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Abstract

The cuprate high-temperature superconductors involve a complex interplay between
different structural and electronic symmetry-breaking phases. In the last decade, rotational
and translational symmetry-breaking phases — electronic nematicity and density wave
order — have been established as generic and distinct features in the cuprate phase diagram
using different probes. To understand this connection between these symmetry breaking
phases, we use resonant soft x-ray scattering (RSXS) — a technique that combines x-ray
diffraction and x-ray absorption spectroscopy — at different photon energies allowing us
to differentiate between ionic displacement and orbital asymmetry. The results presented
in this thesis are based on the measurements performed at the REIXS beamline at the
Canadian Light Source (CLS).

In this thesis, we employ RSXS to explore the low-energy physics of different symme-
try breaking phases in the cuprate high temperature superconductor La1.6−xNd0.4SrxCuO4

or Nd-LSCO, as a function of carrier density (hole doping) by varying Sr content. The
scattering cross section on resonance develops sensitivity to the orbital symmetry which at
different photon energies can be used to probe the relationship between electronic nematic-
ity of the CuO2 planes, structural distortions, and charge density wave (CDW) order.

We measure the temperature dependency of the orbital asymmetry to probe the rela-
tionship between electronic nematicity of the Cu 3d orbitals and hole doping in Nd-LSCO.
We achieve this by recording the low temperature (001) Bragg peak — which provides
sensitivity to electronic nematicity — at different atomic edges in single crystals of Nd-
LSCO at hole dopings of x = 0.125, 0.17, 0.18, 0.19, and 0.24. In the vicinity of the
putative pseudogap quantum critical point – at x = 0.23 in Nd-LSCO – we find evidence
for a considerable decrease in the measure of electronic nematicity as the degree of orbital
asymmetry is reduced. These results identify electronic nematicity as a possibility for the
ordered phase responsible for the quantum critical point in overdoped cuprates. Along-
side electronic nematicity, we also measure the evolution of charge ordering or CDW order
in these samples at the above-mentioned hole dopings. We report the absence of CDW
order beyond the hole doping of x = 0.18, which is in agreement with results from other
techniques.

Possible approaches to disentangle the role of nematicity, CDW order and supercon-
ductivity in the cuprates require a means to vary one (nematicity or CDW order) while
minimizing changes to other. A powerful way to achieve this goal is to apply uniaxial
strain in order to tunably change the degree of orthorhombicity, and measure the impact
of the resulting changes of the crystal structure on electronic nematic order, unidirectional
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CDW order and superconductivity. The second part of the thesis is a work in progress,
discussing the design and working of a recently in-house fabricated uniaxial stress device
with the potential to do so. We provide preliminary results as a proof of principle for
the uniaxial stress device which can tunably apply uniaxial strain, allowing us to perform
in-situ RSXS experiments at CLS’s line-of-sight Bragg geometry — recording the response
of electronic nematicty and CDW order — with applied strain along a desired reciprocal
space direction. We demonstrate the shifting of structural Bragg peaks confirming the
application of in-plane uniaxial strain along [100] direction on a single crystal of x = 0.125
Nd-LSCO. We also note a slight broadening of the CDW peaks along the h-direction on
applying compressive strain in the same material along the [100] direction.
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Chapter 1

Introduction

In 1986, J. Georg Bednorz and K. Alex Müller working at the IBM Research Laboratory
in Zurich discovered a Ba-La-Cu-O system [1] which had a superconducting transition
temperature of 35 K, which was not only greater than the any superconducting system
known at that time but also more than the proposed theoretical limit described by the
theory provided by Bardeen, Cooper, and Schrieffer (BCS) which describes conventional
superconductivity [2, 3]. It soon became cleared that BCS theory does not describe the su-
perconductivity in La2−xBaxCuO4 when the very next year, in 1987, Chu and colleagues [4]
discovered a Y-Ba-Cu-O system which exhibited a superconducting transition temperature
of 93 K. The reason to what causes these transition metal oxides to show superconductivity
at such high temperatures still remains an open problem in condensed matter physics.

Cuprate (or copper-oxide) high temperature superconductors started a revolution in
condensed matter physics, one that holds the key to the next generation of technological
advances built on artificially synthesized quantum materials. Inspired by the desire of
achieving superconductivity at higher temperatures — still ongoing — the attempts bore
fruit in terms of realizing theoretical breakthroughs of the last century, involving quantum
mechanics, topology, theory of phase transitions into tangible materials. Since their dis-
covery, cuprate superconductors have led to exciting physics almost every decade, from the
first evidence of a stripe phase [5] to the rich physics of the pseudogap phase [6], from the
still unknown machinery of intertwined symmetry breaking phases [7, 8] to strange metal
phases, some of these co-existing and some even competing with the superconducting state
[9]. Not only did we learn the exotic phase diagram of these materials but also they have led
to tremendous advancements in the nature and sophistication of experimental techniques
up to atomic scales, with which we can now probe cuprates and other strongly correlated
electronic systems. An example of this is the discovery of unconventional superconductiv-
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ity in more than seven classes of materials [10] — in the last 34 years — and the list is
still increasing. Recent mentions include iron-based superconductors which share a lot of
common features with cuprates. The highest recorded superconducting transition temper-
ature1 of around 135 K [11] — almost half as high as the room-temperature — comes from
a Hg based cuprate.

In this thesis, we use resonant x-ray scattering to explore the low-energy physics of
the different symmetry breaking phases in the cuprate high temperature superconductor
La1.6−xNd0.4SrxCuO4 or Nd-LSCO. The main focus of this thesis involves investigating the
occurrence of the electronic nematic phase, that is, when the electronic structure breaks
the rotational (point group) symmetry but leaves the translational (lattice group) sym-
metry intact. Experimental evidences include reports of electronic nematicity from bulk
transport [12, 13, 14], scanning tunneling microscopy (STM) measurements [15, 16], and
inelastic neutron experiments [17]. Recently our group identified electronic nematicity in
cuprate superconductors [18] and its relationship to the crystal structure as well as the
CDW order using resonant x-ray scattering. Resonant soft x-ray scattering (RSXS) is
a technique that combines x-ray diffraction and x-ray absorption spectroscopy at differ-
ent photon energies allowing us to differentiate between ionic displacement and orbital
asymmetry. The scattering cross section on resonance develops sensitivity to the orbital
symmetry which at different photon energies can be used to probe the orbital anisotropy
of the Cu 3d and O 2p states as we increase the concentration of holes, or apply structural
deformations along a particular direction in the CuO2 planes.

A brief review of different electronic and structural symmetry breaking phases in
cuprates and the low-energy physics involved is presented in Chapter 2, it might help
the reader place the significance of the results — provided in the later chapters — in a
broader context. Chapter 3 provides background for the experimental technique of res-
onant soft x-ray scattering, setting up the theoretical framework followed by Chapter 4
which deals with the details of the experimental setup.

In Chapter 5, we provide results for the temperature dependency of the orbital asym-
metry to probe the relationship between electronic nematicity of the Cu 3d orbitals and
hole doping in Nd-LSCO. We achieve this by recording the low temperature (001) Bragg
peak — which provides sensitivity to electronic nematicity [18] — at different atomic edges
in single crystals of Nd-LSCO at hole dopings of x = 0.125, 0.17, 0.18, 0.19, and 0.24. In
the vicinity of the putative pseudogap quantum critical point – at x = 0.23 in Nd-LSCO
– we find evidence for a considerable decrease in the measure of electronic nematicity as
the degree of orbital asymmetry is reduced. These results identify electronic nematicity

1At ambient pressure conditions.
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as a possibility for the ordered phase responsible for the quantum critical point (QCP)
in overdoped cuprates. Alongside electronic nematicity, we also measure the evolution of
charge ordering or charge density wave (CDW) order — a spatial modulation of the charge
that has been identified as a generic phase in cuprates that co-exists and competes with
superconductivity [19] — in these samples at the above-mentioned hole dopings. We report
the absence of CDW order beyond the hole doping of x = 0.18, which is in agreement with
results from other techniques.

Amongst others, possible approaches to disentangle the role of nematicity, CDW order
and superconductivity in the cuprates require a means to vary one (nematicity or CDW
order) while minimizing changes to other. A powerful way to achieve this includes ap-
plication of uniaxial strain in order to tunably change the degree of orthorhombicity, and
measure the impact of the resulting changes of the crystal structure on electronic nematic
order, unidirectional CDW order and superconductivity. Chapter 6 is a work in progress,
discussing the design and working of a recently in-house fabricated uniaxial stress device
with the potential to do so. It provides preliminary results as a proof of principle for
the uniaxial stress device which can tunably apply uniaxial strain, allowing us to perform
in-situ RSXS experiments at CLS’s line-of-sight Bragg geometry — recording the response
of electronic nematicty and CDW order — with applied strain along a desired reciprocal
space direction. We demonstrate the shifting of structural Bragg peaks confirming the
application of in-plane uniaxial strain along [100] direction on a single crystal of x = 0.125
Nd-LSCO. We also note a slight broadening of the CDW peaks on applying compressive
strain of up to 0.3% in the same material along the [100] direction. Future directions in-
clude validation of the reported results and investigation of the electronic response along
directions perpendicular to the applied strain.
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Chapter 2

The physics of cuprate
superconductors

2.1 Historical development

2.1.1 Conventional superconductivity

The first observation of a superconducting phase of matter dates back to 1911, when
Heike Kamerlingh Onnes cooled Mercury at cryogenic temperatures to find the resistance
abruptly disappear at a temperature of 4.2 K [20]. Soon other elemental superconductors
were discovered — with transition temperatures as high as ∼10 K in Niobium — and which
are now referred to as conventional superconductors. It took about 50 years after Onnes’
discovery to develop a satisfactory microscopic theory for conventional superconductivity
by Bardeen, Cooper, and Schriffer (BCS) who explained the possible mechanism through
which electrons can create pairs — called Cooper pairs — that originate from a small
attractive electron-electron interaction mediated by phonons [2, 3].

2.1.2 Unconventional superconductivity

In 1986, however, J. Georg Bednorz and K. Alex Müller working at the IBM Research
Laboratory in Zurich discovered a Ba-La-Cu-O system [1] which had a superconducting
transition temperature of 35 K, which was not only greater than the any superconducting
system known at that time but also more than the proposed BCS limit. It soon became
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clear that BCS theory does not describe the superconductivity in La2−xBaxCuO4 when
the very next year, in 1987, Chu and colleagues [4] discovered a Y-Ba-Cu-O system which
exhibited a superconducting transition temperature of 93 K. The reason to what causes
cuprates and other similar transition metal oxides to show superconductivity at such high
temperatures still remains an open problem in condensed matter physics.

2.2 Cuprate superconductors

The structure of the cuprates attributes greatly to the novel physics that emerge, see
Fig. 2.1, the undoped parent compound has copper-oxide (CuO2) layers separated by in-
sulating spacer layers. The CuO2 planes are doped by modifying the chemical makeup of
spacer, or charge reservoir layers such that either the electrons are removed (hole doped)
or introduced (electron doped) to the (quasi) two-dimensional CuO2. For instance, the
family of Lanthanum-based cuprate superconductors are hole doped children of the Mott-
insulating parent compound La2CuO4. The undoped compound is a Mott insulator, that
is electrons are localized at their lattice sites due to the strong Coulomb repulsion. As
one varies the carrier concentration in the CuO2 planes, it partially alleviates the strong
Coulombic repulsions allowing electrons to delocalize (or hop) across the underlying quasi-
2D lattice structure.

Based on different hole doping levels, one can move from an antiferromagnetic state at
underdoped region to optimal doping where superconductivity forms, on further increasing
the concentration of holes we get a fairly conventional metallic state that can be described
by a Fermi liquid theory. For the last 34 years, cuprates have been a subject of intense
investigation both theoretically and experimentally. We present a very brief and, naturally,
incomplete introduction to the relevant phases for the scope of this thesis. For a more
complete treatment of the development and current state of the field, the reader might
find Ref. [9, 21, 8, 6] to be helpful.

5



Figure 2.1: Crystal and electronic structure of cuprate superconductors. As we traverse
the phase diagram, the undoped parent compound La2CuO4 show superconductivity and
other electronic phases by hole doping the copper-oxide or CuO2 planes. In La2CuO4, La
is substituted with Sr or Ba and optionally co-doped with Nd or Eu like in Nd-LSCO.
In cuprates, the generic structural unit is the (quasi) two-dimensional CuO2 plane whose
electronic structure, close to the Fermi level, involves hybridization of a 3dx2−y2 hole on
the copper sites with an in-plane 2px and 2py oxygen orbitals. Arrow labeled a, b, c are
crystallographic axes.
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Figure 2.2: Phase Diagram: Temperature versus hole doping levels for the copper oxides.
When the parent Mott insulator is doped by substituting an electropositive atom in the
spacer layer, it exhibits various electronic symmetry-breaking phases as shown. AF insu-
lator is antiferromagnetic insulator with the Néel temperature TN , the pseudogap phase is
shaded pink and is indicated below a crossover temperature T ∗, the superconducting dome
is marked with the superconducting transition temperature, Tc. The blue shaded dome,
peaked at hole doping of p = 0.125 is the charge density wave order, which has been iden-
tified to compete with superconductivity. The pseudogap phase ends at p* which has been
recently identified as the putative QCP for Nd-LSCO. Ref. [9] for a detailed discussion.
Figure adapted from Ref. [6] with permission.
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2.3 Cuprate phase diagram

In the phase diagram shown in Fig. 2.2, the hole doping (p) is essentially the number of holes
per Cu atom in the CuO2 planes. Hole doping delocalizes the frozen electrons, destroying
the long range antiferromagnetic ordering, however, the delicate balance between Coulomb
repulsion and kinetic energy often lead to strong electronic correlations giving birth to
a number of intertwined phases with comparable energy and temperature scales. Besides
superconductivity, these comprise of charge density wave (CDW) order [19, 22, 23, 5], anti-
ferromagnetism, electronic nematicity [12, 13, 14, 15, 17, 16] and possibly other orders such
as pair density wave order [24]. In this thesis, we will primarily focus on charge ordering
and electronic nematicity, investigating how they respond to hole doping and external
tuning parameters like an in-plane uniaxial strain as an attempt to disentangle and study
their connection with each other and, ultimately, with the superconducting state.

2.3.1 Charge ordering: Charge density wave (CDW) order

Unidirectional spin and charge order (‘stripes’) were first observed in the cuprates by
neutron scattering measurements by Tranquada et al. in 1995 [5]. In the last decade,
translational symmetry breaking charge ordering has been established as a generic phase
in cuprates with experimental signatures observed in the underdoped regime and vanishing
as the hole doping increases to optimal doping [22, 19, 26].

The family of La-based cuprates show strong suppression in the superconducting tran-
sition temperature, Tc, at the hole doping level of p = 1/8. There have been evidence for
the competition of the superconducting phase with charge order in cuprates other than
Nd-LSCO as well. For instance, application of a perpendicular magnetic field suppresses
superconductivity and enhances CDW order in YBCO. The jury is still out for why p = 1/8
doping favors the stripe phase, and exhibits very strong suppression of superconductivity
in some of the cuprates like LBCO.

First reports of CDW order detection in cuprates using RSXS come from measurements
by Abbamonte et al. in 2005 [27]. This attracted more work using RSXS, and soon enough
CDW order was discovered in YBCO [22, 19], now it is considered a generic member of
the cuprate phase diagram. CDW order is evidenced by a broad and weak peak above the
fluorescent background signal in resonant scattering at a particular Q value1. As shown
in Fig. 2.3(b), the Qpeak value for p = 1/8 Nd-LSCO is (0.236, 0, 1,5), it tells us that the

1Around (±0.236 0 1.5) in La-based cuprates.
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Figure 2.3: Unidirectional charge ordering in Lanthanum based cuprates: (a) Schematic
of charge stripe order in Nd-LSCO at p = 1/8 hole doping. Spontaneous segregation of
holes into unidirectional charge stripes occur, shown by orange shade. These stripes follow
a (lattice) period-4 stripe-like charge correlations in the La-based materials. Undoped AF
region in between are denoted by green shade, (b) Detection of a CDW signal in a La-
based cuprate, Nd-LSCO at p = 1/8 hole doping, using RSXS performed at Cu L edge.
Schematic (a) used with permission from [25]. Reprinted figure (b) with permission from
Ref. [28]. Copyright (2013) by the American Physical Society.

periodicity of the charge superlattice is 4 times the lattice spacing. The broad character
of the peak indicates the short range order with a correlation length of around 70 Å [28].
More details on the measurement and analysis of CDW order is presented in sections 5.5.2
and 6.4.2.

