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Abstract

We study area-efficient drawings of planar graphs: embeddings of graphs on an integer
grid so that the bounding box of the drawing is minimized. Our focus is on the class of
outer-1-planar graphs: the family of planar graphs that can be drawn on the plane with
all vertices on the outer-face so that each edge is crossed at most once. We first present
two straight-line drawing algorithms that yield small-area straight-line drawings for the
subclass of complete outer-1-planar graphs. Further, we give an algorithm that produces
an orthogonal drawing of any outer-1-plane graph in O(n log n) area while keeping the
number of bends per edge relatively small.
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Chapter 1

Introduction

1.1 Motivation

Graph drawing is the study of producing aesthetically pleasing drawings of graphs. It
has proven to be useful in a variety of domains such as VLSI design, software diagram
visualization, biology and many others [4]. By requiring every vertex to be placed on the
integer grid, one can define the area of a drawing to be the number of grid points in the
smallest axis-aligned rectangle containing the drawing.

It is natural to attempt to draw graphs without crossings whenever possible. We
therefore commonly restrict ourselves to the class of planar graphs, the family of graphs
that admit crossing-free embeddings in the plane. Although the very definition of planar
graphs allows the edges to be drawn as “curves”, one of the first results in the area,
independently proven by Wagner [39], Fary [20] and Stein [34], says that any planar graph
can be drawn in the plane crossing-free, so that all its edges are straight-line segments
(a straight-line drawing). When re-scaled to the integer grid, the area of the drawings
obtained from their proofs is unfortunately exponential in the size of the vertex set.

Classical results of the field, independently shown by Schnyder [33] and Fraysseix, Pach
and Pollack [13], say that any n-vertex planar graph admits a planar straight-line drawing
in O(n2) area. These algorithms are in fact optimal in the sense that there exist families
of planar graphs that require Ω(n2) area in any planar straight-line grid drawing [12]. It is
therefore natural to ask whether there are any interesting sub-classes of planar graphs that
admit planar straight-line drawings in sub-quadratic area. Such drawings have been found
for binary trees [32] and outer-planar graphs [15] for instance. In this thesis, we explore
area-efficient algorithms for drawing outer-1-planar graphs.
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Outer-1-planar graphs arise from two well-studied families of graphs: 1-planar graphs
and outer-planar graphs. 1-planar graphs are graphs that can be embedded in the plane so
that every edge is crossed at most once. Unlike planar graphs, which can be recognized in
linear time [28], recognizing 1-planar graphs is NP-hard [30]. Although not every 1-planar
graph admits a 1-planar straight-line drawing, Thomassen [37] and Hong et al. [27] have
independently given a characterization of 1-planar graphs that do admit straight-line 1-
planar drawings. Both graph-theoretic and graph-drawing results for 1-planar graphs are
numerous and we refer the reader to a survey on 1-planar graphs [29] and more generally
beyond-planar graphs [16].

Outer-planar graphs are graphs that can be drawn planar so that all vertices are on the
outer-face. They can be characterized by forbidding minors K2,3 and K4, and recognized
in linear time [31]. An orthogonal point-drawing is a grid drawing where each edge is
a sequence of horizontal or vertical line segments. Observe that for a graph to admit
an orthogonal point-drawing, its maximum degree must be at most four. We discuss
orthogonal-point drawings in detail in Chapter 4. One of the first graph drawing results
on outer-planar graphs dates back to 1981 when Dolev and Trickey [17] showed that every
outer-planar graph with degree at most four admits an orthogonal point-drawing in linear
area. We review these graph drawing models and other terms used below in detail in
Chapter 2. In an attempt to give a straight-line drawing of sub-quadratic area, Garg
and Rusu [24] showed that any outer-planar can be drawn straight-line in O(dn1.48) area,
where d is the maximum degree of the graph. This bound was later improved to O(n1.48)
by DiBattista and Frati [15] and to O(dn log n) by Frati [22]. The most recent result by
Frati, Patrignani and Roselli [23] says that every outer-planar graph admits a straight-
line drawing in O(n1+ε) area for any ε > 0. Biedl gave an algorithm that produces a
flat orthogonal box-drawing, and hence a poly-line drawing, of any outer-planar graph in
O(n log n) area [5]. She has further shown in [6] that every outer-planar graph G admits a
flat orthogonal box-drawing in O(n · pw(G)) area, where pw(G) is the pathwidth of G.

Of special interest to us is the combination of 1-planar and outer-planar graphs. An
outer-1-planar (o1p) graph is a graph which can be drawn in the plane so that all of its
vertices are on the outer-face and every edge is crossed at most once. They were first
introduced and studied by Eggleton in 1984 [18], where he proved some of their basic
properties, for example maximal outer-1-plane graphs have no crossings on the outer-
face. Unlike outer-planar graphs, o1p graphs cannot be characterized by the exclusion
of graph minors [3]. Still, it was independently shown by Auer et al. [3] and Hong et
al. [26] that outer-1-planarity can be tested in linear time. Both algorithms are based on
the decomposition of outer-1-planar graphs using SPQR-trees and output the final o1p
embedding if it exists. Auer et al. [3] have further shown that o1p graphs have treewidth
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Figure 1.1: Left: a maximal outer-1-plane graph G. Right: skel(G) and its weak dual
ternary tree.

at most three, stack number at most two, queue number at most three and that every
o1p graph is planar. Multiple researchers have investigated graph drawings of o1p graphs.
It was first shown by Dehkordi and Eades [14] that all o1p graphs admit RAC drawings,
i.e., straight-line drawings so that every crossing is at the right angle. Further, every
o1p graph admits a straight-line drawing in O(n2) area such that all the vertices are on
the outer-face and a (not embedding-preserving) flat orthogonal box-drawing in O(n log n)
area [3]. We discuss embedding-preserving drawings in Chapter 2. Di Giacomo, Liotta and
Montecchiani have shown that every o1p graph can be drawn straight-line using at most
O(d) slopes, where d is the maximum degree of a graph. Most recently it was shown by
Argyriou et al. [2] that every biconnected o1p graph admits an orthogonal point-drawing
in O(n2) area so that every edge has at most two bends. We will give a more detailed
review of the relevant graph drawing results in Chapter 3 and Chapter 4.

1.2 Our Results

An outer-1-plane graph is an outer-1-planar graph with a given outer-1-planar embedding.
In the first part of the thesis we focus on the outer-1-plane graphs of small “depth” and
on “complete” outer-1-plane graphs, and give area-efficient straight-line drawings for these
two sub-classes of outer-1-plane graphs. We say an outer-1-plane graph is maximal if no
edge can be added while staying simple and outer-1-plane. To define notions of “depth”
and “complete” outer-1-plane graphs, we associate every maximal outer-1-plane graph G
with its skeleton, skel(G). Namely, to obtain skel(G) simply remove all crossings from G,
see Figure 1.1.
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It is easy to see that the dual tree of skel(G) is always a ternary tree, after deleting the
vertex corresponding to the outer-face. We assume that this tree is rooted after selecting
some distinguished reference edge (s, t) of skel(G) on the outer-face, and choosing the root
face to be the interior face of skel(G) containing the edge (s, t). Hence, a natural parameter
of any maximal o1p graph is depth(G), i.e, the number of nodes on the longest root-to-leaf
path of the dual tree of skel(G). The reference edge (s, t) of skel(G) is chosen so that
depth(G) is minimized. For a (non-maximal) outer-1-plane graph G, we use depth(G) to
denote the smallest depth among all maximal outer-1-plane graphs containing G (with the
same number of vertices as G). We begin the thesis by giving a very simple algorithm to
draw any o1p graph so that the height of the drawing is proportional to depth(G):

Theorem 1 Let G be an n-vertex outer-1-plane graph. Then G admits an embedding-
preserving straight-line outer-1-plane drawing in a grid of height O(depth(G)) and width
O(n).

In the subsequent section, we introduce complete outer-1-plane graphs. First, a com-
plete ternary tree is a ternary tree in which every “level” must be completely filled. So,
we say a maximal o1p graph G is complete if its rooted dual tree of skel(G) is a complete
ternary tree. Similarly, a (non-maximal) outer-1-plane graph is complete if it can be aug-
mented to a complete maximal o1p graph without adding vertices. We prove the following
theorem:

Theorem 2 Let G be an n-vertex complete outer-1-plane graph. Then G admits an
embedding-preserving straight-line outer-1-plane drawing of width and height O(n0.63).

This result was motivated by the linear-area straight-line drawings of complete outer-
planar graphs by DiBattista and Frati [15]. Observe that complete outer-1-plane graphs
have depth O(log n), hence Theorem 1 would yield O(n log n) area drawings. However,
Theorem 2 gives drawings with better aspect ratio, as both the width and the height are
sub-linear.

We now move to orthogonal point-drawings of outer-1-plane graphs. The main result
of this chapter is the following theorem:

Theorem 3 Let G be an n-vertex outer-1-plane graph of maximum degree 4. Then G
admits an embedding-preserving orthogonal point-drawing in O(n log n) area such that every
edge has at most seven bends.
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This theorem was inspired by the result of Argyriou et al. [2], who showed that any 1-
plane graph (and hence outer-1-plane) admits an embedding-preserving orthogonal point-
drawing in O(n2) area such that every edge has at most three bends. For biconnected
outer-1-plane graphs, they reduced the number of bends per edge to two. This result is
optimal in the sense that there exists an o1p graph G so that in any embedding-preserving
orthogonal point-drawing of G, there must be at least one edge that has at least two
bends [2]. Our aim is to produce orthogonal point-drawings of o1p graphs in sub-quadratic
area while keeping the number of bends per edge relatively small.

1.3 Outline of the Thesis

The remainder of the thesis is organized as follows:

• In Chapter 2 we introduce standard definitions and notations from graph theory and
graph drawing, including the most relevant families of graphs such as outer-planar,
1-planar and outer-1-planar graphs.

• In Chapter 3 we present small-area straight-line drawing algorithms for outer-1-plane
graphs with small depth and for complete outer-1-plane graphs. We begin the chapter
by reviewing the existing straight-line drawing algorithms for both outer-planar and
outer-1-planar graphs and presenting the O(n·depth(G)) area approach (Theorem 1).
Then, after reviewing the techniques used by DiBattista and Frati of [15], we prove
Theorem 2.

• In Chapter 4 we give small-area orthogonal drawings of outer-1-plane graphs while
keeping the number of bends per edge relatively small. We first review the relevant
orthogonal graph drawing algorithms and motivate our result. Then, after giving a
detailed review of Biedl’s algorithm [5] for producing flat orthogonal box-drawings
of outer-planar graphs, we extend the technique to the super-class of outer-1-plane
graphs. Finally, we conclude the chapter with a proof of Theorem 3.

• In Chapter 5 we conclude with several open problems.
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Chapter 2

Background and Preliminaries

2.1 Graph Theory

A graph G = (V,E) is a pair of two sets V and E, which we refer to as vertices and
edges, respectively. An edge is a pair (u, v) of two vertices, so a graph is most commonly
visualized as collection of dots in the plane (vertices) that are connected by curves (edges).
We assume that no two vertices are connected by two distinct edges and that no vertex is
related to itself by an edge; in general such graphs are called simple graphs. We use V (G)
and E(G) to denote the vertex and the edge set of a graph G, respectively. We usually use
|G| to denote the size of the vertex set of G. All graphs in this thesis are undirected, that
is, the order in which the endpoints u, v of an edge (u, v) are listed is irrelevant.

If (u, v) is an edge, we say that vertices u and v are adjacent or neighbors ; we also
say that edge (u, v) is incident to both u and v. The number of neighbors of a vertex v
is called the degree of v, which we denote by deg(v). A path in a graph is a sequence of
distinct vertices v1, v2, . . . vk so that for all i ∈ {1, . . . , k − 1}, (vi, vi+1) is an edge. We
say that a graph is connected if for all v, u ∈ V (G), there exists a path from v to u. The
notion of connectedness can be generalized to k-connected graphs, i.e, graphs that stay
connected after fewer than k vertices and their incident edges are removed. A cycle is a
path p1, . . . , pk such that (pk, p1) is an edge.

A tree is a connected graph without cycles. A rooted binary tree is a tree with a
designed root vertex that is allowed to have at most two neighbors, and every other vertex
has at most three neighbors. For every edge (u, v) such that u is closer to the root than v,
we say that v is a child of u, and that u is a parent of v. Once the ordering of the children
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is fixed for each vertex v, we use v.left and v.right to denote the left and the right child
of v. Analogous to a binary tree is a ternary tree, i.e, a rooted tree such that all of its
vertices have at most three children. Non-root nodes with degree one are called the leaves
of the tree. The height of a rooted binary (ternary) tree T is the number of edges on its
longest root-to-leaf path. A complete binary (ternary) tree is a rooted binary (ternary)
tree in which all non-leaf nodes have the maximum number of children and all root-to-leaf
paths have the same length.

A graph G is planar if it can be drawn in the plane without creating any crossings. A
specific drawing without crossings of G is called a planar embedding of G. It is important to
note that a planar graph may have more than one planar embedding. Once the embedding
is fixed, the edges decompose the plane graph into connected regions that we call faces.
The unbounded region is called the outer-face and all the remaining, closed faces are called
the interior faces. We say two faces are adjacent if they have an edge in common. We
say two planar embeddings are equivalent if for each vertex v, the cyclic order of the edges
incident to v is equal in both embeddings and both embeddings have the same outer-face.
A plane graph on the other hand is a planar graph with a fixed planar embedding. With
every plane graph G we consider another plane graph G∗, the strong dual of G, in the
following way: The set of faces of G will form the vertex set of G∗, and if two faces f1 and
f2 are adjacent, then add (f1, f2) to the edge set of G∗. By removing the dual vertex of the
outer-face and its incident edges, we obtain the weak dual of G. We say G is a maximal
planar graph if adding any edge to G would make it not planar, or not simple. Observe
that every face of a maximal plane graph is a triangle, i.e., a cycle of three vertices, hence
they are commonly called triangulated planar graphs.

