
Statistical Analysis with Non-probability Survey

Samples

by

Yilin Chen

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Statistics

Waterloo, Ontario, Canada, 2020

c© Yilin Chen 2020



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: Louis-Paul Rivest

Professor (Université Laval)
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Abstract

The goal of this thesis is to develop inferential procedures with non-probability survey

samples. In recent years, the use of non-probability survey samples has become one of

the most important topics in the area. Contrast to the burdensome process of obtaining

probability samples, non-probability survey samples, empowered by the information tech-

nology, can be acquired through the internet and other convenient measures timely and

efficiently. These prompt and affordable data have facilitated online researches for both

academic and industrial uses.

Nevertheless, non-probability survey samples are biased samples, from which no valid

inferences about the target population can be obtained immediately. A popular tool for

bias correction is the propensity score associated with each unit in the population, which is

defined as the probability of selection conditional on observed auxiliary variables. Propen-

sity scores need to be estimated in practice, but existing estimation methods are mainly

derived on an ad hoc basis. This thesis establishes a general framework for statistical infer-

ences with non-probability survey samples when relevant auxiliary information is available

from a reference probability survey sample. Under this framework, we develop a rigorous

procedure of estimating propensity scores. The main idea of the procedure is to approx-

imate the required but unknown population-level information by its estimate based on

the reference sample. Given the estimated propensity scores, we further present two par-

allel approaches to estimate the finite population mean: the quasi-randomization (QR)

approach and the pseudo-empirical likelihood (PEL) approach.

In Chapter 1, we provide an overview of non-probability survey samples, especially the

recent evolution driven by the information technology. We also briefly discuss commonly

used statistical methods such as QR approach and mass imputation approach, and infer-

ential barriers for non-probability samples. A separate section is dedicated to the PEL

approach, where important concepts such as empirical likelihood, calibration weighting

and model-calibration technique, are briefly discussed.

In Chapter 2, we introduce a two-sample setup, where a probability reference sample
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is adopted in addition to the non-probability sample. Under this two-sample setup, we

propose consistent estimators for propensity scores, which lead to two types of quasi-

randomization based estimators for the finite population mean: the inverse probability

weighted estimator and the doubly robust estimator. Lastly, a comprehensive analysis is

conducted on a real non-probability survey dataset by using our proposed methods.

The pseudo-empirical likelihood approach is considered in Chapter 3. The PEL ap-

proach is comparable to the QR approach, but is motived from an entirely different non-

parametric perspective. We show that the PEL approach often leads to more desirable

results when the sample size is small and/or the population distribution is skewed. The

approach also has flexibility to include additional constraints for double robust or multiple

robust inferences.

Statistical inference with survey samples, no matter probability based or non-

probability based, often relies on a complete sampling frame where every unit has a

non-zero probability to be selected. This assumption, however, is not always met in

practice. Chapter 4 discusses issues with incomplete sampling frames where units have

zero propensity scores and illustrates the danger of applying regular procedures such as

the QR approach when the sampling frame is incomplete. In particular, we describe

two generating mechanisms for incomplete sampling frames, and explore inferential

consequences for regular procedures under the incomplete frames. We also present a

split-population approach to estimate the finite population mean, which provides more

sensible and robust inferential results in the presence of zero propensity scores.

Chapter 5 discusses a few extensions and potential research directions which follow the

current work.
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Chapter 1

Introduction

1.1 Non-probability Survey Samples

Probability sampling methods have become a universally accepted approach in survey

sampling since the seminal paper of Neyman (1934). Design-based inferences for finite

populations using probability survey samples are widely adopted by official statistics and

researchers in areas such as social studies and health sciences where surveys are one of

the primary tools for data collection (Hansen, 1987; Rao, 2005). There exists an exten-

sive literature with continued research activities on probability sampling and design-based

inferences for complex surveys.

The use of non-probability survey samples has a very long history. Quota sampling,

for instance, serves as a cost-effective alternative method to select a survey sample when

one is limited by resources and/or the availability of reliable sampling frames. However,

non-probability sampling methods have never gained true momentum in survey practice of

the 20th century due to the lack of theoretical foundation for statistical inferences under

the conventional design-based framework.

The success of probability sampling has led to more frequent surveys and more am-

bitious research projects that involve long and sophisticated questionnaires and measure-
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ments. Response burden and privacy concerns, along with many other factors, have led to

a dramatic decrease in response rates for almost all surveys. The challenge of low participa-

tion rates and the ever-increasing costs for conducting surveys using probability sampling

methods, coupled with technology advances, has resulted in a shift of paradigm in recent

years for government agencies, research institutions and industrial organizations to seek

other cheaper and quicker alternatives for data collection (Citro, 2014). In particular, a

great deal of attention has been given to non-probability survey samples.

The rise of the web based surveys has reshaped our views on non-probability sampling

in terms of cost-and-time efficiency (Couper, 2000). The most popular type of web surveys

is based on the so-called opt-in panels. These panels consist of volunteers who agreed

to participate and are recruited through various convenient but non-probability methods.

Online research through opt-in panel surveys has become popular in recent years due to its

efficient recruitment process, quick responses, and low maintenance expenses. Tourangeau

et al. (2013) contains many examples for web based surveys.

As much as the excitement brought by these changes, there are serious issues and

major challenges for the use of web surveys and other non-probability survey samples.

Unlike probability survey samples which are often selected by carefully designed sampling

strategies with selection probabilities being fully available, non-probability survey samples

are not governed by any clearly specified sampling schemes. This non-probability based

sampling mechanism leads to selection bias, which makes the direct inferences for the

population impossible. To remove the selection bias and achieve valid inferences with

non-probability survey samples, the existing literature, e.g., Valliant and Dever (2011)

commonly adopts the assumption that an independent probability sample is also available

from the same target population (two-sample setup). This probability sample does not

contain any measurements on study variables, but has some other variables which provide

representative auxiliary information of the population.

Under this two-sample setup, two types of inferential procedures are especially popular

in empirical studies. The first type is the quasi-randomization (QR) approach (see Lee,
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2006; Terhanian and Bremer, 2000; Brick, 2015), where the non-probability survey sam-

ple is viewed as the primary sample while the probability survey sample is regarded as

the reference sample. The most crucial step of this approach is to estimate the propen-

sity scores of individuals in the population, which are defined as the conditional selection

probabilities to the non-probability survey sample given some covariates. Then the non-

probability survey sample can be analyzed in a similar manner to a probability survey

sample, with the inverse of the propensity scores being treated as weights. Similarly to

randomization approach for probability samples, this QR approach is practically appealing

since a single set of weights can be used to estimate a wide range of population param-

eters. Popular estimating methods like inverse probability weighting (IPW) and doubly

robust (DR) estimation both belong to QR approach. The second type of approach is the

mass imputation (MI), under which the probability survey sample is viewed as the primary

sample with responses of study variables being missing for all units. The essential idea of

mass imputation is extracting information from the non-probability survey sample to fill

in missing values of the probability sample. For example, Rivers (2007) and Vavreck and

Rivers (2008) conducted imputation through the nearest neighbours (NN) method, i.e., for

each unit in the probability sample, its missing response is imputed with the response of its

closest neighbour in the non-probability sample. Kim et al. (2018) and Elliott and Valliant

(2017) considered model-based methods by predicting the missing response through regres-

sion modelling. One of the main attractions of the MI approach is that the design-based

nature of the probability survey sample remains intact. These two approaches are further

introduced in Chapter 2.

A variety of issues need to be taken into account when employing either QR or MI

approach. One of the major steps of conducting QR approach is to estimate propensity

scores, but a rigorous estimating procedure is not available from the existing literature.

The failure of estimating propensity scores does not only cause biased inferences, but

fundamentally hinders the theoretical development of the QR approach. Erratic inferential

results is the other danger of using QR approach. QR approach relies on weighting, but

if small propensity scores exist, weights of non-probability samples can get excessively
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large by inverting small propensity scores. As a result of large weights, IPW estimators

and other weight-adjusted estimators under the QR approach can undesirably acquire

massive variances and large finite sample biases. The MI approach also has drawbacks.

NN imputation can be computational expensive when handling data with large dimensions.

Prediction based imputation depends on modelling, and different study variables require

different prediction models. So it is a less unified and productive method compared to the

QR approach.

Besides the above complications, the rudimentary hurdle of applying QR and MI ap-

proach is stemming from the statistical assumptions they rely on. Under the two-sample

setup, several strong assumptions are often adopted for the generating mechanism of the

non-probability sample to achieve inferential validity. For example, it is common to assume

that every unit in the population has a positive propensity score. However, this assump-

tion is hard to meet given the uncontrolled generating process of non-probability survey

samples, and also difficult to check due to the unavailability of the sampling frame. We

discuss these assumptions and related issues in Chapter 2 and Chapter 5.

More high-level discussions and comments of using non-probability survey samples are

available from “Summary Report of the AAPOR Task Force on Non-probability Sampling”

by Baker et al. (2013), which was commissioned by the American Association of Public

Opinion Research (AAPOR) Executive Council. The task force’s conclusions include: (i)

unlike probability sampling, there is no single framework that adequately encompasses all

of non-probability sampling; (ii) making inferences for any probability or non-probability

survey requires some reliance on modeling assumptions; and (iii) if non-probability samples

are to gain wider acceptance among survey researchers there must be a more coherent

framework and accompanying set of measures for evaluating their quality.
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1.2 Pseudo-empirical Likelihood Method for Survey

Data

Analysis of non-probability survey samples and probability survey samples both belong to

inferential problems for finite populations so it is appealing to adapt existing inferential

procedures from the probability survey sample context to solve problems in non-probability

survey samples. In this thesis, we apply pseudo-empirical likelihood (PEL) approach, which

was developed for probability survey samples originally, to our current research problem.

In survey data analysis, how to take advantage of auxiliary information is a frequently

visited problem. In particular, a variety of approaches have been derived to utilize aux-

iliary information such that efficiency of estimating population means and totals can be

improved for study variables. One of the earliest solutions is generalized regression (GREG)

estimators (Cassel et al., 1976; Särndal, 1980), which incorporates auxiliary information

by adding an augmentation component to a Horvitz-Thompson (HT) or Hájek estimator.

GREG estimators are broadly used since they are easy to compute and the augmenta-

tion component does not effect the design-based consistency of HT or Hájek estimator.

The other influential approach is Deville and Särndal (1992)’s calibration weighting. The

idea of this approach is to obtain a set of weights which satisfies pre-specified calibra-

tion constraints, and also has the minimum discrepancy to design weights with respect

to a pre-specified distance function. Specifically, calibration constraints usually force the

weighted auxiliary variables and some benchmark values to be equal. GREG estimators

can also be derived through calibration weighting with properly specified distance function

and calibration constraints. One of the drawbacks of calibration weighting is the possi-

ble disagreement on the selection of distance functions among researchers. Moreover, some

commonly used distance functions could yield negative weights which are troublesome for a

series of inferential tasks. For example, when estimating the distribution function, negative

weights could lead to counter-intuitive negative estimates.

Another popular approach, PEL approach, is motivated by the empirical likelihood
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method. Empirical likelihood (EL) (Owen, 1988) is a non-parametric analogue of likeli-

hood method, which has many successful applications in the area such as econometrics

(Kitamura, 2007), survival analysis (Zhou, 2015), etc. EL approach is known for a few

attractive features. (1) Compared to parametric based approaches, EL method is data-

driven and less dependent on the assumption of the underlying distribution, so its empirical

performance is usually more robust than its competitors. (2) The general goal of EL ap-

proach is to maximize EL function under a set of user-specified constraints, which means

auxiliary information can be utilized through constraints in a similar way to calibration

weighting. (3) The resulting weights under EL approach are strictly positive, which is a

rather appreciable quality for the current research. (4) EL ratio statistics asymptotically

follow chi-squared distributions under mild conditions, which offer additional solutions

to construct confidence intervals (CI). These EL-ratio-based CIs are range-preserving and

transformation-respecting, which are appealing properties in many practical scenarios. Ex-

tensive study of EL method is available in Owen (2001). Chen and Qin (1993) was one

of the pioneers who extended EL approach to the finite population context, and they

mainly considered the scenario of simple random samples. Later on, Chen and Sitter

(1999) formally proposed PEL approach for probability samples. PEL approach inherits

many appealing characteristics from EL method, and more importantly, it can be applied

to general complex survey data. There are some equivalencies among GREG estimation,

calibration weighting and PEL approach; see Wu and Lu (2016) for more discussions.

In general, efficiency gain can be achieved by these three approaches if there is a linear

relation between the study variable and auxiliary variables. But efficiency may not be

improved if other complex relations, besides linear relation exist between them. Wu and

Sitter (2001) proposed to use model-calibrated constraints under the calibration weighting

and PEL approach. The basic idea is to build a prediction model between the response

variable and auxiliary variables first, and then constructing constraints which calibrate

over the fitted values of the obtained model, as opposed to calibration on auxiliary vari-

ables directly. The advantage of this technique is its compatibility with more general

relations between the response variable and its predictors. In Chapter 3, we demonstrate
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the inferential procedure with non-probability survey samples by using PEL approach and

model-calibration technique.

1.3 Outline of the Thesis

In the current society where information is becoming the most valuable resource, we can

foresee that the use of web based survey samples and other non-probability samples would

only grow wider and faster. It is urgent for us to advance in the theoretical development

of non-probability survey samples to keep up with this unstoppable trend. Under this

primary goal, our thesis mainly focuses on three aspects of non-probability survey sam-

ples: the establishment of a coherent inferential framework, the development of inferential

procedures, and the investigation of practical issues.

In particular, the thesis is built towards a very specific task, the estimation of finite

population means. As simple as it seems, this task is a thought-provoking starting point

which motives us to: (1) establish a general framework for statistical inferences with non-

probability survey samples, (2) develop inferential procedures which can be extended to

other finite population parameters, and (3) identify general inferential barriers with non-

probability survey samples. The following four chapters are composed to achieve this task

from different angles.

In Chapter 2, we first define the two-sample setup which is considered throughout

the thesis, and postulate a few assumptions which are critical for the inference with non-

probability samples. We then discuss the estimation of propensity scores in great detail,

which is considered as a key step of the QR approach. While the existing solutions are

mainly ad hoc, we propose a rigorous procedure of estimating propensity scores in Section

2.3. Not only does our procedure lead to valid IPW and DR estimators given in Section

2.4, but also makes it possible adopting inferential procedures from other contexts. For

example, achieving double robustness in variance estimation is not straightforward, but we

are able to construct a DR variance estimator (see Section 2.5) based on Kim and Haziza
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(2014)’s technique, which was originally derived for the general missing data problem.

This adoption is unavailable without our proposed procedure. In Section 2.7, we apply

the proposed procedure to a non-probability survey sample collected by the Pew Research

Center, with auxiliary information from the Behavioral Risk Factor Surveillance System

survey and the prestigious Current Population Survey. This real data application shows

our method is easy to use and capable of removing selection bias.

In Chapter 3, we propose a different strategy, the PEL approach, to estimate the finite

population mean. We show that consistent point estimators are obtainable under the

PEL approach; and by utilizing auxiliary information through model-calibrated constraint,

the obtained point estimators could also acquire double robustness property (see Section

3.2.1). In addition, doubly robust inference under PEL approach can be easily extended

to multiple robustness by simple modifications (see Section 3.4). We illustrate two types

of PEL-ratio-based CIs in Section 3.2.2. One method is based on the limiting distribution

of the adjusted PEL ratio statistics (Wu and Rao, 2006), and the other is derived from

the bootstrap-calibrated PEL ratio statistics (Wu and Rao, 2010). These PEL-ratio-based

CIs are generally comparable with typical Wald-type CIs, and have more attractive data-

driven features when the response variable is binary and the parameter of interest is the

finite population proportion. Specifically, they outperform Wald-type CIs with respect to

coverage rates and balance of tail errors under simulated scenarios where the sample size

is small and the population proportion is close to 0 or 1.

To achieve valid inferences, both QR and PEL approach require positive propensity

scores for every unit in the population (positivity assumption). However, positivity, as a

strong assumption, often fails to hold in practice (positivity violation), and the failure of the

positivity assumption would cause the incomplete sampling frame. Incomplete sampling

frames usually refer to the scenarios where the sample is drawn from the partial popula-

tion according to some randomization mechanism, with the rest of the population being

excluded from the process. It is a severe issue for both probability and non-probability sur-

vey samples since the uncovered population by the sampling frame may not be represented

in the sample. To the best of our knowledge, most of existing inferential procedures in

8



the current context are derived under the positivity assumption and a complete sampling

frame, but the violation of these assumptions is merely investigated. In Chapter 4, we are

filling in this research gap by examining two generating mechanisms for incomplete frames

(see Section 4.1) and investigating several methods which can potentially deal with the

positivity violation (see Section 4.2). Moreover, to mitigate the danger of ignoring zero

propensity scores, we recommend a split-population approach in Section 4.3. Under this

approach, the target population is viewed as the union of two subpopulations, one consist-

ing of units with zero propensity scores and the other containing the rest. Then based on

the ratio and characteristics of two subpopulations, proper inferential procedures for the

target population can be chosen sensibly and flexibly.

In Chapter 5, we first summarize the work we have done in the thesis, then briefly

explore some potential extensions based on our current work, and lastly provide the general

outlook of non-probability survey samples.
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Chapter 2

Inference for Non-probability

Samples

2.1 Setup and Notation

Let U = {1,2, · · · ,N} represent the set of N units for the finite population, with N being

the population size. Associated with unit i are values of the k-dimensional vector of

auxiliary variables xi, and the value yi for the response variable y, i = 1, 2, · · · , N . Under

the design-based framework, the set of finite population values FN = {(xi,yi),i ∈ U} is

viewed as fixed. Let µy = N−1
∑

N

i=1 yi be the finite population mean for the response

variable, and our goal is to estimate µy.

Consider a non-probability sample SA consisting of nA units from the finite population.

Let {(xi,yi),i ∈ SA} be the dataset from the non-probability sample. Let Ri = I(i ∈ SA)

be the indicator variable for unit i being included in the sample SA, i.e., Ri = 1 if i ∈ SA
and Ri = 0 if i /∈ SA, i = 1,2, · · · ,N . Then the conditional selection probability for unit i

given xi and yi is computed as

πAi = Eq(Ri | xi, yi) = P (Ri = 1 | xi, yi) , i = 1,2, · · · ,N ,
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where subscript q indicates that the operator is taken under the selection mechanism for

sample SA. The value of πAi is the so-called propensity score (Rubin, 1976), which is usually

unknown in practice and need to be estimated.

The selection mechanism is called ignorable if πAi = P (Ri = 1 | xi, yi) = P (Ri =

1 | xi), i = 1,2, · · · ,N . This is referred to as ignorability condition, which corresponds to

missing at random (MAR) as defined by Rubin (1976). Ignorability condition simplifies

the estimation of propensity scores by requiring no measurements of missing values of the

response variable. If a selection mechanism is non-ignorable, then estimating propensity

scores is very challenging or can be even impossible (see Little and Rubin, 2002; Kim and

Shao, 2013). More formally, we assume that the selection mechanism for sample SA satisfies

the following assumptions.

A1 The selection indicator Ri and the response variable yi are independent given the

set of covariates xi.

A2 All units have a non-zero propensity score, i.e., πAi > 0 for all i.

A3 The indicator variables Ri and Rj are independent given xi and xj for i 6= j.

As pointed out by Rivers (2007), the term “ignorable” is an unfortunate choice of ter-

minology for the missing data and causal inference literature, since it certainly cannot be

ignored by the analyst. Similarly, the term “missing at random” should not be confused

with “randomly missing”. Assumption A1 means that covariates xi is a set of confounding

variables which fully captures the relation between the selection mechanism and the re-

sponse variable, and there is no other unmeasured confounding variables. Assumption A2

is often referred to as positivity assumption, and it cannot be satisfied by scenarios where

certain units will for sure not be included in the sample. This is a rather complicated issue

which we further explore in Chapter 4. Assumptions A1 and A2 together is the strong

ignorability condition as discussed by Rosenbaum and Rubin (1983), which directly implies

igonorability condition. From now on, we assume that Assumptions A1–A3 always hold

until Chapter 4 where some assumptions are relaxed for the further investigation.
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The propensity scores πAi cannot be estimated from the sample SA itself, and informa-

tion on the rest of the finite population is required. So we adopt the assumption that a

reference probability sample, denoted as SB, is also available from the target population.

Let {(xi,dBi ), i ∈ SB} be the data from the reference probability sample, where dBi = 1/πBi

are the survey weights and πBi = P (i ∈ SB) are the inclusion probabilities under the prob-

ability sampling design for the sample SB. Note that the response variable y is not part of

the dataset for the reference sample.

It is usually assumed that reference sample SB is relatively inexpensive and easy to

obtain from existing data sources, otherwise the purpose of using non-probability survey

samples is defeated. If covariates x are some typical items in surveys, such as demographic

variables, then it is not hard to find some existing census or probability survey samples

which contain measurements of x. This type of sample SB is the most ideal reference sample

since it is subject to no extra cost. If no existing sample is suitable to use, one can consider

drawing a small-size probability based sample as sample SB. In contrast with conventional

probability samples, a reference probability sample SB does not require information of the

response variable, which means it can be collected more easily and timely. This is a major

advantage especially when y is some sensitive item, such as income, health condition, etc.

Due to these merits, this two-sample setup is considered in a growing volume of literature

recently, e.g., Zhang (2019), Rafei et al. (2020), etc.

2.2 Mass Imputation and Quasi-randomization Ap-

proach

In the existing literature, a variety of statistical methods have been developed to estimate

finite population means with non-probability survey samples. We mainly focus on the mass

imputation and quasi-randomization approach, which together encompass a wide range of

popular methods. For other relevant statistical methods, one may refer to Yang and Kim

(2020) for a detailed and up-to-date review.
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2.2.1 Mass imputation approach

Mass imputation is a conventional approach to deal with missing values in survey data

(see Chen and Shao, 2000; Kim and Rao, 2012; Yang and Kim, 2018). In this section, we

discuss its extensions to the current two-sample setup.

Compared to non-probability survey samples, probability survey samples better rep-

resent the target population. This motivates analysts to treat sample SB as the primary

sample with missingness on response y. Sample SA here serves as auxiliary dataset to help

fill in missing y values of sample SB. Let ŷi denote the imputed value for unit i ∈ SB, then

based on the imputed sample SB and the survey weights dBi , we can construct the following

estimator of parameter µy,

µ̂MI =
1

N̂B

∑
i∈SB

dBi ŷi,

where N̂B =
∑

i∈SB d
B
i . Estimator µ̂MI with the estimated population count N̂B is a well-

known Hájek estimator and is preferred to use in practice even if N is known. If N̂B is

replaced by the true N , then the estimator becomes a HT-type estimator. Särndal et al.

(1992) discussed several scenarios where Hájek estimators are likely to outperform the

counterpart HT estimators.

The imputed value ŷi can be obtained through different procedures. For instance, Rivers

(2007) investigated a non-parametric procedure, the nearest neighbour (NN) imputation.

Specifically, the imputation value is given by ŷi = yj for unit i ∈ SB, where j ∈ SA and

its associated value xj minimizes the distance ‖xk − xi‖ for all k ∈ SA. In other words,

each missing yi for i ∈ SB is imputed with an observed yj for some j ∈ SA. We denote the

estimator of µy under the NN imputation by µ̂NN . The NN imputation is a specific form

of the so-called donor imputation. In addition to being non-parametric, it can be used to

impute a vector of survey variables, which would preserve the distributions of the variables

or the relationships among the variables.

Model-based prediction approach has also been explored for inferences with non-

probability samples. Suppose that the finite population {(xi,yi),i ∈ U} can be viewed as
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a random sample from the model

yi = m(xi) + εi , i = 1,2, · · · , (2.2.1)

where m(xi) = Eξ(yi | xi), and the subscript ξ indicates that the operator is taken under

the conditional distribution of y. Model m(xi) is called prediction model or outcome

regression model, which can take a parametric form such as m(xi) = xᵀ
iβ or an unspecified

non-parametric form. The error terms εi are independent with Eξ(εi) = 0 and V arξ(εi) =

v(xi)σ
2. The variance function v(xi) has a known form, and the homogeneous variance

structure with v(xi) = 1 might be used for certain applications.

