike repetitive transcranial magnetic stimulation, can be deliv-

ered to the thalamocortical inputs from just one eye. This property may make repetitive

visual stimulation particularly well suited for the treatment of amblyopia, which is char-

acterized by a large imbalance in the neural response generated by each eye (Barnes et al.,

2001).

Two preliminary studies have reported behavioural effects of rapid visual stimulation.

Beste et al. observed improved luminance discrimination following 40 minutes of 20 Hz

rapid visual stimulation, whereas Clapp et al. observed a reaction time improvement, but

no change in response accuracy, during a checkerboard detection task following 2 minutes

of 9Hz stimulation (Beste et al., 2011; Clapp et al., 2012). In this experiment we further

explore the behavioural effects of rapid visual stimulation by investigating the effect of

monocular rapid visual stimulation on binocular rivalry.

Binocular rivalry is a form of bistable perception wherein conflicting monocular images

stochastically compete for dominance when viewed dichoptically. The resulting percept

can involve periods of complete perceptual dominance by one eye, and periods of a mixed

percept whereby images are superimposed or each eye dominates in different regions of

the visual field (piecemeal) (Wilson et al., 2001). In individuals with normal binocular

vision, the periods of perceptual dominance are relatively equal between the two eyes.

However, the relative dominance of each eye during binocular rivalry can be modulated by

presenting stimuli with features such as size (Kang, 2009), colour (Stalmeier and de Weert,
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1988), luminance (Hong and Shevell, 2008), orientation (Holmes et al., 2006) and spatial

frequency (Fahle, 1982), that differ between the two eyes.

In this study, we induced binocular rivalry by dichoptically presenting orthogonal, si-

nusoidal gratings. Dichoptic presentation was achieved using red/green anaglyphs. The

aim of our first experiment was to determine suitable grating parameters. Specifically, we

aimed to identify a stimulus configuration that generated minimal time spent in mixed

perception and stable alternation rates across trials. In our second experiment, we used

this stimulus to assess whether monocular rapid visual stimulation modulates binocular

rivalry dynamics and/or dominance durations in individuals with normal binocular vision,

based on previous work showing that rapid visual stimulation induces LTP-like effects in

human visual cortex (Clapp et al., 2006b; Normann et al., 2007; Ross et al., 2008; Sanders

et al., 2018; Teyler et al., 2005). Our hypothesis was that rapid monocular visual stimula-

tion would strengthen the cortical response to inputs from the stimulated eye and that this

would increase the relative time spent perceiving the stimulus presented to the stimulated

eye during binocular rivalry (i.e. increase the perceptual dominance of the stimulated eye).

In a third experiment, we measured binocular rivalry before and after viewing a monocular

static grating as a test of monocular visual adaptation.

3.3 Materials and Methods

Three experiments were performed. Experiment 1 investigated the parameters for the

binocular rivalry stimulus. Experiment 2 measured the effect of rapid monocular stimula-

tion on binocular rivalry dynamics. A subset of participants from Experiment 2 completed
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a third experiment to determine whether adaptation could explain the results of Experi-

ment 2.

3.3.1 Experiment 1: Stimulation parameters for binocular ri-

valry

3.3.1.1 Participants

Nine adults (age range: 21-28 years; 5 female) with self-reported normal binocular vision

participated in a 1-hour binocular rivalry experiment. All participants were informed of

the nature of the study before participation and provided written informed consent. The

project was approved by the University of Waterloo Research Ethics Committee (ORE

#30537; May 2016).

3.3.1.2 Stimuli and protocol

Orthogonally oriented sinusoidally modulated gratings were presented dichoptically

(57cm viewing distance) within a circular field subtending 6.1 degrees of visual angle on

a gamma corrected 24” Asus R© 3D monitor. Relatively large gratings were used because

this study was the first step in a program of research that will extend to participants with

reduced vision caused by amblyopia. Participants with amblyopia may struggle to see

small stimuli. Dichoptic presentation was achieved using red/green anaglyph glasses with

less than 5% crosstalk. The space average contrast levels of the gratings were matched

(0.5; calculated as the difference between the luminance of the coloured stripes and the
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black bars used in each grating divided by their sum) using a Chroma Meter CS-100 R©

photometer through the anaglyphic filters. photometer with measurements made through

the anaglyphic filters (mean luminance: red = 8.4 cd/m2; green = 32.9 cd/m2). Using a

computer keyboard, participants continuously reported whether they perceived the grat-

ing presented to the left eye (left eye dominant), the grating presented to the right eye

(right eye dominant), or a mixed percept of both gratings. Specifically, a keyboard key

was allocated to each percept. Participants held down the key corresponding to their cur-

rent percept and switched keys when their percept changed. The total duration of each

percept as well as the number of alternations (a change from one percept to another) were

analyzed.

Participants completed 40 x 60s randomly sequenced trials—5 trials for each combina-

tion of two grating orientation pairs (45/135◦ vs. 90/180◦) and 4 spatial frequencies (0.5,

1, 1.5 or 2 cycles per degree); the spatial frequency of the gratings presented to each eye

within a trial was always identical.

3.3.1.3 Analysis

Binocular rivalry alternation rates were calculated for each trial separately by dividing

the number of alternations (defined as any change in percept) by the total presentation

time. Alternation rate calculations included mixed percepts. Alternation rates across all

five trials were then averaged for each set of stimulus parameters. The cumulative duration

of mixed percepts was also analysed. Ocular dominance indices were calculated for each

participant as (time spent viewing with right eye minus time spent viewing with left eye
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divided by total time spent viewing right eye and left eye percepts) to investigate the effect

of spatial frequency and orientation on ocular dominance.

Data were tested for normality using the Shapiro-Wilk paired-samples assumption test.

Normally distributed data were analysed using repeated measures ANOVA and post-hoc

paired t-tests. Skewed data were analysed using the Freidman test and post-hoc Wilcoxon

signed-rank test. We anticipated skewed data across all experiments because the distri-

butions were bounded. Repeated measures ANOVAs or Freidman tests with factors of

orientation (90/180 vs. 45/135) and spatial frequency (0.5 vs. 1.0 vs. 1.5 vs. 2.0 cpd)

were conducted separately for alternation rate, mixed duration, and the absolute ocular

dominance index. To determine whether stimulus orientation or spatial frequency affected

the stability of binocular rivalry dynamics across trials, each participant’s standard devia-

tion across trials for each combination of orientation and spatial frequency was calculated

for alternation rate. Repeated measures ANOVAs with factors of orientation and spatial

frequency were conducted on the standard deviation data. Following convention in the

field, a p-value of less than 0.05 was considered statistically significant.

3.3.2 Experiment 2: Binocular rivalry following rapid monocular

stimulation

3.3.2.1 Participants

Twenty-five adults (mean age 25, range 19-33) with normal binocular vision based on

stereopsis of ≤ 40 arc sec (The Fly Stereo Acuity Test R© Vision Assessment Corporation)
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and normal or corrected-to-normal vision (0.1 logMAR or better in each eye) participated in

the rapid monocular stimulation experiment. Exclusion criteria included any neurological

condition or the use of psychoactive drugs. All participants were informed of the nature

of the study before participation and provided written informed consent. The project was

approved by the University of Waterloo Research Ethics Committee (ORE #30537; May

2016).

3.3.2.2 Rivalry stimulus

The stimulus spatial frequency and orientation pair determined in experiment 1 (0.5cpd,

45/135◦) was chosen for this experiment. Viewing conditions and the method of report-

ing binocular rivalry percepts were identical to experiment 1. Three 60-second trials of

binocular rivalry were recorded before and after rapid monocular stimulation.

3.3.2.3 Study design

We used a modified version of the rapid monocular stimulation protocol described by

Teyler and colleagues Teyler et al. (2005) (Figure 3.1). Within a repeated measures design,

participants completed two study conditions on separate days: a rapid monocular visual

stimulation condition, and a binocular control condition. Upon the first visit, participants

completed either the rapid monocular stimulation condition or the binocular control con-

dition, assigned randomly. Rapid monocular stimulation involved monocular viewing of

only one of the two gratings that made up the binocular rivalry stimulus flickering on and

off (50% duty cycle, on: high contrast grating on a luminance-matched grey surround; off:
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uniform grey field) at 9Hz for 2 minutes. The stimulated eye was randomly selected for

each participant. The stimulated eye was stimulated with the same grating orientation that

was presented to that eye during the pre and post stimulation binocular rivalry measures

because the LTP-like effects of rapid visual stimulation are stimulus specific. Participants

wore red/green glasses during the rapid monocular stimulation. The binocular control

condition was identical except that the two gratings that made up the binocular rivalry

stimulus were alternated in the center of the monitor at 9 Hz and viewed binocularly (no

red/green glasses). In both the rapid monocular stimulation and binocular control condi-

tions, the two minutes of visual stimulation was followed by two minutes of eye closure to

minimize adaptation effects. Binocular rivalry measures were recorded before stimulation

(pre) and after eyelid closure (post).

3.3.2.4 Analysis

The binocular rivalry measures were alternation rate, time spent in mixed perception,

and ocular dominance index (all calculated as in experiment 1). Alternation rates and

time spent in mixed perception across all three trials were averaged for each condition.

An ocular dominance index was calculated for each participant based only on the duration

of left eye dominant and right eye dominant percepts. Mixed percepts were not included

in this analysis. In the rapid monocular stimulation condition this index was defined as:

stimulated eye dominance duration minus non-stimulated eye dominance duration divided

by the total time for the percepts of the stimulated eye and non-stimulated eye; in the

binocular control condition the ratio was calculated in the same way based on the eye

randomly selected for stimulation in the monocular condition.
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Figure 3.1: Schematic representation of Experiment 2 protocol. Plaid stimuli indicate
binocular rivalry testing. In the rapid monocular stimulation condition, one the of the
gratings that made up the plaid was presented monocularly and flickered at 9Hz. The
stimulated eye (and therefore the red or green colour of the grating) was randomised. In
this figure, the red grating is shown as an example. In the control binocular condition, the
two gratings that made up the binocular rivalry stimulus were alternated at 9 Hz at the
center of the screen and were viewed binocularly.

Data were analyzed using parametric or non-parametric tests depending on normality

as in experiment 1. ANOVAs or Freidman tests with factors of Condition (rapid monocular

stimulation vs. control) and Time (pre vs. post stimulation) were conducted separately

for alternation rate, mixed duration, and ocular dominance indices. Post-hoc testing was

conducted using paired t-tests or the Wilcoxon signed-rank test.
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3.3.3 Experiment 3: Binocular rivalry following monocular

adaptation

3.3.3.1 Participants and methods

A subset of participants that completed experiment 2 who consented to and were avail-

able for additional testing (N=12) completed experiment 3 on a separate day several months

after completing experiment 2. Experiment 3 was a post-hoc experiment designed to inves-

tigate whether monocular adaptation could explain the results of experiment 2. The pre

and post measurements of binocular rivalry used in experiment 3 were identical to those

used in experiment 2. The monocular adaptation between these tests was a static monoc-

ular presentation of one of the gratings (red or green) that made up the binocular rivalry

stimulus for 2 minutes. The static grating was presented to the same eye (left or right)

that had been exposed to rapid monocular stimulation in experiment 2. As in experiment

2, participants closed their eyes for 2 minutes following adaptation (Figure 3.2).