An outer-planar graph is a graph that can be drawn planar such that all of its vertices
are on the outer-face. An outer-plane graph is an outer-planar graph with a given outer-
planar embedding. A graph is a maximal outer-planar if adding any edge to it would
make it non-outer-planar. Weak duals of outer-plane graphs are of special importance in
this thesis as they are commonly used in producing small area graph drawings. Observe
that the weak dual graph of any maximal outer-plane graph is a rooted binary tree, after
appropriately selecting the root face. We commonly refer to it as the dual tree instead of
the “weak dual tree”. We use Gst to denote a maximal outer-plane graph with a given
reference edge (s, t) on its outer-face with s before t in clockwise order. We commonly
refer to the vertices s and t as the poles of G. For the given edge (s, t), we use Tst to
denote the dual binary tree of Gst rooted at the face containing edge (s, t). We say Gst

is a complete outer-planar graph if Tst is a complete binary tree, see Figure 2.1. Without
the specified reference edge, we say that maximal outer-plane graph G is complete if there
exists an edge (s, t) on its outer-face such that Gst is complete.

7



Figure 2.1: An example of a complete outer-planar graph and its weak dual complete
binary tree.

We now proceed to 1-planar graphs, graphs that can be drawn in the plane so that
every edge is crossed at most once. Similar to planar graphs, we distinguish between
1-planar and 1-plane graphs. To define the equivalence of two 1-planar embeddings, we
first need to planarize a 1-plane graph. We do this by inserting a dummy vertex for each
crossing in the given 1-planar embedding Γ, to obtain a plane graph ΓP , which we call the
planarization of Γ. Now, we say two 1-planar embeddings Γ1 and Γ2 are equivalent, if ΓP1
and ΓP2 are equivalent as planar embeddings. Note that exactly the same pairs of edges
cross in two equivalent drawings. Equivalence of two embeddings will be important for
defining embedding-preserving graph drawings below.

2.2 Outer-1-Planar Graphs

The combination of outer-planar and 1-planar graphs gives rise to outer-1-planar (o1p)
graphs; graphs which can be embedded in the plane so that all the vertices are placed on
the outer face and each edge is crossed at most once. See Figure 2.2 (left) for an example.
We say that an outer-1-planar graph G is maximal if adding any edge would make G
not outer-1-planar or not simple. We commonly state graph drawing results for maximal
outer-1-plane graphs only since any non-maximal o1p graph can be easily augmented to a
maximal one by a simple procedure described by Dekhordi and Eades in [14]. Then, by
simply removing the augmented edges from a maximal o1p graph, we obtain a drawing of
the original graph.

We now state an observation proven in [14]:

Observation 1 (Dekhordi and Eades [14]) Suppose that G is a maximal outer-1-plane
graph and edges (a, c) and (b, d) cross. Then {a, b, c, d} induces a complete subgraph of G.
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Figure 2.2: An example of a maximal outer-1-plane graph G, its skel(G) and a half-skel(G).

Further, edges (a, b), (b, c), (c, d) and (d, a) have no crossing.

LetG be a maximal o1p graph. By removing all pairs of crossing edges fromG we obtain
another outer-1-plane graph that we denote by skel(G), the skeleton of G, see Figure 2.2.
Skeletons have a very simple structure that will be convenient to us throughout the thesis.
Using the above observation, Dekhordi and Eades prove the following:

Lemma 1 (Dekhordi and Eades [14]) If G is a maximal outer-1-plane graph, then skel(G)
is an outer-plane graph in which every inner face is either a 3-cycle or a 4-cycle.

We refer to the faces of skel(G) as quadrangles and triangles. We call the edges of
G \ skel(G) the missing diagonals of skel(G). Now, by inserting back one (of the two)
missing diagonals in each quadrangle of skel(G), we obtain a maximal outer-plane graph;
we call this a half-skeleton of G, and denote it by half-skel(G). Note that skel(G) has
multiple half-skeletons, depending on which missing diagonals we insert. See also Figure 2.2
for an example.

Similar to outer-plane graphs, we useGst to denote an o1p graph with specified reference
edge (s, t) on the outer-face of skel(G), and Tst to denote the dual ternary tree of skel(G)
rooted at the interior face of skel(G) containing the edge (s, t).

Further, we define depth(Gst) to be the number of vertices on the longest root-to-leaf
path of Tst. If Gst = (s, t), then we set depth(Gst) to be zero. If the reference edge (s, t)
is not specified, then depth(G) = min{depth(Gst)|(s, t) is an edge on the outer-face of G}.
For a single vertex graph G, we also set depth(G) to be zero.

Finally, we say that Gst is complete if the dual ternary tree of skel(G) rooted at the face
containing edge (s, t) is a complete ternary tree. Analogous to complete outer-plane graphs,

9



Figure 2.3: From left to right: straight-line drawing, poly-line drawing, orthogonal point-
drawing and an flat orthogonal box-drawing of the same graph.

we say that an o1p graph G is complete if there exists an edge (a, b) on the outer-face of
skel(G) so that Gab is complete.

2.3 Graph Drawing

Recall that a graph drawing is an assignment of a geometric shape such as a point to each
vertex. Unless specified otherwise, vertices are drawn as points. All graph drawings in
this thesis are grid drawings, i.e., all vertices must be placed on grid points. The area of
a drawing Γ is the number of grid points occupied by the smallest axis-aligned rectangle
containing Γ. The height of Γ is the total number of horizontal lines, or rows, with integer
y-coordinates that are occupied by Γ. Similarly, the width of Γ is the total number of
vertical lines, or columns, with integer x-coordinates that are occupied by Γ. We use
height(Γ) and width(Γ) to denote the height and the width of Γ. The aspect ratio of the
drawing is defined as the ratio of the width to the height of the drawing (or height to width,
depending on which side is larger). We say that a drawing Γ is embedding-preserving for
a graph G along with a given embedding if the embedding implied by Γ is equivalent to
the given embedding of G. In particular, for 1-planar graphs we must preserve the order
of edges around each vertex and the set of crossings. Given a grid drawing Γ, we use x(v)
and y(v) to denote the x and y coordinates of the vertex v. Of special importance in this
thesis are the following types of drawings:

• A straight-line drawing is a grid drawing in which every edge is drawn as a straight-
line segment.

• A poly-line drawing is a grid drawing where each edge is represented by a sequence
of straight-line segments and each endpoint of a line segment (bend) must also be
placed on a grid point.
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• An orthogonal point-drawing is a poly-line drawing where each edge is a se-
quence of horizontal or vertical line segments. Observe that for a graph to admit an
orthogonal point-drawing, its maximum degree must be at most four.

• A flat orthogonal box-drawing is a grid drawing where vertices are drawn as
horizontal straight-line segments (or elengated boxes) with both of it endpoints placed
on the grid, and each edge is a sequence of horizontal or vertical line segments. Each
endpoint of a line segment (bend) must also be placed on a grid point. This is the
only type of drawing in this thesis where vertices are not represented as points. In
this thesis, we require each vertex (box) to occupy one row only, we enlarge the boxes
in figures for readability purposes only.

See Figure 2.3 for an example of each type of drawing.
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Chapter 3

Straight-line Drawings of
Outer-1-Plane Graphs

In this chapter we show that every outer-1-plane graph admits a straight-line drawing in
an O(n)×O(depth(G))-grid. We further show that complete outer-1-plane graphs can be
drawn straight-line in an O(n1.63)×O(n1.63)-grid.

3.1 Review of Existing Results

We first review planar straight-line drawing results for the subclass of outer-planar graphs.
The first attempt to obtain sub-quadratic area straight line drawings of outer-planar graphs
was by Garg and Rusu in 2007 [24]; they proved the following:

Theorem 4 (Garg and Rusu [24]) Every outer-planar graph G with maximum degree d
admits an outer-planar straight-line drawing in O(dn1.48) area.

Their result was further improved by Di Battista and Frati:

Theorem 5 (Di Battista and Frati [15]) Every outer-planar graph G admits an outer-
planar straight-line drawing in O(n1.48) area.

The algorithm works by first augmenting G to a maximal outer-plane graph, obtaining
a so-called “star-shaped” drawing of its dual binary tree, and then recovering the original
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outer-plane graph from the dual tree drawing. In Section 3.4, we will review this result
in detail as the ideas presented in their paper will be needed in this thesis. They further
showed that any complete outer-planar graph can be drawn straight-line in linear area:

Theorem 6 (Di Battista and Frati [15]) Every complete outer-planar graph G admits an
outer-planar straight-line drawing in O(n) area.

Afterwards, Frati presented a novel O(dn log n) area algorithm:

Theorem 7 (Frati [22]) Every outer-planar graph G with maximum degree d admits an
outer-planar straight-line drawing in O(dn log n) area.

The most recent result by Frati, Patrignani and Roselli states the following:

Theorem 8 (Frati, Patrignani and Roselli [23]) Every outer-planar graph G admits an
outer-planar straight-line drawing in O(n · 2

√
2 logn
√

log n) area.

They remark that the area of the drawing is o(n1+ε) for any fixed ε > 0. Still, the
problem of closing the trivial linear lower bound and the o(n1+ε) upper bound remains
open.

We now move to the super-class of outer-1-planar graphs. First, since o1p graphs are
planar [3], it follows that they do in fact admit planar straight-line drawings in O(n2) area.
These drawings, however, do not preserve the crossings and may violate outer-planarity.
Auer et al. [3] achieved the same area bound while drawing all the vertices on the outer-face:

Theorem 9 (Auer et al. [3]) Every outer-1-plane graph G admits a straight-line outer-1-
plane drawing in O(n2) area such that all vertices are on the outer-face.

Although the question of finding sub-quadratic area straight-line drawings of outer-1-
plane graphs is still open, researchers have studied straight-line o1p drawings using different
aesthetic criteria. For instance, Eades and Dekhordi [14] showed that any o1p graph admits
a straight-line drawing so that every crossing is at a right-angle. Also, Di Giacomo, Liotta
and Montecchiani [25] showed that any o1p graph can be drawn with few slopes. Namely,
any o1p graph of maximum degree d admits a straight-line o1p drawing using at most O(d)
different slopes.
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Figure 3.1: An illustration of the proof of the Theorem 10.

3.2 Extension to Outer-1-Plane Graphs

Given the many straight-line drawing algorithms for outer-planar graphs, it is natural to
ask whether one could draw any o1p graph by a simple reduction from an already existing
outer-planar drawing. Let G be a maximal o1p graph and recall that skel(G), i.e., the
graph obtained by removing all the crossings of G, consists of triangular and quadrangular
faces only. Observe that if we could draw an outer-plane graph skel(G) with all quadrangles
strictly convex, we could easily recover a drawing of G by inserting the missing diagonals
in each quadrangle as straight-line segments. Unfortunately, none of the already existing
results for outer-planar graphs have this property. However, we can easily obtain poly-
line drawings with at most one bend per edge of an o1p graph, given an algorithm that
draws outer-planar graphs straight-line, by just doubling both the height and width of the
drawing:

Theorem 10 Let G be a maximal n-vertex o1p graph and let H be a half-skeleton of G.
If H admits an embedding-preserving planar straight-line drawing in f(n) area, then G
admits an outer-1-plane, poly-line drawing with at most one bend per edge in 4f(n) area.

Proof. Recall that H is a maximal outer-plane graph and let Γ be the straight-line drawing
of H in f(n) area. First, double both the height and the width of the drawing. We now
add every missing diagonal with at most one bend. Let (a, c) be an arbitrary missing
diagonal of H, and let f be the quadrangle of skel(G) containing the (missing) edge (a, c).
Without loss of generality, assume the vertices of f are abcd in clockwise order and note
that the diagonal (b, d) is already drawn as a straight-line segment (as it belongs to the
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half-skeleton H). Let p be the half-way point of line-segment (b, d). Since the coordinates
of b and d are integers, and since we doubled both the height and the width of Γ, it follows
that x(p) and y(p) are integers as well. Therefore, simply insert (a, c) as a sequence of two
line segments (a, p) and (p, c). �

Combining this with Theorem 8 gives:

Corollary 1 Every n-vertex outer-1-plane graph has an outer-1-plane poly-line drawing
with at most one bend per edge in O(n · 2

√
2 logn
√

log n) area.

Thus we achieve sub-quadratic area drawings if bends are allowed. There does not
seem to be an obvious way to tweak straight-line drawings of outer-planar graphs to make
each quadrangle strictly convex. Despite repeated attempts, we have not managed to find
sub-quadratic area drawings of o1p graphs. In the rest of this chapter we therefore give
algorithms which work very well for interesting sub-classes of o1p graphs.

3.3 Drawing o1p Graphs in O(n · depth(G)) Area

In this section we give a simple algorithm that produces small area drawings of o1p graphs
with small depth. It is important to note that the drawings presented in this section
are identical to those given by Auer et al. [3]. The drawing algorithm of Auer et al. is a
reduction from a more general approach, due to Alam et al. [1], that draws any 3-connected
1-planar graph in O(n2) area, which in turn is a modification of the algorithm by Chrobak
and Kant [8]. We present a simple, self-contained drawing algorithm so that the area of
the drawing is O(n · depth(G)) (although in the worst case, the area is quadratic). To
achieve this, we use trapezoidal drawings that were first introduced by Garg and Rusu [24]
for purpose of drawing outer-planar graphs straight-line in O(d ·n1.48) area. Drawing outer-
1-plane graphs of small depth will motivate the next section where we improve the aspect
ratio for the subclass of complete o1p graphs.

Let Gst be a maximal outer-1-plane graph along with some (s, t) edge on its outer-face,
with s before t in counter-clockwise order. Recall that depth(Gst) is the number of vertices
on the longest root-to-leaf path of Tst, i.e, the dual ternary tree rooted at the interior face
containing the edge (s, t).

Now, let v1, v2, . . . , vn be the vertices of Gst sorted in clockwise order around the outer-
face, where s = v1 and t = vn. For any edge (vi, vj), we use Gvivj to denote the subgraph
induced by vertices vi, . . . , vj. When fst = suvt is a quadrangle, the only relevant subgraphs
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Figure 3.2: Final drawing of an outer-1-plane graph with 40 vertices and depth 5. Observe
that the drawing occupies 6 rows and 40 columns.

in this section will be Gsu, Guv and Gvt; similarly if fst is a triangle, there will be two such
subgraphs only.

The drawing algorithm is quite straightforward: given a face fst := suvt, we draw f in
a strictly convex way while making sure that (s, u), (u, v) and (v, t) edges are drawn “wide
enough” to leave space for the recursive drawings of three child graphs Gsu, Guv, Gvt. To
achieve small height, we make sure to add exactly one extra row to the parent drawing given
the subgraph drawings. Formally, we use the trapezoidal drawings that were introduced by
Garg and Rusu [24] for outer-planar graph drawings:

Definition 1 We say Γst is a trapezoidal drawing of an outer-1-plane graph Gst if:

1. Γst is an embedding-preserving, outer-1-plane, straight-line grid drawing.