2.3.2 Structural low-temperature phases

An important aspect of La-based cuprates is a low-temperature orthorhombic (LTO) phase
to low-temperature tetragonal (LTT) structural phase transition [29, 30, 31]. As shown in
Fig. 2.4, the average structures of these phases can be described by the in-plane Cu atom
coordinated by six oxygen atoms, such that it forms a grid of tilted, almost rigid, corner
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sharing CuO6 octahedra. Based on the hole doping levels and temperature, four struc-
tural phases are observed in Nd-LSCO: the high-temperature tetragonal (HTT) phase with
space group I4/mmm, the low-temperature orthorhombic (LTO1) phase (Bmab), the low-
temperature tetragonal (LTT) phase (P42/ncm) phase, as well as the LTO2 phase (Pccn)
which is an intermediate phase between LTO and LTT with reduced orthorhombicity.

Figure 2.4: (a) Unit cell of Nd-LSCO in the high-temperature tetragonal phase (HTT).
O(1) and O(2) are in-plane and apical oxygen sites, respectively. (b) is described in the text.
(c) Structural phase diagram of Nd-LSCO with different structural phases as described in
the text. (a) and (b) reused from Ref. [18] with permission. Phase diagram taken from
[32].

At high temperatures, the CuO2 layers are parallel to the ab-plane of the unit cell being
in HTT structure. However, as one lowers the temperature, mismatch between the Cu-O
and La-O bond lengths causes strain which is alleviated by structural distortions achieved
by tilting of these octahedras. As a consequence, on cooling the space group changes, and
the unit cell of the LTO phase is rotated by 45 degrees. As shown in Fig. 2.4, in the
LTO phase the octahedra tilt along [1 1 0]HTT direction, whereas in the LTT phase the tilt
direction alternates between [0 1 0]HTT and [1 0 0]HTT from plane to plane [31].

In the LTT phase, the orientation of these distortions — which change direction by 90
degrees between adjacent layers — are crucial for stabilizing charge and spin order in the
copper oxide plane [33]. Moreover, the axis about which the octahedra rotate is parallel
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to an in-plane crystallographic axis, alternating between a and b in the adjacent layers
[29, 30, 31]. This structural transition is known to induce the C4 symmetry breaking of
the average electronic structure within an individual CuO2 plane [18].

2.3.3 Electronic nematicity

An electronic nematic phase occurs when the electronic structure breaks the rotational
(point group) symmetry but leaves the translational (lattice group) symmetry intact. Ex-
perimental evidences include reports of electronic nematicity from bulk transport [12, 13,
14], scanning tunneling microscopy (STM) measurements [15, 16], and inelastic neutron
experiments [17]. Recently our group identified electronic nematicity in cuprate supercon-
ductors [18] and its relationship to the crystal structure as well as the CDW order using
resonant x-ray scattering. We investigated the C4 → C2 rotational symmetry-breaking
(electronic nematicity) of the average, intra–unit cell, electronic structure within an indi-
vidual CuO2 plane. The role of electronic nematicity, such as whether it is a feature of the
pseudogap region and how it relates to CDW order or hole doping or the crystal structure
of different cuprate families has not yet been fully established.

Our study uses resonant soft x-ray scattering (RSXS) measurements of the (001) Bragg
peak to probe electronic nematicity in the in Nd-LSCO. Previous work by Achkar et al. [18]
showed that the resonant x-ray scattering measurements of the (001) Bragg peak provide
sensitivity to electronic nematicity. Understanding how this measurement reveals electronic
nematicity requires examination of the crystal structure of Nd-LSCO. As discussed in
the previous section, Nd-LSCO exhibits a structural phase transition from the LTO to
LTT phase at temperatures between 50 – 90 K depending on doping. The LTT phase
is characterized by tilting of the CuO6 octahedra along the a or b axes such that each
individual CuO2 layer structurally breaks C4 rotational symmetry as shown in Fig. 2.4.
The axis of rotation of the octahedra, however, rotates by 90 degrees between neighbouring
layers producing a crystal structure that is tetragonal, despite having orthorhombic layers.
Consequently, any probe that bulk averages the layers would yield the same result along
the a and b axes and not reveal nematic order. However, resonant x-ray scattering is
sensitive to orbital symmetry, which differs for atoms in neighbouring layers in the LTT
phase. Moreover, by tuning the photon energy to correspond to different atoms within
the unit cell, the electronic symmetry breaking of the CuO2 planes – which contain the
Cu 3d and O 2p states that cross EF and are most relevant to the low energy physics of
the cuprates – can be differentiated from the La2O2 spacer layer, which do not have states
that cross EF but would be sensitive to changes in their orbital symmetry induced purely
by structural distortions.
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Figure 2.5: Electronic nematicity as a measure of orbital asymmetry: (a) CuO2 planes
showing the octahedral tilt pattern in neighboring layers (z = 0 and 0.5) in the LTT
phase. The structural C4 symmetry-breaking and electronic nematicity alternates between
neighboring planes, z = 0 and z = 0.5. (b) Temperature dependency of the (001) Bragg
peak at photon energy tuned to atoms in the CuO2 layer and the spacer layer. The different
temperature dependences can be understood in terms of an electronic nematic order in the
CuO2 planes that has a temperature dependent susceptibility and provides a contribution
to the (001) peak intensity in addition to any contribution to that is induced by the lattice
potential via structural distortions. (a) and (b) taken from Ref. [18] with permission.

2.3.4 Pseudogap and Quantum criticality

Rotational and translational symmetry-breaking phases in the pseudogap region have been
established as generic and distinct features in the cuprate phase diagram using different
probes. The pseudogap is a region below a crossover temperature T ∗, where the electronic
density of states is partially gapped, it is a trove of exotic electronic instabilities and
ordering mechanisms. Opening up in the non-superconducting state, the pseudogap houses
several symmetry-breaking phases, such as stripe-order [5], liquid electronic crystalline
order, and the newest addition of a pair-density- wave (PDW) state [24]. The intertwined
nature of these phases, both in energy and temperature, makes it challenging to tell whether
the pseudogap is a distinct (ordered) phase or an amalgamation of different instabilities
[9, 8] as we move across the phase diagram (along temperature and hole-doping axes). The
electronic instabilities, unconventional superconductivity, and the pseudogap are believed

12



to be linked with the existence of a zero-temperature quantum critical point (QCP) similar
to heavy-fermion, organic, pnictide [6, 34], and iron-based superconductors [35]; the last
being the closest cousins to cuprates.

Figure 2.6: Evidence of quantum criticality in Nd-LSCO: A quantum critical point (QCP)
occurs when the phase transition temperature of a material is suppressed to absolute
zero. (a) shows the schematic phase diagram with the putative QCP at the point where
the pseudogap phase ends. (b) High field resistivity measurements on La-based cuprates:
Superconductivity is suppressed to sub-Kelvin temperatures by applying a magnetic fields
in the samples to investigate the behavior of electronic specific heat with doping. The
authors argue that the strongly peaked electronic specific heat at p* which exhibits a
log(1/T ) dependence is a signature of a QCP in these materials. Image (a) adapted from
[6] with permission and image (b) reused from [36] with permission.

Existing proposals and recent reports of this putative pseudogap QCP in different
cuprate families — based on the change in carrier density [37], Fermi surface transfor-
mation [38, 39], torque-magnetometry measurements [40], strong mass enhancement via
quantum oscillation studies [41], and specific heat measurements (see Fig 2.6) at low tem-
peratures in large magnetic fields [36] — suggest the possibility of termination of electron-
ically ordered phases, and transition to a Fermi liquid behavior, as we increase the hole
doping. As depicted in Fig. 2.6, for Nd-LSCO the putative pseudogap QCP lies inside
the superconducting dome around the hole doping of 0.23 [38]. It has been proposed that
quantum fluctuations enhance superconducting pairing interactions in the vicinity of this
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putative QCP [6, 41, 42]. There have been several theoretical and experimental attempts
to understand the nature and finite-temperature implications of these posited fluctuations
at the putative pseudogap QCP in cuprates [6, 41, 42, 43]. Recent advancements include
reports of divergent nematic fluctuations using elastoresistance measurements[44] and en-
hanced electronic nematic fluctuations using Raman scattering [45] near the endpoint of
the pseudogap phase, both suggesting the presence of a nematic quantum critical point.

2.4 Motivation for our studies

In La1.6−xNd0.4SrxCuO4 or Nd-LSCO, the putative pseudogap QCP lies, inside the super-
conducting dome, around the hole doping of 0.23 [38]. It has been proposed that quantum
fluctuations enhance superconducting pairing interactions in the vicinity of this putative
QCP [6]. This makes Nd-LSCO a suitable candidate for studying the relation between the
three symmetry-breaking phase, that is CDW order, electronic nematic order and struc-
tural phase transitions. The existence of a low temperature tetragonal (LTT) distortions
— a feature of this family — gives us access to the (001) peak which, as we will describe
in the chapters ahead, is crucial for the measurement of electronic nematic order using our
technique of resonant x-ray scattering.

We use resonant soft x-ray scattering (RSXS) — a technique that combines x-ray
diffraction and x-ray absorption spectroscopy — at different photon energies allowing us
to differentiate between ionic displacement and orbital asymmetry. This helps us address
how static electronic orders might evolve as a function of hole doping. In this study, we
focus on the relationship between electronic nematicity, charge density wave order and
structural distortions.

Furthermore, with the freedom RSXS provides in choosing a transition edge, we can
explore the impact of uniaxial strain on materials with different crystallographic structures,
including materials that are 4-fold symmetric and do not intrinsically favour unidirectional
charge ordering. In these systems, the application of strain may have a dramatic effect,
potentially stabilizing long-range unidirectional charge. Uniaxial strain proves to be a
useful way in understanding the role of directional crystal deformations — which influ-
ences the way how orbitals overlap in the neighboring sites and layers — in the correlated
electronic states of matter. This selection allows us to decouple co-existing symmetry
breaking phases providing a way to understand the behavior of the electronic structure
under changing point group symmetries.
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Chapter 3

Resonant Elastic X-ray Scattering

3.1 Introduction

Quantum materials is an umbrella term in condensed matter physics for materials that
exhibit strong electronic correlations, ordering, and instabilities like superconductivity,
charge/spin modulations, magnetic order, and other structural, electronic, and temporal
symmetry breaking phases [9]. Often in these materials, the electronic correlations and
ordered states are intertwined — competing, co-operating, and co-existing — with phases
sharing similar energy and temperature scales [8]. Understanding the physics of intertwined
electronic order in strongly correlated electron systems is of crucial importance to a wide
range of materials, so are the techniques capable of probing and characterizing different
co-existing degrees of freedom in such configurations.

In this thesis, we investigate (hole doped) transition metal oxide (TMO) heterostruc-
tures, which exhibit complex electronic phenomena involving competitive and/or cooper-
ative ordering of various electronic degrees of freedom — for instance, density wave order,
superconductivity, nematicity amongst others. In TMO, the collective ordering of charge,
spin and orbital degrees, generally, affects a small portion of the valence electrons, thus
most of the interesting physics occurs at low energies, close to the Fermi level of the transi-
tion metal ion involved. In condensed matter physics, conventional x-ray diffraction (XRD)
is a well-established tool to probe the spatial, microscopic description of the underlying
ionic/atomic structure and the degree of crystalline order, via measurement of the position
and width of Bragg peaks. Since the atomic scattering cross-section for x-rays is propor-
tional to Z2, where Z is the atomic number, XRD signal is greatly influenced by heavier
dopant atoms in the TMO heterostructures [46]. Thus forbidding us to resolve the physics
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of the charge and orbital degrees of freedom happening close to the Fermi level for lighter
elements like oxygen and copper.

Resonant elastic x-ray scattering (REXS) combines XRD with x-ray absorption spec-
troscopy, in such a way that gives us a probe which is not only sensitive to the structural
features but also to the electronic structure: a technique that not only allows us to probe
weak ordering phenomena that is otherwise difficult to detect, but also to identify and
disentangle different orders (magnetic, lattice, charge, orbital), even when they overlap or
occur simultaneously in time or temperature, by varying the x-ray energy and polarization.
It works by tuning the incident photon energy to an x-ray absorption edge, i.e. an energy
sufficient to excite a core electron of a particular element into an unoccupied state. Near
an x-ray absorption edge, the resonant effect enhances the scattering amplitude which now
varies strongly with photon energy and, unlike off resonance, depends on details of the
electronic structure, such as the valence, spin state or orbital symmetry of the unoccupied
electronic states. It is important to choose the transition edge such that it not only en-
hances the cross section but also keeps it in the low-energy range near the Fermi energy
of the transition metal ion. In our case of the 3d TMOs, the most relevant dipole-allowed
transition is from 2p to 3d, also called the L2,3 or L3

1 edge, which lies between 100− 2000
eV — called the soft x-ray regime — thus adding the “soft” in the name of the technique
resonant soft x-ray scattering (RSXS). For Copper the L3 edge is at E ∼ 930 eV, which
is the backbone energy value of this thesis. It is worthwhile to mention that there is a
small cost involved in this compromise: the wavelength range for soft x-rays drastically
restricts the q-space access, we will briefly touch upon later in this chapter. On the other
hand, even with larger q-space accessibility, the hard x-ray (E > 5 keV) would not be as
useful in probing intertwined electronic correlated physics for the TMOs as they would
probe/correspond to states above the Fermi level.

This chapter briefly covers the theoretical description of REXS and its application to
probe orbital asymmetry. More rigorous treatment can be found in Ref. [46, 47, 48, 49].

3.2 X-rays and their interaction with matter

For the scope of this thesis, we will consider monochromatic beams – which travel per-
pendicular to the direction of the electric and magnetic field. For a simplistic theoretical
treatment, we shall consider the electric field only, thus characterizing x-rays by a wave-
length λ, or wavenumber k = 2π/λ. Interaction of an oscillating external field hold an

1Or colloquially L edge, when used with Cu in the later chapters.
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important place in condensed matter physics via driving the underlying system’s dynamics
out of equilibrium. The response of the properties of the studied phase of matter contain
key information about such excitations, which in a first principle consideration can be
treated proportional to the external field (or oscillations). This is generally modeled with
a linear response theory, we will borrow and build up from this idea in the sections ahead.

3.2.1 X-Rays: Waves, photons, and synchrotron

Assuming the x-ray beam is monochromatic and perfectly collimated, we apply the approx-
imation of a plane wave. The classical description of the spatial and temporal variation
of a linearly polarized, electromagnetic plane wave propagating along the z-axis can be
expressed as

E(r, t) = ε̂ E0e
i(k.r−ωt), (3.1)

where the ε̂ and k contains information about the direction of polarization and wavevector,
respectively.

3.2.2 Diffraction by an electronic distribution

We begin by considering non-resonant, elastic scattering of incident x-rays by a charge
distribution. In general, an atom can be modeled as a spatial charge distribution with
some radial dependence for electron density, as ρ(r). With our approximation of incident
x-rays as a plane wave front as described in Eqn. (3.1) — we can think of diffraction as the
phase difference, |(kout − kin) · r|, caused by an unequal traversal of optical path length of
two (or more) scattered wavefronts. The scattered wavefronts interfere constructively (and
destructively) to give us a diffraction pattern. Often we formalize it with the momentum
transferred, q = kout − kin, to the scattered wavefront, and then integrating it over entire
above-said charge distribution as

f(q) =

∫
ρ(r)eiq·rdr, (3.2)

where f(q) is the atomic form factor. It is worthwhile to mention that the full atomic form
factor, in the quantum mechanical treatment which we will see in the next section, depends
on the energy of the incident photons, and consequently the binding energy response to it.

Building up from our simplistic treatment of atoms as scattering entities [50], we now
consider crystals — that can be classified as structures composed of periodic arrangements
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of atoms that, generally, form a Bravais lattice. We can now modify our Eqn. (3.2) to
include the structural information by discretely summing over the lattice sites as

S(q) =
∑
R

f(q)eiq·R, (3.3)

where R = n1a1 + n2a2 + n3a3 points to the location of the atom, and {a1, a2, a3}
are the primitive lattice vectors. The discrete Fourier transform S(q) can be thought of
as a crystal structure factor for a simple periodic arrangement. The scattering intensity
|S(q)|2 attains a maxima when the momentum transfer for the scatterers satisfy the Laue
condition, q ·R = 2πm, where m is an integer.2

For a more realistic treatment of (complex) periodic arrangements with multiple atoms
in each unit cell, we consider R = Rn+rj where Rn points to the center of unit cell n and
rj locates the different atoms within the unit cell relative to Rn. The updated structure
factor can be written as:

S(q) =

unit cell structure factor︷ ︸︸ ︷
A,B,C...∑

rj

fj(q)eiq·rj

N∑
Rn

eiq·Rn

︸ ︷︷ ︸
lattice part

, (3.4)

where A,B,C... are distinct atoms in the unit cell, and N is the total unit cells in the
crystal. The scattering intensity |S(q)|2 in Eqn. (3.4) can be considered as having lattice
contribution from different unit cells, and contribution from different atoms within the unit
cell. For our interest, in a real (single) crystal we can assume N → ∞ thus making the
lattice contribution proportional to a Dirac delta function,

∑
G δ(q−G). This brings us to

the Laue condition for scattering, q = G. Another important observation to make is that
the scattering intensity is dictated only by the unit cell structure factor in this assumption.