Under Assumptions A1 and A2, we have Eξ(yi | xi, Ri = 1) = Eξ(yi | xi) = m(xi)

for every xi, which means the dataset {(xi,yi), i ∈ SA} from the non-probability sample

can be used to build the model (2.2.1). For example, for the linear regression model where

m(xi) = xᵀ
iβ and v(xi) = 1, the least square estimator of β is given by

β̂ls =
( N∑
i=1

Rixix
ᵀ
i

)−1( N∑
i=1

Rixiyi

)
=
(∑
i∈SA

xix
ᵀ
i

)−1(∑
i∈SA

xiyi

)
,

and the predicted value for yi with associated xi is given by ŷi = xᵀ
i β̂ls. Similarly, for any

general regression model m(x,β), we have the predicted value ŷi = m(xi,β̂) for i ∈ SB,

with β̂ being the estimated model parameters based on {(xi,yi), i ∈ SA}. If imputing

missing yi for i ∈ SB with their corresponding predicted value ŷi, then we obtain the

following regression-type estimator,

µ̂REG =
1

N̂B

∑
i∈SB

dBi m(xi,β̂).

Estimator µ̂REG is approximately unbiased under the joint framework of the prediction

model and the probability sampling design for SB. The regression prediction estimator

µ̂REG tends to perform well if the model yi = m(xi)+εi has strong prediction power (Kang

and Schafer, 2007). More discussions about this approach are available in Kim et al. (2018).
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2.2.2 Quasi-randomization approach

The barrier of utilizing sample SA is the intrinsic selection bias inherited from non-

probability sampling. This bias nevertheless can be potentially removed if sample

SA is adjusted by the propensity scores. Specifically, under Assumptions A1–A3, a

representative dataset is given by {(xi,yi, 1/πAi ), i ∈ SA}, with 1/πAi being treated as the

survey weights. Weighted sample SA can be viewed as an analogue of weighted probability

survey data, and sequentially, many design-based statistical methods can be naturally

extended to SA. But unlike probability samples where survey weights are accessible as

part of the design, weights of sample SA are always estimated in practice due to the

unavailability of the true propensity scores πAi . This major difference is reflected on the

name “quasi”-randomization approach (Kott, 1994), or “pseudo” design-based approach,

which contrasts with conventional randomization theory and design-based inferences

under the probability sampling design.

Estimating propensity scores is obviously a crucial step in the QR approach. Under

the two-sample setup defined in Section 2.1, a few estimating procedures are suggested in

the existing literature. However, we notice that these procedures are either ad hoc based,

or dependent on stronger assumptions than what we postulate here.

For instance, the approach described in Lee (2006), Isaksson and Forsman (2003) and

Lee and Valliant (2009) attempted to estimate π̃Ai = P (R̃i = 1 | xi), where R̃i = 1 if

i ∈ SA and R̃i = 0 if i ∈ SB. The estimation of π̃Ai is carried out through binary regression

model like logistic regression model based on the pooled sample SAB = SA ∪ SB. It is

obvious that π̃Ai is not the same as the true propensity score πAi , and pooling the two

samples SA and SB together in such a way does not provide required information for the

estimation. Valliant and Dever (2011) considered a weighted logistic regression procedure

to estimate π̃Ai . For each unit i ∈ SAB, the pooled weight di is defined as di = 1 if i ∈ SA,

and di = dBi (1 − nA/N̂B) if i ∈ SB. Compared to the first unweighted approach, pooled

sample SAB now are weighted up to the N̂B, which is the approximated total count of the

population. Including weights in the estimation is obviously a substantial improvement,
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but we show in Section 2.3 that this procedure is only valid under very limited scenarios.

There are other estimating procedures for propensity scores which are derived under

extra assumptions. For instance, Elliott and Valliant (2017) proposed a “pseudo-weights”

method, which is valid if sampling fractions for both SA and SB are small. Kim and Wang

(2019) assumed that the selection indicator Ri of sample SA can be observed in sample SB,

and πAi can be estimated based on the data {(Ri,xi, d
B
i ), i ∈ SB}.

Once πAi are estimated, SA can be viewed as a sample obtained by the Poisson sampling

under Assumption A3, with the probabilities of selection being specified by the estimated

propensity scores. As a result, various statistical procedures derived under the design-

based framework can be used to make inferences with sample SA. But one may need to be

cautious about the additional variation resulted from estimating πAi , especially when doing

variance estimation. The estimation of means and totals under the QR approach will be

discussed in great depth in the following section.

2.3 Estimation of Propensity Scores

Consider the hypothetical situation where xi is observed for all units in the finite popu-

lation U while yi is only observed for the non-probability sample SA. Estimation of the

propensity scores under this scenario becomes the standard MAR problem with observa-

tions {(Ri, Riyi,xi), i = 1,2, · · · ,N}. Suppose that the propensity scores can be modelled

parametrically as πAi = P (Ri = 1 | xi) = π(xi,θ0), where θ0 is the true value of the

unknown model parameters. The maximum likelihood estimator of πAi is computed as

π(xi,θ̂), where θ̂ maximizes the log-likelihood function

l(θ) =
N∑
i=1

{
Ri log πAi + (1−Ri) log (1− πAi )

}
=

∑
i∈SA

log

{
π(xi,θ)

1− π(xi,θ)

}
+

N∑
i=1

log
{

1− π(xi,θ)
}
. (2.3.2)
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However, the log-likelihood function specified in (2.3.2) cannot be used in practice since

we do not observe xi for all units in the finite population. This is where we need the

reference probability sample SB with information on x. Instead of using l(θ), we compute

the estimator by maximizing the following pseudo log-likelihood function

l∗(θ) =
∑
i∈SA

log

{
π(xi,θ)

1− π(xi,θ)

}
+
∑
i∈SB

dBi log
{

1− π(xi,θ)
}
, (2.3.3)

where the population total
∑

N

i=1 log{1− π(xi,θ)} in l(θ) is replaced by the HT estimator∑
i∈SB d

B
i log{1− π(xi,θ)} using the reference sample SB.

Under a logistic regression model for the propensity scores where πAi = π(xi,θ0) =

exp (xᵀ
i θ0)/{1 + exp (xᵀ

i θ0)}, the pseudo log-likelihood function (2.3.3) becomes

l∗(θ) =
∑
i∈SA

xᵀ
i θ −

∑
i∈SB

dBi log
{

1 + exp (xᵀ
i θ)
}
.

The maximum pseudo likelihood estimator, denoted by θ̂ml, can be obtained by solving

the score equations U(θ) = 0 where

U(θ) =
∂

∂θ
l∗(θ) =

∑
i∈SA

xi −
∑
i∈SB

dBi π(xi,θ)xi . (2.3.4)

Note that the intercept term is suppressed in the estimating equation for notational simplic-

ity. The solution can be found by using the following Newton-Raphson iterative procedure

θ(m+1) = θ(m) +
{
H(θ(m))

}−1

U(θ(m)) ,

where H(θ) =
∑

i∈SB d
B
i π(xi,θ){1 − π(xi,θ)}xixᵀ

i and the initial value for the iteration

can be chosen as θ(0) = 0.

We notice that Valliant and Dever (2011)’s weighted logistic regression procedure leads
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to the following log-likelihood function,

l∗(θ) +
∑
i∈SA

log(1− πAi )− nA

N̂B

∑
i∈SB

dBi log(1− πAi ) , (2.3.5)

where the first term l∗(θ) is the pseudo log-likelihood function given in (2.3.3). Obviously,

the resulting estimating equations are not approximately unbiased unless SA is a simple

random sample from the population or its sampling fraction is negligibly small. The

procedure in general does not lead to a consistent estimator for θ0.

Besides from likelihood methods, alternative estimators for propensity scores can be

derived with the method of estimating equations. Consider the following class of estimating

equations,
N∑
i=1

Rih(xi,θ)−
N∑
i=1

π(xi,θ)h(xi,θ) = 0, (2.3.6)

where h(xi,θ) is a pre-specified smooth function of θ which ensures that the equation

system (2.3.6) has a unique solution. The equation system (2.3.6) was previously considered

by Beaumont (2005) and Kim and Kim (2007). Under the current setting, we replace∑
N

i=1 π(xi,θ)h(xi,θ) in (2.3.6) by
∑

i∈SB d
B
i π(xi,θ)h(xi,θ), which leads to the class of

solvable estimating equations,

∑
i∈SA

h(xi,θ)−
∑
i∈SB

dBi π(xi,θ)h(xi,θ) = 0 . (2.3.7)

The maximum pseudo likelihood estimator θ̂ml can be obtained from (2.3.7) by taking

h(xi,θ) = xi. Another natural choice is h(xi,θ) = π(xi,θ)−1xi, where the system (2.3.6)

becomes the conventional calibration type equations

∑
i∈SA

xi
π(xi,θ)

=
N∑
i=1

xi . (2.3.8)

If the population totals
∑

N

i=1 xi are available from external sources, an estimator for θ0
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can be obtained immediately and does not require a probability sample. Kim and Riddles

(2012) showed that, among the class of estimating equations (2.3.6), the choice h(xi,θ) =

π(xi,θ)−1xi leads to the optimal estimation when a linear regression model holds for y

given x. Wu and Sitter (2001) and Wu (2003) contain detailed discussions on the efficiency

of conventional calibration estimation and its relation to linear regression models.

Our proposed estimation procedure with two samples can be viewed as a data combi-

nation problem. Semiparametric models are one of the most widely used approaches to

handle this type of problems; see, for instance, Chen et al. (2008), Graham et al. (2016) and

Shu and Tan (2020). Standard semiparametric methods, however, are not applicable to the

setting of the thesis, since the non-probability sample and the probability sample cannot

be linked directly. It requires a joint randomization framework, which combines semipara-

metric models for the propensity scores and the outcome regression for the non-probability

sample, and the design-based inference for finite populations from the probability sam-

ple. The similarities and differences between the current setting and other combining data

problems are further highlighted in Section 2.5 on variance estimation, where two distinct

variance components are involved, one from the semiparametric models and the other from

the probability sample involving the variance of the survey weighted HT estimator.

2.4 Estimation of Finite Population Means

2.4.1 Inverse probability weighted estimators

The inverse probability weighted estimator is the most successful adoption of the HT

estimator for missing data problems and causal inferences. The HT estimator was originally

proposed by Horvitz and Thompson (1952) for a finite population with probability survey

samples where the weights are determined by the sampling design. The IPW estimator,

however, requires modelling on the propensity scores and its use in the survey context is

referred to as the quasi-randomization approach or pseudo design-based approach.
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For brevity, let πi(θ) = π(xi,θ) for some θ. Then the estimated propensity scores

based on the maximum pseudo likelihood estimator θ̂ml is computed as πi(θ̂ml) for i ∈ SA,

which gives following two types of IPW estimators for the population mean µy, depending

on whether the population size N is known or not:

µ̂IPW1 =
1

N

∑
i∈SA

yi

πi(θ̂ml)
and µ̂IPW2 =

1

N̂A

∑
i∈SA

yi

πi(θ̂ml)
, (2.4.9)

where N̂A =
∑

i∈SA 1/πi(θ̂ml). The estimator µ̂IPW1 can be viewed as a HT-type estimator

while µ̂IPW2 can be viewed as a Hájek-type estimator. For the further theoretical devel-

opment of the proposed estimators, we consider the asymptotic framework described in

Section 2.9. Moreover, the properties of the IPW estimators, summarized in Theorem 2.1,

are developed under both the model for the propensity scores and the survey design for

the probability sample SB. Proof of the theorem is given in Section 2.9.

Theorem 2.1. Under regularity conditions C1–C4 specified in Section 2.9 and assuming

the logistic regression model for the propensity scores, we have µ̂IPW1 − µy = Op(n
−1/2
A ),

µ̂IPW2−µy = Op(n
−1/2
A ), V ar(µ̂IPW1) = VIPW1 + o(n−1

A ), V ar(µ̂IPW2) = VIPW2 + o(n−1
A ), with

VIPW1 =
1

N2

N∑
i=1

(1− πAi )πAi

(
yi
πAi
− aᵀ

1xi

)2

+ aᵀ
1Da1 , (2.4.10)

VIPW2 =
1

N2

N∑
i=1

(1− πAi )πAi

(
yi − µy
πAi

− aᵀ
2xi

)2

+ aᵀ
2Da2 , (2.4.11)

where aᵀ
1 =

{∑N
i=1(1− πAi )yix

ᵀ
i

}{∑N
i=1 π

A
i (1 − πAi )xix

ᵀ
i

}−1
, aᵀ

2 =
{∑N

i=1(1 − πAi )(yi −
µy)x

ᵀ
i

}{∑N
i=1 π

A
i (1 − πAi )xix

ᵀ
i

}−1
, and D = N−2Vp

(∑
i∈SB d

B
i π

A
i xi
)
, where Vp(·) denotes

the design-based variance under the probability sampling design for SB.

Under slightly tightened conditions for the propensity score model and the survey design

on the sample SB where both N−1
∑

N

i=1 Rixi and N−1
∑

i∈SB d
B
i π

A
i xi are asymptotically

normally distributed, we have that both (VIPW1)
−1/2(µ̂IPW1−µy) and (VIPW2)

−1/2(µ̂IPW2−µy)
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converge to the standard normal distribution N(0,1).

2.4.2 Doubly robust estimators

The IPW estimators are sensitive to model misspecifications, especially when certain units

have very small values in the estimated propensity scores. See, for instance, Tan (2007)

for further discussions. The efficiency and the robustness of IPW estimators can be im-

proved by incorporating a prediction model for the response variable. Robins et al. (1994)

identified a class of augmented inverse probability weighted (AIPW) estimators under the

two-model framework, and showed the improved efficiency of AIPW estimators over the

IPW estimators when both models are correct. Scharfstein et al. (1999) further noticed

that this class of AIPW estimators remains consistent as long as one of the two models is

correctly specified. This is the so-called double robustness property that is widely studied

in the recent literature on missing data problems.

Consider parametric model Eξ(y | x) = m(x,β0) for the response y given the x, where

β0 is the true model parameter. For notational convenience, we let mi(β) = m(xi,β) for

some β. Then the typical form of doubly robust estimators for µy is given by

µ̂DR =
1

N

N∑
i=1

Ri

{
yi −mi(β̂)

}
πi(θ̂)

+
1

N

N∑
i=1

mi(β̂) , (2.4.12)

where θ̂ and β̂ are some estimators of parameters θ0 and β0 under each of the two models.

In particular, due to ignorability condition, β̂ can be easily obtained by the method such as

least square and maximum likelihood estimation with data of sample SA only (see Section

2.2.1). The estimator µ̂DR given by (2.4.12) is identical to the model-assisted “generalized

difference estimator” discussed in Wu and Sitter (2001) under scenarios where the complete

auxiliary information {x1, · · · ,xN} is available. Our proposed DR estimator for µy under
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the current setting is given by

µ̂DR1 =
1

N

∑
i∈SA

dAi
{
yi −mi(β̂)

}
+

1

N

∑
i∈SB

dBi mi(β̂) , (2.4.13)

where dAi = 1/πi(θ̂ml). An alternative estimator using the estimated population size is

given by

µ̂DR2 =
1

N̂A

∑
i∈SA

dAi
{
yi −mi(β̂)

}
+

1

N̂B

∑
i∈SB

dBi mi(β̂) , (2.4.14)

and estimator µ̂DR2 can be viewed as the sum of two Hájek estimators.

The development of theoretical properties of µ̂DR1 and µ̂DR2 requires a joint randomiza-

tion framework involving the propensity score model for SA, the outcome regression model

ξ, and the probability sampling design for SB. We allow model misspecification and assume

that β̂ = β∗ + Op(n
−1/2
A ) for some fixed β∗. The value of β∗ is the same as the true pa-

rameter β0 when the regression model is correctly specified but has no practical meanings

otherwise. An important feature of estimators µ̂DR1 and µ̂DR2 is that variation induced by

estimating β0 does not have any impact on asymptotic variances. Formally, we define µ̃DR1

and µ̃DR2 by replacing β̂ with β∗ in µ̂DR1 and µ̂DR2 respectively. Under correctly specified

propensity score model, we have µ̃DR1 = µ̂DR1 + op(n
− 1

2
A ) and µ̃DR2 = µ̂DR2 + op(n

− 1
2

A ), which

further means that V ar(µ̂DR1) is asymptotically equivalent to V ar(µ̃DR1), and V ar(µ̂DR2)

is asymptotically equivalent to V ar(µ̃DR2). Justification can be found in the proof of The-

orem 2.2 in Section 2.9. Similarly, we assume that θ̂ml = θ∗+Op(n
−1/2
A ) for some fixed θ∗,

which is not necessarily equal to θ0 when the propensity score model is misspecified.

We consider the logistic regression model for the propensity scores and focus on the

practically useful estimator µ̂DR2 in the following theorem.

Theorem 2.2. The estimator µ̂DR2 is doubly robust in the sense that it is a consistent

estimator of µy if either the propensity score model or the outcome regression model is

correctly specified. Furthermore, under the regularity conditions C1–C6 specified in Section

2.9 and the correctly specified logistic regression model for the propensity scores, we have
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V ar
(
µ̂DR2

)
= VDR2 + o(n−1

A ) where

VDR2 =
1

N2

N∑
i=1

(1− πAi )πAi
[
{yi −mi(β

∗)− hN}/πAi − aᵀ
3xi
]2

+W1 , (2.4.15)

where aᵀ
3 =

[∑N
i=1(1 − πAi )

{
yi − mi(β

∗) − hN
}
xᵀ
i

]{∑N
i=1 π

A
i (1 − πAi )xix

ᵀ
i

}−1
,

hN = N−1
∑N

i=1

{
yi − mi(β

∗)
}

, and W1 = N−2Vp
(∑

i∈SB d
B
i ti
)

is the design-based

variance with ti = πAi x
ᵀ
i a3 +mi(β

∗)−N−1
∑N

i=1mi(β
∗).

The comparison of efficiency between IPW estimators and DR estimators is not a

straightforward topic and has been studied extensively in the missing data literature. See,

for instance, Robins et al. (1994), Tan (2007), Cao et al. (2009), among others. The DR

estimators are constructed through the residual variable ei = yi−m(xi,β) and usually has

smaller variance if the regression model provides a good fit to the non-probability survey

data.

2.5 Variance Estimation

The asymptotic variance formulas presented in Section 2.4 provide a simple plug-in method

for variance estimation. However, the asymptotic variance formulas for the DR estimators

are derived under the assumption that the model for propensity scores is correctly specified.

The plug-in variance estimator becomes inconsistent when the propensity score model

is misspecified. The doubly robust variance estimation technique proposed by Kim and

Haziza (2014) is a preferred approach and can be implemented under the current context.

2.5.1 Plug-in variance estimators

We show the details of the plug-in variance estimator for the IPW estimator µ̂IPW2. Using

the asymptotic variance formula (2.4.11) presented in Theorem 2.1, the first component
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N−2
∑N

i=1(1− πAi )πAi
{

(yi − µy)/πAi − aᵀ
2xi
}2

can be consistently estimated by

1

N2

∑
i∈SA

{1− πi(θ̂ml)}
{
yi − µ̂IPW2

πi(θ̂ml)
− âᵀ

2xi

}2

,

where N might be replaced by N̂A if necessary, and

âᵀ
2 =

[∑
i∈SA

{
1/πi(θ̂ml)− 1

}
(yi − µ̂IPW2)x

ᵀ
i

][∑
i∈SB

dBi πi(θ̂ml){1− πi(θ̂ml)}xix
ᵀ
i

]−1

.

The second piece aᵀ
2Da2 can be estimated by âᵀ

2D̂â2, where D̂ is the design-based variance

estimator and is given by

D̂ =
1

N2

∑
i∈SB

∑
j∈SB

πBij − πBi πBj
πBij

πi(θ̂ml)

πBi

πj(θ̂ml)

πBj
xix

ᵀ
j ,

where πBi and πBij are the first and second order inclusion probabilities for the probability

sample SB. For certain sampling designs, determining the second order inclusion probabil-

ities πBij can incur theoretical or computational complexity. If so, approximate estimators

for the design-based variance D are available from the survey sampling literature such as

Berger (2004) and Brewer and Donadio (2003).

When the propensity score model is valid, a plug-in variance estimator for the DR

estimator µ̂DR2 can be similarly constructed based on the asymptotic variance formula

VDR2 presented in Theorem 2.2.

2.5.2 Doubly robust variance estimators

Let Eq, Eξ, Ep, Vq, Vξ and Vp denote the expectation and variance under the propensity

score model q, the outcome regression model ξ, and the probability sampling design p for

SB, respectively. We have Eq(Ri | xi) = π(xi,θ0) and Vq(Ri | xi) = π(xi,θ0){1−π(xi,θ0)}.
We also have Eξ(yi | xi) = m(xi,β0) and Vξ(yi | xi) = v(xi)σ

2.
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The concept of DR variance estimation is appealing and has been discussed by several

authors, including Haziza and Rao (2006) and Kim and Park (2006). The variance esti-

mator is doubly robust if it is approximately unbiased for the variance of the DR point

estimator when one of the models q or ξ is correctly specified. The uncertainty of not

knowing which of the two models is valid for DR estimators presents a real challenge for

variance estimation. In this section, we illustrate how to implement the method proposed

by Kim and Haziza (2014) under the current setting of non-probability survey samples.

Firstly, compute the following DR point estimator which is different from µ̂DR1 and µ̂DR2,

µ̂KH =
1

N

N∑
i=1

Ri

{
yi −mi(β̂kh)

}
πi(θ̂kh)

+
1

N

∑
i∈SB

dBi mi(β̂kh) , (2.5.16)

where the subscript “KH” indicates Kim and Haziza (2014)’s method. The form of this

estimator is identical to µ̂DR1 given in (2.4.13). However, instead of estimating θ0 and

β0 separately using the propensity score model and the regression model, estimated model

parameters (θ̂kh, β̂kh) are obtained by solving the following system of estimating equations:

1

N

N∑
i=1

Riπ̇i(θ)

{πi(θ)}2

{
yi −mi(β)

}
= 0 , (2.5.17)

1

N

N∑
i=1

Ri

πi(θ)
ṁi(β)− 1

N

∑
i∈SB

dBi ṁi(β) = 0 , (2.5.18)

where π̇i(θ) = ∂π(xi,θ)/∂θ and ṁi(β) = ∂m(xi,β)/∂β. And to keep simplicity, we assume

that β∗ and θ∗ are also the limits of β̂kh and θ̂kh respectively.

There are two major consequences from this approach. The first is the asymptotic

expansion of µ̂KH given by

µ̂KH − µy =
1

N

N∑
i=1

{ Ri

πi(θ
∗)
− 1
}{

yi −mi(β
∗)
}

+
1

N

∑
i∈SB

dBi mi(β
∗)
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− 1

N

N∑
i=1

mi(β
∗) + op(n

−1/2
A ) . (2.5.19)

The second consequence is the construction of a variance estimator which is approximately

unbiased under the joint randomization involving either q or ξ (but not both), and the

sampling design p, as shown below.

We first derive a variance estimator for µ̂KH under the joint randomization of q and p.

It follows from (2.5.19) that Vqp(µ̂KH) = V1 + V2 + o(n−1
A ) where

V1 = Vq

[
1

N

N∑
i=1

{ Ri

πi(θ
∗)
− 1
}{

yi −mi(β
∗)
}]

=
1

N2

N∑
i=1

(1− πAi )πAi
{πi(θ∗)}2

{
yi −mi(β

∗)
}2

,

and V2 = Vp
{
N−1

∑
i∈SB d

B
i mi(β

∗)
}

. The second term V2 is the design-based variance and

can be estimated using standard methods for the sample SB. Let V̂2 be the estimator for

V2. We can estimate the first term V1 by

V̂1 =
1

N2

N∑
i=1

Ri{1− πi(θ̂kh)}
{πi(θ̂kh)}2

{
yi −mi(β̂kh)

}2
. (2.5.20)

The asymptotic variance of µ̂KH under the joint randomization ξ and p is given by

Vξp(µ̂KH − µy) = K1 + V2 + o(n−1
A ), where V2 is the same design-based variance as defined

in Vqp(µ̂KH) and

K1 = Vξ

[
1

N

N∑
i=1

{ Ri

πi(θ
∗)
− 1
}{

yi −mi(β
∗)
}]

=
1

N2

N∑
i=1

{ Ri

πi(θ
∗)
− 1
}2

σ2
i ,

where σ2
i = Vξ(yi | xi) = v(xi)σ

2. It is apparent that V̂1 is not a valid estimator for K1

under the model ξ, and the bias is given by

Eξ
(
V̂1

)
−K1 =

1

N2

N∑
i=1

{ Ri

πi(θ
∗)
− 1
}
σ2
i + o(n−1

A ) .
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An important observation is that the bias is non-negligible under the outcome regression

model ξ but the expectation of the leading term in the bias under the propensity score

model q is approximately zero. This leads to the following DR variance estimator for µ̂KH,

vKH = V̂1 + V̂2 −
1

N2

{∑
i∈SA

σ̂2
i

πi(θ̂kh)
−
∑
i∈SB

dBi σ̂
2
i

}
,

where σ̂2
i is the estimator of σ2

i for i ∈ SA. It should be noted that the variance estimator

vKH has several limitations. First of all, it is derived for the point estimator with known N .