2. For any w ∈ Gst such that w 6= s, t, we have x(s) < x(w) < x(t) and y(w) >
max{y(s), y(t)}.

See Figure 3.2 for an example of a trapezoidal drawing and the output of the drawing
algorithm to be presented in Theorem 11. We finally state the graph drawing algorithm:

Theorem 11 Let Gst be a maximal outer-1-plane graph along with edge (s, t) on its outer-
face. If edge (s, t) is already drawn such that x(t) − x(s) = |Gst| − 1, then there exists a
drawing Γst of Gst such that:

1. Γst is trapezoidal.

2. height(Γst) = depth(Gst) + |y(t)− y(s)|+ 1 and width(Γst) = |Gst|.
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Figure 3.3: Placement of face f and recursive step in the proof of Theorem 11.

Proof. Without loss of generality suppose that y(s) ≤ y(t). We prove the theorem by
induction on depth(Gst).

Base Case. If depth(Gst) = 0, then Gst = (s, t), in which case the result follows immedi-
ately.

Recursive Step. If depth(Gst) ≥ 1, then inductively suppose that the result holds for
any o1p graph with depth less than depth(Gst). Let f be the interior face of skel(Gst)
containing the edge (s, t).

Case 1. f is a quadrangle.

Then f := suvt for some u, v ∈ V (Gst) such that u comes before v in clockwise order.
We first complete the drawing of f in the following way:

• Place u at (x(s) + |Gsu| − 1, y(t) + 1).

• Place v at (x(u) + |Guv| − 1, y(t) + 1).

• Connect s to u, u to v and v to t by a straight-line segment.

Observe that f is strictly convex, so the crossing edges (s, v) and (u, t) can also be drawn
as straight-line segments. Now, since edges (s, u), (u, v) and (v, t) are already drawn, we will
use them as reference edges for the recursive drawings of Gsu, Guv and Gvt, respectively.
First, observe that by the placement of vertices v and u, the condition of the theorem
statement is satisfied for the inductive hypothesis of Gsu and Guv. We show that the same
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is true for Gvt, namely x(t)− x(v) = |Gvt| − 1. This holds because

x(t)− x(v) = (x(t)− x(s)− (x(v)− x(s))

= (|Gst| − 1)− (x(v)− x(s))

= ((|Gsu|+ |Guv|+ |Gvt| − 2)− 1)− ((x(s) + |Gsu| − 1 + |Guv| − 1)− x(s))

= |Gvt| − 1

Here the second equality holds because we know x(t) − x(s) = |Gst| − 1. The third
equality holds because |Gst| = |Gsu| + |Guv| + |Gvt| − 2 (u, v are counted twice), and by
substituting x(v) by its value, as defined above.

Finally, since depth(Gsu), depth(Guv), depth(Gvt) < depth(Gst), recursively construct
their respective drawings Γsu,Γuv and Γvt, satisfying properties (1) and (2) of Theorem 11,
to obtain the final drawing Γst. See Figure 3.3 (left) for the demonstration of the recursive
step. Since the drawings of all three subgraphs are trapezoidal, Γsu,Γuv and Γvt cannot have
intersections except at the common vertices u and v, hence Γst must be an embedding-
preserving, outer-1-plane, straight-line drawing. Observe that the resulting drawing is
trapezoidal. Since x(t) − x(s) = |Gst| − 1, by the definition of trapezoidal it immediately
follows that the width of Γst is |Gst|. For the height, we consider all three recursive drawings
as follows:

height(Γst) = max{height(Γsu), y(t)− y(s) + 1 + height(Γuv), y(t)− y(s) + height(Γvt)}
= max{depth(Gsu) + y(u)− y(s) + 1,

y(t)− y(s) + 1 + (depth(Guv) + y(v)− y(u) + 1),

y(t)− y(s) + (depth(Gvt) + y(v)− y(t) + 1)}
= max{depth(Gsu) + (y(t) + 1)− y(s) + 1,

depth(Guv) + y(t)− y(s) + 2,

depth(Gvt) + (y(t) + 1)− y(s) + 1}
= depth(Gst) + y(t)− y(s) + 1

Here the second equality follows by the inductive hypothesis, the third equality follows
since y(u) = y(v) = y(t) + 1, and the last one follows since

depth(Gst) = max{depth(Gsu), depth(Guv), depth(Gvt)}+ 1.

Case 2. f is a triangle.
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Then f = sut for some u ∈ V (Gst). The placement of vertex u is the same as in Case 1,
see Figure 3.3 (right) for an illustration. By a similar computation as in Case 1, it can be
verified that x(t)− x(u) = |Gut− 1|. Further, after ignoring the height of Γuv and treating
Γvt as Γut, the calculation of the height of Γst is identical to the one presented in Case 1.
�

Note that the proof of Theorem 11 is algorithmic and constructs the final graph drawing.
The following corollary is immediate:

Corollary 2 Let G be a maximal outer-1-plane graph. Then G admits an outer-1-plane
straight-line drawing Γ of G with area (depth(G) + 1) · |G|.

Proof. Let (s, t) be an edge on the outer-face of G′ so that depth(G′st) = depth(G′). Place
s and t at points (0, 0) and (|G′| − 1, 0), respectively. Now, since x(t) − x(s) = |G′| − 1,
by Theorem 11, we know there exists an outer-1-plane, straight-line drawing Γ of G′st with
width |G′| and height depth(G′st) + 1. By the choice of edge (s, t), the area bound follows.
�

We briefly discuss run-time considerations. Note that the edge (s, t) that should be used
to minimize depth(G) can naively be found in quadratic time by calculating the depth of
Tab for every edge (a, b) on the outer-face. It would be interesting to see if this can be
achieved in linear time.

Using a similar technique, Garg and Rusu [24] achieved straight-line drawings of outer-
1-planar graphs in O(d · n1.48) area. A promising research direction would be to check if
their algorithm can be modified to work for outer-1-planar graphs as well.

3.4 Drawing Complete Outer-1-Plane Graphs

The above algorithm gives O(n log n) area drawings for o1p graphs with depth O(log n),
which includes complete o1p graphs. We attempt to improve the area for the subclass
of complete o1p graphs. Unfortunately, we did not match the O(n) area bound which
is achieved for complete outer-planar graphs by Di Battista and Frati [15]. We instead
present an algorithm that achieves drawings in an O(n0.63) × O(n0.63)-grid, which gives
better aspect ratio for complete outer-1-plane graphs than the above presented method
that achieves an O(n) × O(log n)-grid. We begin the section by reviewing the techniques
used by Di Battista and Frati.
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3.4.1 Review of Di Battista/Frati [15]

Recall that the weak dual graph of a maximal outer-plane graph forms a binary tree. The
main drawing technique used by Di Battista and Frati for producing a small area drawing
of a maximal outer-plane graph is to first produce a straight-line drawing of its dual tree
and then “recover” the drawing of the original graph. To achieve that, the authors defined
star-shaped drawings of binary trees, and showed that if the dual tree admits a star-shaped
drawing in f(n) area, then the corresponding outer-plane graph can “usually” be drawn
in O(f(n)) area as well. Using this technique, they proved that any outer-planar graph
admits a planar straight-line embedding-preserving drawing in O(n1.48) area. Further, the
area requirements can be improved to O(n) for the class of complete outer-plane graphs,
i.e., outer-plane graphs whose weak dual is a complete binary tree. This result is the main
motivation for this chapter.

Let Tρ be a binary tree rooted at ρ. The leftmost path and rightmost path of Tρ are
the root-to-leaf paths obtained by repeatedly following the left (right) children, and these
paths are denoted by L(Tρ) and R(Tρ) respectively. More precisely, if P := v1, v2, . . . , vk is
a path such that v1 = ρ, vk is a leaf and for all i ∈ {2, . . . , k}, vi = vi−1.right, i.e., vi is the
right child of vi−1, we say that P is the rightmost path of Tρ. When there is no ambiguity,
we omit the subscript ρ. Also, once the root is fixed, R(v) and L(v) stand for rightmost
and leftmost paths of the sub-tree of T rooted at the vertex v.

Now, for any v ∈ V (T ), the left-right path of v is the path v1, v2, . . . , vk such that
v1 = v, v2 = v1.left and v2, v3, . . . , vk is the rightmost path of the sub-tree rooted at v2. In
other words, it is the path formed by first going to the left child of v and then following
the right children repeatedly until a leaf. Note that when v has no left child, the left-right
path degenerates to a single vertex and when the left-child of v has no right-child, it forms
a single edge. The right-left path of v is symmetrically obtained by first going to the right
child of v and then following the left children until a leaf.

The left-cycle of neighbors of v is the cycle obtained by joining its left-right path
v1, v2, . . . , vk with edge (vk, v1). If k ≤ 2, then the left-cycle of neighbors of v is a sin-
gle edge (or a vertex). In a drawing of the tree T , cycles become polygons (not necessarily
simple), so we use Pl(v) to denote the polygon formed by the left-cycle of v. The right
cycle of neighbors and polygon Pr(v) are analogously defined. See Figure 3.4 (left) for an
example of Pl(v) and Pr(v).

The authors now establish a stronger connection between maximal outer-plane graphs
and their dual binary trees. Let Gst be a maximal outer-plane graph along with some edge
(s, t) on its outer-face and let T be its dual binary tree rooted at the face containing the
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Figure 3.4: Left: An example of a star-shaped drawing of a binary tree rooted at w.
Observe that (SS1) and (SS2) hold for polygons Pl(w) and Pr(u) and that ps and pt
satisfy condition (SS3). Right: Illustration of the bijection γ, observe that if (f1, f2) is an
edge of the dual tree T , then (γ(f1), γ(f2)) is an edge of G.

edge (s, t). Also, by removing all edges incident to poles s and t, we obtain the internal
graph of Gst; we denote it by Ist. It turns out that by adding edges to T , we can reconstruct
graph Ist. Namely, given the dual tree T , the authors define graph T+ in the following
way: for each vertex v ∈ V (T ), connect v to every vertex u on the left-right and right-left
paths of v (unless u is already a neighbor of v). They prove that Ist = T+. The proof
technique for this will be important later, so we explain it here.

The key ingredient in the proof that Ist = T+ is a bijection γ 1 between the nodes
of T and the vertices of Ist. To state the γ function explicitly, for every interior face f
(triangle) of Gst we define the central vertex of f . First, if fst = stx is the face containing
the edge (s, t), then vertex x is called the central vertex of face fst. Now, let f = abc be
any non-root face with abc in clockwise order and w.l.o.g. suppose that (a, b) is the edge
shared with the parent face of f , i.e., the face fp that corresponds to the parent of f in the
rooted tree T . Then vertex c is called the central vertex of f . Finally, for every interior
face f of Gst, set γ(f) to be the central vertex of f . See Figure 3.4 (right) for an example.
It clearly follows that γ is a bijection between the nodes of the dual tree and the vertices
of the internal graph and that for any edge (u, v) of T , we have that (γ(u), γ(v)) is an edge
of Ist.

Observation 2 Let Gst be a maximal outer-plane graph and let f = abc be any non-root
face such that (a, b) is an edge common to f and its parent face fp.

1Note that γ is not a bijection between the internal graph and the dual tree, only the nodes of T and
the vertices of Ist.
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1. Either a or b must be the central vertex of fp.

2. If a, b, c are ordered in clockwise order, then c is the central vertex of f . Further,
let fl and fr be the triangles (if they exist), sharing an edge (a, c) and (b, c) with f ,
respectively. The central vertex of fl is the left child of c, and the central vertex of fr
is the right child of c in the dual tree.

This observation is evident from Figure 3.4 (right), so we omit the proof. Using the
correspondence given by the γ function, the authors give an inductive proof of the following
lemma:

Lemma 2 T+ = Ist.

We are hence interested in drawings of T+ that permit the insertion of the edges of
Ist \ T+. This motivates star-shaped drawings of binary trees:

Definition 2 Let T be a rooted binary tree and let Γ be a planar straight-line embedding-
preserving drawing of T . We say that Γ is a star-shaped drawing if the following conditions
hold:

SS1 For each vertex v ∈ T , Pl(v) = (v1, . . . , vk) and Pr(v) = (v1, . . . , vp) are simple
polygons. Further, for each i ∈ {3, . . . , k − 1} and j ∈ {3, . . . , p − 1}, line segments
(v, vi) and (v, vj) belong to the interior of Pl(v) and Pr(v) respectively, except for
their endpoints.

SS2 For each vertex v ∈ T , the polygons Pl(v) and Pr(v) do not contain any vertices
of T in its interior or on its boundary, except for the vertices of Pl(v) and Pr(v),
respectively.

SS3 There exist points ps, pt, so that we can draw a straight-line segment (ps, pt) and
connect ps and pt to all vertices of L(T ) and R(T ) respectively without creating any
crossings with Γ. Also, the polygon formed by ps and L(T ) satisfies the conditions
imposed on Pr(v) in (SS1) and (SS2) with respect to ps, and the polygon formed by pt
and R(T ) satisfies the conditions imposed on Pl(v) in (SS1) and (SS2) with respect
to pt.
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Observe that the tree in Figure 3.4 (left) is drawn star-shaped, if rooted at w. Condition
(SS1) means that polygons Pl(v) and Pr(v) have a point that can see all other points
(namely, at v); such polygons are called star-shaped in the literature, and hence the name
of the drawings.

Now, given a star-shaped drawing ΓT of T , we can obtain a drawing of graph T+ (= Ist)
by simply adding the edges E(T+) \E(T ). The resulting drawing must be planar because
of conditions (SS1) and (SS2) of star-shaped drawings. Observe that the final area of T+ is
equal to the area of ΓT , as we inserted extra edges only. Finally, condition (SS3) allows us
to add back vertices s and t and their incident edges without creating any crossings with
ΓT . Therefore, we obtain the following result:

Theorem 12 (Di Battista and Frati [15]) Let Gst be an n-vertex maximal outer-plane
graph and suppose that its rooted dual tree T admits a star-shaped drawing with f(n) area.
Then G admits an outer-planar straight-line drawing such that the area of the drawing of
its internal subgraph is f(n).