Figure 3.2: Schematic representation of Experiment 3 protocol. Plaid stimuli indicate
binocular rivalry testing. For each participant, the same grating used in the rapid monoc-
ular stimulation condition was shown as a static image in the adaptation condition.
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3.3.3.2 Analysis

Two analyses were conducted. First, the results from the rapid monocular stimulation

and control conditions in experiment 2 were reanalysed using only data from the subset of

participants who completed experiment 3 to test whether the main finding from experiment

2 (reduced ocular dominance index for the stimulated eye in the rapid monocular stimula-

tion condition but not the control condition) was present in the smaller sample. Wilcoxon

signed-rank tests were used to compare the ocular dominance indices pre vs. post stim-

ulation in the rapid monocular stimulation and control conditions. Second, a Wilcoxon

signed-rank test was conducted on the data collected in experiment 3 to compare ocular

dominance indices pre vs. post static visual adaptation of one eye.

3.4 Results

3.4.1 Experiment 1

For alternation rates, a repeated measures ANOVA showed no significant effects of

Grating Orientation (p > 0.05; Figure 3.3A). However, a main effect of Grating Spatial

Frequency was observed (F1,8 = 4.194, p = 0.016, η2; Figure 3.3B, Table 3.1). ). Alternation

rates were slowest at 0.5 cpd. Alternation rates for the 0.5 cpd stimulus differed significantly

from the 1 cpd (t8 = -3.617, p = 0.007, Cohen’s d = -1.206) and 1.5 cpd (t8 = -3.485, p

= 0.008, Cohen’s d = -1.1.62) stimuli, but not the 2 cpd stimulus (t8 = -1.597, p = 0.149,

Cohen’s d = -0.532). No significant effects of Grating Orientation or Grating Spatial
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Frequency were observed for mixed duration or for the standard deviations of alternation

rate (all F > 3.903, all p > 0.069). Absolute values of ocular dominance indices were

not normally distributed. As a result, the Freidman test was conducted and showed no

significant effect of Grating Orientation (F1 = 0.130, p = 0.716, Kendall’s W = -567.8)

or Grating Spatial Frequency (F1 = 2.641, p = 0.062, Kendall’s W = -21.9) on ocular

dominance index. Based on these results, a spatial frequency of 0.5 cpd was chosen for

experiment 2 because this spatial frequency induced the slowest alternation rates. The

oblique orientations (45/135) were chosen for experiment 2 arbitrarily.

Figure 3.3: Rivalry alternation rates for experiment 1. (A) Orientation with the mean
alternation rates for each individual participant collapsed across spatial frequency. (B)
Spatial frequency with mean alternation rates for each individual participant collapsed
across orientation. Each color signifies a different participant (n = 9). (*) indicates signif-
icant differences for post hoc paired t-tests p < 0.05.
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Table 3.1: Experiment 1 - Effects of stimulus parameters on binocular rivalry

Spatial Alternation Rate* Mixed Percept Duration* Absolute Ocular
Frequency (Hz) (time/60s) Dominance Index*

0.5cpd 0.49 (±0.18) 0.06 (±0.02) 0.11 (±0.07)
1.0cpd 0.57 (±0.19) 0.10 (±0.03) 0.11 (±0.04)
1.5cpd 0.56 (±0.18) 0.12 (±0.04) 0.16 (±0.10)
2.0cpd 0.54 (±0.16) 00.13 (±0.04) 0.20 (±0.16)

(*) grand mean between subjects followed by the mean of the within subjects’ standard
deviations.

3.4.2 Experiment 2

Neither alternation rates nor ocular dominance indices were normally distributed.

Therefore, nonparametric statistics were adopted. The median values ± interquartile

ranges for measures of rivalry dynamics pre and post rapid monocular stimulation were ±

0.24 Hz and 0.56 ± 0.24 Hz for alternation rates (Figure 3.4), 8.46 ± 10.13 s and 11.96 ±

12.33 s for time spent in mixed perception (Figure 3.5), and 0.02 ± 0.12 and -0.05 ± 0.08

for ocular dominance indices (Figure 3.6). For the binocular control condition, medians pre

and post stimulation were 0.65 ± 0.28 and 0.61 ± 0.27 for alternation rates, 12.51 ± 11.71

s and 13.71 ± 13.95 s for time spent in mixed perception, and -0.01 ± 0.09 and -0.02 ± 0.16

for ocular dominance indices. Rapid monocular stimulation did not alter binocular rivalry

alternation rates (Freidman test: no effect of Condition [rapid monocular stimulation vs.

binocular control]; F1 = 3.137, p = 0.081, Kendall’s W = -17.9), or the duration of mixed

percepts (Freidman test: no effect of Condition [rapid monocular stimulation vs. binocular

control]; F1 = 3.229, p = 0.077, Kendall’s W = -18.1) . However, rapid monocular stimu-

lation shifted the ocular dominance index in favour of the non-stimulated eye (Freidman
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test: significant effect of Condition [rapid monocular stimulation vs. binocular control]; F1

= 5.332, p = 0.025, Kendall’s W = -18.8).The effect was associated with a significant shift

in ocular dominance index towards the non-stimulated percept following the rapid monoc-

ular stimulation condition (post hoc Wilcoxon signed-rank test, W = 248.0, p = 0.005,

r = 0.653; Figure 3.6). In other words, rapid monocular stimulation decreased the time

spent viewing the percept for the stimulated eye relative to that for the non-stimulated

eye. There was no change in ocular dominance index for the binocular control condition

(W = 134.5, p = 0.668, r = -0.103).
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Figure 3.4: Individual alternation rates for the rapid monocular stimulation and binocular
control conditions in experiment 2 presented as scatter (A) and line (B) plots. Solid
horizontal lines in panel A denote medians; error bars = IQR.

45



Figure 3.5: Time in mixed perception for the rapid monocular stimulation and binocular
control conditions from experiment 2 presented as scatter (A) and line (B) plots as in figure
3.4
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Figure 3.6: Median ocular dominance indices for the rapid visual stimulation and binocular
control conditions in experiment 2 presented as scatter (A) and line (B) plots as in figure
3.4. Negative values indicate decreased dominance for the stimulated eye.

47



3.4.3 Experiment 3

Experiment 3 data were not normally distributed. For the subgroup from experiment

2 who also completed experiment 3, monocular adaptation did not alter ocular dominance

(W = 30.0, p = 0.838, r = 0.091). Importantly, this subgroup did show a significant shift in

ocular dominance towards the non-stimulated eye following rapid monocular stimulation,

similar to that of the full cohort in experiment 2 (W = 66.0, p = 0.004, r = 1.000; Figure

3.7). This subgroup also showed no effect of the binocular control condition from their

experiment 2 data (W = 32.0, p = 0.610, r = -0.179).
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Figure 3.7: Ocular dominance indices for participants who completed both experiment 2
and experiment 3 (n = 12) presented as scatter (A) and line (B) plots as in figure 3.4.
Negative values indicate reduced dominance for the stimulated/adapted eye.
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3.5 Discussion

The primary aim of this study was to assess whether rapid monocular stimulation of one

eye would increase the dominance of that eye during binocular rivalry. Unexpectedly, we

observed the opposite effect; rapid monocular stimulation reduced the relative dominance

of the stimulated eye during binocular rivalry.

How might we explain this unexpected result? The simplest explanation is that rapid

monocular stimulation caused retinal or cortical adaptation resulting in reduced dominance

of the stimulated eye during binocular rivalry. Following previous work (Teyler et al., 2005),

our rapid monocular stimulation protocol was designed to minimize adaptation effects by

providing a period of eye closure directly after the rapid visual stimulation that was the

same duration as the rapid visual stimulation itself (2 minutes). Generally, a period of

adaptation lasts as long as the stimulation (Başgöze et al., 2018; Greenlee et al., 1991).

However, it is still possible that adaptation played a role in our results. Therefore, we

conducted a third experiment on a subset of participants from experiment 2 who were

available and willing to complete further testing. This experiment revealed that simply

adapting one eye to one of the gratings that made up the binocular rivalry stimulus did

not alter ocular dominance. Although the sample size for this experiment was smaller

than for the main experiment and therefore had less power to detect small shifts in ocular

dominance, there was no trend observed to indicate adaptation. Together, the use of a

period of eye closure within our rapid monocular stimulation protocol and the results of

experiment 3 argue against adaptation as an explanation of our unexpected result.
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AAn alternative explanation is that rapid visual stimulation of one eye may not have

generated the expected LTP-like effects but rather a long-term depression-like effect (LTD).

Although increased cortical excitability is the most commonly reported effect of visual

stimulation (Clapp et al., 2006a; de Gobbi Porto et al., 2015; Kirk et al., 2010; Teyler

et al., 2005), decreased or inconsistent changes in cortical activity have also been reported.

These include a reduced visual cortex BOLD response post-stimulation (Lahr et al., 2014)

and reduced VEP amplitude in young adults post stimulation (Abuleil et al., 2019). The

reason that some studies show LTP-like and others show LTD-like results is not clear;

however, this pattern of results does suggest that visual stimulation effects are inconsistent

(Sanders et al., 2018). LTD-like changes following visual stimulation would be consistent

with our observation of relatively reduced binocular rivalry dominance for the eye that

received rapid monocular stimulation.

One additional possible explanation for decreased dominance following rapid monocular

stimulation is suggested by recent studies that have explored the effect of short-monocular

occlusion on binocular rivalry dominance. After one eye is occluded for a period of time,

that eye has a relatively increase in dominance during binocular rivalry once the occlusion is

removed (Lunghi et al., 2011; Min et al., 2018). This effect does not require occlusion of the

deprived eye. Induced suppression of one eye or the presentation of lower contrast images to

one eye for as little as 3 minutes also increases that eye’s binocular rivalry dominance (Kim

et al., 2017). Other image degradation manipulations such as the presentation of pink noise

(Bai et al., 2017) or spatial scrambling of one eye’s image also result in increased dominance

of the deprived eye over the eye exposed to normal visual stimulation (Ramamurthy and

Blaser, 2018; Zhou et al., 2014). The effects of short-term monocular occlusion also extend
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to participants with amblyopia, a disorder characterized by chronic perceptual dominance

of the fellow eye over the amblyopic eye (Li et al., 2011). Occlusion of the amblyopic eye

strengthens the contribution of that eye to binocular vision once the occlusion is removed

(Chadnova et al., 2017; Lunghi et al., 2011; Lunghi et al., 2016; Lunghi et al., 2019; Zhou

et al., 2013; Zhou et al., 2019).

Possible mechanisms underlying the ocular dominance shift induced by short-term

monocular occlusion include a change in neural interocular gain control resulting from

a large imbalance in the input from each eye to cortical processing (Lunghi et al., 2011;

Zhou et al., 2013). This change is associated with reduced visual cortex GABA concen-

tration (Lunghi et al., 2015a) and may involve both feedforward and feedback pathways

(Ramamurthy and Blaser, 2018).

The effect of monocular deprivation on binocular rivalry typically requires a longer

period of deprivation than two minutes (Lunghi et al., 2015b). However, it is possible

that LTP-like changes in visual cortex induced by monocular rapid visual stimulation

drive a more rapid plastic change. In particular, we postulate that the strengthening of

the cortical response to the stimulated eye generated by our monocular rapid stimulation

protocol rapidly activated the same homeostatic mechanisms that underpin short-term

monocular occlusion effects. In other words, the reduced binocular rivalry dominance of

the stimulated eye was not a direct effect of the rapid monocular stimulation but was

caused by the relative deprivation of the non-stimulated eye.

Our study had a number of limitations. As mentioned above, the sample size for

experiment 3 was limited. Additional experiments with a larger sample size will be required
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to fully explore the effect of monocular adaptation on binocular rivalry for our stimuli.

