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Abstract

The use of massive multiple-input multiple-output (MIMO) over millimeter wave (mmWave)

channels is the new frontier for fulfilling the exigent requirements of next-generation wireless

systems and solving the wireless network impending crunch. Massive MIMO systems and

mmWave channels offer larger numbers of antennas, higher carrier frequencies, and wider sig-

naling bandwidths. Unleashing the full potentials of these tremendous degrees of freedom (di-

mensions) hinges on the practical deployment of those technologies. Hybrid analog and digital

beamforming is considered as a stepping-stone to the practical deployment of mmWave massive

MIMO systems since it significantly reduces their operating and implementation costs, energy

consumption, and system design complexity. The prevalence of adopting mmWave and massive

MIMO technologies in next-generation wireless systems necessitates developing agile and cost-

efficient hybrid beamforming solutions that match the various use-cases of these systems. In

this thesis, we propose hybrid precoding and combining solutions that are tailored to the needs

of these specific cases and account for the main limitations of hybrid processing. The proposed

solutions leverage the sparsity and spatial correlation of mmWave massive MIMO channels to

reduce the feedback overhead and computational complexity of hybrid processing.

Real-time use-cases of next-generation wireless communication, including connected cars,

virtual-reality/augmented-reality, and high definition video transmission, require high-capacity

and low-latency wireless transmission. On the physical layer level, this entails adopting near

capacity-achieving transmission schemes with very low computational delay. Motivated by this,

we propose low-complexity hybrid precoding and combining schemes for massive MIMO sys-

tems with partially and fully-connected antenna array structures. Leveraging the disparity in the

dimensionality of the analog and the digital processing matrices, we develop a two-stage channel

diagonalization design approach in order to reduce the computational complexity of the hybrid

precoding and combining while maintaining high spectral efficiency. Particularly, the analog

processing stage is designed to maximize the antenna array gain in order to avoid performing

computationally intensive operations such as matrix inversion and singular value decomposition

in high dimensions. On the other hand, the low-dimensional digital processing stage is designed
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to maximize the spectral efficiency of the systems. Computational complexity analysis shows

that the proposed schemes offer significant savings compared to prior works where asymptotic

computational complexity reductions ranging between 80% and 98%. Simulation results validate

that the spectral efficiency of the proposed schemes is near-optimal where in certain scenarios

the signal-to-noise-ratio (SNR) gap to the optimal fully-digital spectral efficiency is less than 1

dB.

On the other hand, integrating mmWave and massive MIMO into the cellular use-cases re-

quires adopting hybrid beamforming schemes that utilize limited channel state information at

the transmitter (CSIT) in order to adapt the transmitted signals to the current channel. This

is so mainly because obtaining perfect CSIT in frequency division duplexing (FDD) architec-

ture, which dominates the cellular systems, poses serious concerns due to its large training and

excessive feedback overhead. Motivated by this, we develop low-overhead hybrid precoding

algorithms for selecting the baseband digital and radio frequency (RF) analog precoders from

statistically skewed DFT-based codebooks. The proposed algorithms aim at maximizing the

spectral efficiency based on minimizing the chordal distance between the optimal unconstrained

precoder and the hybrid beamformer and maximizing the signal to interference noise ratio for the

single-user and multi-user cases, respectively. Mathematical analysis shows that the proposed al-

gorithms are asymptotically optimal as the number of transmit antennas goes to infinity and the

mmWave channel has a limited number of paths. Moreover, it shows that the performance gap

between the lower and upper bounds depends heavily on how many DFT columns are aligned

to the largest eigenvectors of the transmit antenna array response of the mmWave channel or

equivalently the transmit channel covariance matrix when only the statistical channel knowledge

is available at the transmitter. Further, we verify the performance of the proposed algorithms

numerically where the obtained results illustrate that the spectral efficiency of the proposed algo-

rithms can approach that of the optimal precoder in certain scenarios. Furthermore, these results

illustrate that the proposed hybrid precoding schemes have superior spectral efficiency perfor-

mance while requiring lower (or at most comparable) channel feedback overhead in comparison

with the prior art.
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Chapter 1

Introduction

The flourishing of radio frequency (RF) wireless communications stands out as one of the most

momentous technological phenomena in the history of communication. With the exponential

increase in the utilization of wireless communications in our daily life, there is an ever-growing

necessity for developing wireless systems in terms of architecture, requirements, and applica-

tions [33, 39, 117]. Additionally, the majority of the evolving applications such as ultra-high-

definition video streaming, augmented/virtual reality, car-to-x communications and not to men-

tion the promising internet of things are data-heavy ones [117]. Ultimately, all these applications

are envisioned to communicate together seamlessly within one gigantic wireless cellular net-

work [39]. This requires ultra-high data rates and huge bandwidths to accommodate the foreseen

end-users’ demands with an acceptable quality of service. However, the RF bandwidth allocated

to the current cellular networks is limited, lies between 300 kHz and 3 GHz, thereby becoming

ever-congested. This, in turn, casts doubts on the ability of the current cellular systems to cope

with those varied services and sophisticated applications, sheds light on the key factors for the

future network infrastructure, and triggers the necessity for a potent alternative to the current

network architecture and a viable complement to the crowded sub-6 GHz RF spectrum.
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1.1 Next-generation Networks

The forthcoming wireless communication systems such as the fifth-generation (5G) and the sixth-

generation (6G) cellular networks solve the dilemma of the ever-congested spectrum mainly by

synergistically employing three fundamental concepts, namely, spectral aggregation, network

densification strategies and cloud/centralized radio access network (C-RAN) [18,19,39,51,117].

Spectral aggregation is realized by enabling communication over higher parts of the electromag-

netic spectrum which draws much attention to the exploitation of the millimeter-wave (mmWave)

spectrum which extends up to 300 GHz. This leads to potentially aggregating non-contiguous

fragments of bandwidth, i.e., sub-6 GHz and mmWave bands [20,110]. This, in turn, yields a dra-

matic increase in achievable data rates of users due to the huge bandwidth offered by mmWave

bands [110]. Network densification is realized by increasing the number of antennas per unit area

by packing a huge number of antenna elements into cells, i.e., utilizing the massive multiple-

input multiple-output (MIMO) technology at terminals [59, 74], and shrinking the cells’ areas to

enable frequency reuse across a large geographic area and harvest benefits of small cells [19].

This leads to a dramatic increase in the system capacity due to the huge beamforming and mul-

tiplexing gains of massive MIMO, and the power gain and high frequency reuse factor of small

cells. However, all these benefits come at the price of raising network construction costs and

site acquisition difficulty, and increasing inter-cell interference. In order to reap the potential

benefits of network densification while alleviating its challenges/shortcomings, the C-RAN ar-

chitecture has been adopted in the 5G new radio (NR) [18–20]. The C-RAN is to split the base

station processing between two main units, namely, the remote radio head (RRH) and baseband

unit (BBU) where RRHs are distributively located across cells whereas BBUs are collocated at

a centralized site like a data center forming a BBU pool or a could. The centralized BBU de-

ployment reduces the number of required devices and power supplies at sites, lowers costs for

rentals, energy, and equipment rooms [19]. Moreover, centralized BBUs cooperation allows for

joint signal processing and resource management to alleviate the impact of inter-cell interference

and improve the performance at cell edges. However, these potential benefits come at the price

of increasing the required capacity of the fronthaul networks. Hence, mmWave fronthaul is de-

2
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Figure 1.1: The utiliziation of mmWave, massive MIMO and CRAN in 5G/6G wireless

networks.

sirable for CRAN architecture, as it is cost-effective, flexible, and easier to deploy compared to

wired fronthauls [32, 104, 127]. This shows that the integration of three concepts into 5G net-

works is essential since each one enhances the presence of the others. Moreover, it shows that

massive MIMO, mmWave, and two-stage processing are the pillars of the physical layer of 5G

networks. A schematic diagram of the integration of these concepts into 5G networks is depicted

in Fig. 1.1.
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1.2 Physical Layer Challenges for Next-generation networks

The mmWave channel is endowed with huge unlicensed bandwidth, extends roughly from 30

GHz to 300 GHz [91]. The currently utilized mmWave bands are 28 − 38 GHz, 57 − 64 GHz,

and 70− 90 GHz which offer channels with 500 MHz, 2 GHz and 4 GHz of bandwidth, respec-

tively, whereas most sub-6 GHz bands support channels with 50 MHz of bandwidth [45, 91].

Therefore, mmWave systems can easily support a data rate of 10 Gbps while the current wireless

systems are limited to 1 Gbps [26]. The feasibility of achieving a maximum data rate of 7 Gbps

has been demonstrated by the IEEE 802.11ad standard developed for 60 GHz mmWave indoor

communications. Despite all these advantages, the mmWave channel has some limitations. The

most critical one is the insufficient radio link budget (considerable power loss) due to path loss

combined with atmospheric absorption [103]. In particular, 27−55 dB/Km power penalty for 60

GHz system versus the current systems operating at frequencies below 6 GHz [26]. Moreover,

the large bandwidth of mmWave channels makes them more susceptible to frequency selectivity

and inter-symbol interference.

The small wavelengths of mmWave bands facilitate making use of the massive MIMO con-

cept where a few hundreds of radiators (antenna elements) can be tightly packed into a few cen-

timeters antenna array. This huge number of antenna elements at each terminal can be exploited

to increase the received signal power ratio by providing high antenna array gain (beamforming

gain) that compensates for the severe power loss [59, 74]. Additionally, it can be utilized to cast

a narrow communication beam which in turn decreases the delay spread of the channel, thus

increasing the coherence bandwidth of the mmWave channels. Nonetheless, these great benefits

of the usage of massive MIMO technology in mmWave bands come at the price of huge imple-

mentation and operational costs to the extent that it is considered a non-viable solution. This is

so since massive MIMO systems typically adopt the fully-digital beamforming RF architecture.

The expensive cost of this RF architecture is due to the usage of a large number of radio fre-

quency (RF) chains, as many as the number of antenna elements, where each chain consists of

a digital to analog converter (DAC), a mixer and a power amplifier at the transmitter side while

analog to digital converter (ADC), mixer and low noise amplifier at the receiver side [45, 82].

4



These electronic components are costly, power-hungry, and have sophisticated circuits designs

since they are working at high frequencies compared to the ones working at sub-6 bands. It

is worth mentioning that the high speed and high precision DACs are the main factors of this

problem due to the high sampling rate corresponding to the huge bandwidth of mmWave bands.

1.3 Hybrid Beamforming Solutions

A natural way to overcome this problem is to reduce the number of RF chains attached to the

antenna array while keeping the same number of radiators (antenna elements) per array. This has

motivated researchers to investigate hybrid analog and digital beamforming that uses fewer RF

chains while utilizing the interesting properties of mmWave channels.

The hybrid beamforming1 is a special MIMO architecture that has been developed primarily

to significantly reduce the number of RF chains required for beamforming while offering com-

parable performance to the fully-digital one [4, 45, 82, 110]. It compensates for the loss in the

digital processing gain, resulting from the use of a few numbers of RF chains, by the analog

processing gain, ensuing from making use of a large number of RF phase shifters (much cheaper

than RF chains). In this way, the hybrid beamforming managed to considerably reduce the cost

and hardware complexity of massive MIMO systems and make them realizable in mmWave

bands. The hybrid beamforming consists of two different consecutive beamforming stages that

are being performed at two different frequencies, namely, the baseband and carrier frequencies.

This combined structure naturally fits C-RAN architecture where the analog beamforming can

be performed at RRHs whereas the digital beamforming can be carried out at BBUs [104, 127].

This shows that hybrid beamforming is one of the main cornerstones of the physical layer of 5G

networks [4, 117].
1In the sequel, we mean by beamforming is either precoding at the transmitter side or combining at the receiver

side, depending on the context
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1.4 Research Objective

Hybrid beamformer can be mathematically written as a product of two different matrices i.e.,

analog and digital ones. The analog precoder/combiner, i.e., FRF/WRF , is a high-dimensional

matrix that is applied in the RF domain through a network of phase shifters and various RF inter-

connections architectures. This RF hardware constraint is captured mathematically by restricting

the entries of the analog beamformers FRF/WRF to have unit magnitudes. On the other hand,

the digital precoder/combiner is a low-dimensional matrix, i.e., FBB/WBB, which is performed

in the baseband domain and has no constraints on its entries. However, both beamformers are

coupled with a power constraint. As a result, the hybrid beamforming problem is to jointly

design the hybrid precoder FRFFBB and combiner WRFWBB in order to optimize certain per-

formance metrics such as spectral efficiency and minimum mean square error while considering

the following three factors: (i) the constant gain constraints of the analog beamformers, (ii) the

different RF hardware architectures such as fully or partially-connected structures, and (iii) the

limited number of RF chains.

Unfortunately, solving such problems under these RF hardware constraints requires handling

non-convex joint optimization over those four matrices where its global optima are intractable

in most cases [4, 45, 82]. Securing sub-optimal solutions is a challenging problem and has been

always the main focus of hybrid beamforming literature (a comprehensive discussion is available

in Chapter 2). More importantly, these sub-optimal solutions should be obtained with very low

computational complexity since we are dealing with a high dimensional problem and the majority

of 5G applications are real-time ones that do not tolerate computational delays. Additionally, the

hybrid beamforming inherits the same problems of the conventional beamforming such as the

dependency of its performance on channel knowledge. Particularly, the highest gains of hybrid

beamforming come at the cost of providing all terminals in the system with infinite precision and

instantaneous channel state information (CSI) [4, 45, 82]. Reducing the required CSI for hybrid

beamforming at the transmitter constitutes another major challenge to hybrid beamforming.

Typically, acquiring channel state information at terminals is a training-based estimation

problem. In time division duplexing (TDD) systems, the channel state information at the re-
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ceiver (CSIR) is obtained by letting the base station send training sequence (reference signals/

downlink pilots), known at the receiver beforehand, to the receiver and based on the received ref-

erence signals the receiver estimates the downlink channel using channel estimation algorithms.

Similarly, exploiting the channel reciprocity in TDD systems, the channel state information at the

transmitter (CSIT) is obtained by making use of the uplink pilots transmitted by the receiver(s).

Estimating the mmWave channel in the forward and reverse direction for TDD systems is not

as hard and costly as sub-6 GHz bands. This is mainly because the mmWave channels are

sparse, thereby estimating fewer parameters, and consequently fewer pilots (reference signals)

are needed. For instance, a 16 × 64 mmWave channel that has channel paths P = 12 and em-

ploys uniform linear arrays (ULA) at both sides has 36 parameters to be estimated (one angle

of arrival, departure, and channel gain for each propagation path) instead of 1024 parameters

required for massive MIMO channels operating in sub-6 GHz bands. Owing to the intrinsic spar-

sity of mmWave channels, many efficient CSI estimation algorithms have been developed based

on compressed sensing techniques and have been shown to accurately estimate the channel with

low training overhead [136, 149]. Therefore, the main challenge for 5G TDD-based systems is

to reduce the computational complexity of hybrid beamforming solutions.

On the other hand, in frequency division duplex (FDD) where uplink and downlink channels

are widely separated in frequency, acquiring CSIT is a two-stage process. First, the base station

sends downlink pilot signals. Then, the receiver estimates the downlink channel (similar to TDD

in the forward direction) and feeds it back to the base station. This creates a huge data overhead in

the reverse channel. Therefore, the CSIT acquisition is considered to be more challenging in FDD

systems (the dominant system architecture of the current wireless cellular systems) [45]. This

makes the main challenge for 5G FDD systems is to develop low overhead and low complexity

hybrid beamforming solutions.

1.4.1 Hybrid Beamforming for TDD systems

Real-time use-cases of 5G, including connected cars, virtual-reality/augmented-reality, and high

definition video transmission, require high-capacity and low-latency wireless transmission [96].
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On the physical layer level, this entails adopting near capacity-achieving transmission schemes

with very low computational delay [96]. However, the majority of hybrid processing schemes

in the literature invoke computationally exigent operations such as matrix decomposition [15,

57, 66, 84, 87, 90, 106, 111, 139, 145], matrix inversion [15, 120], gradient descent methods [90,

106,111,139] and matrix determinant calculation [34,145]. Typically, these complex operations

result from two design factors. First, designing the high-dimensional analog processing based on

optimizing sophisticated performance metrics such as spectral efficiency [84, 120, 148], mutual

information [15, 90, 106] and mean square error [66, 87]. Second, the overhead computations

of the fully-digital precoder/combiner which is a prerequisite step for many hybrid processing

schemes [15, 57, 66, 84, 87, 90, 106, 111, 139, 145], especially, the ones considered in the first

approach. Therefore, adding these huge overhead computations to the complexity of optimiz-

ing such sophisticated metrics, intensifies the computational complexity of the hybrid processing

problem and makes it impractical in high-dimensional applications such as massive MIMO com-

munications.

1.4.2 Hybrid Beamforming for FDD Systems

Huge research efforts have been exerted to alleviate the channel feedback overhead by relax-

ing the perfect (infinite precision and instantaneous) CSIT assumption. In one direction, many

works have adopted the statistical channel information, particularly the spatial channel covari-

ance matrix, to design the analog precoder, and the perfect channel information to design the

digital precoder (e.g., [2,3,52,95] and references therein). This lessens the problem by reducing

the required training and the corresponding feedback overhead since (i) the channel statistics

of most wireless applications are slowly varying and (ii) the dimensions of the effective chan-

nel (the channel after the analog precoding) are significantly reduced. However, this direction

requires optimistic conditions on the channel such as spatial user grouping, very small angular

spread, uniformity of the covariance matrix across users and/or subcarriers, and the stationar-

ity of the angles of arrival and departure in order to achieve near-optimal spectral efficiency

performance. In another direction, the limited feedback hybrid precoding has been considered

8



where the channel or the analog precoder is selected from a predefined finite set of codewords

(e.g., [8,10,15,21,35,44,68,77,115,129,144] and references therein). This reduces the feedback

overhead dramatically where only a small number of bits are required to indicate the preferred

codeword. However, existing research works in this approach invoke computational intensive

beamforming algorithms that either perform exhaustive search [15] or require complex iterative

processing such as coordinate descent algorithm [44], Tabu search [35] and cross-entropy opti-

mization method [21], and utilize inefficient codebooks such as Hadamard codebooks [115] and

fixed parts of DFT matrices [129].

1.5 Research Contributions

1.5.1 Hybrid Beamforming for TDD systems

To address the problem of high computational complexity of hybrid beamforming, we pro-

pose a unified low-complexity approach to design the hybrid precoder and combiner for both

fully and partially-connected antenna array structures. This is in contrast to prior works in

[15, 84, 90, 106, 111] which suit only the fully-connected structure, and prior works in [34, 66]

which have been developed mainly for partially-connected ones. The proposed design approach

is developed based on the channel diagonalization concept while taking the computational com-

plexity and the RF hardware constraints into consideration. However, this approach diagonalizes

the massive MIMO channel in two stages. Particularly, the analog precoder and combiner are

jointly designed to maximize the antenna array gain (a low complexity metric) of the massive

MIMO channel. This is in contrast to the majority of hybrid beamforming schemes where the

analog precoder/combiner is either designed to iteratively maximize sophisticated performance

metrics such as the spectral efficiency [34, 76, 90, 111, 120, 139, 148] and the MSE [57, 66] or

developed to decompose the fully-digital precoder/combiner based on computationally inten-

sive operations such as singular-value decomposition (SVD) and gradient descent methods in

the high-dimensional domain [15, 57, 66, 84, 87, 90, 106, 111, 139, 145]. The digital precoder

and combiner are jointly designed to maximize the spectral efficiency thereby eliminating the
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residual interference (by-product of the analog beamforming) between data streams. The opti-

mal solutions are shown to diagonalize the effective channel and the noise covariance (due to

the two stages of combining). This approach is developed in two algorithms that accommodate

for the differences in the architecture of both RF structures. The contributions of this work are

summarized as follows:

• For the fully-connected antenna array structure, first, we derive a heuristic upper bound on

the antenna array gain of the massive MIMO channel. Based on this bound, we develop

a non-iterative hybrid processing algorithm that exploits the large number of antenna ele-

ments at both sides aiming at hardening the diagonal elements of the effective channel after

the analog processing. Second, in Proposition 3.2.1, we calculate the antenna array gain

due to the analog processing where it is shown to increase unboundedly with the number

of antenna elements . Moreover, we show in Corollary 3.2.1.1 that the ratio of the means

of the off-diagonal elements of the effective channel to the means of the diagonal ones

goes to zeros as the number of antenna elements grows unboundedly. This ensures that the

proposed scheme maintains high spectral efficiency at high SNR.

• For the partially-connected antenna array structure, the massive MIMO channel can be

divided into low-dimensional sub-channels, i.e., it has a virtual block structure. First, we

exploit this virtual block structure to formalize the high-dimensional multi-stream hybrid

processing problem as a set of independent single-stream low-dimensional sub-problems

which aim at maximizing the antenna array gains of the sub-channels on the diagonal.

Second, we develop a low-complexity hybrid processing scheme that utilizes a simple

alternating optimization technique to iteratively maximize the antenna array gains of those

sub-channels. Thirdly, in order to evaluate the efficacy of the proposed iterative procedure,

we derive upper and lower bounds that tightly bound the antenna array gain of the proposed

scheme in Proposition 3.2.3.

• We extend the proposed hybrid processing approach to frequency-selective massive MIMO-

OFDM systems. We drive a lower bound on the sum of antenna array gains across all
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subcarriers. Based on this bound, we show that the analog processing problem for the

frequency-selective channels can be converted into a frequency-flat hybrid processing one,

and thereby, utilizing the proposed schemes for the latter one with minor modifications.

• We also extend the proposed hybrid processing approach to multi-user broadcast channels

with various RF structures.

• We provide a comprehensive computational complexity analysis for the proposed schemes

and the prominent prior works [15,34,66,90,106,145,148]. Objective computational com-

plexity comparisons have been made in Tables 3.2 and 3.3. Although, we consider the com-

putational complexity of the SVD algorithm in [43] (which is in favor of the prior works),

the proposed schemes have a significant complexity saving compared to prior works as

depicted in Figs.3.9 and 3.10.

• Extensive numerical results are presented which verify the near-optimal spectral efficiency

performance of the proposed schemes in both rich and sparse scattering environments.

Moreover, it is shown numerically that the proposed schemes are as robust as the optimal

fully-digital ones against channel estimation/quantization errors. This shows that the pro-

posed schemes have competitive performance under imperfect channel state information

assumptions.

1.5.2 Hybrid Beamforming for FDD systems

To address these shortcomings of hybrid beamforming prior works for FDD systems, we propose

a novel approach to design the hybrid precoder based on leveraging the second-order statistics

and propagation properties of the mmWave channel aiming mainly at decreasing the feedback

overhead in FDD systems. The proposed approach is embodied in two main hybrid precoding

schemes, i.e., Algorithm 3 and Algorithm 4, developed for single and multi-user cases, respec-

tively. Moreover, we provide different variants of Algorithm 3 and Algorithm 4 which lend

themselves to various channel knowledge frameworks such as limited feedback channels with-

out statistical information and mixed-CSIT.
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The contributions of this work compared to the prior art are summarized as follows:

• For the single-user case, we present a simple hybrid precoding design which is based on

minimizing the chordal distance between the fully-digital precoder and the hybrid one. In

contrast to the exhaustive search [15], complex gradient descent-based algorithms [21, 35, 44]

and iterative greedy algorithms [10, 68, 144] developed in prior works, we propose low

complexity and non-iterative hybrid beamforming algorithms (Algorithm 3, and its vari-

ants). Moreover, opposed to the channel independent (fixed) codebooks such as beamsteer-

ing and Hadamard codebooks used in the majority of prior art [10, 21, 44, 68, 77, 115], we

utilize skewed DFT codebooks that vary with the channel statistics. This is devised in or-

der to finely quantize the local neighborhood around the statistically preferred directions

of the dominant eigenvectors and thereby enhancing the spectral efficiency performance.

• For the multi-user case, we present a hybrid precoding design that is based on maximizing

the signal to interference plus noise ratio of each user aiming at maximizing the sum-rate

of the network. In contrast to the prior works [2, 3, 8, 44, 52, 77, 95], the analog precoder is

designed in a distributive manner that lends itself to the distributed nature of multi-user net-

works. Another distinguishing feature of Algorithm 4 from prior works in [8, 21, 44, 115]

is that Algorithm 4 can be applied to the case when the number of assigned users is less

than that of the RF chains. However, the algorithms in [8, 21, 44, 115] are applicable only

when the number of users equals to the number of RF chains where they assign each user

to one RF chains.