Notice that the result itself does not guarantee that G can be drawn in f(n) area; only
its internal subgraph. This is because the points ps and pt could significantly increase the
bounding box of the drawing as we only assumed their existence in (SS3). If the specific
algorithm used to produce a star-shaped drawing of T draws paths L(T ) and R(T ) paths
in such a way as to guarantee the existence of ps and pt so that the area of Γ ∪ {ps, pt} is
O(f(n)), then the drawing of G would have O(f(n)) area as well.

Finally, we state the theorem which is the main motivation for this chapter:

Theorem 13 (Di Battista and Frati [15]) Every n-vertex complete outer-plane graph G
admits an outer-planar straight-line grid drawing Γ such that both the height and the width
of Γ are O(

√
n).

As discussed above, to prove the theorem it suffices to give a star-shaped drawing of
the complete binary tree that has width and height O(

√
n) even when including the points

ps and pt used for the poles. The technique used to produce such a star-shaped drawing Γh
of a complete binary tree of height h is to recursively draw all four “grand-child” subtrees
of height h − 2 and obtain drawings Γh−2. By flipping two such drawings “inside”, they
obtain a square-like drawing Γh of G in linear area. The output of their algorithm for a
binary tree of height three is shown in Figure 3.5.
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Figure 3.5: Output of Di Battista/Fratti subroutine for drawing a star-shaped binary tree
of height three.

3.4.2 Generalization to Complete Outer-1-Plane Graphs

To achieve small area drawings of complete o1p graphs, we extend the technique used by
Di Battista and Frati. Let Gst be a complete o1p graph and recall that by definition,
the dual of skel(Gst) is a complete ternary tree T . Recall that in complete ternary trees
every node except for the leaves has three children, so every face of skel(Gst) must be a
quadrangle except possibly for faces dual to leaves of T . For simplicity, to avoid handling
the leaf triangle faces, we restrict ourselves to quadrangular o1p graphs only, i.e., o1p
graphs whose skeleton consists of quadrangles only. This assumption does not violate the
asymptotic bounds on the area of the drawings as we can always add one new vertex for
every leaf face that is a triangle to form a quadrangular graph that contains the original
graph (the new graph has O(n) vertices). Also, analogous to outer-plane graphs, we use
Ist to denote the internal graph of Gst, the graph obtained by removing vertices s and t
and their incident edges.

We expand on the approach from [15] in the following way:

Step 1: Define zig-zag star-shaped drawings of binary trees.

Step 2: Appropriately add an edge to each quadrangle of skel(G) to produce a specific
half-skeleton M(G), a maximal outer-planar graph.

Step 3: Show that if the dual tree T of M(G) admits a zig-zag star-shaped drawing
in f(n) area, then the internal graph Ist of G admits an outer-1-plane straight-line
drawing in f(n) area.

Step 4: Give an algorithm that produces small area zig-zag star-shaped drawings of binary
trees.
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Step 5: Finally, draw the outer-1-plane graph.

The algorithm will produce a straight-line drawing in an O(2h) × O(2h)-grid of any
quadrangular graph G, where h is the height of the dual ternary tree of skel(G). As an
immediate corollary we will obtain drawings of width and height O(2blog3(2n)c) = O(n0.63)
for the subclass of complete quadrangular o1p graphs, since complete ternary trees have
height blog3(2n)c.

Step 1: Zigzag Star-shaped Drawings

We first extend the definition of star-shaped drawings of binary trees by adding several
convexity conditions:

Definition 3 Let T be a binary tree. We say that a planar straight-line embedding-
preserving drawing Γ of T is weakly zigzag star-shaped if the following conditions hold:

ZZS1 Γ satisfies conditions (SS1) and (SS2) of star-shaped drawings ((SS3) is omitted).

ZZS2 For every vertex v ∈ V (T ) with 〈v = w1, w2, . . . , wk〉 and 〈v = u1, u2, . . . , ut〉 as its
left-right and right-left paths, the following conditions hold:

1. For all even i, 2 ≤ i ≤ k − 2, vwiwi+1wi+2 is a strictly convex polygon.

2. For all even i, 2 ≤ i ≤ t− 2, vuiui+1ui+2 is a strictly convex polygon.

Observe that weakly zigzag star-shaped drawings are not required to satisfy condition
(SS3). They will only be useful during recursion. We now strengthen the original pole
recovery condition (SS3) in the following way:

Definition 4 Let T be a binary tree. We say that a planar straight-line embedding-
preserving drawing Γ of T is zigzag star-shaped if it is weakly zigzag star-shaped and
if the following condition holds:

ZZS3 Let L(Γ) = v1, v2, . . . , vk and R(Γ) = u1, u2, . . . , ut be the leftmost and rightmost
paths of Γ. Then there exist points ps and pt that satisfy (SS3) condition of star-
shaped, and

1. psptu2u1 is a strictly convex polygon.

2. For all odd i, 1 ≤ i ≤ k − 2, psvivi+1vi+2 is a strictly convex polygon.

3. For all even i, 2 ≤ i ≤ t− 2, ptuiui+1ui+2 is a strictly convex polygon.

See Figure 3.6 for an example of a zigzag star-shaped binary tree drawing.
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Figure 3.6: An example of a zigzag star-shaped drawing of a binary tree rooted at node
w1 (dark edges). Observe that the left-right path v1, . . . , v6 of v1 satisfies condition (ZZS2)
and that the rightmost path w1, . . . , w6 satisfies condition (ZZS3).

Step 2: The half-skeleton M(G)

Our general approach is to first select a half-skeleton of an outer-1-plane graph Gst (with
reference edge (s, t)), and obtain a zigzag star-shaped drawing ΓT of its dual binary tree.
To ensure that zigzag star-shaped drawings are sufficient for the “recovery” of the drawing
of Gst, we select a specific half-skeleton that we denote by M(G) (to be described below).
Since we want every quadrangle of skel(G) to be drawn strictly convex, condition (ZZS2)
and Figure 3.6 hint that all four vertices of a single face should be “on the same” left-
right/right-left path. Recall the bijection γ that maps every face f (node of the dual)
of Gst to the central vertex of the face f (vertex of Gst). We therefore construct M(G)
recursively starting from the face containing the edge (s, t) in the following way:

Algorithm for M(G), given a quadrangular o1p graph Gst

Initialize M(G) to be the skeleton of G. Then, for all faces f of skel(G) in top down order:

1. If f is the face containing edge (s, t), then add to M(G) the diagonal incident to t
in the quadrangle f , say (t, ρ). Note that {s, t, ρ} becomes the new face of M(G)
incident to (s, t), so its central vertex is ρ and so ρ becomes the root of the dual
binary tree of M(G).
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2. Otherwise, the parent face of f , say fp, will already have been made into a triangle.
Let (v, w) be the edge common to f and fp. By Observation 2 one of v, w will be
the central vertex of fp, say this is w. Add to M(G) the diagonal that is incident to
v (not incident to the central vertex of fp) to face f . The other end of this diagonal
(say y) becomes the central vertex of the newly created face f1 of M(G), and y
becomes a child of w in the dual tree TM of M(G). It is the left (right) child, if f1
consists of {v, w, y} in clockwise (counter-clockwise) order. The fourth vertex of f ,
say x, becomes the central vertex of the other created face f2, it is a child of y and
a left/right child if an only if y is the left/child.

3. Recurse on the children of f .

See Figure 3.7 for an example of M(G) and its dual binary tree T with every node
mapped to the central vertex of its dual face, illustrating the γ bijection. Consider the face
f = {v, w, y, x} from Figure 3.7 and observe that the central vertex of its parent face is w.
Hence, the edge (v, y) is inserted, i.e., the diagonal not incident to w.

Properties of M(G)

Recall that Ist stands for the internal graph of outer-1-plane graph Gst, so we use IM to
denote the internal graph of M(G). Also recall that γ is a bijection that maps the nodes
of the dual tree of M(G) (a maximal outer-plane graph) to the vertices of IM . Such that
if (u, v) is an edge of the dual binary tree of M(G), then (γ(u), γ(v)) is an edge of the
internal graph IM . So, we use TM to denote the dropdown dual tree formed by vertices
γ(u) and edges (γ(u), γ(v)). This way we simultaneously treat any vertex v as a vertex of
the internal graph and as a node of the dual tree of M(G). The following two lemmas list
the properties of M(G) that we need:

Lemma 3 Let Gst be a quadrangular o1p graph and let TM be the dropdown dual tree
of M(G). For every interior face f of skel(Ist), there exists a vertex v ∈ V (TM) so
that the left-right or right-left path of v, say v1, v2, . . . , vk, contains all vertices of f , and
f = {vvivi+1vi+2} for some even i ∈ {1, . . . , k}.

Proof. We prove a slightly stronger claim. In addition to the lemma statement, we show
that the number of vertices on any left-right/right-left path in TM is even (except for the
single vertex paths).

We proceed by induction on the number of faces F of skel(Gst).
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Figure 3.7: An example of M(G) on a complete o1p graph Gst. The dual tree of M(G)
rooted at ρ is shown with thick red lines.
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Base Case. If F = 1, then skel(Gst) = {s, t, x, ρ} for some vertices x and ρ since Gst

is quadrangular. Hence Ist has no interior faces so the result for faces holds vacuously.
We inserted edge (t, ρ), which makes ρ the root of TM and x its right child. So, the only
non-trivial right-left path is ρx, and has size 2.

Inductive Step. Let Gst be a quadrangular o1p graph with F > 1 faces and suppose
inductively that the (stronger) claim holds for the skeleton of any quadrangular o1p graph
with fewer than F faces. See Figure 3.8 for a demonstration of the proof below.

Let f be a face of skel(Ist) with vertices enumerated in clockwise order. If f is not a
leaf face, then let G′ be the the subgraph of skel(Gst) obtained by removing one leaf face
of skel(Gst). Since f is not a leaf, it is also a face of G′. Since G′ has F −1 faces, induction
applies, and so the claim holds for f . We now assume f is a leaf face. Without loss of
generality suppose that edge (a, b) of f is shared with the face fp that is the parent face of
f . By Observation 2, we know that the central vertex of fp is one of {a, b}.

Case 1. The central vertex of fp is b. See Figure 3.8.

By construction of M(G), the diagonal not incident to b was inserted in f , i.e., edge
(a, c). So, let f1 = abc and f2 = acd be the two new triangle faces. Since a, b, c are ordered
clockwise and since (a, b) is shared with fp, we know by Observation 2 (2) that the left
child γ(fp).left of γ(fp) is γ(f1) and likewise γ(f1).left = γ(f2). So, γ(fp), γ(f1), γ(f2) are
on the same right-left path. This is not the leftmost path as we assumed that f is a face
of skel(Ist), while the faces incident to the leftmost/rightmost path contain s or t.

Let P := u1, u2, . . . , ut be the right-left path containing γ(fp), γ(f2), γ(f1) and note that
γ(f2) = ut, γ(f1) = ut−1 and γ(fp) = ut−2, since f is a leaf. Note that by Lemma 2 (Di
Battista and Frati), we know that IM = T+. Recall that T+ is constructed by connecting
every vertex v to all the vertices on its left-right and right-left paths. So, if (x, y) is an
edge on the right-left path of v and x.left = y, then {v, x, y} is a face of M(G).

Now, since (γ(fp), γ(f1)) is on the right-left path of u1 and since γ(fp).left = γ(f1), we
know that {u1, γ(fp), γ(f1)} is a face, hence a = u1. So, since γ(fp), γ(f1), γ(f2) are on the
right-left path of u1 we have that f = {u1, γ(fp), γ(f1), γ(f2)} = {u1, ut−2, ut−1, ut}. By
the strengthened inductive hypothesis we know that Psub := u1, u2, . . . , ut−2 is of even size,
say i := t− 2, hence f = {u1, ui, ui+1, ui+2}.

Lastly, we show that the stronger claim holds. Single vertex paths are excluded from
the stronger claim and the statement holds for left-right and right-left paths of size two.
Now, recall that we did induction on the number of faces and observe that P is the only
new left-right or right-left path of size two or greater created by adding face f . Since two
vertices are added to Psub, path P must be of even length.
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Figure 3.8: Proof of Lemma 3, face f is the dashed region.

Case 2. The central vertex of fp is a.

This case is symmetric to Case 1. This time, edge (b, d) is the inserted diagonal in
M(G) and path P will be a left-right path, as opposed to the right-left path in Case 1. �

It remains to state a lemma for the faces incident to the poles s and t, faces not
belonging to the internal graph:

Lemma 4 Let Gst be a quadrangular o1p graph and let TM be the dropdown dual tree of
M(G). Further, let L(TM) := v1, v2, . . . , vk and R(TM) = u1, u2, . . . , ut be the leftmost and
rightmost paths of TM , respectively. Then for every face f of skel(G) containing s or t
vertices, we have that either

1. f = {s, t, u2, u1}, or

2. f = {s, vi, vi+1, vi+2} for some odd i ∈ {1, . . . , k}, or

3. f = {t, ui, ui+1, ui+2} for some even i ∈ {2, . . . , t}.

Proof. Observe that {s, t, u2, u1} is a face ({s, t, w, ρ} in Figure 3.7), which is why the
indexing is shifted for the faces incident to s. The essence of the argument is similar to
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Lemma 3, except we use leftmost path and rightmost path as opposed to left-right/right-
left paths. The formal proof is by induction and similar to the previous lemma, hence
omitted here. �

Step 3: Recovering a Drawing of Gst

We now state a result analogous to Theorem 12:

Theorem 14 Let Gst be a quadrangular o1p graph and let TM be the dual binary tree
of M(G). If TM admits a zigzag star-shaped drawing in f(n) area, then G admits an
outer-1-planar straight-line drawing such that the internal graph Ist is drawn in f(n) area.