3.2.3 Crystalline arrangement: Real and Reciprocal space

A perfect crystalline form is a periodic repetition of a unit cell structure which in real
space is defined by primitive lattice vectors in real space, or also called unit vectors of
direct lattice as {a1, a2, a3}. For such a crystal, the condition for maxima of scattering

2This allows us to define a complete set of the reciprocal lattice vectors which according to crystal and
geometry of the experiment — gives us accessible Miller indices or, as we colloquially call them, Bragg
peaks.
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intensity is repeated for Eqn. (3.3) when q ·R = 2πm, where m is an integer, and for
Eqn. (3.4) when q = G. This Laue formulation allows us to define reciprocal space using
real space primitive lattice vectors as

bi = 2π
aj × ak
v0

, (3.5)

where vo is the volume of the unit cell, and {i, j, k} are indices of direct lattice unit vectors,
and they follow right-handed cyclic notation.

Figure 3.1: The scattering geometry in the lab and crystal frame, where {a1, a2, a3}
denote the direct lattice unit vectors, and {b1, b2} stand for the reciprocal space unit
vectors. The red solid line denotes the scattering vector, q = kout − kin.

More generally from q = G, the set of reciprocal space vectors can be represented in
these three equations:

a1.(kout − kin) = 2πh, (3.6)

a2.(kout − kin) = 2πk, (3.7)

a3.(kout − kin) = 2π`, (3.8)

where h, k, ` are Miller indices and G = hb1 + kb2 + `b3, here {b1, b2, b3} form the basis
vectors of the reciprocal space.
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3.3 Theory of Resonant X-ray Scattering

3.3.1 A second order process

Resonant x-ray scattering is a “photon in-photon out” technique, where light (photon) gets
scattered by matter (electron cloud) — the photon energy is tuned exactly to match the
energy difference between the occupied (electronic) state and the unoccupied valence state.
In this two step process, a ‘hole’ is left behind which interacts with other (un)occupied
states to gain stability. As depicted in the cartoon Fig. 3.2 when the photon energy is
off-resonance the excitation process does not involve an intermediate state Ψm where the
absorption and the scattering cross section is dramatically low, however, as we tune to the
resonant energy there is a strong enhancement of the scattering cross section, which now
picks up information about the correlated ordering and symmetry-breaking phenomenon
(involving the d orbital states of the transition metal ion of the TMOs).

3.3.2 A quantum mechanical approach

As discussed in Ref. [47, 51, 52], for our description of resonant scattering, we can obtain
a time-dependent, matter-radiation interaction Hamiltonian as

Hint =

∑
electrons

Thompson
scattering︷ ︸︸ ︷
e2

2mc2
A2 −

Resonant
scattering︷ ︸︸ ︷
e

mc
p ·A, (3.9)

the vector potential A(r, t) of the incident photon interacts with the electrons in the
material, p is the momentum operator, and m is the mass of the electron.

We begin by considering the interaction of an incoming photon with an electronic
configuration (ground) state |ΨGS〉, or simply |G〉 (see Fig. 3.2 as well). In REXS, the
incoming photon absorption with wavevector (k) and polarization (ε) causes the electrons
to transition out of state |G〉 into an intermediate state |Ψm〉, or |I〉 which then decays
back to the initial state |G〉 by emitting a photon (k′, ε′). The introduction of the in-
termediate state |I〉 is crucial as it makes the probe sensitive to the electronic transition
and electronic/charge structure of the ground state — this is different from the Thompson
(elastic) scattering in which no electronic transition would be involved. These two cases
are depicted by the cartoon schematics in Fig. 3.2.

20



Figure 3.2: Schematic representation of resonant and nonresonant scattering: (a) In non-
resonant scattering the excitation process does not involve intermediate states, whereas
resonant scattering occurs when the incident photon energy (hνin) is tuned to promote
an electronic transition from the ground state |ΨGS〉to an intermediate state |Ψm〉. The
subsequent, or the second order process of recombining of the excited electron with the
core hole results in the creation of an outgoing (scattered) photon (with energy hνout). (b)
The different photon energy dependence of resonant and nonresonant processes, showing
enhancement in the cross-section occurring at the resonant edge. Figure taken from [26]
with permission.

To investigate the process in terms of transition matrix and scattering cross-section, we
apply the Hamiltonian in Eqn. (3.9) on |G〉. In order to do so, we first choose a Coulomb
gauge, ∇ ·A = 0 to introduce a quantized photon vector field potential A(r, t) that has
the form of a traveling wave as

A(r, t) =

√
2π~c
V |k|

∑
k

ε
(
ak(t)e

ik·r + a†k(t)e
−ik·r

)
, (3.10)

where a†k and ak are photon creation and annihilation operators respectively. The vector
potential introduced above is linear in annihilation and creation operators which means to
obtain a second order elastic process, it would have to act twice on |G〉. This implies that
allowed terms quadratic inA would contribute to first order and the contribution of allowed
linear order terms in A would need second order perturbation theory treatment to capture
the two-step resonant elastic scattering process. We rewrite Eqn. (3.9) by separating the
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Hamiltonian into a non-resonant (H1) and a resonant (H2) scattering contribution, summed
over all electrons labeled via i:

Hint = H1 +H2 =

H1: |G〉→|G〉︷ ︸︸ ︷∑
i

e2

2mc2
[A(ri, t)]

2 −

H2: |G〉→|I〉→|G〉︷ ︸︸ ︷∑
i

e

mc
pi · [A(ri, t)] . (3.11)

We calculate the transition rate matrix [46, 47, 53] for H1 and H2, as:

T1 = 〈G|H1|G〉 and T2 =
∑
m

〈G|H∗2 |Im〉 〈Im|H2|G〉
~ωk − (Em − Eg) + iΓ/2

. (3.12)

plugging in H1 and H2 we get:

T1 =
hc

V |k|
e2

mc2
(ε∗ · ε)

∑
i

〈G|ei(k−k′)·ri |G〉 , and (3.13)

T2 =
hc

V |k|
e2

mc2

∑
m states

〈G|
∑N

j=1 ε
′∗ · pje−ik

′·rj |Im〉 〈Im|
∑N

j′=1 ε · pj′e
ik·rj′ |G〉

~ωk − (En − Eg) + iΓ/2
. (3.14)

Note that the system transitions from the ground state |G〉 with energy Eg to an inter-
mediate state |Im〉 with energy Em, and Γ represents the full-width at half-maximum of
the distribution of all possible intermediate states Im with respective energies — more
commonly known as the lifetime of the intermediate states. The transition rate3 in this
quantum mechanical treatment can be described using perturbation theory by Fermi’s
Golden Rule, as:

w =
2π

~
|T1 + T2|2 δ (~ωk − ~ωk′) . (3.15)

We sew up these arguments together by considering a scattering photon flux Φ = cnk/V
where nk is the number of photons with wavevector k in a solid angle dΩ which then gives
us the differential scattering cross section as dσ/dΩ = w/Φ. Last point to note is the
conversion of delta function to a differential element dE to sum over photons with all k.

3The probability that an electron will undergo a transition per unit time from one state to another.
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Finally, we obtain:

dσ

dΩ
=

e4

m2c4

∣∣∣∣∣(ε∗ · ε)
F(Q)︷ ︸︸ ︷∑

i

〈G| ei(k−k′)·ri |G〉

+
∑

m states

〈G|
∑N

j=1 ε
′∗ · pje−ik

′·rj |Im〉 〈Im|
∑N

j′=1 ε · pj′e
ik·rj′ |G〉

~ωk − (Em − Eg) + iΓ/2

∣∣∣∣∣
2

.

(3.16)

where F(Q) is the Fourier transform of the charge density, ρ(r). In the above equation,
the first term is the differential scattering cross section contribution from non-resonant
Thompson scattering — which also follows the general relation between the scattering
length and differential cross-section for non-resonant scattering processes. The second term
in Eqn. (3.16) is the resonant (charge) scattering differential cross-section. At resonance
the magnitude of the scattering intensity dramatically increases (see Fig. 3.2(b)), thus
the measured intensity of a diffraction peak at resonance is dominated by the resonant
contribution from the scattering cross-section. Naturally, there is an added background
intensity that comes from the non-resonant processes. We can further simplify the second
term by using the dipole approximation by Taylor expanding the exponential terms, as

eik·r ' (1 + k · r + (k · r)2/2 + ...). (3.17)

In our investigations, using REXS for orbitals and charge textures, only the first-order
terms contribute significantly4. Furthermore, we can re-write the momentum operator
using the commutator identity p = m

i~r(Em − Eg) and after dropping higher order terms,
the final expression for the differential cross-section of resonant scattering can be simplified
as: (

dσ

dΩ

)
∝

∣∣∣∣∣(ε′ · ε) F(Q) +
∑

m states

〈G| (ε′ ·D)† |Im〉 〈Im| (ε ·D) |G〉
~ωk − (Em − Eg) + iΓ/2

∣∣∣∣∣
2

, (3.18)

where D =
∑

j rj is the dipole operator. Note from the denominator in Eqn. (3.18) that
resonant scattering will be amplified at energies where one can virtually excite an electron
into some intermediate state, i.e. at an absorption edge. The differential cross section
represented by Eqn. (3.18) relates to the atomic scattering form factor, f(ω), as(

dσ

dΩ

)
∝ |f(ω)|2 (3.19)

4Interested reader might find multipole expansion in Ref. [47, 54].
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Thus f(ω), which is a complex quantity should vary and be enhanced in proximity to the
absorption edge. This is, indeed, observed in the experiments as shown in Fig. 3.3. Re-
examining the quantum mechanical treatment5 in terms of atomic scattering form factors
proves to be useful as the x-ray absorption spectroscopy (XAS) measurements not only
exhibit enhancement but also become sensitive to the orbital, charge and spin degrees of
freedom at the absorption edges. Furthermore, the polarization dependence of Eqn. (3.18)
can be taken into account by using a tensor formulation of f(ω), as discussed in the next
section.

Figure 3.3: The atomic scattering form factors, f(ω), as a function of photon energy
through the (a) Cu L and (b) O K absorption edges for Nd-LSCO determined from the
XAS measurements. Figure reprinted from Ref. [28] with permission. Copyright (2013) by
the American Physical Society.

3.3.3 Scattering tensor: Symmetry and orbital sensitivity

As described in the previous section, near an x-ray absorption edge, the resonant effect
enhances the scattering amplitude which now varies strongly with photon energy and,
unlike off resonance, depends on details of the electronic structure, such as the valence, spin
state or orbital symmetry of the unoccupied electronic states. The absorption coefficient
is peaked at this (resonance) energy because a transition is now allowed from an occupied

5A more rigorous connection is explored in Ref. [55].
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core state to an unoccupied state. The peaks in the absorption spectra exhibit sensitivity
to the unoccupied holes. For instance, the Cu L edge (2p → 3d) probes unoccupied 3d
states, the O K edge (1s → 2p) probes unoccupied 2p states and the La, Ba, Eu or Nd M
edges (3d → 4f) probe unoccupied 4f states.

Figure 3.4: On resonance orbital sensitivity in REXS. (a) Enhancement of x-ray scattering
on resonance: The resonant x-ray scattering intensity (red) and x-ray absorption (blue) as a
function of incident photon energy through the Cu L absorption edge (2p to 3d transition)
for the (001) Bragg peak of LBCO. (b) Polarization dependence of the x-ray absorption
signal along different crystallographic directions (a and c), showing a large enhancement
with polarization direction — indicating that it develops sensitivity to not only the hole
occupation but also the symmetry of the holes associated with Cu 3dx2−y2 orbitals here.
Figure (a) taken from the supplementary material of Ref. [18] with permission and figure
(b) is from the data collected by previous members of our group.

In multi-ion electronic environment configurations, like tetragonal, octahedral, or or-
thorhombic coordinations, not only does the system break atomic/ionic spherical symmetry
but also influences the way it scatters light. This anisotropy depends on the incident photon
energy and polarization of the light, which can be encapsulated by a tensor representation.
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The atomic scattering form factor can be treated as a tensor quantity [56] like

I ∝
(

dσ

dΩ

)
∝

∣∣∣∣∣∑
j

(ε†in · f̂j(ω)eiq·rj · εout)

∣∣∣∣∣
2

, (3.20)

where εin and εout are incident and scattered photon polarization.

For a Cu 3dx2−y2 orbitals, involved at energies for Cu L edge, the scattering tensor
would obey certain symmetries. The off diagonal elements would be zero, while the x and
y components would be identical. In a similar way, one can qualitatively think that for a
px (or py) orbital, the x component would be finite and the y component would be zero.
The polarization dependence of the x-ray absorption signal, in Fig. 3.4, depicts that as we
move the polarization of incident light along different crystallographic axes — we become
sensitive to the symmetry of these holes. Thus, on resonance, RSXS develop sensitivity to
hole occupation as well as the symmetry of the holes, to further access orbital symmetry.

For a general triclinic system we can write the scattering tensor (at atomic sites j) as:

Ŝ(q, ω) =
∑
j sites

f̂j(ω)eiq·rj ∼

fxx(ω) fyx(ω) fzx(ω)
fxy(ω) fyy(ω) fzy(ω)
fxz(ω) fyz(ω) fzz(ω)

 ,

where the components of f̂ are complex. For system of our interest, like tetragonal and
orthorhombic symmetries: resonant charge scattering contributions would contribute to
the diagonal elements whereas magnetic scattering contributions can be present at both
diagonal and off-diagonal terms of the scattering tensor. Furthermore, the polarization
and the diagonal elements of the scattering tensor can give us information about the
orbital asymmetry, by investigating the azimuthal dependence of the ratio of two incident
photon polarization. That is to say, different types of order would have different azimuthal
dependence. We will briefly discuss distinguishing between different ordering phenomena
in Chapter 5 — once we have introduced which Bragg peaks correspond to what symmetry
breaking. Thus, REXS is a combination of structural and electronic probes giving us a
novel way to investigate complex strongly correlated systems with co-existing phases by
tuning the photon energy and incident photon polarization.
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Chapter 4

Synchrotron radiation and
experimental setup

4.1 Introduction

The progress of resonant x-ray scattering as a technique has been greatly influenced by
the development of synchrotron radiation light sources — which very generally can be
classified as experimental megastructures that accelerate an electron at relativistic speeds
in a circular orbit1. In the last half century, there have been 4 generations of synchrotrons,
in this thesis we would focus on the experiments performed on 3rd generation of synchrotron
radiation at the Canadian Light Source (CLS), Saskatoon.

The reason resonant scattering experiments are usually performed at a synchrotron is
because of their capability in generating highly resolved spatial and spectral distribution
of the photon flux (x-rays beam) with tunable energy and polarization — which makes it
an ideal source to detect signal intensities off and on-resonance — for both soft and hard
x-rays. A schematic diagram of a synchrotron is shown in Fig. 4.1. The electrons are forced
to stay in circular orbit via the use of insertion devices which are basically arrangement of
magnets producing magnetic fields in alternating directions, making the electrons follow
an oscillatory path. There are dimensionless parameters associated with these insertion
devices that dictate which harmonics and wavelengths are enhanced. After a series of
insertion devices and bending magnets, the synchrotron radiation is transmitted to the
beamlines, or the respective endstations.

1With the exception of the 4th generation sychrotrons: Free electrons lasers which are linear accelerators.
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Figure 4.1: A schematic diagram of a synchrotron radiation source. Figure reused from
Ref. [57] with permission.
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4.1.1 REIXS beamline at the CLS

The resonant scattering experiments presented in this thesis were carried out at the REIXS
(Resonant Elastic and Inelastic X-ray Scattering) beamline at the Canadian Light Source
(CLS) in Saskatoon, Canada. Before reaching the ultra-high-vacuum (UHV) chamber —
where the actual experiment is performed2 — the synchrotron radiation passes through
a sophisticated optical arrangement containing a monochromator and exit slits. This op-
tical configuration at our REIXS beamline houses a variable line spacing plane grating
monochromator, with different gratings and coatings on a plane mirror to optimize flux at
photon energies spanning the full energy range of the beamline.

