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Abstract

Recent success of the convolutional neural network in image classification has pushed the
computer vision community towards data-rich methods of deep learning. As a consequence
of this shift, the data collection process has had to adapt, becoming increasingly automated
and efficient to satisfy algorithms that require massive amounts of data. In the push for
more data, however, careful consideration into decisions and assumptions in the data col-
lection process have been neglected. Likewise, users accept datasets and their embed-
ded assumptions at face-value, employing them in theory and application papers without
scrutiny. As a result, undesirable biases, non-consensual data collection, and inappropriate
label taxonomies are rife in computer vision datasets. This work aims to explore issues
of bias, consent, and label taxonomy in computer vision through novel investigations into
widely-used datasets in image classification, face recognition, and facial expression recog-
nition. Through this work, I aim to challenge researchers to reconsider normative data
collection and use practices such that computer vision systems can be developed in a more
thoughtful and responsible manner.
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Chapter 1

Introduction

Computational depth without historic or sociological depth is
superficial learning.

— Ruha Benjamin, Keynote at ICLR 2020 [9]

1.1 On the Shoulders of ImageNet

Data underpins deep learning. Deep learning, by way of convolutional neural networks
(CNNs), dominates modern computer vision research and applications. Since Krizhevsky
et al. demonstrated in 2012 that high-capacity CNNs trained with large amounts of data
on graphical processing units result in powerful image classification systems [72], the field
of computer vision has widely adopted this paradigm. Deep learning has been applied
to medical image segmentation [115], human pose estimation [132], face recognition [128],
and many more tasks with great success, establishing the CNN as the preeminent method
in computer vision. As progress in the research community has historically been mea-
sured by accuracy on benchmark datasets such as MNIST [11], ImageNet [27], and COCO
[79], researchers are motivated to collect more data, use more computing power, and train
higher-capacity CNNs to further the state-of-the-art in their respective domains. Individ-
uals are not alone in this pursuit, however, as a tenet of the research community is the
sharing of data. As computer vision systems advance from handcrafted feature-based meth-
ods to supervised deep learning, and now to weak-supervision [125, 86] and self-training
[143], increasingly large datasets are in demand. To this end, data collection practices in
the computer vision community have shifted dramatically in the past thirty years.
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In the 1990s, datasets were collected by academics in laboratory settings [100, 85]
and made available through partnerships with government agencies [11, 106]. As the
consumer internet boomed at the turn of the century, online search engines and social
media websites provided a new means of collection. Computer vision researchers moved
online in the 2000s to collect images, manually annotating datasets such as Caltech-101 [39]
and PASCAL VOC [36], but these datasets, on the order of tens of thousands of examples,
pushed the limit of in-house annotation. Fortunately for researchers, Amazon Mechanical
Turk (AMT)1, a website to hire remote crowdworkers to perform short, on-demand tasks,
launched in 2005 and provided a solution. From 2007 to 2010, researchers at Stanford
and Princeton used the crowdsourcing platform to task 49k “turkers” from 167 countries
with annotating images to create the canonical ImageNet dataset of 14M images in 22k
classes [38]. The associated ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
was held annually from 2010 to 2017, created from a subset of 1k classes from the larger
dataset. The research community coalesced around the ILSVRC as it presented an image
classification problem an order of magnitude more difficult than its predecessors. Landmark
work from Krizhevsky et al. [72] in the 2012 event was the catalyst for significant academic,
industry, and state interest and investment in deep learning and artificial intelligence.

ImageNet and its challenge have been featured in the New York Times [87], cited more
than 38k times [27, 117], and described as “the data that transformed AI research — and
possibly the world.” [47] ImageNet’s success entrenched the use of crowdsourced anno-
tations in the data collection pipeline, effectively solving the problem of large-scale data
collection for the research community. This technique was subsequently used in collecting
the object detection, segmentation and captioning dataset COCO [79], the human action
classification dataset Kinetics [67], and the densely-annotated scene understanding dataset
Visual Genome [71], among other widely-used datasets. The shift to web-scraped data and
crowdsourced annotations, however, has not been without consequence.

1.2 The Abstraction of Data in Computer Vision

In the push for larger datasets to satisfy deep learning algorithms, careful considerations
into the choices and assumptions underpinning data collection have largely been neglected.
This is especially troubling in computer vision research, as many problem areas include
the collection and interpretation images of human subjects, which brings with it issues of
identity, privacy, and connotations of harmful classification systems from the past. The

1https://www.mturk.com/
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automation of data sourcing and annotation emphasizes efficiency and indiscriminate col-
lection above scrutiny. As Jo and Gebru write, “Taking data in masses, without critiquing
its origin, motivation, platform and potential impact results in minimally supervised data
collection” [64]. The distributed workforce accessed through AMT and similar platforms
is often treated as a homogeneous, interchangeable group of annotators, ignoring cultural
differences that can lead to different labels from different groups. Further, publications an-
nouncing datasets seldom provide rationale for the many value-laden decisions that were
made in their composition [44], such as classification taxonomy and hierarchy, data source
selection and representation, annotator instructions, compensation and demographics, and
many more. These decisions embed biases and assumptions into data but are largely ig-
nored as the focus of the community is on the product of data collection, not the process.
While abstraction, the process of reducing complexity by considering something indepen-
dent of its details [19], is a powerful concept in computer science, abstracting the social
context away from data collection removes important details that are crucial to understand
how a dataset represents the world.

In a similar vein, published datasets are largely accepted by practitioners for use in the-
ory and application papers without scrutiny. With repeated use, datasets become viewed
as neural scientific objects, the many subjective decisions that went into their construction
rarely contested by the community [43]. For many in computer vision, the actual images
in ImageNet have been abstracted away, replaced with a testing suite that evaluates the
performance of an image classification model on the command line. The notion that the
1k classes in the widely-used 2012 ILSVRC subset of ImageNet are well-selected to act
as the gold-standard benchmark for image classification is in itself an assumption that is
uncontested.

1.3 Issues with Current Data Practices

The lack of rigour in the collection and the lack of scrutiny in the use of datasets in
computer vision lead to consequences that are far-reaching.

1.3.1 Bias

Undesirable biases are patterns or behaviours learned from data that are highly influential
in the decisions of a model, but not aligned with the values (or idealized values) of the
society in which the model operates [124]. Bias in models arise from many different sources
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in the machine learning development process and can occur with respect to age, gender,
race, or the intersections of these and other protected attributes [126]. One source of bias
occurs when training data underrepresents some subset of the population that the model
sees as input when it is deployed. Many face recognition datasets have been shown to
display this so-called representational bias, leading to poor performance of derived models
on Black people, specifically Black women [13, 108, 91]. Such bias is very concerning as face
recognition models are actively used by law enforcement agencies across the world, with
reports of false positive identifications leading to wrongful arrests, as was the case with
Robert Williams by Detroit police in January 2020 [55]. Likewise, some state-of-the-art
object detection systems have been demonstrated to have worse performance in identifying
pedestrians with darker skin tones [138]. As many autonomous driving companies rely on
CNNs for visual understanding of the world, these reports are concerning.

Efforts to gather more diverse data to increase representation can prove difficult, how-
ever, as entrenched inequalities in society are often present at the source of collection.
Historical bias is another means by which undesirable bias can be embedded in a computer
vision system, as this bias exists given perfect sampling of the data source, a consequence
of deep-rooted systemic unfairness [126]. Labeled Faces in the Wild [60], for example, is
a gold standard benchmark in face verification [152]. It was sourced through images and
captions of notable people in Yahoo! News stories from 2002 to 2004 and was estimated to
contain 77.5% male and 83.5% white individuals [50]. This highly-skewed representation
is a result of a Western-focused media source that brings with it a patriarchy and history
of systemic racism that undervalues women and people of colour in leadership positions in
business, politics, academia, entertainment, and other newsworthy professions. The deci-
sion to select identities in this manner embedded a historical bias in the dataset, of which
no steps were taken to mitigate.

Bias can manifest in many other areas of the machine learning development process, as
demonstrated in Figure 1.1. For a thorough conceptual framework for understanding bias,
refer to work by Suresh and Guttag [126].

1.3.2 Consent

Consent and privacy are notions not well addressed by computer vision practitioners in
web-based data collection. In Canada, research involving human subjects is exempt from
Research Ethics Board review when it “relies on information that is in the public domain
and the individuals to whom the information refers have no reasonable expectation of pri-
vacy” [14]. But to what extent do individuals give up their privacy expectation when they
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Figure 1.1: A framework for understanding sources of bias in machine learning development
[126].
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post content online, or when others post content of them without their consent? Critics
of current research ethics regulations say the advent of big data dramatically changes the
research ethics landscape, yet regulations have not been updated to address new challenges
of web-based data collection [92]. Researchers often rationalize the collection of data in
face recognition, for example, by restricting datasets to celebrity identities, as they view
these individuals to have lower expectations of privacy, but this is not always the case.
Some researchers provide a means for individuals, celebrity or not, to opt-out of inclusion
in face datasets 2, signaling an appreciation of the non-consensual nature of their collection.
However, the onus remains on the individual to uncover their inclusion in such datasets,
which are often restricted to approved researchers.

In some jurisdictions however, individuals have legal protections against the non-consensual
analysis of their face. The Biometric Information Privacy Act (BIPA) [61] is an Illinois
State law enacted in 2008 that gives residents the right to seek financial compensation from
private companies who conduct biometric analysis without obtaining informed consent,
specifically mentioning face scans as a protected biometric. Potential financial liabilities
of popular face recognition dataset MegaFace [69] were recently raised by legal experts
in a New York Times exposé [56]. MegaFace, created by researchers at the University of
Washington in 2016, was collected through publicly available images of non-celebrities on
Flickr. It was taken offline in April 2020 3. Even as public discourse around data collection
and consent increases, little effort has been displayed by computer vision researchers to
engage with these issues in their work. As Solon writes in an NBC News report on the
ethics of face recognition datasets, “It was difficult to find academics who would speak on
the record about the origins of their training datasets; many have advanced their research
using collections of images scraped from the web without explicit licensing or informed
consent” [122].

1.3.3 Label Taxonomy

Labels in a dataset are often referred to as “ground truth” [117, 79, 71], yet this terminology
often provides a veil of objectivity for annotations that are stereotypical, subjective, and
lack scientific foundations linking them to images.

2https://github.com/NVlabs/ffhq-dataset/, “we are committed to protecting the privacy of indi-
viduals who do not wish their photos to be included.”; https://web.archive.org/web/20180218212120/
http://www.msceleb.org/download/sampleset, “Please contact us if you are a celebrity but do not want
to be included in this data set. We will remove related entries by request”

3http://megaface.cs.washington.edu/
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Datasets frame problems through their classification schema. ImageNet draws its tax-
onomy from WordNet [94], a lexical database developed in the 1990s at Princeton that
organizes sets of synonyms, or “synsets”, into semantically meaningful relationships, each
expressing a distinct concept. During ImageNet’s construction, 80k noun synsets were
filtered through algorithmic and manual methods to arrive at 22k classes [27]. However,
the extent to which each class can be characterized visually varies considerably. While a
football player or scuba diver evoke clear visual pictures, a stakeholder or hobbyist
cannot. Worse, some classes in ImageNet such as a debtor, snob, and good person pro-
mote stereotypes and ideas of physiognomy, the pseudoscientific assertion that one’s per-
sonal essential character can be gathered from their outer appearance [23]. While ImageNet
authors have made recent attempts to rectify this situation by removing explicitly offensive
and non-imageable classes and diversifying others, this work comes more than ten years
after the dataset’s release and widespread use in the research community [145].

Annotations such as those in facial attractiveness dataset SCUT-FBP, which assigns
an attractiveness label between one and five to 500 Asian women [142], prove problematic
as they launder subjectivity through data. While research suggests some elements of
faces such as facial symmetry are found universally attractive, perhaps as an evolutionary
indicator of good health [80], this is far from absolute. The notion of beauty varies in time,
geography, culture, and between individuals, so any attempt to create annotations that
are treated as “ground truth” in perpetuity is fraught. The authors’ attempt to mitigate
this subjectivity by averaging results from several annotators speaks to the fundamental
uncertainty in the annotation task. Taxonomy issues notwithstanding, the inclusion of
only women in the SCUT-FBP dataset promotes objectification, especially considering
only 13% of subjects in the database were captured by the researchers themselves, the
remainder collected from the web without consent.