Proof. Let ΓTM be a zigzag star-shaped drawing of TM . Also, let Γ be the drawing
obtained by adding to ΓTM the two points ps and pt that we know exist from condition
(ZZS3). Place s at ps and t at pt. The two points also satisfy (SS3), so by Theorem 12
Γ is an embedding-preserving planar straight-line drawing of M(G), and Ist is drawn in
f(n) area. It remains to show that all faces of skel(G) are drawn strictly convex, so let f
be an arbitrary face of skel(G). If f belongs to skel(Ist), then it must be strictly convex
by Lemma 3 and condition (ZZS2). In the other case, when f is incident to s or t, by
Lemma 4 and condition (ZZS3), f must also be strictly convex. �

Similar to the result by Di Battista and Frati (Theorem 12), the drawing of the binary
tree is sufficient for recovering the internal graph in the same area. To achieve O(f(n)) area
for the entire graph G, we need to ensure that the axis aligned rectangle containing both
the binary tree drawing and the poles s and t has O(f(n)) area, hence:

Corollary 3 Let Gst be a quadrangular o1p graph and let TM be the dual binary tree of
M(G). If TM admits a zig-zag star-shaped drawing Γ such that the bounding box containing
Γ∪{ps, pt} has f(n) area (where ps and pt are the points given by (ZZS3)), then G admits
a straight-line outer-1-planar drawing in f(n) area.

Step 4: Drawing Zig-zag Star-shaped Binary Trees

Next, our aim is to show that any binary tree T of height h admits a zig-zag star-shaped
drawing so that both the height and the width of the drawing are O(2h/2). Then, later
in Step 5, we will apply Corollary 3 to recover the original outer-1-plane graph. We begin
by defining different types of drawings used by our algorithm and state some of their
properties.
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Figure 3.9: From left to right: HV, VH and HH drawings and their enclosing triangles.

Drawing Types and Their Properties

Let ΓP be a planar straight-line drawing of a path P = v1, . . . , vn. We say that ΓP is a
diagonal-horizontal left drawing of P if for all i ∈ {1, . . . , n − 1}, if i is odd, edge vivi+1

is drawn downward with slope π/4, otherwise vivi+1 is drawn as a unit-length horizontal
segment. So, the first edge is drawn downward diagonally to the left, and all subsequent
ones alternate between horizontal and diagonal. Analogously, the first edge of a diagonal
vertical left path is drawn downward with slope π/4, the second edge as a vertical line seg-
ment etc., however we do not require vertical line segments to be of unit-length. Diagonal
vertical right and diagonal horizontal right drawings are defined symmetrically. Recall that
L(T ) and R(T ) stand for the leftmost and rightmost paths of T . We distinguish between
three types of binary tree drawings:

1. An HV 2 drawing is one where L(T ) is drawn diagonal-horizontal left and R(T ) is
drawn diagonal-vertical right.

2. A VH drawing is one where L(T ) is drawn diagonal-vertical left and R(T ) is drawn
diagonal-horizontal right.

3. An HH drawing is one where L(T ) is drawn diagonal-horizontal left and R(T ) is
drawn diagonal-horizontal right.

See Figure 3.9 for an example of each type of drawing. We refer to any of the above
drawings as staircase drawings. Let Γρ be a staircase drawing of a binary tree rooted at
ρ. We use Enc(Γ) to denote the smallest right isosceles triangle containing Γρ so that
the right angle point of Enc(Γ) and the root ρ have equal x coordinates. Further, we use

2Not related to a standard “hv-drawing”, a common type of drawing in the binary tree graph drawing
literature. For instance see [10] for hv-drawings of Fibonacci trees.
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t(Enc(Γ)), bl(Enc(Γ)), br(Enc(Γ)) to denote the top point, and left and right points of the
base edge of Enc(Γ), respectively. We usually say “place the enclosing triangle at a certain
position”; by this we mean to move Γ so that Enc(Γ) is in the given position. For example,
when saying “rotate Enc(Γ) by 90◦ and place t(Enc(Γ)) at coordinate (0, 0)”, we assume
that Γ is rotated and translated along with Enc(Γ).

Now, let Γ be a staircase drawing and let vL and vR be the leaves of L(Γ) and R(Γ),
respectively. Let dL be a downward (infinite) diagonal with slope π/4 starting at vertex vL
and let dR be a downward (infinite) diagonal with slope −π/4 starting at vertex vR. We call
the unbounded region below or on the poly-line formed by concatenating dL, L(Γ), R(Γ)
and dR, the trapped region of Γ.

Definition 5 We say that a staircase drawing Γ of a binary tree T is extreme if every
vertex of T is drawn in the trapped region of Γ.

See Figure 3.10 (left) for an example of a non-extreme drawing. Extreme staircase
drawings are much more restrictive that the general staircase drawings and will have several
desirable properties. For example, we now make an observation about the distance between
the root of the tree and the top of the enclosing triangle in extreme staircase drawings,
which will be needed for analysing the area of the drawing.

Lemma 5 Let Γ be an extreme HV drawing or an extreme VH drawing of a binary tree
T and let k be the number of edges on the diagonal-horizontal path. Then |y(t(Enc(Γ)))−
y(ρ)| =

⌊
k
2

⌋
. If both L(T ) and R(T ) are diagonal-horizontal paths with kL and kR edges,

then |y(t(Enc(Γ)))− y(ρ)| = max{bkL/2c, bkR/2c}.

Proof. We only show the claim for an extreme HV drawing Γ, the other arguments are
similar. Since Γ is extreme, all vertices of Γ are in the trapped region of Γ and the leaf of the
leftmost (diagonal-horizontal) path must touch the left side of Enc(Γ), i.e., line segment
(t(Enc(Γ), bl(Enc(Γ)). Therefore |y(t(Enc(Γ)) − y(ρ)| is determined by the total length
of the horizontal line segments in L(Γ). Since horizontal line segments have unit length
by assumption, and half of the edges of L(Γ) are drawn horizontally, the claim holds. See
Figure 3.10 (right) for an example. �

For any straight line drawing Γ, we say that a vertex v sees vertex u, if drawing edge
(u, v) would intersect any edges or vertices of Γ. The primary motivation for defining en-
closing triangles are their visibility properties which will be needed for recursively merging
staircase drawings in our drawing algorithm. Here we state four visibility properties of the
enclosing triangles (two up to symmetry) that all extreme staircase drawings have:
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Figure 3.10: Left: An example of non-extreme HV drawing. Right: Illustration that for
extreme HV drawings |y(t(Enc(Γ))−y(ρ)| is the number of horizontal edges on the leftmost
path.

Lemma 6 (Enclosing Triangle Visibility Lemma) Let T be a binary tree rooted at ρ, let
Γ be an extreme staircase drawing of T and let t = t(Enc(Γ)), bl = bl(Enc(Γ)), and br =
br(Enc(Γ)). Then,

V1: If R(T ) is drawn diagonal-vertical and if p is any point in the south-east (SE) region
of Enc(Γ), i.e., point p is on the right side (strictly) of the line containing points t
and br and y(p) ≤ y(br), then p sees all vertices of R(T ).

V2: If L(T ) is drawn diagonal-vertical and if p is any point in the south-west (SW) region
of Enc(Γ), i.e., point p is any point on the left side (strictly) of the line containing
points t and bl and y(p) ≤ y(bl), then p sees all vertices of L(T ).

V3: If R(T ) is drawn diagonal-horizontal and if p is any point in the north-east (NE)
region of Enc(Γ), i.e., point p is any point so that x(p) ≥ x(t) and y(p) ≥ y(t) (and
p 6= t), then p sees every vertex on R(T ).

V4: If L(T ) is drawn diagonal-horizontal and if p is any point in the north-west (NW)
region of Enc(Γ), i.e., point p is any point so that x(p) ≤ x(t) and y(p) ≥ y(t) (and
p 6= t), then p sees every vertex on L(T ).

Proof. We will only prove (V4) here, the other arguments are similar. Let p be a
point in the NW region, and let v be an arbitrary vertex on L(T ). Observe that the NW
region is outside the trapped region and v is on the boundary of the trapped region. Since
x(p) ≤ x(t), segment pv could hence intersect Γ only if it intersects an edge of L(T ) or the
left-downward diagonal from the leftmost leaf. But all lines from v that intersect edges
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of L(T ) have slope between zero and one and do not intersect the NW region. So line
segment pv does not intersect Γ. �

See Figure 3.11 (left) for an example and observe that an HV drawing shown in the
figure is extreme. Figure 3.11 (right) demonstrates that the Lemma 6 may not hold for
non-extreme staircase drawings.

Figure 3.11: Left: Illustration of the four regions from Lemma 6 for an extreme HV
drawing. Point q is an example of property (V1) and point p is an example of property
(V4). Right: An example of a non-extreme HV drawing that does not satisfy property
(V4).

The Lifting Operation

Let Γρ be a staircase drawing of T . Recall that the points ρ and t(Enc(Γ)) have equal
x coordinates. However, to recursively merge the sub-tree drawings, we may need these
points to coincide. We therefore define the left lift of Γ to be the drawing obtained by
lifting the root ρ along with the sub-tree of T rooted at the left child of ρ (Tρ.left), to the
top of the enclosing triangle. More precisely,

• Let d := y(t(Enc(Γ)))− y(ρ).

• For each v ∈ Tρ.left ∪ ρ in Γ, set ynew(v) := y(v) + d.
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Figure 3.12: An example of the left lift operation.

We denote the resulting drawing by ΓL (not to be confused with L(Γ)). The right
lift is defined symmetrically. See Figure 3.12 for an example. We now state the Left Lift
Invariant, the list of important properties of staircase drawings we want to be preserved by
ΓL. The properties (L2) to (L6) are easily shown to hold for the left lift of any extreme HH
drawing, while property (L1) does not always hold, but will hold for the specific drawings
produced by our drawing algorithm, as will be shown in Theorem 15. Also, recall that
weakly zigzag star-shaped are zigzag star-shaped drawings that do not have to satisfy
conditions (SS3) or (ZZS3) (pole recovery conditions).

Definition 6 Let Γ be a weakly zig-zag star-shaped HH drawing of T rooted at ρ and let
t = t(Enc(Γ)) and br = br(Enc(Γ)). We say Γ satisfies the left lift invariant if the following
conditions hold:

L1 ΓL is a weakly zig-zag star-shaped drawing.

L2 The leftmost path L(ΓL) is diagonal-horizontal.

L3 If p is any point in the NE region of Enc(Γ), then p sees every vertex on R(ΓL), the
rightmost path of the lifted drawing.

L4 R(ΓL) is contained within Enc(Γ).

L5 If R(ΓL) = 〈v1, v2, . . . , vk〉, then vi sees vi+2 for all 1 ≤ i ≤ k − 2.

L6 All vertices of ΓL are to the right of the poly-line formed by L(ΓL) and the downward
diagonal with slope π/2 starting at the leaf of L(T ).
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Note that ΓL is not an HH drawing since the edge (ρ, ρ.right) is not at 45◦ anymore.
So, in (L6), we cannot claim that ΓL is an extreme HH drawing, however for our purposes
(L6) is sufficient. Also, observe that in visibility property (L3), the region of point p is
defined with respect to the enclosing triangle of Γ, not ΓL.

The Drawing Algorithm

We next present the tree drawing algorithm. Recall that the height of any graph drawing
Γ is defined to be the number of rows occupied by Γ.

Theorem 15 Let T be a binary tree with height h. Then:

Invariant 1: T has a weakly zigzag star-shaped extreme HV drawing Γ such that
height(Enc(Γ)) ≤ 10 · 2bh/2c − h− 7.

Invariant 2: T has a weakly zigzag star-shaped extreme V H drawing Γ such that
height(Enc(Γ)) ≤ 10 · 2bh/2c − h− 7.

Invariant 3: T has a weakly zigzag star-shaped extreme HH drawing Γ such that
height(Enc(Γ)) ≤ 10 · 2bh/2c − h − 7 and Γ satisfies both the left and the right lift
invariant.

Proof. First, augment T to a complete binary tree of height h.

Base case. If h = 0, then place T , a single vertex, at (0, 0). The enclosing triangle of the
single vertex is the vertex itself, hence its height is 1 < 10 · 2b0/2c − 0 − 7 = 3. If h = 1,
place the root of T at (1, 1), its left child at (0, 0) and the right child at (2, 0). The height
of the resulting drawing Γ is 2 and 10 · 2b1/2c − 1− 7 = 2 ≥ 2. All the invariant properties
are easily verified.

Induction Step. If h ≥ 2, assume inductively that the theorem holds for any binary
tree of height at most h − 1. Let ρ be the root of T and denote the grandchildren of ρ
by vll, vlr, vrl, vrr where vll := ρ.left.left, vlr := ρ.left.right, vrl := ρ.right.left and vrr :=
ρ.right.right.

Construction 1.

We draw T satisfying Invariant 1. Note that since h ≥ 2, the heights of each of
Tvll , Tvlr , Tvrl and Tvrr are exactly h − 2 ≥ 0. By the inductive hypotheses we can do the
following:
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• Draw Tvll using Invariant 3 to get Γvll .

• Draw Tvlr using Invariant 1 to get Γvlr .

• Draw Tvrl using Invariant 2 to get Γvrl .

• Draw Tvrr using Invariant 1 to get Γvrr .

Let hmax = max{ height of Encl(Γw)|w ∈ {vll, vlr, vrl, vrr}}. Now, for each w ∈ {vll, vlr,
vrl, vrr}, let Ew be the right isosceles triangle that encloses Γw, has t(Enc(Γw)) at its top
and has height hmax. Put differently, increase the height of Γw by adding empty rows
below it. We abbreviate Evll , Evlr , Evrl , Evrr as Ell, Elr, Erl, Err, and Γvll ,Γvlr ,Γvrl ,Γvrr as
Γll,Γlr,Γrl,Γrr, respectively. Figure 3.13 illustrates how to put these drawings together.
We state the algorithm precisely:

1. Rotate Elr by 90◦ and place it anywhere on the grid.

2. Place t(Ell) at (x(t(Elr))− 2, y(t(Elr))). Now, perform a left lift of Γll, so ΓLll is the
final drawing of Tvll .

3. Rotate Erl by −90◦ and place t(Erl) at (x(t(Elr)) + 2 · hmax + 2, y(t(Elr))). Observe
that the base edges of Elr and Erl are horizontally two units apart.

4. Place t(Err) at (x(t(Erl)) + 1, y(t(Erl)− 1)).

5. Place ρ.left at (x(t(Elr))− 1, y(t(Elr))).

6. Place ρ.right at (x(t(Erl)) + 1, y(t(Erl))).

7. To draw the root vertex ρ, let l1 be the line containing ρ.left with slope π/4 and let
l2 be the line containing ρ.right with slope −π/4. Place ρ at the intersection of l1
and l2 and draw edges (ρ, ρ.left) and (ρ, ρ.right). Observe that ρ is placed on a grid
point.