Secondly, it is constructed under the logistic regression model π(xi,θ) = exp (xᵀ
i θ)/{1 +

exp (xᵀ
i θ)} and is not valid if the propensity score model q is specified differently. Lastly,

solutions to the equation system (2.5.17) and (2.5.18) may not exist under certain scenarios.

For example, if the two working models are specified as m(xi,β) = β0 + β1x1i + β2x2i

and π(xi,θ) = exp {θ0 + θ1(x1i + x2i)}/[1 + exp {θ0 + θ1(x1i + x2i)}], then the equations in

(2.5.18) becomes

1

N

N∑
i=1

Ri

πi(θ)
xi =

1

N

∑
i∈SB

dBi xi ,

where xi = (1, xi1, xi2)ᵀ, which is an over-identified system with three equations for θ =

(θ0,θ1) and usually has no solutions. Bootstrap method can be used as an alternative

approach to DR variance estimation. This is explored in the simulation studies reported

in the next section.

2.6 Simulation Studies

Simulation studies consist of three parts. The first part is to compare the proposed proce-

dure of estimating the propensity scores with other existing procedures discussed in Section

2.2.2. The second part is to examine different methods of estimating µy, including naive

sample mean, IPW, regression prediction, and DR estimation. Simulations are specially

designed such that double robustness property of DR estimators can be verified. The last
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part is to evaluate variance estimators developed in the previous section.

To generate finite populations, we consider the following candidate models for the

response variable y,

ξ1 : yi = 1 + 2x1i + 2x2i + 2x3i + σaεi , i = 1,2, · · · ,N ;

ξ2 : yi = 1 + 2x1i + 2x2i + 2x3i + 0.2x4
3i + σbεi , i = 1,2, · · · ,N ;

ξ3 : yi = 1 + 2x1i + 2x2i + 2x3i + 0.5x4
3i + σcεi , i = 1,2, · · · ,N ;

where N = 20,000, x1i = z1i, x2i = z2i + 0.3x1i, x3i = z3i + 0.3(x1i + x2i), with z1i ∼
Bernoulli(0.5), z2i ∼ Uniform(0,2), z3i ∼ N(0,1). The error term εi’s are independently

generated from N(0,1), and values of σa, σb and σc are chosen such that the correlation

coefficient ρ, between y and the linear predictor is controlled at some desirable level for

model ξ1, ξ2 and ξ3 respectively. Higher ρ means higher predicting power of the model.

Three candidate logistic regression models are considered for generating true propensity

scores πAi for the non-probability sample SA,

q1 : log
{
πAi /(1− πAi )

}
= θa + 0.3x1i + 0.3x2i + 0.3x3i , i = 1,2, · · · ,N ;

q2 : log
{
πAi /(1− πAi )

}
= θb + 0.3x1i + 0.3x2i + 0.3x3i + 0.1x2

3i , i = 1,2, · · · ,N ;

q3 : log
{
πAi /(1− πAi )

}
= θc + 0.3x1i + 0.3x2i + 0.3x3i + 0.2x2

3i , i = 1,2, · · · ,N ;

where θa, θb and θc are set such that
∑

N

i=1 π
A
i = nA for model q1, q2 and q3 respectively,

and nA is the target sample size.

We consider seven finite populations based on seven combinations of above candidate

models, i.e., (ξ1,q1), (ξ1,q2), (ξ1,q3), (ξ2,q1), (ξ3,q1), (ξ2,q2) and (ξ3,q3). For example,

when the combination (ξ1,q1) is adopted, then we generate y from model ξ1, and generate

πAi from model q1. In the meanwhile, no matter which population, among the seven, is

used in the analysis, we always consider a simple linear regression m(xi,β) = β0 + β1x1i +

28



β2x2i + β3x3i as the working model for the outcome prediction, and logistic regression

log
[
π(xi,θ)/{1 − π(xi,θ)}

]
= θ0 + θ1x1i + θ2x2i + θ3x3i as the working model for the

propensity scores.

Based on the discrepancy between the true models for finite populations and specified

working models m(xi,β) and π(xi,θ), we can further categorize seven model combina-

tions into four scenarios. (i) Both prediction and propensity score model are correctly

specified, denoted by “TT”; and combination (ξ1,q1) belongs to “TT”; (ii) Prediction

model is correctly specified and propensity score model is misspecified, denoted by “TF”;

and combination (ξ1,q2) and (ξ1,q3) belong to “TF”. (iii) Prediction model is misspeci-

fied and propensity score model is correctly specified, denoted by “FT”; and combination

(ξ2,q1) and (ξ3,q1) belong to “FT”. (iv) Both models are misspecified, denoted by “FF”;

and combination (ξ2,q2) and (ξ3,q3) belong to “FF”. Moreover, according to the coefficient

of covariate x4
3i in the model ξ2 and ξ3, we can view m(xi,β) as a heavier misspecification

for model ξ3 than for model ξ2. Similarly, π(xi,θ) is a heavier misspecification for model

q3 than for model q2.

Once a finite population is generated, we repeatedly draw sample SA and SB from the

population B times. The non-probability sample SA with the target size nA is selected by

the Poisson sampling method with inclusion probabilities specified by πAi . The probability

sample SB with the target size nB is taken by the randomized systematic PPS sampling

method (Goodman and Kish, 1950; Hartley and Rao, 1962) with the inclusion probabilities

πBi proportional to zi = c − x2i. The value of c is chosen to control the variation of the

survey weights such that max zi/min zi = 30.

Our first task is to assess the proposed procedure of estimating propensity scores.

A valid procedure will lead to consistent IPW estimators, so we directly check the per-

formance of estimators µ̂IPW1 and µ̂IPW2. To show that the proposed procedure is an

improvement over pre-existing methods, we also include IPW estimators µ̂AB1 and µ̂AB2,

which have the same forms as µ̂IPW1 and µ̂IPW2 respectively, but with “propensity score”

being defined by π̃i and estimated through unweighted logistic regression model (Lee,
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2006). The subscript “AB” indicates estimation is based on the pooled sample SAB =

SA ∪ SB. Under the current setup, we compute µ̂AB1 = N−1
∑

i∈SA yi/πi(θ̂AB) and µ̂AB2 ={∑
i∈SA 1/πi(θ̂AB)

}−1∑
i∈SA yi/πi(θ̂AB), where estimator θ̂AB is the solution to the follow-

ing equation system,

∑
i∈SA

{
1− π(xi,θ)

}
xi −

∑
i∈SB

π(xi,θ)xi = 0.

Similarly, we compute and include the weighted version of µ̂AB1 and µ̂AB2 given

by Valliant and Dever (2011), i.e., µ̂AB1,w = N−1
∑

i∈SA yi/πi(θ̂AB,w) and µ̂AB2,w ={∑
i∈SA 1/πi(θ̂AB,w)

}−1∑
i∈SA yi/πi(θ̂AB,w), where estimator θ̂AB,w is the solution to

estimating equations

∑
i∈SA

{
1− π(xi,θ)

}
xi − (1− nA

N̂B

)
∑
i∈SB

dBi π(xi,θ)xi = 0.

The performance of a given estimator µ̂ is evaluated through the relative bias (in

percentage, %RB) and the mean squared error (MSE), which are computed as

%RB =
1

B

B∑
b=1

µ̂(b) − µy
µy

× 100 , MSE =
1

B

B∑
b=1

(µ̂(b) − µy)
2
,

where µ̂(b) is the estimator computed from the bth simulated sample, and B is set to 2,000.

For this part of the investigation, we only use model (ξ1, q1) to generate the finite pop-

ulation, which means that both propensity score model and prediction model are correctly

specified (“TT”). We choose different sampling fractions, and see how sample sizes ef-

fect the performance of procedures. Specifically, we consider size combination (500, 1000),

(2000, 1000), (2000, 2000), (5000, 1000) and (5000, 2000), where values in the brackets in-

dicate nA and nB respectively. Moreover, different predicting power of outcome regression

models are considered by setting ρ = 0.3, 0.6 and 0.9. Simulated results are reported in

Table 2.1, with some major observations being summarized as follows.
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Table 2.1: Simulated %RB and MSE of IPW Estimators under Model (ξ1, q1)

ρ = 0.3 ρ = 0.6 ρ = 0.9

Sample Sizes Estimators %RB MSE %RB MSE %RB MSE

(500, 1000) µ̂A 24.28 1.86 24.67 1.76 24.84 1.75
µ̂AB1 -92.72 24.16 -92.73 24.14 -92.74 24.13
µ̂AB2 -4.83 0.38 -5.02 0.14 -5.11 0.10
µ̂AB1,w 0.63 0.32 0.59 0.11 0.56 0.08
µ̂AB2,w 0.37 0.29 0.32 0.09 0.30 0.05
µ̂IPW1 -0.04 0.32 -0.10 0.12 -0.13 0.08
µ̂IPW2 -0.41 0.30 -0.47 0.09 -0.50 0.06

(2000, 1000) µ̂A 21.98 1.40 22.42 1.42 22.62 1.44
µ̂AB1 -83.64 19.66 -83.61 19.62 -83.60 19.61
µ̂AB2 8.60 0.26 8.80 0.23 8.90 0.23
µ̂AB1,w 2.34 0.12 2.43 0.08 2.47 0.08
µ̂AB2,w 2.17 0.09 2.26 0.05 2.30 0.04
µ̂IPW1 -0.08 0.12 -0.03 0.08 -0.01 0.07
µ̂IPW2 -0.52 0.10 -0.48 0.05 -0.45 0.05

(2000, 2000) µ̂A 21.98 1.40 22.42 1.42 22.62 1.44
µ̂AB1 -79.48 17.76 -79.47 17.73 -79.46 17.72
µ̂AB2 1.60 0.06 1.67 0.02 1.71 0.01
µ̂AB1,w 2.22 0.10 2.31 0.06 2.35 0.05
µ̂AB2,w 2.23 0.08 2.32 0.04 2.36 0.03
µ̂IPW1 -0.19 0.09 -0.15 0.05 -0.13 0.04
µ̂IPW2 -0.38 0.07 -0.34 0.03 -0.31 0.02

(5000, 1000) µ̂A 18.15 0.94 18.47 0.96 18.62 0.97
µ̂AB1 -66.3 12.35 -66.23 12.31 -66.20 12.30
µ̂AB2 12.27 0.44 12.48 0.44 12.57 0.45
µ̂AB1,w 4.83 0.13 4.91 0.12 4.95 0.12
µ̂AB2,w 4.77 0.09 4.86 0.08 4.90 0.08
µ̂IPW1 0.02 0.08 0.02 0.07 0.02 0.07
µ̂IPW2 -0.40 0.05 -0.40 0.04 -0.40 0.04

(5000, 2000) µ̂A 18.15 0.94 18.47 0.96 18.62 0.97
µ̂AB1 -62.13 10.85 -62.09 10.82 -62.07 10.81
µ̂AB2 7.95 0.19 8.08 0.19 8.13 0.19
µ̂AB1,w 4.71 0.10 4.79 0.09 4.83 0.09
µ̂AB2,w 4.79 0.09 4.87 0.08 4.91 0.08
µ̂IPW1 -0.11 0.05 -0.10 0.04 -0.10 0.04
µ̂IPW2 -0.28 0.04 -0.27 0.02 -0.27 0.02
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(i) Estimators µ̂AB1 and µ̂AB2, which are obtained by the unweighed logistic regression

model method, fail almost for each case; estimator µ̂AB1, which has true N as population

count, yields especially unreliable results. (ii) Estimators µ̂AB1,w and µ̂AB2,w, which are

obtained by the weighed logistic regression model method, have close performance to µ̂IPW1

and µ̂IPW2 when nA = 500 and nB = 1,000. However, the biases of µ̂AB1,w and µ̂AB2,w

increase with size nA, which agrees with the observation stated in (2.3.5). (iii) Proposed

estimators µ̂IPW1 and µ̂IPW2 always have excellent performance regarding %RB andMSE in

all the situations considered, and their efficiencies increase with nA and nB. (iv) Estimators

with estimated N generally have better performance in terms of MSE compared to their

counterpart having the true N .

In summary, the weighted logistic regression model based on SAB is a conditionally

valid procedure for estimating propensity scores. The bias of its resulting estimators for

µy is negligibly small when the sample size nA is relatively small, but there is a clear

trend of growing bias as the sampling fraction gets larger. This is a counter-intuitive

phenomena that augmenting sample would unexpectedly aggravate estimating results, so

it is important to check the sampling fraction before applying this procedure. On the

contrary, our proposed approach yields consistent estimators, whose accuracy improves

with the sample size.

The second part is to compare point estimators obtained by different methods. We

generate finite populations according to seven model combinations, with ρ being set to 0.3,

0.6 and 0.9. The results for sample size (500,1000) are reported in Table 2.2, with some

key observations being highlighted below.

Table 2.2: Simulated %RB and MSE of Estimators of µy (nA = 500, nB = 1,000)

ρ = 0.3 ρ = 0.6 ρ = 0.9
Scenarios Models Estimators %RB MSE %RB MSE %RB MSE

(ξ1,q1) µ̂A 24.28 1.86 24.67 1.76 24.84 1.75
µ̂IPW1 -0.04 0.32 -0.10 0.12 -0.13 0.08
µ̂IPW2 -0.41 0.30 -0.47 0.09 -0.50 0.06

Continued on next page
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Table 2.2 – Continued from previous page
ρ = 0.3 ρ = 0.6 ρ = 0.9

Scenarios Models Estimators %RB MSE %RB MSE %RB MSE
TT µ̂REG 0.07 0.25 0.00 0.06 -0.04 0.02

µ̂DR1 0.03 0.30 -0.01 0.10 -0.03 0.06
µ̂DR2 0.03 0.26 -0.02 0.06 -0.04 0.02
µ̂KH 0.04 0.30 -0.01 0.10 -0.03 0.06

(ξ1,q2) µ̂A 33.65 3.38 34.17 3.33 34.41 3.35
µ̂IPW1 -3.09 0.46 -3.02 0.17 -2.98 0.12
µ̂IPW2 -8.01 0.61 -7.94 0.35 -7.91 0.30
µ̂REG -0.18 0.26 -0.14 0.06 -0.11 0.02
µ̂DR1 -0.30 0.34 -0.18 0.11 -0.13 0.06
µ̂DR2 -0.30 0.29 -0.19 0.07 -0.13 0.02

TF µ̂KH -0.25 0.32 -0.16 0.10 -0.12 0.06
(ξ1,q3) µ̂A 46.25 6.21 46.75 6.19 46.98 6.22

µ̂IPW1 -6.84 1.72 -6.19 0.56 -5.88 0.33
µ̂IPW2 -26.33 3.13 -25.94 2.46 -25.76 2.31
µ̂REG 0.30 0.32 0.09 0.07 0.00 0.02
µ̂DR1 -1.84 0.88 -0.78 0.20 -0.30 0.08
µ̂DR2 -1.21 0.56 -0.54 0.11 -0.23 0.03
µ̂KH -0.06 0.39 -0.04 0.12 -0.03 0.07

(ξ2,q1) µ̂A 32.25 4.80 32.81 4.48 33.07 4.46
µ̂IPW1 0.01 0.84 -0.07 0.25 -0.11 0.14
µ̂IPW2 -0.36 0.80 -0.44 0.21 -0.48 0.11
µ̂REG -4.44 0.84 -4.54 0.28 -4.59 0.18
µ̂DR1 0.25 0.81 0.19 0.23 0.16 0.13
µ̂DR2 0.22 0.76 0.15 0.18 0.12 0.07

FT µ̂KH 0.04 0.80 -0.03 0.23 -0.06 0.12
(ξ3,q1) µ̂A 40.13 12.18 40.97 11.03 41.36 10.93

µ̂IPW1 0.09 2.71 -0.03 0.68 -0.09 0.32
µ̂IPW2 -0.27 2.64 -0.40 0.63 -0.46 0.26
µ̂REG -8.96 3.13 -9.11 1.22 -9.19 0.87
µ̂DR1 0.50 2.71 0.40 0.73 0.35 0.37
µ̂DR2 0.43 2.63 0.33 0.65 0.28 0.28
µ̂KH 0.06 2.63 -0.04 0.66 -0.09 0.31

(ξ2,q2) µ̂A 61.05 15.59 61.81 15.52 62.17 15.60
µ̂IPW1 2.33 1.18 2.45 0.35 2.50 0.20

Continued on next page
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Table 2.2 – Continued from previous page
ρ = 0.3 ρ = 0.6 ρ = 0.9

Scenarios Models Estimators %RB MSE %RB MSE %RB MSE
µ̂IPW2 -2.89 1.12 -2.78 0.37 -2.73 0.24
µ̂REG -5.79 0.97 -5.73 0.39 -5.69 0.28
µ̂DR1 15.63 2.13 15.81 1.49 15.9 1.38
µ̂DR2 14.25 1.82 14.42 1.19 14.51 1.08

FF µ̂KH 6.74 1.06 6.88 0.46 6.94 0.35
(ξ3,q3) µ̂A 161.15 163.27 162.34 163.8 162.89 164.47

µ̂IPW1 33.80 25.74 35.24 17.39 35.91 16.51
µ̂IPW2 3.68 8.94 4.54 3.52 4.94 2.58
µ̂REG -20.04 6.90 -20.50 4.53 -20.72 4.12
µ̂DR1 163.78 232.32 166.20 235.75 167.31 239.16
µ̂DR2 116.13 103.00 117.68 101.86 118.39 102.53
µ̂KH 34.69 11.55 34.78 8.86 34.82 8.37

(i) IPW estimators µ̂IPW1 and µ̂IPW2 perform well under the correctly specified propen-

sity score model (“TT” and “FT”). But both estimators show noticeable bias when the true

propensity score model is q2 or q3; and compared to using model q2, generating propensity

scores from q3 leads to much more bias. Estimator µ̂IPW2 has smaller MSE than µ̂IPW1

under the correctly specified propensity score model, but this pattern does not hold un-

der the misspecified propensity score model (“TF” and “FF”). (ii) The regression based

estimator µ̂REG performs very well under the correctly specified prediction model (“TT”

and “TF”), but the bias emerges when ξ2 or ξ3 is the true model to generate y. (iii) DR

estimator µ̂DR1, µ̂DR2 and µ̂KH have excellent performance as long as at least one of the

two models is correctly specified (“TT” , “FT” and “TF”). Estimator µ̂DR2 has smaller

MSE than µ̂DR1 for all the cases we consider. (iv) As expected, none of estimators remain

consistent when both models are misspecified (“FF”), and their performance under model

combination (ξ3, q3) is much worse than that under combination (ξ2, q2).

Besides sample size (500,1000), we have also examined the size combination (500,500),
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(1000,500), (1000,1000) and (2000,2000). The performance of considered methods un-

der different size combinations basically demonstrate the same pattern as that of case

(500,1000). The results therefore are not presented here to avoid repetition. The failure

of DR estimation under “FF” scenario reminds us that DR estimators are not foolproof.

It can be observed from the simulation results that DR estimators could even have worse

performance than the unadjusted naive estimator. Moreover, the performance of DR es-

timators under “FF” scenario is highly unpredictable, and heavily dependent on the level

of the model misspecification.

The last task of this section is to examine the behaviour of variance estimators. We

consider variance estimators vIPW1 and vIPW2 associated with µ̂IPW1 and µ̂IPW2 based on

Theorem 2.1 and the plug-in method described in Section 2.5.1. We also consider the vari-

ance estimator vDR2,plug for µ̂DR2 using the plug-in method, and the DR variance estimator

vKH along with µ̂KH described in Section 2.5.2. Lastly, a bootstrap variance estimator for

µ̂DR2, denoted by vDR2,bst is obtained by the following procedure. Let S(j)
A and S(j)

B be the

bootstrap samples of sizes nA and nB, taken respectively from SA and SB using simple

random sampling (SRS) with replacement. For taking S(j)
B , weights dBi = 1/πBi are treated

as an intrinsic part of the dataset SB, i.e., both dBi and xi are attached to unit i, and

{(dBi ,xi),i ∈ S
(j)
B } is the bootstrap dataset from SB. Note that the bootstrap procedures

may select certain units more than once and all duplicated units are kept in the bootstrap

samples. The bootstrap DR estimator µ̂
(j)
DR2 is computed by using the same procedure as

computing µ̂DR2, but based on S(j)
A and S(j)

B . The final estimator vDR2,bst is the variance of

the sequence {µ̂(1)
DR2, · · · µ̂(j)

DR2, · · · µ̂(J)
DR2}, where J = 1,000. Note that the with-replacement

bootstrap procedure provides valid variance estimator for single-stage PPS sampling with

negligible sampling fractions; see, for instance, Rao et al. (1992).

The performance of a given variance estimator v along with the point estimator µ̂

is assessed by the percentage relative bias (%RB) and the coverage probability (%CP )
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computed as

%RB =
1

B

B∑
b=1

v(b) − V
V

× 100 , %CP =
1

B

B∑
b=1

I
(
µy ∈ CI(b)

)
× 100 ,

where v(b) is the variance estimator computed from the bth simulated sample, V is the

Monte-carlo simulated variance of µ̂ obtained through a separate set of B simulation runs,

I(·) is the indicator function, and CI(b) =
[
µ̂(b) − 1.96(v(b))1/2, µ̂(b) + 1.96(v(b))1/2

]
is the

95% confidence interval for µy based on the normal approximation.

Simulation results for nA = 500 and nB = 1,000 are reported in Table 2.3. The most

important observation is that all the variance estimators and associated CIs have excellent

performance when the propensity score model is correctly specified ( “TT” and “FT”);

the biases of the variance estimators are all small and the coverage probabilities of 95%

CIs are close to the nominal value. When the propensity score model is misspecified,

and the prediction model is correctly specified (“TF”), the IPW point estimators are

invalid and the related CIs cannot be used; the plug-in variance estimator vDR2,plug for

µ̂DR2 has enormous positive bias, which incurs serious over-coverage issue for the resulting

CIs; the DR variance estimator vKH coupled with µ̂KH has excellent performance, while

bootstrap estimator vDR2,bst also has noticeable improvement over vDR2,plug. In general, none

of variance estimators have adequate performance under “FF” scenarios, especially under

model (ξ3, q3).

2.7 Real Data Application

In this section, we apply our proposed methods to a dataset collected by the Pew Research

Centre (http://www.pewresearch.org) in 2015. The dataset consists of nine non-probability

samples with a total of 9,301 individuals and a wide range of measurements over 56 vari-

ables. The nine non-probability samples are supplied by eight vendors, which have different

but unknown strategies in panel recruitment, sampling, incentives for participation, etc.
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Table 2.3: Simulated %RB and %CP of Variance Estimators (nA = 500, nB = 1,000)

ρ = 0.3 ρ = 0.6 ρ = 0.9

Scenarios Models Estimators %RB %CP %RB %CP %RB %CP

TT

(ξ1,q1) vIPW1 -5.56 94.50 -3.30 94.55 -1.56 93.90
vIPW2 -5.68 94.55 -4.99 94.60 -4.39 94.05
vDR2,plug -4.49 94.35 -2.95 94.80 -0.48 94.75
vDR2,bst -2.39 94.65 -1.56 94.85 -0.58 94.70
vKH -5.24 94.70 -2.28 94.95 0.10 94.25

TF

(ξ1,q2) vIPW1 0.49 95.00 -1.03 92.55 -0.99 88.85
vIPW2 10.04 93.35 5.20 87.95 2.94 83.65
vDR2,plug 25.18 97.15 18.50 97.05 5.94 95.45
vDR2,bst 5.76 95.60 3.34 95.20 0.06 94.45
vKH -1.99 94.70 -2.33 93.85 -1.07 93.70

(ξ1,q3) vIPW1 9.41 97.00 7.05 95.10 3.56 93.50
vIPW2 79.12 93.90 66.65 80.25 60.35 65.20
vDR2,plug 141.03 99.10 120.61 99.00 57.61 98.05
vDR2,bst 12.89 96.35 10.24 95.95 3.55 95.40
vKH -5.65 94.40 -3.93 94.65 -1.11 93.85

FT

(ξ2,q1) vIPW1 -5.79 94.20 -4.02 94.5 -2.33 94.15
vIPW2 -5.48 94.45 -4.78 94.20 -4.34 94.50
vDR2,plug -4.33 94.55 -2.46 94.05 0.34 95.30
vDR2,bst -1.92 94.85 0.40 94.70 4.19 95.75
vKH -5.82 94.50 -3.98 94.60 -2.22 94.60

(ξ3,q1) vIPW1 -5.90 94.40 -4.43 94.25 -2.76 94.60
vIPW2 -5.36 94.40 -4.45 94.00 -3.68 94.40
vDR2,plug -4.33 94.45 -2.52 94.40 -0.08 94.85
vDR2,bst -1.60 94.60 1.69 94.70 6.77 95.60
vKH -6.17 94.45 -5.19 93.90 -4.34 94.10

FF

(ξ2,q2) vIPW1 1.44 95.35 0.59 95.00 1.05 94.25
vIPW2 11.28 96.30 5.85 95.35 1.56 93.40
vDR2,plug 25.71 91.45 21.29 73.95 17.87 53.65
vDR2,bst 9.54 88.40 14.21 71.90 18.11 54.75
vKH -1.77 92.50 -2.92 87.40 -2.84 82.30

(ξ3,q3) vIPW1 10.68 93.45 9.15 86.60 7.91 75.85
vIPW2 86.19 97.95 90.46 98.05 98.62 97.75
vDR2,plug 112.99 67.20 104.58 34.85 103.06 29.55
vDR2,bst 7.20 34.75 4.55 14.05 3.78 11.10
vKH -8.86 69.85 -10.20 30.05 -9.19 7.80
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In this analysis we treat the dataset as a single non-probability sample with nA = 9,301.