Physiognomy appears again in work by Wu and Zhang [141], entitled Automated Infer-
ence on Criminality using Face Images, in which face images are annotated as criminals
and non-criminals in order to automate their identification with deep learning. An un-
written assumption in this work is that criminality is an innate class of individuals, linked
to genetics, that manifests in the face. This line of thinking discounts an entire body of
behavioural and social sciences that examines how socioeconomic status, lived experiences,
environment, and other factors may impact criminality [78]. While the technical claims
of this study have been rebuked [144], bigger questions arise with respect to the motiva-
tions and ethical implications of this work. Although the authors of this study claim their
work is “only intended for pure academic discussions” and motivated by a curiosity of the
visual capabilities of machine learning systems, such statements promote a problematic
“view from nowhere” that discounts the world in which their research exists and power
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imbalances therein, a perspective of scientific objectivity thoroughly critiqued by feminist
scholars [51]. As companies such as Faception4 claim the ability to identify terrorists and
pedophiles from face images, research that is earnestly conducted out of curiosity can em-
bolden commercialization and perpetuate harm, which is not evenly distributed in our
unjust world, especially when used by a law enforcement establishment with a history of
systemic racism [95, 89]. While an egregious case of a lack of research into domain-specific
literature, this study is emblematic of a larger problem with data annotation that can
uphold a visual relationship between an image and its label that is not founded in science.

1.4 Thesis Overview

This work aims to explore issues of bias, consent, and label taxonomy in computer vision
through novel investigations into widely-used datasets in image classification, face recogni-
tion, and facial expression recognition. Through this work, I aim to challenge researchers to
reconsider normative data collection and use practices such that computer vision systems
can be developed in a more thoughtful and responsible manner.

1.4.1 Motivation

ImageNet [27] ushered in a flood of academic, industry, and state interest in deep learning
and artificial intelligence. Despite ImageNet’s significance, in the ten years following its
publication at the leading computer vision conference CVPR in 2009, there was never
a comprehensive investigation into the demographics of the human subjects contained
within the dataset. This is concerning from a pragmatic perspective, as models trained
on ImageNet are widely used by computer vision practitioners in transfer learning, the
practice of applying knowledge acquired in one task to a different, but related problem. If
certain groups are underrepresented in ImageNet, downstream models may inherit a biased
understanding of the world. The extent to which possible biases are retained in models
when trained on new datasets is an open question that cannot be answered until ImageNet
is well-understood. From a cultural perspective, the lack of scrutiny into ImageNet is
a prime example of how datasets are uncontested after publication. ImageNet has been
championed as one of the most important breakthroughs in artificial intelligence and its
achievements should indeed be celebrated, however it appears that either its success or a
complacency in researchers lead to it not being studied critically for more than ten years,

4https://www.faception.com/our-technology
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both of which are cause for concern. With this motivation I present Chapter 2 of this
thesis, wherein I explore the question of bias in ImageNet by introducing a framework for
the audit of large-scale image datasets.

With the advent of web-scraped data, informed consent in the collection of human
subjects in face recognition datasets has been largely ignored. As such, modern datasets
count in the millions of images and in the hundreds of thousands of identities. State-of-
the-art face recognition systems leverage these large collections of specific individuals’ faces
to train CNNs to learn an embedding space that maps an arbitrary individual’s face to
a vector representation of their identity. The performance of a face recognition system is
directly related to the ability of its embedding space to discriminate between identities,
ergo, the size of its dataset. Recently, there has been significant public scrutiny into the
source and privacy implications of large-scale face recognition datasets such as MS-Celeb-
1M and MegaFace [52, 122, 56]. In 2005, an image of five-year-old Chloe Papa was uploaded
to Flickr by their mother. In 2016, it was scraped and included in MegaFace. In 2019,
Papa said to the New York Times regarding their inclusion, “It’s gross and uncomfortable,
I think artificial intelligence is cool and I want it to be smarter, but generally you ask
people to participate in research. I learned that in high school biology” [56]. Many people
are uncomfortable with their face being used to advance dual-use technologies such as
face recognition that can enable mass surveillance. But is there a demonstrated impact of
being included in such datasets? Are those included in the training sets of face recognition
systems at a higher likelihood of being identified? This question has not previously been
studied. In Chapter 3 of this thesis, I conduct experiments on a state-of-the-art face
recognition system in an attempt to answer this question and further the discussion of
privacy and consent in the context of data collection.

Facial expression recognition aims to predict the emotion a person is experiencing by
analyzing images of their face. Research in this domain is built upon the work on Paul
Ekman, a psychologist and researcher who has studied the relationship between emotions
and facial expressions for more than 60 years. Ekman contends that a person’s emotional
state can be readily inferred from their face due to the universality of six basic emotions,
consistent across cultures and individuals [34]. A landmark review study published in July
2019, however, says otherwise [7]. The review, spearheaded by psychologist Lisa Feldman
Barrett, analyzed over 1,000 research papers that studied healthy adults across cultures,
newborns and young children, and people who are congenitally blind to determine the
reliability and specificity of facial expressions in identifying emotions. Their findings ve-
hemently refute Ekman’s claims. When interacting with others, we do not just rely on
their face to try to infer their emotional state, but body language, tone of voice, word
choice, situational context, our relationship, cultural norms, and other factors contribute
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to our ability to do so. In its current problem formulation, facial expression recognition
with computer vision abstracts all of this context away, reducing the complex task to a
classification problem with static images. While people may smile when happy, the use
of the label “happy” on a static image of a grinning face does not have a solid scientific
foundation. With firms such as HireVue using facial expression recognition to screen can-
didates in job interviews [53], continued research in its current form can bolster unproven
technologies that have considerable impacts in people’s lives. In Chapter 4 of this thesis,
I revisit the canonical Japanese Female Facial Expression (JAFFE) dataset, widely used
in facial expression recognition research, and analyze its collection and use in the context
of the aforementioned review, in the hopes of communicating these findings to a larger
audience.

1.4.2 Contributions

The main contributions of this thesis include: the introduction of a model-driven demo-
graphic annotation pipeline for apparent age and gender in large-scale image datasets; the
presentation and analysis of the first audit of the 2012 ILSVRC subset of ImageNet (1.28M
images) and the person subtree of ImageNet (1.18M images); the first evidence of differ-
ential identification accuracy for individuals by a state-of-the-art face recognition system
in one-to-many searches, dependent on their inclusion or exclusion in training data; and
a novel analysis of the JAFFE dataset through the lens of Barrett et al.’s [7] criteria for
identifying emotional inference from facial expression images.

1.4.3 Outline

The remainder of this thesis is organized in the following manner. Chapter 2, entitled
“Bias in Large-Scale Image Datasets: ImageNet Demographics Audit,” details experiments
auditing ImageNet for bias on the axes of gender and age. Chapter 3, entitled “Consent in
Face Recognition: Impact of Individual Inclusion in Training Data,” outlines the history of
web-scraped data in face recognition research and details experiments assessing the impact
on an individual’s inclusion in such datasets. Chapter 4, entitled “Label Taxonomy in
Facial Expression Recognition: Recontextualizing the Problem,” investigates issues in the
formulation of facial expression recognition research through the analysis of the JAFFE
dataset. This thesis concludes with Chapter 5, were I bring together ideas learned from the
three experiments and discuss initiatives to move the computer vision community forward
in a positive direction.
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Chapter 2

Bias in Large-Scale Image Datasets:
ImageNet Demographics Audit

2.1 Introduction

ImageNet [27], released in 2009, is a canonical dataset in computer vision. ImageNet
follows the WordNet lexical database [94], which groups words into “synsets,” each ex-
pressing a distinct concept. ImageNet contains 14,197,122 images in 21,841 hierarchical
synsets, collected through a comprehensive web-based search and annotated with Amazon
Mechanical Turk [27]. An example of images in ImageNet’s hierarchical structure is seen in
Figure 2.1. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [117], held
annually from 2010 to 2017, was the catalyst for an explosion of academic, industry, and
state interest in deep learning. A subset of 1,000 non-overlapping internal and leaf nodes
of ImageNet were used in the ILSVRC classification task; seminal work by Krizhevsky et
al. in the 2012 event cemented the convolutional neural network (CNN) as the preeminent
model in computer vision [72].

Today, work in computer vision largely follows a standard process: a pretrained CNN
is downloaded with weights initialized to those trained on the 2012 ILSVRC subset of
ImageNet (ILSVRC-2012), the network is adjusted to fit the desired task, and transfer
learning is performed, whereby the CNN uses the pretrained weights as a starting point
for training new data on the new task. The use of pretrained CNNs is instrumental in
applications as varied as remote sensing [88], cervical cell classification [150], and chest
radiograph diagnosis [109], for example.
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Figure 2.1: A snapshot of two root-to-leaf branches of ImageNet. For each synset, six
randomly sampled images are presented [26].

By convention, computer vision practitioners have effectively abstracted away the de-
tails of ImageNet. While this has proven successful in practical applications, there is merit
in taking a step back and scrutinizing common practices. In ten years following the release
of ImageNet, a comprehensive study into the composition of images in the classes it con-
tains was never conducted.1 The lack of scrutiny into ImageNet’s contents is concerning,
given evidence from Roberts that CNNs trained on ILSVRC-2012 implicitly encode age,
gender, and race information and can pass this information to derivative models during
transfer learning [114]. As Roberts writes on the implications of her 2018 thesis,

Are researchers, hobbyists, and government agencies using and adapting these
and similar models for their visual classification tasks without fully understand-
ing how features, unbeknownst to them (and especially features that encode
protected attributes), are indirectly influencing the outcome of their results
(and in potentially biased and harmful ways)? [114]

Without a conscious effort to incorporate diversity in data collection, undesirable biases
can collect and propagate. Age, gender, and racial biases have been identified in word

1Since the publication of a preliminary version of this chapter in June 2019 [33], several studies have
also completed audits of ImageNet [145, 107]. These works are discussed in the following section.
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embeddings [10], image captioning models [3], and commercial computer vision gender
classifiers [13], the result of biased data. The extent to which such biases exist in ImageNet
is the topic of this chapter.

With this context, this chapter aims to address the research question: what is the
demographic distribution of the training set of ILSVRC-2012 (1.28M images) and the
person hierarchical synset of ImageNet (1.18M images), with respect to apparent age and
gender presentation?

2.2 Analysis of ImageNet

In 2017, Shankar et al. studied the geo-diversity of ImageNet by analyzing metadata of the
14M images contained in the dataset [119]. They found a majority of images were sourced
from North America and Western Europe, 45% originating from the US, while Indian and
Chinese-based images accounted for 2.1% and 1% of the dataset, respectively. In 2018,
Stock and Cisse introduced a novel tool for uncovering biases learned by models, applying
it to CNNs trained on ILSVRC-2012 [124]. Using adversarial examples as a form of model
criticism, they discovered that prototypical examples of the synset basketball contained
images of Black people at a much higher rate than their white counterparts, despite a
relative racial balance within the class. They hypothesized that an under-representation of
Black people across all classes of ILSVRC-2012 may have lead to a biased representation
of basketball.

ImageNet Roulette2 was a provocation created by Crawford and Paglen that went viral
in September 2019 [93, 5]. Users uploaded images of a person to the online art project and
a CNN trained on the person subtree of ImageNet would classify them into one of 2,833
classes, as shown in Figure 2.2. The project and its associated essay Excavating AI sought
to ignite a conversation on the politics of machine learning training data by demonstrating
what happens when a system is trained on a problematic dataset [23]. Through the project,
many overtly racist, misogynistic and offensive categories of ImageNet were uncovered.
This work lead to an announcement3 by the creators of ImageNet of upcoming work to
filter and balance the person subtree. In this work, published at FAT* 2020, Yang et al.
[145] identified 1,593 unsafe synsets either explicitly offensive or offensive depending on
context, and 2,614 with a low “imageability” score, that is, abstract categories difficult
to characterize accurately with images, such as philanthropist. This analysis left 158

2https://web.archive.org/web/20190926014608/https://imagenet-roulette.paglen.com/
3http://image-net.org/update-sep-17-2019
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Figure 2.2: Example output of the ImageNet Roulette project.

synsets considered both safe and imageable, 139 of which contained at least 100 images
that were balanced on the axes of skin colour, age, and gender [145]. Following this work,
Prabhu and Birhane recently performed a comprehensive ImageNet Census of ILSVRC-
2012, providing synset-level analysis across 61 metrics, and discussed many societal and
ethical implications of large-scale data collection [107]. Among their findings were verifiable
pornographic images in ILSVRC-2012, including images taken in non-consensual settings,
such as up-skirts in the miniskirt synset.