Visible outliers in our sample (Figure 3.6) are likely due to the high individual variability

and can be addressed with a larger sample size. Moreover, our stimulus was contrast

balanced, and as a result, the luminance of each grating was different. This may influence

binocular rivalry dynamics with a preference for the eye with higher luminance. However,

it is more important to eliminate contrast differences, which typically have larger effects

on binocular rivalry (Kulikowski, 1992). In addition, while the focus of our study was

the effect of rapid monocular visual stimulation on binocular rivalry dynamics, further

investigation is needed to identify the optimal visual stimulus parameters for the induction

of LTP-like or LTD-like effects. Temporal frequency is likely to be a particularly important

parameter. Electroencephalography (EEG) recordings may also provide further insight

into the neural mechanisms driving the effect of rapid monocular visual stimulation on

binocular rivalry. Additionally, we did not measure the optimal duration of monocular

rapid visual stimulation for altering eye dominance in binocular rivalry or the length of

time for which eye dominance was altered. It has previously been observed that 2 minutes

of rapid visual stimulation increased VEP amplitudes while 10 minutes of stimulation

had no effect (Norman et al., 2007). In addition, the effect of rapid visual stimulation

on VEP/ERP amplitude has been reported to last for up to an hour or until the effect

is measured using a slow 1Hz stimulus (Clapp et al., 2006a; Teyler et al., 2005).It is

currently unknown whether these results also apply to the behavioural effects of rapid

visual stimulation.

As a whole, our results raise the exciting possibility that rapid monocular stimulation

can be used to rapidly induce eye dominance shifts. Potential applications of this technique
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include the manipulation of ocular dominance in amblyopia. We are currently conducting

studies that address this possibility.
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3.6 Summary

Figure 3.8: Project 1 diagram and rationale.

The primary aim of Project 1 was to investigate the effects of rapid monocular visual

stimulation on binocular rivalry dynamics. LTP is a fundamental mechanism of neuro-

plasticity that underlies the processes of learning and memory formation. Recently, rapid

visual stimulation has been reported to induce LTP-like effects in the human brain, mea-

sured as a change in VEP amplitude (Normann et al., 2007; Teyler et al., 2005); however,

the perceptual effects of rapid visual stimulation are less understood. We hypothesized

that rapid monocular visual stimulation will increase the dominance of the stimulated eye

during a binocular rivalry task. Unexpectedly, we found a significant shift in ocular dom-

inance towards the non-stimulated eye following two minutes of rapid monocular visual

stimulation, a result which could not be explained by adaptation. Our findings support

recent research with short-term monocular occlusion that report a surprising shift in ocu-

lar dominance towards the deprived eye (Chadnova et al., 2017; Lunghi et al., 2011; Zhou

et al., 2015; Zhou et al., 2018) a result that can be explained by a possible homeostatic

gain control mechanism.
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Concurrently, we were also interested in the effects of non-invasive brain stimula-

tion—techniques that can modulate cortical excitability—on binocular rivalry dynamics.

Both rapid visual stimulation and non-invasive brain stimulation alter the neurophysiology

of the brain, as seen through changes in VEP amplitudes and neurotransmitter concentra-

tion. Whether these changes translate behaviourally is still under investigation.
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Chapter 4

Modulation of binocular rivalry with

non-invasive stimulation of the visual

cortex

4.1 Overview

Neuromodulation of the primary visual cortex using anodal transcranial direct current

stimulation (a-tDCS) can alter visual perception and enhance neuroplasticity. However,

the mechanisms that underpin these effects are currently unknown. When applied to the

motor cortex, a-tDCS reduces the concentration of the inhibitory neurotransmitter gamma

aminobutyric acid (GABA), an effect that has been linked to increased neuroplasticity. The

aim of this study was to assess whether a-tDCS also reduces GABA-mediated inhibition
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when applied to the human visual cortex. Changes in visual cortex inhibition were mea-

sured using binocular rivalry dynamics. Binocular rivalry has recently been advocated as

a direct and sensitive measure of visual cortex inhibition whereby GABA agonists decrease

mixed percept durations and agonists of the excitatory neurotransmitter acetylcholine in-

crease mixed percepts. Our hypothesis was that visual cortex a-tDCS would increase mixed

percepts during binocular rivalry by reducing GABA-mediated inhibition and increasing

cortical excitation. In addition, we measured the effect of continuous theta-burst tran-

scranial magnetic stimulation (cTBS) to the visual cortex on binocular rivalry dynamics.

When applied to the motor cortex, cTBS increases GABA concentration and we therefore

hypothesized that visual cortex cTBS would decrease mixed percept duration. Binocular

rivalry dynamics were recorded before and after active and sham a-tDCS (N=15) or cTBS

(N=15). A-tDCS had no effect. Contrary to our hypothesis, cTBS significantly increased

mixed percepts during rivalry. These results suggest that the neurochemical mechanisms

of non-invasive brain stimulation differ between the motor and visual cortices.

4.2 Introduction

Non-invasive brain stimulation techniques, such as anodal transcranial direct current

stimulation (a-tDCS) have been used as an indirect method for modulating neural excitabil-

ity and promoting neuroplasticity. When applied to the visual cortex, a-tDCS increases

contrast sensitivity (Antal et al., 2001; Behrens et al., 2017; Ding et al., 2016; Spiegel et

al., 2013a), improves visual acuity (Bocci et al., 2018; Reinhart et al., 2016), and enhances

perceptual learning (Sczesny-Kaiser et al., 2016; Spiegel et al., 2013b) in patients with
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amblyopia, a neurodevelopmental disorder that affects binocular vision, as well as con-

trols. In addition to perceptual changes, studies have found reduced phosphene thresholds

(Antal et al., 2003a; Antal et al., 2003b; Sczesny-Kaiser et al., 2016) and increased VEP

amplitudes (Ding et al., 2016; Sczesny-Kaiser et al., 2016; Strigaro et al., 2015) following

a-tDCS, which suggest physiological and neurochemical changes in the visual cortex that

result in increased cortical excitability.

Although the mechanisms underlying the effects of a-tDCS on visual cortex are not

known, the effects of a-tDCS on the motor cortex are attributed in part to modulation of

inhibition mediated by the neurotransmitter gamma amino-butyric acid (GABA). Specifi-

cally, magnetic resonance spectroscopy measures indicate that a-tDCS reduces motor cortex

GABA concentration (Antonenko et al., 2017b; Bachtiar et al., 2015; Heise et al., 2014;

Kim et al., 2014; Patel et al., 2019; Patel et al., 2017; Stagg et al., 2009a). The effects of

visual cortex a-tDCS on perception and visual function are consistent with reduced GABA

levels. For example, visual phenomena that have been linked to GABA mediated inhibition

such as an attenuated cortical response to inputs from the amblyopic eye in adults with

amblyopia (Ding et al., 2016; Spiegel et al., 2013a), surround suppression (Spiegel et al.,

2012) and lateral inhibition (Raveendran et al., 2020) can be modulated with a-tDCS.

In contrast to a-tDCS, continuous theta-burst stimulation (cTBS), a form of transcra-

nial magnetic stimulation that can also alter visual perception (Clavagnier et al., 2013),

has been found to increase GABA concentration in the motor cortex (Stagg et al., 2009b).

cTBS, therefore, would be expected to have the opposite effect to a-tDCS on percepts that

are influenced by GABA-mediated inhibition.
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Binocular rivalry (BR) dynamics have recently been advected as a sensitive measure

of GABA-mediated inhibition withing the human visual cortex (Mentch et al., 2019). BR

is a form of bistable perception wherein the brain alternately suppresses one eye over

the other stochastically when each eye views a difference image. This phenomenon has

been commonly used to investigate binocular function in the human brain (Blake and

Logothetis, 2002; Kovács et al., 1996; Tong et al., 2006; Tong et al., 1998). Previous

studies have found that BR dynamics in young adults are inversely correlated with the

concentration of the primary inhibitory neurotransmitter in the brain known as gamma-

aminobutyric acid (GABA) (Pitchaimuthu et al., 2017; Robertson et al., 2016; van Loon

et al., 2013). Specifically, young adults with slower binocular rivalry alternation rates had

a higher concentration of primary visual cortex GABA concentration, and high GABA

concentration was correlated with mean perceptual dominance, defined as the time spent

viewing either dominant percept (not mixed perception). Scientists have used various

methods to manipulate neurotransmitter concentration in order to understand the role it

plays in behavioural and functional mechanisms within the brain. For instance, cortical

infusion of drugs such as benzodiazepines increase GABAergic inhibition within the brain

and modulate visual function as demonstrated in adult rats (Sale et al., 2007). Most

recently, a direct manipulation of GABA concentration in the human brain showed an

effect on BR perceptual dominance (Mentch et al., 2019), wherein a small dose of a drug

that increases GABAergic inhibition resulted in increased dominance percept duration

in young adults as compared to a placebo. Additionally, reduced inhibition and increased

excitation induced by the acetylcholine agonist donepezil increased mixed percept duration

during binocular rivalry (Sheynin et al., 2020). Given this evidence, we used BR mixed
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percept duration as a measure of cortical inhibition.

Whether brain stimulation indeed alters visual cortex GABA concentration as it does

in the motor cortex is not yet known. Our study aimed to address this question. We

hypothesized that visual cortex a-tDCS would reduce visual cortex GABA concentration

resulting in increased mixed percept durations and visual cortex cTBS would have the

opposite effect.

4.3 Materials and Methods

4.3.1 Participants

A total of thirty young adults with normal or corrected-to-normal vision (0.1 LogMAR

or better in each eye) participated in one of the two within-subject design experiments:

fifteen in the a-tDCS experiment (control and sham, mean age 25, median age 24, range 22-

30, 11 female) and fifteen in the cTBS experiment (control and sham, mean age 24, median

age 24, range 22-29, 7 female). Participants with abnormal binocular vision history and

those taking psychoactive drugs were excluded. All participants were informed of the nature

of the study before participation and provided written informed consent. The project was

approved by the University of Waterloo Research Ethics Committee (ORE #30537).
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4.3.2 Stimulus

Dichoptic, orthogonally oriented (45◦ and 135◦) sinusoidally modulated red/green grat-

ings (0.5 cycles per degree, 6.1◦ of visual angle) were presented on a 24” Asus R© 3D monitor.

Participants wore shutter glasses to view the stimulus. The contrast of the gratings was

matched using a Chroma Meter CS-100 R© photometer (mean luminance: red = 8.4 cd/m2;

green = 32.9 cd/m2). Stimuli were viewed from 57cm using a chin rest. Participants

reported perceiving the 45◦ grating only, the 135◦ grating only or a mixture of both (piece-

meal or superimposition percepts) by holding down a computer keyboard key and switching

keys as the percept changed.

4.3.3 Anodal transcranial direct current stimulation (a-tDCS)

Two 5x7 cm electrode sponges were placed on the scalp, the anode at international

10-20 electrode system position Oz and the cathode at Cz. Each tDCS electrode was

placed inside a saline-soaked sponge. A-tDCS was delivered at 2mA for 15 minutes in

addition to a 30-second ramp-up and 30-second ramp-down period using a NeuroConn R©

DC-Stimulator MC-8. The sham condition consisted only of the ramp-up and ramp-down

periods. Participants were masked to the stimulation condition. The experimenter could

not be masked due to the limitations of the equipment software; however, sessions were

randomly sequenced prior to the start of data collection. For both active and sham con-

ditions, six 60-second trials of binocular rivalry were recorded before, during, 5 minutes,

and 30 minutes post stimulation (Figure 4.1A).
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Figure 4.1: Protocol timeline for a-tDCS (A) and cTBS (B). Binocular rivalry dynamics
were recorded for 6 minutes before, during, 5 minutes post and 30 minutes post tDCS.
Electrodes were placed following the baseline measure. Similarly, for cTBS, binocular
rivalry dynamics were recorded before, 5 minutes post and 30 minutes post stimulation.
Motor thresholding was completed on the first visit following the baseline measure.