The dataset is referred to as PRC from now. Four study variables of the PRC dataset

are of particular interest, but no valid inferences are immediately available from the PRC

sample given its non-probability based nature.

We let two probability samples, which are taken in the same period as the PRC sample,

as sources of auxiliary information. The first sample is the volunteer supplement survey

data from the Current Population Survey (CPS), which is one of the most reliable sources

of official statistics in the United States. The CPS dataset contains 80,075 cases with

measurements on volunteerism, which is highly relevant to the study variables considered in

the PRC dataset. The second probability sample is the Behavioral Risk Factor Surveillance

System (BRFSS) survey data (https://www.cdc.gov/brfss/index.html). It is designed to

measure behavioral risk factors for US residents and has a large sample size of 441,456.

Neither of probability samples contain measurements of the study variables, but both share

a rich set of common auxiliary variables with the PRC dataset as shown in Table 2.4.

We first examine marginal distributions of the variables from three datasets. Table 2.4

contains the estimated population means using each of the three datasets. For the PRC

dataset, the sampling strategy is unknown and no survey weights are available, so estimates

presented are unadjusted simple sample means. For the BRFSS and the CPS dataset where

survey weights are available as part of the datasets, survey weighted estimates are used.

“NA” in the table indicates that the variable is not available from the dataset. While the

two reference probability samples provide similar results over most of the variables, there

is a clear discrepancy between the non-probability PRC sample and the two reference

samples on age, race, origin and socioeconomic status. For instance, the PRC sample has

9.3% participants with Hispanic/Latino origin and close to 42% with a bachelor’s degree

or above, the corresponding numbers from the CPS sample are 15.6% and 30.9%. It is a

strong evidence that the PRC dataset is not a representative sample for the population.

Four study variables of PRC dataset are listed at the end of the Table 2.4 along with

their simple sample means. There are three binary variables: Talk with neighbors frequently
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Table 2.4: Estimated Population Means of Survey Items from the Three Samples

Categories Items PRC CPS BRFSS

Age <30 0.183 0.212 0.209
>=30, <50 0.326 0.336 0.333
>=50, <70 0.387 0.326 0.327
>=70 0.104 0.126 0.131

Gender Female 0.544 0.518 0.513

Race White only 0.823 0.786 0.750
Black only 0.088 0.125 0.126

Origin Hispanic/Latino 0.093 0.156 0.165

Region Northeast 0.200 0.180 0.177
South 0.275 0.373 0.383
West 0.299 0.235 0.232

Marital status Married 0.503 0.528 0.508

Employment Working 0.521 0.589 0.566
Retired 0.243 0.143 0.179

Education High school or less 0.216 0.407 0.427
Bachelor’s degree and above 0.416 0.309 0.263

Household Presence of child in household 0.289 NA 0.368
Home ownership 0.654 NA 0.672

Health Smoke everyday 0.157 NA 0.115
Smoke never 0.798 NA 0.833

Financial status No money to see doctors 0.207 NA 0.133
Having medical insurance 0.891 NA 0.878
Household income < 20K 0.161 0.153 NA
Household income >100K 0.199 0.233 NA

Volunteerism Volunteered 0.510 0.248 NA

Study variables

Talk with neighbors frequently (y1) 0.461 NA NA
Participated in school groups (y2) 0.210 NA NA
Participated in service organizations (y3) 0.141 NA NA
Days had at least one drink last month (y4) 5.301 NA NA
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(y1), Participated in school groups (y2), Participated in service organizations (y3); and

one count variable: Days had at least one drink last month (y4), which is treated as a

continuous variable in the analysis. While keeping the estimation of the population means

as the primary goal, we approach the problem from three specific aspects: (i) the impact

of sample size on the DR estimation, (ii) the covariate availability and selection, (iii)

comparison of different estimation methods.

2.7.1 Impact of relative sample size

Note sample size nB is much larger than nA no matter CPS or BRFSS dataset is used as

the reference sample. To investigate other possible scenarios where nA and nB has different

ratios, we draw three subsamples from original BRFSS dataset by SRS with replacement

method. The resulting subsamples, denoted by BRFSS(L), BRFSS(M) and BRFSS(S), have

sample size n∗B = 80,000, 8,000 and 800, respectively. Survey weights for each of the

subsamples are computed as dBi nB/n
∗
B, where dBi is the weight of unit i in the original

BRFSS sample with nB = 441,456.

The choice of covariates for modelling is constrained by the availability of covariates. In

other words, only the common covariates between the chosen reference sample and the non-

probability sample can be used to obtain models. We consider variables listed in Table

2.4, except four study variables, as candidate covariates for modelling. Note the set of

common covariates between BRFSS and PRC differs from the set between CPS and PRC.

For the current investigation, we only include covariates which are available from all three

datasets, such that the same set of covariates is used for modelling under either probability

samples. Throughout the entire real data analysis, logistic regression model is adopted for

the propensity scores; and for the prediction model, logistic regression model and linear

regression model are considered under binary and continuous response respectively.

We first compute proposed estimator µ̂DR2 for four response variables using five different

probability samples, and the results are presented in Table 2.5. The first row specifies which

probability sample is used as sample SB except for the column under “PRC” which provides
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simple sample means based on PRC dataset. It can be seen that the three larger probability

samples BRFSS, BRFSS(L) and BRFSS(M) with nB = 441,456 and n∗B = 80,000 and 8,000

produce almost identical results. The smallest probability sample BRFSS(S) with n∗B = 800

leads to noticeably different results for responses y2 and y4, indicating potential inconsistent

estimates when the size of the probability sample is too small. Nevertheless, compared to

simple sample means, DR estimators generally agree with each others regardless the choice

of SB.

Table 2.5: Estimator µ̂DR2 by Different Reference Samples

Response PRC CPS BRFSS BRFSS(L) BRFSS(M) BRFSS(S)

y1 0.461 0.458 0.457 0.458 0.457 0.456

y2 0.210 0.207 0.202 0.202 0.204 0.208

y3 0.141 0.136 0.133 0.133 0.133 0.135

y4 5.301 5.013 4.971 4.980 4.951 4.910

We further look at variance estimators with different probability samples, using the

plug-in method described in Section 2.5.1 and bootstrap method described in Section 2.6.

The plug-in variance estimator vDR2,plug can be further decomposed into two components

according to the formula given by Theorem 2.2. One component is attributed to the

selection mechanism for SA, and the other component is the design-based variation of

obtaining SB. Let two components be denoted by vA and vB respectively, then the plug-

in variance estimator is computed as vDR2,plug = vA + vB. Unfortunately, detailed design

information other than the survey weights is not available for either the BRFSS or the

CPS sample. We use an approximate variance formula for vB by assuming that the survey

design is single-stage PPS sampling with replacement, a strategy often used by survey data

analyst for the purpose of variance estimation. The bootstrap variance estimator vDR2,bst is

computed based on J = 5,000 bootstrap samples, however variance decomposition cannot

be done for the bootstrap method.

Results for variance estimators with decomposition (vA, vB) for vDR2,plug are reported

in Table 2.6. The variance estimators have been multiplied by 105 for binary response

variables and by 102 for the continuous variable to facilitate reading. We have the fol-
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lowing major observations from Table 2.6: (i) the two original probability samples CPS

and BRFSS produce similar total variances for all cases, with the design-based variance

component vB making a negligible contribution; (ii) when the size of the probability sample

becomes smaller, from BRFSS, BRFSS(L), BRFSS(M) to BRFSS(S), the total variance be-

comes larger and the variance component vB from the probability sampling design becomes

dominant; (iii) two types of variance estimators vDR2,plug and vDR2,bst show the similar pat-

tern of behaviour in terms of different sample sizes, (iv) estimator vDR2,bst is always larger

than vDR2,plug for each case, and the reason could be the discrepancy between the assumed

sampling strategy for SB and the true sampling design for SB.

Table 2.6: Variance and Variance Components of Estimator µ̂DR2

by Different Reference Samples

Response Estimators CPS BRFSS BRFSS(L) BRFSS(M) BRFSS(S)

y1
vDR2,plug

3.998 3.784 3.790 4.098 5.988
(3.992,0.006) (3.780, 0.004) (3.768, 0.021) (3.796, 0.302) (4.173, 1.815)

vDR2,bst 4.212 4.141 4.280 4.665 6.636

y2
vDR2,plug

2.519 2.329 2.368 2.783 6.611
(2.502, 0.017) (2.320, 0.008) (2.322, 0.046) (2.367, 0.416) (2.659, 3.952)

vDR2,bst 2.635 2.592 2.693 3.134 7.470

y3
vDR2,plug

1.790 1.656 1.680 1.915 3.668
(1.783, 0.007) (1.652, 0.004) (1.661, 0.019) (1.681, 0.234) (1.876, 1.792)

vDR2,bst 1.973 1.906 2.017 2.228 4.264

y4
vDR2,plug

0.911 0.900 0.910 1.046 1.707
(0.908, 0.003) (0.898, 0.002) (0.899, 0.011) (0.890, 0.156) (0.922, 0.785)

vDR2,bst 0.965 1.046 1.021 1.155 1.966

2.7.2 Covariate selection

This part is to explore the covariate selection. The computation of the DR estimator require

both the prediction model and the propensity score model. According to Assumption A1,

the definition of the propensity scores and the model-based prediction approach discussed

in Section 2.2.1, every covariate which is simultaneously related to the response variable

and selection mechanism for sample SA should be included in both models to fully remove
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the selection bias in sample SA. In practice, this requirement is hard to achieve. The largest

barrier is the potential unavailability of certain key covariates from two samples. This type

of issue is usually hard to resolve since obtaining measurements of variables which were

originally not in the samples could be unrealistic or extremely challenging. So our first task

in this part is to show that the availability of significant covariates is extremely important

to proposed methods, and if key covariates are missing from models, the proposed methods

will be less effective in removing the selection bias. The second issue we want to investigate

is that under the scenario where the available covariates are already very limited, whether

we should include all the available covariates in the model no matter they are significant

or not.

More specifically, let us investigate the following three covariate selection strategies.

(i) Only use the covariates which are available in all three datasets. This is also the

strategy which has been considered in Section 2.7.1. The resulting set of covariates are

denoted by x.partial, since only partial common covariates are used for modelling under

a given reference sample. (ii) Use the set of common covariates between PRC and a given

probability sample, i.e., all the available common covariates between PRC and CPS or

all the available common covariates between PRC and BRFSS. This strategy leads to

two larger but different set of covariates for the two probability samples. The resulting

set is denoted as x.large. (iii) Use set x.large as candidate, but covariates are further

selected through the backward variable selection algorithm for the prediction model, i.e.,

only covariates which are significant for the prediction model are kept to construct both

models. The resulting set is denoted as x.select. P-values for covariates in the x.large

and x.select based prediction models are listed in Table 2.7 and Table 2.8 respectively.

Estimator µ̂DR2 for the four response variables using different sets of covariates and prob-

ability samples are presented in Table 2.9, with the plug-in variance estimators displayed

in the parentheses (multiplied by 105 for binary variables and by 102 for the continuous

variable). Major observations from Table 2.9 can be summarized as follows. (i) With a

chosen sample SB, the point estimators using covariates x.large are very similar to the es-

timators using covariates x.select which drops some non-significant covariates. (ii) With a
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Table 2.7: P-values by Using Covariate Set x.large

CPS BRFSS

Covariates y1 y2 y3 y4 y1 y2 y3 y4

Intercept ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Age ∗ ∗ 0.188 ∗ ∗ 0.044 0.305 0.071

Female ∗ 0.990 ∗ ∗ ∗ 0.175 ∗ ∗
White only 0.010 0.163 0.665 0.066 0.064 0.074 0.879 0.086

Black only ∗ ∗ ∗ 0.589 0.002 ∗ ∗ 0.805

Hispanic/Latino 0.122 ∗ ∗ 0.335 0.164 0.001 ∗ 0.108

Northeast ∗ 0.514 0.068 0.987 ∗ 0.617 0.125 0.688

South 0.007 ∗ 0.252 0.985 0.011 ∗ 0.461 0.933

West 0.087 0.001 0.668 0.060 0.032 ∗ 0.908 0.013

Married 0.021 ∗ ∗ 0.769 0.142 ∗ ∗ 0.030

Working 0.864 0.062 0.010 ∗ 0.406 0.001 ∗ ∗
Retired 0.007 0.912 0.002 ∗ ∗ 0.006 ∗ ∗
High school or less 0.364 0.134 0.304 0.016 0.314 ∗ ∗ ∗
Bachelor’s degree and above 0.023 0.039 0.189 0.005 0.038 ∗ ∗ ∗
Presence of child in household NA NA NA NA ∗ ∗ ∗ ∗
Home ownership NA NA NA NA 0.036 ∗ ∗ 0.001

Smoke everyday NA NA NA NA 0.847 0.893 0.067 0.311

Smoke never NA NA NA NA ∗ 0.031 ∗ ∗
No money to see doctors NA NA NA NA ∗ ∗ ∗ 0.018

Having medical insurance NA NA NA NA 0.006 ∗ 0.009 0.338

Household income < 20K 0.003 0.025 0.038 0.003 NA NA NA NA

Household income > 100K 0.075 0.057 0.213 ∗ NA NA NA NA

Volunteered ∗ ∗ ∗ 0.438 NA NA NA NA

“∗” indicates that p-value < 0.001.
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Table 2.8: P-values by Using Covariate Set x.select

CPS BRFSS

Covariates y1 y2 y3 y4 y1 y2 y3 y4

Intercept ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Age ∗ ∗ 7 ∗ ∗ 0.044 7 0.072

Female ∗ 7 ∗ ∗ ∗ 7 ∗ ∗
White only 0.009 7 7 0.003 0.068 0.074 7 0.011

Black only ∗ ∗ ∗ 7 0.002 ∗ ∗ 7

Hispanic/Latino 0.118 ∗ ∗ 7 7 0.001 ∗ 0.094

Northeast ∗ 7 0.013 7 ∗ 7 0.095 7

South 0.007 ∗ 0.095 7 0.009 ∗ 7 7

West 0.097 ∗ 7 0.009 0.016 ∗ 7 0.003

Married 0.020 ∗ ∗ 7 0.147 ∗ ∗ 0.022

Working 7 0.027 0.005 ∗ 7 0.002 ∗ ∗
Retired 0.002 7 ∗ ∗ ∗ 0.008 ∗ ∗
High school or less 7 0.128 7 0.013 7 ∗ 0.001 ∗
Bachelor’s degree and above 0.005 0.031 0.029 0.003 0.004 ∗ ∗ ∗
Presence of child in household NA NA NA NA ∗ ∗ ∗ ∗
Home ownership NA NA NA NA 0.026 ∗ ∗ 0.001

Smoke everyday NA NA NA NA 7 7 0.081 7

Smoke never NA NA NA NA ∗ ∗ ∗ ∗
No money to see doctors NA NA NA NA ∗ ∗ ∗ 0.010

Having medical insurance NA NA NA NA 0.004 ∗ 0.008 7

Household income < 20K 0.002 0.027 0.021 0.001 NA NA NA NA

Household income > 100K 0.076 0.048 7 ∗ NA NA NA NA

Volunteered ∗ ∗ ∗ 7 NA NA NA NA
“∗” indicates that p-value < 0.001. “7” indicates that the covariate is not selected by the

backward variable selection algorithm.
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chosen sample SB, the point estimators using covariates x.large and x.select behave quite

differently from the estimators using x.partial which excludes some covariates based on the

availability from a second probability sample. (iii) The plug-in variance estimators under

covariates x.select are almost always smaller than the corresponding variance estimators

under covariates x.large, showing some efficiency gain by eliminating non-significant fac-

tors from the model. So one can similarly conduct the variable selection procedure to the

propensity score model to further increase estimation efficiency. (iv) The point estimators

do not differ much by using CPS and BRFSS when the same set of covariates x.partial

is used. (v) The point estimators using CPS are quite different from the estimators us-

ing BRFSS when covariates x.large is considered. Note that covariate sets x.large are

different under BRFSS and CPS, and some highly relevant covariates are only available

from one particular probability sample. For instance, the covariate Volunteered, which has

a relatively high correlation to the response variables y1, y2 and y3, is available in CPS

but not in BRFSS. Similarly, health related covariates which have strong association with

response y4, are available in BRFSS but not in CPS. The discrepancy between two sets

of x.large could possibly explain the different behavior of estimator µ̂DR2 between two

probability samples.

Table 2.9: Estimator µ̂DR2 by Different Covariates

Response SB µ̂A
µ̂DR2

x.partial x.large x.select

y1
CPS

0.461
0.458(3.998) 0.401(4.265) 0.399(3.987)

BRFSS 0.457(3.784) 0.446(4.285) 0.446(3.918)

y2
CPS

0.210
0.207(2.519) 0.132(1.271) 0.132(1.227)

BRFSS 0.202(2.329) 0.198(2.540) 0.198(2.497)

y3
CPS

0.141
0.136(1.790) 0.086(0.900) 0.086(0.805)

BRFSS 0.133(1.656) 0.120(1.635) 0.119(1.641)

y4
CPS

5.301
5.013(0.911) 5.114(1.156) 5.113(0.960)

BRFSS 4.971(0.900) 4.819(0.918) 4.820(0.883)
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2.7.3 Comparisons of estimation methods

In the final part of the analysis, we compare estimators of population means obtained

by different methods. The covariate set x.select given in the previous section is adopted

for both the propensity score model and the prediction model. The point estimators µ̂A,

µ̂IPW1, µ̂IPW2, µ̂REG, µ̂DR1 and µ̂DR2, along with their associated plug-in variance estimators

(multiplied by 105 for binary variables and by 102 for the continuous variable) for the four

response variables are reported in Table 2.10. Estimator µ̂KH is also computed, with its

associated variance estimator vKH being displayed in the parentheses. Kim and Haziza

(2014)’s method requires the knowledge of the true N . This requirement is met here since

the estimated population count N̂B based on the survey weights was already calibrated to

the true N in both CPS and BRFSS datasets. We notice that proposed estimators differ

from naive simple sample means for every response variable; and with a given probability

sample, proposed estimators for the same response variable are very close to each other,

which indicates reasonable fit of models and the relevance of the auxiliary variables. For

the estimating efficiency, it can be observed that Hájek-type of estimators are generally

more efficient than HT-type estimators. In particular, estimator µ̂DR2 has smaller variance

than µ̂DR1, and estimator µ̂IPW2 has smaller variance than µ̂IPW1 for the most of cases

considered.

Table 2.10: Estimators of Population Means by Using Different Methods

Response SB µ̂A µ̂IPW1 µ̂IPW2 µ̂REG µ̂DR1 µ̂DR2 µ̂KH

y1
CPS

0.461
0.396(4.170) 0.400(4.078) 0.402(4.149) 0.399(4.041) 0.399(3.987) 0.397(4.315)

BRFSS 0.443(4.170) 0.443(3.964) 0.447(3.952) 0.446(4.054) 0.446(3.918) 0.446(4.073)

y2
CPS

0.210
0.136(1.309) 0.141(1.352) 0.134(1.388) 0.132(1.235) 0.132(1.227) 0.132(1.457)

BRFSS 0.193(2.686) 0.196(2.616) 0.198(2.786) 0.198(2.532) 0.198(2.497) 0.198(2.990)

y3
CPS

0.141
0.088(0.829) 0.090(0.845) 0.087(0.893) 0.086(0.808) 0.086(0.805) 0.086(0.913)

BRFSS 0.120(1.735) 0.121(1.718) 0.120(1.701) 0.119(1.652) 0.119(1.641) 0.119(1.780)

y4
CPS

5.301
5.059(0.989) 5.050(0.965) 5.086(0.959) 5.113(0.970) 5.113(0.960) 5.113(0.996)

BRFSS 4.717(0.916) 4.777(0.901) 4.807(0.984) 4.820(0.897) 4.820(0.883) 4.821(1.008)

We have also analyzed other response variables from the PRC non-probability survey
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samples, such as Tended to trust neighbors, Expressed opinions at a government level, Voted

local elections, Participated in sports organizations, and No money to buy food. Their

results, not reported here to save space, convey the same messages as the results from

Tables 2.5-2.10.

2.8 Discussion

The inferential procedures developed in the current chapter focus on the estimation of

the finite population mean. Extensions to other finite population parameters such as

the distribution function and quantiles are straightforward, since the estimated propensity

scores play the same role as the sample inclusion probabilities. This is in line with the classic

survey sampling theory where the basic estimation procedures are typically developed for

the population mean. The proposed procedures can also be extended to cover parameters

defined through estimating functions, similar to the survey weighted estimating equation

methods (Godambe and Thompson, 2009) for analytic use of survey data, with weights

defined as the inverse of the estimated propensity scores.

Assumptions A1–A3 listed in Section 2.1 are part of the foundation for the estimation

procedures presented in the chapter. In particular, Assumption A1 requires the availability

of a complete set of confounding variables. In practice, however, it is often difficult to decide

whether the auxiliary variables x contain all the components for characterizing the selection

mechanism. One of the general principles for collecting data using any non-probability

method is to include essential auxiliary variables such as gender, age and measurements

on socioeconomic status, as well as other variables which not only provide tendencies

for participation in the non-probability sample but also have the potential to be useful

predictors for the response variables. The other extreme scenario, contrary to having

limited number of covariates is having a large set of covariates. As we learned from the

real data analysis, including too many covariates would add computational complexity

and also decrease estimating efficiency. Yang et al. (2020) and Chen et al. (2019) discuss
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the covariate selection when auxiliary variables are high dimensional, and their proposed

treatments make our research ready to use on modern data types such as big data.

Assumption A2, i.e., positivity assumption, is also too important to ignore. The sce-

nario of having zero propensity scores for certain units in the target population requires a

careful evaluation of the population represented by the non-probability sample. This is the

same issue of the under-coverage problem in probability sampling and the severity of the

problem depends on the proportion of the uncovered population units and the discrepancies

between the two parts of the population in terms of the response variables. Corrections for

biases due to under-coverage problems require additional source of information on the un-

covered units. We extend the current general framework and methodology to the scenario

with zero propensity scores in Chapter 4.

The procedures developed in this chapter calls for the availability of high quality prob-

ability survey samples with relevant auxiliary information. Census data and large scale

probability samples collected by statistical agencies can serve as a rich source of information

for statistical analysis of non-probability samples. As more and more data are collected

by non-probability methods, the traditional survey-centric approach by many statistical

agencies needs to evolve to stay relevant and effective for the new data era.

2.9 Technical Details

Asymptotic Framework.

Consider the following asymptotic framework for theoretical development. Suppose that

there is a sequence of finite populations Uν of size Nν , indexed by ν. Associated with each

Uν are a non-probability sample SA,ν of size nA,ν and a probability sample SB,ν of size nB,ν.

The population size Nν → ∞ and the sample sizes nA,ν → ∞ and nB,ν → ∞ as ν → ∞.

For notational simplicity the index ν is suppressed for the rest of the thesis and the limiting

process is represented by N →∞.
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Regularity Conditions.

In regularity conditions C3–C7 below, value β∗ is defined as the limit of β̂ under the

asymptotic framework, where β̂ is the estimated model parameter of prediction model

m(xi,β). The value of β∗ is the same as the true parameter β0 when the regression model

is correctly specified but has no practical meanings otherwise.