2.3 Diversity Considerations in Creating ImageNet

Before proceeding with annotation, there is merit in contextualizing this study with a look
at the methodology proposed by Deng et al. [27] in the construction of ImageNet. A
close reading of their data collection and quality assurance processes demonstrates that
the conscious inclusion of demographic diversity in ImageNet was lacking.

First, candidate images for each synset were sourced from commercial image search
engines, including Google, Yahoo!, Microsoft’s Live Search, Picsearch, and Flickr [37].
However, gender and racial biases have been demonstrated to exist in image search results,
such as in the representation of people in images returned for the keyword “CEO” [66, 102].
As these studies and any resulting actions to mitigate their findings come several years
after the collection of ImageNet, this demonstrates that a more curated approach at the
top of the funnel may have been necessary to mitigate historical biases of search engines.
Next, English search queries were translated into Chinese, Spanish, Dutch, and Italian
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using WordNet databases and used for image retrieval. While this is a step in the right
direction, Chinese was the only non-Western European language used. Other resources,
such as Universal Multilingual WordNet, were available at the time, which included over 200
languages for translation [25]. Finally, the authors quantified the diversity of their dataset
by computing the average image of each synset and measuring its lossless JPEG file size.
They stated that a diverse synset would result in a blurrier average image and a smaller file
size, representative of diversity in appearance, position, viewpoint, and background. While
quantifying diversity in the global appearance of images, this method did not quantify
diversity with respect to demographic characteristics such as age, gender, and Fitzpatrick
skin type [40].

2.4 Methodology

In order to provide demographic annotations at scale, there exist two feasible methods:
crowdsourcing and model-based annotations. In the case of large-scale image datasets,
crowdsourcing quickly becomes prohibitively expensive. Model-based annotations use su-
pervised learning methods to create models that can predict annotations, but this approach
comes with its own meta-problem: as the goal of this work is to identify the representative
demographics in a dataset, the annotation models must first be analyzed for performance
on intersectional groups to determine if they exhibit bias themselves.

2.4.1 Criteria for Bias and Poor Representation

Age and gender groups are defined to have an approximately equal population in each
intersectional group, according to US Census Bureau data from 20094, the year of Ima-
geNet’s release. These population-level statistics are displayed in Table 2.1. An American
population base was selected as Shankar et al. [119] found US-based images to be the
largest cohort in ImageNet. In reporting results of annotation models, a bias is said to
exist if the performance on a group is 10% worse than the best-performing group along the
axis or axes in question. In reporting results of representation in ImageNet, a group is said
to be over or under-represented if it differs by more than 10% from its population-level
statistic. It should be noted that some synsets of ImageNet have inherent gender or age
connotations, as with specific clothing types, such as bikini, or in descriptions of people,
such as senior. The focus of this work is on synsets in which undesirable biases may exist.

4https://www.census.gov/data/tables/2009/demo/age-and-sex/2009-age-sex-composition.html
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% of US Population

Gender
Age Group Male Female All

0-14 10.41 9.94 20.35
15-29 10.64 0.30 20.93
30-44 9.97 10.12 20.10
45-59 10.23 10.70 20.94
60+ 7.87 9.82 17.69

All 49.12 50.88 100.00

Table 2.1: US Census Bureau: Population Statistics by Age and Sex for 2009.

2.4.2 Face Detection

The FaceBoxes network [151] is employed for face detection, consisting of a lightweight
CNN that incorporates novel Rapidly Digested Convolutional Layers and Multiple Scale
Convolutional Layers for speed and accuracy, respectively. This model was trained on the
WIDER FACE dataset [146] and achieves average precision of 95.50% on the Face Detection
Data Set and Benchmark (FDDB) [62]. On a subset of 1,000 images from FDDB hand-
annotated by the author for apparent age and gender presentation, the model achieves a
relatively equal performance across intersectional groups, as show in Table 2.2.

Average Precision (%)

Gender Presentation
Age Group Masculine Feminine All

0-14 93.75 100.00 97.44
15-29 99.20 100.00 99.61
30-44 100.00 99.11 99.76
45-59 100.00 100.00 100.00
60+ 99.17 100.00 99.24

All 99.48 99.74 99.54

Table 2.2: Face detection model average precision on a subset of FDDB, hand-annotated
by the author for apparent age and gender presentation. Biased groups in bold.
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2.4.3 Apparent Age Annotation

The task of apparent age annotation arises as ground-truth ages of individuals in web-
scraped images are not possible to obtain. This work follows Merler et al. [91] and employs
the Deep EXpectation (DEX) model of apparent age [116], pretrained on the IMDB-WIKI
dataset of 500k faces with real ages and fine-tuned on the APPA-REAL training and
validation sets of 3.6k faces with apparent ages, crowdsourced from an average of 38 votes
per image [2]. As show in Table 2.3, the model achieves mean average error of 5.22 years
on the APPA-REAL test set, but exhibits worse performance on younger and older groups.

Mean Average Error (years)

Gender
Age Group Male Female All

0-14 8.26 9.37 8.77
15-29 3.24 3.65 3.57
30-44 4.52 4.93 4.72
45-59 4.43 5.50 4.81
60+ 7.70 9.48 8.40

All 5.13 5.29 5.22

Table 2.3: Apparent age model mean average error in years on APPA-REAL test set.
Biased groups in bold.

2.4.4 Gender Presentation Annotation

Automated gender recognition (AGR) from face images is scientifically flawed [42]. Pri-
vacy risks and potential harms can result from individuals being incorrectly gendered or
misgendered by such systems [49]. AGR perpetuates the view of a binary gender that
excludes trans and gender-nonconforming identities [70]. The use of a model-based gender
annotation tool in this work is done with the goal of identifying systematic bias in Ima-
geNet in the hopes of improving inclusively, but I recognize such a system upholds gender
normative expectations of presentation.

In this work, the gender variable of a detected face is expressed as a continuous value
between 0 and 1. The labels male and female are used under the category gender to align
with evaluation benchmarks that use this taxonomy. In reporting results on ImageNet,
labels masculine and feminine are used under the category gender presentation. In
both cases, the gender variable is thresholded at 0.5 to delineate classes. Following Merler

17



et al. [91], a DEX model is employed for these tasks. When tested on APPA-REAL, with
enhanced annotations provided by Clapés et al. [17], the model achieves an accuracy of
91.00%, however its errors are not evenly distributed, as shown in Table 2.4. The model
errs more on younger and older age groups and on those with a female gender label.

Accuracy (%)

Gender
Age Group Male Female All

0-14 79.19 75.78 77.62
15-29 96.09 89.80 91.95
30-44 100.00 91.72 95.99
45-59 100.00 91.30 96.89
60+ 84.91 79.71 82.86

All 94.15 88.04 91.00

Table 2.4: Gender model binary classification accuracy on APPA-REAL test set. Biased
groups in bold.

Further evaluation of the model is conducted on the Pilot Parliaments Benchmark
(PPB) [13], a face dataset developed by Buolamwini and Gebru for parity in gender and
Fitzpatrick skin type. Results for intersectional groups on PPB are shown in Table 2.5. The
model performs poorly for darker-skinned females (Fitzpatrick skin types IV - VI), with an
average accuracy of 69.00%, reflecting the disparate findings of commercial computer vision
gender classifiers in Gender Shades [13]. The use of this model in annotating ImageNet will
result in biased gender presentation annotations, under-representing feminine presenting
identities to some extent, but I proceed to establish a baseline upon which a more fair
model can improve annotations in future work.

2.5 Results and Discussion

The proposed methodology is applied to the training set of ILSVRC-2012, comprised of
1,000 synsets containing between 732 and 1,300 images, and the person subtree of Ima-
geNet, comprised of 2,833 synsets containing between 1 and 1664 images. Face detections
that receive a confidence score of 0.9 or higher move forward to the annotation phase.
Statistics for gender presentation and age demographics of ILSVRC-2012 and the person

subtree of ImageNet are presented in Table 2.6 and Table 2.7, respectively.
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Accuracy (%)

Gender
Fitzpatrick Skin Type Male Female All

I 100.00 98.31 99.12
II 100.00 97.14 98.86
III 100.00 95.08 97.67
IV 100.00 86.11 92.31
V 100.00 68.79 83.70
VI 100.00 62.77 86.22

ALL 100.00 83.57 92.68

Table 2.5: Gender model binary classification accuracy on PPB. Biased groups in bold.

% of Dataset

Gender Presentation
Age Group Masculine Feminine All

0-14 4.06 3.01 7.08
15-29 27.11 23.72 50.83
30-44 17.81 9.02 26.83
45-59 8.48 5.08 13.56
60+ 0.91 0.80 1.71

All 58.38 41.62 100.00

Table 2.6: Top-level age and gender presentation statistics of ILSVRC-2012. Over-
represented groups in bold. Under-represented groups are underlined.

% of Dataset

Gender Presentation
Age Group Masculine Feminine All

0-14 3.35 1.66 5.00
15-29 24.63 16.95 41.58
30-44 21.02 7.36 28.38
45-59 16.87 3.70 20.57
60+ 3.02 1.44 4.47

All 68.89 31.11 100.00

Table 2.7: Top-level age and gender presentation statistics of ImageNet person subtree.
Over-represented groups in bold. Under-represented groups are underlined.
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In these preliminary annotations, feminine presenting identities comprise 41.62% of
images in ILSVRC-2012 and 31.11% of images in the person subtree of ImageNet. People
who appear over the age of 60 are almost non-existent in ILSVRC-2012, accounting for
1.71% of all observed people.

There exist only three synsets in ILSVRC-2012 that are derived from the person sub-
tree of ImageNet, scuba diver, groom, and ballplayer. Yang et al. use this fact to
justify their work filtering and balancing only the person subtree of ImageNet, and not
ILSVRC-2012 [145]. This work, however, finds 8.23% of all images in ILSVRC-2012 con-
tain at least one person, and 29 synsets contain people in more than half of their images.
The 20 synsets containing the most images with people are listed in Table 2.8, along
with the percent of observed people in each synset that present feminine (percent pre-
senting masculine is implied). Among these are synsets with connotations to science,
academia, and law, which would be desirable to be balanced in terms of gender presen-
tation. In synsets lab coat, laboratory coat and academic gown, academic robe,

judge’s robe, feminine presenting individuals comprise only 38.46% and 40.82% of ob-
served people, respectively, demonstrating an under-representation in these categories with
respect to the population-level statistics.

Note that our methodology is limited as it does not identify a person in an image if
their face is not observed. Such a method will not identify bias with respect to the co-
occurrence of certain skin types or body types with objects in images. Such a bias was
recently observed in the Google Vision API, where the image of a hand with dark skin
holding a thermometer was classified as a gun, while a version of the same image with light
skin produced the label monocular [68].

To get a sense of the most skewed classes in terms of gender presentation for each
dataset, synsets were filtered to retain those that contained at least 20 images and observed
a person in at least 15% of their images. The percent of observed people with masculine or
feminine presented identities in each synset were then calculated and ranked in descending
order. The 20 most masculine presenting and feminine presenting synsets in ILSVRC-2012
are shown in Table 2.9 and Table 2.10, respectively. Top synsets for masculine presented
identities largely represent types of fish, sporting implements, musical instruments, and
firearm-related items, while top synsets for feminine presented identities largely represent
types of clothing and dogs.