In Fig. 4.2, we see the main scattering chamber for resonant elastic scattering. Af-
ter passing through the monochromator and exit slits, the (soft) x-rays from the REIXS
beamline enter this chamber. The sampleholder is mounted on an in-vacuum four-circle
diffractometer [58] — that not only allows us to align the beam onto the sample under
investigation but also access the desired Bragg peak. To the left is the load lock and the
transfer arm which can be used to store and transfer samples into the scattering chamber.
To change/load samples first the samples are transfered to the load lock with the help of
a transfer arm which has pincers at the end to catch the sampleholder, then the pressure
of the load lock is either increased or decreased depending on whether the sample is to be
taken out or loaded. There are valves present to make sure the pressure between the dif-
ferent sections of this assembly to avoid an abrupt breaking of the vacuum. The pressure
changes are made possible through a series of pumps with specialized working pressure
ranges. At the top is a cryostat which is connected to the sampleholder with copper braids
too achieve cooling down to low temperatures. The base temperature for measurements in
this thesis lies between 20 to 25 Kelvin.

4.1.2 Diffractometer geometry and motion stages

The sample to be studied is mounted on the sampleholder as shown in Fig. 4.3. Theoreti-
cally, there are six motors (or degrees of freedom) available within limits.3 The x, y, and

2The main chamber at REIXS beamline as well as the storage ring is maintained under UHV with
pressures less than 10−9 Torr. This is done not only to prevent the deposition of contaminants of sensitive
optical instruments but also to maintain mean photon path of soft x-rays which is suscpetible to even low
pressures.

3This is done to give more flexibility to the user during the sample alignment process, for example to
center the notorious in-plane Bragg peaks at the desired detector. Apart from alignment, it also gives
accessibility to more q addresses in the reciprocal space.
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Figure 4.2: The RSXS scattering chamber at the CLS’s REIXS beamline. Image reused
from Ref. [25] with permission.

z stages/motors can achieve translations of ±7.5 mm, however χ and φ motors can access
motions of ±7◦. The main action happens through θ − 2θ scans — which are essentially
synchronous and restricted motion of the θ4 and 2θ motors in such a way that it corre-
sponds to the desired reciprocal space scans. Figure 4.3 shows how a different combinations
of real space motor movement help us navigate different directions in the reciprocal space
depending on the incident photon energy, distance to the detector other than the θ and 2θ
motor positions.

Our RSXS measurements, or any diffraction measurement for that matter, would in-
volve scanning q-values in reciprocal space. Over time, some of these scans, as shown in
Fig 4.3(b), have picked up colloquial names. A scan with a θ motor is called a rocking scan

4Sometimes called the ω motor. This is done to avoid the confusion that 2θ is twice the θ — which
only holds for the (00`) scans.
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Figure 4.3: Motion stages and scattering geometry: (a) The four-circle diffractometer
assembly in the RSXS scattering chamber, (b) Schematic diagram of the translations of
real space motions to their corresponding reciprocal space scans, (c) Schematic diagram of
the top view of the four-circle diffractometer assembly. Figure (a) reused from Ref. [25]
with permission. Figure (c) adapted from Ref. [26] with permission.
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— which is important in checking if the crystal has multiple domains. Similarly, centering
the detector with the aid of a 2θ motor is often referred to as detector scan.

Another important technical aspect of this sample receptacle/holder assembly is the
change in sample position, or equivalently the location of the beam on the sample surface
with change in temperature. This thermal expansion (contraction) effect is not only min-
imized but also channeled along the θ and z motion stages — where it can be balanced
by re-centering the corresponding Bragg peak — with the help of the support structure
consisting of oblique thin-walled stainless steel tubing.

4.1.3 Detectors and signal scans

In the scattering chamber, there are detectors attached to the 2θ arm. The data collection
in the upcoming chapters include the usage of a micro-channel plate (MCP), a silicon drift
detector (SDD), a photodiode (PD), and a channeltron (ChT). The approximate distance
of these detectors is 30 cm from the sample position. The MCP detector provides single-
event counting, 2D position sensitive detection of soft x-ray photons, it has a diameter of
about 25 mm. This becomes very useful in aligning the Bragg peak, and detecting weaker
signals over the entire active area, for instance, a charge ordering signal (as described in
section 2.3.1) has a wider and weaker spread in q-space, and is still easily recorded via
a h-scan. The PD is sensitive to a large range of photon energies with a linear response
for higher photon energies, this makes it suitable for the high flux of the direct beam or
an x-ray fluorescence measurement. A slit wheel containing different filters and slits gives
the control over the energy resolution and intensity saturation of the signal based on the
incoming flux. The SDD measures the energy range of an incoming photons, and is suitable
for low-energy x-rays providing a decent energy resolution for high count rates, the peaking
time can be changed to avoid saturation of the signal.

4.2 Sample Preparation

Before performing the experiment at the synchrotron, there are certain things to be taken
care of, like: a clean surface, properly mounted samples on a sampleholder (that will even-
tually fit the sample receptacle at the CLS), and most importantly well-aligned reciprocal
axes for the Bragg peak to be studied. The last part is crucial because as we mentioned in
section 3.1, RSXS has limited access to the q-space unlike the hard x-rays. Other factors
that needs proper characterization include, possible twinning or mosaic spread, polishing
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defects, χ and φ offset angles — not only does it constitute good practice but also saves
valuable time during the limited shifts available at the CLS.

4.2.1 Determining crystallographic axes: Laue Diffraction

Before performing any mechanical operations like
cutting, cleaving, or polishing on the single crystal
sample to suit the purpose of the experiment, it
is important to know the orientation of the sam-
ple (which is grown as a boule). Laue diffrac-
tion is an useful technique to determine the ori-
entation of the crystal using hard x-rays by hav-
ing a large number of diffraction peaks impinged
on a photographic film in order to gain informa-
tion about the crystal symmetry and orientation.
For a simple crystal, and a monochromatic x-
ray source, only a few diffraction peaks will be
visible, since only a single scattering angle will
satisfy Bragg’s law for each crystal plane. The
Laue method uses an Tungsten x-ray source with
a wide spread in energy, so as to get more diffrac-
tion peaks, that can be analyzed to determine
crystal symmetry and orientation. These diffrac-
tion Bragg peak positions are recorded using Fu-
jifilm imaging plates, which uses a high-emission,
photo-stimulated phosphor, which accurately de-
tects and stores x-ray energy in its phosphor par-
ticles. These plates are then scanned without ex-
posing to light and the resulting pattern is ana-
lyzed, as shown in Fig. 4.5.

Figure 4.4: Setup for backscattering
Laue diffraction geometry for single
crystal orientation.

Laue scattering can be operated in transmission or back-scattering geometry. For thick
single crystals, Laue back scattering geometry is more suitable as shown in Fig. 4.4, the
x-rays produced by the Tungsten target are incident (shown in blue) on a stationary crystal
behind the photosensitive plate which then scatters them (shown in green) back towards
the x-ray tube. For each crystal plane, in a particular sample orientation, d and θ are
fixed, so x-rays with wavelength nλ will satisfy Bragg’s law and diffract in the direction
making an angle 2θ with the incident x-ray beam. The diffracted beams will cross through
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the plane perpendicular to the x-ray beam creating a series of Laue spots corresponding
to different crystal planes (dhk`) and the Bragg peaks (hk`).

Our main subject of investigation in this thesis are La-based cuprates, in Fig. 4.5(a) we
see the Laue diffraction pattern by the crystal boule of Nd-LSCO with unknown orientation.
We know the space group for our single crystal is I4/mmm and lattice constants are,
a = b = 3.787 Å, c = 13.24 Å. Our aim is to align the single crystal along the [001]
crystallographic direction: we begin by a random crystal orientation Fig. 4.5(a), which
resembles being close to [100] direction5 As perform the Laue diffraction again, this time

Figure 4.5: Laue scattering images in back-scattering geometry: Aligning a single crystal
in a desired crystallographic direction. Images (a) to (d) are Laue scattering photographs
from a single crystal alignment procedure. Starting from a random crystal orientation in
(a), to polishing and cutting to achieve the crystal oriented along the desired [001]. Details
are described in the text.

with one of the adjacent faces of the sample facing the beam (first red arrow operation),
and we get (b) which looks close to being oriented [001]. Fig. 4.5(b), however, has offset

5We know this by running a Laue simulation of the crystal parameters on OrientExpress software. Since
we are not interested in the individual Bragg peaks, I have skipped superimposing the simulated pattern.
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in χ, φ and θ which can be calculated and corrected to achieve our desired orientation of c
perpendicular to the sample surface. We account for these angular (χ, φ and θ) corrections
(second red arrow) on the goniometer to get to Fig. 4.5(c), then we cut our samples. When
the angular offset is less than 5◦, I have found it useful to polish on an incline rather
than cutting the samples (third red arrow) — after polishing and correcting for a small
χ offset we get almost perfect [001] alignment in Fig. 4.5(d). The more accurately this
alignment is done, the lesser time we have to invest at the synchrotron6. Once we have
the correct angles, the next step involves cutting, cleaving, and polishing depending on the
nature of the measurement. One thing which is worth mentioning is, even after getting
the exact angles it requires extreme caution to precisely cut and polish the crystals along
those directions — often in the process of aligning one angle, the other develops an offset.
The order in which these corrections are approached make the job slightly easier.

4.2.2 Aligning real and reciprocal axes

Cutting: Wire Saw

After performing the Laue diffraction, the crystal boule on the goniometer is transferred to
a wire saw to perform cuts along the desired crystallographic axes. A wire saw is essentially
a tungsten7 (or steel) wire which spools on two discs, running from one to another in such a
way that the wire achieves a cutting action by going back and forth over the sample — by
dragging a grit of boron carbide across the sample surface — it begins by a shallow scratch
but because of the weight on the wire it seeps in until the entire thickness of the samples
is cut. Fig. 4.6 shows the wire saw’s cutting action, and how the weight can be modulated
to achieve accuracy while making the first scratch. The general approach is to achieve
one good flat surface and then re-check it with Laue diffraction again until the desired
orientation is decent enough, this step can require several iterations. After a flat, well-
oriented surface is achieved, we proceed to the next step of cleaving (or polishing-etching)
the sample to expose a clean surface which would receive the synchrotron radiation in the
scattering chamber at the CLS.

6These operation can take days sometimes to get perfect alignment, but I often justify their worth by
the ease of aligning the desired peaks at the CLS.

7Preferred because of its stiffness but difficult to re-spool.
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Figure 4.6: Wire saw machine for cutting samples: (a) shows the wire saw assembly, (b) and
(c) show the cutting motion by the Tungsten wire in action, and (d) shows the completed
task of cutting a single crystal sample along a particular direction. Working and details
discussed in the text.
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Polishing: to orient and achieve a flat surface

Polishing has to done in multiple stages, with careful transition from a coarser microgrit
polishing paper to a fine one. If the aim of polishing is just to correct a small χ offset,
or get a flat surface to provide a base of cleaving — one can be slightly careless about it
and just use a single 20 micrometer grit paper, since the polished surface would be stuck
to the base and not exposed to the synchroton beam. More details discussed in the next
polishing section.

Cleaving: Top post and anvil-blade

Figure 4.7: Top post cleaving: (a) shows the sample sandwiched between the copper plug
and the cleaving post with silver epoxy bonding the sample surfaces, (b) Thee sample is
cleaved after a quick, horizontal impulse is imparted on the top post.

A clean surface is crucial for a good (or any8) signal intensity. After getting a flat
surface, we use a copper plug and a top post attached to the top and bottom ends of the
sample as shown in Fig. 4.7(a) — it is generally easier to get a good cleave along the weaker
crytallographic axes, in Nd-LSCO it is the c-axis. We use silver epoxy (EPO-TEK H20E)
as it has a stronger bond than the interlayer bonding in Nd-LSCO (if applied and cured
correctly); thus on giving the top-post a strong flick — the sample is fractured/cleaved

8If the surface is not properly cleaved, it is common to not find any peak, or a very feeble peak intensity:
both cases are undesirable.
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Figure 4.8: Surfaces after sample polishing techniques with a micro grit paper and a granite
slab assembly in our lab. Details discussed in the text.

exposing a clean surface. Speculatively, I have found cleaving to become more difficult
with increasing hole-doping9. There is an additional capability at the load lock at the CLS
and the UHV chamber in our lab of using blade and anvil sample cleaver, which applies
pressure to the side of the sample causing it to fracture in vacuum, exposing a fresh surface.

Polishing: to prepare a clean surface to be beam-exposed

If the polished surface is to be exposed to the synchroton beam in the RSXS chamber,
one needs to exercise caution as the penetration depth of soft x-rays is small (around 100
nm) which means a first few rough layers and contaminants can be a problem. Polishing
to prepare a surface is useful in cases when the physical dimension of the crystal has to
follow certain restrictions, like before mounting on a uniaxial stress device, the sample has
to be of 2 × 1 × 0.5 mm to make sure the applied mechanical stress is not asymmetric.
Due to the delicate nature of the sample, all polishing action is done by hand on a custom
built assembly which includes a 4 cm diameter Aluminum rod, a granite slab, and a slot to
keep the rod’s face perpendicular to the slab where we lay the polishing micro-grit paper.
The process needs a special water-based solution, which acts as a lubricant as well as a
coolant to avoid unnecessary chipping off and fracturing of the sample-face. We begin by
positioning the sample with the copper plug at the flat face of an aluminum rod 4.8(a)
with the sample surrounded by a Stycast (a glassy substance that ensures the sample does
not cracks or chips off once polishing begins). We start off with a coarse 20 µm Aluminum

9In one of our tries with Nd-LSCO, the x=0.24 sample took about 10 cleaving attempts to get a good
surface, and still the signal intensity was almost non-existent at the CLS.
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carbide micro-grit paper, the surface of the sample looks like 4.8(b) once polished with it.
We then follow up with finer micro grit papers from 0.3 to 0.05 µm to obtain a surface that
looks like 4.8(c). The order in which the grit size is varied is important for imperfections
to be minimal, although, the surface looks very smooth and featureless after completing
the process and washing with acetone — we still do not get a (001) peak on this surface10.
There is a very thin layer of contaminants, imperfections and mechanical stresses that
dramatically affects the absorption of soft x-rays. The last step is chemical etching to get
rid of surface contamination and defects.

Chemical etching

The idea of chemical etching is often used11 for surface sensitive probes which are highly
dependent on penetration depth and first few clean layers. We use Br-etching, where
the sample surface is exposed to an alcoholic solution of concentrated Bromine. The
rate of etching is important to be controlled, this can be calculated based on the crystal
composition, and a solution with a suitable concentration or Br ions and exposure time
is obtained — this solution will eat away the first few layers giving us a clean surface,
almost comparable12 to its cleaved counterpart. The eating away is more or less uniform,
although, one important factor is the quality of polishing, sharp edges etch faster and might
end up producing an overall rough surface. Liquid Bromine is notorious for being corrosive
and requires a fuming hood to operate, some friends from the Chemistry Department have
been kind enough to help me out with this step. Without them Chapter 6 would not be
present in this thesis.

If we do not need the samples to be mounted on a uniaxial stress device, we generally
cleave and perform the measurement instead of going through the pain of cutting in special
dimensions, polishing upto a certain surface perfection, and using Br-etching to eat away
a few bad atomic layers.

10This was especially non-trivial, because the Laue diffraction would use hard x-rays and would show a
perfect pattern, ignoring surface sensitive details.