• We derive lower and upper bounds on the average mutual information for the DFT-based

hybrid precoding. The proposed bounds suggest selecting DFT codewords that are aligned

to the directions of the largest eigenvectors of the transmit antenna array response matrix

(or the covariance matrix, depending on the type of the channel knowledge availability).

Leveraging the properties of the mmWave channels, we demonstrate in Corollary 4.4.3.1

that the proposed schemes are asymptotically optimal. Numerical results validate the near-

optimal spectral efficiency performance of the proposed schemes and their superiority over

prior works.
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1.6 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents a literature survey on hybrid

beamforming. First, in Section 2.1, we list out the main differences between analog, digital

and hybrid beamforming. Second, in Section 2.2, we provide an overview on the different RF

structures of hybrid beamforming and we survey the different hybrid beamforming approaches

for TDD and FDD systems.

In Chapter 3, Section 3.1 presents the system model of single-user mmWave massive MIMO

TDD systems with partially-connected and fully-connected hybrid RF structures. Section 3.2

addresses the problem formulation and the proposed hybrid beamforming solutions. In Section

3.3 we extend the proposed solution to work in frequency selective channels. In Sections 3.4, we

investigate different extensions of the proposed solutions to various multi-user broadcast setups.

In Section 3.5, we provide a thorough computational complexity analysis and comparisons of the

proposed solutions and prior works. Finally, Simulation results are presented in Section 3.6.

In Chapter 4, Section 4.1 describes the system model of the single user mmWave massive

MIMO systems under different CSIT assumptions. Section 4.2 presents the problem descrip-

tion and the proposed algorithms. Section 4.3 presents the proposed algorithms for the K-user

multi-user channel. In Section 4.4, we provide mutual information analysis that bounds the per-

formance of the proposed schemes. Finally, Section 4.5 presents some discussions on the pro-

posed framework, followed by simulation results, to investigate and corroborate the competitive

performance of the proposed work.

Finally, concluding remarks are drawn and future research directions are discussed in Chapter

5.
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Chapter 2

Literature Review

In this chapter, we provide a concise yet comprehensive survey on the advancements in hybrid

beamforming over mmWave bands. We recognize the two influential drivers of the majority

of hybrid beamforming works, namely, the RF architecture and the availability of the channel

knowledge at the transmitter. Accordingly, we provide two taxonomies correspondingly. Fur-

thermore, we point out the advantages and disadvantages of the different channel availability

models and RF architectures. Before proceeding to the hybrid beamforming literature, we briefly

review the conventional beamforming techniques and state their main differences from the hybrid

beamforming.

2.1 Conventional Beamforming

The conventional digital precoder/combiner is performed in the baseband domain before the

digital to analog converter at the transmitter side or after the analog to digital converter at the

receiver side using digital signal processors. This allows for complete control over the magni-

tudes and the phases of the entries of the precoding/combining matrices. As a result, fully-digital

beamforming is the embodiment of most multi-stream single-user and multi-user precoding and

combining techniques. However, the hardware complexity of the fully-digital precoding and
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Figure 2.1: Fully-digital beamforming architecture

combining grows linearly with the number of RF chains. These RF chains include expensive and

power-hungry mixed-signal devices such as ADCs and DACs which dramatically increase the

implementation cost of fully-digital beamforming in mmWave systems. A schematic diagram

of the fully-digital precoder is depicted in Fig. 2.1. Moreover, the fully-digital beamforming

requires perfect knowledge of all the channel matrix’s entries in order to calculate the optimal

beamforming weights that create favorable propagation conditions [59, 74]. Throughout differ-

ent parts of the thesis, we review the most prominent fully-digital beamforming schemes such

as eigen-beamforming, conjugate and zero-forcing beamforming, channel block diagonalization

one [126, 143].

On the other hand, the analog precoder/combiner is subjected to different hardware con-

straints such as quantized angles (phases) and constant gains (magnitudes) of the beamforming

weights. These weights are designed to shape and direct the transmit or receive beams towards

the dominant propagation directions [9]. However, those constraints hinder the ability of analog

beamforming to cast multiple beams where the inter-beam interference is the limiting factor due
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to the wide sidelobes and overlapped nulls. As a result, the usage of analog beamforming is

limited to single-stream transmission or beam steering applications such as sector level sweep,

beam refinement, and beam tracking [56]. We note here that the complexity of the analog beam-

forming increases with the number of utilized phase shifters. A schematic diagram of the analog

precoder is depicted in Fig. 2.2.

2.2 Hybrid Beamforming

To overcome the expensive hardware costs and complexity of the fully-digital beamforming and

the shortcomings of the analog one, the hybrid beamforming has been introduced as an effective

solution to this performance-cost (structure complexity) trade-off, physically, a compromise be-

tween the number of the utilized RF chains and phase shifters. The hybrid beamforming consists

of a low-dimensional digital beamformer, where the number of RF chains scales linearly with

the number of transmitted streams, followed by a high-dimensional analog beamformer, where

the number of phase shifters scales linearly with the number of antenna elements. The hybrid

precoding starts by digitally processing Ns data streams at the baseband using the digital pre-
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coder, then it continues by up-converting these signals to the carrier frequency using Mrf RF

chains, where each RF chain consists of a digital-to-analog converter, mixer, and power ampli-

fier; finally, these RF signals are processed using a network of phase shifters before being on-air

through an M -element antenna array. This system is of interest to massive mmWave applica-

tions when Ns ≤ Mrf � M . Due to this combined structure, the hybrid beamformer reaps

the benefits of both analog and digital beamforming where it supports multiple beams/streams

with much reduction in the operational cost. A generic block diagram of a hybrid beamforming

transmitter is shown in Fig. 2.3. The interconnections (wiring) between the RF chains and the

antenna array ports through the network of phase shifters can have different forms that cast vari-

ous RF structures. The hybrid beamforming has two main RF structures, namely, full-complexity

(fully-connected/full-array) and reduced-complexity (partially-connected/sub-array). These two

structures represent two extreme points among the various RF structures of hybrid beamform-

ing wherein the former each RF chain is connected to all antenna elements whereas in the latter

each RF chain is connected to disjoint groups of antenna elements. Between these two extreme

structures, there are a lot of different RF connections such as overlapped sub-array, dynamic sub-

array, sub-array with switches. This gives the hybrid beamforming higher degrees of freedom

than fully-digital and analog beamforming in trading performance for hardware complexity and

vice versa.

2.2.1 Taxonomy Based on The RF Architecture

Fully-connected RF structure

In the fully-connected structure, each RF chain is connected to all antenna elements’ ports

through a network of phase shifters which require a total of NrfM phase shifters and RF paths,

and Nrf M -branch power splitters and combiners. This results in high power consumption (in

comparison to other RF structures) due to a large number of phase shifters and insertion losses of

these elements in addition to the increase of the mutual coupling between RF paths. A schematic

diagram of the fully-connected RF structure is depicted in Fig. 2.4. However, it has been shown
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Figure 2.3: Hybrid beamforming architecture

that the fully-connected structure has the highest spectral efficiency performance since it offers

the highest beamforming gain among other RF structures [8, 15, 16, 44, 52, 57, 66, 76, 84, 87, 90,

95, 106, 111, 120, 139, 145, 148]. Moreover, it has been shown that the fully-connected struc-

ture achieves the fully-digital performance when the number of RF chains as many as twice the

number of the transmitted streams [120,137]. Further, in sparse environments such as mmWave,

while utilizing compressed sensing algorithms, it achieves a near-optimal spectral efficiency per-

formance with a very fewer number of RF chains [15, 111].

Partially-connected RF structure

The partially-connected RF structure has been introduced aiming at enhancing the energy effi-

ciency, reducing hardware complexity, and lowering the computational complexity of the hybrid

beamforming problems. In the partially-connected structure, RF chains are connected to dis-

joint subsets of antenna elements, specifically, each RF chain is connected to Msa = M/Mrf

[16,25,34,48,76,139,145, 148]. Compared to the fully-connected, this decreases the number of
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Figure 2.4: Fully-connected RF architecture

phase shifters fromMMrf toM and the number of RF combiners fromM to 0 while the number

of RF splitters remains constant but with Mrf branches instead of M . A schematic diagram of

the partially-connected RF structure is depicted in Fig. 2.5. In this way, the partially-connected

structure reduces power consumption and this in certain cases leads to enhancing the energy ef-

ficiency of the system [34]. Moreover, this RF connection gives the analog precoder/ combiner

a block diagonal structure, which, in turn, is utilized to decrease the computational complexity

of the hybrid beamforming problem by virtually dividing the massive MIMO channel into sub-

channels with smaller dimensions [34, 148]. Mainly for these two reasons and since the main

motive behind introducing hybrid beamforming to massive systems is to reduce the installation

cost and power consumption, the partially-connected hybrid precoding/combining structure is

considered to be the practical setup. Unfortunately, this practicality comes with a significant

spectral efficiency performance loss. For instance, given the same numbers of RF chains and an-

tenna elements, it has been conjectured that the spectral efficiency gap is Nrf log2Nrf b/sec/Hz

since the beamforming gain is decreased by 1
Nrf

per sub-array. However, this performance loss

can be compensated by either increasing the number of antenna elements per sub-array [82].
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Overlapped and Dynamic RF structures

Between these two structures, numerous RF structures have been proposed to offer a better com-

promise between the hardware complexity/energy efficiency and spectral efficiency. The most

successful ones are the overlapped sub-array and dynamic sub-array structures. The overlapped

sub-array structure has been proposed in order to compensate for the beamforming gain reduc-

tion associated with the sub-array structure [30, 123, 134, 142]. This is realized by creating an

overlap between adjacent sub-arrays and this, in turn, allows for two or more antenna elements

to be connected to one RF chain. A larger number of antennas connected to one RF chain re-

sult in a higher beamforming gain but with an increased hardware complexity in terms of phase

shifters. However, there are no rigorous guidelines to quantify how much overlap should be

created to achieve spectral efficiency performance comparable to the fully-connected structure.

Moreover, this overlapping between sub-arrays destroys the block diagonal structure of the ana-

log precoder/combiner and consequently increases the computational complexity of the hybrid

beamforming problem compared to the partially-connected structure.
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Figure 2.6: Dynamic subarray RF architecture

In the dynamic sub-array structure, each RF chain is connected to all antenna elements

through a network ofMNrf switches and phase shifters. However, at any given moment, each RF

chain is connected to only L � M antenna elements where only L switches are closed and the

others are opened, i.e., selecting L switches and phase shifters per RF chain [52,53,55,92,153].

A schematic diagram of the dynamic subarray RF structure is depicted in Fig. 2.6. That is, the

dynamic sub-array structure has higher hardware complexity than the fully-connected structure

and similar energy efficiency as the partially-connected one. The dynamic sub-array structure

achieves near-optimal performance using the exhaustive search antenna partitioning. Many re-

search works have considered the greedy soft antenna selecting algorithms in order to decrease

the computational complexity of the exhaustive search while maintaining comparable spectral ef-

ficiency performance to the fully-connected structure [92]. To sum it up, the dynamic sub-array

structure achieves a near-optimal tradeoff between spectral and energy efficiency at the price of

higher hardware and computational complexity.

In addition to the aforementioned RF structures, there are various ones that use RF switches

instead of phases shifters [12, 99]. We excluded the discussion of all the hybrid beamforming
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schemes where the phase shifters are replaced by switchers since they are basically either pure

antenna selection schemes or binary phase quantization that dramatically reduce the beamform-

ing gain produced by the analog beamforming.

2.2.2 Taxonomy Based on The Availability of The Channel Knowledge at
The Transmitter

The channel state information at the transmitter plays a key role in the literature on analog, dig-

ital, and hybrid beamforming. It has been shown that the availability of CSIT can significantly

widen the degrees of freedom (DoF) region (maximum multiplexing gain) of many wireless

networks [150]. Under the full CSIT assumption, where the transmitter has global and instanta-

neously perfect CSI, the wireless networks enjoy the widest DoF region. On the other hand, in

the total lack of CSIT the DoF region of most wireless networks collapse to the narrowest region,

where its corner points are simply achievable by time-division multiplexing between users [150].

Perfect channel knowledge

Extensive research works have demonstrated the effectiveness of the hybrid beamforming in

achieving a near-optimal high spectral efficiency performance under the perfect CSIT assump-

tion while considering the aforementioned RF hardware constraints. This is encouraged by the

interesting properties of massive MIMO and mmWave channels which make channel estimation

simpler than at sub-6 GHz. Particularly, in TDD systems, the channel can be efficiently estimated

at both sides with much less information overheads, compared to the rich scattering environment,

utilizing its angular sparsity, spatial correlation, and reciprocity [79, 152]. Further, in many in-

door applications where the surrounding environment is relatively static, the communication

channel is plausible to be assumed a quasi-static, i.e., the channel remains constant for a long

period compared to the transmission time. In this case, the instantaneous availability of CSIT

can be realized in real life. Moreover, this implies that the performance of hybrid processing

solutions with imperfect channel knowledge is very close to the ones assuming perfect channel
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knowledge. As a result, the perfect CSIT assumption, in some applications and communication

scenarios can be considered to be a practical assumption.

The prior art of hybrid beamforming with perfect CSIT can be summarized into two main

approaches. The first, which includes the majority of hybrid beamforming schemes, is to de-

sign the analog and the digital beamformers based on approximating the optimal fully-digital

beamformer by the hybrid ones [15, 57, 66, 84, 87, 90, 106, 111, 139, 145]. In essence, the analog

and the digital processing matrices are designed such that their matrix product is nearly equal

to the optimal fully-digital processing matrix in accordance with a certain measure such as the

Euclidean distance or performance metric such as mutual information. This approach was de-

veloped in [15] where Ayach et al. exploited the sparsity of the mmWave channel to formalize

the spectral efficiency optimization of the hybrid processing as a sparse reconstruction problem

and solve it algorithmically based on an efficient compressed sensing algorithm, namely, the

orthogonal matching pursuit (OMP) [15]. Utilizing the richness of the compressed sensing liter-

ature, several sparse reconstruction algorithms have been adopted, depending on the sparsity of

the mmWave channel, in order to decrease the complexity of solving the optimization problem

of approximating the fully-digital beamformer while considering different performance metrics

such as spectral efficiency and minimum mean square error (MSE) [15, 57, 87, 111]. However,

the performance of all these schemes degrades severely in rich scattering environments.

Considering the same approach of approximating the fully-digital solutions which were re-

branded into constrained matrix decomposition or factorization, numerous alternating optimiza-

tion techniques have been employed aiming at enhancing the performance of hybrid processing in

both rich and sparse scattering environments [66,90,106,139,145]. Particularly, in [145], for sub-

array antenna structures, the analog precoding problem, given the digital precoder, is formulated

as a vector approximation problem using phase rotation whereas the digital precoding problem,

given the analog precoder, is formulated as the Euclidean distance minimization problem with

the second norm equality constraint and solved based on semi-definite relaxation. Similarly, for

fully-connected antenna structures, given the analog precoder, the digital precoder is obtained as

the solution of the orthogonal Procrustes matrix approximation problem [41], whereas the ana-

log precoder, given the digital precoder, is obtained by extracting the phases of the least square
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solution. In [78], the power factorization technique has been adopted aiming to trade-off spec-

tral efficiency for decreasing the computational complexity of calculating the digital precoder

in [145]. Leveraging the first-order Taylor expansion to the complex exponential function of the

phase increment of the entries of the analog beamformer, Ni et al. showed that the optimal pre-

coder/combiner matrix can be efficiently decomposed into the hybrid processing matrices [90].

Specifically, Ni et al. managed to relax the non-convex constraints of the analog processing

matrix and thereby, given the digital processing matrix, finding the analog processing matrix as

the solution of a convex quadratic programming problem; whereas, given the analog processing

matrix, the digital processing matrix is the least-squares solution. In [106], Rajashekar et al.

obtained the analog and the digital processing matrices alternately and iteratively as the phases

of the entries of the optimal processing matrix and the least square solution, respectively. How-

ever, most of these alternating optimization techniques result in computationally complicated

gradient-based iterative schemes.

On the other hand, the second approach is to decouple the design of analog and digital pro-

cessing. Particularly, the analog processing is designed to optimize certain performance metrics.

Then, the digital processing is designed based on the effective channel, i.e., the channel after

the analog processing. For instance, in [16, 34, 76, 120, 148], the analog processing is designed

to iteratively maximize the spectral efficiency or the mutual information of the system by suc-

cessively canceling-out the inter-stream interference. This precoding strategy has been proposed

by Pi in [102] for multi-stream analog precoding under per-antenna power constraints where he

developed, based on deriving Karush-Khun-Tucker necessary and sufficient conditions for opti-

mality, an iterative transmit beamforming algorithm which can securely converge to the optimal

solutions. However, these optimal solutions do not adhere to the hardware constraints of the

analog beamforming in massive MIMO systems. In [16], for the sub-array antenna structures,

El Ayach et al. modified the algorithm in [102] to fit the hardware constraints of the analog

precoder. In [34], Gao et al. integrated the mutual maximization algorithms into [16, 102] a

successive interference cancellation strategy into calculate the hybrid precoding. They obtained

the analog precoder based on the phases of the left singular vector of the augmented interference

matrix while the digital precoder is a diagonal matrix where the diagonal elements are designed

24



to minimize the Euclidean distance between the optimal precoder and the analog precoder. Fol-

lowing the decoupling approach also, in [98], Payami et al. designed the analog processing stage

based on extracting the phases of the largest Mrf left and right singular vectors of the massive

MIMO channel whereas the digital processing stage is based on the SVD of the effective chan-

nels. Moreover, in [84], Molu et al. designed the analog processing matrix to maximize the

power of the desired signals while minimizing the inter-stream interference. This was realized

by maximizing the correlation between the columns of the analog processing matrix and the

optimal processing matrix. Between these two approaches, several heuristic approaches have

been proposed such as the ones which are based on particle swarm optimization [11] and deep

learning [62].

Limited feedback and statistical CSI

With the inevitable need for communicating in dynamic environments such as urban areas, the

assumption of instantaneous and accurate CSIT becomes unreasonable and impractical. Ac-

quiring such amount of information in dynamic environments while considering the signaling

overhead excessively decreases the overall data rate available for users especially in FDD archi-

tecture which dominates most current wireless communication systems. The signaling overhead

in FDD is attributed to the downlink training and uplink feedback. This implies that the signaling

overhead in FDD systems is more severe than in TDD and might be prohibitive if no counter-

measures are considered. The main solutions to this immoderate signaling overhead are either

to limit the amount of information signaled to the transmitter through quantizing the feedback

information in amplitude (finite precision) and/or make it less frequently updated by utilizing

the long term channel statistics in beamforming. We note that the channel state information re-

quired for hybrid beamforming techniques in FDD systems can be divided into two pieces of

information: the first one is required for the digital baseband processing and the second one is

required for the analog RF processing. Huge research efforts have been made to alleviate the

feedback overhead problem by relaxing the perfect CSIT assumption and can be categorized in

the following directions.
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In one direction, the limited feedback hybrid precoding has been considered where the chan-

nel is quantized or the analog precoder is selected from a predefined finite set of codewords

[8, 10, 15, 44, 77, 122, 130, 133, 144]. The limited (finite precision) feedback approach is mainly

a codebook-based system. In this system, the transmitter(s) and receiver (s) agree on a common

codebook of precoding matrices or beamformers (codewords) designed according to certain cri-

teria. The receiver, based on a certain metric (a function of the channel), selects the preferred

codeword and sends its index back to the transmitter(s). Consequently, the design of an effi-

cient limited feedback system is reduced to the design of codebooks that match the selection

criteria in order to provide the minimum average distortion measured by certain metrics. This

decreases the feedback overhead dramatically where only a small number of bits are required

to indicate the preferred codeword. The first codebook introduced to the mmWave system was

in [133]. In [133] the authors considered a single-user point to point MIMO channel where both

the transmitter and receiver are equipped with an M -element uniform linear array antenna. The

codebooks are fixed and designed for a phased antenna array implementing only specific four

phase shifts per element (0◦, 90◦, 180◦, 270◦) without amplitude adjustment. Each beamformer

specifies a certain pattern (directions). The codebooks span the entire space, which is 360◦

around the terminal. The codebooks are generated symmetrically, i.e., they are generated so

that all beam patterns (directions) have the same gain. Also, the beamformers of the codebooks

are orthogonal to each other, so that multiple beams can be generated simultaneously without

large interference to each other. The codebook matrix of an M -element uniform linear phased

array with n-bit phase resolution is defined by W (M,K), where K is the number of patterns

(direction) generated. w(m, k) = j
((m−1)(k−1)−K/2)

2n/4 is an entry of W (M,K). One main limita-

tion of this codebook (2-bit phase quantization) that when the array size increases, the power

of side lobe radiation tends to rise drastically because it is optimally designed for a 4-element

array, and restricted to a maximum of 4 symmetrical patterns. However, there is no guarantee

that these codebooks optimize certain performance criteria. As an extension to [15], Alkha-

teeb et al., in [10], considered the design of a hybrid beamforming transceiver for SU MIMO

millimeter-wave channel with partial channel knowledge at the transmitter. The authors consid-

ered approximating the optimal precoder with hybrid precoders and finding the hybrid precoders
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algorithmically using OMP but based on a fixed codebook generated by quantizing the transmit

antenna array response uniformly over an angle of departure ∈ [0, 2π). This used codebook is

widely known as a beamsteering codebook. Unfortunately, the design of the beamsteering code-

books is subject to practical limitations: (i) it is very difficult to design non-overlapping beam

patterns with the quantized phase shifters, and (ii) it is hard to apply the beam steering codebooks

for non-ULAs due to the lack of intuition about their beam patterns in the design of analog-only

beamforming. Other schemes in [77,144] are very similar to the ones in [10,68] expect the digital

precoders of the former are designed to minimize the mean squared error while those of the lat-

ter are designed to maximize the spectral efficiency. Moreover, in [44] a codebook-based hybrid

beamforming scheme was proposed where the analog precoder is selected from beamsteering

codebooks using a MOSEK-based algorithm where its selection metric is based on maximizing

the sum-rate. In [6] Alkhateeb et al. introduced a multi-level variant beam-width codebook-

based hybrid beamforming scheme. The proposed codebook is a hierarchical one and consists

of s levels. Each level contains beamforming vectors with a certain beam-width that decreases

with the number of levels s. For instance, if s = 2, the codebook consists of two levels: the first

level consists of two beam patterns each having width of π while the second level consists of four

beam patterns each having a beamwidth of π/2. Despite the similarity of this codebook struc-

ture to the codebooks in [50, 133] which also have multiple levels, the authors in [6] adopted a

different methodology for defining each beamforming vector and the associated beamwidth and

a new technique for realizing these vectors using a hybrid architecture. The main advantage of

this scheme is the additional digital processing layer that adds more degrees of freedom to the

beamforming design problem which can be utilized to obtain better characteristics in the beam-

forming patterns. The codebook is designed such that the optimal fully-digital beamforming

matrix is the one that minimizes the Euclidean distance between the desired direction and the

antenna response to a certain channel realization. Then approximating the optimal fully-digital

one to hybrid beamforming matrices by a modified version of the Orthogonal Matching Pursuit,

or OMP algorithm [97]. In [122], the authors developed a codebook design tailored specifically

to consider the strong directivity of the millimeter-wave channel and the hybrid beamforming

architecture. The codebooks are designed to minimize the mean square error (MSE) between
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the beamformer and the ideal beam pattern. Due to the sparse nature of the millimeter-wave

channel, the MSE minimization problem is solved using the OMP algorithm. The ideal beam

patterns have constant gain of 2B

M
with equal beamwidths vq = [−π+ 2π

2B
(q−1),−π+ 2π

2B
(q)] for

q ∈ {1, · · · , 2B}. Once again the OMP has been used to find the analog and the baseband pre-

coders but with MSE as a cost function instead of the Euclidean distance. However, the authors

limit their analysis to the single-stream transmission and in this case, their codebook provides a

higher data rate than the codebook in [6].