The 20 most masculine presenting and feminine presenting synsets in the person sub-
tree of ImageNet are presented in Table 2.11 and Table 2.12, respectively. Contrary to the
relatively benign synsets in ILSVRC-2012, this analysis surfaces many troubling classes
related to people. Among the top synsets for masculine presented identities include harm-
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Synset % Containing People % Presenting Feminine

lab coat, laboratory coat 76.23 38.46
wig 74.85 68.60

groom, bridegroom 74.15 42.09
pajama, pyjama, pj’s, jammies 71.54 64.65

suit, suit of clothes 71.38 14.79
mortarboard 71.38 46.78

academic gown, academic robe, judge’s robe 69.00 40.82
bow tie, bow-tie, bowtie 66.00 17.84

barracouta, snoek 65.69 5.76
ice lolly, lolly, lollipop, popsicle 65.38 55.40

bikini, two-piece 64.62 85.91
maillot 63.69 85.90
kimono 63.54 71.28

neck brace 63.14 53.96
military uniform 63.00 17.27

gown 62.00 83.62
fur coat 60.31 73.09

tench, Tinca tinca 59.54 7.60
seat belt, seatbelt 58.38 51.82
feather boa, boa 58.23 66.37

Table 2.8: ILSVRC-2012 synsets, by percent of images in a synset that contain at least
one person.

ful categories such as anti-American, enemy, and spree killer, various classes related
to business, including oilman, pitchman, traveling salesman, and spellbinder, pro-
moting the stereotype of a male-centred vocation, and, as seen in ILSVRC-2012, sports-
related synsets such as second baseman and split end. The top synsets for feminine
presented identities contain a disturbing number of objectionable categories that have
sexually-charged language, a phenomenon which is notably absent from the top mascu-
line presenting synsets. Some of these synsets and their WordNet definitions include:
bombshell, an entertainer who has a sensational effect; tempter, a person who tempts
others; nymph, a voluptuously beautiful young woman; nymphet, a sexually attractive
young woman; smasher, a very attractive or seductive looking woman; wanton, lewd or
lascivious woman; inguine, an artless innocent young girl (especially as portrayed on the
stage); rosebud, (a literary reference to) a pretty young girl. The sheer number of classes
in this domain illustrates that the misogynistic taxonomy of WordNet was not adequately
filtered out by ImageNet’s creators during collection, likely due to the minimal supervision
that came with outsourcing annotations to a distributed workforce.
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Synset % Presenting Masculine

barracouta, snoek 94.24
ballplayer, baseball player 93.47

Windsor tie 93.29
gar, garfish, garpike, billfish 92.76

tench, Tinca tinca 92.40
rugby ball 91.96
barbershop 90.06

bulletproof vest 89.33
sax, saxophone 89.16

swimming trunks, bathing trunks 88.36
assault rifle, assault gun 88.12

sturgeon 87.61
cornet, horn, trumpet, trump 87.15

trombone 86.68
suit, suit of clothes 85.21

football helmet 84.11
basketball 83.33

coho, cohoe, coho salmon, blue jack 82.80
military uniform 82.73

parallel bars, bars 82.63

Table 2.9: ILSVRC-2012 synsets, by percent of observed people in a synset presenting
masculine.

2.6 Chapter Summary

The key takeaways of this chapter are:

• ImageNet is the gold-standard benchmark by which the computer vision community
measures progress.

• Despite ImageNet’s impact and widespread use, little attention has been paid to
its demographic representation and label taxonomy in the ten years following its
release, which is problematic as ImageNet is widely used to pretrain CNNs for transfer
learning.

• Indeed, in analyzing the origins of ImageNet, it is clear that scale was prioritized
over representation across age, gender, and racial lines in the collection process.
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Synset % Presenting Feminine

brassiere, bra, bandeau 88.59
golden retriever 88.29
bikini, two-piece 85.91

maillot 85.90
maillot, tank suit 85.47
miniskirt, mini 85.14

cocker spaniel, English cocker spaniel, cocker 83.82
gown 83.62

lipstick, lip rouge 82.81
Maltese dog, Maltese terrier, Maltese 82.06

stole 81.64
cardigan 81.32
overskirt 81.28
abaya 80.68
beagle 77.67
poncho 77.02

hoopskirt, crinoline 75.65
bonnet, poke bonnet 74.81
Labrador retriever 74.14

fur coat 73.09

Table 2.10: ILSVRC-2012 synsets, by percent of observed people in a synset presenting
feminine.

• A model-based approach to identify the demographic representation of large-scale im-
age datasets such as ImageNet is useful to mitigate high costs of manual annotation,
however, models must first be audited for bias to ensure they perform fairly.

• Using a novel demographic annotation process, the ILSVRC-2012 dataset and the
person subtree of ImageNet were found to contain a distinct lack of representation
of young (0-14) and older (60+) aged people, and of feminine presenting individuals.

• This analysis uncovered a high representation of masculine presenting identities in
academic, scientific, sporting, and business-related categories, and the inclusion of
many categories of a sexually-charged nature that contained predominately feminine
presenting identities.

ImageNet is emblematic of the emphasis on scale over scrutiny in the collection and
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Synset % Presenting Masculine

argonaut 100.00
agnostic 100.00

anti-American 100.00
chandler 100.00

counterterrorist 100.00
enemy 100.00
equerry 100.00

Girondist, Girondin 100.00
hacker 100.00

halberdier 100.00
helmsman, steersman, steerer 100.00

Kennan, George F. Kennan, George Frost Kennan 100.00
oilman 100.00
pitchman 100.00

second baseman 100.00
spree killer 100.00
shirtmaker 100.00
spellbinder 100.00
split end 100.00

traveling salesman 100.00

Table 2.11: ImageNet person subtree synsets, by percent of observed people in a synset
presenting masculine.

use of data in the computer vision community. It is telling that a dataset that is so widely
celebrated is also one that is rife with issues of poor representation and offensive label
taxonomies, ignored by the research community for a decade as they focused more on
getting their algorithms to work than on the societal impacts of their work [5]. As with
Buolamwini, Gebru, and Raji in facial analysis systems in Gender Shades and its follow-up
work [13, 108], it was not until Roberts [114], Shankar [119], and Cisse [124], underrep-
resented minority scholars in the computer vision community, thought to interrogate the
assumptions of these widely uncontested systems that evidence began to arise with respect
to biases embedded within them. In the case of ImageNet, the results of this work demon-
strate that poor representation goes beyond the person subtree of ImageNet, but is also
present in the commonly-used ILSVRC-2012 dataset. The extent to which biased feature
representations are derived from ILSVRC-2012 and passed to downstream models during
transfer learning remain open questions. What is certain from this work, however, is that
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Synset % Presenting Feminine

bombshell 100.00
choker 100.00

dyspeptic 100.00
comedienne 96.30

cover girl, pin-up, lovely 96.24
tempter 95.92

nymph, houri 95.74
artist’s model, sitter 95.05

nymphet 93.84
smasher, stunner, knockout, beauty 93.84

maid, maiden 93.05
model, poser 93.01

wanton 92.70
lass, lassie, young girl, jeune fille 92.52

outdoorswoman 91.89
ingenue 91.85

frontierswoman 91.67
newswoman 91.67
rosebud 91.58
ingenue 91.30

Table 2.12: ImageNet person subtree synsets, by percent of observed people in a synset
presenting feminine. Bold terms are

minimal supervision in collection and annotation can lead to datasets that are unequal
across demographic axes. Datasets hold an enormous amount of power in the computer
vision community, as they craft the problems that researchers organize themselves around.
It is imperative that researchers attend more to issues of fairness and inclusion in the con-
struction of datasets, as once they are released, it is incredibly difficult to effectively alter
a dataset or change the norms of its use.
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Chapter 3

Consent in Face Recognition: Impact
of Individual Inclusion in Training
Data

3.1 Introduction

Face recognition systems using CNNs depend on the collection of large image datasets
containing thousands of sets of specific individuals’ faces for training. Using this data,
CNNs learn a set of parameters that can map an arbitrary individual’s face to a feature
representation, or faceprint, that has small intra-class and large inter-class variability. The
ability of a face recognition system to distinguish between identities within this embedding
space depends on the size and diversity of its training data, along with its model capacity
and underlying algorithms. Face recognition systems have benefited from the enabling
power of the Internet in the collection of large-scale image datasets and from hardware
improvements in enabling efficient training of large models. Recently, increased attention
to face recognition by academia, industry, and government has brought new researchers,
ideas, and funding to the field, leading to performance improvements on benchmark tasks
Labelled Faces in the Wild (LFW) [60] and MegaFace [99]. Consequently, face recogni-
tion systems are now being integrated into consumer and industrial electronic devices and
offered as application programming interfaces (APIs) by providers such as Amazon, Mi-
crosoft, IBM, Megvii, and Kairos. However, along with improved performance has come
increased public discourse on the ethics of face recognition development and deployment.

Algorithmic auditing of commercial face analysis applications has uncovered disparate
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performance for intersectional groups across several tasks. Poor performance for darker
skinned females by commercial face analysis APIs has been reported by Buolamwini, Gebru,
and Raji [13, 108], as has lower accuracy in face identification by commercial systems with
respect to lower (darker) skin reflectance by researchers at the US Department of Homeland
Security [21]. As bias in training data begets bias in model performance, efforts to create
more diverse datasets for these tasks have resulted. IBM’s Diversity in Faces dataset [91],
released in January 2019, is a direct response to this body of research. Using ten established
coding schemes from scientific literature, researchers annotated one million face images in
an effort to advance the study of fairness and accuracy in face recognition. However,
this dataset has seen public scrutiny from a different, but equally notable perspective. A
March 2019 investigation by NBC News into the origins of the dataset brought to the
public conversation the issue of informed consent in large-scale academic image datasets,
as IBM leveraged images from Flickr with a Creative Commons Licence without notifying
content owners of their use [122].

To rationalize the collection of large-scale image datasets without explicit consent of
individuals, some computer vision researchers appeal to the non-commercial nature of their
work. However, work by Harvey and LaPlace at MegaPixels have found that authors’
stated limitations on dataset use do not translate to real-world restrictions [52]. In the
case of Microsoft’s MS-Celeb-1M dataset, authors included an explicit “non-commercial
research purpose only” clause with the dataset, which was the largest publicly-available
face recognition dataset at the time. However, as the dataset has been cited in published
works by the research arms of many commercial entities, findings cannot easily be isolated
from improvements in product offerings. As a direct result of MegaPixel’s work on the
ethics, origins, and privacy implications of face recognition datasets, MS-Celeb-1M [48],
Stanford’s Brainwash dataset [123], and Duke’s Multi-Target, Multi-Camera dataset [113]
were removed from their authors’ websites in June 2019. However, data remains accessible
via torrents, derived datasets and other hosts [52].

In addition to issues of bias and informed consent in data collection, concern over the
general use of face recognition systems by commercial and government agencies has been
raised by civil rights groups and research centers, as there is no oversight for its use in
civil society [1, 137]. For these and other reasons, multiple cities in the United States have
banned the use of face recognition systems for law enforcement purposes [20, 140, 110].
Many people are concerned with their identify being used to train the dual-use technology
that is face recognition. With reports of face recognition being used by law enforcement
entities to identify protesters in Baltimore [111], London [12], and Hong Kong [96] there
is merit in understanding the impact of one’s inclusion in the training data that fuels the
development of these systems.
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With this context, this chapter aims to address the research question: is there a differ-
ential impact of face recognition systems in one-to-many search accuracy, dependant upon
an individual’s inclusion in the training dataset?

3.2 Background

3.2.1 Face Recognition Tasks

Within the domain of face recognition lies two categories of tasks: face verification and
face identification [73].

In face verification, the goal is to assess if a presented image matches with the reference
image of an individual, often to grant access to a physical device or location. Unlocking a
smartphone with one’s face provides an example of face verification; a person presents their
face to a phone and it is verified against a reference image of the known owner of the device.
This task is referred to as a one-to-one (1:1) search, as there is only one individual that
the presented face image is compared against. In order to confirm a match, a threshold
of similarity must be met, which can be set by the user of a system to meet a specific
level of security. Performance of a system on face verification tasks is reported in terms of
accuracy, the number of correct verifications of all verification attempts.

In face identification, a gallery of known identities is constructed from face images
of individuals in advance of testing. Subsequently, a face image of unknown identity is
presented to the system as the probe. The probe is then matched for similarity with all
images in the gallery, constituting a one-to-many (1:N) search. If the system guarantees
that the identity of the probe is within the gallery of identities, the problem is considered
closed-set face identification, otherwise it is considered open-set face identification.

Closed-set face identification tasks are common in academic benchmarks, as galleries are
carefully constructed by their authors to contain all probes. However, such problems are
often not reflective of the real-world use of face recognition. In open-set face identification,
a confidence threshold must be set to reject matches that do not meet a certain level
of similarity. The selection of an appropriate threshold is especially relevant in high-risk
applications such as law enforcement in which false positives have significant implications.
In other cases, open-set face identification systems are used for lead generation, whereby a
specific number of identities are returned, regardless of similarity, for human operators to
manually review.
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Face identification performance is reported in terms of accuracy in returning the correct
identity of a probe from the gallery, or in the open-set case, no identity if the probe does not
exist in the galley. Common performance metrics in closed-set face identification include
Rank-1 accuracy, of all identification attempts, the number of times the correct identity in
the gallery is the most similar identity to the probe and Rank-10 accuracy, the number of
times the correct identity is in the ten most similar identities to the probe.