11Attempts of Br-etching on cuprates go back to late 1980s [59].
12We were lucky in many ways than I care to admit: as mentioned in the previous footnote there was no

proper soft x-ray experiment that was possible before the main CLS shift. The concentration of Bromine
turned out to be perfect for our case and we ended by getting a decent (001) and CDW signal in the
polished sample.
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4.2.3 Mounting samples: Uniaxial stress device

In general, when mounting samples that would go in the UHV chamber, silver epoxy serves
as an excellent candidate as the contact between the sample and the sampleholder. The
silver epoxy not only retains good thermal and electrical conductivity at such low temper-
atures and pressures, but also retains the strength with almost no diffusion of lighter gases
(or contaminants) which can be bad for the measurement. For non-strain experiments,
the application and removal of silver epoxy is generally straightforward, the removal can
be tricky sometimes either via scraping gently with a scalpel or ultrasonic vibrations in
an acetone solution. However, the design of the uniaxial stress device sampleholder plate
requires the samples to be 2 mm long, 1 mm wide and 0.2 mm thick (see Fig. 4.9) (with
c-axis facing out of the plane in our study) — there is a shallow (0.15 mm) valley where
the bottom of the sample fits to ensure uniform strain. This makes things slightly tricky
as we need to set a very thin flat layer of epoxy, then the sample rests on top of that, and
finally the two ends of the sample are covered in epoxy, this makes the stress align along
one direction, and cancel stray off-uniaxial stresses. I have found it almost impossible to
reuse a sample after the experiment is performed, either the sample is cracked or the epoxy
removal leads to breaking of the sample. Mounting samples and the role of epoxy will be
discussed in detail in Chapter 6.
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Figure 4.9: Finished product: Nd-LSCO samples 2 mm long, 1 mm wide and 0.2 mm thick.
(a) Polished and etched, (b) mounted on the uniaxial stress device sampleholder plate. (a)
shows a strand of author’s hair to give a sense of scale.
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Chapter 5

Evolution of electronic nematic order
with hole doping in Lanthanum
based cuprate superconductors

5.1 Introduction

There is a growing realization that the essential physics of many quantum materials, such
as high-temperature superconductors, involves a complex interplay between many differ-
ent electronic phases like charge density wave order, pair density wave order, magnetism,
orbital order, electronic nematicity that have very similar energy and temperature scales
[9, 8]. In the last two decades, theoretical proposals for electronic liquid-crystal phases
[60, 7, 61, 62], specifically, existence of a nematic phase have been experimentally realized
in cuprates [12, 13, 14, 15, 17, 16] and iron-based superconductors [63, 64]. An electronic
nematic phase occurs when the electronic structure breaks the rotational (point group)
symmetry but leaves the translational (lattice group) symmetry intact. A key example
of the importance of intertwined order is the cuprate high temperature superconductors.
Previous work by our research group has identified the existence of electronic nematicity
and its relationship to charge density wave order in the cuprate (La,M)2CuO4 (M is Sr,
Ba, Eu, or Nd) by measuring the (001) Bragg peak using resonant x-ray scattering [18].
We investigated the C4 → C2 rotational symmetry-breaking (electronic nematicity) of the
average, intra–unit cell, electronic structure within an individual CuO2 plane. The role of
electronic nematicity, such as whether it is a feature of the pseudogap region and how it
relates to CDW order or hole doping or the crystal structure of different cuprate families
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has not yet been fully established.

In this chapter, we begin by reviewing existing consensus on electronic nematic phases
in strongly correlated electronic systems, particularly, highlighting the case of Lanthanum
based cuprates that allow us to investigate the orbital asymmetry owing to a fortuitous
access to the forbidden (001) peak on-resonance [65, 66] using resonant x-ray scatter-
ing. We, then, establish a temperature based anisotropy by noting the difference between
copper-oxide and non-copper-oxide planes (also called spacer layer) through investigating
the in-plane copper atoms and apical oxygen atoms. After establishing the probe and what
we define as ‘electronic nematic’, we perform measurements at different hole dopings in
La1.6−xNd0.4SrxCuO4 (Nd-LSCO) to understand the doping evolution of this novel phase.

5.2 Electronic nematic phase

5.2.1 Electronic liquid crystal phases and possible origins

As described in section 2.3.3, electronic nematicity refers to a breaking of rotational symme-
try of the electronic structure in a manner that is not a straightforward result of crystalline
symmetry, such that an additional electronic nematic order parameter, distinct from the
structure would be required to describe the resulting phase. Such a state can be difficult
to identify in materials that have orthorhombic structures, which would naturally couple
to any electronic nematic order and vice versa. Moreover, the manifestation of nematic
order may depend on the details of the crystal structures of the materials, such as whether
the structure is tetragonal or orthorhombic.

There have been a few suggestions to realize the mechanism for the formation of a
nematic phase. One way would be through thermal or doping-induced (partial) melting
of a stripe (smectic) phase such that it regains translation symmetry1 but still has orien-
tational ordering — a proposed vestigial nematic state [67, 68]. For instance, in cuprate
superconductors existence of CDW order is well-established at 1/8th doping where peri-
odic superstructure of charge modulation break both translation and rotational symmetry.
Increasing temperature or hole-doping in such a system might allow breaking long-range
order and fashion itself into local stripe order that gathers a statistically preferred direc-
tion — an average rotational symmtery breaking of sorts — while keeping the translational
invariance intact.

1Or maybe it does so before orientational disordering eventually becoming a Fermi liquid?
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Figure 5.1: Two possible mechanisms for the existence of a nematic phase: via thermal (or
quantum) melting of a stripe phase such that it regains translational invariance with an
average rotational symmetry breaking; and through the elliptical distortion of the Fermi
surface — caused by hole doping or temperature or possibly quantum effects — of a metallic
circular Fermi surface via a Pomeranchuk instability. Figure from [61] with permission.

Alternatively, the second approach starts from the momentum space structure of a
metallic system, a Fermi liquid type approach. This phenomenological approach proceeds
by considering fermions having a well-defined Fermi surface and quasiparticles. The idea
comes from Pomeranchuck [69] who showed that the if some of the Landau parameters for
a Fermi liquid are negative and large enough to overcome the stabilizing effects of Fermi
pressure, then a thermodynamic (Pomeranchuk) instability occurs, causing the system to
spontaneously lower their symmetry. For instance, as shown in Fig 5.1 for a simple 2D
circular Fermi surface, a Pomeranchuk instability will cause an elliptical distortion causing
the momentum structure to transition down into a residual C2 rotational symmetry and
show anisotropic electronic/orbital signatures with a concomitant local average orientation.
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5.2.2 Electronic nematic phase in cuprate superconductors

For cuprates superconductors, first reports of an electronic nematic phase include measure-
ments of anomalous anisotropy in the in-plane resistivity in YBCO2 and LSCO3 by Ando
et al. [12] in 2002. Despite the already known weak orthorhombic nature of the unit cells in
YBCO the thermal dependency of the in-plane anisotropy could not be entirely described
by the structural transitions, leading to the proposition of an electronic nematic phase in
YBCO, which was subsequently confirmed by neutron scattering experiments and later by
Nernst effect. Experimental evidences of electronic nematicity that is distinct from struc-
tural distortions now include reports from bulk transport [12, 14, 13], scanning tunneling
microscopy (STM) measurements [16, 15], and inelastic neutron experiments [17]. Achkar
et al. demonstrated that the resonant x-ray scattering measurements of the (001) Bragg
peak provide sensitivity to electronic nematicity [18].

Recently, reports have emerged of nematic fluctuations in the vicinity of the quantum
critical point (QCP) in another cuprate material Bi22124 using elasto-resistance measure-
ments [44] and enhanced electronic nematic fluctuations using Raman scattering [45], sug-
gesting a link between electronic nematicity and the QCP. To examine the possibility that
electronic nematic order is associated with the QCP and electronic structure changes in
the cuprate family La1.6−xNd0.4SrxCuO4 (Nd-LSCO), we probe electronic nematic order
— by measuring the orbital asymmetry via the (001) Bragg peak — using resonant x-ray
scattering as a function of hole doping, x. Investigation of Nd-LSCO provides an oppor-
tunity to study the evolution of nematicity over a wide range of doping — furthermore in
the same material system, some of the most compelling signatures of quantum criticality
and electronic structure evolution have been recently observed, such as the divergence in
the heat capacity [36] and a change in the electronic structure from angle-dependent mag-
netoresistance (ADMR) measurements [39] at hole doping in the vicinity of x = 0.23 —
enabling a direct comparison of these previous results to our measurements in electronic
nematicity.

2YBa2Cu3Oy
3La2−xSrxCuO4
4Bi2Sr2CaCu2O8+x
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Figure 5.2: Crystal structure of Nd-LSCO: Unit cell of Nd-LSCO (or the La214 unit cell)
in the high-temperature tetragonal phase (HTT). O(1) and O(2) are in-plane and apical
oxygen sites, respectively. The low-temperature tetragonal (LTT) phase is understood in
terms of rotations of the CuO6 octahedra about axes parallel to the Cu-O bonds, with the
rotation axis of the octahedra alternating between the a and b axes of neighboring planes
(z = 0 and z = 0.5). This induces C4 symmetry-breaking of the average (or intra- unit
cell) electronic structure within an individual CuO2 plane, referred to here as electronic
nematicity.
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5.3 Probing electronic nematic order using resonant

x-ray scattering

5.3.1 On-resonance (001) Bragg peak

Understanding how the measurement of the (001) Bragg peak reveals electronic nematic-
ity requires examination of the crystal structure of La214s. As described in section 2.3.2,
Nd-LSCO exhibits a structural phase transition from the low temperature orthorhombic
(LTO) to low temperature tetragonal phase (LTT) at temperatures between 50 – 90 K
depending on doping. The LTT phase is characterized by tilting of the CuO6 octahedra
along the a or b axes such that each individual CuO2 layer structurally breaks C4 rotational
symmetry as shown in Fig. 5.2. The axis of rotation of the octahedra, however, rotates
by 90 degrees between neighbouring layers producing a crystal structure that is globally
tetragonal, despite having orthorhombic layers. Consequently, any probe that bulk aver-
ages the layers would yield the same result along the a and b axes and not reveal nematic
order.

Figure 5.3: Energy dependence of the (001) peak at the O K (a) and Cu L (b) edges in x
= 0.125 LBCO. Background intensity has been removed from all spectra with a constant
offset for clarity. Figure adapted from [70] with permission.

Resonant x-ray scattering of the (001) Bragg peak, however, provides a direct measure of
the difference in the symmetry of the electronic structure between neighbouring layers [18].
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Off resonance or with conventional x-ray diffraction, the (001) Bragg peak is forbidden,
based on the ionic positions of atoms in the LTT or LTO phases. However, resonant x-ray
scattering is sensitive to orbital symmetry as established in section 3.3.3, which differs for
atoms in neighbouring layers in the LTT phase. Moreover, by tuning the photon energy
to correspond to different atoms within the unit cell, the electronic symmetry breaking of
the CuO2 planes – which contain the Cu d and O p states that cross Fermi energy EF and
are most relevant to the low energy physics of the cuprates – can be differentiated from
the La2O2 spacer layer, which do not have states that cross EF but would be sensitive
to changes to their orbital symmetry induced purely by structural distortions. In Fig. 5.3
we show how the (001) peak responds to change in temperature and resonance energy for
LBCO.

Achkar et al. showed that the temperature dependence of the (001) peak intensity ex-
hibited a dichotomy when the photon energy is tuned to different atoms in the neighboring
layers of the Nd-LSCO unit cell [18]. As we see in Fig. 5.4, an abrupt 1st order increase at
the LTO → LTT transition consistent with previous measurements of the structural tran-
sition was observed when the photon energy is at the La M edge (∼826 eV) or an energy
associated with apical oxygen (∼533.5 eV) – atoms in the La2O2 spacer layer. However, a
more gradual temperature dependence is observed when the photon energy is tuned to the
Cu L edge (∼931.5 eV) or an energy associated with in-plane O (∼528.5 eV) – atoms in
the CuO2 planes. The different temperature dependences can be understood in terms of an
electronic nematic order in the CuO2 planes that has a temperature dependent susceptibil-
ity and provides a contribution to the (001) peak intensity in addition to any contributions
induced by the lattice potential. Effectively this is akin to an internal strain applied to
individual spacer layer by the lattice distortion, with the electronic structure of the CuO2

planes (probed by the (001) peak intensity at the Cu L edge exhibiting a response that
depends on the electronic nematic susceptibility. Importantly, Achkar et al. also showed
that this electronic nematic order is coupled to but distinct from charge density wave order.

To characterize the measure of in-plane anisotropy, we begin by writing out the structure
factor using Cu atoms — it is convenient as their ionic position do not change during the
LTT → LTO structural phase transition — in the La214 unit cell for the (001) peak, as:

S(001)Cu = ε∗f
(
Fav(z = 0) + eiπFav(z = 0.5)

)
εi, (5.1)

where εi (and εf ) denote incident (and scattered) photon polarization, and Fav is a tensor
representation of the average atomic scattering form factor for Cu in neighbouring planes
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Figure 5.4: Temperature dependence of the (001) Bragg peak intensity: The intensities
are normalized by the corresponding low-temperature values, I(001)(T )/I(001)(20 K) with
photon energy tuned to the spacer layer atoms, or La M , apical O K, and copper-oxide
layer atoms in-plane O K, Cu L edges for LBCO and Nd-LSCO. Figure reproduced from
[18] with permission.

z = 0 and z = 0.5, as

Fav(z) =

faa,av(z) 0 0
0 fbb,av(z) 0
0 0 fcc,av

 . (5.2)

It is worthwhile to note that for conventional (non-resonant) scattering, both Fav(z =
0) and Fav(z = 0.5) have identical terms, which makes the (001) intensity go to zero.
Furthermore, on-resonance the diagonal components of the average atomic scattering form
factor — determined by local intra-unit cell anisotropic interaction — follow symmetry of
the rotation between layers as

fcc,av(z = 0) = fcc,av(z = 0.5), (5.3)

fbb,av(z = 0) = faa,av(z = 0.5), and (5.4)

faa,av(z = 0) = fbb,av(z = 0.5). (5.5)

We define the measure of in-plane anisotropy for the Cu 3d orbital in z = 0 and z = 0.5
layers as

η = faa,av(z)− fbb,av(z), (5.6)
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which from symmetry conditions is identical to

η = faa,av(z = 0)− faa,av(z = 0.5). (5.7)

The scattering intensity for the (001) at Cu L edge from Eqn. (5.1) can be written as:

I(001) ∝ |S(001)|2 =

∣∣∣∣∣∣ε∗f
η 0 0

0 −η 0
0 0 0

 εi
∣∣∣∣∣∣
2

. (5.8)

5.3.2 Azimuthal dependency

As shown in the supplementary material of Ref. [18], the expression for (001) peak scat-
tering intensity in Eqn. (5.8) can be experimentally validated to hold for an electronic
rotational symmetry breaking signature by measuring its azimuthal dependence relative
to the incident polarization — scattering geometry shown in Fig. 5.5 (b). The azimuthal
dependence of Iπ/Iσ providing strong confirmation that the (001) peak at Cu L edge is
measuring electronic nematicity of the Cu 3d states and has a form given by Eqn. (5.8).

Other ordering and charge modulations signatures would have a different azimuthal
dependency. Fig. 5.5 shows how modulations between planes of the average charge or
lattice position or antiferromagnetic ordering of the average c-axis component of the Cu
magnetic moment would behave differently from electronic nematicity.

5.4 Experimental procedure

5.4.1 Experimental setup

The results discussed further are performed over Nd-LSCO samples at hole doping levels
of x = 0.125, 0.17, 0.18, 0.19, and 0.24 at the in-vacuum four-circle diffractometer at
CLS’s REIXS endstation. These samples were provided by collaborators and grown using
travelling solvent floating zone (TSFZ) method. We5 measured the (001) peak and charge
density wave (CDW) order at different temperatures — varying in the steps of 2 to 3 K
— for these doping levels.

5These measurements are performed over a course of last 2-3 years by previous and current members
of our research group, including myself. I measured the x = 0.24 sample.
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Figure 5.5: (a) Azimuthal dependence of the (001) Bragg peak intensity: The azimuthal
dependence of Iπ/Iσ provides strong confirmation that the (001) peak at Cu is measuring
electronic nematicity and not charge ordering or antiferromagnetic order, which would
behave differently following from the symmetry of the scattering tensor. (b) Scattering
geometry for the azimuthal dependent measurement described in the text. Figure taken
from the Supplementary material of [18] with permission.

For this scheme of doping series measurement, we need a cleaved surface to get a
decent surface and good signal intensity, this is achieved by preparing the sample before
the beamtime at the synchrotron. The samples are characterized via Laue diffraction which
helps in marking a/b axes for easier alignment as well as looking for twinning and other
imperfections. In order to expose a fresh surface, samples are cleaved beforehand in our lab
and then kept in an clean and dry environment until the experiment. The cleaved samples
are mounted on a copper plug with silver epoxy — which is a good conductor and retains
strength at low temperatures and ultrahigh vacuums — such that the cleaved ab-face is
parallel to the sampleholder surface and at θ = 0 geometry c-axis and the incident photon
beam are collinear. Once mounted on the sampleholder, the assembly goes in the load
lock chamber until it is brought down to near-UHV pressures, only them the valve to the
main scattering chamber is opened and the sample is inserted in the sample receptacle slot
into the four-circle diffractometer-gonimoter’s center of rotation. The position is screwed
in place using an externally controlled in-situ screwdriver arm to avoid any undesired
displacements.