In another direction, many works have adopted the statistical channel information, partic-

ularly the spatial channel covariance matrix, to design the analog precoder while the perfect

channel information to design the digital precoder [2, 3, 52, 63, 85, 95, 138]. This approach uses

the fact that the different links often share the same fading distribution. In particular, statistical

approaches are effective in situations where the channel has some form of structure, such as hav-

ing a large mean component (e.g., a large Rician K-factor) or strong correlation (either in space,

time, or frequency). In such channel structures, statistical beamforming provides a marginal

performance loss compared to beamforming techniques that use the instantaneous channel real-

ization over the long run. Indeed, the statistical knowledge is very effective in massive MIMO

channel and mmWave bands due to the spatial correlation and small angular dispersion. Gener-

ally, in hybrid beamforming literature, the statistical CSIT is to assume that the transmitter has

perfect knowledge about the statistical averages of the channel (most importantly the transmit

covariance matrix) while perfect channel knowledge of the effective channel (the channel after

the analog precoding). This lessens the problem by reducing the required training and the cor-

responding feedback overhead since (i) the channel statistics of most wireless applications are

slowly varying and (ii) the dimension of the effective channel is significantly reduced.

In [2, 3, 85], the authors introduced a hybrid beamforming scheme, called joint spatial di-

vision multiplexing (JSDM), in order to reduce the overhead signaling by designing the analog

RF beamformer based on the second-order channel statistics, i.e., the covariance matrices of the

different users. They considered the broadcast channel with K single-antenna users as a set-up

for their scheme. They assumed that the channel is spatially correlated with known channels

covariance matrices. The basic idea of JSDM is to partition the users into groups where users
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with similar covariance matrices are huddled together in the same group while maintaining or-

thogonality between the groups. The orthogonality between groups is enforced by selecting the

analog RF beamforming matrix for group g to be in the null space of the augmented matrix of the

eigenvectors of the covariance matrices of the other groups. In other words, the analog RF beam-

forming is designed to eliminate the inter-group interference by employing the well-known block

diagonalization technique but based on the statistical average, i.e., the analog beamforming ma-

trix is a function of the second-order statistics of the channel matrix. A necessary condition for

completely eliminating inter-group interference is the span of the columns of the analog beam-

forming matrix is a subset of the span of the orthogonal complement of the augmented matrix of

the eigenvectors of the covariance matrices of the other groups. On the other hand, the digital

baseband precoding is designed to eliminate the inter-user interference between users in the same

group using linear precoders, i.e., zero-forcing. Even though the latter stage requires perfect CSI,

there is a significant reduction in the overall overhead signaling thanks to users partitioning in

JSDM and per-group processing, i.e., users send local channel information about their groups.

The main limitations of JSDM are the difficulty of maintaining orthogonality between a large

number of groups and the complexity of users selection and or grouping algorithms [2].

To alleviate the shortcomings of JSDM, in [63], the authors considered a multi-user broadcast

channel with M -antenna serving K N -antenna users. The authors managed to relax the orthog-

onality conditions of JSDM by allowing a controlled level of interference between groups. The

residual interference can be reduced effectively with the help of the multiple antennas available

at each receiver. Similar to JSDM, the analog beamformer at the base station is designed to al-

leviate the interference between groups based on the second-order channel statistics by applying

the well-known block diagonalization scheme but with relaxed orthogonality constraints. On the

other hand, the analog combiners for each group of users are designed to reduce the residual

inter-group interference (due to the relaxation of the orthogonality condition) by maximizing

the received intra-group signal to inter-group interference plus noise ratio. The optimal analog

combiner that maximizes the signal to interference plus noise ratio. It can be readily found by

solving a generalized Rayleigh quotient problem. The digital combiners are designed to maxi-

mize the net rate of each user by using the MMSE detector. Finally, the digital precoders at the
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base station are designed to maximize the conditional average sum data rate by formalizing the

problem as a weighted average mean square error minimization and solve it algorithmically. It

is worth mentioning that the JSDM scheme and some of its modifications in [63,85,138], do not

consider the hardware constraints associated with analog beamforming.

In [67], the constant gain RF constraint has been considered in the hybrid beamforming de-

sign, and the user-grouping concept of JSDM is extended to a more general case where different

numbers of RF chains are dynamically assigned to different groups. Although the hybrid pro-

cessing techniques in [3, 67] are limited to the assumption that users can be divided into groups

such that users in each group share the same covariance matrix, a general hybrid precoding tech-

nique is proposed without the users grouping in [64]. In [64], each analog precoding vector is

constructed from each user’s single dominant eigenvector of the covariance matrix. In contrast

to JSDM where the analog precoder is designed to remove the inter-group interference, in [95],

the analog precoder is designed to maximize the average of the signal to leakage plus noise ratio

(SLNR). Particularly, the analog beamforming vector(s) of each user is given by extracting the

phases of the solution(s) of a generalized Rayleigh quotient problem of its covariance matrix and

other users’ covariance matrices. On the other hand, the digital precoder is designed based on

the effective channel after the analog precoding and it is given as the regularized zero-forcing

solution.
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Chapter 3

Hybrid Beamforming Schemes for TDD
Systems

3.1 System and Channel Models

3.1.1 System Model

We consider a point-to-point massive MIMO system with M -transmit and N -receive antenna el-

ements. The transmitter sendsNs independent data streams s ∈ CNs×1 to the receiver where both

are equipped with limited number of RF chains, i.e.,Mrf �M andNrf � N , respectively. As a

result, the hybrid beamforming structure is considered at both sides. This point-to-point massive

MIMO model is of interest due to its wide-range applicability in many recent applications such

as high definition video streaming, virtual/augmented-reality, connected cars and links between

base stations [20]. In hybrid precoding structures, the data vector s is pre-processed by two dif-

ferent precoders at the transmitter, namely, the baseband (digital) precoder FBB ∈ CMrf×Ns and

the RF (analog) precoder FRF ∈ UM×Nrf . As a result, the received signal vector y ∈ CN×1 is
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given by:

y =
√
ρHFRFFBBs + n, (3.1)

where ρ is the average received signal power and n ∈ CN×1 is the additive white Gaussian

noise vector at the receiver which has independent identically distributed (i.i.d.) elements with

zero mean and variance σ2. H ∈ CN×M is the fading channel matrix. Similarly, the hybrid

combining structure at the receiver is implemented by post-processing the received vector r by

two different combiners, namely, the RF (analog) combiner WRF ∈ UN×Nrf and the baseband

(digital) combiner WBB ∈ CNrf×Ns . Thus, the processed received signal s̃ ∈ CNs×1 is given by:

s̃ =
√
ρWH

BBWH
RFHFRFFBBs + WH

BBWH
RFn, (3.2)

We note here that both RF precoder and combiner are implemented by analog phase shifters

with constant gain amplifiers, therefore, their entries have a constant norm, i.e., |fRF,ij| = 1√
M

and |wRF,ij| = 1√
N

, respectively. On the other hand, both the baseband precoder and combiner

are implemented in the digital domain and have only power constraints. The total power is

normalized such that E[ssH ] = 1
Ns

INs , ‖ FRFFBB ‖2
F= Ns and E[||H||F ] = NM .

Moreover, we consider two hybrid processing structures, namely, fully and partially-connected

structures. The main difference between both structures is the architecture of the RF precoder

and combiner. Particularly, in the fully-connected structure, each RF chain is connected to all

antenna elements through a network of phase shifters and constant gain power amplifiers as de-

picted in Fig. 3.1. On the other hand, in the partially-connected one, RF chains are connected to

disjoint subsets of antenna elements; specifically, each RF chain is connected to Msa = M/Mrf

or Nsa = N/Nrf antenna elements at the transmitter and receiver, respectively, as depicted in

Fig. 3.2. Further, we assume, as in many exiting works (e.g., [15, 66, 84, 90, 106, 145]), perfect

channel state information (CSI) is available at both the transmitter and receiver. In TDD sys-

tems, it has been shown that mmWave massive MIMO channels can be efficiently and accurately

obtained at both sides with much less information overhead, compared to the Rayleigh channel
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Figure 3.1: Hybrid precoding and combining with fully-connected antenna structure
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Figure 3.2: Hybrid precoding and combining with partially-connected antenna structure

(or sub-6 GHz), utilizing its sparsity, spatial correlation and reciprocity (e.g. [79, 152] and the

references therein). On the other hand, in FDD systems, solutions are obtained at the receiver

based on perfect CSIT and then they are quantized using efficient codebooks and are fedback to

the transmitter [15, 116]. However, in this chapter we limit our discussion to TDD systems.

3.1.2 Channel Models

We consider two channel models that describe two relatively different fading environments, rich

and sparse scattering environments. For the former, we adopt the i.i.d. Rayleigh channel model
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where all the entries of the fading channel hRij v CN (0, 1), 1 ≤ i ≤ N and 1 ≤ j ≤ M .

For the latter, we consider the clustered channel model which is widely adopted in the literature

of millimeter wave systems [15, 57, 66, 84, 87, 90, 106, 111, 139, 145]. The clustered channel

HCl is given as a sum of all propagation paths that are scattered in Ncl clusters with each cluster

contributingNray rays. As a result, the channel matrix is [15,57,66,84,87,90,106,111,139,145]:

HCl =

√
MN

NclNray

NclNray∑
i,l

αilar(θ
r
il)a

H
t (θtil), (3.3)

where αil are i.i.d. CN (0, 1) depicting the complex gains of the lth ray in the ith cluster, at(θ
t
il)

is the transmit antenna array response vector for a given angle of departure θtil, and ar(θ
r
il) is the

receive antenna array response vector for a given angle of arrival θril.

3.2 Problems’ Formulation and Proposed Algorithms for the

Single-user Case

Our main goal is to develop simple and unified approach for the design of the hybrid precoder

FRFFBB and combiner WRFWBB for massive MIMO systems with different RF structures.

Moreover, a major concern of this work lies in significantly reducing the computational complex-

ity of obtaining those four matrices since most recent point-to-point applications are real-time

ones that require low computational delays. Towards that goal while considering the computa-

tional complexity concern, we tackle the hybrid processing problem from a different perspective.
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3.2.1 The Design Rationale

Considering the spectral efficiency as a performance metric, the hybrid beamforming problem is

given by:

max
FRF ,FBB ,WRF ,WBB

log det(INs + Rn
−1
BBWH

BBWH
RFHFRFFBBFH

BBFH
RFHHWRFWBB),

s.t. |fRF ij| = 1 ∀i, j, |wRF ul| = 1 ∀u, l,

trace(FH
RFFRFFBBFH

BB) ≤ p
(3.4)

where RnBB = σ2
nW

H
BBWH

RFWRFWBB is the noise covariance matrix after at the baseband

after the two-stage hybrid combining. Finding the optimal solutions of this problem is extremely

challenging and intractable for different RF structures due to mainly the non-convex RF hard-

ware constraints in (3.4) [15, 34, 90, 106, 120, 145, 148]. Without considering these RF con-

straints, the optimal solutions come readily as FRF ? = V̄Ns , FBB? = Γ and WRF ? = ŪNs ,

and WBB? = INs , where V̄Ns , and ŪNs are the Ns right and left singular vectors associated

with the largest singular values of H and Γ is a diagonal matrix that contains the power frac-

tion of each stream on its diagonal. This has been established the in traditional (small-scale)

MIMO systems literature where it has been shown that optimal linear precoding and combin-

ing strategies, which optimize different spectral efficiency and mean square error, are based

on diagonalizing the channel (converting the MIMO channel into a set of parallel SISO chan-

nels) by removing the off-diagonal elements of the MIMO channel using different channel de-

composition techniques such QR decomposition and SVD [114]. However, the high dimen-

sionality of the mmWave massive MIMO systems and the hardware constraints on the analog

precoder and combiner make the computational burden of these traditional techniques imprac-

tical, thereby soaring the computational complexity of their hybrid beamforming approxima-

tions [15, 57, 66, 84, 87, 90, 106, 111, 139, 145].

Building upon the channel diagonalization concept while taking seriously the computational

complexity into consideration, we propose to solve the problem in (3.4) by diagonalizing H over

two successive stages that account for the differences between analog and digital beamforming.
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Particularly, in the analog processing stage, the massive MIMO channel matrix is encapsulated

by the analog precoding and combining matrices aiming to exploit the huge antenna array gain

by co-phasing the channel vectors associated with the RF chains. Thanks to the large number

of antenna elements and the channel co-phasing techniques (developed in Algorithms 1 and 2)

at both sides, the diagonal elements of the channel matrix after the analog processing stage

(referred to as the effective channel) are hardened, i.e., “concentrated” around relatively large

values. Hence, the main target of the analog processing is to create a big difference between the

magnitudes of the diagonal and off-diagonal elements of the effective channel in a way to make

it as close as possible to the diagonal channel. This ensures that the spectral efficiency loss due

to the analog beamforming is as close as possible to zero. We note here that it is impossible to

diagonalize the channel completely due to the constant magnitude constraint on the entries of

the analog processing and the limited number of RF chains [15, 120]. We show in Section IV

that this stage has significantly low computational complexity compared to prior works. Then,

in the second stage, the digital precoder and combiner are jointly designed to cancel out the

residual interference between data streams by completely removing the off-diagonal elements of

the effective channel and allocate the streams’ powers in order to maximize the spectral efficiency

of the system.

3.2.2 Analog Processing

Analog processing for fully-connected structures

Abstracting the digital processing, the effective channel after the analog precoding and combin-

ing, H̃ = WH
RFHFRF can be written as:

H̃ =


wH

1 Hf1 wH
1 Hf2 · · · wH

1 HfNrf

wH
2 Hf1 wH

2 Hf2 · · · wH
2 HfNrf

...
... . . . ...

wH
Nrf

Hf1 wH
Nrf

Hf2 · · · wH
Nrf

HfMrf

 , (3.5)
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where fi and wj are the ith and j th columns of FRF and WRF , respectively, and we drop

the subscript RF here for simplicity of exposition. Since we aim at diagonalizing the massive

MIMO channel over two stages, this stage are concerned with maximizing the squared magni-

tudes of the diagonal elements of the effective channel or equivalently maximizing the antenna

array gain of the massive MIMO channel provided by the analog processing stage. The antenna

array gain of MIMO is defined as the gain in the average received signal power due to the precod-

ing/combining strategy, however, in multi-stream schemes, it is the sum of the average received

power of the independent streams. Accordingly, assuming that Nrf = Mrf , the joint analog

precoding-combining design problem is formalized as:

maximize
FRF ,WRF

Nrf∑
n=1

|wH
n Hfn|2

subject to |fij| =
1√
M
∀i, j, rank(FRF ) = Nrf

|wul| =
1√
N
∀u, l, rank(WRF ) = Nrf ,

(3.6)

We note here that the rank constraints is defined, in engineering sense, such that the mathe-

matical rank is satisfied with low condition number, i.e., well-conditioned matrix in order to

provide the required multiplexing gain [132]. This problem is a non-convex optimization prob-

lem where securing global optimal solutions is extremely difficult. This is mainly due to the

constant magnitudes constraints of the analog beamforming and rank constraints [15, 57, 66, 84,

87, 90, 106, 111, 139, 145]. Accordingly, instead of maximizing the cost function in (3.6), we

resort to maximizing an upper bound on (3.6) in order to find near-optimal closed-form solutions

of the precoder and combiner. First, we start by rewriting the cost function in (3.6) in terms of

the entries of WRF ,H and FRF as
∑Nrf

n=1 |wH
n Hfn|2 =

∑Nrf
n=1 |

N∑
i=1

M∑
j=1

w∗inhijfjn|2. This can be

also rewritten as
∑Nrf

n |w∗nn
M∑
j=1

hnjfjn +
N∑

i=1,i6=n
w∗in

M∑
j=1

hijfjn|2 by extracting nth term of the first

summation. Using Cauchy-Schwarz inequality, i.e., |
∑q

i=1 uiv
∗
i |2 ≤

∑q
j=1 |uj|2

∑q
k=1 |vk|2, and
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putting v = 1, and q = 2, one gets:

Nrf∑
n=1

|wH
n Hfn|2 ≤

Nrf∑
n=1

2(|w∗nn
M∑
j=1

hnjfjn|2 + |
N∑

i=1,i6=n

w∗in

M∑
j=1

hijfjn|2) (3.7)

Based on this upper bound, we formalize the analog precoding and combining problem as:

maximize
FRF ,WRF

Nrf∑
n=1

|w∗nn
M∑
j=1

hnjfjn|2 +

Nrf∑
n=1

|
N∑

i=1,i6=n

w∗in

M∑
j=1

hijfjn|2

subject to |fij| =
1√
M
∀i, j, rank(FRF ) = Nrf

|wul| =
1√
N
∀u, l, rank(WRF ) = Nrf

(3.8)

Although this problem inherits the same issues of the one in (3.6), this formulation allows for

finding sub-optimal solution by treating it as a multi-objective optimization problem [27]. This

is achievable based on separately maximizing the first term in (3.8) from the second term and

both have optimal closed-form solutions. In particular, the optimization problem defined in (3.8)

can be divided into two different optimization problems that are solved successively aiming

at securing closed-form sub-optimal solutions to (3.8). As a result, the first problem can be

formulated as:

maximize
FRF ,WRF

Nrf∑
n=1

|w∗nn
M∑
j=1

hnjfjn|2

subject to fjn =
1√
M
ejθjn , 1 ≤ j ≤M, 1 ≤ n ≤ Nrf ,

win =
1√
N
ejφin , 1 ≤ i ≤ N, 1 ≤ n ≤ Nrf .

(3.9)

where θjn and φin ∈ [0, 2π). Fortunately, the cost function in (3.9) is a sum of independent

positive terms, and thereby, each term is maximized individually. The maximum values of these
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terms are max
θθθn,φφφn

(
|ejφnn

M∑
j=1

hnje
jθjn |

√
MN

) =

M∑
j=1
|hnj |

√
MN

, 1 ≤ n ≤ Nrf . This comes readily by setting

θjn = ∠(h∗nj), 1 ≤ j ≤ M and 1 ≤ n ≤ Nrf while setting φnn to any arbitrary phase since

|ab| = |a||b| and |wnn| = 1. Although the rank constraint on FRF has been relaxed in (3.9),

its optimal solution, FRF ? almost surely has full rank (satisfy the rank constraint). That is, the

M ×Nrf optimal phases θij?, ∀, i, j, which maximize (3.9), are extracted from the M ×N i.i.d.

randomly distributed entries of H thereby rending FRF full rank. On the other hand, the second

problem is:

maximize
FRF ,WRF

Nrf∑
n=1

|
N∑

i=1,i6=n

w∗in

M∑
j=1

hijfjn|2

subject to fjn =
1√
M
ejθjn , 1 ≤ j ≤M, 1 ≤ n ≤ Nrf ,

win =
1√
N
ejφin , 1 ≤ i ≤ N, 1 ≤ n ≤ Nrf .

(3.10)

Given the solutions of (3.9), closed-form solutions of (3.10) come readily as φin = ∠(
M∑
j=1

hijfjn),∀i 6=

n. Similar to the solutions of (3.9), the solutions of (3.10), i.e., φin?,∀i 6= n render WRF full

rank. The reason is that some of these phases are pair-wise independent and the other are uncor-

related. This is based on E{ej(ψij−θjn)ejψij} = E{ejψijE{ej(ψij−θjn)|ejψij}} = 0 where if θij or

ψij are uniformly distributed in [0, 2π), then their sum modulo 2π is also uniformly distributed

in this interval. These two steps are summarized in Algorithm 1.

Proposition. 3.2.1. The antenna array gain per RF chain of Algorithm 1 increases unbound-

edly with N where the mean and the variance of the effective channels’ diagonal elements are

asymtotically given as
(√Mπ

4N
+

√
Nπ

4

)
and

(4− π
4

+
4− π
4N

)
, respectively.
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Algorithm 1 Maximizing Antenna Array Gain Per RF-chain
Require: H

1: while n ≤ Nrf

2: fjn = 1√
M

h∗nj
|hnj|

, ∀1 ≤ j ≤M

3: w∗in = 1√
N

M∑
j=1

hijfjn

|
M∑
j=1

hijfjn|
, 1 ≤ i ≤ N,∀i 6= n

4: n = n+ 1
5: end
6: return FRF = [f1, · · · , fNrf ], WRF = [w1, · · · ,wNrf ]

Proof. The nth diagonal element of the effective channel is given by:

h̃nn =
1√
NM

N∑
i=1

e
−j∠(

M∑
p=1

hipe
−j∠hnp )

M∑
j=1

hije
−j∠hnj (3.11)

=
1√
NM

M∑
j=1

|hnj|+
1√
NM

N∑
i=1,i6=n

|
M∑
j=1

hije
−j∠hnj | (3.12)

Using the Lindeberg-Lévy central limit theorem where, for i.i.d. complex Gaussian vector of

length M and distributed v CN (0, 1),
√
M
(

1
M
∠hk

Hhk − π
4
)

d−→ N (0, 4−π
4

), the distribution of

the first term in (3.12) converges to a Gaussian distribution such that

√
M

N

 1

M

M∑
j=1

|hnj| −
√
π

4

 d−→ N
(

0,
4− π

4

)
,

and 1√
M

M∑
j=1

hije
−j∠hnj d−→ N (0, 1). Further,

√
N

(
1
N

N∑
i=1,i6=n

zi −
√

π
4

)
d−→ N

(
0,

4− π
4

)
,

where zi = |
M∑
j=1

hije
−j∠hnj | has a Rayleigh distribution with σ = 1/2. Moreover, the distribution
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of the second term in (3.12) converges to a Gaussian distribution as well but with different mean

and variance, i.e.,

√
N

 1

N

N∑
i=1,i6=n

| 1√
M

M∑
j=1

hije
−j∠hnj | −

√
π

4

 d−→ N
(

0,
4− π

4

)
.

Therefore, the mean and the variance of the nth diagonal element are asymptotically given

by

(√
Mπ

4N
+

√
Nπ

4

)
and

(
4− π

4
+

4− π
4N

)
, respectively. Consequently, the antenna array

gain, defined as the gain in the average received signal power, is asymptotically huge where

E
(
|h̃nn|2

)
=

(√
Mπ

4N
+

√
Nπ

4

)2

+
4− π

4
+

4− π
4N

.

This shows that the diagonal elements are hardened, i.e., concentrated around a relatively

high value as both N and M grow unboundedly. Moreover, it highlights that the means of the

diagonal elements of the effective channel scales linearly as
√
N . This assures that Algorithm

1 concentrates the diagonal elements of the effective channel around relatively large values, and

thereby, the first goal is achieved.

Corollary. 3.2.1.1. The ratio of the means of the off-diagonal elements to the means of the

diagonal ones goes to zeros as M and N grow unboundedly while M
N
< 1, i.e.,

E{h̃lp}
E{h̃nn}

→ 0 as

M → ∞ and M
N
< 1, thereby concentrating diagonal elements and dispersing the off-diagonal

ones.