C1 The population size N and the sample sizes nA and nB satisfy limN→∞ nA/N = fA ∈
(0,1) and limN→∞ nB/N = fB ∈ (0,1).

C2 There exist c1 and c2 such that 0 < c1 ≤ NπAi /nA ≤ c2 and 0 < c1 ≤ NπBi /nB ≤ c2

for all units i.

C3 The finite population and the sampling design for SB satisfy N−1
∑

i∈SB d
B
i vi −

N−1
∑

N

i=1 vi = Op(n
−1/2
B ) for vi = 1,xi, yi and m(xi,β

∗).

C4 The finite population and the propensity scores satisfy N−1
∑

N

i=1 ‖xi‖3 = O(1),

N−1
∑

N

i=1 y
2
i = O(1), N−1

∑
N

i=1{m(xi,β
∗)}2 = O(1), and N−1

∑
N

i=1 π
A
i (1− πAi )xix

ᵀ
i

is a positive definite matrix.

C5 For each x, ∂m(x,β)/∂β is continuous in β and |∂m(x,β)/∂β| ≤ h(x,β) for β in

the neighborhood of β∗, and N−1
∑

N

i=1 h(xi,β
∗) = O(1).

C6 For each x, ∂2m(x,β)/∂β∂βᵀ is continuous in β and maxj,l |∂2m(x,β)/∂βj∂βl| ≤
k(x,β) for β in the neighborhood of β∗, and N−1

∑
N

i=1 k(xi,β
∗) = O(1).

C7 Both N−1
∑

N

i=1(Ri/π
A
i )v. i and N−1

∑
i∈SB d

B
i v. i are asymptotically normally dis-

tributed for v. i = 1, yi, π
A
i xi, m(xi,β

∗).

Conditions C1 and C3 are commonly used for survey samples. Under regularity con-

dition C1, we do not need to distinguish among Op(n
−1/2
A ), Op(n

−1/2
B ) and Op(N

−1/2).

Condition C2 states that the inclusion probabilities for the samples SA and SB do not

differ in terms of order of magnitude from simple random sampling. Condition C4 is the
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typical finite moment conditions and is used for making valid Taylor series expansions.

Conditions C5 and C6 are the usual smoothness and boundedness conditions (Wu and

Sitter, 2001). Condition C7 is the normality assumption, and is critical for theoretical

development in Chapter 3.

Proof of Theorem 2.1.

Let ηᵀ = (µ,θᵀ). The IPW estimator µ̂ = µ̂IPW1 or µ̂IPW2 along with the estimated

parameter θ̂ml for the propensity score model, can be combined as η̂ᵀ = (µ̂,θ̂
ᵀ

ml) which is

the solution to the combined estimating equation system given by

Φn(η) =


1

N

N∑
i=1

{
Ri(yi − µ)

πi(θ)
+ ∆

Ri − πi(θ)

πi(θ)

}
1

N

N∑
i=1

Rixi −
1

N

∑
i∈SB

dBi πi(θ)xi

 = 0. (2.9.21)

where ∆ = µ if µ̂ = µ̂IPW1 and ∆ = 0 if µ̂ = µ̂IPW2. This formation is similar to the one used

by Lunceford and Davidian (2004). Under the joint randomization of the propensity score

model and the sampling design for SB, we have E{Φn(η)} = 0 when ηᵀ = ηᵀ
0 = (µy,θ

ᵀ
0).

Consistency of the estimator η̂ follows similar arguments in Section 3.2 of Tsiatis (2006).

Under regularity conditions C1–C4, we have Φn(η̂) = 0 and Φn(η0) = Op(n
−1/2
A ). By

applying the first order Taylor expansion to Φn(η̂) around η0, we further have

η̂ − η0 =
{
φn(η0)

}−1
Φn(η0) + op(n

−1/2
A ) =

[
E
{
φn(η0)

}]−1
Φn(η0) + op(n

−1/2
A ) , (2.9.22)

where φn(η0) = ∂Φn(η)/∂η|η=η0
and is given by

φn(η0) = − 1

N

[∑N
i=1 Ri(1−∆0/µy)/π

A
i + ∆0/µy

∑N
i=1Ri(1− πAi )/πAi (yi − µy + ∆0)xᵀ

i

0
∑

i∈SB d
B
i π

A
i (1− πAi )xix

ᵀ
i

]
,
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and ∆0 = µy if µ̂ = µ̂IPW1 and ∆0 = 0 if µ̂ = µ̂IPW2. It follows that µ̂ = µy +Op(n
−1/2
A ) and

V ar(η̂) =
[
E
{
φn(η0)

}]−1
V ar

{
Φn(η0)

}[
E
{
φn(η0)

}ᵀ]−1
+ o(n−1

A ) .

It can be shown that

[
E
{
φn(η0)

}]−1
=

[
−1 ∆0/µya

ᵀ
1 + (1−∆0/µy)a

ᵀ
2

0 −{ 1
N

∑N
i=1 π

A
i (1− πAi )xix

ᵀ
i }−1

]
,

where the expressions for a1 and a2 are given in Theorem 2.1. The other major piece

V ar
{
Φn(η0)

}
can be found by using the decomposition Φn(η0) = A1 + A2 where

A1 =
1

N

N∑
i=1

[
Ri(yi − µy)/πAi + ∆0(Ri − πAi )/πAi

Rixi − πAi xi

]
, A2 =

1

N

[
0∑

N

i=1 π
A
i xi −

∑
i∈SB d

B
i π

A
i xi

]
.

It follows that V ar
{
Φn(η0)

}
= V1 + V2, where V1 = V ar(A1) which only involves the

propensity score model and V2 = V ar(A2) which only involves the sampling design for

SB. We have

V1 =
1

N2

N∑
i=1

[
{(1− πAi )/πAi }(yi − µy + ∆0)2 (1− πAi )(yi − µy + ∆0)xi

ᵀ

(1− πAi )(yi − µy + ∆0)xi πAi (1− πAi )xix
ᵀ
i

]

and

V2 =

[
0 0ᵀ

0 D

]
,

where D = N−2Vp
(∑

i∈SB d
B
i π

A
i xi
)

is the design-based variance-covariance matrix un-

der the probability sampling design for SB. The asymptotic variance for the IPW esti-

mator µ̂ is obtained as the first diagonal element of the matrix
[
E
{
φn(η0)

}]−1{
V1 +

V2

}[
E
{
φn(η0)

}ᵀ]−1
due to (2.9.22).

Proof of Theorem 2.2.
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The double robustness property is straightforward from the construction of the estimator.

We first show that the estimation of the outcome regression model parameters β has no

impact on the asymptotic variance of µ̂DR2. We assume that β̂ − β∗ = Op(n
−1/2
A ) for

some fixed β∗ regardless of the true regression model. Treating µ̂DR2 as a function of β̂

and making a Taylor expansion around β∗, then we have the following expression under

regularity conditions C1–C6.

µ̂DR2 =
1

N̂A

N∑
i=1

Ri

{
yi −mi(β

∗)
}

πi(θ̂ml)
+

1

N̂B

∑
i∈SB

dBi mi(β
∗) (2.9.23)

+

{
1

N̂B

∑
i∈SB

dBi ṁi(β
∗)− 1

N̂A

N∑
i=1

Riṁi(β
∗)

πi(θ̂ml)

}
(β̂ − β∗)

+ Op(n
−1
A ) ,

where ṁ(β) = ∂m(x,β)/∂β. Under regularity conditions C3 and C5, we have

1

N̂B

∑
i∈SB

dBi ṁi(β
∗)− 1

N

N∑
i=1

ṁi(β
∗) = op(1) ,

1

N̂A

N∑
i=1

Riṁi(β
∗)

πi(θ̂ml)
− 1

N

N∑
i=1

ṁi(β
∗) = op(1) ,

which implies that (N̂B)−1
∑

i∈SB d
B
i ṁi(β

∗)− (N̂A)−1
∑N

i=1Riṁi(β
∗)/πi(θ̂ml) = op(1) and

µ̂DR2 =
1

N̂A

N∑
i=1

Ri

{
yi −mi(β

∗)
}

πi(θ̂ml)
+

1

N̂B

∑
i∈SB

dBi mi(β
∗) + op

(
n
−1/2
A

)
. (2.9.24)

We now derive the asymptotic variance of µ̂DR2 under the propensity score model and

the sampling design for SB. The first part of µ̂DR2 given in (2.9.24) is the IPW estimator

µ̂IPW2 given in (2.4.9) with yi replaced by yi − mi(β
∗). Using the asymptotic expansion
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developed in (2.9.22) on µ̂IPW2, we have

1

N̂A

N∑
i=1

Ri

{
yi −mi(β

∗)
}

πi(θ̂ml)
= hN +

1

N

N∑
i=1

Ri

{
yi −mi(β

∗)− hN
πAi

− aᵀ
3xi

}
+ aᵀ

3

1

N

∑
i∈SB

dBi π
A

i xi + op(n
−1/2
A ) ,

where hN = N−1
∑N

i=1

{
yi −mi(β

∗)
}

and

aᵀ
3 =

[ N∑
i=1

(1− πAi )
{
yi −mi(β

∗)− hN
}
xᵀ
i

]{ N∑
i=1

πAi (1− πAi )xix
ᵀ
i

}−1

.

The second part of µ̂DR2 given in (2.9.24) is the Hájek estimator under the probability

sampling design for SB, which has the following expansion

1

N̂B

∑
i∈SB

dBi mi(β
∗) =

1

N

N∑
i=1

mi(β
∗) +

1

N

∑
i∈SB

dBi

{
mi(β

∗)− 1

N

N∑
i=1

mi(β
∗)
}

+Op(n
−1
B ) .

Putting the two parts together leads to

µ̂DR2 − µy =
1

N

N∑
i=1

Ri

{
yi −mi(β

∗)− hN
πAi

− aᵀ
3xi

}
+

1

N

∑
i∈SB

dBi ti + op(n
−1/2
A ) ,

where ti = πAi x
ᵀ
i a3 +mi(β

∗)−N−1
∑N

i=1m(β∗). It follows that the asymptotic variance of

µ̂DR2 is given by VDR2 as specified in Theorem 2.2.
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Chapter 3

Pseudo-empirical Likelihood

Approach to Non-probability

Samples

In this chapter, we propose to use the PEL approach (Chen and Sitter, 1999) to estimate the

finite population mean. We show in the following sections that PEL approach is comparable

with QR approach given in Chapter 2 in several aspects. For example, when the prediction

model is not considered, the resulting estimator under the PEL approach is identical to

normalized IPW estimator µ̂IPW2 ; and under the scenario where the prediction model

is incorporated into the PEL approach through model-calibration technique, equivalency

can be found between the PEL based estimator and DR estimator µ̂DR2. In spite of the

similarities between two approaches, we are motivated to use the PEL approach in many

scenarios given the following reasons.

First of all, PEL is a unified approach for both point and interval estimation. Not only

does the PEL approach result in point estimators which are comparable with µ̂IPW2 and

µ̂DR2, but it also provides an alternative way to construct CIs. Specifically, we construct

two types of CIs through PEL ratio functions.
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Secondly, its non-parametric nature leads to more robust inferential results compared

to parametric or semi-parametric approaches. One of our research interest is the finite

population proportion, which is a special type of mean when the response variable is

binary. However, based on some preliminary studies, we notice that Wald-type CIs given

by either IPW or DR method fail to give satisfactory coverage rates when the sample

size is small and the true proportion is close to 0 or 1. The data-driven features of the

PEL approach can be utilized to accommodate this issue. Our proposed PEL-ratio-based

CIs show improved performance over Wald-type CIs based on QR approach under various

sample sizes and different values of the true proportion.

Lastly, calibration constraints under PEL approach are powerful tools to utilize aux-

iliary information. While the QR approach developed in Chapter 2 is more suitable to

combine two datasets, adding constraints under PEL approach could flexibly integrate in-

formation in broader forms, regardless of the data sources. This property ideally serves

the rising trend that relevant data are often available from multiple sources. Moreover,

model-calibration technique under PEL approach conveniently allows for multiple working

models for the outcome regression, which is an improvement in robustness over previ-

ous single specification. This immediately extends the current doubly robust inference to

an emerging area, multiply robust inference; see Han (2014) and Zhang et al. (2019) for

instance.

3.1 PEL with Non-probability Samples

PEL approach was proposed by Chen and Sitter (1999) to make inferences about a finite

population with probability survey samples. As an extension of the empirical likelihood

approach (Owen, 1988), PEL approach is known for its superiority in empirical performance

to its competitors when the sample size is relatively small.

Recall that FN = {(xi,yi),i ∈ U} is the data of the finite population U , where xi is

the associated value of auxiliary variables, and yi is the associated value of the response
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variable. The parameter of interest is the population mean µy. Under PEL approach, data

FN is treated as a random sample from some super population F , and the log-empirical

likelihood function based on FN is given by,

l(p) =
N∑
i=1

log pi,

where p = (p1, · · · , pN), and pi is the point mass at (xi,yi), for i = 1, · · · ,N.

Instead of working with l(p) directly, we consider a probability sample S, which is

drawn from population U . Let {(xi,yi,di), i ∈ S} be the data of sample S, where di are

the survey design weights, then the PEL in the sense of Chen and Sitter (1999) is given by

l̂(p) =
∑
i∈S

di log pi.

Notice the weights di ensure l̂(p) to be a valid approximation of the population level

information l(p) given the relation E{l̂(p)} = E{
∑

i∈S di log pi} = l(p), where expectation

is taken under the probability sampling for S. So likewise, we need obtain a set of weights

for SA to construct a non-probability sample based PEL function. We found that the inverse

of estimated propensity scores are natural weights for SA according to the development in

Chapter 2.

Following Wu and Rao (2006), with the given estimated propensity score πi(θ̂ml), the

non-probability sample based PEL function is constructed as,

l̂A(p) = nA
∑
i∈SA

d̂Ai log pi,

where d̂Ai = (N̂A)−1{πi(θ̂ml)}−1. Note the normalized weights d̂Ai rather than naive inverse

1/πi(θ̂ml) are considered in the PEL function. This modification simplifies the derivation

of the theorems we are about to propose, but does not effect the estimation of pi. PEL

l̂A(p) also contains a scaling term nA, which let l̂A(p) reduce to the regular log-empirical
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likelihood function
∑

i∈SA log pi when weights d̂Ai are equal for every i ∈ SA.

To maximize l̂A(p), we start with the simplest case where the normalization constraint∑
i∈SA pi = 1 is the only constraint. Trivially, we observe that the resulting pseudo-

empirical maximum likelihood estimator (PEMLE) of pi is equal to d̂Ai for i ∈ SA, and the

PEMLE of µy is equivalent to the Hájek-type IPW estimator µ̂IPW2 =
∑

i∈SA d̂
A
i yi.

3.2 Doubly Robust Inference through PEL

We show in this section that the estimator under PEL approach can also achieve double ro-

bustness through the model-calibration technique. Moreover, two methods of constructing

CIs are illustrated in Section 3.2.2. One method is based on limiting distributions of the

adjusted PEL ratio statistics; and the other method is based on the bootstrap-calibrated

PEL ratio statistics.

3.2.1 Model calibration and point estimation

Another piece of information we have not considered yet is the prediction model Eξ(y | x) =

m(x,β). We further simplify notations by letting m̂i = mi(β̂) = m(xi,β̂), where β̂ is the

estimated model parameter (see Section 2.2.1). To utilize fitted value m̂i of the prediction

model under the PEL approach, we propose to use the model-calibration technique which

is carried out by maximizing l̂A(p) under the following constraints,

∑
i∈SA

pi = 1 ,
∑
i∈SA

pim̂i = ˆ̄mB, (3.2.1)

where ˆ̄mB = (N̂B)−1
∑

i∈SB d
B
i m̂i. Note

∑
i∈SA pim̂i = ˆ̄mB is the so-called model-calibrated

constraint, which was proposed by Wu and Sitter (2001) in the probability sample data con-

text. Maximizing l̂A(p) under (3.2.1) leads to model-calibrated PEMLE µ̂PEL =
∑

i∈SA p̂iyi.

58



By Wu and Sitter (2001), we have p̂i = d̂Ai /
{

1 + λ̂(m̂i − ˆ̄mB)
}

, where λ̂ is the solution to

∑
i∈SA

d̂Ai (m̂i − ˆ̄mB)

1 + λ(m̂i − ˆ̄mB)
= 0.

The use of the model calibration method under the current setup is motivated by two

aspects. On the one hand, we learned from the last chapter, that IPW estimators can gain

efficiency and double robustness property if the prediction model is properly incorporated

in the estimation. On the other hand, model-calibrated constraint is a natural way to

incorporate the fitted value of the prediction model; and Wu and Sitter (2001) already

showed that under the probability sample context, model-calibrated constraint leads to

model-assisted estimators, which share similar properties with DR estimators.

To verify the DR property of the proposed estimator µ̂PEL, we postulate the same

assumptions as in Section 2.4.2 for the model parameters, i.e., θ̂ml = θ∗ +Op(n
−1/2
A ), β̂ =

β∗ +Op(n
−1/2
A ) for some fixed θ∗ and β∗, regardless of the model specification. Moreover,

let m∗i = mi(β
∗) = m(xi,β

∗), m̄∗ = N−1
∑

N

i=1 m
∗
i for simplicity. Related discussions about

parameter estimation of misspecified models can be found in White (1982). Asymptotic

properties of estimator µ̂PEL are given in the following theorem.

Theorem 3.1. Estimator µ̂PEL is doubly robust in the sense that it is a consistent

estimator of µy if either the propensity score model or the outcome regression model is

correctly specified. Furthermore, under regularity conditions C1–C6 specified in Section

2.9, and the correctly specified model for the propensity scores, we have

µ̂PEL = µ̂IPW2 + ( ˆ̄mB − ˆ̄mIPW2)B̂m + op(n
− 1

2
A ), (3.2.2)

with B̂m =
∑

i∈SA d̂
A
i (m̂i − ˆ̄mB)yi/

∑
i∈SA d̂

A
i (m̂i − ˆ̄mB)2, and ˆ̄mIPW2 =

∑
i∈SA d̂

A
i m̂i.

In addition, the asymptotic variance of µ̂PEL is given by V ar(µ̂PEL) = VPEL + o(n−1
A )
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under the correctly specified model for the propensity scores, with

VPEL =
1

N2

N∑
i=1

1− πAi
πAi

(yi −m∗iB∗m − kN − πAi x
ᵀ
ib1)2 +W2,

where

b1 =
{ N∑

i=1

(1− πAi )(yi −m∗iB∗m − kN)xᵀ
i

}{ N∑
i=1

πAi (1− πAi )xix
ᵀ
i

}−1

,

B∗m =
{∑

N

i=1(m∗i − m̄∗)2
}−1{

∑
N

i=1(m∗i − m̄∗)yi}, kN = N−1
∑

N

i=1

(
yi −m∗iB∗m

)
, and W2 =

N−2Vp(
∑

i∈SB d
B
i qi) is a design-based variance with qi = m∗iB

∗
m + πAi x

ᵀ
ib1 − m̄∗B∗m.

Note that the expansion in (3.2.2) is a bridge to reach many important observa-

tions which directly follow Theorem 3.1. (1) Estimator µ̂PEL has no close form expres-

sion, but the non-negligible terms of expansion (3.2.2), which can be viewed as a com-

putable estimator, clearly reveals the double robustness nature of µ̂PEL. (2) It can be

easily derived from the expansion in (3.2.2) that variation induced by estimating β0 does

not have any impact on the asymptotic variance of µ̂PEL. More specifically, the ex-

pansion in (3.2.2) can be equivalently written as µ̂IPW2 + (m̄∗B − m̄∗IPW2)B̃m + op(n
− 1

2
A ),

which is a β̂-free expression with m̄∗B = (N̂B)−1
∑

i∈SB d
B
i m
∗
i , m̄

∗
IPW2 =

∑
i∈SA d̂

A
i m
∗
i , and

B̃m =
∑

i∈SA d̂
A
i (m∗i − m̄∗B)yi/

∑
i∈SA d̂

A
i (m∗i − m̄∗B)2. This is similar to the observation we

made on µ̂DR1 and µ̃DR1, and µ̂DR2 and µ̃DR2 in Section 2.4.2. (3) The expansion in (3.2.2)

also shows the equivalency among PEL approach, calibration weighting approach, and DR

estimation under certain conditions. We consider a calibration weighting based estimator

µ̂MC, which is computed as µ̂MC =
∑

i∈SA wiyi, where wi for i ∈ SA is a set of weights such

that the distance function
∑

i∈SA(wi − d̂Ai )2/d̂Ai achieves the minimum under the normal-

ization constraint and the model-calibrated constraint
∑

i∈SA wim̂i = ˆ̄mB. Estimator µ̂MC

has the following explicit expression which is in a similar form to (3.2.2),

µ̂MC = µ̂IPW2 + ( ˆ̄mB − ˆ̄mIPW2)B̂m,MC

where B̂m,MC =
∑

i∈SA d̂
A
i (m̂i − ˆ̄mIPW2)yi/

∑
i∈SA d̂

A
i (m̂i − ˆ̄mIPW2)

2. We observe that under
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the correctly specified propensity score model and prediction model, both B̂m,MC and B̂m

converge to one, and µ̂PEL − µ̂MC = µ̂PEL − µ̂DR2 = op(n
− 1

2
A ), i.e., all three estimators are

asymptotically equivalent.

Based on the variance formula VPEL, a variance estimator for µ̂PEL is computed as,

vPEL =
1

N2

∑
i∈SA

{1− πi(θ̂ml)}
{yi − m̂iB̂m − k̂

πi(θ̂ml)
− b̂ᵀ

1xi

}2

+ Ŵ2 , (3.2.3)

where

b̂ᵀ
1 =

[∑
i∈SA

{
1/πi(θ̂ml)− 1

}
(yi − m̂iB̂m − k̂)xᵀ

i

][∑
i∈SB

dBi πi(θ̂ml){1− πi(θ̂ml)}xix
ᵀ
i

]−1

,

k̂ =
∑

i∈SA d̂
A
i (yi − m̂iB̂m) is a consistent estimator of kN , and Ŵ2 is a design-based vari-

ance estimator based on W2, whose exact form depends on the sampling scheme for SB.

Estimator vPEL is consistent as long as the propensity score model is correctly specified.

Note the population size N in the formula can be replaced by its estimator N̂A or N̂B if

N is unavailable.

3.2.2 PEL-ratio-based confidence intervals

Confidence interval is an important type of statistic which normally presents a range of

values where the parameter of interest is likely to lie in. For a given parameter, one

can usually construct multiple CIs which enjoy different properties and performance. For

example, Chen and Kim (2014), Rao and Wu (2010) and Berger and Torres (2016) provide

different methods of constructing CIs for finite population parameters using probability

based complex survey data. According to Theorem 3.1, we can construct a 100(1 − a)%

Wald-type CI for µy based on estimator µ̂PEL and its associated variance estimator vPEL,

NAPEL :
[
µ̂PEL − za/2v1/2

PEL, µ̂PEL + za/2v
1/2
PEL

]
,
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where za/2 is the (1− a/2)th quantile of the standard normal distribution. Wald-type CIs

rely on normal approximation, but the approximation is not accurate when the sample

size is small. So it is foreseeable that NAPEL would not be a substantial improvement

over Wald-type CIs based on µ̂IPW2 and µ̂DR2 in our interested scenarios. A more natural

approach under the current framework is the PEL-ratio-based CIs, and we notice that the

adjusted PEL ratio method given by Wu and Rao (2006) can be directly applied.

We first consider a simple scenario where the prediction model is not considered. Let

p̃ = (p̃1, . . . , p̃nA) be the maximizer of l̂A(p) under constraint
∑

i∈S pi = 1, and let p̃(µ) =(
p̃1(µ), . . . p̃nA(µ)

)
be the maximizer of l̂A(p) under constraints

∑
i∈SA

pi = 1, and
∑
i∈SA

piyi = µ,

where µ is some constant. Based on p̃ and p̃(µ), we construct the following PEL ratio

function about µ,

Λ1(µ) = −2
{
l̂A
(
p̃(µ)

)
− l̂A(p̃)

}
.

We also consider an adjustment factor

s1 = n−1
A

∑
i∈SA

d̂Ai (yi − µ̂IPW2)
2/vIPW2,

where vIPW2 is the variance estimator for estimator µ̂IPW2, and its expression is available

in Section 2.5.1. Note that s1 is a computable quantity based on the observed data. We

have the following result for PEL ratio function Λ1(µ).