4.3.4 Continuous theta burst stimulation

Stimulation was delivered using a MagVenture R© MagPro X100 stimulator (MagVenture

Farum, Denmark) with BrainSight frameless neuro-navigation software (Rogue Research

Inc., Montreal, Canada). Active motor threshold (AMT) was used to calibrate visual cortex

cTBS intensity. The procedure for determining AMT involved placing a surface electrode

on the belly of the first dorsal interosseous muscle tendon (left or right based on hand

dominance) and a second electrode on the lateral bone of the wrist. The electromyographic
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(EMG) response was monitored using Brainsight c©software as the participant was asked

to steadily press their pointer finger against the arm of their chair to generate a motor

evoked potential (MEP) of 100µV. A single pulse of TMS was systematically delivered to

different points of a contralateral motor cortex stimulation grid (3 by 3 cm) beginning at

40% of the maximum stimulator output (MSO) until the region hotspot—defined as the

stimulation location corresponding to the maximum TMS-induced MEP amplitude—was

located (Groppa et al., 2016; Tranulis et al., 2006). Using the Rossini-Rothwell algorithm

for determining AMT, single pulses were then delivered to this region while increasing the

intensity by 1% until a peak-to-peak amplitude of 200µV was generated for 5 out of 10

pulses (50%) (Rothwell et al., 1999).

For visual cortex cTBS, the coil was placed over V1, identified as 2 cm above the

inion, 0 cm lateral. Stimulation involved 600, 20 ms pulses delivered in 50Hz bursts for 40

seconds at 100% of the participant’s AMT. The control condition used the same protocol

with a sham coil. Both the participant and experimenter were masked to the stimulation

condition (active and sham condition codes were given to the experimenter by another

researcher). Binocular rivalry dynamics were recorded for six 60-second trials before, 5

minutes post, and 30 minutes post stimulation (Figure 4.1B).

4.3.5 Analysis

Binocular rivalry dynamics analyzed included alternation rates (any change in percep-

tion), eye dominance ((time viewing dominant eye percept – time viewing nondominant

eye percept)/total time excluding mixed percepts), and duration of mixed perception (in
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seconds per 60 second trial). Measures of dynamics were then averaged across all six trials

separately for each participant. The dominant eye was defined as the eye with the longest

pre-stimulus viewing time at the initial visit.

A repeated measures ANOVA with factors of Condition (active vs. sham) and Time

(a-tDCS: pre vs. during vs. 5min post vs. 30min post; cTBS: pre vs. 5min post vs. 30min

post) was conducted separately for alternation rates, ocular dominance index and mixed

percept duration for each stimulation type. Post-hoc testing of significant interactions was

conducted using t-tests.

For one tDCS participant, the 5 minutes post stimulation data for the sham condition

was irretrievably lost. For one TMS participant, baseline data and 5 minutes post stimu-

lation data for the sham condition were irretrievably lost. The chosen imputation method

for dealing with these missing values was to substitute the mean value of the other 14

participants (Kang, 2013).

4.4 Results

4.4.1 Anodal transcranial direct current stimulation

No significant effects of a-tDCS were observed for any measure of binocular rivalry

dynamics (p > 0.05). Figure 4.2 illustrates the alternation rates, ocular dominance and

duration of mixed percepts for the active a-tDCS and sham conditions.
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4.4.2 Continuous theta burst stimulation

cTBS significantly increased the duration of mixed percepts with a significant main

effect of Time (F28 = 4.154, p = 0.026) and a relative increase compared with sham

stimulation (significant interaction between Condition and Time, F28 = 3.528, p = 0.043;

Figure 3C). Post hoc t-tests revealed a significant increase in mixed percept duration with

active cTBS from pre to 5min post (t14 = -3.065, p = 0.008) and from pre to 30min post

(t14 = -2.306, p = 0.037; Figure 4.3C). There were no effects of cTBS on alternation rates

or on ocular dominance index (Figure 4.3A and 4.3B).

4.5 Discussion

The aim of this study was to investigate whether a-tDCS and cTBS alter visual cor-

tex inhibition. Both a-tDCS and cTBS have been shown to alter GABA concentration in

motor cortex studies. Specifically, studies with a-tDCS have demonstrated a reduction in

GABA concentration (Antonenko et al., 2017a; Patel et al., 2017), while cTBS was found

to increase GABA concentration (Stagg et al., 2009b). With this evidence of GABA mod-

ulation within the motor cortex, we hypothesized that a-tDCS and cTBS would inversely

influence binocular rivalry dynamics. Perceptual dominance during binocular rivalry has

been directly associated with GABA concentration in young adults through pharmaco-

logical manipulation (Mentch et al., 2019). The study found that drugs that increased

GABAergic inhibition in the brain resulted in increased the proportion of time spent view-

ing the dominant percepts during binocular rivalry. Although no changes in dominance
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duration or alternation rates were observed as hypothesized, cTBS resulted in a significant

increase in the duration of mixed percept, suggesting a disruptive effect on perceptual

suppression. Furthermore, a-tDCS had no effect on BR dynamics.

The unexpected increase in mixed percept duration following visual cortex cTBS may

be explained by stochastic resonance, a phenomenon wherein increased noise can enhance

the detection of an otherwise weak signal (McDonnell and Abbott, 2009). A recent study

found that adding noise to the primary visual cortex using transcranial random noise

stimulation (tRNS) resulted in a significant reduction in mixed percept duration (van

der Groen et al., 2019). In other words, an increase of neural noise within the visual

system increased interocular suppression and therefore reduced the time spent viewing

an ambiguous percept. Complementary, our results are consistent with reduced neural

noise within the visual cortex following cTBS thereby increasing the duration of mixed

perception. Reducing neural noise may have weakened interocular suppression resulting in

longer times spent viewing the mixed percept. There are differences in binocular rivalry

dynamic calculations across studies, and subtle differences in definitions. For instance, a

proportion of perceptual dominance is analyzed in one study and referred to as a measure of

perceptual suppression (Mentch et al., 2019; Robertson et al., 2016), while mean dominance

durations calculated as the average duration that a dominant percept lasts in seconds is

used in another (van Loon et al., 2013). Our measures were designed to capture any

changes in dominance and mixed percepts.

While studies have suggested that GABA concentration measured using magnetic res-

onance spectroscopy is correlated with BR alternation rates in young adults (Robertson

et al., 2016; van Loon et al., 2013), we were unable to demonstrate an association between
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BR alternation rates and non-invasive brain stimulation. There is direct evidence, however,

that BR alternation rates are in fact moderated by the excitation-inhibition activity within

the brain (van Loon et al., 2013), and that administering drugs that modulate GABA ef-

fects alternation rates (Mentch et al., 2019; van Loon et al., 2013). Other factors such as

alcohol (Donnelly and Miller, 1995) and caffeine (George, 1936) have been shown to in-

fluence alternation rates, although changes in visual cortex GABA concentration was not

hypothesized as a possible explanation within these studies. Additionally, there is grow-

ing evidence that binocular rivalry dynamics differ in patients with disorders that affect

neurotransmitters, such as anxiety, depression, and autism. One study found that patients

with anxiety had faster alternation rates than controls, while patients with depression had

slower alternation rates (Jia et al., 2020).

Our results suggest that the effects of a-tDCS and cTBS on the visual cortex may be

different as compared to the motor cortex. Consistent with this idea, cTBS, although theo-

retically acting to increase inhibition, has induced improvements in visual acuity (Brückner

and Kammer, 2016). (Brückner and Kammer, 2016). In support of this difference in the

mechanisms underlying the effects of visual and motor cortex stimulation, a recent study

found that the physiological mechanism of non-invasive brain stimulation depends on the

characteristics and composition of the brain region being stimulated (Castrillon et al.,

2020). To our knowledge, there is no direct evidence for changes in visual cortex GABA

concentration following brain stimulation.

We postulate that the change in the duration of mixed perception following visual

cortex cTBS that we observed may be a result of stochastic resonance and reduced neural

noise. Our results support the notion that the effect that brain stimulation may differ
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across brain regions have. In particular, the lack of change in alternation rates raises the

question of whether the effect of a-tDCS on the visual cortex is the same as that of the

motor cortex.
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Figure 4.2: Average alternation rates (A), ocular dominance indices (B), and time spent
in mixed percept (C) for 15 participants before, during, 5 minutes and 30 minutes post
a-tDCS. Error bars = SEM. Differences are not significant (repeated measures ANOVAs p
> 0.05). 70



Figure 4.3: Average alternation rates (A), ocular dominance indices (B), and time spent in
mixed percept (C) for 15 participants before, 5 minutes and 30 minutes post cTBS. Error
bars = SEM. * p < 0.05.
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4.6 Summary

Figure 4.4: Project 2 diagram and rationale.

The aim of Project 2 was to investigate the effects of non-invasive brain stimulation

on binocular rivalry dynamics. Since non-invasive brain stimulation modulates the pri-

mary inhibitory neurotransmitter GABA as seen in the motor cortex (Heise et al., 2014;

Stagg et al., 2009a), and GABA is associated with binocular rivalry dynamics both directly

(Mentch et al., 2019) and indirectly (Robertson et al., 2016; van Loon et al., 2013), we

hypothesized that non-invasive brain stimulation would modulate binocular rivalry dynam-

ics. Specifically, we tested the hypothesis that a-tDCS, thought to reduce cortical GABA

concentration, would increase binocular rivalry alternation rates, while cTBS, thought to

increase GABA concentration, would have the opposite effect. Alternation rates were un-

changed following both a-tDCS and cTBS; however, unexpectedly, we found a significant

increase in mixed percept duration following cTBS. It is possible that increasing GABA

concentration reduced the neural noise in the visual system thereby increasing the duration

of mixed perception. A recent study showed the opposite effect, where increasing neural

noise resulted in reduced mixed percept duration (van der Groen et al., 2019). The results
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of Project 1 and Project 2 together led us to Project 3, which was to directly investigate

the effects of a-tDCS on visual cortex GABA concentration.
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Chapter 5

The effect of occipital a-tDCS on

primary visual cortex GABA and

glutamate concentration

5.1 Overview

Anodal transcranial direct current stimulation (a-tDCS) is a non-invasive brain stim-

ulation technique that can enhance neuroplasticity within targeted areas of the human

cerebrum including the motor cortex and the primary visual cortex. For motor cortex,

enhanced neuroplasticity following a-tDCS has been linked to a reduction in concentration

of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter. Currently it is un-

clear whether a-tDCS has a similar effect when applied to the primary visual cortex. To
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address this question, we used magnetic resonance spectroscopy to measure concentrations

of GABA and glutamate (an excitatory neurotransmitter) within primary visual cortex

before and after real and sham visual cortex a-tDCS (within-subjects design, n = 14). We

also measured alternation rates for binocular rivalry, which may be positively correlated

with visual cortex GABA concentration. We found no effect of a-tDCS on visual cortex

GABA concentration and baseline GABA concentration was not correlated with binocular

rivalry alternation rates. However, although we observed no significant interaction between

Stimulation (active vs. sham) and Time (pre vs. post stimulation) for visual cortex glu-

tamate concentration, planned comparisons revealed a significant increase in visual cortex

glutamate concentration following active but not sham stimulation. These results suggest

that the pattern of neurochemical changes induced by a-tDCS depend on the region be-

ing stimulated. Although only evident in post-hoc testing, our results also suggest that

a-tDCS induced changes in visual cortex function may be associated with an increased

concentration of glutamate concentration rather than a decreased concentration of GABA.

5.2 Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive method for modulating

human behaviour by inducing changes in neural activity and metabolite concentration

within the brain (Fertonani and Miniussi, 2016; Nitsche et al., 2008; Nitsche and Paulus,

2000; Reed and Kadosh, 2018). Animal research has demonstrated the potential for direct

current stimulation to induce synaptic plasticity in several regions of the brain, including

the motor cortex (Fritsch et al., 2010), hippocampus (Ranieri et al., 2012) and visual cortex
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(Cambiaghi et al., 2011; Castaldi et al., 2020).