Proof. Proposition 3.2.1 shows that the means of the diagonal entries of the effective channel

scale linearly with
√
N given Algorithm 1. Additionally, it can be shown that the means of

the off-diagonal entries of the effective channel do not scale with neither M nor N but they are

asymptotically upper bounded by a fixed small number, i.e.,

√
πM

4N
. Particularly, the (l, p), p 6= l
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off-diagonal entry of the effective channel given Algorithm 1 is:

h̃l,p =
1√
NM

N∑
i=1

M∑
j=1

hije
−j∠hlje

−j∠
(

1√
M

M∑
u=1

hiue
−j∠pu

)
(3.13)

Given that hij = |hij|ejψij where |hij| has a Rayleigh distribution and ψij has a uniform one, the

(l, p), p 6= l off-diagonal entry of the effective channel is rewritten as:

h̃lp =
1√
NM

N∑
i6=p,l

M∑
j=1

|hij|e−j(ψij−ψlj)e
−j∠

(
1√
M

M∑
u=1
|hiu|e−j(ψiu−ψpu)

)

+
1√
NM

M∑
j=1

|hpj|e−j(ψpj−ψlj) +
M∑
j=1

|hlj|e
−j∠

(
1√
M

M∑
u=1
|hlu|e−j(ψlu−ψpu)

)
(3.14)

Accordingly, the mean of the the (l, p), p 6= l off-diagonal entry of the effective channel is given

by:

E{h̃lp}
(a)
=

1√
NM

N∑
i6=p,l

M∑
j=1

E{|hij|e−j(ψij−ψlj)e
−j∠

(
1√
M

M∑
u=1
|hiu|e−j(ψiu−ψpu)

)
}

+
1√
NM

M∑
j=1

E{|hpj|e−j(ψpj−ψlj)}+
M∑
j=1

E{|hlj|e
−j∠

(
1√
M

M∑
u=1
|hlu|e−j(ψlu−ψpu)

)
}

(b)
=

1√
NM

N∑
i6=p,l

M∑
j=1

E{ejψlj)}E
{
|hij|e−j(ψij−ψlj)e

−j∠
(

1√
M

M∑
u=1
|hiu|e−j(ψiu−ψpu)

)}
+

1√
NM

M∑
j=1

E{ejψlj)}E{|hpj|e−jψpj}

+
1√
NM

M∑
j=1

E
{
|hlj| E{e

−j∠
(

1√
M

M∑
u=1
|hlu|e−j(ψlu−ψpu)

)
| |hlj|}

}
(c)
<

√
πM

4N
(3.15)
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Eq.(3.15.a) is due to the linearity of the E{} operator. Eq. (3.15.b) follows from the independence

of the phases and magnitudes of the complex Gaussian random variable and the total law of

expectation. Eq. (3.15.c) is upped bounded by

√
πM

4N
since the first and the second terms

are zeros where ψlj is uniformly distributed [0, 2π) and thereby, E{ejψlj} = 0 whereas the

third term is upper bounded by bounding E{e
−j∠

(
1√
M

M∑
u=1
|hlu|e−j(ψlu−ψpu)

)
| |hlj|} ≤ 1 where

E{|hij|} =

√
π

4
. Therefore, using Algorithm 1, the means of the diagonal elements of the

effective channel asymptotically approach E{h̃nn} =

√
Mπ

4N
+

√
Nπ

4
whereas the means of

the off-diagonal elements of the effective channel are bounded by E{h̃lp} ≤
√
πM

4N
, thereby

E{h̃lp}
E{h̃nn}

≤ 1

1+

√
N2

M

→ 0 as M →∞ and M
N
< 1.

Remark. 3.2.2. Starting with the less constrained side: Algorithm 1 consists of two main steps

where the order of performing these steps dictates how the effective array gain scales withM and

N . The procedure order in Algorithm 1 results in effective array gain that scales with N which

makes this procedure beneficial when N > M , i.e., in the uplink transmission. On the other

hand, reversing the order of these two steps by starting with co-phasing columns of the analog

combiner to the channel columns, i.e., wjn = 1√
N

h∗jn
|hjn|

, ∀1 ≤ j ≤ N , then proceeding to the sec-

ond step of calculating the analog precoder, i.e., f ∗in = 1√
M

N∑
j=1

w∗njhji

|
N∑
j=1

w∗njhji|
, 1 ≤ i ≤ N,∀i 6= n, gives

the distribution of the nth diagonal element d−→ N
(√

Nπ
4M

+
√

Mπ
4
, 4−π

4
+ 4−π

4M

)
. This makes re-

versing the order of these two steps is beneficial whenM > N , i.e., in the downlink transmission.

Therefore, in our simulation, we run the two main steps in Algorithm 1 in succession according

to the following rules. In case of N > M , the analog precoder is obtained first then the analog

combiner is calculated. On the other hand, in case ofM > N , the analog combiner is calculated

first by co-phasing columns of the analog combiner to the channel columns, similar to step 2 in
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Algorithm 1 but on column-wise instead of row-wise, then the analog precoder is calculated. In

summary, starting with the less constrained side allows for harvesting higher antenna array gain

from the other side.

Analog processing for partially-connected antenna array structures

Due to the fewer number of antenna elements connected to the RF chains in the sub-array struc-

ture, both the analog precoder and combiner have block diagonal structures. Particularly, FRF

and WRF are sparse and contain vectors of sizes Msa × 1 and Nsa × 1, respectively, on their

diagonal whereas the rest entries are zeros. With a slight abuse of notation, we denote the non-

zero part of the ith column of the analog precoding matrix FRF by fi with size Msa × 1, while

the non-zero part of ith column of the analog combining matrix WRF is denoted by wi and has

a size Nsa × 1. Accordingly, the effective channel after analog beamforming is:

H̃ =


wH

1 H11f1 · · · wH
1 H1Mrf

fMrf

wH
2 H21f1 · · · wH

2 H2Mrf
fMrf

...
...

...

wH
Nrf

HNrf1f1 · · · wH
Nrf

HNrfMrf
fMrf

 , (3.16)

where Hij for 1 ≤ i ≤ Nrf and 1 ≤ j ≤Mrf is the (i, j)th block of the channel matrix H and has

a sizeNsa×Msa. Interestingly, the block diagonal structure of the analog precoder and combiner

virtually divides the massive MIMO channel H intoMrfNrf blocks “sub-channels” of sizeNsa×
Msa, each. Similar to the fully-connected case, here, the analog processing is concerned with

maximizing the sum of sub-antenna array gains, i.e., the sum of the squared norms of the effective
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sub-channel gains per sub-array. The joint analog precoding and combining problem is given by:

maximize
FRF ,WRF

Nrf∑
i

|wH
i Hiifi|2

subject to |(fi)j| =
1√
Msa

∀i, 1 ≤ j ≤Msa, rank(FRF ) = Nrf

|(wi)l| =
1√
Nsa

∀i, 1 ≤ l ≤ Nsa, rank(WRF ) = Nrf

(3.17)

Due to the virtual block structure of H̃, the summands in (3.17) are non-negative functions of

different sub-channels, i.e., Hii, 1 ≤ i ≤ Nrf , thereby being separable. Moreover, the block

diagonal structures of FRF and WRF render the rank constraints are always satisfied for any

given solution expect the all zeros one, thereby dropping these constraints. Therefore, due to

the separability of the cost function and constraints, the optimization problem in (3.17) can be

solved by separately solving Nrf independent sub-problems. Accordingly, the design problem

of joint analog precoding and combining for multi-stream systems is reduced toNrf independent

single-stream joint analog precoding and combining problems. These problems are:

maximize
φφφi,θθθi

|wH
i Hiifi|2

subject to fi =
1√
Msa

ejθθθi , wi =
1√
Nsa

ejφφφi ,
(3.18)

to find Nrf analog precoding and combining pairs, i.e., (fi,wi) for 1 ≤ i ≤ Nrf , where

θθθi and φφφi are vectors of length Msa and Nsa, respectively, and their entries are real numbers

∈ [0, 2π]. These optimization problems are non-convex and challenging to secure optimal so-

lutions mainly due to the non-convex RF constraints and the cost function is invariant under

phase rotation.Motivated by the excellent performance of alternating optimization techniques in

the literature of hybrid and digital beamforming [120, 131, 145] and driven by the need to low-

complexity solutions, we solve the optimization problem defined in (3.18) algorithmically using

alternating optimization. The joint analog precoding and combining strategy is implemented it-

eratively in two alternating steps. First, given fi, we solve (3.18) for wi. Interestingly, given fi
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and while relaxing the constant magnitude entries constraint on the combiner to the unit second

norm constraint (local convexification), the optimal combiner is w?i = Hiifi
‖Hiifi‖2 [73]. After that,

we impose the unit magnitude entries constraint by dividing each entry of the optimal combiner,

obtained from the relaxed problem, by its magnitude, i.e.,
(w?i)j
|(w?i)j|

,∀1 ≤ j ≤ Nsa. We note

that this method of imposing the unit magnitude constraint by dividing the entries of the opti-

mal solution of the relaxed problem by their norms is widely adopted in the literature of hybrid

beamforming [34, 90, 120, 145] since this solution has the minimum Euclidean distance to the

optimal solution of the relaxed problem. Similarly, in the second step, given the updated value of

wi, and relaxing the unit magnitude entries constraints, the optimal beamformer is f?i =
HH
iiwi

‖Hiifi‖2 .

Thereby, the updated values of the beamformer are
(f?i)j
|(f?i)j|

, ∀1 ≤ j ≤Msa. Finally, we keep iter-

ating between these two steps until satisfying certain stopping criterion or reaching to maximum

number of iterations, i.e., Kmax. We summarize these two steps in Algorithm 2.

Algorithm 2 Iterative Maximization of Antenna Array Gain per Sub-Array

Require: H, F
(0)
RF , Kmax

1: While i ≤ Nrf

2: k = 0,
3: Repeat
4: k = k + 1

5: (w
(k)
i )j =

1√
Nsa

(Hiif
(k−1)
i )j

|(Hiif
(k−1)
i )j|

, ∀1 ≤ j ≤ Nsa

6: (f
(k)
i )j =

1√
Msa

(HH
iiw

(k)
i )j

|(HH
iiw

(k)
i )j|

, ∀1 ≤ j ≤Msa

7: Until stopping criterion is satisfied or k = Kmax

8: End
9: return FRF = [f1, · · · , fi, · · · , fNrf ],WRF = [w1, · · · ,wi, · · · ,wNrf ]

In order to evaluate the performance of the proposed analog precoding and combining pro-

cedure, we derive upper and lower bounds on the antenna array gain per sub-array, i.e., the

maximum of the cost function in (3.18).

Proposition. 3.2.3. The antenna array gain per sub-channel for a MIMO system with analog
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Figure 3.3: Upper and lower bounds on the effective gain of Algorithm 2

precoding and combining, and partially-connected antenna array structure is bounded by:

max(
‖Hii‖2∞
Msa

,
‖Hii‖21
Nsa

) <
|e−jφφφiHiie

jθθθi |2
NsaMsa

< min(
σ2
1‖u1‖21
Nsa

,
σ2
1‖v1‖21
Msa

), (3.19)

where σ1 is the largest singular value of the matrix Hii, u1 and v1 are the right and left singular

vector associated with σ1, respectively.

Proof. please refer to Appendix A.1.

To the best of the authors’ knowledge, these bounds on the joint equal gain transmission

and combiner, have not been reported in the literature, although some pieces of the proof have

been available for a long time and they have been studied by different researchers such as Love

et al. [73] and Tsai [131]. The tightness of the upper and lower bounds, and the performance

evaluation of the proposed analog procedure are shown in Fig. 3.3 where antenna array gain

per sub-channel of Algorithm 2 along with the obtained bounds are drawn when increasing the

number of antenna elements over a Rayleigh channel. Fig. 3.3 shows that the antenna array gain

of the proposed analog procedure in Algorithm 2 is tightly bounded by the derived bounds.
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Remark. 3.2.4. Extension to different numbers of RF chains at both sides: For the more

general case when Nrf 6= Mrf , i.e., H̃ is a rectangular matrix and both algorithms run over the

entries of the main diagonal of H̃ in order to jointly calculate the beamforming pairs (fn,wn)

for n ≤ min(Nrf ,Mrf ). This leaves max(Nrf ,Mrf ) − min(Nrf ,Mrf ) beamforming vectors,

either fi or wi for min(Nrf ,Mrf ) < i ≤ max(Nrf ,Mrf ) are not determined, depending on

either Mrf > Nrf or Nrf > Mrf , respectively. There are many options for calculating these

beamforming vectors. For instance, a trivial solution is obtained by setting these beamforming

vectors to zeros (turning off the extra RF chains for saving power), i.e., with loss of generality

when Mrf > Nrf , fi = 0 for Nrf < i ≤ Mrf . This solution forces the extra max(Nrf ,Mrf ) −
min(Nrf ,Mrf ) rows or columns of the rectangular effective channel (represent interference) to

be zero vectors. Indeed, this solution is equivalent to the setup where Nrf = Mrf and they have

the same performance. From channel diagonalization perspective, this would be a good solution

since it removes interference due to the extra columns/rows and increase the transmitted power

pumped into the main diagonal entries. However, the analog beamforming stage (performed by

Algorithm 1 and 2) is followed by a digital beamforming stage that can be utilized to remove the

interference. Consequently, these unused RF chains can be utilized efficiently to provide higher

array gains even though they might cause interference between streams. This made possible by

co-phasing the max(Nrf ,Mrf ) −min(Nrf ,Mrf ) beamforming vectors (precoder/combiner) to

max(Nrf ,Mrf ) − min(Nrf ,Mrf ) channel (row/column) vectors. This solution gives a higher

spectral efficiency performance than the trivial solution (turning off the extra RF chains) and

enhances the spectral efficiency proportionally with max(Nrf ,Mrf ) − min(Nrf ,Mrf ). To see

this, with out loss of generality, let us assume that Mrf > Nrf therefore H̃ = [A B] where A is

an Nrf ×Nrf matrix and B is Nrf × (Mrf −Nrf ) matrix. The singular values of H̃ are square

roots of the eigenvalues of

H̃H̃H =

AHA AHB

BHA BHB

 .
According to the Cauchy interlacing theorem, if the eigenvalues of H̃H̃H are γ1 ≤ · · · ≤

γMrf
and the eigenvalues of H̃H̃H after removing Mrf − Nrf rows and vectors, i.e., AHA are
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α1 ≤ · · · ≤ αNrf then for all j ≤ Nrf ,

γj ≤ αj ≤ γMrf−Nrf+j.

This means that the Nrf largest eigenvalues of H̃H̃H are larger or at least equal those of AHA

and thereby their associated singular values. This implies that the spectral efficiency as a func-

tion of H̃ resulting from the proposed solution is higher than the spectral efficiency resulting

from the trivial solution or when Nrf = Mrf , i.e., R(H̃) ≥ R(A). This is verified in Fig. 3.15

where we used Algorithm 2 to calculate (wn, fn) pairs for all n ≤ Nrf and the scheme of co-

phasing the extra (Mrf − Nrf ) preocder vectors to (Mrf − Nrf ) channel rows next to the Nrf

rows utilized by Algorithm 2.

3.2.3 Digital Processing

Here, given the analog precoder and combiner, we drive the optimal digital precoder and com-

biner that jointly maximize the spectral efficiency of the system. However, the digital stage can

be designed to optimize more practical performance metrics such as symbol mean square error

and minimum distance between symbol hypotheses [114]. This can be integrated readily into our

framework since the analog stage is built based on the channel diagonalization concept which is

the core machinery for optimizing all these performance metrics. Given the analog precoder and

combiner, the spectral efficiency optimization problem in (3.4) can be written as:

max
FBB ,WBB

log det
(
INs +

(
WH

BBRnRFWBB

)−1
WH

BBH̃FBBFH
BBH̃HWBB

)
,

s.t. trace(FH
RFFRFFBBFH

BB) ≤ p
(3.20)

where RnRF = σ2
nW

H
RFWRF and H̃ = WH

RFHFRF . This problem has closed-form optimal

solutions as given in the following proposition.
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Proposition. 3.2.5. Let the eigenvalue decomposition to (FH
RFFRF )−

1
2 H̃HRn

−1
RF H̃(FH

RFFRF )−
1
2 =

V̄Λ̄V̄H , then the optimal digital precoder and combiner that maximize (3.20) are given by:

FBB? = (FH
RFFRF )−

1
2 V̄NsΓ

WBB? = Rn
−1
RF H̃(FH

RFFRF )−
1
2 V̄NsΓ,

(3.21)

where V̄Ns is the Ns largest eigenvectors of V̄, and Γ is an Ns × NS diagonal matrix that

contains the power fractions of all transmitted streams on its diagonal,

|γii|2 =
(p+

∑Ns
k λ−1

kk

Ns

− 1

λii

)+

, i = 1, · · · , Ns. (3.22)

Proof. To decouple the total power constraint in (3.20), one uses a change of variables FBB =(
FH
RFFRF

)− 1
2 Fbb. This change of variables results in the following problem:

max
FBB ,WBB

log det
(
INs +

(
WH

BBRnRFWBB

)−1
WH

BBH̃(FH
RFFRF )−

1
2 FbbF

H
bb(F

H
RFFRF )−

1
2 H̃HWBB

)
,

s.t. trace(FbbF
H
bb) ≤ p

(3.23)

This problem is equivalent to (3.20) since the change of variables ψ(Fbb) = (FH
RFFRF )−

1
2 Fbb is a

one-to-one mapping function where FRF is assumed to be full rank, thereby ψ−1(ψ(Fbb)) = Fbb.

The cost function in (3.23) can be written as:

R = log det
(
INs + FH

bb(F
H
RFFRF )−

1
2 H̃HRn

− 1
2

RF Ξ
Rn

1
2
RFWBB

Rn
− 1

2
RF H̃(FH

RFFRF )−
1
2 Fbb

)
≤ log det

(
INs + FH

bb(F
H
RFFRF )−

1
2 H̃HRn

−1
RF H̃(FH

RFFRF )−
1
2 Fbb

)
,

(3.24)

where Ξ
Rn

1
2
RFWBB

= Rn

1
2
RFWBB(WH

BBRnRFWBB)−1WH
BBRn

1
2
RF . Ξ

Rn

1
2
RFWBB

� INRF since

it is the orthogonal projector onto the range of Rn

1
2
RFWBB. The upper bound onR is achievable

if Rn

1
2
RFWBB = Rn

− 1
2

RF H̃(FH
RFFRF )−

1
2 Fbb. This yields WBB? = Rn

−1
RF H̃(FH

RFFRF )−
1
2 Fbb.

Substituting with WBB? in (3.23), one gets the water-filling solution obtained from maximizing

the mutual information bound in (3.24) over Fbb, i.e., Fbb? = V̄NsΓ [114].
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We note here that the solutions in (3.21) are not given by the simple SVD of H̃ due to the

coupling between analog and digital precoding in the total power constraint and the contribution

of analog and digital combiners in coloring the Gaussian noise. Moreover, the solutions in (3.21)

lead to diagonalizing the H̃ (removing its dispersed off-diagonal elements with small means)

and the noise covariance matrix WH
BBRnRFWBB. This is in contrast to the digital beamforming

in [15,66,84,90,106,139,145] where only power normalization techniques are considered instead

of accounting for the joint power constraint between analog and digital precoder. Moreover,

this is in contrast to the digital combining in [15, 34, 120] where MMSE filter is considered (or

decoupling the transmitter and receiver designs) instead of the joint precoding and combining

design.

3.3 Extensions to Multi-User cases

The most adopted multi-user case in both theoretical works and real-life applications is the broad-

cast channel. We consider three different RF architectures of the K-user MIMO broach channel

which show the different extreme points of the RF connections. The first is where the base sta-

tion and all users sub-array RF structures. The second is where the base station considers the

sub-array RF structure and all users have fully-connected RF structures. The third is where all

network’s terminals have RF structures.

3.3.1 System Model

In theK-user MIMO broadcast setup, we assume that the base station (transmitting terminal) has

M -element antenna and KMrf < M RF chains while each user k , ∈ {1, · · · , K} is equipped

(receiving terminal) with an Nk-element antenna and Nrf,k < Nk RF chains. RF chains at any

terminal can be either connected to all antenna elements or to disjoint groups of antenna elements

constructing either fully or partially-connected RF structure, respectively. We assume that the

base station sends Ns < Mrf independent data streams to support each user with Ns < Nrf,k
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stream per channel use. Since the number of RF chains at both sides is limited, we considered

the hybrid beamforming architecture at both sides. Particularly, the base station pre-processes

an KNs × 1 data vector s at baseband using an KMrf ×KNs digital precoder FBB and then

pre-processes them at RF using an M×KMrf analog precoder FRF . As a result, the transmitted

data vector is:

x = FRFFBBs =
K∑
k=1

FRFFBB,ksk, (3.25)

where FBB = [FBB,1, · · · ,FBB,K ] and s = [sT1 , · · · , sTK ]T . Accordingly, the received signal at

user k is:

yk = HkFRFFBB,ksk + Hk

K∑
l=1,l 6=k

FRFFBB,lsl + nk, (3.26)

where Hk ∈ CNk×M the channel matrix of user k and nk ∈ CNk×1 is the white Gaussian noise

vector.

Analogous to the transmitter side, each user post-processes the received vector at RF using an

Nk ×Nrf,k analog combiner WRF,k and then post-processes it at baseband using an Nrf,k ×Ns

digital combiner, i.e., WBB,k, and therefore, the processed received signal vector at user k is:

s̃k =

Desired signal of user k︷ ︸︸ ︷
WH

BB,kW
H
RF,kHkFRFFBB,ksk + WH

BB,kW
H
RF,kHk

K∑
l=1,l 6=k

FRFFBB,lsl︸ ︷︷ ︸
Inter-user interference

+ WH
BB,kW

H
RF,knk︸ ︷︷ ︸

Gaussian noise at baseband

,

(3.27)

A generic block diagram of the K-user MIMO broadcast channel with hybrid beamforming

structure is depicted in Fig. 3.4.

The spectral efficiency of user k assuming Gaussian signaling is:

Rk = log det(INs + R−1
i+n,kW

H
BB,kW

H
RF,kHkFRFFBB,kF

H
BB,kF

H
RFHH

k WRF,kWBB,k), (3.28)
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Figure 3.4: K-user MIMO broadcast channel with hybrid beamforming structure.

where Ri+n,k = WH
BB,kW

H
RF,kHk

( K∑
l=1,l 6=k

FRFFBB,lF
H
BB,lF

H
RF

)
HH
k WRF,kWBB,k + σ2

nW
H
BB,k

WH
RF,kWRF,kWBB,k is the interference plus noise covariance matrix of user k. Similar to the

single-user case, we consider maximizing the sum of the spectral efficiencies under total average

power constraint and the RF constraints of analog precoders and combiners where the problem

of interest is formalized as:

max
FBB ,WBB,k

K∑
k=1

Rk

s.t. |fRF (i,j)| =
1√
Msa

∀i, j, |wRF,k(u,l)| =
1√
Nsa

∀u, l, k∑
k

trace(FRFFBB,kF
H
BB,kF

H
RF ) ≤ p,

(3.29)

This problem is non-convex and it is extremely challenging to find its optimal solutions due

to the difficult nature of the RF constraints. We are interested in securing good sub-optimal
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and low complexity solutions to this problem under different RF structures. Before proceeding

to the proposed solutions, it is worth mentioning that the optimal linear fully-digital solution

that maximizes (3.29) while relaxing the RF hardware constraints is the block diagonalization

scheme [125]. The block diagonalization scheme diagonalizes the augmented matrix of the

multi-user channels, i.e., Haug = [HT
1 ,H

T
2 , · · · ,HT

K ]T , over two stages. The first stage is to

remove the inter-user interference by transmitting each user’s signals over the common null space

of other users’ channels which leads to block diagonalizing Haug. This stage requires calculating

the SVD of a (K − 1)N ×M matrix for K times. The second is to remove the inter-stream

interference at each user by diagonalizing each block on the main diagonal of Haug which leads

to completely converting Haug into KNs parallel channels. This stage requires to calculate the

SVD of an N × Ns matrix for K times. However, adopting this scheme in mmWave massive

MIMO systems is highly avoided due to its high computational complexity and inapplicability

to hybrid structures.

Taking our cue from the block diagonalization scheme, the proposed solutions are based on

diagonalizing the channel over two stages where the analog stage is aiming at condensing the

elements on the block diagonal of the augmented matrix of the multi-user effective channels

through harvesting the antenna array gain offered by the massive MIMO channel whereas the

digital one aims at completely canceling out the inter-stream and inter-user interference and

ultimately maximizing the sum of the users’ achievable rates.

3.3.2 Analog Processing

Similar to the single-user case, the main purpose of the analog processing is to harden/condense

the diagonal elements of the blocks on the diagonal of the augmented matrix of the effective chan-

nels after the analog process, i.e., H̃aug = WH
RFHaugFRF by utilizing appropriate co-phasing

(adding coherently using phase-only control) techniques while dispersing the elements of the

off-diagonal blocks. However, the various RF structures of analog processing results in different

structures of H̃aug that require different treatments. In the following subsections, we show how

to handle the various RF structures to achieve that goal.
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Figure 3.5: K-user MIMO broadcast channel with fully-connected RF structure.

Fully-connected RF structures at all terminals

In this setup, all the network’s terminals (base station and K users) consider the fully-connected

RF structure where each RF chain is connected to all the antenna elements as indicated in Fig.

3.5.