Theorem 3.2. Under regularity conditions C1–C4 and C7 specified in Section 2.9 and

assuming the correctly specified model for the propensity scores, we have s1Λ1(µy)
d→ χ2

1,

where
d→ denotes asymptotic convergence in distribution, and χ2

1 denotes chi-squared dis-

tribution with one degree of freedom.

Under Theorem 3.2, an approximate 100(1−a)% CI for µy is given by PEL1,adj =
{
µ |

s1Λ1(µ) ≤ χ2
1(a)

}
, where χ2

1(a) is the (1− a)th quantile of χ2
1 distribution.
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The model-calibrated constraint can also be incorporated in the process of constructing

CIs. Consider two sets of constraint,

∑
i∈SA

pi = 1 ,
∑
i∈SA

pim̂i = ˆ̄mB, (3.2.4)

and ∑
i∈SA

pi = 1 ,
∑
i∈SA

pim̂i = ˆ̄mB,
∑
i∈SA

piyi = µ, (3.2.5)

which lead to PEL ratio function Λ2(µ) = −2
{
l̂A
(
p̂(µ)

)
− l̂A(p̂)

}
, where p̂ = (p̂1, . . . p̂nA) is

the maximizer of l̂A(p) subject to the constraints in (3.2.4), and p̂(µ) =
(
p̂1(µ), . . . p̂nA(µ)

)
is the maximizer of l̂A(p) subject to the constraints in (3.2.5). Wu and Rao (2006) observed

that the constraints in (3.2.5) can be rewritten as,

∑
i∈SA

pi = 1 ,
∑
i∈SA

pim̂i = ˆ̄mB ,
∑
i∈SA

piri = 0, (3.2.6)

where ri = yi − µ− (m̂i − ˆ̄mB)B̂m. We show in Section 3.6 that this reformatting largely

simplifies the proof for Theorem 3.3 below.

Again, we define a computable adjustment factor

s2 = n−1
A

∑
i∈SA

d̂Ai r̂
2
i /vPEL,

where r̂i = yi− µ̂PEL− (m̂i− ˆ̄mB)B̂m, and the expression of vPEL is already given in (3.2.3).

Then we obtain the following result for PEL ratio function Λ2(µ).

Theorem 3.3. Under regularity conditions C1–C7 specified in Section 2.9 and assuming

the correctly specified model for the propensity scores, we have s2Λ2(µy)
d→ χ2

1.

Under Theorem 3.3, an approximate 100(1−a)% CI for µy is given by PEL2,adj =
{
µ |

s2Λ2(µ) ≤ χ2
1(a)

}
.
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One of the major hurdles of obtaining adjusted PEL ratio CIs is constructing adjust-

ment factors. Values of adjustment factors require case-by-case computation since they

vary with sampling designs, model assumptions, target parameters, etc. However, the

derivation of adjustment factors for other parameters may not be so straightforward as for

our current interest µy. To bypass this complication, we consider a bootstrap-calibrated

PEL procedure, which was investigated by Wu and Rao (2010).

We take unadjusted ratio function Λ1(µ) as an example for illustration. Let d(a) be

the (1− a)th quantile of the distribution of Λ1(µy). If d(a) is known, then a 100(1− a)%

CI for µy is given by
{
µ | Λ1(µ) ≤ d(a)

}
. However, the value of d(a) is unavailable and we

therefore apply the following bootstrap procedure to approximate d(a).

Step 1 Draw bootstrap sample S(j)
A from {(xi,yi), i ∈ SA} and bootstrap sample S(j)

B from

{(xi,dBi ), i ∈ SB}.

Step 2 Replace sample SA and SB by S(j)
A and S(j)

B respectively, and then obtain quantity

Λ
(j)
1 (µ̂IPW2) by the same procedure as that for obtaining Λ1(µ) with µ = µ̂IPW2.

Step 3 Repeat Step 1 and Step 2 for j = 1, · · · ,J times to obtain
{

Λ
(1)
1 (µ̂IPW2), · · · ,Λ(J)

1 (µ̂IPW2)
}

.

Then d(a) can be approximated by d̃(a), which is the (1 − a)th quantile of{
Λ

(1)
1 (µ̂IPW2), · · · ,Λ(J)

1 (µ̂IPW2)
}

. Finally, a bootstrap-calibrated interval is given by

PEL1,bts =
{
µ | Λ1(µ) ≤ d̃(a)

}
.

Through a similar procedure, we can also construct a bootstrap-calibrated CI based on

the unadjusted ratio Λ2(µ). We denote the resulting interval by PEL2,bts.

Remarks. Bootstrap sample S(j)
A can be taken by with replacement SRS method with

sample size nA. How to draw bootstrap sample S(j)
B and choose the bootstrap sample size

depends on the original sampling design of SB. For certain designs, such as SRS and single-

stage PPS sampling with small sampling fraction, we can apply the same strategy as that

for computing bootstrap variance estimator vDR2,bst in Section 2.6. When SB comes from

more sophisticated sampling designs, one can refer to bootstrap procedures from Antal and

Tillé (2011), and Rao and Wu (1988).
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3.3 Extension to Other Parameters

The resulting PEMLE p̂i of pi for i ∈ SA can be used to construct estimators for other pop-

ulation parameters. In this section, we in particular discuss the estimation of population

proportions, distribution function and quantiles.

3.3.1 Estimation of proportions

In survey questionnaires, binary responses such as, yes/no, agree/disagree, satisfied/not

satisfied are one of the most commonly used formats to collect information, and collected

binary data are used to estimate the proportion of the population who has certain char-

acteristics. Formally, let yi = 1 if individual i has the characteristic of interest, and let

yi = 0 otherwise, then the finite population proportion is given by P = N−1
∑N

i=1 yi.

Our development in Section 3.2 is for general mean estimation, which can be used to es-

timate proportion P without any modifications. For the specification of outcome regression

model, we can consider binary regression models such as a logistic regression model and

a probit model. There are several advantages of using PEL approach for the proportion

estimation in comparison with QR approach. Point estimators under PEL approach are

range-preserving, which means their values will not fall outside of the interval [0,1] when

P is the parameter of interest. QR based estimators such as µ̂DR1 and µ̂DR2, however do

not always have this property. Moreover, when Wald-type CIs have unsatisfactory perfor-

mance, PEL-ratio-based CIs have the potential to provide better results. The shape and

orientation of PEL-ratio-based CIs are totally determined by observed data, which would

increase the robustness of resulting CIs against small sample sizes. Our simulation studies

in Section 3.5 mainly focus on the estimation of proportion, where a range of values for P

are considered.
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3.3.2 Distribution functions and quantiles

Estimating distribution functions and quantiles are important tasks in many survey data

analysis. A wide range of powerful tools and indices are defined through distribution

functions and quantiles, such as, Lorenz curve, Gini coefficient and Suits index (a measure

of tax progressiveness).

There are many similarities between estimating population means and distribution

functions. The true finite population distribution function of response variable at some

value y is defined by FY,N(y) = N−1
∑

N

i=1 I(yi ≤ y), which is essentially the mean of the

indicator function I(yi ≤ y). So our proposed techniques for estimating population means

are still applicable here, but the variable of interest becomes I(yi ≤ y). For example,

PEL approach with normalization constraint gives normalized IPW estimator F̂Y,IPW (y) =∑
i∈SA d̂

A
i I(yi ≤ y) for FY,N(y). It is notable that this estimator is a genuine distribution

function which can be inverted to obtain quantile estimators immediately.

Some extra work need to be done to achieve doubly robust inferences. First we need

postulate a prediction model for I(yi ≤ y) given xi, at some y. Let Gi(y) = Eδ
{
I(yi ≤ y) |

xi
}

= P (yi ≤ y | xi), where Eδ indicates the expectation under the prediction model for

I(yi ≤ y). We briefly discuss two parametric model approaches, given by Chen and Wu

(2002), to obtain Gi(y) .

For the first approach, assume a super population model

yi = m(xi,β0) + εi,

where β0 is the true model parameter, and εi’s are independent with Eξ(εi) = 0 and

V arξ(εi) = v(xi)σ
2
0, and v(xi) is a function of xi with some known form. Under the

assumption that εi’s are normally distributed, we have

Gi(y) = Φ
[{
y −m(xi,β0)

}
/
{
v(xi)

1
2σ0

}]
,
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where Φ(·) is the cumulative distribution function (cdf) of the standard normal distribution.

The fitted value of Gi(y) is given by Ĝi(y) = Φ
[{
y−m(xi,β̂)

}
/
{
v(xi)

1
2 σ̂
}]

, where β̂ and

σ̂ are estimators of β0 and σ0 respectively.

For the second approach, consider logistic regression model

Gi(y) =
exp(xᵀ

iκ0)

1 + exp(xᵀ
iκ0)

,

where κ0 is the true model parameter. Compared to the first model, logistic regression

model does not rely on the normality, and its parameters are easier to obtain. But notice

that different values of y lead to model Gi(y) with different κ0; for example, if the interest

is two distinct points, say y1 and y2, then two estimation procedures are required to obtain

model Gi(y1) and Gi(y2) independently, and two resulting models have different estimators

for κ0. Let S∗y be the set which contains distinct values of y from the sample SA. If S∗y has

n∗y elements, then we need obtain a total of n∗y prediction models to cover every observed

y values.

Besides aforementioned parametric models, non-parametric approach is also natural to

consider. Cheng and Chu (1996) and Wang and Qin (2010) promoted Nadaraya-Watson

kernel estimators for Gi(y). These estimation methods are more robust compared to para-

metric approach, but require bandwidth selection.

Assume we are interested in the distribution function at y = y0, i.e., FY,N(y0). Let Ĝi(y)

denote an estimator of Gi(y) which is obtained by one of Chen and Wu (2002)’s parametric

approach, then a straightforward DR estimator of FY,N(y0) under PEL approach is given by

F̂y0,PEL(y0) =
∑

i∈SA p̂iI(yi ≤ y0), where subscript “y0, PEL” indicates that y0 is specified

and fixed for the prediction model, and p̂i is the PEMLE under constraints

∑
i∈SA

pi = 1 ,
∑
i∈SA

piĜi(y0) = 1/N̂B
∑
i∈SB

dBi Ĝi(y0).

Notice that estimator F̂y0,PEL(y) is not doubly robust besides at y = y0, e.g., F̂y0,PEL(y1)
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is not doubly robust when y1 6= y0. If the interest is the entire range of y, then F̂y,PEL(y)

need to be calculated for each y ∈ S∗y with different prediction models. But the resulting

estimators under this procedure do not lead to a genuine distribution function. In other

words, y1 ≤ y2 does not ensure F̂y1,PEL(y1) ≤ F̂y2,PEL(y2) for arbitrary y1 and y2.

DR estimator of FY,N(y0) in the classic DR form give by (2.4.12) is compute as

F̂y0,DR(y0) =
∑
i∈SA

d̂Ai
{
I(yi ≤ y0)− Ĝi(y0)

}
+

1

N̂B

∑
i∈SB

dBi Ĝi(y0).

Similarly to estimator F̂y0,PEL(y), estimator F̂y0,DR(y) is not doubly robust for the entire

range of y.

This issue can be partially solved by using multiple model-calibrated constraints un-

der the PEL approach. For example, when y1 and y2 are our interested points, we can

obtain a single set of p̂i by using constraints
∑

i∈SA piĜi(y1) = 1/N̂B
∑

i∈SB d
B
i Ĝi(y1) and∑

i∈SA piĜi(y2) = 1/N̂B
∑

i∈SB d
B
i Ĝi(y2) simultaneously. The resulting estimator, denoted

by F̂y1,y2,PEL(y), is doubly robust at both points y1 and y2. If the entire range of y is the

interest, we can pick serval points such as 0.2th, 0.4th, 0.6th and 0.8th quantiles of set S∗y ,

to construct multiple constraints. This multiple constraints technique was also discussed

in Rueda and Muñoz (2009). Compared to DR estimation above, this approach still enjoys

some robustness, and more importantly, generates genuine distribution functions which are

desirable for quantile estimation.

Quantiles are obtained by inverting the distribution function. Let ζ be some value

which satisfies 0 < ζ < 1, and F (t) be an arbitrary cdf. Then the ζth quantile of F (t) is

defined as qζ = F−1(ζ) = inf
{
t : F (t) ≥ ζ

}
. In the current setting of finite population,

the target cdf is FY,N(y), and the parameter of interest is qζ,N = F−1
Y,N(ζ).

Since estimators F̂Y,IPW (y), F̂y0,PEL(y) and F̂y1,y2,PEL(y) are genuine distribution func-

tions, they can be inverted directly to obtain quantile estimators. Let F̂Y,N(y) be any

of F̂Y,IPW (y), F̂y0,PEL(y) or F̂y1,y2,PEL(y), and let q̂ζ,N = F̂Y,N(ζ)−1. We assume there is a

twice differentiable distribution function FY (y), such that FY,N(y)→ FY (y) in distribution
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as N → ∞. Then under the correctly specified propensity model and regularity condi-

tions similarly to Chen and Wu (2002), we have the following weak version of Bahadur

representation for q̂ζ,N ,

q̂ζ,N = qζ +
ζ − F̂Y,N(qζ)

fY (qζ)
+ op(n

− 1
2 ),

where qζ = F−1
Y (ζ), and fY (y) is the density function of FY (y). This representation can

be justified by similar arguments from Serfling (1980), Chen and Chen (2000) and Chen

and Wu (2002). From the expression, the asymptotic normality of q̂ζ,N can be immediately

established through the asymptotic normality of F̂Y,N(qζ). It also reveals that the efficiency

of the quantile estimator is determined by the choice of estimators for the distribution

function. Usually, estimators F̂y0,PEL(y) and F̂y1,y2,PEL(y) are more efficient than F̂Y,IPW (y),

especially when y0, and one of y1 or y2 are chosen close to qζ .

3.4 Multiply Robust Inference

Under the PEL framework, doubly robust inference developed in Section 3.2 can be ex-

tended to multiply robust inference through model-calibration technique. The notion of

multiple robustness was introduced by Han and Wang (2013), which allows for multiple

working models for propensity scores and outcome regression, and the resulting estimator

is consistent if one of the working models is correctly specified. Relevant work can be found

in Han (2014), Chen and Haziza (2017), Zhang et al. (2019), etc.

Let Pξ = {m(j)(xi,β
(j)), j = 1, · · · J1} be a set of working models for the outcome

regression, where β(j) is the corresponding model parameter for jth working model, and

J1 is the total number of working models. To construct model-calibrated constraints,

let m̂
(j)
i = m(j)(xi,β̂

(j)
), and ˆ̄mB,(j) = 1/N̂B

∑
i∈SB d

B
i m̂

(j)
i , where β̂

(j)
is the estimator of

parameter β(j). According to the relation Eξ(yi | xi, Ri = 1) = Eξ(yi | xi), estimator β̂
(j)

for j = 1, · · · J1, can still be obtained with data of sample SA alone as we obtain estimator
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β̂ for model m(xi,β) in Section 2.4.2. Then under regularity conditions, the PEL based

estimator, subject to the following J1 + 1 constraints,

∑
i∈SA

pi = 1 ,
∑
i∈SA

pim̂
(j)
i = ˆ̄mB,(j) , for j = 1, · · · J1,

is consistent if the propensity score model or any model in set Pξ is correctly specified,

To adopt multiple working models for propensity scores, it is more natural to consider

the regular EL function ls(p) =
∑

i∈SA log pi. See Zhang et al. (2019) for further discussions.

Let Pq = {π(j)(xi,θ
(j)), j = 1, · · · J2} be a set of working models for the propensity scores,

where θ(j) is the corresponding model parameter for jth working model, and J2 is the

total number of working models. Let π̂
(j)
i = π(j)(xi,θ̂

(j)
), and ˆ̄πB,(j) = 1/N̂B

∑
i∈SB d

B
i π̂

(j)
i ,

where θ̂
(j)

is the estimator of parameter θ(j). Note that set Pq is a class of propensity

score models, so the proposed method of estimating model parameter θ for π(xi,θ) in

Section 2.3 can still be used for obtaining θ̂
(j)

for j = 1, · · · J2, but under different model

specifications. Then a multiply robust estimator of µy is given by µ̂MR =
∑

i∈SA p̂iyi, where

p̂i’s maximize ls(p) under the following J1 + J2 + 1 constraints,∑
i∈SA

pi = 1 ,

∑
i∈SA

pim̂
(j)
i = ˆ̄mB,(j) , for j = 1, · · · J1 ,∑

i∈SA

piπ̂
(j)
i = ˆ̄πB,(j) , for j = 1, · · · J2.

Under regularity conditions, the estimator µ̂MR is consistent if one of the working models

in set Pξ or Pq is correctly specified. The multiple robustness property can be proved by

using techniques in Han and Wang (2013).
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3.5 Simulation Studies

We consider a finite population of size N = 10,000, with binary response y and auxiliary

variable x1, x2, and x3. Each yi is generated from a Bernoulli distribution with mean ui,

which follows logistic regression model (ξ),

log

(
ui

1− ui

)
= β0 + 0.5x1i + 0.5x2i + 0.5x3i ,

where x1i = z1i, x2i = z2i + 0.1x1i, x3i = z3i + 0.1x2i, with z1i ∼ Bernoulli(0.5), z2i ∼
Uniform(0,1), and z3i ∼ Exponential(mean = 0.5). The value of parameter β0 is set such

that N−1
∑

N

i=1 ui equals to the proportion P we are interested in.

The propensity scores πAi follow logistic regression model (q),

log

(
πAi

1− πAi

)
= θ0 + x1i + x2i + x3i ,

where θ0 is chosen such that
∑

N

i=1 π
A
i = nA, with nA being the target sample size. The

non-probability sample SA is selected by the Poisson sampling method with the inclusion

probabilities specified by πAi .

The probability sample SB, with the target size nB, is taken by the randomized sys-

tematic PPS sampling method with the inclusion probabilities πBi proportional to zi =

c + x3i. The value of c is chosen to control the variation of the survey weights such that

max zi/min zi = 20.

We consider three scenarios of model specification. (i) Both models are correctly spec-

ified, denoted by “TT”. (ii) The prediction model is misspecified, and the propensity

score model is correctly specified, denoted by “FT”; the working model for ξ is chosen as

log{ui/(1 − ui)} = β0 + β1x1i + β2x2i, with x3i being omitted. (iii) The prediction model

is correctly specified, and the propensity score model is misspecified, denoted by “TF”;

the working model for q is chosen as log{πAi /(1− πAi } = θ0 + θ1x1i + θ2x2i, with x3i being

omitted.
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In the first part of simulation studies, we examine performance of point estimators µ̂IPW2

and µ̂PEL, which are obtained through the proposed PEL approach. We also include simu-

lation results of naive estimator µ̂A = n−1
A

∑
i∈SA yi, prediction based estimator µ̂REG = ˆ̄mB,

and doubly robust estimator µ̂DR2 for the purpose of comparisons. For a given estimator,

its performance is evaluated through %RB and MSE based on B = 5,000 simulated sam-

ples. Rather than focusing on a single specification of parameters, we take different sizes

for SA and consider a range of values for P . Results for setting nA = 100, nB = 100, and

P = 0.1, 0.2, 0.5, 0.7 are reported in Table 3.1; and results for setting nA = 500, nB = 100,

and P = 0.02, 0.03, 0.05, 0.95 are reported in Table 3.2. To facilitate reading, MSE have

been multiplied by 103 and 105 in Table 3.1 and Table 3.2 respectively. We have following

interesting observations based on the two tables.

(1) Estimators µ̂IPW2 and µ̂PEL both have small %RB under the correctly specified

q model (“TT” and “FT”), while µ̂PEL has smaller MSE than µ̂IPW2. (2) Estimators

µ̂IPW2 and µ̂REG are not robust against model misspecification. Estimator µ̂IPW2 fails under

scenario “TF”, while µ̂REG collapses under scenario “FT”. (3) Estimators µ̂PEL and µ̂DR2 are

robust against model misspecification, and they have comparable performance in terms of

the %RB and MSE under all the scenarios considered. Moreover, the close performance of

µ̂PEL and µ̂DR2 under scenario “TT” further verifies their asymptotic equivalency. (4) When

the prediction model ξ is correctly specified (“TT” and “TF”), estimator µ̂REG generally

has the smallest MSE among all the estimators considered. (5) Two tables with different

nA demonstrate similar patterns.

The second part of the simulation study focuses on the CIs. We are mainly interested

in the PEL-ratio-based CIs, including PEL1,adj, PEL2,adj, PEL1,bts and PEL2,bts. Their

performance is compared with the following normal approximation based CIs,

NAIPW2 : [µ̂IPW2 − za/2v1/2
IPW2, µ̂IPW2 + za/2v

1/2
IPW2] ,

NADR2,plug : [µ̂DR2 − za/2v1/2
DR2,plug, µ̂DR2 + za/2v

1/2
DR2,plug] ,
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Table 3.1: Simulated %RB and MSE×103 of Estimators of P (nA = 100)

TT FT TF

P Estimators %RB MSE %RB MSE %RB MSE

0.1 µ̂A 55.73 4.42 55.73 4.42 55.73 4.42
µ̂IPW2 -0.49 1.48 -0.49 1.48 36.43 2.77
µ̂PEL 1.64 1.46 0.61 1.45 -2.23 1.39
µ̂REG 0.76 1.22 40.65 3.13 0.76 1.22
µ̂DR2 1.27 1.45 0.94 1.45 -1.99 1.22

0.2 µ̂A 39.56 8.05 39.56 8.05 39.56 8.05
µ̂IPW2 -0.48 2.86 -0.48 2.86 22.87 4.52
µ̂PEL 0.79 2.75 0.19 2.75 -0.18 2.66
µ̂REG -1.57 2.23 23.02 4.38 -1.57 2.23
µ̂DR2 0.70 2.75 0.40 2.77 -1.31 2.31

0.5 µ̂A 19.51 11.78 19.51 11.78 19.51 11.78
µ̂IPW2 -0.34 5.52 -0.34 5.52 11.47 7.06
µ̂PEL 0.24 5.07 -0.02 5.17 0.34 5.20
µ̂REG 0.36 4.37 11.32 6.84 0.36 4.37
µ̂DR2 0.24 5.12 0.02 5.23 0.50 4.45

0.7 µ̂A 9.70 6.35 9.70 6.35 9.70 6.35
µ̂IPW2 -0.52 5.16 -0.52 5.16 5.40 4.59
µ̂PEL -0.19 4.83 -0.29 4.82 -0.22 5.06
µ̂REG -0.50 4.17 5.39 4.44 -0.50 4.17
µ̂DR2 -0.18 4.87 -0.30 4.89 -0.46 4.29
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Table 3.2: Simulated %RB and MSE×105 of Estimators of P (nA = 500)

TT FT TF

P Estimators %RB MSE %RB MSE %RB MSE

0.02 µ̂A 44.39 1.30 44.39 1.30 44.39 1.30
µ̂IPW2 -1.07 0.55 -1.07 0.55 31.35 1.00
µ̂PEL -0.93 0.55 -0.70 0.54 0.87 0.51
µ̂REG 3.80 0.48 33.56 1.06 3.80 0.48
µ̂DR2 -0.50 0.54 -0.74 0.55 2.26 0.49

0.03 µ̂A 38.20 2.34 38.20 2.34 38.20 2.34
µ̂IPW2 -1.24 0.89 -1.24 0.89 20.72 1.34
µ̂PEL -1.01 0.88 -0.72 0.87 0.30 0.83
µ̂REG 2.26 0.77 22.32 1.41 2.26 0.77
µ̂DR2 -0.57 0.87 -0.71 0.87 1.19 0.78

0.05 µ̂A 41.57 5.63 41.57 5.63 41.57 5.63
µ̂IPW2 -1.31 1.33 -1.31 1.33 26.17 3.20
µ̂PEL -1.30 1.32 -0.78 1.29 -1.27 1.28
µ̂REG 4.69 1.24 29.11 3.64 4.69 1.24
µ̂DR2 -0.65 1.29 -0.86 1.30 2.29 1.20

0.95 µ̂A 1.31 2.16 1.31 2.16 1.31 2.16
µ̂IPW2 0.00 2.23 0.00 2.23 0.68 1.75
µ̂PEL 0.03 2.15 0.03 2.15 -0.02 2.29
µ̂REG -0.11 2.00 0.65 1.68 -0.11 2.00
µ̂DR2 0.04 2.15 0.03 2.17 -0.07 2.00

NADR2,bst : [µ̂DR2 − za/2v1/2
DR2,bst, µ̂DR2 + za/2v

1/2
DR2,bst] ,

NAPEL : [µ̂PEL − za/2v1/2
PEL, µ̂PEL + za/2v

1/2
PEL] ;

as well as the bootstrap hybrid confidence interval (Shao and Tu, 1996) based on µ̂DR2,

BstDR2 : [µ̂DR2 −H−1
boot(a/2), µ̂DR2 −H−1

boot(1− a/2)] ,

where H−1
boot(a/2) and H−1

boot(1 − a/2) are the (1 − a/2)th and the (a/2)th quantile of the

bootstrap distribution of µ̂DR2 based on J = 1,000 bootstrap samples.