In humans, changes in gamma-amino butyric acid (GABA), the primary inhibitory

neurotransmitter in the brain, have been reported following anodal-tDCS (a-tDCS) of

motor cortex (Antonenko et al., 2017b; Bachtiar et al., 2015; Kim et al., 2014; Patel et al.,

2017). Specifically, magnetic resonance spectroscopy (MRS) studies have indicated that

a-tDCS increases cortical excitability by decreasing GABA concentration (Antonenko et

al., 2017a; Patel et al., 2019; Stagg et al., 2009a), while cathodal tDCS (c-tDCS) has the

opposite effect (Stagg et al., 2009a). (Stagg et al., 2009). GABA is thought to play a

critical role in human neuroplasticity and a-tDCS modulation of motor cortex GABA has

been associated with increased neural plasticity (Bachtiar et al., 2015; Griffen, 2014; Heise

et al., 2014; Kim et al., 2014; Patel et al., 2017; Sale, 2010). For example, the degree of

motor learning is positively correlated with the magnitude of GABA reduction measured

using magnetic resonance spectroscopy (Stagg et al., 2011a), suggesting that a-tDCS may

in fact modulate neural plasticity.

Although reduced motor cortex GABA concentration following a-tDCS is the most

replicated combined a-tDCS and MRS result, the effect of tDCS on concentration of the

excitatory neurotransmitter glutamate within the motor cortex has also been assessed.

Results have been inconsistent. Glutamate concentration has been found to either de-

crease with c-tDCS (Roche et al., 2015; Stagg et al., 2009a), remain the same following

a-tDCS or c-tDCS (Kim et al., 2014; Roche et al., 2015), or is not reported, but rather

the reduction of GABA is implicated as the gate to glutamatergic plasticity (Patel et al.,

2019). GABA and glutamate are related through the enzyme glutamic acid decarboxylase

(GAD) which converts glutamate into GABA (Siegel et al., 2006). It has been shown that
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hormonal fluctuations in females influence neurotransmitters within the brain, including

GABA concentration (Akk et al., 2005; Smith et al., 1987; Smith et al., 1988), a result that

may explain, in part, the differences in results across studies. Some studies look at male

only populations to avoid the changes that may occur across the hormonal (or menstrual)

cycle, although a recent study demonstrated that while these effects may exist, they may

not translate behaviourally (Sy et al., 2016).

The behavioural effects of a-tDCS applied to non-motor areas of the human brain such

as the visual cortex have also been investigated. Visual cortex a-tDCS modulates visual

evoked potential (VEP) amplitude (Antal et al., 2004a; Reinhart et al., 2016) and improves

visual acuity (Reinhart et al., 2016), contrast sensitivity (Antal et al., 2001; Behrens et

al., 2017), perception of faces and objects (Barbieri et al., 2016), colour discrimination

(Costa et al., 2012), as well as motion perception (Antal et al., 2004b; Battaglini et al.,

2017) in humans with normal vision. When applied to patients with amblyopia, visual

cortex a-tDCS induces a significant improvement in visual acuity (Bocci et al., 2018),

contrast sensitivity (Ding et al., 2016; Spiegel et al., 2013a), and stereopsis (Spiegel et

al., 2013b). These effects are hypothesized to be associated with a reduction in GABA

concentration because GABA is linked to interocular suppression (Sengpiel, 2014) a key

feature of amblyopia, and plays a critical role in visual cortex plasticity. Furthermore,

a-tDCS reduces surround suppression and lateral inhibition in normal vision (Raveendran

et al., 2020; Spiegel et al., 2012), results that are consistent with reduced GABA-mediated

inhibition following visual cortex a-tDCS. However, direct measurements of visual cortex

a-tDCS effects on neurotransmitter concentrations in the human brain using MRS have

not previously been performed.

77



Moreover, visual cortex GABA concentration has been associated with binocular rivalry,

the stochastic change in percept that occurs when different images are shown to each

eye (Mentch et al., 2019; Robertson et al., 2013; van Loon et al., 2013). Most recently,

a direct manipulation using clobazam and arbaclofen, drugs that agonise GABAA and

GABAB receptors respectively, found that increased GABA-mediated inhibition resulted in

increased perceptual suppression during binocular rivalry; that is, participants spent more

time viewing dominant percepts (one-eye only) as compared to mixed percepts (Mentch et

al., 2019). More indirectly, higher visual cortex GABA concentration has been correlated

with slower alternation rates during binocular rivalry (Pitchaimuthu et al., 2017; Robertson

et al., 2016; van Loon et al., 2013), albeit a modest correlation (van Loon et al., 2013).

In summary, while a-tDCS can modulate visual function, the mechanism is unknown.

We used MRS to directly measure changes in primary visual cortex GABA and glutamate

concentration following 20 minutes of a-tDCS. Based on the effects seen in the motor

cortex, we hypothesized that a-tDCS would decrease visual cortex GABA concentration.

As a secondary measurement, we aimed to investigate the correlation between visual cortex

GABA concentration and binocular rivalry dynamics.

5.3 Materials and Methods

5.3.1 Participants

Fourteen participants (mean age 27; range 20-39; 9 female) with normal or corrected-

to-normal vision (0.1 logMAR or better in each eye) and normal or corrected-to-normal
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binocular vision based on a stereoacuity ≤ 40 arc sec using The Fly Stereo Acuity Test R©

Vision Assessment Corporation took part in the study. Participants were screened for

MRI and brain stimulation safety and eligibility. Exclusion criteria included neurological

conditions and psychoactive drugs. All participants were informed of the nature of the

study before participation. Written consent was required prior to any data collection. The

study was approved by the University of Waterloo and York University Office of Research

Ethics.

5.3.2 Study design

A within-subjects study design was adopted. Participants took part in two visits:

active stimulation and sham, the order of which was randomised. During the first visit,

written informed consent was provided and screening was performed. Each visit consisted

of a short binocular rivalry psychophysical computer-based task, a 45-minute scanning

session, 20-minutes of stimulation (active or sham), and finally another 45-minute scanning

session (Figure 5.1). Stimulation was performed outside the scanner. Visits were booked

a minimum of 48 hours apart to ensure any effects of stimulation were diminished.

5.3.3 Binocular rivalry

The binocular rivalry task conducted at the start of each visit was based on a previous

study (Abuleil et al., 2020). A CRT monitor displayed two orthogonally oriented (45/135◦)

black and white gratings with a spatial frequency of 0.5 cpd and a circular field subtending

6.1◦ of visual angle presented on a luminance-matched grey background. Participants
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Figure 5.1: Experiment protocol. Participants took part in two visits, both identical except
for the delivery of active or sham a-tDCS. A 6-minute task of binocular rivalry dynamics
was performed immediately before prepping the participant for the MRI. Pre and post
scans lasted approximately 45 minutes each, with 20 minutes of either active or sham
stimulation between each scan delivered outside the scanner room. Participants closed
their eyes from the beginning of the pre scanning session until the end of the experimental
session.

viewed the gratings dichoptically through a mirror stereoscope while sitting 75cm away

from the monitor. Participants reported their perception (45◦, 135◦, or mixed percept) by

pressing designated keys on a keyboard and changing when their percept changed. The

total duration of each percept, as well as the rate of alternations from one percept to

another, were analyzed.

5.3.4 Transcranial direct current stimulation

Active anodal transcranial direct current stimulation (a-tDCS) or sham stimulation

was performed in the within-subjects study design using a DC Stimulator (NeuroConn

DC-Stimulator MC-8). Participants received either active a-tDCS or the sham equivalent

upon their first visit in a randomised manner. The remaining protocol was performed upon

the second visit.

The International 10-20 system was used for electrode placement. The 5x7 cm elec-

trodes were covered in a saline-soaked sponge and secured on the scalp with a head mount.
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Both conditions (active and sham) involved placing the centre of the anodal electrode over

Oz (approximately 2 cm above the inion) and the centre of the cathodal electrode over Cz.

In the active condition, participants received 20 minutes of 2mA stimulation in addition

to a 30-second ramp up and 30-second ramp down period. The sham condition consisted

only of the 30-second ramp up and 30-second ramp down periods.

5.3.5 MRI acquisition

A 3T Siemens Magnetom R© Tim Trio magnetic resonance scanner with a 32-channel

high-resolution brain array coil was used to acquire anatomical, spectroscopy, and resting-

state fMRI data from each participant. Soft padding was placed around the participant’s

head to minimize movement. Imaging was acquired at rest and participants were instructed

to keep their eyes closed throughout the scan.

First, a three dimensional T1 magnetization-prepared rapid gradient echo imaging

(MPRAGE) sequence was used to acquire anatomical images at the start of each scan

(number of slices = 192; slice thickness = 1.0 mm; in-plane resolution = 1mm2; TR =

2300 ms; TE = 2.26 ms; flip angle = 8◦; FoV = 256 mm; acquisition time = 1365 ms).

This image was used to place a 25 x 25 x 25 mm voxel-of- interest (VOI) over V1. The

VOI was centered on the calcarine sulcus and positioned far back in the occipital lobe

to avoid non-brain tissue such as cerebrospinal fluid and the sagittal sinus (Figure 5.2).

Next either magnetic resonance spectroscopy (MRS) or resting-state data was collected in

a randomized, within-subjects, counter-balanced manner to accommodate data collection

for a separate study. The resting-state data do not form part of this thesis.
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Figure 5.2: Representative visual cortex voxel of interest (25 x 25 x 25 mm) for axial,
sagittal, and coronal T1-weighted MRI images of one subject.

For MRS, the Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) tech-

nique (Mescher et al., 1998) was used to record 1H MR GABA-edited spectra (TR = 3000

ms; TE = 68 ms; spectral bandwidth = 1500 Hz; 2048 data points with water suppression

yielding 32 averages; acquisition time = 3:37; this acquisition was repeated 4 times for a

total of 128 averages). Siemens standard and manual shimming were performed for each

acquisition. The acquisition of ON and OFF edited spectra results in peaks affected by the

editing pulses with GABA at approximately 3.02 ppm and Glx (glutamate and glutamine)

at 3.80 ppm. This allows for the separation of GABA from creatine (Cr), an organic com-

pound that peaks at 3.0 ppm. A water reference was acquired (1 average; acquisition time

= 0:30).

5.3.6 MRI analysis

The Matlab-based tool Gannet was used for analysis (v3.0; Edden et al., 2014). Stan-

dard processing was performed for each acquisition, including frequency and phase correc-

tion, fast Fourier transformation and Guassian model fitting of the GABA and Glx peaks
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to improve SNR and limit the spectra by applying digital filters. The total concentration

of GABA and Glx was estimated as the area under the curve for GABA, Glx and Cr using

the GannetFit function. GannetCoRegister registered the chosen VOI to the anatomical

image, using the program SPM8 (Statistical Parametric Mapping, Wellcome Centre for

Human Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). GannetSegment

performed segmentation of the anatomical images, and determined the relative amounts

of grey matter, white matter, and CSF within the voxel, which allowed for the estimation

of a CSF-corrected GABA and Glx concentration using SPM8. Lastly, GannetQuantify

provided a tissue-corrected (relaxation- and alpha-corrected, voxel-average normalized) es-

timate of GABA and Glx concentrations. All concentrations were provided in institution

units (i.u.) relative to water. The standard deviation of the residual was used to determine

the fit error of the model for each spectrum. All fit errors were <10%.

5.3.7 Statistical analysis

5.3.7.1 Effect of a-tDCS on GABA and Glx concentration

A repeated measures ANOVA was performed separately for GABA and Glx concen-

trations with factors of Condition (active vs. sham) and Time (pre vs. post). Planned

post-hoc comparisons compared pre and post stimulation concentrations for each condition

using within subject t-tests.
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5.3.7.2 Association of binocular rivalry dynamics and concentrations of

GABA and Glx

Pearson’s linear correlations were performed to investigate the relationships between

pre stimulation GABA and Glx concentrations and binocular rivalry dynamics; specifically,

alternation rates and mixed percept duration. Correlations were calculated separately for

session 1 and session 2.