Abstracting the digital processing, one can write the augmented matrix of the multi-user

55



effective channels after analog processing as:

H̃aug =


WH

RF,1 0 · · · 0

0 WH
RF,2 · · · 0

...
... . . . ...

0 0 · · · WH
RF,K




H1

H2

...

HK


[
FRF,1,FRF,2, · · · ,FRF,K

]
(3.30)

=



WH
RF,1H1FRF,1 WH

RF,1H1FRF,2 · · · WH
RF,1H1FRF,K

WH
RF,2H2FRF,1 WH

RF,2H2FRF,2 · · · WH
RF,2H2FRF,K

...
... . . . ...

WH
RF,KHKFRF,1 WH

RF,KHKFRF,2 · · · WH
RF,KHKFRF,K


=


H̃1

H̃2

...

H̃K



Due to the distributed nature of the reception processing at users, the augmented analog

combiner WRF has a block diagonal structure as shown in (3.30). This allows for separating the

multi-user design problem of the analog processing to K independent lower dimensional single-

user analog processing problems. Particularly, we formalize the analog processing problems for

k = 1, · · · , K as:

maximize
FRF,k,WRF,k

Nrf∑
n=1

|wRF,k
H
(n)HkfRF,k(n)|

2

subject to |fRF,k(i,j)| =
1√
M
∀i, j, rank(FRF,k) = Nrf

|wRF,k(u,l)| =
1√
N
∀u, l, rank(WRF,k) = Nrf

(3.31)

where fRF,k(n) and wRF,k(n) are the nth columns of FRF,k, and WRF,k, respectively. Fortunately,

these problems have the same formulation of the single-user analog processing problem in (3.6)

and can be solved in parallel to obtain (FRF,k,WRF,k) for k = 1, · · ·K using Algorithm 1.
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Figure 3.6: K-user MIMO broadcast channel with partially-connected RF structure.

Partially-connected RF structures at all terminals

In this setup, all the network’s terminals (base station and K users) consider the partially-

connected RF structure where each RF chain is either connected to Msa antenna elements at

base station or Nsa antenna elements at users as depicted in Fig. 3.6.

Since the partially-connected RF structure is considered at all terminals, the analog precoder

and combiners have block diagonal structure. This naturally divides Haug into K2NrfMrf sub-

blocks of size Nsa × Msa where each block of H̃aug in (3.30) is divided into NrfMrf sub-

blocks. This directly allows for separating the multi-user analog processing problem to KNrf

independent single-user single stream analog processing problems. Particularly, we formalize

the analog processing problems n = 1, · · · , KNrf as:

maximize
fRF (n),wRF (n)

|wRF
H
(n)H(n,n)fRF (n)|2

subject to |fRF (i,n)| =
1√
Msa

∀i, |wRF (j,n)| =
1√
Nsa

∀j,
(3.32)
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where H(n,n) is the nth sub-block on the diagonal of the Haug and fRF (n),wRF (n) are non-zero

parts of the nth columns of the FRF and WRF , respectively. Fortunately, this problem has the

same formulation of the analog processing of single-user sub-array structure in (3.18), thereby

solving it using Algorithm 2 to obtain the beamforming pairs (fRF (n),wRF (n)) ∀k.

Mixed partially and fully-connected RF structure

In this subsection, we limit out discussion to the setup where the base station has partially-

connected RF structure while users have fully-connected ones, as indicated in Fig. 3.7, since

other setups come readily based on this setup.

The sub-array RF structure of the analog precoder divides each user’s channel matrix into

Mrf sub-blocks of sizeN×Msa, i.e., Hk = [Hk(1),Hk(2), · · · ,Hk(Mrf )], or equivalently, divides

each block of H̃aug in (3.30) into Mrf sub-blocks. Therefore, the (k, k) block of H̃aug in (3.30)

can be written as:

WH
RF,kHkFRF,k =


wRF,k

H
(1)Hk(1)fRF,k(1) · · · wRF,k

H
(1)Hk(Mrf )fRF,k(Mrf )

... . . . ...

wRF,k
H
(Nrf )Hk(1)fRF,k(1) · · · wRF,k

H
(Nrf )Hk(Mrf )fRF,k(Mrf )

 (3.33)

Similar to previous formulations, the analog processing problems are given by:

maximize
fRF,k(n)

,wRF,k(n)

|wRF,k
H
(n)Hk(n)fRF,k(n)|

2

subject to |fRF,k(i,n)| =
1√
Msa

∀i, |wRF,k(j,n)| =
1√
N
∀j,

(3.34)

Similar to problems in (3.18) and (3.32), this problem can be solved using Algorithm 2 to

obtain the beamforming pairs (fRF,k(n),wRF,k(n))∀n, k.
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Figure 3.7: K-user MIMO broadcast channel with mixed partially and fully-connected RF
structures.

3.3.3 Digital Processing

After the analog processing stage, the augmented matrix of the effective channels H̃aug has much

smaller dimensions compared to Haug. Moreover, digital processing has only power constraints

where digital precoder and combiners have variable magnitude and phase beamforming weights

(entries). Hence, the digital processing stage can be designed based on the conventional fully-

digital schemes on traditional MIMO literature.

Given the analog precoder and combiners, the processed received signal is given as:

s̃k =

Desired signal of user k + Inter-stream interference︷ ︸︸ ︷
WH

BB,kH̃kFBB,ksk + WH
BB,kH̃k

K∑
l=1,l 6=k

FBB,lsl︸ ︷︷ ︸
Inter-user interference

+ WH
BB,kW

H
RF,knk︸ ︷︷ ︸

Gaussian noise at baseband

,

(3.35)

This equation shows that in contrast to the single-user case where analog processing alleviates
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the effect of inter-stream interference, it does not harness the inter-user interference (the main

detrimental factor in multi-user case). This necessitates performing the digital processing in two

stages that remove the inter-user interference and inter-stream interference successively while

maximizing the sum spectral efficiencies of users.

Using the block-diagonalization strategy to completely remove the inter-user interfere, the

digital precoder of user k, FBB,k is designed to lie in the null spaces of other users’ effective

channels, i.e., H̃iFBB,k,∀i 6= k. Let H̃k/ = [H̃T
1 , · · · , H̃T

k−1, H̃
T
k+1, · · · , H̃T

K ]T , then FBB,k ∈
Nul H̃k/. This comes readily based on the SVD of H̃k/ = Uk/Σk/[V

1
k/,V

0
k/] such that FBB,k ∈

Col V
(0)
k/ ∀k, i.e., FBB,k = V

(0)
k/ F̃BB,k where V

(0)
k/ is the collection of the singular vectors that are

associated with zero singular values. When applying these solutions to H̃aug, they completely

remove the inter-user interference such that the augmented matrix of the effective channel after

the first digital precoding stage is a block diagonal matrix and given as:

˜̃Haug =


H̃H

1 V
(0)
1/ 0 · · · 0

0 H̃H
2 V

(0)
2/ · · · 0

...
... . . . ...

0 0 · · · H̃H
KV

(0)
K/

 =


˜̃H1 0 · · · 0

0 ˜̃H2 · · · 0
...

... . . . ...

0 0 · · · ˜̃HK

 (3.36)

This converts theK-user MIMO broadcast channels in toK parallel MIMO single-user chan-

nels with a joint total average power constraint. Therefore, the spectral efficiency maximization

problem in (3.29) is finally simplified to:

max
F̃BB,k,WBB,k

K∑
k=1

log det
(
INs +

(
WH

BB,kRnRFWBB,k

)−1
WH

BB,k
˜̃HkF̃BB,kF̃

H
BB,k

˜̃HkWBB,k

)
,

s.t.
∑
k

trace(FRFFBB,kF
H
BB,kF

H
RF ) ≤ p,

(3.37)

where RnRF,k = σ2
nW

H
RF,kWRF,k. This problem has a closed-form optimal solutions as

given in the following proposition.
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Proposition. 3.3.1. Let ˜̃VkNs is the Ns largest eigenvectors of

(
V

(0)
k/

H
FH
RFFRFV

(0)
k/

)− 1
2 ˜̃HH

k Rn
−1
RF

˜̃Hk

(
V

(0)
k/

H
FH
RFFRFV

(0)
k/

)− 1
2 = ˜̃Vk

˜̃Λk
˜̃Vk

H

,

then the optimal digital precoders and combiners that maximize (3.37) are given as:

F̃BB,k? = (V
(0)
k/

H
FH
RFFRFV

(0)
k/ )−

1
2

˜̃VkNsΓk

WBB,k? = Rn
−1
RF,k

˜̃Hk

(
V

(0)
k/

H
FH
RFFRFV

(0)
k/

)− 1
2 ˜̃VkNsΓk,

(3.38)

where

Γ =


Γ1 0 · · · 0

0 Γ2 · · · 0
...

... . . . ...

0 0 · · · ΓK

 ,
is an KNs × KNs diagonal matrix that contain the power fractions of all transmitted streams

on its diagonal such that its ith diagonal entries is given as:

|γii|2 =
(p+

∑Ns
k λ−1

kk

Ns

− 1

λii

)+

, i = 1, · · · , KNs, (3.39)

and λii is the ith diagonal entry of

Λ =


Λ1 0 · · · 0

0 Λ2 · · · 0
...

... . . . ...

0 0 · · · ΛK

 .

Proof. The proof comes readily following the same approach that we used in the single user-case

in Proposition 3.2.5.
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3.4 Extensions to mmWave Wideband MIMO-OFDM chan-

nels

In contrast to the previous sections where we consider narrowband massive MIMO systems,

here, we extend our investigation to the hybrid beamforming designs for wideband systems.

Many envisioned applications, which utilize mmWave massive MIMO systems, are expected to

operate over broadband channels which are typically characterized as frequency-selective chan-

nels [82]. This necessitates considering frequency-selectivity mitigation techniques such as or-

thogonal frequency division multiplexing (OFDM). Considering OFDM modulation results in a

new challenge to the design of hybrid beamformers where common analog precoder and com-

biner (post-IFFT and pre-FFT processing, respectively) are shared across all subcarriers whereas

digital precoders and combiners are different among subcarriers. With this consideration, the

received discrete base band signal at subcarrier u after OFDM modulation, demodulation and

hybrid processing is represented by [7, 66, 100, 121, 145]:

s̃[u] =
√
ρWH

BB[u]WH
RFH[u]FRFFBB[u]s[u] + WH

BB[u]WH
RFn[u], (3.40)

where u ∈ {0, · · · , U}, U is the total number of subcarries and H[u] is the frequency domain

channel matrix for the uth subcarrier. Following the same rationale of the proposed design ap-

proach for the narrowband hybrid processing in previous sections, the analog beamforming de-

sign in MIMO-OFDM system is formulated as:

maximize
FRF ,WRF

1

U

U∑
u

Nrf∑
n=1

|wH
n H[u]fn|2

subject to FRF ∈ UM×Nrf ,WRF ∈ UN×Nrf

(3.41)

Obtaining optimal solutions for this problem is challenging since the problem is non convex

even for narrowband scenario. By comparing the problem in (3.41) with that ones in (3.6) and
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(3.17) for the narrowband scenarios, it is clear that they bear similarities except that the analog

precoder and combiner have to be optimized commonly for all subcarriers. Tackling this dif-

ficulty, we derive a lower bound on the objective function in (3.41). The lower bound comes

readily using Jensen’s inequality as:

1

U

U∑
u

Nrf∑
n=1

|wH
n H[u]fn|2

(a)

≥
Nrf∑
n=1

|wH
n H̃fn|2 (3.42)

where H̃ =
1

U

U∑
u

H[k] and (3.42) is due to the convexity of |wH
n H[u]fn|2 in terms of H[u] such

that for any convex function f(), if
∑

i βi = 1, then
∑

i βif(Xi) ≥ f(
∑

i βiXi). Accordingly,

we propose to design the analog for the frequency-selective channels such that it maximizes the

lower bound in (3.42) and this gives

maximize
FRF ,WRF

Nrf∑
n=1

|wH
n H̃fn|2

subject to FRF ∈ UM×Nrf ,WRF ∈ UN×Nrf

(3.43)

This optimization problem is exactly the same as the frequency-flat analog beamforming prob-

lem in (3.6) except that, here, H̃ =
1

U

U∑
u

H[u]. Consequently, the proposed techniques for

the fully-connected and sub-array frequency-flat analog beamforming in Section 1.2 are appli-

cable to those of frequency-selective analog beamforming, thereby employing Algorithm 1 and

Algorithms 3.2.1 to calculate the fully-connected and subarray analog beamformer for the fre-

quency selective scenario by passing H̃ instead of H to their procedures. It is worth mentioning

that transforming the analog precoding design problem for frequency-selective channels into

analog precoding design problem for flat-fading channels has been considered in many prior

works [7,66,100,121,145] and showed competitive performance under different metrics such as

spectral efficiency [7,121,145] and MMSE [66,145] based on utilizing a different transformation

such as 1
U

∑
u H[u]HH[u] [7, 66, 121, 145].
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3.5 Computational Complexity Analysis

In this section, we provide comprehensive computational complexity analysis of the proposed al-

gorithms, i.e., Algorithms 1, and 2 followed by the digital stage, and those of the most prominent

prior works in Tables 3.2 and 3.3 in terms of the number of floating points operations (flops). We

follow suit the approach of [40] in counting the number of flops. However, before proceeding

to our computational complexity analysis, we discuss the complexity of computing the largest

Ns � min(N,M) right and left singular vectors (known as truncated (partial) SVD). This is

because that the truncated SVD is widely adopted in the literature on hybrid beamforming where

it is a prerequisite step to the majority of hybrid solutions [82].

3.5.1 Computational Complexity of SVD

The canonical way of computing the truncated (partial) SVD is to compute the full SVD and then

retain the first k singular values and vectors. The full SVD of an N ×M matrix is computed

numerically by a two-step procedure where the matrix is first reduced to a bidiagonal matrix and

then compute the SVD of the bidiagonal matrix. The first step requires O(M2N) floating-point

operations (flops) and the second one takes O(N2) flops (assuming M > N ). This makes the

total cost of the full SVD is O(M2N) flops. The exact computational complexity of calculating

the full SVD depends on the utilized algorithm and the required parts of the SVD. For instance,

the SVD requires 4MN2 + 8N3 flops for computing V (required for obtaining the optimal

beamformer) [40]. Extensive research efforts have been exerted aiming at providing less complex

partial SVD. All these efforts furnish different sub-optimal solutions. These algorithms can

be listed in two main approaches based on the nature of their algorithmic procedures, namely,

deterministic and randomized approaches.

The majority of deterministic approximate partial SVD algorithms are obtained by com-

puting partial QR factorization and postprocess the factors [58] such as truncated pivoted QR

decomposition (variations of orthogonal triangularization by Householder transformation) [40]

and rank revealing QR factorization [40, 42]. These techniques require O(MNk) flops. Effi-
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cient algorithms, which are based on Krylov subspace methods such as Lanczos and Arnoldi

techniques, can be used to compute partial SVD for large sparse matrices. Although these algo-

rithms have computational complexity lower than or comparable to the partial QR-based ones,

they are less robust and require complete reorthogonalization (or performing only local orthogo-

nalization at every Lanczos steps) in order to maintain the orthogonality between the computed

Lanczos vectors [17]. The most effective alternatives to the partial SVD among all these deter-

ministic algorithms are the ones based on rank revealing QR (RRQR) factorization where their

matrix approximations are almost as good as those derived from truncated full SVD ones [58].

The computational complexity of these algorithms is slightly larger than the pivoted QR-based

and Krylov subspace algorithms. The exact computation complexity RRQR-based partial SVD

in [42] is 4MNk + (3M2 + 2N2)k − 2(M + N)k + (3N + 4M)k2 + 9k3. Several algorithms

have been developed to compute RRQR and strong RRQR aiming at gaining more accuracy and

robustness. The value of their approximation errors depends on the values of functions bounded

by low-degree polynomials in k and N . The accuracy and complexities of different algorithms

are tabulated in [42].

On the other hand, several randomized algorithms compute the truncated SVD. These algo-

rithms have been shown to provide approximations that have tolerable errors for some applica-

tions such as data mining and principal component analysis (PCA) [58]. However, the additive

approximations’ errors are prone to be arbitrarily large for the matrices with sufficiently large

spectral and Frobenius norms. Particularly, the most accurate one has an approximation error

as high as 11
√
k(M +N)σk+1. Unfortunately, the accuracy of these schemes is sometimes in-

adequate in many applications [43]. The main idea of these randomized algorithms is to first

construct a low-dimensional subspace that captures the action of the matrix then restricts the

matrix to this subspace and compute a standard SVD of the reduced matrix. In this way, the

computation is subdivided between two stages where, in the first, simple methods such as ran-

dom columns/rows selection and random projection. The computational complexity of these

techniques can be as low as O(MN log(k)). This comes at the price of higher approximation

errors, especially where they have additive errors that could be arbitrarily large for matrices with

sufficiently large ||A||2F or ||A||22 [43]. Generally speaking, the ones that are based on random
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projection have smaller approximation errors than those that are based on random subset se-

lection [43]. The main idea of random projection algorithms is to capture the subspace of the

matrix being factorized, i.e., A, by multiplying A by a random matrix Ω where its entries are

drawn from random distributions such as Gaussian, uniform, and Bernoulli. One prominent

random projection scheme is the one utilizes the Gaussian random matrix Ω developed in [43]

which is called randomized SVD. The exact computational complexity of the randomized SVD

is 2(2q + 2)MNk + 4N2k + (2M + 10N)k2 + 25
3
k3 flops for computing q power iterations in

large dimensions, one QR decomposition and one SVD in much smaller dimensions [43]. The

average error in computing the partial SVD using this algorithm is bounded by [43]:

E||A−UΣkV
∗||2 ≤ σk+1 +

[
1 + 4

√
2 min{M,N}

k − 1

] 1
2q+1

σk+1 (3.44)

A comparison between the most prominent schemes is presented in Table 3.1 and Fig. 3.8.

Although the truncated SVD is the most accurate low-rank approximation, its high computational

complexity is a huge burden in high dimensions applications. On the other hand, the randomized

SVD algorithms have the lowest computational complexity for calculating the truncated SVD.

However, they may not perform well in some cases, especially, when the singular values of the

matrix being factorized decay slowly [43]. Furthermore, due to their random nature, these meth-

ods are not exact and any error control they can offer, such as power iteration, is probabilistic

with a non-negligible probability of failure in some cases [58]. In contrast, the RRQR-based par-

tial SVD algorithm provides accurate approximation in comparison to the randomized schemes

and tolerable computational complexity in comparison to the truncated SVD. Therefore, we rec-

ommend using the RRQR-based partial SVD algorithm in massive MIMO applications in order

to reap both gains, i.e., high accuracy and medium complexity. However, in our complexity

analysis, we adopt the computational complexity cost of the partial SVD based on a randomized

approach [43]. This means that we give the advantage to the prior works of hybrid beamform-

ing schemes over the proposed ones since calculating the partial SVD based on the randomized

approach has the lowest computation complexity. We note that the calculating partial SVD is an

essential step for the majority of hybrid beamforming techniques and we totally avoid it in the

66



proposed schemes.

Scheme Pros Cons Number of flops Example 16× 64, Ns = 3

Truncated SVD [40] Exact and Robust high complexity 4m2n+ 8mn2 + 9n3 430080

RRQR-based [58] very accurate medium complexity
4MNk + (3M2 + 2N2)k − 2(M +N)k

53187
+(3N + 4M)k2 + 9k3

Randomized [43] low complexity low accuracy
2(2q + 2)MNk + 4N2k

41583
+(2M + 10N)k2 + 23

3
k3

Table 3.1: Computational complexity comparison of partial (trunctated) SVD algorithms where

k = Ns and q = 2.

Figure 3.8: Spectral efficiency comparison of different truncated SVD algorithms

3.5.2 Computational Complexity of Hybrid Beamfroming Schemes

In our analysis, we assume real arithmetic operations require 1 flop while complex addition

and multiplication require 2 and 6 flops [40, p. 36], respectively. Moreover, we assume that

the complex versions of matrix computation algorithms require about four times the number of

flops as the real ones since the complex versions are fairly straightforward driven from the real
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ones and involve approximately as many complex multiplications as additions [40, p. 256]. For

instance, the SVD of anN×M dense matrix requires 4M2N+8MN2+9N3 flops for computing

U, σ, and V, and consequently, its complex version executed in 16M2N+32MN2 +36N3 flops

[40, p. 243]. In our computational complexity analysis, we consider the following calculations:

• An approximate truncated (partial) SVD of complex large dimensions low rank N ×M

matrix requires 48MNNs + 16N2Ns − (8M + 6N)Ns + (24M + 32N)N2
s + 92

3
N3
s flops

using the randomized SVD algorithm developed in [43]. This calculation is made exact

by counting the complex computations of randomized SVD procedure [43, p. 9]. Al-

though, this algorithm is less accurate than classical methods of truncating deterministic

SVD algorithms, its computational complexity is much smaller than the ones of classi-

cal methods [43, 58]. However, this gives the advantage to the prior works that requires

the SVD of the massive MIMO channel as a perquisite step for their hybrid beamforming

procedures [15, 34, 66, 84, 90, 106, 120, 145, 148].

• Multiplication of N ×M and M ×Nrf complex matrices requires (8M − 2)NNrf flops.

• Full SVD of complex low dimensions dense Nrf ×Mrf matrix is executed in 16M2
rfNrf +

32MrfN
2
rf + 36N3

rf flops [40, p. 439].

• The Moore-Penrose pseudo inverse and the inverse of complex matrices are calculated

based of QR decomposition such that A† = R−1QH . The Householder QR of a N ×M
complex matrix requires at least 8MN2 − 8

3
N3 for computing R and 16MNNs − 8(M +

Ns)N2 + 16
3
N3 for computing Ns orthonormal columns from Q (thin QR) [40].

Based on these computations, we calculate and list out the complexity of computing the main

steps of many hybrid beamforming schemes in Tables 3.2 and 3.3. These comparison tables

give deeper understanding of the computations that dominate the complexities of the hybrid

beamforming schemes.