Performance of CIs is evaluated through simulated coverage probability (%CP), lower

tail error rate (%L), upper tail error rate (%U), and average length (AL) based on B =
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5,000 simulated samples. Variance estimation is crucial in computing adjustment factors

and constructing normal approximation based CIs, so we also assess variance estimators

vIPW2, vPEL and vDR2,plug through their %RB in comparison with Monte-carlo simulated

variances.

Performance of CIs with nA = 100 and nA = 500 are presented in Table 3.3 and Table

3.4, respectively; and for each case, two CIs whose %CP are closest to the nominal value

95% are underlined. Variance estimators with nA = 100 and nA = 500 are reported in

Table 3.5. We have following key observations based on these three tables.

(1) When the q model is correctly specified (“TT” and “FT”), bootstrap-calibrated

PEL ratio CIs, including PEL1,bts and PEL2,bts, generally have coverage rates closer to

95% than other CIs reported. This advantage is especially notable when the true propor-

tion P is relatively closer to zero or one. (2) When the q model is correctly specified (“TT”

and “FT”), incorporating information of the prediction model incurs shorter AL in gen-

eral. Specifically, PEL2,adj has shorter AL than PEL1,adj, PEL2,bst has shorter AL than

PEL1,bst, and NADR2,plug has shorter AL than NAIPW2 for most cases. (3)When the q model

is correctly specified (“TT” and “FT”), the performance of CIs deteriorates when the true

proportion moves closer to boundary values no matter which approaches are taken. (4) We

observe that PEL2,bts, NADR2,bst and BstDR2 have some robustness against misspecification

of q model (“TF”) while other CIs do not. This result indeed can be predicted since other

CIs either involve biased point estimators or biased variance estimators. In the meanwhile,

PEL2,bts generally outperforms NA2,bts in coverage rates; and BstDR2, even its performance

is relatively insensitive to model misspecification, suffers the most severe under-coverage

issue for every case. (5) When nA = 500 and P = 0.02, 0.03, 0.05, we observe that NAIPW2,

NADR2,plug and NAPEL have better performance under scenario “TF” than under scenar-

ios “FT” and “TT”. This is very counter-intuitive since NAIPW2, NADR2,plug and NAPEL

are supposed to fail in theory when the q model is misspecified. This mystery can be

easily unrevealed from Table 3.5. When P = 0.02, 0.03, 0.05, variance estimators for

µ̂IPW2, µ̂DR2 and µ̂PEL have large positive %RB. Large variance estimators lead to wide

CIs which coincidentally compensate the under-coverage issue. Once biases of variance
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Table 3.3: 95% CIs for P Obtained by Different Approaches (nA = 100)

P Scenarios PEL1,adj PEL2,adj PEL1,bts PEL2,bts NAIPW2 NADR2,plug NADR2,bts NAPEL BstDR2

0.1 TT %CP 91.83 91.15 93.20 93.40 88.55 88.38 90.18 88.48 86.78
%L 1.52 1.65 0.98 0.80 0.50 0.57 0.30 0.62 0.22
%U 6.65 7.20 5.83 5.80 10.95 11.05 9.53 10.90 13.00
AL 0.1407 0.1388 0.1490 0.1487 0.1414 0.1380 0.1475 0.1375 0.1454

FT %CP 91.83 91.57 93.10 92.83 88.55 88.92 91.17 88.62 88.33
%L 1.52 1.50 0.98 0.98 0.50 0.57 0.27 0.57 0.25
%U 6.65 6.93 5.92 6.20 10.95 10.50 8.55 10.80 11.43
AL 0.1407 0.1402 0.1489 0.1467 0.1414 0.1397 0.1513 0.1382 0.1497

TF %CP 83.83 87.78 86.22 93.47 90.83 92.12 90.88 90.28 86.58
%L 15.82 2.25 13.45 1.03 8.33 0.80 0.48 1.12 0.32
%U 0.35 9.98 0.32 5.50 0.85 7.07 8.65 8.60 13.10
AL 0.1488 0.1226 0.1554 0.1533 0.1497 0.1378 0.1376 0.1360 0.1363

0.2 TT %CP 93.25 93.08 94.85 94.60 91.75 91.40 92.50 91.22 90.48
%L 1.82 1.77 1.12 1.00 0.90 0.92 0.70 1.03 0.52
%U 4.92 5.15 4.03 4.40 7.35 7.67 6.80 7.75 9.00
AL 0.2011 0.1976 0.2160 0.2112 0.2041 0.1984 0.2100 0.1971 0.2086

FT %CP 93.25 92.85 94.85 93.85 91.75 91.40 92.85 91.15 90.83
%L 1.82 1.70 1.12 1.18 0.90 0.95 0.68 1.07 0.65
%U 4.92 5.45 4.03 4.98 7.35 7.65 6.48 7.78 8.53
AL 0.2011 0.1984 0.2159 0.2089 0.2041 0.1996 0.2126 0.1980 0.2113

TF %CP 85.05 90.50 87.67 94.85 88.95 92.75 93.08 91.20 91.30
%L 14.42 2.83 11.85 1.10 10.17 1.40 0.62 2.35 0.45
%U 0.52 6.68 0.48 4.05 0.88 5.85 6.30 6.45 8.25
AL 0.1934 0.1774 0.2030 0.2143 0.1956 0.1859 0.1933 0.1843 0.1923

0.5 TT %CP 94.60 94.05 96.08 95.35 93.75 93.30 94.50 93.23 93.60
%L 2.85 2.57 2.05 1.92 3.23 2.83 2.27 3.02 2.75
%U 2.55 3.38 1.88 2.73 3.02 3.88 3.23 3.75 3.65
AL 0.2783 0.2707 0.3018 0.2929 0.2845 0.2751 0.2911 0.2716 0.2912

FT %CP 94.60 93.83 96.08 95.10 93.75 93.20 94.58 93.05 93.35
%L 2.85 2.70 2.05 2.10 3.23 3.15 2.43 3.23 2.95
%U 2.55 3.48 1.88 2.80 3.02 3.65 3.00 3.72 3.70
AL 0.2783 0.2715 0.3018 0.2898 0.2845 0.2768 0.2934 0.2734 0.2938

TF %CP 83.90 91.38 86.50 96.10 82.95 91.00 94.70 88.20 93.83
%L 15.95 3.92 13.43 1.92 16.85 4.85 2.57 5.90 2.97
%U 0.15 4.70 0.08 1.98 0.20 4.15 2.73 5.90 3.20
AL 0.2370 0.2456 0.2495 0.3004 0.2406 0.2317 0.2689 0.2295 0.2686

0.7 TT %CP 93.97 92.92 95.45 95.08 92.95 92.25 93.60 91.88 92.03
%L 3.55 3.88 2.75 2.75 5.12 4.92 4.32 5.20 5.70
%U 2.48 3.20 1.80 2.17 1.92 2.83 2.08 2.93 2.27
AL 0.2646 0.2586 0.2879 0.2852 0.2707 0.2648 0.2815 0.2605 0.2817

FT %CP 93.97 93.33 95.30 94.73 92.95 92.45 93.65 92.00 92.33
%L 3.55 3.85 2.85 3.00 5.12 5.15 4.45 5.38 5.67
%U 2.48 2.83 1.85 2.27 1.92 2.40 1.90 2.62 2.00
AL 0.2646 0.2587 0.2860 0.2780 0.2707 0.2649 0.2807 0.2611 0.2811

TF %CP 88.02 90.62 89.88 95.97 84.50 87.95 94.08 84.45 92.27
%L 11.58 4.67 9.78 2.17 15.15 6.95 3.65 8.70 5.30
%U 0.40 4.70 0.35 1.85 0.35 5.10 2.27 6.85 2.43
AL 0.2135 0.2364 0.2263 0.2925 0.2165 0.2119 0.2614 0.2097 0.2613
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Table 3.4: 95% CIs for P Obtained by Different Approaches (nA = 500)

P Scenarios PEL1,adj PEL2,adj PEL1,bts PEL2,bts NAIPW2 NADR2,plug NADR2,bts NAPEL BstDR2

0.02 TT %CP 91.47 91.17 92.77 93.17 88.78 88.78 89.85 88.55 87.10
%L 1.43 1.52 1.07 1.10 0.35 0.35 0.22 0.38 0.12
%U 7.10 7.30 6.15 5.73 10.88 10.88 9.93 11.07 12.78
AL 0.0282 0.0280 0.0296 0.0293 0.0278 0.0275 0.0290 0.0275 0.0286

FT %CP 91.47 91.83 92.65 92.80 88.78 88.90 90.33 88.83 87.50
%L 1.43 1.38 1.07 1.12 0.35 0.35 0.25 0.38 0.15
%U 7.10 6.80 6.28 6.08 10.88 10.75 9.43 10.80 12.35
AL 0.0282 0.0282 0.0295 0.0290 0.0278 0.0277 0.0294 0.0276 0.0290

TF %CP 87.75 91.05 89.68 94.00 94.40 94.80 92.42 93.80 90.50
%L 11.55 2.25 9.93 1.23 4.30 0.52 0.35 0.68 0.18
%U 0.70 6.70 0.40 4.78 1.30 4.67 7.22 5.53 9.32
AL 0.0309 0.0264 0.0323 0.0302 0.0307 0.0304 0.0282 0.0303 0.0279

0.03 TT %CP 93.33 93.00 94.53 94.45 91.17 91.03 92.30 90.55 89.72
%L 1.65 1.62 1.18 1.20 0.52 0.52 0.38 0.52 0.22
%U 5.03 5.38 4.30 4.35 8.30 8.45 7.32 8.92 10.05
AL 0.0364 0.0361 0.0384 0.0379 0.0362 0.0357 0.0375 0.0356 0.0372

FT %CP 93.33 93.27 94.50 94.17 91.17 90.83 92.42 90.80 90.18
%L 1.65 1.70 1.18 1.27 0.52 0.52 0.32 0.57 0.15
%U 5.03 5.03 4.32 4.55 8.30 8.65 7.25 8.62 9.68
AL 0.0364 0.0364 0.0384 0.0374 0.0362 0.0359 0.0378 0.0358 0.0375

TF %CP 89.98 91.65 91.67 94.85 93.58 94.45 93.27 93.47 91.88
%L 9.35 2.43 7.80 1.47 5.08 0.80 0.62 0.98 0.25
%U 0.68 5.92 0.52 3.67 1.35 4.75 6.10 5.55 7.88
AL 0.0372 0.0333 0.0390 0.0378 0.0371 0.0366 0.0358 0.0365 0.0356

0.05 TT %CP 94.03 93.65 95.50 94.90 92.42 92.45 93.40 91.70 92.35
%L 1.80 1.65 1.27 1.25 0.80 0.82 0.65 0.90 0.32
%U 4.17 4.70 3.23 3.85 6.78 6.73 5.95 7.40 7.32
AL 0.0454 0.0447 0.0482 0.0471 0.0453 0.0444 0.0465 0.0443 0.0463

FT %CP 94.03 94.05 95.50 94.75 92.42 92.53 93.53 92.53 92.50
%L 1.80 1.75 1.27 1.27 0.80 0.75 0.60 0.80 0.32
%U 4.17 4.20 3.23 3.98 6.78 6.73 5.88 6.68 7.17
AL 0.0454 0.0452 0.0482 0.0464 0.0453 0.0447 0.0471 0.0446 0.0469

TF %CP 79.97 92.10 82.27 95.17 86.17 96.47 95.08 94.53 94.33
%L 19.88 2.23 17.57 1.30 13.55 1.12 1.00 1.12 0.80
%U 0.15 5.67 0.15 3.52 0.27 2.40 3.92 4.35 4.88
AL 0.0476 0.0412 0.0498 0.0471 0.0475 0.0464 0.0444 0.0461 0.0443

0.95 TT %CP 93.03 92.38 94.67 94.23 90.70 90.53 91.50 90.53 89.53
%L 5.53 5.73 4.28 4.47 8.88 8.70 8.12 8.67 10.35
%U 1.45 1.90 1.05 1.30 0.43 0.78 0.38 0.80 0.12
AL 0.0568 0.0564 0.0643 0.0626 0.0565 0.0565 0.0593 0.0561 0.0591

FT %CP 93.03 92.77 94.20 93.58 90.70 90.75 91.85 90.65 89.88
%L 5.53 5.55 4.75 5.00 8.88 8.72 7.83 8.70 10.03
%U 1.45 1.68 1.05 1.43 0.43 0.52 0.32 0.65 0.10
AL 0.0568 0.0563 0.0601 0.0580 0.0565 0.0562 0.0590 0.0560 0.0588

TF %CP 88.92 92.62 91.65 95.40 84.30 87.42 93.40 84.88 91.55
%L 10.78 5.17 8.12 3.65 15.60 9.28 6.12 10.70 8.28
%U 0.30 2.20 0.22 0.95 0.10 3.30 0.48 4.42 0.18
AL 0.0448 0.0549 0.0508 0.0657 0.0446 0.0452 0.0566 0.0450 0.0565
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Table 3.5: Simulated %RB of Variance Estimators

nA = 100 nA = 500

P Estimators TT FT TF P Estimators TT FT TF

0.1 vIPW2 -0.03 -0.03 7.07 0.02 vIPW2 4.62 4.62 12.47
vPEL -3.17 -2.15 -7.47 vPEL 2.93 4.92 20.54
vDR2,plug -1.25 0.02 7.54 vDR2,plug 4.70 5.60 34.10

0.2 vIPW2 1.35 1.35 3.78 0.03 vIPW2 5.62 5.62 7.15
vPEL -1.09 -0.37 -13.97 vPEL 4.06 5.93 9.54
vDR2,plug 1.07 1.28 0.83 vDR2,plug 5.95 6.51 18.16

0.5 vIPW2 -2.05 -2.05 1.08 0.05 vIPW2 4.66 4.66 9.68
vPEL -2.91 -3.54 -33.06 vPEL 3.03 5.37 10.94
vDR2,plug -1.21 -2.10 -20.14 vDR2,plug 5.02 5.24 22.90

0.7 vIPW2 -2.70 -2.70 -0.22 0.95 vIPW2 1.76 1.76 2.40
vPEL -4.83 -4.08 -42.02 vPEL 1.35 1.90 -40.76
vDR2,plug -2.68 -2.62 -29.92 vDR2,plug 1.73 1.93 -30.37

estimators decrease at P = 0.95, then confidence intervals NAIPW2, NADR2,plug and NAPEL

no longer hold valid under scenario “TF”. (6) PEL approach in general tends to provide

more balanced tail error rates for resulting CIs, compared to the normal approximation

based approaches.
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3.6 Technical Details

Proof of Theorem 3.1.

(1) Justification of Double Robustness.

Define ûi = m̂i − ˆ̄mB for notational simplicity. We rewrite µ̂PEL as µ̂PEL =
∑

i∈SA p̂i(yi −
m̂i) +

∑
i∈SA p̂im̂i . Consider the case where the prediction model is correctly specified. By

using the first order Taylor expansion, we have

∑
i∈SA

p̂i(yi − m̂i) =
N∑
i=1

Rid̂
A
i

1 + λ̂ûi
(yi − m̂i)

=
1

N

N∑
i=1

Ri(yi −m∗i )
πi(θ

∗)
{

1 + λ∗(m∗i − m̄∗)
}/ 1

N

N∑
i=1

Ri

πi(θ
∗)

+ op(1),

which immediately leads to

∑
i∈SA

p̂i(yi − m̂i)
p→ 1

N

N∑
i=1

Eq(Ri)Eξ(yi −m∗i )
πi(θ

∗)
{

1 + λ∗(m∗i − m̄∗)
}/ 1

N

N∑
i=1

Eq

{
Ri

πi(θ
∗)

}
,

where λ∗ is the limiting point of λ̂. Since β∗ = β0 under the true prediction model, then

we have Eξ(yi − m∗i ) = 0, which gives
∑

i∈SA p̂i(yi − m̂i) = op(1). In addition, we have∑
i∈SA p̂im̂i = ˆ̄mB by the model-calibrated constraint, and ˆ̄mB−µy = op(1) under regularity

conditions C1–C3. Hence µ̂PEL = µy + op(1).

When the propensity score model is correctly specified, we have λ̂ converges to zero.

Using the first order Taylor expansion, we get

µ̂PEL =
N∑
i=1

Rid̂
A
i

1 + λ̂ûi
yi

=
1

N

N∑
i=1

Ri

πAi
yi
/ 1

N

N∑
i=1

Ri

πAi
+ op(1).
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Note that

1

N

N∑
i=1

Ri

πAi
yi
/ 1

N

N∑
i=1

Ri

πAi

p→ 1

N

N∑
i=1

Eq

(
Ri

πAi

)
yi
/ 1

N

N∑
i=1

Eq

(
Ri

πAi

)
= µy,

where
p→ indicates convergence in probability. Hence µ̂PEL

p→ µy.

(2) Asymptotic Expansion of µ̂PEL.

Define ûi = m̂i − ˆ̄mB. First of all, we show following two statements,

(i) max
i∈SA

{
|ûi|
}

= op(n
1
2
A),

(ii)
∑

i∈SA d̂
A
i ûi/

∑
i∈SA d̂

A
i û

2
i = Op(n

− 1
2

A ),

which together implies λ̂ =
∑

i∈SA d̂
A
i ûi/

∑
i∈SA d̂

A
i û

2
i + op(n

− 1
2

A ) by Wu and Sitter (2001).

To prove Statement (i), we first obtain the second-order Taylor expansion of ûi around

β∗,

ûi = m̂i − ˆ̄mB

= m̂i −N−1

N∑
i=1

m̂i + op(1)

= (m∗i − m̄∗) +
{
∂(mi − m̄)/∂βᵀ|β=βn

}
(β̂ − β∗) + op(1),

where βn is between β∗ and β̂, mi = m(xi,β), and m̄ = N−1
∑

N

i=1mi. Obviously,

Statement (i) follows directly if maxi∈SA{|m∗i − m̄∗|} = op(n
1
2
A) and maxi∈SA

{
|∂(mi −

m̄)/∂βᵀ|β=βn
|
}

= op(nA). Observe that

max
i∈SA
{|m∗i − m̄∗|} ≤ max

i∈SA
{|m∗i |}+ |m̄∗|,

where |m̄∗| = O(1), and the order of maxi∈SA{|m∗i |} can not be larger than o(n
1
2
A) under

assumption N−1
∑

N

i=1m
∗
i

2 = O(1), which is stated in regularity condition C4. Similarly, it
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can be shown that maxi∈SA
{
|∂(mi− m̄)/∂βᵀ|β=βn

|
}

= op(nA) under regularity condition

C5. We thus have Statement (i) verified.

To find the order of
∑

i∈SA d̂
A
i ûi/

∑
i∈SA d̂

A
i û

2
i , we first obtain the first order Taylor

expansion of
∑

i∈SA d̂
A
i ûi around β∗,

∑
i∈SA

d̂Ai ûi = (
∑
i∈SA

d̂Ai m
∗
i − m̄∗B) + (

∑
i∈SA

d̂Ai ṁ
∗
i − ˙̄m∗B)(β̂ − β∗) + op(n

− 1
2

A ),

where m̄∗B = (N̂B)−1
∑

i∈SB d
B
i m
∗
i , ṁ

∗
i = ∂m(xi,β

∗)/∂βᵀ and ˙̄m∗B = (N̂B)−1
∑

i∈SB d
B
i ṁ
∗
i .

The first component of this expansion can be rewritten as (
∑

i∈SA d̂
A
i m
∗
i−m̄∗)+(m̄∗−m̄∗B),

where (
∑

i∈SA d̂
A
i m
∗
i − m̄∗) has order of Op(n

− 1
2

A ) by the similar augment for Theorem 2.1,

and (m̄∗ − m̄∗B) also has order of Op(n
− 1

2
A ) under regularity condition C3. Hence, the

first component of this expansion has order of Op(n
− 1

2
A ). The second component of the

expansion has order of op(n
− 1

2
A ). Then

∑
i∈SA d̂

A
i ûi = Op(n

− 1
2

A ) follows directly.

It can be easily shown that the denominator
∑

i∈SA d̂
A
i û

2
i has order of Op(1), and does

not converge to zero. Thus Statement (ii) is verified.

Under Statements (i) and (ii), the asymptotic expression for µ̂PEL can be derived. First

we get µ̂PEL =
∑

i∈SA p̂iyi = d̂Ai (1− ûiλ̂)yi+op(n
− 1

2
A ) through linearization technique. Then

by substituting λ̂ with
∑

i∈SA d̂
A
i ûi/

∑
i∈SA d̂

A
i û

2
i , estimator µ̂PEL can be further written as,

µ̂PEL = µ̂IPW2 + ( ˆ̄mB − ˆ̄mIPW2)B̂m + op(n
− 1

2
A ).

Finally, under regularity conditions C1–C6, it can be shown that

µ̂PEL − µy =
1

N

N∑
i=1

Ri

πAi
(yi −m∗iB∗m − kN − πAi x

ᵀ
ib1) +

1

N

∑
i∈SB

dBi qi + op(n
− 1

2
A ),

where B∗m, kN , b1 and qi are defined in Theorem 3.1. This expression naturally leads to

the variance formula for µ̂PEL.
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Proof of Theorem 3.2.

Applying the second order Taylor expansion to
∑

i∈SA d̂
A
i log p̃i(µ) around λ = 0, we obtain

∑
i∈SA

d̂Ai log p̃i(µ)−
∑
i∈SA

d̂Ai log p̃i

=
∑
i∈SA

d̂Ai log
d̂Ai

1 + λ̂(yi − µ)
−
∑
i∈SA

d̂Ai log(d̂Ai )

= −
{∑
i∈SA

d̂Ai (yi − µ)λ̂− 1

2

∑
i∈SA

d̂Ai (yi − µ)2λ̂2
}

+ op(n
−1
A )

= −1

2
(
∑
i∈SA

d̂Ai yi − µ)2
{∑
i∈SA

d̂Ai (yi − µ)2
}−1

+ op(n
−1
A ).

Since
∑

i∈SA d̂
A
i yi − µy is asymptotically normally distributed with zero mean under regu-

larity conditions C1–C4 and C7, then

Λ1(µy)
n−1
A

∑
i∈SA d̂

A
i (yi − µy)2

V ar(
∑

i∈SA d̂
A
i yi − µy)

d→ χ2
1.

Moreover, V ar(
∑

i∈SA d̂
A
i yi−µy) can be consistently estimated by vIPW2 and

∑
i∈SA d̂

A
i (yi−

µy)
2−
∑

i∈SA d̂
A
i (yi− µ̂IPW2)

2 = op(1). Then we have s1Λ1(µy)
d→ χ2

1 by Slutsky’s theorem,

where s1 = n−1
A

∑
i∈SA d̂

A
i (yi − µ̂IPW2)

2/vIPW2.

Proof of Theorem 3.3.

We first write constraints in (3.2.6) in a more compact form, i.e.,

∑
i∈SA

pi = 1 ,
∑
i∈SA

piai = ā,

where ai = (m̂i,ri)
ᵀ, and ā = ( ˆ̄mB,0)ᵀ.
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By using similar techniques as those used in Theorem 3.2, we can show that

∑
i∈SA

d̂Ai log p̂i(µ)

= −1

2
(
∑
i∈SA

d̂Ai ai − ā)ᵀ
{∑
i∈SA

d̂Ai (ai − ā)(ai − ā)ᵀ
}−1

(
∑
i∈SA

d̂Ai ai − ā) + op(n
−1
A )

= −1

2

(
∑

i∈SA d̂
A
i m̂i − ˆ̄mB)2∑

i∈SA d̂
A
i (m̂i − ˆ̄mB)2

− 1

2

(
∑

i∈SA d̂
A
i ri)

2∑
i∈SA d̂

A
i r

2
i

+ op(n
−1
A ),

and ∑
i∈SA

d̂Ai log p̂i = −1

2

(
∑

i∈SA d̂
A
i m̂i − ˆ̄mB)2∑

i∈SA d̂
A
i (m̂i − ˆ̄mB)2

+ op(n
−1
A ).

The above two asymptotic expansions lead to the result

∑
i∈SA

d̂Ai log p̂i(µ)−
∑
i∈SA

d̂Ai log p̂i = −1

2
(
∑
i∈SA

d̂Ai ri)
2(
∑
i∈SA

d̂Ai r
2
i )
−1 + op(n

−1
A ).