The first step is the coarse alignment by eye using the cross hairs on the telescope
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which are very carefully aligned to the beamspot line-of-sight. Once we locate the a good
spot on the sample under investigation, we start with fine tuned calibration using x-ray
absorption spectroscopy (XAS) measurements at Cu L edge for instance6. After locating a
decent spot of the sample, we proceed to align the crystallographic axes using the structural
Bragg peaks — at low temperatures for Nd-LSCO, which is a tetragonal structure, we can
access (004), (103), and (-103) Bragg peaks — at an incident photon energy of 2200 eV.
We use the MCP detector to visually center the Bragg peaks and record the respective
motor values which are then used to set the orientation matrices in the SPEC macros,
allowing up to access the reciprocal space by desired Miller indices.The lattice parameters
for Nd-LSCO samples were taken to be a = b = 3.787 Å and c = 13.24 Å for finding and
recording Bragg peak positions.

Once the sample is aligned, we move to the Cu L and apical O K edge to locate and
confirm the (001) Bragg peak. Validation generally includes measuring the peak at low
temperature and then warming up the sample and comparing the (001) peak intensity
which should dramatically drop down after 60-90 K for different doping levels as it is only
permitted in the LTT phase. We, then, perform a series of `-scan7 measurements around
(001) peak at different temperature values. The measured peaks shapes are then fitted
to a Lorentzian function to get information about peak intensity, peak area, full-width
half-maxima (FWHM), and the peak position in `.

5.4.2 Data collection and analysis

The data collection process involves not only careful calibration of the motor positions,
incident photon energy, and count time but also validating any drifts caused by variety of
beamline’s operation parameters. There are changes which can be mitigated like described
in Section 4.1.2, the assembly is designed in a way to reduce the change with temperature
mostly to z and θ degree of freedom, which makes it slightly easier for us to confirm if the
incident beam is hitting the same ‘good’ spot on the sample.

Although, it depends on the detector how the exact steps for data analysis are pro-
ceeded, however, a general scheme is as follows:

6Technically, this can work with tuning the energy to any of the transition edges of any of the atoms
in the unit cell, often the O K edge signal has a higher flux and disturbance from the oxygen content in
the epoxy. Hence, copper edge is preferred.

7This is achieved by performing a θ−2θ scan in which both the sample and detector rotate at the same
rate, such that the ratio of the two remains constant.
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• Pre-fitting procedures: Normalizing the scattered signal with the intensity of
the incident beam — to make sure fluctuations in any physical parameters at the
beamline or the storage ring is accounted for — thus providing a common ground
to compare signal intensity with changes in temperature, reciprocal axes, and other
degrees of freedom.

• Higher harmonic correction: Before moving to background subtraction, it is
important to check any potential signal contribution from second-order light, un-
fortunately, the latter often causes a difficulty in recording the (001) peak intensity
at the apical O K edge. Higher harmonics are produced in the undulator and is
difficult to be contained or filtered by the monochromator which only allow light
of only certain wavelength to pass through. Thus, an on-resonance geometry that
allows the forbidden (001) peak also permits the structural (002) Bragg peak at al-
most the same (2θ) detector position. Ways to correct this include, switching to an
energy resolved detector, or moving slightly towards the shoulder of the (001) peak
— which is broader in reciprocal space than the (002) peak — thus away from the
(002) Bragg peak geometry, the intensity at the shoulder/falling edge responds ap-
proximately proportional to the actual peak intensity and can be carefully validated
by fitting Lorentizans and comparing full-width half-maxima (FWHM). Other ways
can include subtracting the signal at higher temperature devoid of (001) peak. Note
that the energy resolved detector (SDD) was used for the x = 0.24 measurements, as
shown in Fig. 5.6.

• Background subtraction: We generally fit a third order polynomial (or fifth in
some cases) with the signal intensity/detector count at detector positions sufficiently
away from the peak shape under investigation. it is hard to predict exactly how many
points would be used to fit the background polynomial — which is done visually —
but ideally the background polynomial fit should not change by varying the degree of
polynomial8 or a few points up and down. Especially for the (001) peak, sometimes it
is also good to validate the background subtracted signal with the high temperature
signal subtraction — as in the LTO phase there is (002) peak but no (001) signal —
to make sure any saturation effects in the detector used. Irregularities can also be
detected once we start fitting a Lorentzian line shape — by looking at residual (=
fitted data - actual data) shapes — in terms of large error in FWHM or offsets at
few temperatures.

8We generally use cubic fits, I have tried changing the degree of polynomial between 3 to 6 for the (001)
peak and a good background fit does not respond much to it.
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• Lineshape fitting: Post-background subtraction, the Bragg peaks we measure are
mostly Lorentzian line shapes9, however, sometimes there is some Gaussian contribu-
tion — say from the instrument/detectors count efficiency — those can be corrected
by validating the fitting Pseudo-Voigt (PV) functions.10 After subtracting the poly-
nomial background, we fit to:

L(x) = c0 +
A

1 + 4
(
x−x0
w

)2 (5.9)

where, A is the amplitude, w is the FWHM, c0 is a constant offset11. A PV function
would look like:

P (x) = c0 + c1 · x+ α ·

Lorentzian︷ ︸︸ ︷(
A

1 + 4
(
x−x0
w

)2

)
+(1− α) ·

Gaussian︷ ︸︸ ︷Ae−4 log[2]·(x−x0
w )

2

w ·
√

π
4 log[2]

 (5.10)

α lies between 0 and 1, former extreme means Gaussian and latter being the Lorentzian.
c1 is the possible linear contibution, other variables are same as that of Eqn. 5.912.

Once the fitting schedule is satisfactorily completed, we can extract the fitting pa-
rameters — and after checking different fitting schemes and plotting error bars with
the best fit parameters – we proceed to plot them trying to understand the underlying
physics.

5.4.3 Results for x = 0.24 Nd-LSCO

We show the above-mentioned data collection and analysis scheme for Sr hole doping of x
= 0.24 in Nd-LSCO or La1.6−xNd0.4SrxCuO4 in Fig. 5.6

9This has also been rigorously investigated previously by our group as a function of energy and detector
positions and temperature.

10PV are a linear combination of a Gaussian (G) and a Lorentizan (L) line shape, one can record the
individual G and L contribution by fitting to a α·G + (1-α)·L type function, where α is a number between
0 and 1.

11Which can be modified to make the Lorentzian signal go to zero if the actual signal is zero at extreme
ends from the peak.

12I find CDW peaks (like the one shown in section 2.3.1 and section 5.5.2) to fit in well with pseudo-
voigts which I think is due to its ability to provide a Gaussian and a polynomial background subtraction
at the same time.
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Figure 5.6: Temperature dependence of the (001) Bragg peak intensity in Nd-LSCO x =
0.24: Recorded and background subtracted (001) peak. Colored dots denote recorded data
at different temperatures and lines imply the Lorentzian fits for (a) apical O K edge and
(b) in-plane Cu L edge, (c) shows the peak intensity obtained by fit’s amplitude, and (d)
is data adapted from Ref. [18] to highlight the loss of orbital asymmetry from hole doping,
x = 0.125 to 0.24, as one crosses the putative QCP. The green region shows the onset of
the LTO phase in the samples. 55



5.5 Results and discussion

5.5.1 Evolution of electronic nematic order with hole doping

We investigate electronic nematic order in Nd-LSCO as a function of doping from x =
0.125 to x = 0.24, crossing the putative QCP (at x ∼ 0.23) in the measurement set.

Figure 5.7: Doping and temperature evolution of the (001) Bragg peak intensity in Nd-
LSCO. The intensities for the apical O K are normalized by the corresponding low-
temperature values, IO(001) ∼ 24 K, with photon energy tuned to the apical O K and
Cu L edges for La1.6−xNd0.4SrxCuO4 with Sr content: x = 0.125, 0.17, 0.18, 0.19 and 0.24.
The white and green region indicate the LTT phase and the LTO phase respectively. The
data for x = 0.125 is adapted from Ref. [18] and for x = 0.18 from Ref. [70] with permission.

In Fig. 5.7 we show the intensity of the (001) peak as a function of temperature at
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an energy sensitive to Cu L edge (probing the CuO2 planes) and the apical O K edge
(probing the La2O2 layer). Note, here the data at the different edges is arbitrarily scaled
to match in intensity below the LTO→ LTT phase transition to highlight the difference in
temperature dependence for different doping levels. In Fig. 5.7(a), data from our group’s
previous work [18] is reproduced, which showed that at x = 0.125, a distinct difference
exists in the temperature dependence of the (001) peak for measurements at the Cu L
and O K edges. As the doping is increased in Nd-LSCO, a similar difference in the peak
intensity between Cu L and O K edges is observed for x = 0.125, 0.17, 0.18 and 0.19.
However, for x = 0.24 within the measurement accuracy we detect no difference in the T
dependence of the (001) peak when measured at the apical O K and Cu L edges.

Our principle conclusion from this result is that static, long range ordered electronic
nematicity vanishes upon crossing the putative QCP at x = 0.2313 in Nd-LSCO, indicating
that electronic nematicity may be tied to the quantum criticality and electronic structure
changes in overdoped cuprates. Similar evidence for vanishing electronic nematic order in
the vicinity of the putative QCP — at the end of the pseudogap phase — at x = 0.23
that has been identified in Nd-LSCO and other cuprates. This suggests that nematicity
may be the fluctuating order responsible for the quantum critical phenomena at this point.
The possible connection of electronic nematicity with the putative QCP at x ∼ 0.23 is
reinforced by recent measurements in other cuprates families that do not exhibit the LTT
structural phase, indicating that an electronic nematic phase terminating at the QCP in
overdoped cuprates may be a generic property of the cuprate phase diagram. Recent
elasto-resistance [44] and Raman scattering [45] measurements in Bi2212 have both shown
dynamical electronic nematic fluctuations that are enhanced – in the overdoped region
between p = 0.20 and 0.23 – and nematic quantum criticality which is consistent with the
putative quantum critical point for Bi2212 at p* ∼ 0.22 [45].

It has also been established that the electronic structure of the cuprates undergoes a
transformation14 from a small Fermi surface or Fermi arcs in the pseudogap phase to a large
hole like Fermi surface at higher doping above what has been identified as the QCP, in the
La214 cuprates [39, 71, 72], and other cuprate families [38]. The vanishing of electronic
nematicity may be associated with this change in the nature of the Fermi surface. However,
with evidence of electronic nematicity existing across the entire psuedogap phase, it would
seem likely that the pseudogap might have a nematic character.

13As reported in Ref. [38, 36].
14Other techniques like angle-resolved photoemission spectroscopy (ARPES) [71, 72] and more recently

angle-dependent magnetoresistance (ADMR) [39] have observed transformation of the Fermi surface struc-
ture at the pseudogap critical point (x ∼ 0.23) in La-based cuprates; which might have implications for
the rotational symmetry-breaking of the electronic structure through a nematic QCP in the La214 family.
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5.5.2 Evolution of CDW order with hole doping

Trying to understand the relation between the three symmetry-breaking phases — namely,
CDW, nematicity, and structural distortions — is one of the key challenges in this family.
In order to gain more insight about these intertwined symmetry-breaking phases, we also
recorded the CDW signal at different doping levels in Nd-LSCO. Speculations arise on
whether CDW, nematicity, and structural distortions compete, cooperate, or leads to onset
of each other? There have been attempts to tackle each phase separately by suppressing
the others using uniaxial strain, magnetic fields, doping and hydrostatic pressure [31].

As introduced in section 2.3.1 the existence of stripe-like CDW order, that breaks both
translational and rotational symmetry, does not appear to be the solely responsible for
the electronic nematicity, which is rather a distinct phase that persists to higher doping
than the CDW order. A schematic updated phase diagram that summarizes the doping
evolution of LTO → LTT phase transition, the onset of CDW order and our evidence for
electronic nematicity is depicted in Fig. 5.9. While the onset of CDW order coincides with
the LTO → LTT transition in Nd-LSCO at x = 0.125 no signature of CDW is observed
in Nd-LSCO x = 0.18 or 0.19, despite clear observations of electronic nematicity. This
indicates that electronic nematicity is either a distinct order or a melted stripe phase that
retains rotational symmetry breaking but not translational symmetry breaking of the CDW
order.

As summarized in Fig. 5.9 at doping levels of x = 0.125 and 0.17 in Nd-LSCO, we
record a signal for charge ordering and electronic nematicity. However, at x = 0.18 and
0.19, we see signatures of electronic nematicity but do not observe CDW ordering peak.
Finally, in the overdoped case at x = 0.24 both CDW and nematicity signal is absent. The
interplay, stability and onset of electronic nematicity, CDW order and the LTO → LTT
structural transition suggest that these three symmetry-breaking phases are related in a
nontrivial way.
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Figure 5.8: Charge density wave (CDW) order at different hole doping levels in Nd-LSCO:
(a) shows the recorded CDW order data with a dotted line to show background subtraction,
in (b) we show the background subtracted data fitted with the Lorentzian line shape. Data
indicate data and lines indicate the fitting curve. In (c) and (d), at x = 0.18 and x = 0.19,
we did not detect a CDW order. Shown is the data at high and low temperatures. We did
not detect a CDW signal at x = 0.24.
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Figure 5.9: Updating the phase diagram for Nd-LSCO: The doping-temperature phase
diagram of Nd-LSCO. The black diamonds show the structural phase transition from the
LTO to LTT phase, the blue circles record the onset temperature of the CDW order. The
black, purple, and blue dotted lines are a guide to the eye. The existence of a quantum
critical point at p* ∼ 0.23 has been identified in [6, 38]. The pseudogap temperature as a
function of hole-doping is shown by the purple squares, which marks the onset of the upturn
in the resistivity ρ(T ), as reported in [6]. We report the absence of orbital asymmetry at
the doping of x = 0.24 above our base temperature.

5.5.3 Change in the nature of LTO → LTT phase transition

Apart from the evidence for vanishing electronic nematic order, one also observes the
change in the nature of the LTT → LTO phase transition from first-order like to second-
order like in Fig. 5.7. Such a change can happen due to multitude of reasons, which is not
very clear to us at the moment. One can speculate that a second-order nature of this phase
transition might indicate the presence of strong fluctuations [40] corroborating a possibility
of a (nematic) QCP, other possibilities include the role of disorder in smoothening the sharp
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transition, or the reconstruction of the Fermi surface around the pseudogap critical point,
which causes the free energy to favor a second-order transition route for the structural
order parameters.

5.6 Summary and conclusions

We report the evidence for vanishing electronic nematic order in the vicinity of the QCP
at x = 0.23 that has been identified in Nd-LSCO and other cuprates. This suggests that
nematicity may be the fluctuating order responsible for the quantum critical phenomena at
this point. Consequently, nematicity may play a larger role in understanding the cuprate
phase diagram that has been previously recognized, possibly having a key role in the nature
of the pseudogap phase or impacting the superconducting transition temperature. In this
chapter, we investigated five Nd-LSCO samples at different Sr hole doping levels. Along
with investigating the electronic nematic order near the end of the pseudogap phase in
Nd-LSCO. We also documented the CDW signal, and report that it vanishes beyond x =
0.18 which is in agreement with previous similar studies using other experimental probes.
Possible scenarios for these obervations include the existence of a zero-temperature nematic
QCP and/or a nematic character to the pseudogap regime in this family (as suggested in
Ref. [40]). We also report a non-trivial relationship between three distinct structural and
electronic symmetry breaking phases with varying carrier concentration in the La-based
cuprates.
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Chapter 6

Behavior of charge order and
electronic nematicity under in-plane
uniaxial stress

6.1 Introduction

The co-existing electronic phases in cuprates — charge density wave order, superconduc-
tivity, magnetism, orbital order, nematicity — having almost identical energy and temper-
ature scales provides a barrier in developing a microscopic or a robust phenomenological
description for these phases. One way to sort these phases can be via disentangling the
roles of nematicity, CDW order and superconductivity in the cuprates — which requires
a means to vary one (nematicity or CDW order) while minimizing changes to other prop-
erties — through a tunable knob, such as carrier concentration, magnetic field or uniaxial
pressure. A powerful means to achieve this goal is to apply uniaxial strain in order to
tunably change the degree of orthorhombicity, and measure the impact of the resulting
changes of the crystal structure on electronic nematic order, unidirectional CDW order
and superconductivity.

In the cuprates, strain can have a dramatic effect on CDW order. Recent experiments
by Le Tacon and collaborators in the cuprate YBa2Cu3O6+x (YBCO) showed strain results
in the formation of intense long range ordered CDW order [73]. However, the impact of
strain may vary significantly between different cuprates materials (like Nd-LSCO versus
YBCO) owing to their different crystalline structures and the internal strain this applies
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on the CuO2 planes. Few reports of competition between static stripe and superconducting
phase in Nd-LSCO has been made under hydrostatic pressure [74] as well.