Fig. 3.9 shows the asymptotic behavior of the computation complexity of the state-of-the-art

schemes for the fully-connected structure, depicted in Table 3.2, along with the proposed scheme,
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Scheme Operation Number of flops
16× 64, Ns = 4
K = Nrf = 6

Proposed
Preprocessing N/A 0

84128
Analog TX Step 2 Algorithm 1 6MNrf

scheme Analog RX Step 3 Algorithm 1 M(8N − 2)Nrf + 6NNrf
fully-connected Digital SVD(H̃) 16M2

rfNrf + 32MrfN
2
rf + 36N3

rf

Algorithm [84]
Preprocessing SVD(H)

48MNNs + 16N2Ns − (8M + 6N)Ns

299450+(24M + 32N)N2
s +

92N3
s

3
Analog arctan & Multi. 12MMrf + 12NNrf
Digital SVD(H̃) 16M2

rfNrf + 32MrfN
2
rf + 36N3

rf

Algorithm [145]

Pre-processing SVD(H)
48MNNs + 16N2Ns − (8M + 6N)Ns

459050

+(24M + 32N)N2
s +

92N3
s

3

Analog arctan & Mat. Multi.
K
(
MNrf (8Ms − 2) + 6MMrf

)
NNrf (8Ns − 2) + 6NNrf

)
Digital TX SVD(FHoptFRF ) K

(
16M2

rfNs + 32MrfN
2
s + 36N3

s )

Digital RX SVD(WH
optWRF ) K

(
16N2

rfNs + 32NrfN
2
s + 36N3

s

)
Post-processing Normalization MNs(8Mrf − 2) +NNs(8Nrf − 2)

Algorithm [15]

Preprocessing SVD(H)
48MNNs + 16N2Ns − (8M + 6N)Ns

1064800

+(24M + 32N)N2
s +

92N3
s

3

Analog
Mat. Multi. K

(
(8N − 2)LNs + (8M − 2)LNs

)
sorting K

(
Mrf logM +Nrf logN

)
Digital Pseudo-inverse

K
(
24MM2

rf − 2M2
rf −

12M3
rf

3

+24NN2
rf − 2N2

rf +
12N3

rf

3

)
Normalization K

(
MNs(8Mrf − 2) +NNs(8Nrf − 2)

)

Algorithm [90]

Preprocessing SVD(H)
48MNNs + 16N2Ns − (8M + 6N)Ns

823750
+(24M + 32N)N2

s +
92N3

s
3

Analog Convex QP K
( 4M3

rf

3
M +

4N3
rf

3
N
)

Digital Least Squares
K
(
24MM2

rf − 2M2
rf −

12M3
rf

3

+24NN2
rf − 2N2

rf +
12N3

rf

3

)
Postprocessing Normalization MNs(8Mrf − 2) +NNs(8Nrf − 2)

Algorithm [106]

Preprocessing SVD(H)
48MNNs + 16N2Ns − (8M + 6N)Ns

804040

+(24M + 32N)N2
s +

92N3
s

3

Analog arctan & Mat. Multi.
K
(
MNs(8Mrf − 2) + 6MMrf

)
+NNs(8Nrf − 2) + 6NNrf

)
Mat. Inverse K

(32M3
rf

3
+

32N3
rf

3

)
Digital Least Squares

K
(
24MM2

rf − 2M2
rf −

12M3
rf

3

+24NN2
rf − 2N2

rf +
12N3

rf

3

)
Table 3.2: Computational complexity comparison of different hybrid processing schemes with

fully-connected antenna structures
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Scheme Operation Number of flops
32× 128, Ns = 6
K = Nrf = 8

Proposed
Pre-processing N/A 0

Analog TX Step 5 Algorithm 2 K
(
Msa(8Nsa − 2)Mrf + 6MsaMrf

)
111360scheme Analog RX Step 6 Algorithm 2 K

(
Nsa(8Msa − 2)Nrf + 6NsaNrf )

sub-array Digital SVD(H̃) 16M2
rfNrf + 32MrfN

2
rf + 36N3

rf

Algorithm [34]
Pre-processing N/A 0

588646
[148] Analog

Mat. Inversion K
( 32M3

rf

3
+

32N3
rf

3

)
Mat. Multiplication K

(
2MMrf (8Nrf − 2) + 2NMrf (8Nrf − 2)

)
partial SVD K(16MsaN2

sa + 23N2
sa + 16NsaM2

sa)
Digital Full SVD(H̃) 16M2

rfNrf + 32MrfN
2
rf + 36N3

rf

Algorithm [145]
Pre-processing SVD (H)

48MNNs + 16N2Ns − (8M + 6N)Ns

18869924+(24M + 32N)N2
s +

92N3
s

3
Analog Mat. Multi. K

(
MNs(8Mrf − 2) +NNs(8Nrf − 2)

)
Digital SDR K

(
16
3
M3
rfNrf + 8N3

rfMrf

)
[75]

Table 3.3: Complexity comparison of hybrid processing schemes with sub-array structures.

shown in red dotted lines with circles. Fig. 3.9 illustrates that the computational complexity of

the proposed algorithm for the fully-connected structure is significantly lower than the ones of

prior art schemes. For instance, it is only 20% of the computational complexity of the one that

has the lowest computational complexity reported in the literature which is shown in yellow

dotted line with triangles.

Fig. 3.10 shows the asymptotic behavior of the computational complexity of the proposed

scheme for sub-array structures, shown in blue dotted lines with circles, in comparison with the

ones of the prior art schemes that are depicted in Table 3.3. It is clear that the complexity of

the proposed scheme is significantly lower compared to the state-of-the-art schemes in [145]

and [34, 148] (less than 20 and 50 times, respectively).
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Figure 3.9: Asymptotic Computational complexity comparison of hybrid beamforming schemes

with fully-connected RF structures

Figure 3.10: Asymptotic Computational complexity comparison of hybrid beamforming

schemes with Partially-connected RF structures

Finally, we note that the computation complexity of the K-user hybrid processing techniques
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with different RF structures is calculated based on the ones of the single-user cases. Particularly,

the complexity of the analog processing in the multi-user case is K complexity of Algorithm 1

or Algorithm 2 depending on the used RF structure. On the other hand, the complexity of digital

processing in the multi-user case is K times the complexity of single-user ones in addition to

the complexity of K SVD of a (K − 1)Nrf ×Mrf matrix. We also note that the computation

complexity of wideband hybrid processing techniques with U -point OFDM is calculated based

on the ones of narrowband hybrid beamforming schemes. Particularly, the complexity of the ana-

log processing in wideband scenarios is the complexity of the analog processing in narrowband

scenarios in addition to the complexity of computing 1
U

∑
u H[u]HH[u]. On the other hand, the

complexity of digital processing in wideband scenarios is U times the complexity in narrowband

ones.

3.6 Simulation Results

In this section, we evaluate the performance of the proposed schemes presented in the aforemen-

tioned section in terms of the spectral efficiency. All the plotted curves in Fig. 3.11 - Fig. 3.16 are

the spectral efficiency averaged over 105 channel realizations. In these simulations, we consider

both propagation environments discussed in Section 1.1. For the sparse scattering environment,

we consider M -element and N -element uniform linear arrays (ULA) at both the transmitter and

receiver, respectively. Moreover, we assume that the angles of departure and arrival are i.i.d.

randomly Laplacian distributed. The means of the angles of departure and arrival are assumed to

be uniformly-distributed between 0 and 2π, and the angular spreads are assumed to be constant

within the cluster and has values of 7.5◦ [15, 84, 90]. Further, we set the number of iterations

equal to the number of RF chains in all the iterative algorithms in [34, 90, 106, 120, 145] to be

fairly compared with compressed sensing based schemes such as the spatially sparse algorithm

in [15] which has fixed number of iterations equals to Nrf . Furthermore, the initial points for

all iterative schemes have been chosen randomly, where the phases of the entries are uniformly

distributed. As a result, the spectral efficiency of some iterative hybrid processing schemes might
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be slightly less than what has been reported in the literature.

In Figs. 3.11 and 3.12, we evaluate the spectral efficiency of five different processing schemes

with fully-connected antenna array structure; namely, the optimal SVD-based fully-digital solu-

tion, shown in black solid line, the proposed scheme, shown in red dotted line with circles,

spatially sparse hybrid precoding based on OMP [15], shown in blue dotted line with stars, itera-

tive spectral efficiency maximization [120], shown in violet dotted lines with squares, Frobenius

distance alternating minimization [145], shown in green dotted line with rhombuses, and lastly

maximizing correlation with the optimal precoder [84], shown in yellow dotted line with trian-

gles.

The spectral efficiency performance of Algorithm 1 is compared in Fig. 3.11 against the most

prominent hybrid processing schemes and optimal fully-digital scheme when Ns = 2 and 4 data

streams are transmitted over 64 × 16 Rayleigh MIMO system with Nrf = 3 and 6 RF chains,

respectively. Fig. 3.11 shows that the spectral efficiency of the proposed scheme comes very

close to those of prior works and with a marginal SNR gap to the optimal scheme. Moreover, it

outperforms the scheme which is based on maximizing correlation with optimal precoder [84].

Despite increasing the number of RF chains and the number of the data streams, i.e., 6 and 4,

respectively, the spectral efficiency achieved by the proposed scheme is almost doubled while the

SNR gap is marginally increased. This marginal increase in the SNR gap to the optimal precoder

can be compensated by using more RF chains. We note here that the spatially sparse hybrid

processing scheme [15] is excluded from this figure since it is mainly developed to work in sparse

environment such as mmWave channels where it suffers from significant spectral efficiency loss

over rich scattering environments [84, 90]. Moreover, the hybrid processing schemes in [90]

and [106] are excluded from Figs. 3.11 and 3.12 for the sake of clarity and better presentation

since their spectral efficiency curves come on top of the other.

In Fig. 3.12, the spectral efficiency of all the hybrid processing schemes is evaluated over a

64×16 millimeter wave channel. Fig. 3.12 shows that there is a slight degradation in the spectral

efficiency gap between the proposed scheme and the optimal scheme in comparison to Fig. 3.11.

This degradation is expected since the correlation of the spatially sparse channel, simulated in
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Figure 3.11: Spectral efficiency comparison of fully-connected hybrid processing schemes over

64× 16 Rayleigh fading channel

Figure 3.12: Spectral efficiency comparison of fully-connected hybrid processing schemes over

64× 16 mmWave with Ncl = 8, Nray = 5
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Figure 3.13: Spectral efficiency comparison of partially-connected hybrid processing schemes

over mmWave with Ncl = 4, Nray = 5

Fig. 3.12, degenerates the hardening property of massive MIMO channels (stated in Remark 1).

In Fig. 3.13 and 3.14, we evaluate the spectral efficiency of four different precoding and com-

bining schemes with sub-array antenna structure; namely, the optimal unconstrained SVD based

hybrid precoding and combining, shown in black solid line, the proposed scheme, shown in blue

dashed line with circles, successive interference cancellation [34, 148], shown in red dotted line

with triangles, semidefinite relaxation based alternating optimization, shown in yellow dotted

lines with dots [145]. Fig. 3.13 shows that our proposed scheme, i.e., Algorithm 2 followed by

the digital stage, outperforms the ones based on successive interference cancellation [34, 148],

semidefinite relaxation and alternating optimization [145]. Fig. 3.14 illustrates that the proposed

scheme maintains its superior performance over the Rayleigh channel. Moreover, the spectral

efficiency loss of the proposed scheme due to the hardware constraints over both environments

is marginal compared to the unconstrained SVD solution (less then 1 dB).

In Fig. 3.15, we evaluate the spectral efficiency of the proposed scheme when the number
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Figure 3.14: Spectral efficiency comparison of partially-connected hybrid processing schemes

over Rayleigh fading channel

Figure 3.15: Studying the effect of increasing the number of RF chains at one side, i.e.,

Mrf > Nrf , over a millimeter-wave channel with Ncl = 5, Nray = 6 and
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of RF chains at both sides are different (without loss of generality Mrf > Nrf ). Fig. 3.15

illustrates that there is an improvement in the spectral efficiency of the proposed scheme when

Mrf > Nrf compared toMrf = Nrf , particularly, there is a 0.5 dB gain in the spectral efficiency

when increasing Mrf from 3 to 5 (shown in dotted red and dashed blue, respectively). However,

this improvement is more pronounced at higher dimensions, specifically, more than 1 dB gain

(shown in dotted red and dashed blue with circles). We note that, in Fig. 3.15 where M > N ,

i.e., M = 60 or 30, and N = 24 or 12, we assume that Mrf > Nrf since it is more reasonable to

assume that the side that has larger number of antenna elements has larger number of RF chains

not the reverse.

Remark. 3.6.1. Effect of imperfect channel state information: In practical scenarios, there are

some channel errors due to channel estimation and/or feedback (quantization) errors. Therefore,

it is important to evaluate the sensitivity of the proposed schemes to channel errors. Since chan-

nel estimation and feedback techniques are not discussed in this work, we assume a general

framework of channel estimation/quantization errors for the simulation. In particular, we as-

sume that the channel errors are additive i.i.d CN (0, σ2
e) where σ2

e is the variance of the channel

errors [79]. We note here that this model captures the effect of the imperfect channel knowledge

at both the transmitter and receiver since we jointly design the hybrid precoder and combiner

based on the erroneous (estimated) channel Ĥ = H − E where E is the error matrix. In Fig.

3.16, we show the spectral efficiency of the unconstrained SVD scheme and Algorithm 2 while

assuming imperfect channel state information with different error variances, i.e., σ2
e = 0.05 and

0.1, respectively. The solid lines represent the spectral efficiency of both schemes with accu-

rate channel state information while the dash lines and dotted lines present the corresponding

performance with imperfect channel state information with error variances σ2
e = 0.05 and 0.1,

respectively. As expected, the spectral efficiency performance of both schemes degrades as the

variance of channel errors increases. However, the spectral efficiency loss of Algorithm 2 is ap-

proximately equal to the one of the unconstrained SVD scheme in both 32 × 128 and 16 × 64

mmWave channels, with different channel errors’ variances. This implies that most of conven-

tional error mitigation techniques can be applied to the proposed schemes.
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Figure 3.16: The effect of channel errors on the spectral efficiency of Algorithm 2

Fig. 3.17 shows that the proposed approach achieves high spectral efficiency in the multi-user

case while maintaining low computational complexity in comparison to prior works in [66, 88].

Fig. 3.18 shows that the proposed approach maintains high spectral efficiency performance

over wideband frequency selective channels in comparison to prior works in [66, 121, 145].
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Figure 3.17: Spectral efficiency comparison of hybrid processing schemes for K-user MIMO

Broadcast channel over mmWave channels with Ncl = 4, Nray = 5.

Figure 3.18: Spectral efficiency comparison of hybrid processing schemes for wideband

Rayleigh fading channels
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Chapter 4

Hybrid Beamforming Schemes for FDD
Systems

4.1 System Model

We consider a massive MIMO FDD system with a limited number of RF chains. In this system,

we present two communication scenarios, namely, single-user and multi-user massive MIMO

scenarios. In the single-user scenario, the transmitter and the receiver are equipped with M -

transmit and N -receive antenna elements. This point-to-point massive MIMO model is of in-

terest due to its wide-range applicability in many recent applications such as high definition

video streaming, virtual-reality/augmented-reality, connected cars and links between base sta-

tions [20]. The transmitter sends Ns independent data streams to the receiver with the help of

Nrf � min(M,N) RF chains. Due to the use of a limited number of RF chains, the hybrid

beamforming structure is considered. In particular, we assume that the data vector, s ∈ CNs×1,

is pre-processed by two different precoding matrices. As a result, the received signal is given by:

r =
√
ρHFRFFBBs + n, (4.1)
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where FBB ∈ CNrf×Ns is the baseband precoder and FRF ∈ CM×Nrf is the RF one. ρ is the

average signal to noise ratio, and n is the additive white Gaussian noise vector, with i.i.d entries

∼ CN (0, σ2
n). Generally, the fading channel matrix, i.e., H ∈ CN×M in mmWave bands, is

spatially correlated due to the usage of large-scale and densely-packed phased antenna arrays at

both sides [3, 8, 15, 95] and sparse in the angular domain due to the limited scattering nature of

mmWave bands [15, 49]. This is modeled mathematically in literature on mmWave channels by

either the Kronecker or the clustered channel models. The Kronecker correlation model describes

the stochastic spatial correlation evolution of each channel realization. As a result, the channel

is given by [2, 3]:

HKr = R1/2
r HwR

T/2
t , (4.2)

where Rr = E[HKrH
H
Kr] is the receive correlation matrix, Rt = E[HH

KrHKr] is the transmit

correlation matrix and Hw ∈ CN×M has entries are i.i.d. Gaussian distributed. On the other

hand, the clustered channel model expresses the channel as a function of its spatial parameters

where the channel matrix is given as [8, 15]:

HCl =

√
MN

NclNray

NclNray∑
i,l

αilar(θ
r
il)a

H
t (θtil), (4.3)

= ArGAH
t , (4.4)

where αil denotes the complex gains of the lth ray in the ith cluster, with Ncl clusters, each con-

tributing Nray rays such that the total number of rays/paths is P = NclNray. The vector at(θ
t
il)

is the transmit antenna array response vector of length M for a given angle of departure θtil,

and ar(θ
r
il) is the receive antenna array response vector of length N for a given angle of arrival

θril. Eq.(4.4) is the augmented matrix representation of the clustered channel model where At

and Ar are the augmented transmit and receive antenna array response matrices and G is a di-

agonal channel contains the normalized complex gains αil
√

MN
NclNray

. Although the two models

are different, they bear some similar statistical properties under certain propagation assumptions.
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Mainly, the transmit and the receive correlation matrices are separable where E{HH
KrHKr} = Rt

and E{HKrH
H
Kr} = Rr, and E{HH

ClHCl} = EAt{AtA
H
t } and E{HClH

H
Cl} = EAr{ArA

H
r }

for both the Kronecker and the clustered channel models, respectively under the uncorrelated

scattering (channel gain paths, angles of departure and arrival are mutually independent) and

equal power of channel paths assumptions (typical assumptions on the literature of mmWave

channels [2, 3, 15, 95]). Given these assumptions, both models are being used interchangeably

in hybrid precoding over mmWave channels literature where the Kronecker model is preferred

in theoretical analysis (especially statistical ones) and the clustered model is utilized in numer-

ical simulations by setting Rt = EAt{AtA
H
t } (see [2, 95]). We follow the same approach and

hereafter we drop the subscript of H for the sake of notation simplicity. The total power is

normalized such that E[ssH ] = 1
Ns

INs , ‖FRFFBB‖2
F=Ns and E[||H||F ] =NM . Similarly, the

receiver processes the received vector r by two different combining matrices:

s̃ =
√
ρWH

BBWH
RFHFRFFBBs + n, (4.5)

where WRF ∈ CN×Nrf and WBB ∈ CNrf×Ns are the RF and baseband combiners, respectively.

We note here that both RF (analog) precoder and combiner are implemented by analog phase

shifters with constant amplitude amplifiers, therefore, their entries have a constant norm.

The multi-user scenario is obtained directly from the point-to-point one by considering minor

modifications. We assume that the base station communicates with K single-antenna users and

sends an independent date stream to each user. Therefore, the hybrid beamforming structure is

implemented at the transmitter side only. The vector of the received signals is given by (4.1) with

a minor change in the dimensions since N = Ns = K. Further, the augmented channel matrix

is given by HH = [h1, · · · ,hK ], where hk is the channel vector of the kth user.

We assume that the channel is known at the receiver(s), i.e., CSIR. CSIR is commonly

adopted in all the current wireless standards, and it will also be implemented in mmWave-based

standards (e.g., IEEE 802.11ad). The CSIR is not only utilized by the proposed schemes but it

is also an essential requirement for many signal reception processes such as signal detection and

hybrid (or digital) combining at the receiver(s) [5]. Owing to the intrinsic sparsity of millimeter
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wave channels, many efficient two-stage CSI estimation algorithms have been developed based

on compressed sensing techniques. This is in contrast to the single-stage techniques which are

utilized in massive MIMO [36, 105, 107]. We consider two different types of short-term CSIT:

• Limited feedback CSIT: The transmitter has a finite rate (quantized) knowledge about the

channel throughout a limited capacity feedback channel. Particularly, we assume that both

the transmitter and the receiver agree on two predefined codebooks, CBB and CRF , one for

the digital stage and the other for the analog one.

• Mixed (partial) CSIT: The transmitter has two types of CSIT; a finite rate feedback

knowledge for the massive MIMO channel and a perfect knowledge for the effective chan-

nel, i.e., HFRF . This assumption is practical when the communication channel is quasi-

static and the number of transmitted stream is small. When the channel varies slowly with

respect to the transmission rate, this allows for estimating the channel accurately at the re-

ceiver and feeding it back to the transmitter with a negligible rate overhead compared to the

information rate. This assumption is widely considered in both multi-user and single-user

cases (e.g., [2, 3, 6, 8, 10, 44, 52, 129]).

In addition to these two types of CSI which provide the base station with short-term channel

updates, we assume, as in many other prior works [3, 52, 95], that the long-term second-order

channel statistics are available at terminals. We note that the fading channel of many applica-

tions are locally wide sense stationary over time where the channel statistics remain constant for

a very long period of time [108]. Hence, the channel covariance can be estimated very accurately

at the base station without requiring frequent training. For instance, the channel covariance ma-

trices can be known to the base station through efficient covariance estimation techniques for the

hybrid structure such as the ones based on compressed sensing techniques (e.g., [94] and refer-

ences therein). However, covariance estimation is out of the scope of this paper. We point out

that, the combination of long and short-term channel state information creates different channel

knowledge availability scenarios. We refer to the ones that have long-term channel knowledge as

statistically-aided scenarios. We note that FRF is designed based on either only limited feedback
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CSIT or limited feedback CSIT aided with statistical information such as Rt. This is different

from prior work [15] where FRF is designed based on the perfect channel realization, [2,3,52,95]

where it depends only on the second-order channel statistics and [8,10,15,21,35,44,68,115,129]

where it is constructed based on fixed predefined codebooks that do not change with the long-

term channel statistics.

4.2 Single-user Problem Formulation and Proposed Algorithms

The canonical limited feedback problem in the literature of the fully-digital beamforming is to

design a codebook that match a certain selection criteria in order to minimize an average dis-

tortion measure [69]. Similarly, the limited feedback hybrid precoding problem in mmWave

literature is a codebook-based problem but with additional constraints on the analog precoder

[8, 10, 15, 21, 35, 44, 68, 115, 129]. As a result, it boils down to how to define a codeword se-

lection criterion and to design codebooks that naturally fit these constraints while utilizing the

characteristics of mmWave channels. Here, we formalize the limited feedback precoding as a

codebook-based subspace approximation problem while exploiting the sparsity and the spatial

correlation of mmWave massive MIMO channels. Our design and problem formulation are de-

scribed as follows. We start our design by discussing the selection metric.

4.2.1 Selection Metric

Since the massive MIMO and mmWave technologies are primarily meant to dramatically in-

crease the capacity of 5G networks, the ergodic capacity, spectral efficiency or mutual informa-

tion are reasonable selection metrics. However, these selection metrics have high computational

complexity where they require computationally intensive calculations such as matrix determi-

nant and inverse. This makes them impractical in high-dimensional applications. Exploiting the

sparsity of mmWave channels, it has been shown that the loss in the mutual information due

to approximating the optimal precoder, i.e., Fopt, by the hybrid precoder, FRFFBB is dictated
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by the squared chordal distance between them, i.e.,
∥∥∥FoptF

H
opt − FRFFBBFH

BBFH
RF

∥∥∥2

F
[15]. The

chordal distance is a subspace distance that measures the geodesic distance between two sub-

spaces on the Grassmannian manifold [29]. We choose the chordal distance as a selection metric

for two reasons. First, minimizing the chordal distance between the hybrid and optimal precoders

directly minimizes the mutual information loss due to the hybrid structure [15]. Second, since

it is a subspace distance, it suits the codebook-based precoding problem formulation as a sub-

space approximation problem [69]. The optimal precoder is given by the largestNs right singular

vectors of H, i.e., Fopt = V̄Ns where H = UHΣHVH
H is the SVD of the channel matrix.

4.2.2 Codebook Design

The design of the codebook should account for two main properties of mmWave channels, i.e.,

the spatial correlation and the angular sparsity. Contrary to the spatially independent channel

where its eigenvectors are isotropically distributed, the dominant eigenvectors of the spatially

correlated channel point to certain preferred directions [70]. Moreover, the angular sparsity

makes the channel tends to have a few numbers of dominant eigenvectors [15]. Considering both

observations, we design the codebooks as follows. We consider a DFT-based codebook where

its bases are drawn from a DFT matrix of size M ×M . The M ×M DFT matrix DM =

1√
M


1 1 1 · · · 1
1 ω ω2 · · · ω(M−1)

1 ω2 ω4 · · · ω2(M−1)

...
...

... . . . ...
1 ω(M−1) ω2(M−1) · · · ω(M−1)(M−1)

 (4.6)

where ω = e−j
2π
M . Considering all the combinations of Nrf columns of the DFT matrix in

(4.6), we can construct the RF codebook, CRF ⊆ D(M,Nrf ), where D(M,Nrf ) is the set of

M × Nrf matrices, which has
(
M
Nrf

)
matrices of size M × Nrf . We note here that each matrix

in D(M,Nrf ) represents an Nrf -dimensional subspace of UM×Nrf where UM×Nrf denotes the

space of M ×Nrf matrices that have constant magnitudes entries.

85



This codebook choice suits the angular sparsity of the mmWave channel since it divides the

angular space into M orthogonal beams which have M distinctive angular directions. However,

this does not account for the effect of the spatial correlation on the directivity of the subspaces

of the eigenvectors of the channel. The main function of the RF codebook is to efficiently ap-

proximate these subspaces, therefore, the RF codebooks have to be tilted towards the subspace

of the dominant eigenvectors of the channel, i.e., the column space of the optimal precoder. This

is realized by multiplying ith codeword in D(M,Nrf ), i.e.,
{
D(M,Nrf )

}
i
, 1 ≤ i ≤

(
M
Nrf

)
, from

the left by the transmit correlation matrix Rt. This results in the skewed RF codebook, i.e.,

CRF,skewed

=
{ Rt

{
D(M,Nrf )

}
1

||Rt

{
D(M,Nrf )

}
1
||
,

Rt

{
D(M,Nrf )

}
2

||Rt

{
D(M,Nrf )

}
2
||
, ...
}
.