3.2.2 Deep Face Recognition

Rapid improvements in image classification in the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [117] by AlexNet [72], ZFNet [148], GoogLeNet [127], and
ResNet [54] from 2012 to 2015 cemented the DCNN as the standard method in computer
vision research and applications. While early uses of convolutional neural networks in face
verification showed preliminary success [16, 59], it was not until the introduction of the
aforementioned network architectures that the modern era of deep face recognition began.
Coupled with innovations in loss function design and access to larger image datasets, mod-
ern face recognition systems have improved state-of-the-art performance on benchmark
face verification and identification tasks significantly in the past six years. For a complete
survey of the development of deep face recognition systems, please refer to the review paper
by Wang and Deng [134]; the following is a brief summary of major milestones.

The first system to adapt findings from ILSVRC to face recognition was Facebook’s
DeepFace [128], published in 2014 by Taigman et al. The nine-layer AlexNet-based model
was trained on a private dataset of 4.4M images of 4K identities and achieved state-of-the-
art accuracy on face verification tasks LFW and YouTube Faces (YTF) [139], reducing the
error rate by more than 50% on the latter task.

Following this work, Google introduced FaceNet in 2015 with a major innovation in
loss function design [118]. While the standard softmax loss function optimized inter-class
differences, researchers found that intra-class differences remained high, problematic in
the domain of face recognition. To rectify this problem, the triplet loss was introduced to
jointly minimize the Euclidean distance between an anchor example and a positive example
of the same identity and maximize the distance between an anchor and negative example.
Using a ZFNet-based model and a private dataset of 200M images of 8M identities, they
achieved state-of-the-art performance on LFW and YTF.

Innovations in loss functions dominated the next wave of improvements in benchmark
tasks, motivated by improving discrimination between classes by making features more
separable. Wen et al. introduced the Center Loss in 2016 [136], followed by Liu et al. with

29



the Angular Softmax in 2017 [82]. The Large Margin Cosine Loss was introduced in 2018
by Wang et al. [133], and in 2019, Deng et al. incorporated the Additive Angular Margin
Loss into the ArcFace model [29], considered state-of-the-art on multiple face recognition
benchmarks when published.

3.2.3 Face Recognition Training Datasets

Access to large-scale face recognition training datasets has been essential to the develop-
ment of modern solutions by the academic community. While early works in the DCNN-era
of face recognition came out of companies with access to massive private datasets, such
as Facebook’s 500M images and 10M identities [129] and Google’s 200M images and 8M
identities [118], the release of several open-source datasets in the ensuing years has al-
lowed researchers to train models at scale. A summary of notable face recognition training
datasets of the past six years is provided in Table 3.1. These datasets catalyzed the field
of face recognition and lead to great advances in model performance on benchmark tasks.
They largely consist of celebrity identities and copyrighted images scraped from the inter-
net.

One exception is MegaFace, which is derived from the YFCC100M dataset of 100M
photos with a Creative Commons Licence, from 550K personal Flickr accounts [131]. While
the Creative Commons Licence permits the fair use of images, including in this context,
Ryan Merkley, CEO of Creative Commons, noted the trouble of conflating copyright with
privacy in a March 2019 statement,

Copyright is not a good tool to protect individual privacy, to address research
ethics in AI development, or to regulate the use of surveillance tools employed
online. Those issues rightly belong in the public policy space, and good solu-
tions will consider both the law and the community norms of CC licenses and
content shared online in general. [90]

While MegaFace contains unknown, non-celebrity identities, an October 2019 inves-
tigation by the New York Times demonstrated that account metadata associated with
images in the dataset allows for a trivial real-world identification of individuals [56]. In all
datasets, no informed consent was sought or obtained for individuals contained therein.
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Dataset Year Identities Images Consent Obtained Source

CASIA WebFace 2014 10,575 494K No [147]
CelebA 2015 10,177 203K No [83]

VGGFace 2015 2,622 2.6M No [105]
MS-Celeb-1M 2016 99,952 10.0M No [48]

UMDFaces 2016 8,277 368K No [4]
MegaFace (Challenge 2) 2016 672,057 4.7M No [99]

VGGFace2 2018 9,131 3.3M No [15]

Table 3.1: Prominent open-source face recognition training datasets.

3.3 Ethical Considerations

3.3.1 Intent

The intent of this work is to investigate the performance of face recognition systems with
respect to inclusion in training datasets. While one interpretation of this work may be
to motivate efforts to mitigate demographic bias in the development of face recognition
systems, it should be noted that increasing the performance of face recognition systems
in any context can increase their ability to be used for oppressive purposes. In addition,
due to historical societal injustices against marginalized populations and racially-biased
police practices in the United States, a disproportionate number of Black and Hispanic
people are present in mugshot databases, often used by law enforcement agencies as data
sources for face recognition systems [98, 41]. These populations are therefore poised to
receive a greater burden of the effects of improved face recognition systems. I therefore
position this work as informing the discussion on data privacy and consent when it comes
to face recognition systems and do not advocate for technical improvements without a
larger discussion on the appropriate use and legality of the technology.

3.3.2 Use of MS-Celeb-1M

As previously noted, the MS-Celeb-1M dataset was removed from Microsoft’s website in
June 2019. In a response to a Financial Times inquiry, Microsoft stated the website was
retired “because the research challenge is over” [97]. However, a version of this dataset with
detected and aligned faces from a “cleaned” subset of the original images is available from
the Intelligent Behaviour and Understanding Group (iBUG) at Imperial College London.
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The dataset was offered as training data for the “Lightweight Face Recognition Challenge &
Workshop”1 the group organized at ICCV 2019. The group has pre-trained face recognition
models available as benchmarks for the challenge, trained on this data.

As this work aims to conduct experiments in a realistic setting in order to better
inform the conversation around data collection processes, the use of a state-of-the-art model
trained on a large dataset is necessary to gain insights that are applicable to commercial
applications. I therefore use the MS-Celeb-1M dataset, through its derived version offered
for the ICCV 2019 Workshop, for the limited scope of this work.

3.4 Methodology

3.4.1 Face Recognition Model

Training Data

A cleaned version of the MS-Celeb-1M dataset [48] is used as training data for a face
recognition model in this work. This dataset was prepared for the ICCV 2019 Lightweight
Face Recognition Challenge [30]. All face images were preprocessed by the RetinaFace
model for face detection and alignment [28]. A similarity transformation was applied to
each detected face using five predicted face landmarks to generate normalized face crops
of 112 x 112 pixels.

As the original version of this dataset has been shown to exhibit considerable inter-class
noise, efforts have been made to automatically clean the dataset [63]. In the case of this
version, after face detection and alignment, cleaning was performed by a semi-automatic
refinement strategy. First, a pre-trained ArcFace model [29] was used to automatically
remove outlier images of each identity. A manual removal of incorrectly labelled images by
“ethnicity-specific annotators” followed to result in a dataset of 5,179,510 images of 93,431
identities. This dataset is referred to as MS1M-RetinaFace.

Model

The ArcFace model [29] is used in this work. ArcFace employs the Additive Angular Margin
Loss and a ResNet100 backbone to arrive at a 512-dimensional feature representation of

1https://ibug.doc.ic.ac.uk/resources/lightweight-face-recognition-challenge-workshop/
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an input image. The model achieves a verification accuracy of 99.83% on LFW and Rank-
1 identification accuracy of 81.91% on the MegaFace Challenge 1 with 1M distractors,
considered state-of-the-art results. This model is selected for study as is the top academic,
open-source entrant on the National Institute of Standards and Technology (NIST) Face
Recognition Vendor Test (FRVT) 1:N Verification2, comparable with many commercial
vendors’ systems. NIST’s FRVT is the gold standard benchmark in testing face recognition
systems in 1:1 and 1:N searches. Pre-trained weights for this model were provided by iBUG.

3.4.2 Experiments

To determine the effect of inclusion in the training data of a face recognition system on its
ability to identify an individual, the problem is framed as a closed-set face identification
task. Two probe datasets are constructed and face identification experiments are performed
on a gallery of 1M distractor images. Performance of the model on the probe datasets is
evaluated in terms of Rank-1, Rank-10, and Rank-100 identification accuracies. A visual
representation of the datasets used in this work is shown in Figure 3.1.

Probe Data

Two probe datasets are constructed from the VGGFace2 dataset [15]. Using regular ex-
pressions, identities in VGGFace2 are matched by name with the identify list of MS1M-
RetinaFace. 5,902 VGGFace2 identities are found to be present in MS1M-RetinaFace and
3,229 VGGFace2 identities are not present in the training dataset. In each of these two
groups, 1,000 male identities and 1,000 female identities are randomly selected for eval-
uation, based on gender labels provided by VGGFace2 metadata. For each identity, 50
images are randomly selected and undergo face detection and alignment by the Multi-task
Cascaded Convolutional Network (MTCNN) [149] to generate normalized face crops of 112
x 112 pixels. The set of 100,000 images of 2,000 identities present in the training data is
referred to as the in-domain probe set and the set of 100,000 images of 2,000 identities
not present in the training data is referred to as the out-of-domain probe set. Finally,
512-dimensional feature representations for all images in the in-domain and out-of-domain
probe sets are generated by the ArcFace model.

2https://pages.nist.gov/frvt/html/frvt1N.html
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Figure 3.1: Experimental procedure to generate feature representations of images in gallery
and probe sets from ArcFace model.

Gallery Data

The MegaFace Challenge 1 Distractor dataset [69] of 1,027,058 images of 690,572 identities
is used to form the basis of the gallery. MTCNN is used to generate normalized face crops
of 112 x 112 pixels and ArcFace is used to generate 512D feature representations of each
image in the gallery.

Evaluation Protocol

The experiments conducted in this work follow the protocol of MegaFace Challenge 1,
with the two novel probe sets in place of the standard FaceScrub test set [101]. The Linux
development kit offered by MegaFace is used to perform evaluation. Each probe set is
evaluated following Algorithm 1; a written description of this protocol follows.

A probe set contains 2,000 identities, each with 50 images represented as 512D features.
For each identity, we iterate over their 50 images, adding one image to the gallery at a time,
which is referred to as the needle. We then iterate over the remaining 49 images, using each
one as a probe. All images in the gallery are ranked by Euclidean distance in feature space
to the probe. An individual’s Rank-1, Rank-10, and Rank-100 face identification accuracy
is the number of times the needle is within the top 1, 10, and 100 positions in the ranked
list, respectively, across their 2,450 searches (50 needles × 49 probes per needle). Results
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Algorithm 1: Closed-set face identification evaluation.

Result: Rank-1, 10 and 100 face identification accuracies for a probe set.
Rank-1Acc., Rank-10Acc., Rank-100Acc. = empty lists;
gallery contains 1M distractor images;
for identity in identities1 to 2000 do

r1, r10, r100 = 0;
for imageneedle in images1 to 50 do

add imageneedle to the gallery;
for imageprobe in images1 to 50 do

if imageneedle == imageprobe then
continue;

else
rank all images in gallery by Euclidean distance to imageprobe in
feature space;
if imageneedle in first position in ranked list then

r1 = r1 + 1
if imageneedle in first 10 positions in ranked list then

r10 = r10 + 1
if imageneedle in first 100 positions in ranked list then

r100 = r100 + 1
remove imageneedle from gallery;

r1 = r1/(50 × 49); add r1 to Rank-1Acc.;
r10 = r10/(50 × 49); add r10 to Rank-10Acc.;
r100 = r100/(50 × 49); add r100 to Rank-100Acc.;

Rank-1Acc. = average of Rank-1Acc.;
Rank-10Acc. = average of Rank-10Acc.;
Rank-100Acc. = average of Rank-100Acc.;

for a probe set are reported as the average Rank-1, Rank-10, and Rank-100 accuracies
across their 2,000 identities.