5.3.7.3 Comparisons between male and female participants

A repeated measures ANOVA was performed separately for GABA and Glx concentra-

tion for males (n=5) and females (n=8) with factors of Condition (active vs. sham) and

Time (pre vs. post). Planned post-hoc comparisons compared pre and post stimulation

concentration for each condition using within subject t-tests. Pearson’s linear correlations

were performed to investigate the relationships between pre stimulation and GABA and

Glx concentrations and binocular rivalry dynamics for males and females separately.

5.4 Results

Fourteen participants completed the study. One participant’s MRS data could not be

processed—likely a consequence of too much movement during the scans which resulted in

a low signal-to-noise ratio. The participant was not included in the analysis.
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5.4.1 Effect of a-tDCS on GABA and Glx concentration

Mean GABA and Glx concentrations and the standard deviations are shown in Table

5.1. There was no significant interaction between treatment Condition (active vs. sham)

and Time (pre vs. post treatment) for either GABA or Glx (p> 0.05; Figure 5.3). However,

there was a main effect of treatment Condition for Glx (F1,12 = 5.732 p = 0.034) with

lower Glx concentration overall in the active condition. A post-hoc t-test showed that Glx

increased significantly post treatment in the active condition (t12 = -2.239, p = 0.045) but

not the sham condition (t12 = -0.330, p = 0.747).

Table 5.1: GABA and Glx concentrationsa in primary visual cortex.

GABA (mean ± SD) Glx (mean ± SD)
(n=13) Pre Post Pre Post

Activeb 3.5 ± 0.18 3.6 ± 0.12 7.9 ± 0.12 8.5 ± 0.18)
Sham 3.7 ± 0.12 3.7 ± 0.14 8.7 ± 0.25 8.8 ± 0.31)

aAll concentrations are in internal units i.u. relative to water (see text for detail).
bActive treatment was a-tDCS centered at Oz at 2 mA for 20 min.

5.4.2 Association of binocular rivalry dynamics and concentra-

tions of GABA and Glx

Binocular rivalry alternation rates for the first and second session were 0.43 ± 0.18

and 0.44 ± 0.22 alternations per second (mean ± SD), respectively. Mixed percept du-

rations for the first and second session were 16.7 ± 7.5 and 16.6 ± 5.6 seconds (mean ±

SD), respectively. Neither session 1 nor session 2 binocular rivalry alternation rates were
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Figure 5.3: Pre and post GABA (A) and Glx (B) concentrations for both active and sham
conditions.

correlated with baseline GABA (session 1: r = -0.132 ,p = 0.666; session 2: r = 0.324,

p = 0.280) or Glx levels (session 1: r = 0.155, p = 0.613; session 2: r = -0.357, p =

0.231) recorded immediately after psychophysical testing. Similarly, mixed percept dura-

tions were not correlated with baseline GABA (session 1: r = 0.004, p = 0.990; session 2:

r = 0.316, p = 0.292) or Glx levels (session 1: r = 0.057, p = 0.853; session 2: r = 0.357,

p = 0.230).

5.4.3 Comparisons between male and female participants

Mean GABA and Glx concentrations for each sex separately are shown in Table 5.2. For

both males and females, here was no significant interaction between treatment Condition
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(active vs. sham) and Time (pre vs. post) for either GABA or Glx (p > 0.05; Figure 5.4).

However, for the males, there was a main effect of both Condition (F1,4 = 12.671, p =

0.024) and Time (F1,4 = 9.545, p = 0.037) for Glx, with lower Glx concentrations overall

in the active condition, similar to the pooled results. Post-hoc t-tests showed a significant

increase in Glx concentration post treatment in the active condition (t4 = -2.923, p =

0.043) but not the sham condition (t4 = -1.095, p = 0.335).

Binocular rivalry dynamics were not correlated with GABA concentrations for neither

males nor females. For males, neither session 1 nor session 2 binocular rivalry alternation

rates were correlated with GABA (session 1: r = 0.325, p = 0.594; session 2: r = 0.175, p

= 0.778) or Glx levels (session 1: r = -0.025, p = 0.968; session 2: r = -0.631, p = 0.254).

Similarly, mixed percept durations were not correlated with GABA (session 1: r = 0.323,

p = 0.597; session 2: r = 0.471, p = 0.423) or Glx levels (session 1: r = 0.058, p = 0.926;

session 2: r = 0.061, p = 0.922). For females, neither session 1 nor session 2 binocular

rivalry alternation rates were correlated with GABA (session 1: r = -0.302, p = 0.468;

session 2: r = 0.370, p = 0.367) or Glx levels (session 1: r = 0.127, p = 0.764; session

2: r = -0.283, p = 0.497). Mixed percept durations were also not correlated with GABA

(session 1: r = -0.157, p = 0.711; session 2: r = 0.264, p = 0.528) or Glx (session 1: r =

0.029, p = 0.945; session 2: r = 0.521, p = 0.185).

5.5 Discussion

The primary aim of our study was to investigate the effects of a-tDCS on visual cortex

GABA and glutamate concentration. A-tDCS has been consistently shown to modulate
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Table 5.2: GABA and Glx concentrations in primary visual cortex for males and females
separately

GABA (mean ± SD) Glx (mean ± SD)
Pre Post Pre Post

Female
Active 3.6 ± 0.74 3.6 ± 0.48 8.0 ± 0.82 8.5 ± 0.68)
Sham 3.9 ± 0.42 3.7 ± 0.31 8.8 ± 0.97 8.6 ± 1.29)

Male
Active 3.4 ± 0.49 3.6 ± 0.41 7.7 ± 0.62 8.6 ± 0.67)
Sham 3.4 ± 0.20 3.8 ± 0.76 8.5 ± 0.86 9.2 ± 0.81)

GABA concentration and cortical excitability in the motor cortex (Antonenko et al., 2017b;

Heise et al., 2014; Nitsche and Paulus, 2000; Patel et al., 2017; Stagg et al., 2009a). We

examined the visual cortex and found no significant change in GABA concentration after

20 minutes of a-tDCS; however, an increase in glutamate concentration was seen pre to

post in the active condition with a post hoc paired comparison. This result was not

evident in the general linear model that included the sham condition, likely due to our

small sample size and low power. Therefore, it appears that the motor and visual cortices

respond differently to similar a-tDCS protocols. The mechanisms of non-invasive brain

stimulation across different brain regions is not fully understood, and there is evidence

to suggest brain stimulation effects may depend on cortical composition of inhibitory and

excitatory neurons (Castrillon et al., 2020) that differ between motor and visual cortices.

In agreement with the idea that the effects of a-tDCS on GABA concentration may differ

across brain areas, a recent study of both monocularly deprived and normal rats found

an increase in labelling of parvoalbumin positive GABAergic neurons in visual areas in

both groups following 8 sessions of a-tDCS (Castaño-Castaño et al., 2019b). The authors

propose that a-tDCS may have increased glutamate release that subsequently caused an

88



Figure 5.4: Participant data are presented separately for males and females. Individual
pre and post GABA concentrations for the active (A) and sham (B) conditions, as well as
pre and post Glx concentrations for the active (C) and sham (D) conditions.

increase in GABA-mediated inhibition to restore homeostasis. Importantly, a-tDCS did

improve visual function in the monocularly deprived animals in agreement with the human

studies (Antal and Paulus, 2008; Barbieri et al., 2016; Costa et al., 2012; Ding et al., 2016;
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Kraft et al., 2010; Spiegel et al., 2013a; Spiegel et al., 2013b). These results indicate that

the mechanisms underlying the neuromodulatory effects of visual cortex a-tDCS extend

beyond a direct reduction in GABA mediated inhibition.

We observed that Glx values increased post stimulation in the active as well as the sham

condition, a possible result of participants having closed their eyes for the duration of the

experiment leading to increased visual cortex excitability. Recent evidence has shown that

visual cortex metabolite concentrations may differ based on whether participants have their

eyes closed or open; specifically, GABA concentrations were highest and Glx concentrations

lowest when the eyes were closed compared to eyes open in the dark and eyes open with

visual stimulation (Kurcyus et al., 2018). Additionally, it has been shown that visual

deprivation results in an increase in glutamate release (Yashiro et al., 2005).It is possible

that eye closure throughout the duration of the experiment for both a-tDCS and sham

conditions may have diluted the effect of a-tDCS in the active condition.

As a secondary measure, we investigated the correlation between binocular rivalry al-

ternation rates and GABA concentration in young adults. Pharmacological manipulation

of GABA concentration has been recently shown to effect perceptual suppression during

binocular rivalry, whereby increasing GABA concentration reduced the duration of mixed

percepts and increased perceptual dominance (Mentch et al., 2019). Additionally, higher

visual cortex GABA concentrations have been correlated with slower perceptual alterna-

tion rates and stronger periods of full suppression (Robertson et al., 2016; van Loon et al.,

2013). We were unable to replicate these results with our sample of 14 young, healthy

adults. Our results show no correlation with visual cortex GABA or Glx concentration

for either alternation rate or mixed percept duration, the calculated dynamics of binocular
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rivalry. This suggests that the correlation may not be reliably representative of the greater

population, as the original study’s correlation was modest (Rho = 0.506) (van Loon et al.,

2013). Additionally, we observed higher variability in the levels of GABA and glutamate in

the pre scans as compared to the post treatment scans, which may suggest participants be-

came familiar with the procedure during the second scan and possibly show reduced artifact

or noise. However, active and sham sessions were randomized so half of the participants

at each pre-testing session had experienced previous scanning procedures.

It is important to note that the original study to report this correlation tested a sample

of 18 typical young male participants (van Loon et al., 2013) while the majority of our par-

ticipants were female. Binocular rivalry dynamics for male participants may differ from fe-

males where hormonal fluctuations may have a complex relationship with GABA-mediated

inhibition and therefore influence rivalry ((Sy et al., 2016). Additionally, differences in the

response to a-tDCS may exist between males and females (Chaieb et al., 2008). Robert-

son and colleagues examined patients with autism and aged-matched controls and found a

strong correlation between GABA concentration and perceptual suppression, although the

sex of the participants was not reported (Robertson et al., 2016). Another study looked

at a sample of young and older adults—both male and female—and found GABA concen-

tration was correlated with the mean percept duration only when both populations were

pooled together (Pitchaimuthu et al., 2017). In exploring our results further by separating

males and female, it is possible that the neurochemical changes of a-tDCS affect each sex

differently. The data we collected from females is substantially more variable than that of

males, so it is possible that the effect of glutamate, which is visible in the paired t-test in

the male sample (n=5) was diluted by the female response to stimulation.

91



Although we present a relatively small sample size, we propose that the neurotrans-

mitter glutamate may underlie the modulation of visual cortex excitability, as opposed to

GABA modulation in the motor cortex. Analysis of the resting state data may provide

insight into the possible changes in cortical connectivity following stimulation. Addition-

ally, a larger sample size with sufficient power may confirm our speculations that the effect

of stimulation on the visual cortex is potentially different than that of the motor cortex.

Overall, our results suggest an effect of visual cortex a-tDCS on glutamate and not GABA

concentration and therefore indicate distinct mechanisms for the behavioral effects of visual

cortex a-tDCS.
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5.6 Summary

Figure 5.5: Project 3 diagram and rationale.