This chapter is a work-in-progress, we present preliminary unpublished results from
our most recent beamtime.1 The first half of the chapter discusses the theory of uniaxial
strain, laying the framework for discussing the design and working of the uniaxial device.
The latter half establishes the robustness of the device by shows results for the response
of CDW order with uniaxial stress in 1/8th doped Nd-LSCO. We also present incomplete
results for the response of the low-temperature (001) Bragg peaks — associated with the
orbital asymmetry of the neighbouring layers in Nd-LSCO — with applied uniaxial stress.

6.2 Uniaxial strain

Uniaxial strain proves to be a useful way in understanding the role of directional crystal
deformations — which influences the way how orbitals overlap in the neighboring sites
and layers — in the correlated electronic states of matter. This selection not only allows
us to decouple co-existing symmetry breaking phases providing a way to understand the
behavior of the electronic structure under changing point group symmetries.

6.2.1 Theory of stress and strain

When a rigid object is subjected to external force, the deformation is described via strain
and stress tensor fields — the former being the measure of relative displacements relative
to the original state and the latter is the description of how the (restoring) forces are
distributed internally throughout the strained object. This section is based on derivations
and discussions covered in Ref. [75].

For a one-dimensional rod, the unstrained length is L and under an external (elongation)
force the new length becomes L+∆L. For such a case, if the transformation of every point
along the length is x→ x+ u, the strain on an infinitesimal element dx would be:

1The data presented in this chapter was the first decent dataset, after several trials, on our uniaxial
stress device collected in February 2020. Our main objective was to establish the working and application
of the uniaxial stress device on our polished-cut samples. The device appeared to be working and we
were lucky enough to collect some data for the CDW order with strain. This, however, still remains to
be reproduced and possibly scrutinized under higher strains — these plans had to be postponed due to
canceling of our CLS shifts in June-July owing to spread of covid19 in Canada.
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ε =
∆L

L
=
∂u

∂x
. (6.1)

A more general description of the strain tensor can be obtained by considering a co-
ordinate x and a displacement vector u (= ux̂ + vŷ + wẑ), such that x → x + u, where
the components of the strain tensor would be given by

εij =
1

2

(
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+
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)
, (6.2)

where the i, j refer to principal axes x, y, z. The strain tensor in the expanded form would
look like:
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As one would expect from Eq. (6.2), εij = εji, the strain tensor is symmetrical, exploit-
ing this symmetry helps in reducing the number of material constants required to describe
the relation between the stress and strain.

For a linear elastic material, the most general linear relation (by Hooke’s Law) among
all the components of the stress and strain tensor for uniaxial stress (load) conditions is
given by

σij = Cijklεij, (6.4)

where Cij is known as the stiffness tensor. Assuming equivalence of mixed partials and
symmetry in the off-diagonal elements of the strain tensor, we reduce the material constants
from 81 to 21. The most general anisotropic linear elastic material therefore has 21 material
constants. This can further be simplified for different space groups, the one which we are
interested in being the tetragonal crystals of Nd-LSCO with the I4/mmm space group
symmetry. The stiffness matrix for such a stress-strain would look like:
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Uniaxial stress︷ ︸︸ ︷
σxx
σyy
σzz
σyz
σzx
σxy

 =

Stiffness tensor for a tetragonal lattice︷ ︸︸ ︷
C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2
(C11 − C12)



Uniaxial strain︷ ︸︸ ︷
εxx
εyy
εzz
2εyz
2εzx
2εxy

 (6.5)

The Cij’s are obtained using resonant ultrasound spectroscopy, and other sound velocity
measurement probes. Here is what the stiffness tensor coefficients for La1.86Sr0.14CuO4

(LSCO) in a tetragonal phase [76] would look like,

La1.86Sr0.14CuO4 C11 C33 C23 C12 C44 C66

T = 300 K 2.67 2.57 0.99 0.65 0.68 0.59

where the Cij’s are in the units of 0.01 GPa. The values for the stiffness coefficients of
Nd-LSCO would be similar. A quick demonstration of how to think of these numbers: if
there is a 0.01% change in the lattice constants, say along c-axis, determined by shifting of
the Bragg peaks — that would imply a stress of 2.57 kPa is applied2 by the uniaxial stress
device.

2The convention followed here is: change caused by compressive strains being positive and tensile strains
being negative.
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6.2.2 Uniaxial stress mechanism and other techniques

The promise of uniaxial strain as a tuning parameter for understanding competing phases in
strongly correlated systems, especially unconventional superconductors, has been around
for a long time. Over this period, uniaxial stress has proved its niche over hydrostatic
pressure (on powdered samples, generally) by selectively tuning and comparing the physics
involved along different crystallographic directions, for instance a 0.1 GPa stress along [100]
would not make a big difference in Tc, however, a similar stress along [110] would increase
the Tc two-folds in Eu doped LSCO [77].

Broadly speaking, we classify uniaxial stress configuration under two main categories
depending on the purpose of the measurement:

1. Diffraction experiments which need access to the surface of the crystal — for a
beam of energetic particles impinging on the face — which is under uniaxial strain.
The Laue geometry plays an important role, a though experiment would be an investi-
gation of a certain (hk`) peak under synchrotron radiation, which would significantly
restrict the possible placement of the sample and quantity of the strains applied.

2. Non-diffraction probes which need thermal/electrical contact via conducting wires/epoxy,
and does not necessarily depend on either the medium or the geometry of the sam-
ple placement as long as the strain is homogeneous and uniaxial. This allows the
application of huge strains, upto 20 GPa [78], and arguably more uniform strains.

Another classification can be done on the basis of the mechanism of the apparatus, and
the application media of strain, namely

1. a mechanical setup, generally involving a combination of screw-bolt-spring allowing
turning the screw to apply a uniaxial force on the sample using the clamps,

2. a piezoelectric setup, through a certain number of piezoelectric stacks in parallel
[79] that control stress by applying an external voltage.

Our attempt would lie at the intersection of the former of both, that is a stress device
which allows (resonant3) x-ray scattering experiments using a mechanical setup. Recent
efforts in the field of synchrotron radiation compatible devices — based on the piezoelec-
tric stacks mechanism — involve work done by Le Tacon on YBCO [73] which reports

3The restricted access to the reciprocal space makes the job slightly trickier.
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a dramatic increase in the 3-dimensional stabilization of charge order on applying ∼ 1%
strain on single crystals of de-twinned YBCO.

We discuss our design in the section ahead, our main motivation was to develop a
device capable of applying homogeneous uniaxial strain along a preferred direction4, which
is compatible with the RSXS scattering chamber at the REIXS beamline at the CLS. The
scattering chamber has the ability to turn the screw — via a hex-head screwdriver attached
to the end of a long arm controlled from outside, without breaking the ultra-high vacuum
— and apply/modify strain in the sample by clockwise and anti-clockwise turns.

Furthermore, it is worthwhile to mention the constraints we are working under owing
to the experimental setup and the geometry of scattering in the chamber — some of the
challenges include:

• Restricted scattering geometry for the Q values we are interested in,

• Bulging epoxy contact at the edges forbidding low-angle scattering,

• Avoiding hysteresis due to applying-removing strain, or compressive-tensile strain,

• Avoiding buckling, cracking, and strain inhomogenities while applying strain by turn-
ing the screw using an in-situ screwdriver arm,

• Size of the sample versus beam spot size to ensure homogeneous strain signal,

• Avoiding hysteresis due to heating-cooling cycles.

6.2.3 Design of uniaxial strain device

Our uniaxial stress device — a mechanical attempt to apply uniaxial strain under the con-
traints mentioned in the previous section — works on a basic differential screw mechanism.
The entire assembly is divided into three stages:

• The bottom-third fits in the our pre-designed sample holder compatible with the
sample receptacle in the scattering chamber at the CLS’s REIXS beamline. This
part remains stationary while we turn the differential screw above to apply uniaxial
strain.

4Depending on the how we place the sample, and which faces are under stress.
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Figure 6.1: Uniaxial stress device: Design and reality, (a) AutoCAD design of the uniaxial
stress device, (b) Machined product with a test sample on with mounting-epoxy scheme
(a) (discussed ahead).

• The middle-third consists of two threaded copper blocks — one movable and the
other as an extension of the bottom-third — naturally, one moves relative to other.
This middle assembly has a differential screw mechanism in which one copper block
moves differentially as function of the screw rotations (say θs) which initiates the
strain in the system. A differential screw has two types of screw threadings (say
t1 and t2), such that, if free both blocks would move t1θs and t2θs in the same
direction. The relative motion, however, in such a mechanism would be |t1 − t2|θs
— implemented in our setup by fixing one of the blocks — this allows us to apply
fine tuned strain by choosing the threading difference cautiously. Most anvil-based
setups do not go further, however, one might argue that the strain applied can have
non-uniaxial components in a rigid block setup: to account for such an effect we
transmit this stress to the top-third, or the sampleholder plate. This feature serves
two purpose: i) cancels out non-uniaxial components of the stress, and ii) reduces
the strain applied, giving us an even more fine-tuned setup5.

5This is very useful as it gives us some flexibility to rotate in a safe-range during the experiment, for
example a 90 degree turn would roughly correspond to 0.1% strain, depending on the sample’s stiffness
coefficients.
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Figure 6.2: Uniaxial device: Exploded view with functioning of various parts. The en-
tire assembly shown in this figure fits into a CLS-REIXS beamline’s compatible copper
sampleholder, which is shown in the previous figure with the condensed view of the entire
assembly. Top-third and Middle-third labels are described in the text.

69



• The top-third is a 1 mm thick Be-Cu alloy sampleholder plate. Beryllium-Cooper
(Be-Cu) is commonly used in low temperature cryogenic apparatus because of its
mechanical strength, non-magnetic nature, and good thermal conductivity in this
temperature range. As it retains its elastic properties at low temperature, it becomes
a good choice for the part — applying uniaxial stress — in direct contact with the
sample through epoxy, as shown in Fig 1(b). To cancel of stray stresses, we use a
combination of flexures which are design features engineered to provide a specific
degree of freedom. The one we use is called a Notch flexure — a thin curved cutout
on both sides of a Be-Cu piece — which constrains 5 degrees of freedom, essentially
solving the problem of non-uniaxial strains.

The sample is mounted on the Be-Cu sampleholder plate using epoxy around the edges
which transmits the strain and ensures good thermal conduction to the sample. The
sample is mounted such that the center of the sample passes through the central axis of
the goniometer at the scattering chamber at the REIXS beamline. The strain, as described
before, is applied by turning the differential screw — Fig. 6.3 shows how the two ends (or
clamps) move without a sample. We have observed that compressive strains are more
robust and reproducible than tensile ones. In the initial runs the uniaxial device was found
capable for applying strains upto 0.4% based on the shifts in the Bragg peaks. The strain
homogeneity and critical limit also depends on the sample material and dimensions to be
discussed later. There is a possibility of adding a strain gauge which can validate the strain
values obtained by shift in Bragg peaks.

6.2.4 Sample mounting and the role of epoxy

Before mounting the sample on the uniaxial stress device, the surfaces are polished to
obtain parallel planes to avoid inhomogeneous and asymmetric stresses. In our trials, we
have found chemical etching to be essential to get rid of the first few bad atomic layers
due to polishing imperfections6. The rate of etching depends on the surface imperfection,
the larger the imperfection the more susceptible to etching, this is crucial for the surface
of the sample which faces the x-ray beam — as we cannot afford to have a non-uniform
surface — whereas the bottom portion of the sample would not make a big difference.

After making sure the sample is polished well, it is set into position on the sampleholder
plate using silver epoxy (EPO-TEK H20E). The epoxy comprises of two components, say
part A and part B, which are to be mixed in equal amounts and then applied on the ends

6The techniques how the samples are cut, polished and etched are discussed in more detail in chapter 4.
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of the sample in a certain fashion (like shown in Fig. 6.3). We generally use a 0.25 mm
clean copper wire as a paint-brush to settle the epoxy and make both th ends symmetric,
special care is taken to get rid of any bubbles or mixing irregularities. The entire assembly,
which is mostly made of copper and is thermally conducting, is then kept covered on a
hot platform to cure the epoxy, we generally follow 150 degree Celsius for 1 hour (this
depends greatly on the kind of the epoxy used) and then it is gradually cooled down to
room temperature to find the hardened-cured epoxy bonds.

Figure 6.3: Different epoxy application schemes: Samples under compressive uniaxial strain
using Scheme (a) and (b). In scheme(b), the strain applied was more homogeneous with
lower tendency to buckle than scheme (a). The thickness of the sample in the picture is
almost equal to that of a human hair.

This is a crucial step, as silver epoxy is the point-of-contact between the mechanical
stress generating assembly and the two ends of the rigid cuboidal sample. The epoxy
encapsulates the edges and vertices at the two ends — keeping a constant cross-section
area — we try to ensure that the strain transmission is uniaxial and homogeneous in
the elastic limit. For this purpose, we tried different schemes of applying epoxy around
the sample. In our first trial, as shown in Fig. 6.3(a), we laid a very thin layer of silver
epoxy and then placed the sample over it, and finally creating an encapsulating symmetric
bulge around the ends of the sample. This worked decently for low stress levels, but we
experienced bulging of the sample as we applied more stress. To counter this, our next
epoxy-application scheme, as shown in Fig. 6.3(b) involved introducing a 0.2 mm valley
cut in the Be-Cu sampleholder plate — which is almost the same thickness of the sample
(under strain) – this ensures the deformation/drag of epoxy is uniform on top and bottom
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surfaces. This helps with the problem of buckling at low strain values. There is, however, a
theoretical buckling limit that is greater than the fracture point of the sample. In our trials,
we noted that the fracture point of sample is reached before that of the epoxy contacts,
maximum strain can be achieved by choosing the dimensions, particularly thickness of the
sample under strain. We have tried samples of thickness: 200, 300, and 500 µm, we find
the strain homogeneity is best achieved in the 200 µm. Assuming, the amount of strain is
not limited by the epoxy — we can calculate the buckling load limit, as Fcritical for given
dimensions using the Euler’s formula [80]:

Fcr =
4π2Y Im

`2
, (6.6)

where Y is the modulus of elasticity of the material, ` is the unsupported length of the
sample, d is the thickness, and Im is the minimum area moment of inertia of the cross
section of the (cuboid) sample bar. This allows us to find the critical strain for buckling,
we replace the area moment of inertia as `d3

12
, and use Hooke’s law to get critical strain

(= Fcr

Y `d
) as:

εcr =
π2

3

(
d

`

)2

. (6.7)

Optimizing with our dimensions, the theoretical critical buckling limit comes out to be
around 2%. In our preliminary trials we reached values less than 0.5% before fracturing
the sample, it requires more investigation both experimental and numerical modeling (sim-
ulating using finite element analysis) to properly characterize the strain transmission and
distribution through the sample dimensions.

One more important factor, as mentioned before, is the access to a clean surface for
scattering geometry. This brings a challenge of not using wire contacts, and strain gauges
as metal and epoxy contacts would add noise to the signal owing to their presence in the
beamspot on the sample during reciprocal scans. We will show how this forbids us to
access the CDW order at low angles as the bulge of the epoxy hinders the incident beam.

6.2.5 Placement in the RSXS chamber

The design of the uniaxial stress device is done in such a manner to ensure beamspot
stability with change in temperature — that is, from the sample frame of reference —
we have designed it minimize the change in the beamspot position with temperature and
added uniaxial strain. The beam spot size at the sample is ≈ 250 × 150 µm. The polished-
etched surface of the sample (a-b face) receiving the incident beam is aligned with the axis
of the goniometer at the CLS.
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We have the capability of making a 90 degree azimuthal turn, see Fig. 6.4(b), such that
it allows us to look for collective excitations along and perpendicular to the direction of the
uniaxial strain. The La214s have a tetragonal to orthorhombic structural transition, this
freedom to detect ordering along and perpendicular to the uniaxial strain can be potentially
used to induce rotational symmetry breaking via uniaxial strain in the otherwise tetragonal
phase to record the response of electronic nematic fluctuations. The screw for applying
strain as well as making an azimuthal turn is achieved by an in situ screwdriver arm that
allows to make turn without breaking the ultra high vacuum.