8. Finally, insert the edges (ρ.left, vll), (ρ.left, vlr) and (ρ.right, vrl), (ρ.right, vrr) which
completes the drawing.

Let Γ be the resulting straight-line drawing. We must argue that it satisfies all the
properties.
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Figure 3.13: Left: placement of Ell, Elr, Erl, Err before the lift on Γll was performed. Right:
the final drawing of Γ and Enc(Γ) (dashed).

Γ is planar and embedding-preserving. Since ΓLll ,Γlr,Γrl and Γrr are planar and
embedding-preserving by the induction hypothesis and the left lift invariant, it is sufficient
to show that their respective enclosing triangles do not pairwise intersect and that ρ, ρ.left
and ρ.right and their incident edges do not create any crossings. First, since all of Ell, Elr,
Erl and Err have equal dimensions by construction and since their enclosing triangles are
isosceles by definition, by our relative placement of their top points, it is clear that they
do not create any crossings. Drawings Γlr,Γrl and Γrr are contained within their enclosing
triangles, so they cannot pairwise intersect either. For ΓLll , by property (L4) of the left lift
invariant, we know that R(Γll) remains within Ell, so it cannot create crossings with Γ.
Also, observe that by our placement of sub-tree drawings, no vertex is placed above the
leftmost path L(Γll), therefore ΓLll does not intersect the other sub-tree drawings either.

Now, observe that ρ.left and ρ.right are placed one unit left of t(Elr) and one unit right
of t(Erl) respectively, and consequently y(ρ) = y(br(Elr)) + 2 and x(ρ) = x(br(Elr)) + 1.
It is therefore clear that edges (ρ, ρ.left) and (ρ, ρ.right) do not intersect with Γ. Further,
since vll and vrr have the biggest y coordinates in ΓLll and Γrr, it follows that (ρ.left, vll) and
(ρ.right, vrr) cannot create any crossings. Similarly, vlr and vrl have smallest and biggest x
coordinates in Γlr and Γrl respectively as they are rotated versions of staircase drawings,
hence (ρ.left, vlr) and (ρ.right, vrl) cannot create any crossings either. Lastly, Γ is clearly
order preserving by our placement of Ell, Elr, Erl and Err.

Γ is an extreme HV drawing. For L(Γ), note that the edge (ρ, ρ.left) is drawn with
slope π/4 downward by construction and (ρ.left, vll) is a unit-length horizontal segment
because vll is placed at t(Ell) after the left lift. Then, by Invariant 3, L(Γll) is diagonal-
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horizontal. By property (L2) of the left lift invariant, L(ΓLll) remains diagonal horizontal;
therefore L(Γ) is diagonal horizontal. For R(Γ), again observe that (ρ, ρ.right) is drawn
downward with slope −π/4 by construction and that R(Γrr) is diagonal-vertical by Invari-
ant 1. To complete the argument, it suffices to note that by the definition of enclosing
triangle we know x(vrr) = x(t(Err)), so (ρ.right, vrr) is a vertical line segment. Recall that
vertical segments are not required to be unit-length.

For the extreme property, by induction and by property (L6) of the left lift invariant,
it is easy to see that all vertices of ΓLll are in the trapped region of Γ. The same can be
argued for the vertices of Γrr, since Γrr is an extreme HV drawing. The statement is clear
for the vertices of Γlr and Γrl. See Figure 3.13 (right).

We now show Γ is a weakly zig-zag star-shaped drawing, and recall that the pole
recovery conditions, (SS3) and (ZZS3), are not required to hold.

Γ is a star-shaped drawing, (ZZS1). By induction and the left lift invariant, we
know that ΓLll ,Γlr,Γrl and Γrr are star-shaped. It remains to show that the left and right
polygons of ρ, ρ.left and ρ.right satisfy conditions (SS1) and (SS2). See Figure 3.14 (left)
for an illustration of this proof.

For vertex ρ, observe that since ρ is placed at (x(br(Elr)) + 1, y(br(Elr)) + 2), it belongs
to the SE region of the (rotated) Elr and the SW region of the (rotated) Erl. Since R(Γlr)
is drawn diagonal-vertical, by Invariant 1 and condition (V1) of Lemma 6, it follows that ρ
sees every vertex on R(Γlr). Similarly, since L(Γrl) is drawn diagonal-vertical, by Invariant
2 and condition (V2) of Lemma 6, it follows that ρ sees every vertex of L(Γrl), therefore
(SS1) holds for the vertex ρ. Further observe that a vertical line going through point ρ
separates Pl(ρ) and Pr(ρ), hence (SS2) holds for ρ as well, i.e., polygons Pl(ρ) and Pr(ρ)
do not contain vertices their interior.

We now show (SS1) and (SS2) for the vertex ρ.left. Since ρ.left is placed one unit
horizontally to the right of vll, it belongs to the NE region of Ell, hence by property (L3)
of the left lift invariant, ρ.left sees R(ΓLll). Also, by the definition of enclosing triangle, we
know that vlr and t(Elr) have the same y coordinate (Elr is rotated), so ρ.left is placed in
the NW region of Elr. Therefore by Invariant 1 and condition (V4) of Lemma 6, ρ.left sees
every vertex on L(Γlr), so (SS1) holds for ρ.left. Also, observe that Pl(ρ.left) and Pr(ρ.left)
are separated by a line with slope −π/4 going through ρ.left, so (SS2) holds for ρ.left.

Finally, we show (SS1) and (SS2) for the vertex ρ.right. Since ρ.right is placed one unit
vertically above vrr, it belongs to the NW region of Err, hence by Invariant 3 and condition
(V4) of Lemma 6, ρ.right sees L(Γrr). By the definition of the enclosing triangle, we know
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Figure 3.14: Left: Illustration that Γ is star-shaped. Right: Illustration of property (ZZS2)
for ρ and ρ.left. Note that the lengths of the edges are not to scale.

that vrl and t(Erl) have the same y coordinate. Hence ρ.right is placed in the NE region of
Erl, and therefore by Invariant 2 and condition (V3) of Lemma 6, ρ.right sees every vertex
on R(Γrl), so (SS1) holds for ρ.right. Since Pl(ρ.right) and Pr(ρ.right) are separated by a
line with slope π/4 going through ρ.right, (SS2) holds for ρ.right as well.

Γ admits the “zig-zag property” (ZZS2). First note that by induction and property
(L1) of the left lift invariant, the zig-zag property holds for drawings ΓLll ,Γlr,Γrl and Γrr.
It remains to prove condition (ZZS2) for ρ, ρ.left and ρ.right. See Figure 3.14 (right) for
an illustration of this proof.

So, let v1, v2, . . . , vk be the left-right path of ρ and note that v1 = ρ, v2 = ρ.left and
v3 = vlr. Since Elr is an HV drawing that was rotated by 90◦, edge (vlr, vlr.right) is drawn
diagonal with slope π/4 upward. Therefore, since edge (ρ.left, vlr) is drawn horizontal,
ρ.left sees vlr.right, so v1, v2, v3, v4 is a strictly convex quadrangle. Further, since R(Γlr) :=
v3, v4, . . . , vk is a diagonal-vertical path, observe that for all even i, 4 ≤ i ≤ k − 2, vi sees
vi+2, so v1, vi, vi+1, vi+2 is a strictly convex polygon. A symmetric argument holds for the
right-left path of ρ, so property (ZZS2) holds for vertex ρ.

For vertex ρ.left (u1 in Figure 3.14 (right)), let R(ΓLll) = u2, u3, . . . , ut (vll = u2) be the
rightmost path of ΓLll . By condition (L5) of the left lift invariant, we know that ui sees ui+2
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Figure 3.15: Illustration of the grid size analysis.

for all even i with 2 ≤ i ≤ t− 2. Therefore, property (ZZS2) holds for the left-right path
u1, u2, . . . , ut. Since the leftmost path of Γlr is also diagonal-horizontal by Invariant 2, by
a similar argument it follows that the right-left path of ρ.left also satisfies (ZZS2). Similar
arguments hold for ρ.right.

Grid size of Γ. Finally, we give an upper bound on the height of Enc(Γ). For a tree
of height h, let Hi(h) be the height of the enclosing triangle of the drawing satisfying
Invariant i for i ∈ {1, 2, 3} and let H(h) := max{H1(h), H2(h), H3(h)}. The reason for
taking the maximum of the heights is that we enlarged the original enclosing triangles to
get Ell, Elr, Erl and Err. We need to show that H(h) ≤ 10 · 2bh/2c − h− 7.

Recall that the base cases are already verified and that h ≥ 2. Now, since the width
of the enclosing triangle is twice its height, root ρ is placed 2H(h− 2) + 3 units above the
bottom of Enc(Γ). Observe that ρ is placed 2 units above br(Elr) and that bl(Err) is drawn
1 unit below bl(Elr), see Figure 3.15. Since the number of edges on the diagonal-horizontal
path is h (the height of the tree), by Lemma 5, the top of the Enc(Γ) is bh/2c units above
the root ρ. Therefore the height of the Enc(Γ) is

H1(h) = 2H(h− 2) + 3 + bh/2c
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Figure 3.16: Illustration that vertex ρ still sees the vertices of L(Erl) after the left lift.

We now show that H1(h) ≤ 10 · 2bh/2c − h− 7:

H1(h) = 2 ·H(h− 2) + 3 + bh/2c
≤ 2 · (10 · 2b(h−2)/2c − (h− 2)− 7) + 3 + bh/2c
= 2 · (10 · 2bh/2−1c − (h− 2)− 7) + 3 + bh/2c
= 10 · 2bh/2c − 2h+ 4− 14 + 3 + bh/2c
= 10 · 2bh/2c − h− 7− (h− bh/2c+ 7− 7)

≤ 10 · 2bh/2c − h− 7.

Here, the second inequality follows by the inductive hypothesis and the sixth inequality
follows since (h− bh/2c+ 7− 7) > 0.

Constructions 2 and 3.

See Figure 3.17 for how to put together the sub-tree drawings for Invariants 2 and 3.
The VH drawings of Invariant 2 are symmetric to those of Invariant 1. To obtain HH
drawings for Invariant 3, we recursively draw both Ell and Err as HH drawings (Invariant
3). In Invariant 2, we apply the lifting operation on Err and in Invariant 3 we lift both Ell
and Err. In addition, HH drawings of Invariant 3 are required to satisfy the lift invariants.
Here we show that the left lift invariant holds.

Γ satisfies the left lift invariant. Recall that the left lift ΓL of Γ is obtained by shifting
the root vertex ρ vertically, along with its left sub-tree, so that ρ is placed at the top of
Enc(Γ), see Figure 3.12. Observe that the drawings of Tρ.left and Tρ.right are separated by
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Figure 3.17: Placement of the sub-tree drawings for each invariant before the lifts are
performed. In Invariant 2, we perform the right lift on Γrr, the HH drawing. In Invariant
3, we perform the left lift on Γll and the right lift on Γrr.

the vertical line containing the root vertex ρ; therefore planarity of ΓL follows immediately.
For property (L1), the key thing to show is that after the left lift, the root vertex ρ still
sees all the vertices on L(Erl). To see this, it is sufficient to observe that after the upward
vertical lift, ρ still remains in the SW region of the (rotated) Erl, see Figure 3.16. The
remaining left lift invariant properties of ΓL are easily verified.

The arguments for the remaining properties are almost identical to the ones presented
above for the HV drawings, so we omit the proof. �

Step 5: Drawing Outer-1-Planar Graphs

We now make use of the zigzag star-shaped binary tree drawings to draw any quadrangular
outer-1-plane graph:

Theorem 16 Let Gst be a quadrangular o1p graph and let ht be the height of the dual
ternary tree of skel(G). Then G admits an outer-1-plane straight-line drawing Γ so that
both the height and the width of Γ are O(2ht).

Proof. First, compute the half-skeleton M(G), let T be its dual binary tree rooted at
the face containing edge (s, t) and let hb be its height. By Theorem 15, produce a weak
zigzag star-shaped HV drawing ΓT of T so that both the height and the width of its
enclosing triangle are O(2hb/2). We now show that ΓT also satisfies condition (ZZS3) of
Definition 4. We define point ps to be (x(t(Enc(Γ(TM )))), y(t(Enc(Γ(TM )))) + 1) and pt to
be (x(br(Enc(Γ(TM )))) + 1, y(br(Enc(Γ(TM ))))). By Lemma 6, ps sees all vertices on the
leftmost path of ΓT and pt sees all the vertices on the rightmost path of ΓT . Since ΓT is
an HV drawing, it is easy to see that ps and pt satisfy all three properties of condition
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Figure 3.18: Demonstration that HV drawings satisfy property (ZZS3).

(ZZS3), see Figure 3.18 for an illustration. Also, note that the height and the width of
the bounding box of ΓT ∪ {ps, pt} are both only one unit greater than the height and the
width of Enc(ΓT ). Therefore, by Corollary 3, graph G admits an outer-1-plane straight
line drawing Γ in O(2hb/2) ·O(2hb/2) area.

Now, since skel(G) consists of quadrangles only, it follows that hb ≤ 2 · ht + 1; triangu-
lating skel(G) can at most double the height of its dual tree. Therefore, by substituting
2 · ht + 1 in hb, we have that O(2hb/2) ⊆ O(2(2ht+1)/2) = O(2ht), so the theorem follows. �

Finally, consider the special case of complete o1p graphs, i.e., o1p graphs whose dual
ternary tree is complete.

Corollary 4 Every n-vertex complete quadrangular o1p graph G admits an outer-1-plane
straight-line drawing Γ so that both the height and the width of Γ are O(n0.63); so the area
is O(n1.26).

Proof. Let ht be the height of the dual tree T of skel(G). Since |T | ≤ n and since the height
of any k-node ternary tree is blog3(2k)c, it follows that ht ≤ blog3(2n)c. By Theorem 16,
let Γ be the outer-1-plane straight-line drawing of G so that both the height and the width
of Γ are O(2ht). Therefore, substituting blog3(2n)c for ht and since zloga(b) = bloga(z), we
have that O(2blog3(2n)c) ⊆ O(2log3(2n)) = O((2n)log3(2)) ≈ O(n0.63). �

Observe that Theorem 15 gives linear area drawings of complete binary trees. However,
complete o1p graphs are defined as those with complete ternary tree duals, which is why,
after doubling the height of the dual tree in Theorem 11, we lost the linear area bound. To
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reduce the area to linear, one would need to use a quite different placement of the subtrees
and possibly go “deeper” than the grand-children.