This linear transformation makes the subspace of each codeword of the skewed RF codebook

lives in the subspace of the optimal precoder. This, in turn, allows the skewed RF codebook to

finely quantize the local neighborhood around the statistically preferred directions of the dom-

inant eigenvectors, and thereby, leveraging efficiently the spatial correlation of mmWave chan-

nels.

We note that there are many good practical codebooks in the literature. For example q-bit

resolution beam codebook for an M -element ULA developed in [56] and the codebooks in IEEE

802.15.3c [38] and wireless personal area networks (WPAN) operating in 60 GHz frequency

band [13]. Although these codebooks are designed to simplify the hardware implementation cost

and reduce the power consumption, they suffer from beam gain loss in some beam directions. In

contrast, the DFT codebooks provide uniform maximum gain in all directions.

We point out that directly designing codebooks under constant magnitude entries constraint

is extremely difficult and results in intractable optimization problems. This conclusion has been

established in both fully-digital [71] and hybrid beamforming [46] literature. Instead, research

works resort to either use predefined codebooks that have phases only entries (adhere to the

RF hardware constraints) such as the beamsteering codebooks [8, 15, 21, 35, 44] and Hadamard

codebooks [115] or quantizing sub-optimal solutions which are obtained by imposing these

constraints on the optimal unconstrained precoder as in [66, 106, 145]. However, majority of
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research works follow the former approach due to its superior performance compared to the latter

one. In comparison to Hadamard codebooks, the DFT codebooks provides finer quantization,

and thereby, having better performance. Moreover, compared to beamsteering codebooks, the

columns of DFT codebooks are orthogonal. The orthogonality between columns is favorable in

transmitting multiple streams (spatial multiplexing mode) and in dividing spanned spaces into

orthogonal subspaces. On the contrary, the beamsteering codebooks are obtained by uniformly

quantizing the angle of departure of the transmit antenna array response vector, i.e., at(φ). For

instance, for uniform linear array, at(φ) = 1√
M

[
1 ejkd sinφ . . . ejkd(M−1) sinφ

]H , where d is

distance between two consecutive antenna elements, and k = 2π
λ

is the wave number. Quantizing

the angle of departure uniformly using B = 2q points, i.e., φ = 2πu
B
, u ∈ {0, 1, · · · , B − 1},

leads to a codebook given by: at(
2πu
B

) = 1√
M

[
1 ejkd sin( 2πu

B
) . . . ejkd(M−1) sin( 2πu

B
)
]H

. When

B ≤ M , the columns of the beamsteering codebooks are not orthogonal due to the periodicity

of the sine function. Moreover, the columns of the beamsteering codebook are not necessarily

asymptotically orthogonal. In particular, for some u and k ∈ {0, 1, · · · , B − 1}, sin(2πu
B

) −
sin(2πk

B
) = 1

M
; checking for the orthogonality between the columns of an M ×M beamsteering

matrix, i.e., |aHt (2πu
M

)at(
2πk
M

)|, one has

∣∣aHt (
2πu

M
)at(

2πk

M
)
∣∣ =

1

M

∣∣∣∣1− ejπ(sin( 2πk
B

)−sin( 2πu
B

))M

1− eiπ(sin(θk)−sin(θj))

∣∣∣∣
=

1

M

∣∣∣∣ 1− ejπ

1− ejπ/M

∣∣∣∣
→ 2

π
6= 0,M →∞

In practice, M is large but still finite and thus there is a non-negligible probability that there are

u and k such that sin(2πu
B

) − sin(2πk
B

) ≤ 1
M

. This directly makes the performance of the DFT

codebook (utilized in the proposed algorithms) better than the beamsteering codebooks (used in

[8, 10, 15, 44, 68]) as shown in the numerical results section.

In contrast to the RF precoding matrix, the baseband precoder FBB does not have hardware

constraints, i.e., FBB ∈ CNrf×Ns and it can be implemented digitally. Moreover, it has relatively
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Figure 4.1: A limited feedback system for single user hybrid beamforming structure.

small dimensions of the same order of regular MIMO systems. This gives higher degrees of

freedom in designing the digital codebook, i.e., CBB. Such codebook design is well-studied in

the literature on limited feedback regular MIMO [71]. The optimal yet theoretical codebooks for

quantizing FBB are the ones that are based on Grassmannian codebooks. However, constructing

an optimal Grassmannian codebook is a challenging problem [71]. In practice, it is preferable

to use easily constructed and structured codebooks such as Hadamard [115], QPSK alphabet-

based [109], and DFT codebooks. We consider the DFT codebooks in quantizing FBB since they

have nested structures, are easily constructed, and provide finer quantization than Hadamard and

QPSK alphabet-based codebooks.

Finally, a schematic diagram of the limited feedback system for hybrid beamforming struc-

ture is depicted in Fig. 4.1.
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4.2.3 Problem Formulation and Proposed Algorithms

We consider minimizing the chordal distance between the unconstrained optimal precoder, given

by the Ns right singular vectors of the channel matrix, i.e., Fopt = V̄Ns , and the hybrid beam-

forming matrix, i.e., FRFFBB, such that these matrices are selected from CRF and CBB, respec-

tively. As a result, the limited feedback precoding problem for the mmWave channel with hybrid

precoding structure is:

arg min
FRF ,FBB

‖ FoptF
H
opt − FRFFBBFH

BBFH
RF ‖2

F

subject to 1− FRF ∈ CRF,skewed
2− FBB ∈ CBB

(4.7)

Unfortunately, the optimization problem in (4.7) is non-convex as a result of the combina-

torial nature of the constraints. Hence, finding its global optimal solution requires prohibitive

complexity, and thereby, in practice an efficient sub-optimal solution is preferred specially in

high dimension applications. Contrary to the traditional way of the exhaustive search that has

been considered in [15,73] and complex optimization algorithms [21,35,44] and inspired by the

greedy selections algorithms developed in [10, 68, 115], we solve the optimization problem in

(4.7) algorithmically in two steps. This made possible by first approximating the subspace of the

optimal precoder (finding its bases) and then finding the best linear combination of these bases

that makes the hybrid precoder as close as possible to the optimal precoder. The precoding algo-

rithm starts by projecting the optimal precoder on an M ×M RtDM and selects the Nrf vectors

along which the optimal precoder has the maximum projection (measured by the dot product

of the columns of the optimal precoder and the columns of the DFT matrix). After identifying

these vectors, i.e., FRF , the algorithm proceeds to find the Ns linear combinations of these vec-

tors along which the optimal precoder has the maximum projection, i.e., FBB. This makes it

possible by projecting the Nrf ×Nrf DFT matrix, the bases of the baseband codebook CBB, on

the column space of FRF to obtain Nrf linear combinations; out of these linear combinations,

we select the Ns vectors along which the optimal precoder has the maximum projection again.
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This strategy is to select FRF and FBB such that the Ns columns of the hybrid precoder have

smallest angles with the columns of the optimal precoder. These two steps are summarized in

the following algorithm.

Algorithm 3 Statistically-Aided Maximum Projection
1: Input: Fopt, DM , DNrf , Rt

2: Y = (RtDM)HFopt

3: IndicesRF = arg max
Nrf
{diag(YYH)}

4: FRF = ∠
(
RtDM(:, IndicesRF )

)
5: Z =

(
DH
Nrf

FH
RFFRFDNrf

)−1

(FRFDNrf )
HFopt

6: IndicesBB = arg max
Ns
{diag(ZZH)}

7: FBB = DNrf (:, IndicesBB)
8: Return: IndicesRF , IndicesBB

We note here that the linear transformation of the DFT codebook by the spatial correla-

tion matrix allows for finer quantization to the vicinity of the optimal precoder. However, this

results in analog precoders that do not adhere to the RF hardware since the DFT codebooks

are adapted by the statistical correlation matrix. Therefore, we apply the hardware constraints

on the analog precoder of the skewed codebooks using the phase extraction technique, i.e.,

step 4 in Algorithm 3. This procedure has been widely considered in the literature on hybrid

beamforming [3, 15, 52, 66, 95] since it is the solution that has the shortest Euclidean distance to

the unconstrained solution [34].

We point out that all the calculations of Algorithm 3 and its variants are performed at the

receiver side aiming mainly to reduce the feedback overhead while exploiting the available CSIR

(a prerequisite for other reception processing). Moreover, calculating Fopt, which is based on the

SVD of H, does not require overhead of calculations since computing the SVD of H is a prereq-

uisite for most of fully-digital or hybrid combining techniques [15]. We note that Algorithm 3

requires (i) limited feedback channel and (ii) statistical information about the spatial correlation.

Moreover, Algorithm 3 can be modified in order to fit into different frameworks, such as the

unavailability of statistical correlation matrix at the transmitter, and the presence of quasi-static
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channels.

Algorithm 3, Variant 1: When the statistical correlation information is not available at the

transmitter or the channel is statistically uncorrelated, Algorithm 3 is easily modified by just

replacing Rt by the identity matrix. This allows the constructed FRF to have the constant

magnitude entries and thereby there is no need to use ∠ operator in Step 4 in Algorithm 3

where FRF = DM(:, IndicesRF ). Moreover, it preserves the orthogonality between the DFT

columns, and hence, there is no need for the matrix inverse operation of Step 5 in Algorithm 3,

i.e., Z = (FRFDNrf )
HFopt.

Algorithm 3, Variant 2: The second modification is based on utilizing the mixed CSIT in-

stead of the limited one in order to improve the performance of Algorithm 3. The mixed CSIT

assumes that the receiver sends the baseband precoder to the transmitter instantaneously and with

infinite precision while the analog precoder is available to the transmitter with finite-precision

(few bits). In particular, one selects the columns of FRF from a statistically skewed DFT code-

book and solves for FBB as the least square solution such that selected columns have maximum

projections on the subspace spanned by the optimal unconstrained (fully-digital) precoder. This

permits the digital precoder to have entries with variable magnitude and phase, which improves

the performance at the cost of increasing the feedback overhead. The hybrid beamforming pro-

cedure based on mixed CSIT is summarized in the following two steps. First, constructing the

analog precoder using the same maximum projection procedure of Algorithm 3 (from line 1 to

line 4). Second, given the analog precoder, and instead of executing the last part of Algorithm

3, one obtains FBB by minimizing the chordal distance, in (4.7), while relaxing the second con-

straint. As a result, the baseband precoder is FBB =

(
FHRFFRF

)−1

FHRFFopt

||
(
FHRFFRF

)−1

FHRFFopt||F
. Finally, when

Variant 1 and Variant 2 are combined, i.e., in the lack of statistical channel information and the

availability of mixed CSIT, we call it Algorithm 3, Variant 3.

91





RF
chain

Mrf



RF
chain

Baseband 
Precoder

MK

h,K

Transmitter Side

Analog 
Precoder 1h


Kh

RFFBBF

User K

User 1

Indices of the analog precoder 



~

Figure 4.2: A limited feedback system for multi-user hybrid beamforming structure.

4.3 Multi-user Problem Formulation and Proposed Algorithms

In this section, we consider the design of the codebook-based hybrid precoding for the downlink

multi-user (MU) multiple-input single-output (MISO) broadcast (BC) system in which the base

station is equipped with an M -element antenna array and a limited number of RF chains, and

serves K single-antenna users where M � Nrf ≥ K. A schematic diagram of the limited

feedback system for the K-user MISO BC channel with hybrid beamforming structure is depicted

in Fig. 4.2.

Before we proceed with the problem formulation, we highlight the main differences between

MU MISO and SU MIMO systems that drive us to treat the problem differently. First, maximiz-

ing the sum-rate of the K-user MISO BC requires sophisticated and computationally intensive

non-linear operations such as dirty paper coding [135] and its optimal solution does not adhere

to the RF constraints on the analog precoder. Second, since all users (receivers) are separated,

where no joint processing of their signals can be done at receivers, approximating sub-optimal
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linear precoding schemes, such as zero forcing [61], minimum mean square error and generalized

eigenvector beamforming [112], is not applicable in our framework. This is mainly because all

these solutions require either global CSIR about all users or user cooperation which entail huge

training and feedback overheads. Although these schemes are designed to maximize signal to

interference noise ratio (SINR), they achieve sum-rates within a fixed SNR gap of the network

capacity [61, 112].

The received signal of the single-antenna user k is:

yk = hHk FRF fBB,ksk +
K∑
i6=k

hHk FRF fBB,isi + nk, (4.8)

where fBB,k is the baseband precoder vector for user k, i.e., the kth column of FBB and hHk is the

channel row vector of length M × 1 for user k where hk = R
1/2
t,k hw,k and hw,k has i.i.d Gaussian

distributed entries. Moreover, we assume that the users have different spatial correlation matrices

Rt,k=E[hkh
H
k ]. Considering an equal power normalized transmission strategy, the achievable

rate of user k is:

rk = log2

(
1 + SINRk

)
(4.9)

SINRk =
|hHk FRF fBB,k|2∑

i6=k
|hHk FRF fBB,i|2 +Kσ2

k

, (4.10)

where SINRk is the signal to interference noise ratio of user k. Therefore, the sum-rate of the

K-user broadcast channel is given as Rsum=
∑

k rk.

Optimizing the sum-rate and other sophisticated performance metrics such as energy effi-

ciency and bit error rate while considering the RF hardware constraints results in notorious non-

convex and sparse problem formulations where a series of convex relaxations and approximations

are performed to secure satisfactory sub-optimal solutions [21, 35, 44]. These solutions are ob-

tained based on a series of sophisticated tangled iterative algorithms that require either modern or

classic convex solvers such as MOSEK and interior point, respectively, where their convergence
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depends highly on the initial point.

Given the intractability and impracticality associated with applying the prior art of fully-

digital [135] and hybrid beamforming [21, 35, 44] methodologies in massive MIMO mmWave

systems, we tackle the design problem differently. Particularly, the proposed scheme is developed

based on maximizing the signal to interference plus noise ratio (4.10) over two successive stages

using non-iterative and low-complexity procedure; for instance, one iteration of the algorithm

in [44] has a computational complexity of ((M6 + 64)K3 + 6K2M2) [44] while Algorithm 4

has a computational complexity of ((4M2K + 8MK + 9K3 + 2MK2)) where its complexity

is dominated by the Moore-Penrose pseudo-inverse [24]. We show that this approach achieves

higher sum-rate than prior art in [21, 35, 44] and comparable to fully-digital scheme with perfect

CSIT.

This is based on leveraging the property of spatially correlated channels that the channel

vectors of different users exist in different subspaces identified by the statistical covariance ma-

trices and point to specific preferred directions. This can be utilized to relieve the global perfect

channel knowledge assumption, consolidate the separability of users in the space, and enhance

the performance of the hybrid precoding schemes. Particularly, exploiting the directivity of sub-

spaces of users’ channels, each user designs its analog precoder vector(s) selfishly to maximize

its signal strength while ignoring the interference. Its aim is to decrease the feedback overhead

and for CSIT where this step requires only local statistical knowledge of its own channel vector

at the receiver and limited feedback channel. In the second stage, the digital precoder is designed

based on the effective channel, i.e., HHFRF , in order to cancel out the inter-user interference.

Therefore, the analog precoding problems, while abstracting the digital processing, are given

by:
arg max
fRF,k

|hHk fRF,k|2, 1 ≤ k ≤ K

subject to fRF,k ∈ CRF,skewed,k, 1 ≤ k ≤ K,

(4.11)

where fRF,k is the k column of FRF and CRF,skewed,k is the analog codebook of user k skewed

by its covariance matrix. The problem defined in (4.11) is a typical codebook-based precoding

problem. Owing to the distributed nature of the multi-user networks where neither user coop-
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eration to select the analog precoder columns is assumed nor global CSIT and only collocated

signal processing are required, the columns of the analog precoder are selected in a distributed

manner from the available codebooks. We solve (4.11) for each user individually where the chan-

nel matching metric is utilized to select the best codeword(s). However, in mmWave bands, one

often finds users that have one or more common scatters/clusters. This implies that one or more

users may choose the same codeword which results in a near singular or rank deficient analog

precoding matrix. We propose here a selection strategy that avoid such situations. In particular,

each user selects the best L codewords that match its channel vector from the predefined code-

book and feeds them back to the base station. Then, the base station constructs the RF precoder

matrix by selecting the preferred K different codewords out of the total K × L codewords re-

ceived from allK receivers. Each of the preferredK codewords(vectors) is corresponding to one

respective user. Particularly, each user’s receiver transmits a set of indices indicating the best L

columns in descending order (or ascending order) such that the first (or last) element in the set

of indices indicates the column along which the channel vector has the maximum projection. In

the case where two or more receivers share one or more codewords, the base station selects the

next best codeword(s) out of the L codewords (i.e., using the next entry in the set of indices),

such that all the columns of FRF are different codewords. Hence, the base station can select K

DFT columns corresponding to respective K MU receivers, to form the RF precoder matrix as

FRF = [fRF,1, fRF,2, · · · , fRF,K ]. This selection strategy is devised to enforce the full rank con-

straint on FRF which is required to achieve the highest multiplexing gain offered by the network.

We note here that L is identified empirically since it is a function of the number of common

clusters/scatters between users and the location of users.

We also note that this precoding strategy can be extended to the case where there are more RF

chains than the number of users. When 2K ≥ Nrf > K, the base station selects the columns of

the analog precoder in two rounds. First, it constructs the first K columns of FRF , similar to the

previous strategy, by selecting the first entries of all users’ sets, i.e., the indices of the columns

that have the largest projection, such that they are different. Then, for the remaining Nrf − K
columns of FRF , the base station selects the second entries of only Nrf −K user’s sets.
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On the other hand, the digital precoder problem is given based on the effective channel as:

arg max
FBB

|h̃Hk fBB,k|2∑
i6=k |h̃Hk fBB,i|2 +Kσ2

n

, 1 ≤ k ≤ K,

subject to ||FRFFBB||2F ≤ K

(4.12)

Contrarily to the analog precoding, the digital precoder has an optimal solution given by zero-

forcing [125]. Having determined the RF precoder matrix FRF , the base station then deter-

mines the baseband precoder matrix FBB based on the effective channel after applying the RF

precoder matrix. Particularly, each user’s receiver feeds back its estimated effective channel

vector h̃. The baseband precoder matrix FBB is determined by the base station to be the zero-

forcing solution based on these effective channel vectors, represented by H̃ = HFRF , such that

FBB = H̃H(H̃H̃H)−1. We note here that the effective channel has small dimensions in compar-

ison to the massive MIMO channel. This significantly reduces the channel training and feedback

required for estimating and acquiring the effective channel. These two steps are summarized in

Algorithm 4.

We note that Algorithm 4 requires mixed CSIT; specifically (i) limited feedback channels

and (ii) statistical information about the spatial correlation for constructing the analog precoder

and (iii) perfect knowledge about the low dimensional effective channel. Similar to Algorithm

3 Variant 1, Algorithm 4 can be modified in order to accommodate for the unavailability of the

transmit covariance matrix at the transmitter. We refer to this modification as Algorithm 4 Variant

1.
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Algorithm 4 Distributed Statistically-Aided Maximum Projection Multi-User

1: Input: H, {Rt,1, · · · ,Rt,K}, DM

2: While k ≤ K
Yk = (Rt,kDM)Hhk
IndicesRF,k = arg max

L
{diag(YkY

H
k )}

End while
3: The base station selects K indices out of the set of indices, i.e., {IndexRF,1, · · · ,
IndexRF,K} and constructs FRF based on extracting the phases of the corresponding vectors
of these indices multiplied by the corresponding covariance matrices.
4: The base station applies FRF in the downlink to allow for estimating the effective channel
at the different users.
5: Each user feeds back its estimated effective channel vector h̃ to the base station .
6: FBB = FH

RFH(HHFRFFH
RFH)−1

7: FBB =

√
KFBB

FRFFBB
8: Return FRF and FBB

4.4 Bounds And Asymptotic Analysis of the Achievable Rate

of The Proposed Schemes

In order to evaluate the performance of Algorithm 3, Algorithm 4 and their variants, we consider

the mutual information of the analog precoding stage (the common stage among the proposed

schemes) as a performance metric. This is made possible by abstracting the digital precoding

and receiver side processing while considering an equal power transmission strategy. We start

by providing lower and upper bounds on the mutual information of any DFT codebook-based

analog precoding strategy. Then, we show that the proposed schemes are asymptotically optimal

as the number of transmit antennas M goes to infinity and the millimeter wave channel has a

limited number of paths, i.e., P<M .

Proposition. 4.4.1. The mutual information of the mmWave channel with hybrid precoding struc-

ture at the transmitter, where the analog precoder is selected from an M ×M DFT matrix, i.e.,
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IRF = log det
(
INrf + ρ

σ2
nNs

FH
RFHHHFRF

)
, is bounded by (4.13) shown at the top of the next

page.

Nrf∑
i=1

log
(

1 +
ρ

σ2
nNs

λM−Nrf+i(At)λi(G
HAH

r )
)
≤ IRF ≤

Nrf∑
i=1

log
(

1 +
ρ

σ2
nNs

λi(At)λi(G
HAH

r )
)
.

(4.13)

In Eq. (4.13), λ1(A) ≥ · · · ≥ λM(A) are the eigenvalues of the matrix AAH in a descending

order.

Proof. We start with the mutual information of the channel when using the analog beamformer
at the transmitter:

R = log det
(
INrf +

ρ

σ2
nNs

FH
RFHHHFRF

)
(4.14)

(a)
= log det

(
INrf +

ρ

σ2
nNs

FH
RFAtG

HAH
r ArGAH

t FRF

)
(b)
= log det

(
INrf +

ρ

σ2
nNs

UXΣXVH
XGHAH

r ArGVXΣT
XUH

X

)
(c)
= log det

(
INrf +

ρ

σ2
nNs

ΣXVH
XGHAH

r ArGVXΣT
X

)
(d)
= log det

(
INrf +

ρ

σ2
nNs

Σ2
XVYΣ2

YVH
Y

)
(e)
=

Nrf∑
i=1

log(1 +
ρ

σ2
nNs

[ΣX]2i,i[ΣY]2i,i)

where (a) is due to the use of the augmented matrix representation of the channel in (4.4) and

(b) is based on considering the SVD of X = FH
RFAt = UXΣXVH

X . Eq. (c) is due to us-

ing log det(I + AB) = log det(I + BA) and UXUH
X = I, i.e., the invariance of the mu-

tual information formula under unitary transformation. Eq. (d) is based on considering the

SVD of Y = ArGVX = UYΣYVH
Y . Eq. (e) comes from (d) by using λi(Σ2

X) = [Σ2
X]i,i,

λi(UYΣYVH
Y)≤ λi(ΣY) = [Σ2

X]i,i based on the eigenvalue interlacing property where equality

holds since VY is anM×M unitary matrix [147], det(Σ) =
∏Nrf

i [Σ]i,i and log(
∏
i

) =
∑
i

log().
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Bounding (e) requires bounding the non-negative elements of ΣX where the effect of pre-

coding is only captured in ΣX. The elements of Σ2
X correspond to the eigenvalue decomposition

of FH
RFAtA

H
t FRF where FRF is a part of an M ×M DFT matrix, i.e., FRF = DNrf and DNrf

denotes a collection of Nrf columns selected from an M ×M DFT matrix. Since the DNrf is a

semi-unitary matrix, i.e., D
H

Nrf
DNrf=INrf and using Lemma 3.3.1 in [47], the eigenvalues of the

product, i.e., λi(D
H

Nrf
At) can be bounded by:

λM−Nrf+i(At) ≤ λi(D
H

Nrf
At) ≤ λi(At), (4.15)

where λi(D
H

Nrf
At)=[ΣX]2i,i. Substituting these bounds in (e), (4.13) readily follows.

Similar bounds can be obtained as a function of the transmit correlation matrix Rt instead of

At by using (4.2) instead of (4.4).

Remark. 4.4.2. SNR Gap: Indeed, there is a wide SNR gap between the upper and lower bounds

in (4.13) and it is more pronounced at small values of Nrf as shown in Fig. 3.19 subplots (a) and

(b). This is expected since the proposed bounds are valid for any DFT-based hybrid precoding

scheme. However, this SNR gap reduces gradually with increasing Nrf till reaching to zero, i.e.,

both bounds coincide, at Nrf = M as shown in Fig. 3.19 (c) (subplot (c) shows the SNR gaps

between different schemes and the upper bound). The wide SNR gap between the upper and

lower bounds at small values of Nrf suggests that the DFT columns of FRF should be carefully

selected to achieve the upper bound while the small SNR gap at large values of NRF hints that

no sophisticated selection is required and just fixed or random selection is sufficient.