As shown in the figure, we need to rotate the θs motor to align different screws with the
in-built hex-screwdriver arm in the RSXS scattering chamber. In my experience, I have
found that one can achieve (and reproduce) π/8 turns pretty robustly. In our preliminary
trials, we have applied and released strain in two stages from an unstrained case — let’s
say a moderately strained case (strain set 1)and a maximally strained case (strain set 2)
— we will discuss this in the sections ahead. The temperature sensors lower down from
the crysostat allowing us to record the sample’s temperature, we have waited a couple of
extra minutes after temperature change schemes to give enough time to the sampleholder
assembly reach equilibrium.
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Figure 6.4: (a) View from the RSXS chamber’s window showing the uniaxial stress device
with the sample mounted. (b) The screw at the base of the device — can be rotated with
an in situ screwdrives — provides the azimuthal degree of freedom, allowing access to (h0`)
and (0k`) peaks. (c) Uniaxial stress device with the Nd-LSCO sample mounted, also shows
in the scale valid for the (c) image.
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Preliminary results

The results presented in the sections ahead are based on the February 2020 run at the
REIXS endstation at the CLS in Saskatoon. Here, we discuss the measurement of structural
and electronic features in the same direction as the applied strain. We calculate the amount
of uniaxial strain — applied in the [100] direction — by calculating the shift in (004) and
(-103) Bragg peaks . Due to technical difficulties in azimuthal rotations, unfortunately, we
could not collect data for changes in the direction perpendicular to the applied (uniaxial)
strain. We plan to do that in the subsequent beamtimes.

6.3 Structural Bragg peaks under uniaxial strain

6.3.1 Introduction

At low temperatures for Nd-LSCO, which is a tetragonal structure, we can access (004),
(103), and (-103) Bragg peaks at an incident photon energy of 2200 eV. This gives us an
opportunity to calculate the strain percentage — as probed at the beamspot patch by the
incident x-rays — by comparing the shift in the Bragg peak’s position (referred ahead as
2θ value) to find the change in the crystallographic axes. We begin as,

q =
4π

λin

sin

(
2θ

2

)
(6.8)

where λin is the wavelength in the incident soft x-rays. Then we use the q-value to find
d = 2π/q which is connected to the Miller indices as:

1

d2
=
h2

a2
+
k2

b2
+
l2

c2
(6.9)

After applying compressive uniaxial strain (say along a-axis), we measure the change in
the 2θ position for the (004) Bragg peak to find the resulting change along c-axis. Next we
note the change in 2θ position for the (±103) Bragg peak — already knowing the change
along c-axis — we can calculate the change along a-axis using Eqn. (6.9).
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6.3.2 Experimental procedure

The sampleholder is first positioned in the loadlock (at room temperature), then we bring
the cryostat and sample receptacle assembly to room temperature to avoid any sudden
contraction/expansions — during transferring the copper sampleholder — which can cause
undesired strains to set in. Once the equilibrium is reached, we slowly lower the sample
temperature to 30 K in order to perform further measurements.

We use a spatial and an energy resolved detector to record the (004), (103), and (-103)
Bragg peaks because in our previous trials we have observed that after the application of
uniaxial strain some specular reflections, often, due to domains misalignment can introduce
noise in the peak signal if we just stick to the spatial detector (MCP). However, using an
energy resolved detector (SDD) we can extract a clean signal — separating the specular
reflection from the Bragg peak — and get a more accurate account of the shift in 2θ values,
eventually allowing us to calculate the amount of strain (stress) the sample is under using
the equations described above.

We begin with the unstrained case moving to non-resonant edge energies, 2000 eV here,
to record changes in the structural Bragg peaks in Nd-LSCO. In the series of results ahead,
we have followed the scheme of applying compressive strain at 30 K which lies in the low
temperature tetragonal (LTT) phase. We looked at one unstrained case, and two values of
strain by turning the differential screw. We were also able to come back to the unstrained
case by turning the screw in the opposite direction.

6.3.3 Results and discussion

We note the shift in the 2θ position consistent with the compression along the direction
in which we applied strain, the change in the c-direction indicated increase in the lattice
parameter with strain applied along the a-axis. Fig. 6.5(b) shows the change in the (004)
Bragg peak under uniaxial strain. Fig. 6.5(a) shows how the in-plane (103) behaves under
uniaxial strain. Note that we have used the reciprocal lattice units/vectors instead of 2θ
as we need to align and apply the strain, which causes change in the machine θ/2θ value
settings. The reciprocal directions, however, are accounted for those changes as it takes
into consideration all the motor degrees of freedom.

We then use the Eqn. (6.8) and Eqn. (6.9) to characterize the applied strain based on
the shifting of the Bragg peaks. We also compared the change in the h values for the peak
for (103) and (-103), they appear to move in opposite direction as one might expect for
uniaxial strain.
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Figure 6.5: Structural Bragg peaks under uniaxial strain

Careful characterization of the structural Bragg peak help us understand if there are
strain inhomogeneities and stray stresses present, from this minimal data set showing the
shift in peak position we conclude that the applied strain is uniaxial to a great degree.
Note that the change in the a-axis and c-axis parameters have comparable h and ` indices
which gives us a chance to calculate the shift in the lattice parameters with applied uniaxial
strain with fair certainty. We tried using hard x-rays (E ∼ 8.04 keV) at Stefan’s Lab at
University of Waterloo to characterize the applied strain using (107) and (006) Bragg peaks
— the uncertainty involved in calculating the a-axis (or b-axis) lattice parameter change
was about 5 times more than the results described above — which essentially made the
results inconclusive. At CLS, we did not see stray or split peaks on the MCP detector,
which generally imply mosaic character, or sometimes twinning in the crystal.
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6.4 CDW order under uniaxial strain

6.4.1 Introduction

The discovery of an abnormally stable charge density wave order at x ∼ 1/8 doping in
Nd-LSCO was made more than two decades ago [5]. Since then, it has been detected by
numerous techniques, particularly to our interest, it can be probed with resonant x-ray
scattering. As discussed in previous chapters, Nd-LSCO also exhibits electronic nematic
order thus it provides a unique opportunity to understand the relation between CDW,
electronic nematicity and structural distortions. Exploring the impact of uniaxial strain on
these orders within the same measurement can help us answer whether the three symmetry-
breaking phases compete? cooperate? Or leads to onset of each other?

The application of uniaxial strain can be used to identify if variation in CDW order and
nematicity is associated with variation in the crystal structure or variation in the carrier
concentration. We present results for the unstrained case along with two set of strain
measurements from our previous beamtime.

6.4.2 Experimental procedure

As described in section 2.3.1, CDW order peak has a feeble intensity and a wide spread
in reciprocal space compared to the traditional Bragg peaks which have sharp (intense)
spectral signatures. This poses a challenge in the choice of the detectors, instead of point
detectors we use a 2D MCP spatial detector — to cover a wider q-space region — giving
us integrated intensity over the region to detect charge order superstructures with a period
of several unit cells.

We start by tuning to Cu L resonance edge and perform a h-scan (or a θ scan) to detect
and characterize CDW signal. For unstrained Nd-LSCO, from our previous measurements,
we know the CDW order peak is peaked around (h, k, `) value of (0.235, 0, 1.5)7, we perform
a h scan around that value at different temperatures to investigate the CDW order. For
the unstrained case, as seen before, the CDW order starts fading at a temperature of 60 K.
In this series of uniaxial strain experiments, we collect data for four values of temperature
(in K): 30, 60, 90, 120, beginning with no strain, and collecting two set of measurements

7Once we have set the orientation matrices (UB) in SPEC macros using information about the motor
positions from the (004), (103), and (-103) Bragg peak, we can run a macro to allow motor movement
with some contraints to reach the desired Q value.
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for different applied strains. The strain is applied at 30 K, that is, in the tetragonal phase
of the material.

6.4.3 Results and discussion

Figure 6.6: CDW ordering peaks at (±0.24, 0, 1.5) under uniaxial strain: We show results
for the response of the CDW ordering peaks to in-plane uniaxial stress. (a, d) shows the
case with no strain, in (b, e) we applied a moderate strain of ∼ 0.1%, and we increased
the strain to a maximum of ∼ 0.3% in (c, f). The data is plotted on a same scale, that
is rescaled to show any broadening or enhancement features in the CDW ordering peaks.
The data for maximum strain (f) has possible interference in the signal from the epoxy
as the scattering angles is less than 30 degrees which becomes even more challenging with
sample under strain as the epoxy can bulge and partially obstruct the line-of-sight of the
incident photon beam.

We measured the CDW order associated with half-integer, that is Q2D = (h, k, `) =
(±0.24, 0, 1.5) and integer, that isQ3D = (h, k, `) = (−0.24, 0, 1), `-values to investigate the
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response of charge ordering with uniaxial strain along [100] direction. The measurements
at (+0.24, 0, 1.5) involved possible obstruction by the epoxy bulge for the line-of-beam
of x-rays owing to the small angle of incidence, furthermore, the angles for (+0.24, 0, 1)
involved a direct beam into the detector; thus both of the +h value ordering peak data is
omitted here.

For the values of applied strain, in these preliminary trials, we do not observe a drastic
change in the CDW ordering at half-integer and integer `-values. Few notable observations
from Fig. 6.6 involve widening of the CDW peak with slight enhancement in the peak inten-
sity under applied strain. This, however, requires more careful characterization, possibly,
with higher strain measurement sets. As discussed earlier, we could not successfully make
the 90 degree azimuthal turn because of the the technical difficulties – that should make
the understanding more complete in terms on strain and stabilization of biaxial charge
order in direction perpendicular to applied uniaxial strain — this remains as an immediate
future work.

6.5 LTO → LTT transition under uniaxial strain

6.5.1 Introduction

As described in the section 2.3.2, a key signature of Nd-LSCO is a — sharp, first order like
— low-temperature structural transition from the orthorhombic to the tetragonal structure.
Uniaxial strain, produces an anisotropic distortion, giving us control over the symmetry
of the lattice which can enhance or suppress CDW order. Speculations based on Landau
free energy combined with response to external applied conjugate field have shed some
light on its coupling with the other symmetry breaking phases. Here we present coarse
temperature evolution of the (001) Bragg peak which allows us to study the response LTO
→ LTT structural transition under uniaxial strain.

6.5.2 Experimental procedure

We have already discussed the experimental procedure for probing the (001) peak, please
refer to section 5.4.1. Summarizing the key steps again: after setting the orientation
matrices using the in-plane Bragg peaks at 2200 eV. We change the energy and instrument
setting — mirror, grating, and slit gaps — to obtain decent signal intensity at the Cu L (∼
931 eV)and apical O K (∼ 531 eV) edges. Once we located the peak on the SDD detector
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for a cleaner signal, we increase the temperature to investigate how the (001) peak responds
to in plane Cu and apical O edges. It is worthwhile to mention that the results here are
coarse scans, that is the detector recorded the peak intensity as the sample temperature was
increased, this is not ideal as sometimes the recorded ‘sample temperature’ has a time delay
between recorded and real temperature. However, due to time constraints, we performed
quicker scans to look for general features in the LTO → LTT structural transition under
uniaxial strain. The recorded temperature and measured temperature has a drift/delay
offset of ∼ 5-10 K, this has been attempted to be accounted for in the data presented
ahead.

6.5.3 Results and discussion

Figure 6.7: LTO → LTT structural transition under in-plane uniaxial strain for in-plane
Cu L and apical O K edges: Dotted lines record the thermal evolution of (001) peak for x
= 0.125 Nd-LSCO across the LTT to LTO structural transition which matches our previous
studies. Solid line is the response of the (001) peak under in-plane uniaxial strain. Notice
the broadening in the nature of transition.
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Our results for the unstrained case matches with our previous carefully calibrated stud-
ies of LTO → LTT structural transition — as we observe a sharp transition marked by
absence of the (001) peak — the dotted red and blue line show that in Fig. 6.7. The case
under uniaxial strain, however, behaves differently. The nature of LTO → LTT structural
transition appears to be softened substantially from the unstrained case, this can be due
to broadening on the structural transition or creation of mixed domains or even an LTLO
phase. Again, FWHM and comparison of peak intensity as a function of temperature
would shed some light of such possibilities, for instance mixed domains would show up
as split Bragg peaks, if any. Although — just as a thought experiment — an interesting
situation can be imagined where the uniaxial strain helps the octahedral distortions in the
LTT phase, possibly, favoring the formation of a nematic phase and maybe even emerging
on a larger length scale as enhancement of a charge ordering superstructure. The former
would appear as an enhancement in the difference8 in (001) peak at in plane Cu L and
apical O K edges, and the latter would show up as an increase in CDW peak intensity, or
possible stabilization of charge order in the copper-oxide planes. One vague evidence to
support such a claim would be the change of the (001) peak behavior at low temperatures
— between 30-50 K — which are sufficiently far from the LTT → LTO transition (∼ 70
K). This, however, remains a matter of future investigation along with possibly looking at
other elemental edges in the copper-oxide and spacer layers.

6.6 Summary and conclusions

In this chapter, we established the working of the uniaxial stress device. We presented
preliminary results on the application of in-plane stress in the cuprate high temperature
superconductors. We record a few interesting features under strain, there needs to be more
careful attempts to explore the ideas presented in the chapter. We have applied and been
granted beamtime regarding this project and we hope to run these experiments as soon as
the opportunity presents.

8Increase in the orbital asymmetry.
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Chapter 7

Conclusions

We have measured the on-resonance allowed (001) Bragg peak for different atomic edges
— in the CuO2 and spacer layer of the layered pervoskite unit cell — and CDW order for
five hole doping levels in single crystals of the cuprate high-temperature superconductor,
Nd-LSCO.

We report the evidence for vanishing electronic nematic order in the vicinity of the
putative QCP — at the end of the pseudogap phase — at x = 0.23 that has been identified in
Nd-LSCO and other cuprates. This suggests that nematicity may be the fluctuating order
responsible for the quantum critical phenomena at this point. Consequently, nematicity
may play a larger role in understanding the cuprate phase diagram that has been previously
recognized, possibly having a key role in the nature of the pseudogap phase or impacting
the superconducting transition temperature. In this thesis, we measured five Nd-LSCO
samples at different Sr hole doping levels. Along with investigating the electronic nematic
order near the end of the pseudogap phase in Nd-LSCO, we also documented the CDW
signal, and found that it vanishes beyond x = 0.18 which is in agreement with previous
similar studies using other experimental probes. Possible scenarios for these observations
include the existence of a zero-temperature nematic QCP and/or a nematic character to
the pseudogap regime in this family. We also report a non-trivial relationship between
three distinct structural and electronic symmetry breaking phases with varying carrier
concentration in the La-based cuprate.

In the last chapter, we discuss the design and working of the in-plane uniaxial stress
device. We present preliminary results providing a proof of principle by examining the
shift in the structural Bragg peaks in response to applied strain. We report slight broad-
ening of the CDW order along h-direction on applying uniaxial strain, immediate future
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plans include reproducing the results and investigating the change along k-direction for
the identical setup. We also recorded the 1st order like LTT → LTO transition which
on applying strain loses the sharp features, this needs further investigation. The primary
future goal would be understanding the interplay between electronic nematic order and the
CDW order present at a hole doping of x = 1/8 in Nd-LSCO. The response of the (001)
Bragg peak for atoms in the CuO2 layer versus the spacer layer might provide us a way to
characterize orbital asymmetry by a phenomenological description for examining nematic
susceptibility with the applied strain. If successful, this can possibly help us characterize
the nematic fluctuations in the vicinity of the putative QCP in Nd-LSCO, the results of
which would direct evidence of the role of nematicity as a fluctuating order associated with
the quantum criticality.
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[17] V Hinkov, D Haug, B Fauqué, P Bourges, Y Sidis, A Ivanov, Christian Bernhard,
CT Lin, and B Keimer. Electronic liquid crystal state in the high-temperature super-
conductor YBa2Cu3O6.45. Science, 319(5863):597–600, 2008.

[18] AJ Achkar, M Zwiebler, Christopher McMahon, F He, R Sutarto, Isaiah Djianto,
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[33] M Hücker, M v Zimmermann, M Debessai, JS Schilling, JM Tranquada, and GD Gu.
Spontaneous symmetry breaking by charge stripes in the high pressure phase of su-
perconducting La1.875Ba0.125CuO4. Physical Review Letters, 104(5):057004, 2010.

[34] T Shibauchi, A Carrington, and Y Matsuda. A quantum critical point lying beneath
the superconducting dome in iron pnictides. Annu. Rev. Condens. Matter Phys.,
5(1):113–135, 2014.

[35] Thanapat Worasaran, Matthias S Ikeda, Johanna C Palmstrom, Joshua AW Straqua-
dine, Steven A Kivelson, and Ian R Fisher. Nematic quantum criticality in an fe-based
superconductor revealed by strain-tuning. arXiv preprint arXiv:2003.12202, 2020.

[36] B Michon, C Girod, S Badoux, J Kačmarč́ık, Q Ma, M Dragomir, HA Dabkowska,
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V Bitetta, X Shi, Stéphane Pailhes, MH Berntsen, Tohru Kurosawa, et al. Electron
scattering, charge order, and pseudogap physics in La1.6−xNd0.4SrxCuO4: an angle-
resolved photoemission spectroscopy study. Physical Review B, 92(13):134524, 2015.

91
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