The primary aim of Project 3 was to directly investigate the effects of a-tDCS on visual

cortex neurotransmitter concentration. There are many studies that show a significant

reduction in motor cortex GABA concentration following a-tDCS (Heise et al., 2014; Patel

et al., 2017; Stagg et al., 2009a). To our knowledge, there are no direct reports of the effects

of a-tDCS on the visual cortex. Unexpectedly, we found no significant change in visual

cortex GABA concentration following 20 minutes of a-tDCS; however, our results hint at

an increase in Glx concentration following active stimulation. It is possible that an increase

in cortical excitability is achieved through a different mechanism in the visual cortex as

compared to the motor cortex; specifically, an increase in glutamate rather than a decrease

in GABA concentration. Additionally, we were unable to replicate the correlation between

binocular rivalry dynamics and GABA concentration as previous studies have reported

(Mentch et al., 2019; Robertson et al., 2016; van Loon et al., 2013). While this may be a

result of our small size, our results support the possibility that different a-tDCS acts on

different mechanisms based on the characteristics of the cortical region being stimulated
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(Castrillon et al., 2020), and demonstrate that the established effect of a-tDCS on motor

cortex GABA concentration may not apply to the visual cortex.
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Chapter 6

Overview and Future Work

6.1 General Discussion

Neuroplasticity has been a widely researched phenomenon in the past few decades.

The modulation of existing neural connections and the formation of new connections in

the adult human brain can have extensive implications for recovery and rehabilitation from

neurodevelopmental disorders as well as from loss of function due to brain injuries. Neural

modulation techniques, such as inducing long-term potentiation (LTP) and delivering non-

invasive brain stimulation, are used to induce and investigate the mechanisms underlying

neuroplasticity. We investigated whether these techniques modulate the visual cortex both

behaviourally using binocular rivalry as an indirect measure of neural changes in visual

cortex inhibition, and directly by quantifying neurochemical changes within the brain using

magnetic resonance spectroscopy.
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6.1.1 Does rapid visual stimulation modulate binocular rivalry

dynamics?

LTP, a fundamental mechanism of neuroplasticity, has been studied in both animal

models and humans and used to modulate learning and memory formation within the

brain (Teyler and DiScenna, 1987). Rapid visual stimulation has been found to be an

alternative, non-invasive technique for inducing LTP-like effects in humans as a result of

repeated synaptic activation (Clapp et al., 2006b; Kirk et al., 2010; Norman et al., 2007;

Ross et al., 2008; Teyler et al., 2005). We hypothesized that monocular rapid visual

stimulation would increase the dominance of the stimulated eye during binocular rivalry.

Unexpectedly, we found a significant reduction in dominance of the stimulated eye which

could not be explained by adaptation.

While most studies report LTP-like effects following rapid visual stimulation, measured

by an increase in amplitude of visual evoked potentials (Norman et al., 2007; Teyler et al.,

2005), it is possible that our study resulted in long-term depression-like effects (LTD-like).

Visual stimulation results are inconsistent since optimal stimulus features to induce LTP-

rather than LTD-like effects are still unknown (Sanders et al., 2018). Our results may also

be explained by activation of a homeostatic interocular gain control mechanism. Follow-

ing short-term monocular occlusion, the deprived eye is strengthened during a binocular

rivalry task relative to the non-deprived eye (Lunghi et al., 2015a; Lunghi et al., 2011;

Lunghi et al., 2013; Lunghi et al., 2016). This effect is also seen for deprivation without

occlusion, where lower contrast images presented to one eye result in a subsequent increase

in that eye’s dominance during binocular rivalry (Kim et al., 2017). Other studies support
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this hypothesis, demonstrating that the eye that is more visually stimulated is reduced in

dominance (Ramamurthy and Blaser, 2018; Zhou et al., 2014). While rapid visual stimu-

lation had no effect on binocular rivalry alternation rates or mixed percept duration, the

unexpected effect on ocular dominance supports previous work and suggests a homeostatic

balance of visual input following stimulation. Further investigation is needed to under-

stand the extent of this effect and how rapid visual stimulation may be used as a method

of modulating dominance in normal, as well as in patient populations.

6.1.2 Do a-tDCS and cTBS modulate binocular rivalry dynam-

ics?

Binocular rivalry has been shown to be correlated with visual cortex GABA concen-

tration in young, healthy adults, with slower alternation rates and higher perceptual dom-

inance being associated with higher levels of the inhibitory neurotransmitter (Robertson

et al., 2016; van Loon et al., 2013). More recently, a study demonstrated a direct rela-

tionship between GABA and binocular rivalry dynamics, reporting a significant increase

in perceptual dominance following the administration of a GABA-modulating drug which

reduces GABA concentration (Mentch et al., 2019). We hypothesized that if visual cortex

GABA concentration indeed plays a role in binocular rivalry dynamics, non-invasive brain

stimulation techniques, such as a-tDCS and cTBS, which have been shown to modulate

GABA concentration in the human motor cortex, should have an effect on dominant per-

cept duration and alternation rates. A-tDCS, thought to increase excitability by decreasing

GABA concentration, had no effect on binocular rivalry dynamics. On the other hand,
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cTBS, thought to decrease excitability by increasing GABA concentration, resulted in a

significant increase in mixed percept duration.

Our results suggest several explanations. First, it may be that non-invasive brain stim-

ulation acts differently on different regions of the brain. A recent study demonstrated that

brain region composition and tissue characteristics differ in ways that influence the mecha-

nistic effect of brain stimulation (Castrillon et al., 2020). Identical stimulation to both the

frontal and occipital cortex had the opposite effect, where repetitive TMS decreased frontal

cortex inhibition but increased occipital cortex inhibition. The authors attributed these

differences to the distinct functional connectivity that each region has with other areas of

the brain. With this evidence, although many studies show that a-tDCS and cTBS mod-

ulate motor cortex GABA concentration (Bachtiar et al., 2015; Heise et al., 2014; Patel

et al., 2017; Stagg et al., 2009a; Stagg and Nitsche, 2011), we are unable to assume that

the neurochemical response of the visual cortex would be the same as the motor cortex.

To our knowledge, neurotransmitter concentration has not been directly measured in the

visual cortex following non-invasive brain stimulation.

Secondly, assuming that a-tDCS and cTBS influence the visual cortex similarly to the

motor cortex, the change in GABA concentration that results may not be substantial

enough to translate to changes in a behavioural measure such as binocular rivalry. Finally,

seeing an increase in mixed percept duration only following cTBS may be explained by the

relative changes in neural noise that result from the increase in inhibition. A recent study

demonstrated changes in binocular rivalry alternation rates following transcranial random

noise stimulation (van der Groen et al., 2019). Specifically, adding noise to the visual cortex

resulted in a significant reduction in mixed percept duration. On the other hand, cTBS
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is thought to increase inhibition by increasing GABA concentration, and consequently, we

found a significant increase in mixed percept duration following cTBS. It is possible that

an increase in inhibition may have reduced neural noise, thereby increasing time spent

viewing the mixed percept.

6.1.3 Are binocular rivalry dynamics correlated with visual cor-

tex GABA concentration?

Binocular rivalry alternation rates have been previously correlated with visual cortex

GABA concentrations (Robertson et al., 2016; van Loon et al., 2013); albeit a modest cor-

relation. Specifically, higher levels of visual cortex GABA concentration are correlated with

slower alternation rates or higher dominant percept duration in young adults (Robertson

et al., 2016; van Loon et al., 2013). Another group was only able to replicate this result

when both young and older adults were combined together (Pitchaimuthu et al., 2017).

It is also possible that normal dominance during binocular rivalry could be explained by

a balance of inhibition and excitation in the primary visual cortex (Ip et al., 2019). We

did not find a significant correlation of visual cortex GABA concentration with binocular

rivalry alternation rates or with perceptual suppression in our sample of young adults.

A relationship between binocular rivalry and GABA concentration could provide an in-

direct estimate of visual cortex inhibition; however, there are many factors that influence

each measure. For instance, differences in binocular rivalry alternation rates across indi-

viduals have been attributed, in part, to genetic variation (Miller et al., 2010). Increased

time in mixed perception may be influenced by hormonal fluctuations (Sy et al., 2016)
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or alcohol intake (Cao et al., 2016). It is also possible that different stimulus parameters

may affect the correlations, as stimulus size, grating orientation and spatial frequency vary

across studies (Fahle, 1982; Kang, 2009). It is also likely that not only GABA modulates ri-

valry, but rather several mechanisms play a role in a more integrated and complex method.

Acetylcholine, an excitatory neurotransmitter modulated binocular rivalry mixed percept

durations, where cholinergic agonists increase the time spent in mixed perception (Sheynin

et al., 2020). These external influences on binocular rivalry dynamics and complex neural

systems may weaken the correlation and make it difficult to detect one if it does indeed

exist.

6.2 Does a-tDCS modulate visual cortex GABA con-

centration?

To directly assess the effects of a-tDCS on visual cortex GABA concentration, we used

magnetic resonance spectroscopy (MRS) to quantify GABA and glutamate in the primary

visual cortex before and after 20 minutes of a-tDCS. Motor cortex studies have consistently

found that a-tDCS reduces GABA concentration (Bachtiar et al., 2015; Heise et al., 2014;

Patel et al., 2017; Stagg et al., 2009a) and have also shown associations of -tDCS with

improved motor function and rehabilitation (Kim et al., 2014; Yamaguchi et al., 2020).

While visual cortex stimulation with a-tDCS has been shown to improve contrast sensitivity

(Ding et al., 2016; Spiegel et al., 2013a) and stereopsis (Spiegel et al., 2013b) in patients

with amblyopia, a direct measure of how a-tDCS influences GABA in the visual cortex

100



has not been reported. Contrary to our hypothesis and to motor cortex studies, we found

no significant change in GABA concentration following a-tDCS. Unexpectedly, we found a

marginal increase in glutamate concentration, the primary excitatory neurotransmitter in

the brain. While most a-tDCS studies report a decrease in GABA concentration and find

no change in glutamate if it is reported, our results suggest that a-tDCS of the visual cortex

may act by a different mechanism (Castrillon et al., 2020), namely increasing excitation

by increasing glutamate, rather than increasing excitation by decreasing GABA. With a

larger sample size, this result may be stronger, or may disappear; however, it is important

to recognize that the effect a-tDCS on the motor cortex cannot be translated to the visual

cortex without further investigation of whether or not the same effect exists.

6.3 Strengths and Limitations

Our studies shed light on the application and efficacy of visual cortex modulation via

LTP and non-invasive brain stimulation. We demonstrate a potential for modulating oc-

ular dominance with rapid visual stimulation and reveal intriguing changes in the visual

cortex following a-tDCS, suggesting stimulation may act via a distinct mechanism as com-

pared to the motor cortex. One limitation of our studies was the relatively small sample

sizes, particularly in our spectroscopy study (see Chapter 5). A larger-scale experiment

may increase the power of the study and better reveal patterns of changes in neurochem-

ical concentrations. To support our results however, recent evidence suggests that brain

stimulation may act differently on different regions of the brain based on that regions’

characteristics and composition (Castrillon et al., 2020).
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6.4 Conclusions and Future Directions

Evidently, there are complex mechanisms in the brain that take part in responding to

external modulation in an intricate and multifaceted manner. Our results provide insight

into modulation of the visual cortex and suggest the possibility that different mechanisms

play a role in modulating visual cortex plasticity as compared to those in the motor cor-

tex. Further research on the effect of non-invasive brain stimulation on the visual cortex

is important to understand whether these techniques can effectively be used for clini-

cal purposes, or how modulation can affect psychophysical outcomes. Understanding the

mechanisms underlying neuroplasticity in the human brain and the techniques to modulate

neuroplasticity may provide new treatments for adults with neurodevelopmental disorders

or brain damage and may have implications for the extent of recovery and rehabilitation

of vision as well as other neural functions.
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Abbreviations included in the figure:
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Demarin, V., Morović, S., & Béné, R. (2014). Neuroplasticity. Periodicum Biologorum,

116 (2), 209–211.

Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of

neurones in lateral geniculate nucleus of macaque. The Journal of Physiology, 357,

219–240. https://doi.org/10.1113/jphysiol.1984.sp015498

121

https://doi.org/10.3389/fpsyt.2012.00078
https://doi.org/10.3389/fpsyt.2012.00078
https://doi.org/10.1001/jamaophthalmol.2016.3657
https://doi.org/10.1155/2019/3681430
https://doi.org/10.1155/2019/3681430
https://doi.org/10.3791/2744
https://doi.org/10.1001/archopht.116.4.502
https://doi.org/10.1016/j.brainresbull.2015.03.004
https://doi.org/10.1113/jphysiol.1984.sp015498


Di Lazzaro, V., Pilato, F., Dileone, M., Profice, P., Oliviero, A., Mazzone, P., Insola, A.,

Ranieri, F., Meglio, M., Tonali, P. A., & Rothwell, J. C. (2008). The physiological

basis of the effects of intermittent theta burst stimulation of the human motor

cortex. Journal of Physiology, 586 (16), 3871–3879. https : / / doi . org / 10 . 1113 /

jphysiol.2008.152736

Ding, Z., Li, J., Spiegel, D. P., Chen, Z., Chan, L., Luo, G., Yuan, J., Deng, D., Yu, M.,

& Thompson, B. (2016). The effect of transcranial direct current stimulation on

contrast sensitivity and visual evoked potential amplitude in adults with amblyopia.

Scientific Reports, 6 (July 2015), 1–11. https://doi.org/10.1038/srep19280

Donnelly, M., & Miller, R. J. (1995). Ingested ethanol and binocular rivalry. Investigative

Ophthalmology and Visual Science, 36 (8), 1548–1554.

Dougherty, K., Cox, M. A., Westerberg, J. A., & Maier, A. (2019). Binocular modulation

of monocular V1 neurons. Current Biology, 29 (3), 381–391. https://doi.org/10.

1016/j.cub.2018.12.004

Eckert, M. J., Guévremont, D., Williams, J. M., & Abraham, W. C. (2013). Rapid visual

stimulation increases extrasynaptic glutamate receptor expression but not visual-

evoked potentials in the adult rat primary visual cortex. The European Journal of

Neuroscience, 37 (3), 400–406. https://doi.org/10.1111/ejn.12053

Edden, R. A., Puts, N. A. J., Harris, A. D., Barker, P. B., & Evans, C. J. (2014). Gannet:

A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid-

edited MR spectroscopy spectra. Journal of Magnetic Resonance Imaging, 40 (6),

1445–1452. https://doi.org/10.1002/jmri.24478

122

https://doi.org/10.1113/jphysiol.2008.152736
https://doi.org/10.1113/jphysiol.2008.152736
https://doi.org/10.1038/srep19280
https://doi.org/10.1016/j.cub.2018.12.004
https://doi.org/10.1016/j.cub.2018.12.004
https://doi.org/10.1111/ejn.12053
https://doi.org/10.1002/jmri.24478


El Mallah, M. K., Chakravarthy, U., & Hart, P. M. (2000). Amblyopia: Is visual loss

permanent? British Journal of Ophthalmology, 84 (9), 952–956. https://doi.org/10.

1136/bjo.84.9.952

Emptage, N. J., Reid, C. A., Fine, A., & Bliss, T. V. (2003). Optical quantal analysis reveals

a presynaptic component of LTP at hippocampal Schaffer-associational synapses.

Neuron, 38 (5), 797–804. https://doi.org/10.1016/S0896-6273(03)00325-8

Fagiolini, M., Fritschy, J.-M., Lo, K., Mohler, H., Rudolph, U., & Hensch, T. K. (2004).

Specific GABA A circuits for visual cortical plasticity. Science, 303 (March), 1681–

1684.

Fagiolini, M., & Hensch, T. K. (2000). Inhibitory threshold for critical-period activation

in primary visual cortex. Nature, 404 (6774), 183–186. https://doi.org/10.1038/

35004582

Fagiolini, M., Katagiri, H., Miyamoto, H., Mori, H., Grant, S. G., Mishina, M., & Hensch,

T. K. (2003). Separable features of visual cortical plasticity revealed by N-methyl-

D-aspartate receptor 2A signaling. Proceedings of the National Academy of Sciences

of the United States of America. https://doi.org/10.1073/pnas.0536089100

Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L., & Maffei, L. (1994). Functional

postnatal development of the rat primary visual cortex and the role of visual expe-

rience: Dark rearing and monocular deprivation. Vision Research, 34 (6), 709–720.

https://doi.org/10.1016/0042-6989(94)90210-0

Fahle, M. (1982). Binocular rivalry: Suppression depends on orientation and spatial fre-

quency. Vision Research, 22, 787–800. https ://doi .org/10.1016/0042- 6989(82)

90010-4

123

https://doi.org/10.1136/bjo.84.9.952
https://doi.org/10.1136/bjo.84.9.952
https://doi.org/10.1016/S0896-6273(03)00325-8
https://doi.org/10.1038/35004582
https://doi.org/10.1038/35004582
https://doi.org/10.1073/pnas.0536089100
https://doi.org/10.1016/0042-6989(94)90210-0
https://doi.org/10.1016/0042-6989(82)90010-4
https://doi.org/10.1016/0042-6989(82)90010-4


Fahle, M., & Poggio, T. (2002). Perceptual learning. MIT Press.

Fertonani, A., & Miniussi, C. (2016). Transcranial Electrical Stimulation: What We Know

and Do Not Know About Mechanisms. The Neuroscientist, 1073858416631966–.

https://doi.org/10.1177/1073858416631966

Finger, S., & Almli, C. R. (1985). Brain damage and neuroplasticity: Mechanisms of re-

covery or development? https://doi.org/10.1016/0165-0173(85)90023-2

Fox, K. (2002). Anatomical pathways and molecular mechanisms for plasticity in the barrel

cortex. Neuroscience, 111 (4), 799–814. https://doi.org/10.1016/S0306-4522(02)

00027-1

Fox, K., & Stryker, M. P. (2017). Integrating Hebbian and homeostatic plasticity: In-

troduction. Philosophical Transactions of the Royal Society B: Biological Sciences,

372 (1715). https://doi.org/10.1098/rstb.2016.0413

Frenkel, M. Y., Sawtell, N. B., Diogo, A. C. M., Yoon, B., Neve, R. L., & Bear, M. F. (2006).

Instructive effect of visual experience in mouse visual cortex. Neuron, 51 (3), 339–

349. https://doi.org/10.1016/j.neuron.2006.06.026

Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B.

(2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity:

Potential implications for motor learning. Neuron, 66 (2), 198–204. https://doi.org/

10.1016/j.neuron.2010.03.035

Furmanski, C. S., Schluppeck, D., & Engel, S. A. (2004). Learning strengthens the response

of primary visual cortex to simple patterns. Current Biology, 14, 573–578. https:

//doi.org/10.1016/j

124

https://doi.org/10.1177/1073858416631966
https://doi.org/10.1016/0165-0173(85)90023-2
https://doi.org/10.1016/S0306-4522(02)00027-1
https://doi.org/10.1016/S0306-4522(02)00027-1
https://doi.org/10.1098/rstb.2016.0413
https://doi.org/10.1016/j.neuron.2006.06.026
https://doi.org/10.1016/j.neuron.2010.03.035
https://doi.org/10.1016/j.neuron.2010.03.035
https://doi.org/10.1016/j
https://doi.org/10.1016/j


Gao, F., Edden, R. A., Li, M., Puts, N. A. J., Wang, G., Liu, C., Zhao, B., Wang, H.,

Bai, X., Zhao, C., Wang, X., & Barker, P. B. (2013). Edited magnetic resonance

spectroscopy detects an age-related decline in brain GABA levels. NeuroImage, 78,

75–82. https://doi.org/10.1016/j.neuroimage.2013.04.012

Gao, T. Y., Guo, C. X., Babu, R. J., Black, J. M., Bobier, W. R., Chakraborty, A., Dai, S.,

Hess, R. F., Jenkins, M., Jiang, Y., Kearns, L. S., Kowal, L., Lam, C. S. Y., Pang,

P. C. K., Parag, V., Pieri, R., Raveendren, R. N., South, J., Staffieri, S. E., . . .

Thompson, B. (2018). Effectiveness of a Binocular Video Game vs Placebo Video

Game for Improving Visual Functions in Older Children, Teenagers, and Adults

With Amblyopia. JAMA Ophthalmology, 136 (2), 172. https://doi.org/10.1001/

jamaophthalmol.2017.6090

George, R. W. (1936). The significance of the fluctuations experienced in observing am-

biguous figures and in binocular rivalry. Journal of General Psychology, 15 (1), 39–

61. https://doi.org/10.1080/00221309.1936.9917904

Gordon, G. E., & McCulloch, D. L. (1999). A VEP investigation of parallel visual pathway

development in primary school age children. Documenta ophthalmologica. Advances

in ophthalmology, 99, 1, 1–10. https : / / doi . org / https : / / doi . org / 10 . 1023 / A :

1002171011644

Gordon, J. A., & Stryker, M. P. (1996). Experience-dependent plasticity of binocular re-

sponses in the primary visual cortex of the mouse. Journal of Neuroscience, 16 (10),

3274–3286. https://doi.org/10.1523/jneurosci.16-10-03274.1996

Gori, S., Mascheretti, S., Giora, E., Ronconi, L., Ruffino, M., Quadrelli, E., Facoetti, A., &

Marino, C. (2015). The DCDC2 intron 2 deletion impairs illusory motion perception

125

https://doi.org/10.1016/j.neuroimage.2013.04.012
https://doi.org/10.1001/jamaophthalmol.2017.6090
https://doi.org/10.1001/jamaophthalmol.2017.6090
https://doi.org/10.1080/00221309.1936.9917904
https://doi.org/https://doi.org/10.1023/A:1002171011644
https://doi.org/https://doi.org/10.1023/A:1002171011644
https://doi.org/10.1523/jneurosci.16-10-03274.1996


unveiling the selective role of magnocellular-dorsal stream in reading (Dis)ability.

Cerebral Cortex, 25 (6), 1685–1695. https://doi.org/10.1093/cercor/bhu234

Greenlee, M. W., Georgeson, M. A., Magnussen, S., & Harris, J. P. (1991). The time

course of adaptation to spatial contrast. Vision Research, 31 (2), 223–236. https:

//doi.org/10.1016/0042-6989(91)90113-J

Griffen, T. C. (2014). GABAergic synapses: their plasticity and role in sensory cortex.

Frontiers in Cellular Neuroscience, 8 (March), 1–22. https://doi.org/10.3389/fncel.

2014.00091

Groppa, S., Oliviero, A., Eisen, A., Quartarone, A., Cohen, L., Mall, V., Kaelin-Lang,

A., Mima, T., Rossi, S., Thickbroom, G., Rossini, P. M., Ziemann, U., Valls-Sole,

J., & Siebner, H. R. (2016). A practical guide to diagnostic transcranial magnetic

stimulation: Report of an IFCN committee. Clinical Neurophysiology, 30 (4), 873–

882. https://doi.org/10.1038/leu.2015.334.FOXM1

Harris, H., Gliksberg, M., & Sagi, D. (2012). Generalized perceptual learning in the absence

of sensory adaptation. Current Biology, 22 (19), 1813–1817. https://doi .org/10.

1016/j.cub.2012.07.059

Harvey, C. D., & Svoboda, K. (2007). Locally dynamic synaptic learning rules in pyra-

midal neuron dendrites. Nature, 450 (7173), 1195–1200. https://doi.org/10.1038/

nature06416
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