Remark. 4.4.3. Design insight: The upper bound in (4.13) is achieved when all the selected

DFT columns are in the same directions of the largestNrf eigenvectors of At. On the other hand,

the lower bound in (4.13) is achieved when none of the selected DFT columns are pointing toward

any of the largest Nrf eigenvectors’ directions of At. This suggests that efficient DFT-based

hybrid precoding schemes should consider aligning the DFT columns of FRF to the egienvectors

of At and its efficiency is measured by how close its mutual information curve to the upper
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Figure 4.3: Bounds on mutual information and SNR gap of DFT-based hybrid beamforming

schemes over 16× 64 mmWave channel with Ncal = 5 and Nray = 6.

bound. On the other hand, inefficient DFT-based hybrid precoding schemes do not consider any

alignment technique, and thereby, their performance is close to the lower bound. For instance,

comparing subplots (a) and (b) in Fig. 3.19, one finds the mutual information curves of the

proposed analog precoder, denoted by (Maximum Projection), outperform the ones of the prior

art scheme developed in [129] for different values of Nrf . This is because, in the proposed

analog strategy, the ith DFT column is selected to be aligned to the ith eigenvector of Rt whereas,

in [129], the columns of FRF are either randomly selected from an M ×M DFT matrix, or are

represented as the first Nrf columns of an M ×M DFT matrix.

Corollary. 4.4.3.1. For a large uniform linear antenna array where M → ∞ in a limited

scattering mmWave channel, defined in (4.3), and P<M , the proposed analog precoding strategy

(the common procedure among the proposed algorithms) achieves the upper bound on the mutual
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information in (4.13)

Proof. For large M (M→∞ and P<M ), the columns of At are asymptotically orthogonal and

have unit norms [31]. Moreover, At and the optimal precoder, given by the largest right singular

vectors of the channel matrix, i.e., Fopt=VNs , span the same subspace. Therefore, the channel

matrix representation in (4.4) converges to its SVD [31, Lemma 2], i.e., At and Ar converge

to VH and UH, respectively. Considering ULA at the base station, the columns At have the

same structure as the DFT matrix; hence the optimal precoder, i.e., Fopt, has a DFT structure

as well [3]. Consequently, the dot product between the M × M DFT matrix and the optimal

digital precoder is sufficient to select the DFT columns that are perfectly aligned to the optimal

precoder vectors, i.e., the largest eigenvectors of At. Since FRF in all the proposed algorithms

is constructed based on these Nrf DFT columns, its columns are asymptotically aligned to the

eigenvectors of At as well. Consequently, and based on [47, Lemma 3.3.1], the proposed analog

procedure asymptotically achieves the upper bound in (4.13).

4.5 Simulation Results

In this section, we evaluate the performance of the proposed algorithms, Algorithm 3 and Al-

gorithm 4, and their variants. All these hybrid beamforming schemes are compared with the

prominent prior works, mentioned in Section I, in terms of spectral efficiency over mmWave

bands. Since, we are mainly concerned with decreasing the channel feedback overhead, we limit

the application of the proposed algorithms to the transmitter side. For the single-user case, the

hybrid precoder is obtained by either Algorithm 3 or its variants (depending on the available

CSIT) while the hybrid combiner, i.e., WRFWBB, is obtained by approximating the dominant

Ns left singular vectors of the channel, i.e., ŪNs , using the procedure described in [15, equa-

tion (16)-(18)]. On the other hand, for multi-user case, since all users are equipped with single

antennas, there is no combining available at the users’ sides.
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4.5.1 Simulation Setups

We consider the clustered channel model, described in (3.3) where the complex channel gains,

i.e., αil, are i.i.d ∼ CN (0, σ2
h,il) and σ2

h,il are randomly generated from an exponential distribution

and normalized such that
∑

li σ
2
n,il = 1 [2, 15, 95]. Moreover, we assume that the total number

of paths/rays, P , is sufficiently larger than the number of transmitted streams per user, i.e., P =

NrayNcl > Ns and P > 1 for single and multi-user cases, respectively. For the single-user case,

the transmitter is equipped with an antenna array with 64 elements, and the receiver is equipped

with an antenna array with 16 elements. On the other hand, for the multi-user case the base station

is equipped with 64 or 32 elements and the number of user varies between 4 and 20. Moreover,

we assume that the number of users K is smaller than the number of antenna elements M . Thus,

there is no need to consider any users’ scheduling or opportunistic selection strategy and instead,

we serve all users. In both cases, we consider ULA where the transmit/receive antenna array

responses of ULA with half wave length element spacing and M -element is given by:

at/r(θ
t/r
il ) =

1√
M

[1, ejπ sin(θ
t/r
il ), · · · , ej(M−1)π sin(θ

t/r
il )]H (4.16)

The angles of departure, θtil, and arrival θril, are drawn form Laplace distributions with means

θ
t

i and θ
r

i and angular spread ∆θ of 7.5◦ [15, 95]. Accordingly, the (m,n) entry of the trans-

mit correlation matrix of user k, i.e., Rt,k, for ULA with half wave length element spacing is

[2, 3, 95]:

[Rt,k]m,n =
1

Ncl

Ncl∑
i=1

1√
2∆θ

θ̄ti+π∫
θ̄ti−π

e
−
√

2
∆θ
|ψ−θ̄ti |−jπ(m−n)sinψ

dψ. (4.17)

4.5.2 Spectral efficiency performance evaluation

From the rich literature on hybrid beamforming, we choose the most prominent and relevant

prior art schemes as benchmarks in order to evaluate the efficacy of the proposed schemes. The
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first benchmark solves the hybrid beamforming problem algorithmically based on an efficient

compressed sensing algorithm, namely, orthogonal matching pursuit (OMP) [15] where the ana-

log precoder is represented as linear combinations of the columns of At. This scheme requires

perfect CSIT since At changes with each channel realization. Therefore, this benchmark works

as an upper bound to its exhaustive search-based limited feedback version in [15] and all hybrid

beamforming schemes that utilize mixed or limited feedback CSIT. We call this benchmark by

spatially sparse OMP. The second also utilized the OMP algorithm, however, the analog beam-

former is obtained based on the beamsteering codebook whereas the digital precoder is designed

to eliminate the inter-user interference based on the zero-forcing approach [10, 68]. We call

this benchmark by codebook-based spatially sparse [10, 68]. This scheme requires mixed CSIT

and it represents the prior works that utilizes beamsteering codebooks and compressed sensing

greedy algorithms [8, 68, 77, 115, 144]. We note here that the schemes in [77, 144] are very sim-

ilar to the ones in [10, 68] expect the digital precoders of the former are designed to minimize

the mean squared error while those of the latter are designed to maximize the spectral efficiency.

The third is also a codebook-based hybrid beamforming scheme where the analog precoder is se-

lected from beamsteering codebooks using a MOSEK-based algorithm where its selection metric

is based on maximizing the sum-rate. We refer to this scheme as codebook-based sum-rate max-

imization [44]. This scheme also requires mixed CSIT and it represents the prior works that

utilize complex iterative processing [21, 35]. The fourth is developed in [95] where the analog

precoders of the users are jointly designed at the base station to maximize the signal to leakage

and noise ratio (SLNR) based on the second-order statistical channel knowledge of all users;

specifically, the analog precoder is given as the largest K eigenvectors of the sum of the transmit

covariance matrices of the users. Moreover, the digital precoder is designed, based on perfect

effective channel knowledge, to minimize the SINR. We refer to this benchmark as SLNR-based

statistical beamforming [95]. The fifth is widely known as the joint spatial division multiplexing

scheme (JSDM [2,3,52]). The basic idea of JSDM is to partition the user population into groups

where users with similar covariance matrices are grouped together while maintaining orthogo-

nality between the groups. The analog RF beamforming is designed to reduce the inter-group

interference by employing the well-known block diagonalization technique using only statistical
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knowledge where the analog beamforming is the augmented matrix of the largest eigenvectors

of the covariance matrix of the users’ groups. On the other hand, the digital baseband precoding

is designed to eliminate the inter-user interference between users in the same group using linear

precoders based on perfect channel knowledge.

In Figs. 4.4 and 4.5, we plot the spectral efficiency of five different hybrid beamforming

schemes for the single-user case, namely, spatially sparse hybrid precoding based on OMP [15],

shown in red solid line with circles, Algorithm 3, shown in sky blue solid line, Algorithm 3 Vari-

ation 1 (Alg3.Var1), shown in solid blue line with squares, Algorithm 3 Variation 2 (Alg3.Var2),

shown in green solid line with plus signs, Algorithm 3 Variation 3 (Alg3.Var3), shown in yellow

solid line with crosses and the codebook-based spatially sparse hybrid precoding scheme in [10],

shown in solid violet line with diamonds in addition to the fully-digital SVD based precoder,

shown in solid black line.

Fig.4.4 shows that Alg3.Var2 and Alg3.Var3 have almost the same performance as the spa-

tially sparse OMP-based scheme which requires full CSIT [15] while Alg3.Var2 and Alg3.Var3

require statistically-aided mixed CSIT and mixed CSIT, respectively. This shows the efficiency

of Alg3.Var2 and Alg3.Var3 in reducing the feedback overhead (where only knowledge about the

low-dimensional effective channel is required) while having marginal spectral efficiency degra-

dation. Moreover, Fig.4.4 demonstrates that Algorithm 3 and Alg3.Var1 both outperform the

performance of the codebook-based spatially sparse benchmark [10]. This, in turn, significantly

reduces the required channel knowledge to achieve the same high spectral efficiency perfor-

mance since Algorithm 3 and Alg3.Var1 require limited feedback CSIT while the scheme in [10]

requires mixed CSIT. We note here that the impact of the statistical knowledge on increasing

spectral efficiency is marginal where the curves of Alg3.Var2 and Alg3.Var3, and Algorithm 3

and Alg3.Var1 are on top of each other.

In order to evaluate the impact of the statistical channel knowledge on the spectral efficiency,

in Fig. 4.5, we simulated all these schemes in the same set-up of Fig. 4.4 except, codebooks’

lengths in this set-up are decreased from 64 to 32. Fig.4.5 shows that even though there is some

performance loss due to the reduction in codebooks’ lengths, the statistically-aided schemes
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Figure 4.4: Spectral efficiency comparison of different hybrid beamforming schemes over

16× 64 mmWave channel with Nrf = 3,Ns = 2, Ncl = 4 and Nray = 3 where the codebooks’

lengths are 64.

Figure 4.5: Spectral efficiency comparison of different hybrid beamforming schemes over

16× 64 mmWave channel with Nrf = 3, Ns = 2, Ncl = 4 and Nray = 3 where the codebooks’

lengths are 32.
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generally outperform the ones without statistical knowledge. Moreover, in comparison with Fig.

4.4, Fig. 4.5 illustrates that the spectral efficiency loss of the statistically aided schemes, i.e.,

Algorithm 3 and Alg3.Var2, due to the reduction in codebooks’ lengths is less severe than loss

of the ones without statistical knowledge, i.e., Alg3.Var1 and Alg3.Var3. Particularly, the re-

quired SNR gaps that compensate for these losses are 2 dB and 4 dB, respectively. Further, from

Fig.4.4, it is clear that the statistical channel knowledge has a marginal impact on the proposed

hybrid beamforming schemes since there is almost no performance gap between the ones that

are statistically-aided ones and the others. Thus, we can infer from Figs. 4.4 and 4.5 that the

impact of the statistical knowledge on increasing the spectral efficiency performance diminishes

by increasing codebooks’ lengths or equivalently the degradation in the spectral efficiency per-

formance due to the lack of statistical knowledge can be compensated by increasing the rate of

the feedback channels.

In Figs. 4.6, 4.7, and 4.8, we plot the spectral efficiency of five different hybrid beam-

forming schemes for the multi-user case, namely, Algorithm 4, shown in blue solid line with

triangles, Algorithm 4 Variation 1 (Alg4.Var1), shown in red solid line with circles, codebook-

based sum-rate maximization [44], shown in violet solid line with points, SLNR-based statis-

tical beamforming [95], shown in solid green line with crosses, and JSDM [2, 3, 52], shown in

yellow solid line with diamonds in addition to the fully-digital zero-forcing precoding scheme,

shown in solid black line. It is worth mentioning that all the simulated hybrid beamforming

schemes require perfect knowledge of the effective channel after the analog precoding while the

last two benchmarks require only second order statistical knowledge for constructing the analog

precoders (none codebook-based).

Fig. 4.6 illustrates that the spectral efficiency performance of the proposed schemes for the

K-user MISO broadcast channel outperforms all the benchmarks that utilize different channel

knowledge. Particularly, there are SNR gaps of 3 dB, 4 dB and 8 dB between the performance of

Algorithm 4 and SLNR-based statistical beamforming, codebook-based sum-rate maximization

and JSDM. We note here that although JSDM has been shown to be asymptotically optimal

under certain channel conditions, it suffers from severe performance degradation as depicted in

Fig. 4.6. This is mainly because it requires a sophisticated user grouping strategy and utilizes the
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Figure 4.6: Sum-rate comparison of different hybrid beamforming schemes over 10-user MISO

BC mmWave channel with M = 32 , Ncl = 3 and Nray = 2, and L = 2 for Algorithm 4 and

Alg4.Var1.

orthogonality between the groups of users. However, here, we consider more realistic channel

models where they are characterized by multiple scattering clusters (Ncl = 3), and where these

clusters may overlap.

In Fig. 4.7, the proposed schemes maintain their superior spectral efficiency performance

compared to the prior arts even when the number of users increased from 10 to 16 while increas-

ing the number of transmitting elements from 32 to 64 in comparison to Fig. 4.6. Moreover, Fig.

4.7 shows that the impact of the statistical knowledge on increasing the spectral efficiency of the

proposed schemes (e.g., compare the curves of Algorithm 4 and Alg4.Var1) is more pronounced

at higher channel dimensions. This is expected since with higher channel dimensions the statis-

tical knowledge becomes more beneficial in directing the information towards users. We note

here the performance of the proposed schemes starts to floor at higher SNR.

In Fig. 4.8, we study the effect of increasing the number of users K while fixing the number

of transmitting elements to 64. From Fig. 4.8, one can observe that the prior art schemes, which
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Figure 4.7: Sum-rate comparison of different hybrid beamforming schemes over 16-user MISO

BC mmWave channel with M = 64, Ncl = 3 and Nray = 2, and L = 2 for Algorithm 4 and

Alg4.Var1.

utilize only the transmit covariance matrix in the analog beamforming such as JSDM [2, 3, 52]

and statistical beamforming SLNR maximization scheme [95], suffer from significant sum-rate

flooring or even plunging when K is increased gradually in contrast with the codebook-based

schemes such as the proposed schemes and codebook-based sum-rate maximization [44]. More-

over, this illustrates that the proposed schemes maintain their superior sum-rate performance

over the entire range of K in comparison with benchmarks. Comparing the sum-rate curves of

Algorithm 4 and Alg4.Var1, one deduces that the significance of exploiting the statistical knowl-

edge in enhancing the sum-rate increases with increasing the number of the users, for instance,

at K = 8, both curves are on top of each other while, at K = 20, there is a sum-rate gap of 13

bits/s/Hz in favor to Algorithm 4 (the statistically-aided one). This is mainly due to the consid-

erable role of statistical knowledge in decreasing the inter-user interference by separating users

in space based on their covariance matrices.
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Figure 4.8: Sum-rate comparison of different hybrid beamforming schemes over K-user MISO

BC mmWave channel with M = 64, Ncl = 3 and Nray = 2, and L = 2 for Algorithm 4 and

Alg4.Var1.
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Chapter 5

Conclusion and Future Work

5.1 Concluding Remarks

In this thesis, we develop hybrid beamforming solutions that cater to next-generation wireless

networks. Throughout the thesis, we lay emphasis on practical design considerations that har-

ness the capabilities and employ the properties of the physical layer pillars of next-generation

wireless networks; namely, mmWave, massive MIMO and C-RAN. The proposed solutions ad-

dress the key challenges of hybrid beamforming in mmWave massive MIMO systems, namely,

the hardware constraints, the common design for various RF architectures, the high computation

complexity, and the overhead of the channel acquisition at the transmitter.

In Chapter 3, we considered single-user and multi-user massive MIMO systems with hybrid

precoding and combining. We proposed low-complexity hybrid processing schemes for both

partially and fully-connected antenna array structures based on developing a unified two-stage

channel diagonalization approach. Particularly, we showed that, instead of directly maximizing

the spectral efficiency of the massive MIMO channel, near-optimal and low-complexity hybrid

processing schemes are obtained by maximizing the antenna array gain (beamforming gain) of

the massive MIMO channel provided by the analog processing while eliminating the interference

between data streams and maximizing the spectral efficiency in the digital processing stage. In

110



this way, contrary to the majority of prior work approaches, the computationally intensive op-

erations such as SVD, matrix inversion, iterative gradient-decent, are implemented only in the

low-dimensional digital domain while simpler computational operations such as matrix multipli-

cation are implemented in the high-dimensional analog domain. We presented numerous numer-

ical results on the performance of the proposed schemes. These results showed that the proposed

hybrid precoding and combining schemes have marginal spectral efficiency loss compared to the

optimal processing strategy while superior (or at least comparable) spectral efficiency perfor-

mance in comparison with the prior art. Moreover, our analysis demonstrated that the proposed

schemes have significant computation complexity saving compared to those of the-state-of-the-

art. This gives the advantage to the proposed schemes to be used in the high-dimensional and

real-time use-cases of millimeter wave and massive MIMO TDD systems.

In Chapter 4, we considered single-user and multiple-user MIMO hybrid (analog/digital) pre-

coding. For FDD systems, leveraging the spatial correlation and sparsity massive MIMO systems

working in mmWave bands, we developed practical and simple codebook-based hybrid precod-

ing strategies assuming limited feedback channel or (mixed) partial channel knowledge while

exploiting the statistical information of these channels. The proposed algorithms are designed

efficiently to achieve high spectral efficiency while decreasing the feedback overhead by con-

structing the hybrid precoders based on statistically skewed DFT cookbooks. Numerical results

showed that the proposed algorithms allow mmWave systems with much less channel knowl-

edge and feedback overhead to approach the achievable rates of prior arts’ schemes that require

perfect and mixed channel knowledge. Moreover, numerical results illustrated the potency of as-

sisting the limited feedback systems with statistical information where, for the single-user case,

it enhances the immunity of the system’s spectral efficiency against the feedback rate reduction,

whereas, for the multi-user cases, it consolidates the separability of the users, thereby enhancing

the sum-rate of the network. In summary, the advantages of the proposed schemes over the prior

art schemes are their simplicity, low-overhead requirement, and near-optimal spectral efficiency.
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5.2 Directions for Future Work

There are several potential directions for future research. The hybrid beamforming solutions pro-

posed in this thesis are developed and evaluated under certain practical assumptions and setups.

However, these schemes would be extended to incorporate more practical assumptions such as

RF impairments and non-ideal lossless hardware. Moreover, in this thesis, we consider a single-

cell setup or multi-cell one but with low-frequency reuse factor such that there is negligible

inter-cell interference.

The vast majority of hybrid beamforming solutions assume using ideal RF circuit compo-

nents. However, the very high frequencies of mmWave channels impose difficulties and chal-

lenges on the design of RF components such as power amplifiers, phase shifters, RF power

splitters and combiners, and local oscillators. Therefore, practical RF circuits have some RF

hardware impairments such as the non-linearity of power amplifiers, oscillator phase noise, in-

sertion losses of RF power splitters, I/Q imbalance and insertion loss variation of phase shifters

[81, 91, 101, 113, 154]. We should develop accurate statistical, analytical, or empirical RF cir-

cuit models that incorporate these impairments, different hybrid RF architectures, and various

mmWave bands. Studying the impact of these impairments on the performance of mmWave

massive MIMO systems is important since they may introduce new design trade-offs and in-

sights that change the way we perceive the current hybrid beamforming designs. For instance, it

is theoretically plausible that the fully-connected RF architecture provides higher beamforming

gain than the partially-connected one, however this higher beamforming gain may be degraded

when taking insertion losses of RF power splitters and phase shifters into consideration [81,124].

In this case, the interesting trade-off between the hardware complexity and the beamforming gain

vanishes and yields the partially-connected architecture an optimal choice.

Eliminating inter-cell interference in conventional cellular networks requires employing co-

ordinated multi-point (CoMP) beamforming techniques. Despite the great theoretical gains, the

3GPP LTE (3rd Generation Partnership Project Long Term Evolution) standardization of CoMP

has not achieved many practical gains [51, 128, 140]. This is mainly due to the lack of joint pro-

cessing, the large channel information overhead required for coordination. Adopting mmWave
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bands, massive MIMO technology, as well as new architectures such as C-RAN in the 5G NR

allows for achieving the theoretical gains of CoMP transmission techniques. As a result, an ex-

tension of the proposed hybrid beamforming schemes can be accomplished to CoMP under some

modifications. The proposed schemes have been developed under a sum power constraint. Since

the power cannot be shared among base stations, extensions of the proposed schemes should be

developed under per base station power constraint in order to fit the CoMP setup. On the other

hand, the huge channel information overhead can be handled by a combination of second-ordered

statistical channel knowledge and instantaneous knowledge of the effective channels.
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Appendix A

Hybrid Beamforming Schemes for TDD
Systems

A.1 Poof of Proposition 3.2.3

Utilizing the singular value decomposition of the ith sub-channel on the diagonal, i.e., Hii =∑
l σiiluiilvii

H
l , and using the optimal combining vector, i.e., the left singular vector associated

with the largest singular value u1 instead of e−jφφφi√
Nsa

, however it violates the constant magnitude of

entries constraint on the analog combiner, the antenna array gain is upper bounded by:

|e−jφφφiHiie
jθθθi|2

NsaMsa

< |uH1
∑
l

σlulv
H
l

ejθθθi√
Msa

|2 (A.1)

(a)
=

σ2
1

Msa

|vH1 ejθθθi|2

(b)
≤ σ2

1

Msa

‖v1‖2
1 (A.2)

where (A.2, a) is due to the unitary property of the singular vectors, i.e., uHl uj = 0,∀j 6= l and

uHl ul = 1. Eq. (A.2, b) is obtained based on solving max
θθθi
|vH1 ejθθθi|2 by co-phasing v1 and ejθθθi ,
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i.e., θθθ?i = ∠v1. Similarly,
|e−jφφφiHiie

jθθθi|2

NsaMsa

<
σ2

1

Nsa
‖u1‖2

1 comes readily by considering the opti-

mal precoder, i.e., v1 instead ejθθθi√
Msa

. After that, one has to consider the minimum of both array

gains, i.e., σ2
1

Msa
‖v1‖2

1 and σ2
1

Nsa
‖u1‖2

1 since both are the antenna array gains of enhanced setups

due to considering the optimal combiner and precoder, respectively, while relaxing the constant

magnitudes of entries constraint. On the other hand, the lower bound is obtained by considering

selection precoding/combining, instead of considering the optimal precoder/combiner used to

obtain the upper bound, at one side while keeping the analog combining/precoding at the other

side. Therefore, the array gain of the analog precoding and combining at both side is lower

bounded by the array gain of either selection precoding and analog combining or analog pre-

coding and selection combining strategies. Thus, the array gain of the analog precoding and

combining strategy:

|e−jφφφiHiie
jθθθi|2

NsaMsa

>
1√
Msa

max
1≤j≤Nsa

|(Hiie
jθθθi)j|2

(a)
=
‖Hii‖2

∞
Msa

(A.3)

where (A.3, a) is obtained by co-phasing ejθθθi to the row that has the maximum `1 norm [73].

Similarly,
|e−jφφφiHiie

jθθθi|2

NsaMsa

>
‖Hii‖2

1

Nsa

comes readily by considering the selection beamforming

and analog combining as the transceiver strategy. Since, both setups have degraded performance

compared to the analog precoding and combining strategy, the array gain of latter strategy is

lower bounded by the maximum of array gains of both former strategies.
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