To determine if the face identification accuracies of two probe sets at a certain rank
differ significantly, a two-sample, two-sided independent Welch’s t-test is employed [135]. If
the two samples are drawn from distributions with different means with a strict threshold
of a p-value less than 0.01, the probe sets are said to exhibit a significant difference in
performance.
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3.5 Results and Discussion

Results of the experiments are presented in Table 3.2 for Ranks 1, 10, and 100. There
appears to be an increase in face identification accuracy for identities present in the training
data, compared to those who are not. In-domain identities have a 4.0% higher identification
accuracy than out-of-domain identities at Rank-1 (79.7% vs. 75.7%), and are 4.3% higher
at Rank-10 (91.0% vs. 86.7%) and 3.6% higher at Rank-100 (92.9% vs. 89.3%), all of which
are significant findings. These results suggest that modern DCNN-based face recognition
systems are biased towards individuals they are trained on.

The disparate performance between probe sets suggests some amount of overfitting has
occurred in the model. Although the model generalizes well to new identities, as evidenced
by results on benchmarks LFW, MegaFace and on NIST’s FRVT, these results indicate
that the 93k identities the system is trained on are more easily identifiable in a large-scale
study. As the model’s Additive Angular Margin Loss sought to increase discrimination
between classes by making features more separable, it appears the model has learned to
map identities to the same feature representation more consistently for those it has seen
before.

The role of gender in the performance of the face recognition model is also investi-
gated. Within in-domain identities, no significant difference between males and females is
reported. However, within out-of-domain identities, a significant decrease in performance
is reported for females compared to males across all ranks. These results suggest that the
model does not generalize well to new female identities. Indeed, the largest drop in perfor-
mance between probe sets is exhibited between domains for female identities, as significant
decreases of 6.7%, 6.2%, and 5.2% are reported at Rank-1 (80.9% vs. 74.2%), Rank-10
(90.8% vs. 84.6%), and Rank-100 (93.1% vs. 87.9%), respectively. While gender labels are
not available for all identities in MS1M-RetinaFace, recent work has demonstrated that
large-scale face recognition datasets greatly over-represent lighter-skinned males [91]. A
representational bias in MS1M-RetinaFace may account for the model’s disparate ability
to generalize to new female identities. Looking at these results in a different way, the
relatively consistent performance between males and females in the in-domain probe set is
perhaps more evidence that the model is overfitting to identities it has seen before. If the
model only exhibited a gender bias against females, we would expect to see this in both
in-domain and out-of-domain probe sets. However, in-domain results remain consistent
between males and females, yet the model struggles most to identify novel female identi-
ties. These results suggest that the model exhibits a “training inclusion bias” that is more
pronounced than its gender bias.

Results of this study lead to the question: is the bias towards individuals in training
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Probe Set Rank-1 Acc. Rank-10 Acc. Rank-100 Acc.

In-Domain 0.797* 0.910* 0.929*
Out-of-Domain 0.757* 0.867* 0.893*

In-Domain Males 0.785 0.911* 0.927*
Out-of-Domain Males 0.773 0.888* 0.907*

In-Domain Females 0.809* 0.908* 0.931*
Out-of-Domain Females 0.742* 0.846* 0.879*

In-Domain Males 0.785 0.911 0.927
In-Domain Females 0.809 0.908 0.931

Out-of-Domain Males 0.773* 0.888* 0.907*
Out-of-Domain Females 0.742* 0.846* 0.879*

Table 3.2: Face identification accuracies of ArcFace model on different probe image sets
with 1M distractor images. (*) denotes significance between probe sets at p < 0.01.

data truly a consequence of overtraining, or is this a fundamental element of deep face
recognition models? Overfitting in a traditional sense seems unlikely, as early stopping
was employed during the training phase, and results on held-out test identities demon-
strate strong generalization. Perhaps there is a generalization gap in performance between
in-domain and out-of-domain identities that is not observable given current evaluation
methods, and increased regularization can mitigate this gap. Further testing on different
training datasets and model architectures will be necessary to gather more evidence to
answer this question.

The effect of Fitzpatrick skin type [40] on face recognition model performance was
not evaluated in this study, as skin type annotations were not available. However, two
considerations were made to attempt to control for effects of skin type in these results.
First, the selection of 2,000 identities for each probe set is far larger than what is used in the
standard protocol of MegaFace Challenge 1, where 80 identities are sampled from FaceScrub
[69]. Having a larger sample size helps to control for identities who may have either superior
or poor performance due to possible model bias. In addition, the approach of random
sampling in-domain and out-of-domain probe sets ensures that both contain a similar
distribution of identities with respect to skin type, with the assumption that the identities
common to MS1M-RetinaFace and VGGFace2 and the identities distinct to VGGFace2
follow the same distribution of skin type. As both MS1M-RetinaFace and VGGFace2
use the popularity of celebrities online to construct identity lists, this assumption seems
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reasonable. Having said this, the role of skin type in the performance of the model is a
very important relationship to study in future work. Fitzpatrick skin type annotations
will need to be collected for all individuals in VGGFace2 such that sampling can be done
to ensure even representation in probe sets across gender and skin type and to determine
intersectional accuracy.

The results of this study are quite concerning from a privacy and informed consent
perspective. As described in 3.2.3, there does not exist a major open-source dataset that
gathers informed consent from the individuals it contains. Without these individuals’
knowledge or permission, the systems trained on their identities have a greater ability
to identify them. As face recognition becomes more powerful and ubiquitous, the ability
for misuse becomes greater. While MS-Celeb-1M contains only “celebrity” identities, this
classification of an individual should not negate informed consent in the development of
powerful surveillance technologies. Face recognition systems are distinct among biometrics
as the face uniquely identifies a person with high discriminability, yet a high-quality image
of the face can easily be captured at a distance without one’s knowledge, cooperation, or
consent. It is difficult to opt-out of these systems without wearing a mask or other means
of obfuscation, drawing undue attention to one’s self.

3.6 Chapter Summary

The key findings from this chapter are:

• Face recognition systems have advanced rapidly over the past six years through the
application of deep learning methods such as the CNN to the problem space.

• CNNs require large amounts of data to accurately train a model that can produce
feature representations with small intra-class and large inter-class variability.

• Open-source face recognition training datasets in the academic community have sim-
ilarity increased in scale during this period, by virtue of methods that collect millions
of images of hundreds of thousands of individuals from the web.

• Informed consent in the collection of individuals’ face images, however, has been
completely absent from these efforts.

• Through a novel face identification experiment modelled after the MegaFace Chal-
lenge 1, a state-of-the-art face recognition model was found to exhibit a significantly
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greater ability to identify an individual in a 1:N search if their identity was included
in the training data of the model (p < 0.01).

While the notion of a person having their identity included in a face recognition training
dataset without their consent seems uncomfortable in an abstract manner, this work is the
first to suggest tangible evidence of a disparate performance impact for individuals in 1:N
searches by models trained on their identity. Although this work is limited by the avail-
ability of open-source training datasets and face recognition models, its methodology was
designed to simulate a real-world testing environment of a state-of-the-art face recognition
system, with a gallery of more than 1M images and an experimental procedure that saw
9.8M 1:N searches conducted. These findings, therefore, may hold for systems currently
deployed in the world. As there exist hundreds of vendors who manufacture and sell face
recognition systems to an open market3, it is concerning that there is no requirement for
the disclosure of the source and contents of the training data that underpins their tech-
nologies. As face recognition systems represent a contentious dual-use technology that can
enable mass surveillance, this work hopes to better inform the research community of the
consequences of ignoring consent in web-scraped data collection, and to offer evidence that
transparency into the training data of vendors of such systems is needed.

3https://pages.nist.gov/frvt/html/frvt1N.html
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Chapter 4

Label Taxonomy in Facial Expression
Recognition: Re-contextualizing the
Problem

4.1 A Canonical Dataset, Revisited

The Japanese Female Facial Expression (JAFFE) dataset [84] is a canonical dataset in facial
expression recognition research and development. Collected in 1998 by Michael Lyons,
Miyuki Kamachi and Jiro Gyobaat in the Psychology Department of Kyushu University,
the dataset is comprised of 213 images of 10 Japanese females posing in “the six basic
facial expressions” of “happiness”, “sadness”, “surprise”, “anger”, “disgust”, and “fear”,
as well as in a “neutral face.” The photos were taken in a controlled lab environment by the
expressors themselves as they peered through a semi-reflective plastic sheet towards the
camera. For each image, 60 female Japanese undergraduate students scored the degree to
which each of the six basic facial expressions were present on a 5-point scale. Representative
images from JAFFE are displayed in Figure 4.1.

JAFFE was perhaps the first dataset freely circulated online for non-commercial re-
search in facial expression recognition. It has been used in more than 2,000 publications
and remains relevant today with the advent of CNN-based classification systems [77]. By
providing a standardized dataset, JAFFE helped to formalize the evaluation of new algo-
rithms in facial expression recognition in seven posed classes. A closer look at JAFFE,
however, uncovers a dataset that is fraught with issues in data collection, annotation, and
use that beg broader questions about the nature of the problem it is addressing.
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Figure 4.1: A sample of images from the JAFFE dataset. From left to right; neutral,
happiness, sadness, surprise, anger, disgust, fear [85].

With this context, this chapter aims to address the research question: how do canonical
facial expression recognition datasets hold up to new research into the nature of emotion
and facial expressions, namely, Barrett et al.’s [7] criteria for identifying emotional inference
from facial expression images?

4.1.1 Into the Label-Verse

The common convention in using JAFFE in research is to classify each face into one of the
seven posed classes (six basic facial expressions plus neutral). Of the 50 research papers
identified to have used JAFFE in facial expression recognition from January 1 to June 30,
2020, 46 employed this technique. The remainder, however, used the dataset in a different
manner. These works are listed in Appendices A and B, respectively. As previously noted,
each image in JAFFE was also labelled by a large cohort of annotators who provided
scores for the extent to which each of the six emotions were present in the face. This
semantically-annotated version JAFFE, or Scored JAFFE (S-JAFFE) as it has become
known, was seldom used in the years after its publication, but the introduction of “label
distribution learning” (LDL) by Geng et al. in 2013 set the stage for its re-introduction
[45]. LDL is a paradigm in which the degree to which a certain set of labels representing
an instance is learned as a distribution. This paradigm was taken up by Zhou et al. in
2015 who applied it to facial expression recognition as “emotion distribution learning,”
with S-JAFFE being one of two datasets used in experiments [153].

The scores for each of the six annotated facial expression classes in S-JAFFE are pro-
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vided as averages in the dataset; the individual annotators’ assessments no longer available
as they have been lost to time.1 Although inter-rater reliability can not be analyzed through
metrics such as Cohen’s kappa coefficient [18], the provided averages are still enlightening.
One would expect these annotations to align well with the posed expressions, however,
this is not always the case. Figure 4.2 presents an image of the posed facial expression
“disgust” with its semantic scores and normalized semantic scores, computed by scaling
each raw score to be between 0 and 1 and normalizing the score vector to equal 1. It can be
observed that for this instance, the annotators saw it as presenting a stronger expression of
“anger” than the posed expression of “disgust.” Indeed, of the 183 images that were posed
in one of the six basic facial expressions, 35 (19%) were observed to express a different
class as the strongest. Further, by averaging the normalized semantic scores across all
examples in a class, a sense of the annotators’ overall view of the posed facial expressions
can be observed. The results, displayed in Table 4.1, demonstrate that annotators did not
see each class as a distinct expression of the posed emotion, but as a composite of many.
While the posed class of “happiness” is relatively strongly observed (65.63%), the posed
class of “fear” is observed as almost equally a composite of “sadness”, “surprise”, “disgust”
and “fear” (∼20% each). In the context of these results, the conventional use of JAFFE in
a single-label classification problem seems to conflict with observations of the annotators.
Multiple surveys in the domain of deep learning-based facial expression recognition fail to
acknowledge this inconsistency [77, 152].

It should be noted that the authors of JAFFE did address the issue of inconsistent
labels, albeit in a troubling manner. In their paper introducing the dataset, Lyons et al.
[85] proposed a novel method to code facial expressions with Gabor filters. Results of
their method on posed faces with the “fear” expression, however, were poor. In response,
they simply decided to remove these images from their experiments, employing a new
cohort of annotators to re-score each image with the remaining five facial expression classes
and recomputing results. On this topic, the authors wrote in their paper, “Model/Data
agreement was higher with fear excluded. Fear is considered to be a problematic expression
for Japanese expressors and subjects for reasons beyond the scope of the present article”
[84]. And again, in a document provided with the dataset, they wrote,

This rating experiment excluded fear images and and the fear adjective from
the ratings. We did this because we thought that the expressors were not good
at posing fear. There is some evidence in the scientific literature that fear may
be processed differently from the other basic facial expressions. [84]

1Personal correspondence with Michael Lyons, June 8, 2020.
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Expression Raw Score Normalized Score (%)

happiness 1.43 4.15
sadness 2.87 18.03
surprise 1.77 7.43
anger 4.33 32.11

disgust 3.87 27.68
fear 2.10 10.61

Figure 4.2: Raw and normalized semantic scores for an example image in the posed facial
expression “disgust”.