There are graph drawing algorithms for trees that are somewhat balanced, yet not
complete. For instance, Crescenzi, Di Battista and Piperno [10] gave linear area drawings
for Fibonacci trees and more generally, Crescenzi, Penna and Piperno [11] gave linear area
drawings for AVL trees. However, the resulting drawings are not embedding-preserving
and we do not see a way to make them star-shaped, so their drawing techniques do not
seem applicable in our case. Another idea to work towards linear area drawings of complete
o1p graphs would be to forgo the detour into drawings binary trees altogether and to draw
them directly. Still, the problem of finding linear area drawings of complete o1p graphs
remains open.
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Chapter 4

Orthogonal Drawings of
Outer-1-Plane Graphs

In this chapter, we show that every outer-1-plane graph with maximum degree 4 admits an
embedding-preserving orthogonal point-drawing in O(n log n) area with at most 7 bends
per edge. Our method is a modification of Biedl’s algorithm [5] which finds a flat orthogonal
box-drawing of any outer-planar graph in O(n log n) area.

4.1 Review of Existing Results

Recall that orthogonal point-drawings are poly-line grid drawings, with an additional con-
straint that every line-segment of a poly-line must either be horizontal or vertical, see Fig-
ure 4.1 (right). Orthogonal drawings gained popularity because of their wide applicability
to floor-planning, VLSI design, software architecture and more [4]. Besides minimizing the
area of orthogonal drawings, a common goal is to minimize the number of bends, whether
the total number of bends or the maximum number of bends per edge. In this chapter,
we focus on minimizing the maximum number of bends per edge. Because of the nature
of orthogonal drawings, we only consider graphs of maximum degree four. Observe that
every vertex has four available ports for edges: the north, south, west and east port.

We first review the results for outer-planar graphs. In 1981, Dolev and Trickey [17]
showed that every outer-planar graph admits a planar orthogonal drawing in O(n) area
with at most O(log n) bends per edge. The key ingredient to their method is Valiant’s
linear area orthogonal drawing algorithm for trees [38]. Since weak duals of outerplanar
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Figure 4.1: (Argyriou et al. [2]) (Left) An example of a biconnected outer-1-plane graph
which does not admit an embedding-preserving orthogonal drawing so that every edge has
at most one bend. (Right) A non-embedding-preserving drawing of the same graph with
at most one bend per edge; the middle crossing is not preserved.

graphs are trees, they first produce a drawing of the dual tree using Valiant’s algorithm
and then recover the outer-planar graph while keeping the area small. As their algorithm is
clearly optimal with respect to the area of the drawing, it is natural to attempt to minimize
the number of bends per edge while keeping the area small. This was achieved by Tayu,
Nomura and Ueno [36] who showed that any outer-planar graphs admits an orthogonal
drawing with at most 1 bend per edge in O(n2) area. The number of bends cannot be
reduced to zero since a triangle has no straight-line orthogonal drawing.

Now we turn to outer-1-planar graphs. Recall that flat orthogonal box-drawings are
drawings where vertices are drawn as horizontal line segments and every edge is a sequence
of horizontal and vertical line segments. As will be explained in Section 4.4, flat orthogonal
box-drawings are related to orthogonal point-drawings. Auer et al. [3] claimed an algorithm
that produces a planar flat orthogonal box-drawing of any o1p graph in O(n log n) area
with no bends. However, Biedl [7] found a mistake in the paper and proved that there exists
outer-1-planar graphs that require Ω(n2) area in any poly-line drawing without crossings.

The motivation for our result is the paper by Argyriou et al. [2], who showed that any
1-planar (and hence o1p) graph admits an embedding-preserving orthogonal drawing in
O(n2) area such that every edge has at most three bends. For biconnected o1p graphs,
they improved the number of bends per edge to two. This algorithm achieves the mini-
mum number of bends per edge possible, as there are biconnected o1p graphs so that in
any embedding-preserving orthogonal drawing, at least one edge must have at least two
bends [2]. See also Figure 4.1.

We focus on reducing the area of the drawing for o1p graphs to O(n log n) while keeping
the number of bends per edge relatively small. We begin the chapter by reviewing Biedl’s
algorithm [5] for producing flat orthogonal box-drawings of outer-plane graphs in O(n log n)
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area. We then extend the algorithm to work on outer-1-plane graphs and carefully convert
it to an orthogonal point-drawing by adding not too many bends.

4.2 Review of Biedl’s Algorithm [5]

In this section we give a review of Biedl’s algorithm that produces a flat orthogonal box-
drawing of any outer-planar graph in O(n log n) area [5]. Note that the presentation here
is almost identical to the original paper of Biedl.

Theorem 17 Let G be a maximal outer-plane graph. Then G admits an embedding-
preserving orthogonal-box drawing Γ in O(n log n) area such that every edge has at most 2
bends.

Proof. Let (u, v) be an edge on the outer-face of G with u before v in the clockwise order
on the outer-face; we call (u, v) the reference edge. We prove the following invariant:

• u occupies the top right corner of the drawing,

• v occupies the bottom right corner of the drawing,

• edges that attach horizontally to any box have no bends,

• the height is at most 3 log n− 1,

• the width is 5
2
n− 4, and

• every edge has at most 2 bends.

Base Case. n = 2.
Then simply place u on top of v in a single column. All invariant properties clearly hold.

Induction Step.
Let w be the third vertex of the triangle containing edge (u, v). Further, let G1 be the
subgraph induced by the vertices in between w and u in the clockwise order on the outer-
face and similarly let G2 be the subgraph induced by vertices in between v and w, see
Figure 4.2 (left). Assume that |V (G1)| ≤ |V (G2)|, the other case is symmetric as will be
shown later. We have two cases:
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Figure 4.2: Left: Illustration of G1 and G2. Right: Further splitting G1 in Case 2.

Case 1. |G1| = 2, i.e., u and w are the only vertices of G1.
Then draw G2 recursively using edge (w, v) as the reference edge, place vertex u to the right
of vertex w and draw edge (u,w) horizontally. Since by induction vertex v of G2 is placed on
the bottom-right corner of the drawing of G2, its bar can be simply extended to match the
x-coordinate of u. The height does not increase, so is at most 3 log (|G2|)− 1 ≤ 3 log n− 1,
and the width is at most 5

2
|G2|−4 + 1 ≤ 5

2
(n−1)−3 ≤ 5

2
n−4 since we added one column.

See Figure 4.3.

Figure 4.3: Illustration of Case 1.

Case 2. |G1| ≥ 3.
Then let x be the third vertex of the triangle of G1 containing the edge (u,w). Now,
let Ga and Gb be the subgraphs induced by the vertices between u and x, and x and w
respectively, see Figure 4.2 (right). Draw Ga, Gb and G2 recursively using (u, x), (x,w) and
(w, v) as reference edges to obtain the drawings Γa,Γb and Γ2.

For purpose of merging the recursive drawings, we first slightly modify drawings Γa and
Γb. Note that by induction vertex x occupies the bottom right corner of drawing Γa. Now,
re-allocate vertex x so it “spans” the bottom row of Γa by moving it down to a new row
and extending it to match the width of drawing Γa. All vertical edges incident to x can
be extended to reach x in a new row. Since horizontal edges have no bends by induction,
they will now become vertical and connect to x in the bottom row. See Figure 4.4 for an
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illustration. Let Γ′a be the resulting modified drawing. Similarly let Γ′b be modification of
drawing Γb obtained by moving x to the top row.

Figure 4.4: Releasing vertex x so it spans the bottom row of the drawing.

Finally, we merge Γ′a,Γ
′
b and Γ2 to obtain a drawing of the graph G. Add empty rows

to Γ′a or Γ′b until both drawings have the same height. Similarly, stretch Γ2 so its height is
two rows bigger than Γ′a and Γ′b, without exceeding the height bound of 3 log n − 1. This
can be done, as will be argued in the analysis of the height. Now, place all three drawings
next to each other as shown in Figure 4.5; Γ′b is rotated. The two boxes of w can be joined
into one box as they are in the same row next to each other. Since the two boxes of x span
the bottom row of Γ′a and Γ′b, they can similarly be merged into one box. Finally, since Γ2

is two rows taller than Γ′b (and Γ′a), this leaves us with enough space to extend the vertex v
to the bottom right corner of the drawing and to insert edge (u,w) as shown in Figure 4.5.

Figure 4.5: Illustration of combining drawings Γ′a,Γ
′
b and Γ2 in Case 2.

For the height bound, since |G1| ≤ |G2| and they share only one vertex w, we have
|G1| ≤ n+1

2
. As Ga ⊆ G1 \ {w}, it follows that |Ga| ≤ n

2
. By the inductive hypothesis,

the height of Γa is 3 log |Ga| − 1 ≤ 3 log n − 4. After adding one extra row to Γa to move
x, the height of drawing Γ′a is 3 log n − 3. Lastly, after stretching Γ2, the height of the
final drawing is 2 units taller than Γ′a, resulting in 3 log n − 1 height, which satisfies the
inductive hypothesis.
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The width of the drawing is the sum of the widths of Γ2,Γb and Γa plus three columns
added. So, since |G2| + |Ga| + |Gb| = n + 2, by induction it follows that the width is at
most

3 +
5

2
|G2| − 4 +

5

2
|Ga| − 4 +

5

2
|Gb| − 4 = 3 +

5

2
(n+ 2)− 12 =

5

2
n− 4.

Lastly, when |G1| ≥ |G2|, the construction is symmetric and omitted here. See Fig-
ure 4.6 for an illustration. �

Figure 4.6: Case 1 and Case 2 when |G1| ≥ |G2|.
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4.3 Inserting the Missing Diagonals

We now extend Biedl’s algorithm to outer-1-planar graphs. Let G be a maximal outer-1-
plane graph and let H be any half-skeleton of skel(G). First, recall that an edge (x, y) is a
missing diagonal of H if (x, y) is an edge of G \H. This means that (x, y) was crossed in
G and the edge that it crosses belongs to H. To draw G, we run Biedl’s algorithm on H, a
maximal outer-plane graph, and modify the recursive step to insert the missing diagonals.

We treat any missing diagonal as two half-edges. For example, suppose that abc and
acd are two adjacent triangles of H (say at edge (a, c)), with vertices ordered in clockwise
order. Suppose further that abcd is a quadrangle of skel(G). When inserting the missing
diagonal (b, d), a half edge at b and a half-edge at d could be drawn separately towards
some agreed point, e.g., a point on the edge (a, c) crossed by (b, d), and then combined to
form a full edge.

Consider any graph H ′ that arises as subgraph during the recursions to draw H, and let
(u′, v′) be its reference edge. If |H ′| ≥ 3, then we use w(H ′) to denote the third vertex of
the triangle of H ′ that contains (u′, v′). There may be a missing diagonal e of G that crosses
(u′, v′) and so necessarily ends at w(H ′). Edge e is technically not a missing diagonal of H’
(its other endpoint does not belong to H ′), but we call the half-edge of e between w(H ′)
and the crossing-point the connector half-edge of H ′ and insert this half-edge when drawing
H ′. We now state our modification of Biedl’s algorithm:

Theorem 18 Let G be an outer-1-plane graph and let H be any half-skeleton of G. Then
G admits a flat orthogonal box-drawing Γ in O(n log n) area such that:

1. Every missing diagonal of H has at most 4 bends in Γ.

2. All the remaining edges have at most 2 bends in Γ.

Proof. Let (u, v) be an arbitrary reference edge on the outer-face of H with u before v
in the clockwise order on the outer-face. We prove a slightly stronger claim, namely, in
addition to the invariant properties of Biedl, we show that

• the connector half-edge at w, if it exists, is drawn with 1 bend,

• all the missing diagonals of H are drawn with at most 4 bends, and

• the height is at most 5 log n− 3.
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• edge (u, v) is drawn without bend vertically in the rightmost column.

In the base case, when n = 2, place v on top of u in a single column; so there is no
change to Biedl’s algorithm. In the inductive step, when n ≥ 3, let w := w(H) and let H1

(H2) be the subgraph induced by the vertices between w and u (v and w) on the outer-face.
That is, we use H1 and H2 to denote what G1 and G2 stood for in Biedl’s algorithm (we
use H now to remind us that these are half-skeletons and not the full o1p graph G). Also,
assume that |V (H1)| ≤ |V (H2)|, inserting the missing diagonals in the other case will be
symmetric. Now, let Gi (for i = 1, 2) be graph Hi with applicable missing diagonals added.

Figure 4.7: Demonstration of Case 1.

Case 1. |H1| = 2, i.e., u and w are the only vertices of H1.

Draw G2 recursively to get Γ2. To draw H, we extend Γ2 in the same way as in Biedl’s
algorithm (Theorem 17). The connector half-edge at w (if it exists) can be drawn with one
bend as shown in Figure 4.7 (top), after adding a column to expand w and (if Γ2 has height
2) a row, without exceeding the 5 log n− 3 height bound (since 5 log n− 3 ≥ 5 log 3− 3 by
n ≥ 3).

For the second part of the invariant, all the missing diagonals of H2 are drawn recur-
sively with at most 4 bends. The only possible remaining missing diagonal is (u,w(H2)).
In this case, the connector half-edge at H2 is drawn with one bend by induction, and the
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half-edge at u can be drawn with one bend as described in Figure 4.7 (bottom). Observe
that both half-edges can be aligned without introducing extra bends, because the half-edge
at u can enter Γ2 anywhere along edge (w, v) (which is drawn rightmost and vertical in
Γ2) and align with the other half-edge.

Case 2. |H1| ≥ 3.

We use Ha, Hb and H2 to denote what Ga, Gb and G2 stood for in Biedl’s algorithm.
Now, we use Ga, Gb and G2 to denote Ha, Hb and H2 with the applicable missing diagonals
added. Let Γa,Γb and Γ2 be the drawings of Ga, Gb and G2 obtained recursively using the
same reference edges as before. Put the drawings Γa,Γb and Γ2 together in the same way
as in Biedl’s algorithm. See also Figure 4.8.