Posed Class % happiness % sadness % surprise % anger % disgust % fear

neutral 25.54 19.30 13.27 15.33 13.94 12.61
happiness 65.63 9.00 9.57 4.94 5.16 5.70
sadness 5.88 33.06 7.24 14.4 21.20 18.13
surprise 15.87 10.16 41.55 9.08 9.35 13.98
anger 5.59 15.87 7.80 33.45 26.90 10.39

disgust 4.48 16.23 9.87 21.05 32.63 15.74
fear 4.93 18.31 22.31 12.85 20.23 21.36

Table 4.1: Average normalized semantic scores for posed facial expression classes in JAFFE.
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No references were provided to substantiate the claim of “fear” being more difficult
to produce, identify, or process. In addition, images from one expressor under-performed
on the authors’ proposed method compared to the other expressors, so they decided to
also remove these images from their results, stating, “Expressor NM was considered to be
an outlier and excluded from the above quoted averages and ranges. On inspection NM’s
expressions were difficult to interpret” [84]. Should the images of an individual’s expressions
that deviate from normative expectations be considered as outliers, or be referred to as
“erratic,” as the authors do later in their paper? Perhaps instead of changing the data
used to validate their facial expression coding method, the framing of the problem needs
to be altered.

4.1.2 The Implicit Assumptions of JAFFE

As discussed by Crawford and Paglen in their essay Excavating AI [23], there exist many
implicit assumptions embedded in the label taxonomy of the JAFFE dataset, and in the
problem of facial expression recognition at large:

• There exist six basic emotions.

• There is a relationship between one’s facial expression and their inner emotional state.

• Across emotional episodes, an individual will produce the same facial expression.

• Across individuals, the same facial expression will be produced for a given emotional state.

• Observers can readily interpret a person’s facial expressions to assess their inner emotional
state.

• A single image of the face is sufficient to assess one’s inner emotional state.

Lyons et al. cite a 1975 book by Paul Ekman and Wallace V. Friesen [35] to justify
the chosen label taxonomy of JAFFE, and to a large extent, the assumptions listed above.
Indeed, work by Ekman in the second half of the 20th century popularized the view of
emotions as six discrete entities, the same across individuals and cultures, and clearly
discernable from the face [34]. This view of emotion, referred to as the “common view”
[7], is widely employed in computer vision research and embedded in facial expression
recognition datasets collected in laboratory conditions (CK+, MMI, Oulu-CASIA) and
scraped from the web and annotated as “in-the-wild” collections (FER-2013, RAF-DB,
AffectNet) [77]. Microsoft, Google, and Amazon all offer facial expression recognition
APIs that embed the assumption of discrete, universal, and discernable emotions into
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their products. Despite the wide adoption of this line of research, it has been deeply
contested over the years by psychologists, anthropologists, and other researchers [137]. In
July of 2019, a major review study lead by Lisa Feldman Barrett and an interdisciplinary
group of experts in psychology, social sciences, and computer science was published in
Psychological Science in the Public Interest, making a strong case that the field of facial
expression recognition, as it currently exists, sits on a faulty scientific foundation [7].

4.2 Facial Expressions, Reconsidered

In their review, Barlett et al. [7] analyzed over 1,000 studies across psychology, neuro-
science, computer vision, and other domains that studied emotion expression, focusing on
evidence pertaining to the six emotion categories of “happiness”, “sadness”, “surprise”,
“anger”, “disgust”, and “fear”. They summarized evidence in two discrete areas: how peo-
ple actually move their face during emotional episodes, expression production, and which
emotions are actually inferred from looking at facial movements, expression perception.
The researchers assessed how each of these areas held up against the criteria of reliability,
specificity, generalizability, and validity.

Reliability measures how well instances of the same emotion category are expressed
or perceived from a common set of facial movements. When a person is “sad”, for ex-
ample, how often is a specific expression, such as a scowl, produced? Or, when a person
makes a frowning facial configuration, for example, how often are they perceived to be
“sad”? Specificity measures how uniquely a facial configuration maps to an emotion, or
how uniquely perceivers rate a certain facial expression as a corresponding emotion. To be
considered the expression of “anger”, a scowling face must not be similar to any other class
of expressions. Or, if a frowning face is perceived as the expression of “sadness”, then it
should be labelled as uniquely “sad”. Generalizability measure how well rates of reliability
and specificity are replicated across studies in both production and perception, particu-
larity across different populations of people. In their work, Barrett et al. assess evidence
from healthy adults from the United States and other developed nations, healthy adults
living in small-scale remote villages, healthy infants and children, and people who are con-
genially blind [7]. Validity measures the extent to which a person is actually experiencing
the expected emotional state, preferably measured by an objective metric. Even if strong
generalizability exists in production and perception, validity is necessary to confirm that
an inference into one’s inner emotional state is well-founded. In discussing these criteria,
Barlett et al. posit,
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If any of these criteria are not met, then we should instead use neutral, de-
scriptive terms to refer to a facial configuration without making unwarranted
inferences, simply calling it a smile (rather than an expression of happiness), a
frown (rather than an expression of sadness), a scowl (rather than an expression
of anger), and so on. [7]

By almost all accounts, the researchers find that the “common view” of facial expres-
sions does not hold up to their rigorous review of empirical evidence [7]. They find limited
reliability, a lack of specificity, limited generalizability, and an overall dearth of research
into validity in production and perception studies. Their findings suggest that people may
smile when “happy” and frown when “sad”, perhaps more than chance would expect, but
the manner by which people communicate these emotions varies substantially across cul-
tures, situations, and even by individuals in a single situation. While a scowling face may
be an expression of “anger” in certain instances, it is not the expression of “anger” in any
generalizable or universal way. Indeed, they state that “prototypical expressions” in the
six basic emotions are best thought of as stereotypes, failing to capture the rich variety
with which people spontaneously move their faces to express emotions in daily life. On the
topic of facial expression recognition by computer vision practitioners, the authors offer
the following analysis,

[T]ech companies may well be asking a question that is fundamentally wrong.
Efforts to simply ‘read out’ people’s internal states from an analysis of their
facial movements alone, without considering various aspects of context, are at
best incomplete and at worst entirely lack validity, no matter how sophisticated
the computational algorithm. [7]

Returning to JAFFE, it is apparent how this dataset fails to satisfy the criteria for
emotional inference. The dataset lacks reliability, as evidenced by the expressor who is
said to have produced “erratic” expressions. It lacks specificity, as demonstrated by the
extent to which each posed class is perceived to encompasses multiple facial expressions,
most dramatically with the “fear” class. Generalizability is not well considered, as the
dataset is of a very specific population of individuals, namely young Japanese females.
And lastly, the validity of the facial expressions is not investigated, although the fact that
they were posed, without an external stimulus or an attempt to solicit a spontaneous
emotional episode, appears to be evidence enough to fail this criterion.
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4.3 Label Taxonomy, Reassessed?

4.3.1 Slow Progress

The response to this landmark review in the computer vision community has been mixed.
At CVPR 2020, the leading conference in computer vision research, a workshop entitled
“Challenges and Promises of Inferring Emotion from Images and Video” was organized by
Aleix M. Martinez, a co-author of the study. The workshop invited Barrett to give a talk
on the topic “Can Machines Perceive Emotion?” Organizers also included the following
statement in their Call for Papers,

Recent research shows that faces or body expressions alone are insufficient to
perform a reverse inference of image to emotion, and that context, personal
believes, and [culture] must be accounted for. This workshop will present these
limitations and examine several alternative approaches to successfully interpret
the emotion and intent of others.2

However, upon review of the works published at this workshop, there appears to be limited
scholarship on the aforementioned challenges, as most works continue to engage with only
images of faces in their study of emotion.

On the data front, there are recent efforts to include more contextual signals in emo-
tion recognition datasets. The EMOTions In Context (EMOTIC) dataset, for example,
contains images with people in real environments, annotated with their apparent emotions
[74]. These datasets, however, still suffer from many of the same issues that come with an-
notating the perceived emotional state of others in images. Despite efforts to shift focus in
computer vision away from the use of static images of the face in recognizing emotion, new
methods continue to be developed in emotion recognition that rely on antiquated datasets
[46, 81].

Even when the issues previously discussed are understood by practitioners, there re-
mains resistance to change course from the “common view.” On August 22 2019, one month
after the publication of the review by Barrett et al., Amazon quietly updated the docu-
mentation for their Emotion API. They changed the description of the API’s return value
from “The emotions detected on the face” to “The emotions that appear to be expressed
on the face”, adding, “The API is only making a determination of the physical appear-
ance of a person’s face. It is not a determination of the person’s internal emotional state

2http://cbcsl.ece.ohio-state.edu/cvpr-2020/index.html
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and should not be used in such a way.”3 While this description acknowledges that their
solution is laced with issues, it does not change the mechanics of their product. Indeed,
their API continues to interpret a face and return scores for the presence of the classes
HAPPY, SAD, ANGRY, CONFUSED, DISGUSTED, SURPRISED, CALM, UNKNOWN, and FEAR,

so it is doubtful their disclaimer had any meaningful impact on the use of their product.

There exists an interesting possibility that a new taxonomy has not been widely adopted
in facial expression recognition due to limitations of the English language. There simply
does not exist concise terminology to describe the stereotypical facial expressions of “sur-
prise,” “disgust,” and “fear” in the same way that “a smile” does for “happiness,” “a frown”
does for “sadness,” and “a scowl” does for “anger.” This lack of vocabulary encourages the
continued use of emotional language to describe faces, which brings with it a conflation of
emotions and specific facial configurations.

4.3.2 Harms of Current Taxonomy

Language is important. The taxonomy we use in datasets frames the problems we solve.
We should always strive to tackle problems that have a strong foundation in science. And
as the evidence has shown, the classification of face images labelled with emotions does not.
Although models may achieve good performance on these datasets, it does not mean they
are accurate. A facial expression recognition model does not learn what “happiness” is in
a face, it learns to detect the common facial configuration of images labeled “happiness,”
which is often a smile. We should be specific with taxonomy to ensure the problems we are
addressing are accurately described. Re-labelling existing datasets with better annotations
such as facial landmarks and facial muscle activity, and resisting the urge to map these
annotations back to an emotional state, is one approach for moving forward.

Before proceeding, however, we need to reconcile with the present. The way facial
expression recognition technology is being developed and deployed in society today is trou-
bling. These systems lack the reliability and specificity to interpret facial expressions, yet
this has not hindered their commercialization and application to sensitive areas of life.
Firms HireVue and VCV sell facial expression recognition technology to assess candidates
during video job interviews for “employability” through microexpressions and visual and
auditory cues [53]. Technology developed by Hikvision has been used in Chinese middle
schools to determine the emotional state and engagement level of students, with each pupil
receiving a real-time “attentiveness” score during class [76]. In the UK, startup WeSee is
working with law enforcement to analyze suspects in interviews with officers. In 2018, their

3GitHub commit history for Amazon Emotion AI.
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CEO David Fulton told the BBC, “Using only low-quality video footage, our technology
has the ability to determine an individual’s state of mind or intent through their facial
expressions, posture, gestures and movement” [130].

In hiring, education, and law enforcement, a technology that is not founded in science
is assisting in decision-making that materially impacts people’s lives. To make matters
worse, issues of gender and racial bias may exacerbate the already fraught situation. As
demonstrated by Buolamwini, Gebru, and Raji in Gender Shades and its follow-up work
Actionable Auditing [49, 108], darker-skinned people, especially darker-skinned women,
are often subject to much worse performance from facial analysis technologies than their
light-skinned peers. Indeed, a 2018 study by Rhue found racial biases in facial expression
recognition services provided by Face++ and Microsoft, with both systems interpreting
Black NBA players to have more negative emotional states than their white colleagues
on images controlled for facial expressions [112]. Without mechanisms to audit facial
expression recognition systems, historically marginalized groups may see a greater burden
of this harmful technology.

4.4 Chapter Summary

The key findings from this chapter are:

• The Japanese Female Facial Expression (JAFFE) dataset was one of the first widely-
available datasets for non-commercial research in facial expression recognition, and
by virtue of this distinction, it helped to formalize the evaluation of facial expression
recognition algorithms on images of individuals posing in “the six basic emotions” of
“happiness”, “sadness”, “surprise”, “anger”, “disgust”, and “fear”.

• A close examination of the paper introducing JAFFE, however, demonstrates that
(i) emotions perceived by annotators did not reliably match the posed expressions of
expressors, and (ii) authors of JAFFE took many liberties in reporting results of a
novel algorithm on the dataset by removing expressors and emotional categories that
were too unstable for their liking, suggesting there exist fundamental issues with the
integrity of the data.

• JAFFE and much of the field of facial expression recognition sits atop a body of
research that asserts emotions are discrete, enumerable entities that manifest in the
face in the same manner across individuals and cultures, however, a comprehensive
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2019 review of over 1,000 studies in psychology, neuroscience, computer vision, and
other domains strongly refutes these assertions.

• Viewing JAFFE through the lens of this new work brings to light issues in the
reliability, specificity, generalizability, and validity of the dataset, leading to the
idea that its label taxonomy should be changed from one that that makes reverse
inferences of emotion to one that uses neutral, descriptive terms to refer to the facial
configurations of expressors.

• While some discourse has begun in the computer vision community to move away
from static face images in emotion research, response to this landmark study has
largely been muted as many works continue to perpetuate the “common view” of
emotion as a valid scientific stance, bolstering harmful applications of facial expres-
sion recognition in applications that have meaningful impacts on individuals.

This work aims to motivate computer vision practitioners to reconsider the label tax-
onomy of their datasets, as uninformed research can support the commercialization of
unscientific technology. Although facial expression recognition systems have begun to be
deployed, the widespread use of this technology does not have to be inevitable. In their
2019 Annual Report, The AI Now Institute at New York University made their first rec-
ommendation, “Regulators should ban the use of affect recognition in important decisions
that impact people’s lives and access to opportunities. Until then, AI companies should
stop deploying it” [22]. In January 2020, The Artificial Intelligence Profiling Act (House
Bill 2644) was introduced in the Washington State Legislature. The bill prohibits the op-
eration or installation of equipment that incorporates AI-enabled profiling in public places,
and prohibits the use of such technology to make decisions that produce legal effects or
similarly significant effects in criminal justice and employment, among other areas [121].

However, without regulatory measures, it is difficult to imagine the proliferation of this
technology slowing down. Some, however, have provided an idea of what its widespread
deployment may look like, in an effort to guide us to actions that can mitigate this future,

It was terribly dangerous to let your thoughts wander when you were in any
public place or withing range of a telescreen. The smallest thing could give you
away. A nervous tick, an unconscious look of anxiety, a habit of muttering to
yourself-anything that carried with it the suggestion of abnormality, of having
something to hide. In any case, to wear an improper expression on your face
(to look incredulous when a victory was announced, for example) was itself a
punishable offence. There was even a word for it in Newspeak: FACECRIME,
it was called. — George Orwell, 1984 [103]
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Chapter 5

Discussion and Conclusions

Undesirable biases, non-consensual data collection, and inappropriate label taxonomies
are rife in computer vision datasets. Through a multi-pronged approach, this thesis has
critiqued normative practices in data collection and use, emphasizing harms that come
with the abstraction of data.

ImageNet’s impact on the field of computer vision is undeniable, but the practices it
endorses are untenable. We see elements of each of the three themes of this thesis embedded
in ImageNet. Representational bias with respect to gender and age were identified in the
dataset in Chapter 2, as only 41.62% of people in ILSVRC-2012 present as feminine, 1.71%
appear to be over the age of 60, and the largest group represented is masculine presenting
individuals aged 15 to 29 at 27.11%. This masculine skew manifests in classes related
to academia, business, and sports, promoting a male-centred view of these disciplines.
Consent was not obtained from the human subjects in ImageNet during collection, which
is particularity concerning in the case non-consensual photographs included the miniskirt
class, as identified by Prabhu and Birhane [107]. The taxonomy of labels in ImageNet is a
major problem, particularity in the person subtree. Some classes, such as good person,
are not visually grounded and lead to the perpetuation of stereotypes and physiognomy,
while others, such as nymphet, defined as “a sexually attractive young woman,” are overtly
offensive, using sexist language that promotes the objectification of women. Although
the issue of copyright in datasets is largely out of scope of this thesis, it remains an
additional contentious issue in modern data collection. While the terms of ImageNet call
for its use only in “non-commercial research and educational purposes,”1 its widespread
use by computer vision startups and large companies has rendered this restriction, and

1http://image-net.org/download-faq
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any underlying protections provided by fair use doctrine, moot. ImageNet is emblematic
of a community that prioritizes getting algorithms to work over ethical considerations of
their work [5], and one that often only becomes aware of issues of bias from scholars from
underrepresented populations in the community [13, 108, 119, 114, 124].

Face recognition and facial expression recognition are two domains in computer vision
that also intersect with the main themes of this thesis. In both cases, biases in datasets
and derived models have been well-documented [49, 91, 112], leading to disproportionate
performance impacts for women and non-white individuals. However, even when these
systems mitigate bias and work as intended, they still pose risks for harm. Face recognition
requires large “galleries” of images to search through, which are largely concentrated with
those in positions of power. This technology is unregulated in Canada and most parts
of the world [32], allowing law enforcement agencies to use it in their daily work without
transparency or governance. Findings from Chapter 3 present evidence that state-of-the-art
face recognition systems have disparate identification accuracies for individuals dependent
on their inclusion in training data, which is collected without individuals’ knowledge or
consent. As there exists no requirement for prospective vendors to disclose the details of
their training datasets when selling to law enforcement entities, these findings are troubling.
With a documented history of systemic racism in the Canadian criminal justice system
[95, 89], reports of the technology being used to identify protesters around the world
[111, 12, 96], and the potential to enable mass surveillance, face recognition poses many
risks for misuse. Facial expression recognition poses similar risks, although not specifically
through implications of the non-consensual nature of data collection. As discussed in
Chapter 4, the taxonomy of datasets in this domain are not well-founded in science. As
these systems are increasingly being deployed to help make decisions in consequential areas
of daily life [53, 76, 130], continued research into inferring one’s emotional state from static
images of their face bolsters the unproven claims that vendors advertise.

As this thesis demonstrates, computer vision practitioners largely do not stop to in-
terrogate their assumptions in data collection and use. With increasingly large datasets
being used in industry research, this trend is bound to continue if due diligence is not paid
to data. Google researchers often employ an internal dataset called JFT-300M in their
work, comprised of 300 million images sourced from the web [57, 125, 143], while Facebook
researchers employ images from Instagram in the billions to train models [86].2 In a blog
post announcing a 2017 study [125], Google researchers wrote, “Furthermore, building a
dataset of 300M images should not be a final goal - as a community, we should explore if
models continue to improve in a meaningful way in the regime of even larger (1 billion+

2In one experiment, researchers trained a CNN on 3.5B images, using 336 GPUs for 22 days, costing
approx. $129,000 USD [75] to train a single model.
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image) datasets”.3 This statement is emblematic of the idea of surveillance capitalism,
an economic system Zuboff describes the commodification of personal data with the goal
of profit-making, which supersedes altruistic academic motivations as the ultimate goal of
industry research labs [154].

A focus on accuracy in computer vision above all other measures of success, such as data
or model efficiency, encourages indiscriminate collection of data. As Dotan and Milli write
on values influencing the machine learning research community, “This kind of evaluation
furthers certain values, such as centralization of power, while hindering other values, such
as environmental sustainability and privacy” [31]. It is clear that significant attention
needs to be applied to the ethical considerations of computer vision, especially considering
the applied nature of the field, which is often closer to commercial applications than other
domains of artificial intelligence. However, when only eight of 1,467 papers accepted for
publication at CVPR 2020 are in the category of “Fairness, Accountability, Transparency
and Ethics in Vision”,4 a subject area introduced for the first time in 2020, it is clear that
there is much work to do to prioritize this line of scholarship.

In dealing with the issue of bias in datasets, one practical approach is to simply obtain
more data of underrepresented groups. However, as marginalized communities are often the
ones left out of datasets, increased collection intersects with issues of privacy and consent.
Reports in 2019 of predatory actions by Google contractors in targeting Black people to
obtain facial scans, particularly homeless individuals as “they’re the least likely to say any-
thing to the media,” is illustrative of an approach that does not consider other important
ethical issues when trying to diversify datasets [104]. Another approach to tackle bias in
datasets is with technical solutions. Research in the technical fairness community seeks to
craft algorithms that ensure fair outcomes from biased data by adding constraints during
training that promote specified definitions of fairness, such as group fairness or equalized
odds [6]. While a necessary tool in developing responsible computer vision systems, work
in this domain can quickly disconnect practitioners from the entrenched biases in the world
that create biased datasets in the first place, leading them to emphasize bias as a purely
technical problem to solve [65].

Issues of bias are pervasive and require more than just technical fixes. Such a sentiment
was echoed by participants in a 2019 survey of industry machine learning practitioners [58].
Through their interviews, Holstein et al. identified the need to move beyond algorithms to
ensure responsible machine learning development,

Through our investigation, we identify a range of real-world needs that have

3https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
4https://openaccess.thecvf.com/CVPR2020
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been neglected in the literature so far, as well as several areas of alignment.
For example, while the fair ML literature has largely focused on ‘de-biasing’
methods and viewed the training data as fixed, most of our interviewees report
that their teams consider data collection, rather than model development, as
the most important place to intervene. [58]

Transparency into datasets provides a good start for improving norms in the community.
Implementing standardized documentation in data collection is a simple but effective way
to convey relevant details of the dataset to end-users and to slow down the collection
process, providing time for practitioners to reflect on the core assumptions and decisions
that can embed biases into data. Datasheets for Datasets [44], Data Statements for Natural
Language Processing [8], and Dataset Nutrition Labels5 are works from various machine
learning domains that propose frameworks to achieve these goals.

Lastly, diversity is key to responsible data collection and use in computer vision. As
it currently stands, the artificial intelligence research community has a significant diver-
sity problem. Women have been estimated to make up only 12% of leading researchers
in the field [120] and Black students in the United States and Canada comprised fewer
than 1% of all computer science PhD graduates in 2019 [155]. Diversity and inclusion are
not just ideals we should strive for as a society, but underrepresented individuals bring
with them new view-points and lived experiences, which can critique normative practices,
positively impacting the field. The introduction of the feminist notion of “intersectional-
ity” by Joy Buolamwini in Gender Shades has been transformative in machine learning
model auditing and is a great example of how diverse backgrounds can improve computer
vision [13]. Intersectionality, a term coined by Kimberlé Crenshaw in 1990 to describe the
interconnected nature of social categories such as gender and race that create overlapping
and independent systems of discrimination, which cannot be fully captured by looking at
the categories separately [24], is now fundamental to identifying disparate performance
impacts of models by disaggregating results on benchmark datasets. Better-supported di-
versity and inclusion initiatives in both academic and industry settings, along with more
diversity in senior engineering and leadership roles, are desperately needed.

Data collection is an complex enterprise. As Jo and Gebru write in their work studying
data collection through the lens of archivists, there is a need for an entire interdisciplinary
subfield of machine learning, focused on data gathering, sharing, annotation, ethics moni-
toring and record keeping, such that machine learning researchers are more cognizant and
systematic in data collection, especially of sociocultural data [64]. Establishing such a field
would take considerable effort, yet, it is my hope that this thesis has demonstrated that

5https://datanutrition.org/
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the normative data collection and use practices in computer vision are untenable, and that
the establishment of such a field is long overdue.

In summary, through the presentation of (i) a novel audit of age and gender bias in the
ImageNet dataset, (ii) novel evidence to suggest state-of-the-art face recognition systems
exhibit a differential identification accuracy for individuals, dependent on their inclusion
in training datasets that are collected without their consent, and (iii) novel analysis of a
foundational dataset in facial expression recognition through the lens of new work on the
nature of emotional expression, suggesting an overhaul is needed in the domain’s conven-
tional label taxonomy, this thesis hopes to challenge researchers to reconsider normative
data collection and use practices such that computer vision systems can be developed in a
more thoughtful and responsible manner.
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