Now, stretch Γ2 vertically so it is 4 rows taller than Γ′a and Γ′b (as opposed to 2 rows
in Biedl’s algorithm), which gives us 2 additional free rows to insert the missing diagonals.
As will be argued in the analysis of the height, the height of Γ2 will not exceed 5 log n− 3.
We may hence assume that both the row above and the row below the horizontal segment
of (u,w) contain no horizontal segments below Γ′b and Γ′a, see Figure 4.9.

We slightly modify the drawing depending on which edges are the missing diagonals.
First observe that the connector half-edge at w can be drawn with one bend as shown in
Case 2A in Figure 4.8, after appropriately adding one extra column. It uses the free row
below (u,w). All the missing diagonals belonging entirely to Ha, Hb and H2 are drawn
with at most 4 bends by induction. Now, we consider the missing diagonals with at least
one half-edge belonging to triangle uvw or uwx. Observe that these could be the edges
(v, x), (w,w(Ha)), (u,w(Hb)), and (u,w(H2)).

Case 2B. (v, x) is a missing diagonal.

Then it can be simply drawn with 0 bends as shown in Figure 4.8.

Case 2C. (u,w(H2)) is a missing diagonal.

Then the half-edge at w(H2) is drawn with 1 bend by induction. Now, insert the
half-edge at u with 3 bends as described in Figure 4.8, after appropriately adding a single
column and using the free row below (u,w). Observe that both half-edges can be aligned
without creating additional bends as we have the choice where to enter drawing Γ2 along
edge (v, w). Thus the missing diagonal is drawn with 4 bends.

Case 2D. (w,w(Ha)) is a missing diagonal.

Then the half-edge at w(Ha) is drawn with 1 bend by induction. Now, insert the half-
edge at w with at most 3 bends as described in Figure 4.8, after appropriately adding two
extra columns and using the free row above (u,w). Observe that the half-edges can be
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Figure 4.8: Demonstration of Case 2.

aligned without creating extra bends, as we have the choice where to enter drawing Γa
along edge (v, x). Thus the missing diagonal is drawn with 4 bends.
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Figure 4.9: Illustration that the row above and the row below the horizontal line segment
of (u,w) contain no horizontal line segments below Γ′b and Γ′a.

Case 2E. (u,w(Hb)) is a missing diagonal.

This case is symmetric to Case 2D, see Figure 4.8.

Since u,w,w(Hb), x and u,w, x, w(Ha) cannot both be quadrangles of skel(G), Case 2D
and Case 2E cannot occur simultaneously. Likewise Case 2A and Case 2C cannot happen
simultaneously. So each free row is used by at most one half-edge, and having two free
rows is sufficient to simultaneously insert a half-edge in all cases.

For the height bound, we repeat the argument from Biedl’s algorithm with a slight
modification to account for two additional rows. In the base case (n = 2), the drawing
occupies two rows and 5 log 2−3 ≥ 2. In Case 1 of the inductive step, we stretched Γ2 to at
most 5 log n− 3 height and already argued that this is sufficient to complete the drawing.

For Case 2, first note that since |H1| ≤ |H2| and they share only one vertex w, we have
|H1| ≤ n+1

2
. As Ha ⊆ H1 \ {w}, it follows that |Ha| ≤ n

2
. By the inductive hypotheses,

the height of Γa is 5 log |Ha| − 3 ≤ 5 log n− 8. After adding one extra row to Γa to move
x, the height of drawing Γ′a is 5 log n − 7. Lastly, after stretching Γ2, the height of the
final drawing is 4 units taller than Γ′a (as opposed to 2 in the original version), resulting
in 5 log n− 3 height, which satisfies the inductive hypothesis.

We now argue that the width of Γ is linear. Since outer-1-planar graphs have O(n)
number of edges [3], and since our drawings have constant number of bends per edge, it
follows that Γ has O(n) vertical line segments. Note that edges in flat orthogonal box-
drawings consist of horizontal and vertical line segments only. After deleting all unnecessary
columns, the width of Γ is O(n). �
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4.4 Conversion to Orthogonal Point-Drawings

In this section we show how to convert a flat orthogonal box-drawing of an outer-1-plane
graph to an orthogonal point-drawing by a box-to-orthogonal replacement approach intro-
duced by Tamassia and Tollis [35] and also used by Argyriou et al. [2].

The basic idea is to convert each box (vertex) to an orthogonal configuration by a
prescribed set of rules. By listing an exhaustive list of “box types”, i.e., all the ways in
which incident edge-segments could attach to a box, and associating each box type with
its corresponding orthogonal configuration, one can simply make a conversion as shown for
one example in Figure 4.10. In the conversion we make sure that the x-coordinate of each
incident edge-segment is unchanged.

Figure 4.10: An example of replacing a box with the corresponding orthogonal configura-
tion.

We now present the result of a naive conversion method:

Theorem 19 Every outer-1-plane graph G admits an embedding-preserving orthogonal
point-drawing in O(n log n) area such that any edge has at most 8 bends.

Proof. Let Γbox be a flat orthogonal box-drawing of G with O(n log n) area given by
Theorem 18, using any half-skeleton. It is sufficient to ensure that for any edge e = (v, u)
of Γbox, the orthogonal configurations used at v and u add no more than 2 bends to e,
and leading to a total of 4 + 2 + 2 = 8 bends. See Figure 4.11 for an exhaustive list of
replacement rules and notice that no rule adds more than 2 bends to each end of an edge 1.
We now argue that the list of replacement rules presented in Figure 4.11 is exhaustive, up
to symmetry.

We assume that all boxes have four incident edge-segments, as otherwise we can simply
apply the same conversion rules, ignoring the extra incident edge-segments. Consider the

1Argyriou et al. gave a similar list of rules, but we simplified some constructions and added
(e2), (e3), (f2), (f3), which they did not cover.
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two types of boxes: when all the vertical incident edge-segments of a vertex attach to one
side of the box, say the top side (top box ); and when the vertical incident edge-segments
attach to both sides of the box (middle box ). Since boxes are line-segments, only two edges
can attach horizontally, so one of these cases must apply if we have four incident edges.
The first row of Figure 4.11 outlines all the possible top boxes: (a) 4 vertical incident edge-
segments; (b) 3 vertical incident edge-segments; and (c) 2 vertical incident edge-segments
(a top box of a degree four vertex cannot have a single vertical incident edge-segment).
All the remaining boxes are middle boxes. By considering how many edges attach to each
side, but ignoring the relative x-coordinates of vertical incident edge-segments, we have a
total of 4 cases for middle boxes, namely (d), (e), (f) and (g). Lastly, since we keep the
x-coordinates of incident edge-segments unchanged, we consider all relative orderings of
incident edge-segments as well, with respect to x-coordinates. Up to symmetry, these only
occur in cases (e1), (e2), (e3) and (f1), (f2), (f3). Note that some cases are omitted due to
symmetry; for instance in case (g), the top incident edge-segment could instead be to the
left of the bottom incident edge-segment. Cases with coinciding x-coordinates have also
been omitted but can easily be handled (often with fewer bends).

Observe that every replacement rule in Figure 4.11 can be achieved by adding one extra
row, and note that we may need to add a new row above a vertex (e.g. case (b)) or below
a vertex (e.g. case (f1)). For simplicity, for each vertex v, add both rows if necessary,
i.e., to keep the height O(log n), if rows above and below v are already added, do not add
them again. So, adding two extra rows is sufficient to convert all vertices occupying the
same row in Γbox. Therefore, the number of rows at most triples, hence the height of the
drawing stays O(log n). �

Note that the area and the total number of bends of the above drawing can be reduced
using various techniques, see e.g. [[19], the overview chapter by Eiglsperger et al., Section
6.7]. We will not explore this further to keep the presentation as simple as possible.

To improve the bound to 7 bends per edge, we first prove the following lemma:

Lemma 7 Let G be an outer-1-plane graph and let H be any half-skeleton of skel(G).
Then the subgraph composed of missing diagonals of H is a forest.

Proof. Assume for contradiction that there exists a cycle C composed of missing diagonals.
Cycle C does not cross itself because for each edge e of C, the edge of G that crosses e
belongs to H (by definition of a half-skeleton, every missing diagonal is crossed). Therefore,
C defines an interior and an exterior. Further, by outer-1-planarity of G, every vertex of
G must either be on C or in the exterior of C.
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Figure 4.11: Exhaustive list of the box-to-orthogonal conversion rules (up to symmetry).
Similar to Argyriou et al. [2].

Enumerate the vertices of C as v0, v1, . . . , vk−1 in clockwise order where ei = (vi, vi+1)
is an edge for 0 ≤ i ≤ k − 1 (mod k). Let eci be the edge that crosses ei in graph G, and
note that as edge eci crosses ei and enters the interior of C, its endpoint must be on C, say
it is vji . This is because vji cannot be in the interior of C since all vertices must be on the
outer-face, and it cannot be in the exterior of C as eci would have to cross C for a second
time, hence violating 1-planarity of G.

Now, choose index i such that vji is closest to edge (vi, vi+1) on the cycle C, see Fig-
ure 4.12. Assume that (ji− (i+ 1)) mod k ≤ (i− ji) mod k, the other case is similar. Note
that ji 6= i+ 1 since edges with a common endpoint do not cross. So consider the missing
diagonal ei+1 = (vi+1, vi+2) and its crossing edge eci+1. By 1-planarity, eci+1 cannot cross eci ,
therefore vj(i+1)

∈ {vi+3, . . . , vji}. But then (j(i+1) − (i+ 2)) mod k < (ji − (i+ 1)) mod k,
contradicting the choice of i. �

We now state the main result of this section:

Theorem 20 Every outer-1-plane graph G admits an embedding-preserving orthogonal
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Figure 4.12: Illustration of the proof of Lemma 7.

drawing in O(n log n) area such that any edge has at most 7 bends.

Proof. Let H be any half-skeleton of G. Using Theorem 18, obtain a flat orthogonal box-
drawing Γbox of G in O(n log n) area such that every missing diagonal of H has at most 4
bends. By Lemma 7 we know that the subgraph composed of missing diagonals must be a
forest. Now, orient the missing diagonals so that every vertex v has at most one incoming
missing diagonal. Call this missing diagonal the critical incident edge-segment of v.

This allows us to “prioritize” the critical incident edge-segment for each vertex v, and
to ensure that it gets at most one extra bend when converting the box of v to a point.
See Figure 4.13 for how to prioritize the (darkened) critical incident edge-segment and let
Γorth be the resulting orthogonal drawing of G. For example, if v is a box type (a), then
replace the box with either rule (A) or rule (B) depending on whether the critical incident
edge-segment is one of the first three edges or the far right edge. Observe that for every
box type, every possible incident edge-segment is treated as critical, up to symmetry. Note
that some cases are unnecessary (for instance, one could argue that missing diagonals never
attach to any box horizontally), but for simplicity of verification all cases are treated.

Since every critical incident edge-segment receives at most one extra bend in the con-
version, it follows that every missing diagonal of H has at most 4+2+1 = 7 bends in Γorth
(recall that the missing diagonals have at most 4 bends in Γbox by Theorem 18). Since all
edges of H have at most 2 bends in Γbox, they will have at most 2 + 2 + 2 = 6 bends in
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Γorth. �
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Figure 4.13: Exhaustive list of replacement rules (up to symmetry) which ensures that
every critical incident edge-segment gets at most one extra bend. A similar figure was used
in [2].
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Chapter 5

Conclusion and Open Problems

In this thesis we presented several algorithms for producing small straight-line and orthog-
onal drawings of outer-1-planar graphs. We give a short summary and state a few relevant
open problems.

5.1 Discussion: Straight-line Drawings

The primary motive for Chapter 3 was an attempt to develop an algorithm which pro-
duces embedding-preserving straight-line drawings of outer-1-plane graphs in o(n2) area.
Although we gave two such algorithms for some interesting sub-classes of o1p graphs,
namely o1p graphs of small depth and complete o1p graphs, the general question still
remains open:

Open Problem 1 Do n-vertex outer-1-plane graphs admit embedding-preserving straight-
line drawings in o(n2) area?

The techniques presented by DiBattista and Frati [15] and Frati et al. [23] for drawing
outerplanar graphs do not seem to transfer to a more general class of o1p graphs. By
applying their algorithms directly on the half-skeleton, most skeleton faces would be drawn
convex, but not strictly convex. The most promising approach in this direction would be
to modify the algorithm by Garg and Rusu [24], which uses a similar approach as we did in
Section 3.3, but “bends” around subgraphs where depth is large. This remains for future
studies.
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All existing sub-quadratic area algorithms for outerplanar graphs have width (or height)
Ω(n) while keeping the other axis small. So, a promising research direction would be to
first focus on the subclass of outerplanar graphs, and attempt to produce o(n2) drawings
so that both the height and the width are sub-linear. Frati conjectured the following:

Conjecture 1 (Frati [22]) There exist n-vertex outerplanar graphs that in any straight-
line drawing in which one dimension is O(n) require ω(log n) in the other dimension.

Although this question is still unresolved for outerplanar graphs, it may be more accessible
for the super-class of o1p graphs. It is interesting that the problem of giving any super-
linear lower bound for outerplanar graphs is still open. Such a lower bound is known for
series-parallel graphs [21], another super-class of outerplanar graphs.

Further, in this thesis we expanded on the techniques from [15] and obtained drawings
of complete o1p graphs in O(n0.63) ·O(n0.63) area. Can the area bound be reduced to O(n)?
Recall that the main reason the resulting area of our approach is super-linear is that we
“recovered” the o1p drawing from the dual binary tree of its half-skeleton, as opposed to
its dual ternary tree. The resulting drawing would in fact be linear if complete o1p graphs
were defined as the o1p graphs whose M(G) half-skeleton is a complete binary tree. Still,
the problem remains open:

Open Problem 2 Is there an algorithm that produces embedding-preserving straight-line
drawings of complete n-vertex o1p graphs in O(n) area?

5.2 Discussion: Orthogonal Drawings

In Chapter 4, we gave an algorithm that produces an orthogonal point-drawing inO(n log n)
area of any maximum degree 4 o1p graph with at most 7 bends per edge. Recall that the
paper that inspired our result, due to Argyriou et al. [2], showed that any o1p graph admits
O(n2) area drawing with at most 3 bends per edge. Can we reduce the maximum number
of bends per edge from 7 to 3 while keeping the area small? To state it precisely:

Open Problem 3 Do n-vertex o1p graphs with degree at most 4 admit embedding-preserving
orthogonal drawings in O(n log n) area so that every edge has at most 6 bends?
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