Thus, when µ is evaluated at µy and under the asymptotic normality of
∑

i∈SA d̂
A
i ri, we

have

Λ2(µ)
n−1
A

∑
i∈SA d̂

A
i r

2
i

V ar(
∑

i∈SA d̂
A
i ri)

d→ χ2(1),

To estimate V ar(
∑

i∈SA d̂
A
i ri), we notice V ar(

∑
i∈SA d̂

A
i ri) = VPEL + o(n−1

A ) when µ = µy;

and vPEL in (3.2.3) is a consistent estimator of VPEL. Then by Slutsky’s theorem, we get

s2Λ2(µy)
d→ χ2

1,

where s2 = n−1
A

∑
i∈SA d̂

A
i {yi − µ̂PEL − (m̂i − ˆ̄mB)B̂m}2/vPEL is a computable adjustment

factor.
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Chapter 4

Statistical Inference with Incomplete

Frames

Assumptions A1–A3 stated in Chapter 2 are extremely important when making inferences

with non-probability survey samples. In fact, all the major results through Chapter 2 to

Chapter 3 are developed under these three assumptions. In this Chapter, we investigate

the consequences when Assumption A2 is not satisfied and the broader issue of incomplete

sampling frames.

Recall that Assumption A2 is referred to as the positivity assumption, which requires

every unit in the population to have a positive propensity score. The failure of the positivity

assumption is often due to the incomplete sampling frame for SA where units with zero

propensity score can never be selected into the sample. Zero propensity scores can be

viewed as a parallel phenomena to the under-coverage issue in probability survey samples,

where the sampling frame only covers the population partially. However, the issue of zero

propensity scores can be far more complicated. Unlike probability survey samples, most

of non-probability survey samples are not governed by any sampling scheme, which means

zero propensity scores can come from a variety of unforeseen sources. Moreover, units with

zero propensity score can be difficult to identify in practice since the sample generating

84



mechanism is always unknown for non-probability survey samples.

The violation to the positivity assumption raises huge inferential obstacles for both

the QR approach and the MI approach. Due to the absence of design information such

as sampling frame and sampling strategy, positivity assumption is often implicitly used

in practice without verification. This chapter focuses on two generating mechanisms for

incomplete frames: stochastic mechanism and deterministic mechanism. Stochastic mech-

anism leads to an incomplete frame but does not violate the positivity assumption. We

show that our developed methodologies in Chapters 2 and 3 can be directly extended to

this scenario. The positivity assumption does not hold under the deterministic mechanism,

which means regular QR and MI approaches are no longer feasible. Under the deterministic

mechanism, we review some novel approaches which have potentials to mitigate the impact

of zero propensity scores, and evaluate these approaches through simulation studies. We

also propose a convex hull method to identify units with zero propensity score, and based

on the identified results, a split-population type estimator is constructed to estimate the

finite population mean.

4.1 Mechanisms for Incomplete Frames

It is not hard to demonstrate the complications that the QR approach and the MI approach

would encounter when zero propensity scores exist. We divide the finite population U into

two subpopulations U1 and U0, where U1 = {i | i ∈ U , πAi > 0} with size of N1, and

U0 = {i | i ∈ U , πAi = 0} with size of N0. The subpopulations U1 and U0 have their

own corresponding finite population means µy,1 = N−1
1

∑
i∈U1 yi and µy,0 = N−1

0

∑
i∈U0 yi

respectively. Let τ = N0/N be the proportion of zero propensity scores.

When τ 6= 0, applying the QR approach is problematic both in practice and theory.

Practically, commonly used propensity score models such as logistic model are not com-

patible with zero selection probability, and using these conventional models by ignoring

positivity violation could lead to biased inferences. Theoretically, two IPW estimators do
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not converge to µy. In particular, the estimator µ̂IPW1 converges to (1 − τ)µy,1, while the

estimator µ̂IPW2 converges to µy,1. One may notice that propensity scores are not explic-

itly involved in the MI approach. However, the positivity assumption is still inevitable.

One direct consequence of the violation is that the prediction model, which is built upon

relation Eξ(yi | xi) = Eξ(yi | xi, Ri = 1), might not give valid predictions for those xi with

P (Ri = 1 | xi) = 0. We use the following two examples to illustrate this phenomenon.

For the first example, we assume that the target population of a study is all the students

in a school, but the sample SA contains no data on female students. Suppose that gender,

related to the variable of interest, is a component of covariates x, then the propensity score

of female students can be treated as zero. If using NN imputation in this case, then no

female student in sample SB has a close match in sample SA in terms of gender. If adopting

regression prediction method described in Section 2.2.1, then the estimation of parameter

β0 is unattainable since the design matrix based on data {(xi,yi), i ∈ SA} is not of full

rank.

For the second example, the research interest is the average vacation spending of the

target population. We assume that personal income belongs to the set of covariates x, and

the selection process for sample SA accidentally excludes the part of the population which

have lower income, i.e., units with lower income have zero propensity score. Under this

scenario, no close match can be found for those units with lower income when applying

the NN imputation. Regression prediction method can also be challenging. Prediction

model is obtained based on sample SA which only contains units with higher income, but

predictions are also required for units with lower income for computing regression based

estimates. This is actually the issue of extrapolation, which is further illustrated in Section

4.1.2.

In summary, statistical inferences in the presence of zero propensity scores require

suitable adaptions of the methodologies developed in Chapters 2 and 3. In this section, we

discuss two generating mechanisms for propensity scores and incomplete frames.
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4.1.1 Stochastic mechanism

We consider a two-stage stochastic mechanism to generate sample SA. This mechanism

is frequently visited in the existing literature, and the example of online survey panel is

often used for illustrations. Online panels typically recruit panel members through some

non-probability based method such as sending out invitations and posting advertisements

online. Once being recruited, panel members will receive notifications whenever some

survey need to be filled. The survey participation is mostly voluntary, and cash or non-

cash prize is usually used as incentives for participation. Under this example, the first stage

of obtaining SA is the panel recruitment, and the second stage is panel members choosing

to fill out surveys.

Formally, let z be the indicator variable of being in the sampling frame or not, then

we accordingly have zi = 1 if unit i belongs to the online panel, and zi = 0 otherwise.

Furthermore, we assume P (zi = 1 | xi) > 0 for i ∈ U , i.e., every unit in the population has

a positive chance to be part of the sampling frame. This assumption is realistic in many

scenarios; for the survey panel example, the assumption is met if the panel registration

link is posted on the website where all the target population would browse. Due to the

randomization of variable z, this process is referred to as “stochastic” mechanism. The

population U is then divided by indicator z into subpopulations Ŭ1 = {i | i ∈ U , zi = 1}
and Ŭ0 = {i | i ∈ U , zi = 0}, where Ŭ1 consists of units which are used as the sampling

frame for the final sample SA, and Ŭ0 consists of the rest. Based on the survey panel

example, it is reasonable for us to assume that every unit in the set Ŭ1 has a positive

chance to enter sample SA, i.e., P (Ri = 1 | xi = 1, zi = 1) > 0 for every i. Note the

positivity assumption still holds under this mechanism since

πAi = P (Ri = 1 | xi) = P (Ri = 1 | xi, zi = 1)P (zi = 1 | xi), (4.1.1)

where both P (Ri = 1 | xi, zi = 1) and P (zi = 1 | xi) are positive values based on

the assumptions. The validity of the positivity assumption means that propensity scores
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can be estimated by the parametric model π(xi,θ) we propose in Section 2.3, and the

methodologies developed in Chapters 2 and 3 can be used here.

Instead of adopting a single model like logistic regression model for the propensity

scores, we can also choose to model P (Ri = 1 | xi, zi = 1) and P (zi = 1 | xi) separately.

Note that measurements of x are required for each zi = 1 to identify both models for

P (Ri = 1 | xi, zi = 1) and P (zi = 1 | xi).

The stochastic mechanism is obviously a simplification of real case scenarios, and it is

possible that multiple layers of panel sign-up indicators exist. For example, besides panel

sign-up variable z, assume there is a variable z1 which indicates the status of individual’s

internet access. Notice that the set {i | i ∈ U , zi = 1} is a subset of {i | i ∈ U , z1i = 1}
since the sign-up requires internet access, and an individual can only enter into sample SA
if z = 1 and z1 = 1. Under this mechanism, the propensity scores are given by

πAi = P (Ri = 1 | xi,zi = 1, z1i = 1)P (zi = 1 | xi, z1i = 1)P (z1i = 1 | xi). (4.1.2)

To estimate πAi by modelling each part of the decomposition (4.1.2), we need measurements

of indicator zi, z1i and x for z1i = 1, which however are often hard to obtain in practice.

Elliott and Valliant (2017) gives a more sophisticated example about how complicated the

mechanism can get by taking more relevant variables into account. So even if multiple

model approach are theoretically more suitable for the mechanism in (4.1.1) and (4.1.2),

approximating propensity scores with a carefully chosen single model is often more feasible

in practice.

Besides modelling issue, analysts should be aware that this stochastic mechanism relies

on the assumption that indicator variable z is not a confounding variable for R and y.

This assumption may not always hold in reality. For example, if variable y is the amount

of hours spent on online activities, then it is very likely that individuals on the panel have

higher values of y than those who are not. When both zi and xi are confounding variables

for R and y, the propensity scores are computed as πAi = P (Ri = 1 | xi, zi = 0) = 0

and πAi = P (Ri = 1 | xi, zi = 1) > 0. It is obvious that the positivity assumption fails
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under this scenario, and neither the QR approach or the MI approach is applicable. In the

simulation study reported in Section 4.4, we will evaluate the performance of QR and MI

approach with xi being treated as the confounding variables, while (zi,xi) is actually used

as confounding variables to generate sample SA.

4.1.2 Deterministic mechanism

Assume that sample SA is obtained by the following strategy. A researcher has a complete

list of individuals in the target population. And for each individual i, there is an associated

measurement of accessibility Φ(xi), where Φ(·) is some function about confounding vari-

ables xi. The value of Φ(xi) for each i is also available to the researcher, but measurement

of xi can not be observed before sampling. To save costs and time, the researcher chooses

to contact individuals who are more accessible. So the researcher orders individuals by

their accessibility Φ(x) from the highest to the lowest, and contact ordered individuals one

by one. Individual i, once being contacted, has probability π(xi,θ) of taking the survey.

The procedure stops when the total of (1 − τ)N individuals are contacted. The sample

selection mechanism of this example can be written as,

πAi =

π(xi,θ) if Φ(xi) > Q(τ),

0 otherwise,
(4.1.3)

where Q(τ) is the τth percentile of
{

Φ(x1), · · · ,Φ(xN)
}

. In other words, the original

selection mechanism in Section 2.1 is truncated so that units with small value of Φ(x)

have no chance of entering into sample SA. The frame indicator z under this mechanism

is computed as zi = 1 if Φ(xi) > Q(τ), and zi = 0 otherwise. This means that Ŭ1 = U1

and Ŭ0 = U0 under this mechanism. We refer to this mechanism as the deterministic

mechanism, since the sampling frame is determined by fixed values Φ(xi). Similarly to the

two-stage stochastic mechanism in the last section, sample SA here can also be viewed as

the result of a two-stage process. The first stage is to determine the sampling frame by a
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known function Φ(xi), and the second stage is to obtain the final sample from the frame

by certain randomized process. Note that the first stage in both mechanisms is dependent

on some function of covariates, but the frame indicator z follows a randomized process

in the stochastic mechanism, while being deterministically generated in the deterministic

mechanism.

When the propensity scores follow the non-truncated model π(xi,θ), every unit in U
has a positive probability of being selected in sample SA, which implies that SA and the

population U share the same support with respect to covariates x. However, the supports

of x for U1 and U0 form two sets that do not overlap with each other based on (4.1.3). This

means that units in sample SA are not representative for the subpopulation U0, and thus it

is not sensible to use the IPW method to infer the characteristics of the entire population.

Regression prediction approach is also questionable due to the possible failure of the

relation E(yi | xi) = Eξ(yi | xi, Ri = 1) for i ∈ U0 under the deterministic mechanism.

Furthermore, it has been noticed by several researchers, for example, Tan (2007) that

regression approach suffers the issue of extrapolation. Recall from Section 2.2.1 that the

model m(xi,β) is posited and estimated based on SA exclusively, and SA does not share

a common support with U0. It is difficult for analysts to check how closely the obtained

model fits the data from U0, since no response y is available from U0. The NN imputation

can also be problematic under this mechanism. For units which belong to U0, no exact

match can be found in SA in theory due to the non-overlapped supports for U1 and U0.

4.2 Existing Approaches

We argue in Section 4.1 that the QR, MI and PEL approaches can be immediately extended

to the stochastic mechanism, but are not valid under the deterministic mechanism due to

the positivity violation. From now on, we mainly focus on the deterministic mechanism

and explore inferential procedures which are robust against zero propensity scores. The

following three procedures are examined first, which do not aim at solving the positivity
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issue directly but require no positivity assumption explicitly for inferences.

4.2.1 Calibrated IPW approach

When the propensity scores follow the non-truncated model π(xi,θ), we used the score

equations (2.3.7) to obtain the maximum pseudo likelihood estimator θ̂ml. In addition, we

discussed an alternative estimator of θ, that is, the solution of the following calibration

type estimating equations,

∑
i∈SA

xi/πi(θ)−
∑
i∈SB

dBi xi = 0. (4.2.4)

Assume that a unique solution exists to (4.2.4), and let θ̂cal denote the solution. This

equation forces the weighted estimator
∑

i∈SA xi/πi(θ̂cal) to be equal to the estimated

population totals
∑

i∈SB d
B
i xi. Assume that the intercept is included in the model, the

estimated population sizes based on two samples are also calibrated to each other in the

sense that N̂A
cal = N̂B, where N̂A

cal =
∑

i∈SA 1/πi(θ̂cal). Given θ̂cal, the normalized IPW

estimator for µy is computed as µ̂IPW,cal = (N̂A
cal)
−1
∑

i∈SA yi/πi(θ̂cal).

The estimator µ̂IPW,cal is robust against zero propensity scores if there is a linear relation

between y and x. Specifically, if yi and xi satisfies Eξ(yi | xi) = xᵀ
iβ, for some β, for i ∈ U ,

then we have

Eξ

{
1

N̂A
cal

∑
i∈SA

yi

πi(θ̂cal)

}
=

1

N̂A
cal

∑
i∈SA

xᵀ
i

πi(θ̂cal)
β =

1

N̂B

∑
i∈SB

dBi x
ᵀ
iβ. (4.2.5)

The relation (4.2.5) shows that under the linearity assumption, the estimator µ̂IPW,cal is

approximately unbiased even if SA is not generated from the non-truncated model π(xi,θ0).

However, one may easily argue that the regression prediction approach can be used

directly if there is a known linear relation between y and x. Besides, relation (4.2.5) only

holds if (4.2.4) has a solution, which is not guaranteed in practice.
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4.2.2 Modified nearest neighbour approach

Recall from Section 2.2.1 that the NN procedure assigns a match to every unit in sample

SB. However, close matches may not exist for units in sample SB under the deterministic

mechanism. Kim and Rao (2018) modifies this NN idea by only conducting matching on

units which potentially belong to U1. We refer to their approach as KR-NN.

More specifically, the KR-NN method is achieved by two steps. The first step is to

classify units in sample SB into two subsamples SB,1 and SB,0, where SB,1 = SB ∩ U1 and

SB,0 = SB ∩ U0. Since the true propensity scores are not always available to partition SB,

the following set S̃B,1 is proposed to approximate SB,1,

S̃B,1 = {i | minj∈SA||xi − xj|| < ε, i ∈ SB},

where ε is a pre-specified constant. In other words, unit i belongs to S̃B,1 if its distance to

its closest neighbour in sample SA is less than the value of ε. Next, similarly to the original

NN method, the missing response for units in S̃B,1 is imputed with the response value of

its closest match in SA.

The second step is the calibration weighting, i.e., finding some weights wi which satisfy∑
i∈S̃B,1 wixi =

∑
i∈SB d

B
i xi. Finally, the resulting estimator for µy under KR-NN is given

by µ̂KR = 1/N̂B
∑

i∈S̃B,1 wiŷi. Note if S̃B,1 = SB, then estimator µ̂KR coincides with the

original NN based estimator µ̂NN . The original NN method can be viewed as a special case

of of the KH-NN method, where ε is set large enough to guarantee a match for each i ∈ SB.

If the size of S̃B,1 is much smaller than the size of SB, then the adequacy of the estimator

µ̂KR depends heavily on the calibration adjustment.

4.2.3 Stable weights approach

It is a broadly noticed phenomenon that small propensity scores, even being positive, could

result in large variances for IPW estimators. To find a set of stable weights, Zubizarreta
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(2015) takes a design-based approach by treating weights of SA as unknown parameters.

This approach does not require the positivity assumption explicitly, since the propensity

score model is not used for the estimation. Let wi denote the weight of unit i, for i ∈ SA.

The goal of the approach is to find a set of weights {w1, w2, · · · , wnA} which has the

minimum variance under the specified calibration constraints. Specifically, the problem is

formulated as minimizing
∑

i∈SA w
2
i subject to

∑
i∈SA wi = 1, wi ≥ 0 for i ∈ SA and∣∣∣ ∑

i∈SA

wixi − 1/N̂B
∑
i∈SB

dBi xi

∣∣∣ < δ, (4.2.6)

where (4.2.6) are calibration constraints, and the constant vector δ is the user-specified

calibration tolerance. The resulting estimator is given by µ̂SW =
∑

i∈SA ŵiyi, where ŵi is

obtained from the optimization problem described above. As the goal of this procedure

is to obtain stable weights, calibration constraints are exclusively responsible for reducing

selection bias. However, similarly to our previous argument, unless there is an approximate

linear relation between y and x, the calibration constraints cannot be accounted to remove

all the selection bias.

In summary, even though the positivity assumption is not postulated explicitly in these

three approaches, the linearity between x and y is still implicitly required to obtain valid

inferences under the deterministic mechanism. Like the positivity assumption, linearity is

also a strong assumption which tends to oversimplify the reality for most of cases.

4.3 Split-population Approach

We propose to use a split-population approach under the deterministic mechanism. Split-

population approach has been used in the survey sampling setting to analyze and combine

data from different sources; e.g., Zhang (2019) applied this approach to non-probability

samples. For the current setup, the “split-population” refers to subpopulations U1 and

U0. While the sample SA belongs to U1 automatically, units in the sample SB need to be
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classified into U1 and U0. In fact, the first step of KR-NN imputation is an example of

splitting sample SB. Under the split-population approach, estimators for µy take the form

of

µ̂y = (1− τ̂)µ̂y,1 + τ̂ µ̂y,0,

where µ̂y,1 and µ̂y,0 are estimators of µy,0 and µy,1 respectively, and τ̂ is the estimated

proportion of U0. Once sample SB is split, then computing τ̂ is trivial, and estimators

µ̂y,1 and µ̂y,0 can be obtained separately by suitable methods. The splitting step can

be computationally expensive, but it provides analysts with more insights into the data

structure. Based on the classification result, estimation methods can be chosen in a more

sensible manner. For example, if the proportion of zero propensity scores is small, using

classic methods in Section 2.2 may still be reasonable; but if the proportion of U0 is large,

then more sophisticated procedures should be considered.

4.3.1 Splitting method

Splitting sample SB is essentially to identify subsamples SB,1 and SB,0, which are defined

in Section 4.2.2. We propose the following convex hull method for classifications under the

deterministic mechanism.

For the purpose of illustration, we assume that x are continuous, and the underlying

function Φ(x) used for truncation follows a logistic regression model, with x being the

covariates. Let R1 and R0 denote the support of x for subpopulations U1 and U0 respec-

tively. Since the supports R1 and R0 do not overlap according to (4.1.3), the set SB,1, as a

sample of U1, can be distinguished from SB,0 once R1 is identified. The support R1 can not

be found directly, but can be approximated through sample SA, which shares a common

support with U1. Let CnA be the convex hull generated by the set
{
xi | i ∈ SA

}
, then the

following condition holds under the assumptions made above,

C8 For any xj ∈ R1 ∪R0, we have I(xj ∈ CnA)→I(xj ∈ R1).
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When Condition C8 holds, the convex hull CnA can be seen as a substitute of R1, it

follows that the sets SB,1 and SB,0 can be respectively approximated by ŜB,1 = SB ∩ CnA
and ŜB,0 = SB/ŜB,1. The subpopulation counts N1, N0 and the proportion τ can be

estimated by N̂B
1 =

∑
i∈ŜB,1 d

B
i , N̂B

0 =
∑

i∈ŜB,0 d
B
i and τ̂ = N̂B

0 /N̂
B.

To see if xj belongs to CnA for a given j, it suffices to check if there exist some ai for

i ∈ SA which satisfy the following constraints,

∑
i∈SA

aixi = xj ,
∑
i∈SA

ai = 1, and ai ≥ 0, ∀ i ∈ SA.

Condition C8 holds for a broad class of Φ(x) functions besides the logistic function.

Let CA,1 = limnA→∞CnA , then it is trivial that the relations R1 ⊆ CA,1 and CA,1 ∩R0 = ∅
are sufficient conditions for C8 being valid. A variety of forms for Φ(x) satisfy these two

relations, and a special case Φ(x) = π(xi,θ) also meets sufficient conditions. Moreover,

Condition C8 can also be extended for non-continuous covariates x.

Even if Condition C8 is not satisfied, this classification procedure can also be used as a

diagnostic tool to check assumptions on propensity scores. When the non-truncated model

π(xi,θ) is adopted, then the assumption that SA and SB have the same support in terms of

x is also made implicitly. Checking the proportion of SB falling into CnA can be treated as

checking the overlap between SA and SB. If the non-truncated model π(x,θ) holds, then

I
{
xj ∈ CnA

} p→ 1 for any xj ∈ SB, and τ̂
p→ 0 under mild conditions. If the overlap turns

out scarce, then the non-truncated model assumption should be further investigated.

4.3.2 Estimation under the split-population approach

To construct estimators for µy based on the split-population, the most important step is to

estimate µy,1 and µy,0. Since the positivity assumption holds for subpopulation U1 under

the deterministic mechanism, the estimation of µy,1 can still be achieved through IPW

approach. To estimate the propensity scores for i ∈ U1, the following unbiased estimating
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equations are considered, ∑
i∈SA

xi −
∑
i∈SB,1

dBi πi(θ)xi = 0. (4.3.7)

Let θ̃ be the solution to (4.3.7), then πi(θ̃) is a consistent estimator of πAi for i ∈ U1.

However, the exact components of SB,1 are unknown under the deterministic mechanism,

so we replace set SB,1 by its approximation ŜB,1 to obtain a different solution, denoted by

θ̂cv. In fact, we show in Section 4.6 that θ̂cv and θ̃ are asymptotically equivalent in the

sense that θ̂cv = θ̃+op(n
− 1

2
A ) if condition C8 holds. Given θ̂cv, the resulting IPW estimator

of µy,1 is computed as µ̂1,IPW = (N̂B
1 )−1

∑
i∈SA yi/πi(θ̂cv).

The regression prediction and doubly robust methods can also be used to estimate

µy,1, with the resulting estimators being given by µ̂1,REG = (N̂B
1 )−1

∑
i∈ŜB,1 d

B
i mi(β̂) and

µ̂1,DR = (N̂B
1 )−1

∑
i∈SA

{
yi −mi(β̂)

}
/πi(θ̂cv) + µ̂1,REG respectively. The NN imputation is

straightforward to conduct by assigning matching unit for i ∈ ŜB,1 from sample SA.

On the other hand, estimating µy,0 is a challenging task. The IPW approach is

not applicable since units in U0 have zero propensity scores. If adopting NN method,

close matches for i ∈ SB,0 may not exist. Regression prediction is a relatively rea-

sonable choice among methods we considered in the thesis, which gives the estimator

µ̂0,REG = (N̂B
0 )−1

∑
i∈ŜB,0 d

B
i mi(β̂). If we let µ̂y,1 = µ̂1,REG and µ̂y,0 = µ̂0,REG, then the re-

sulting estimator for µy becomes the classic regression prediction estimator µ̂REG. A more

sensible option regarding robustness is to take µ̂y,1 = µ̂1,DR and µ̂y,0 = µ̂0,REG, which leads

to the following estimator for µy,

µ̂HYB = (1− τ̂)µ̂1,DR + τ̂ µ̂0,REG

=
N̂B

1

N̂B

{ 1

N̂B
1

∑
i∈SA

yi −mi(β̂)

πi(θ̂cv)
+

1

N̂B
1

∑
i∈ŜB,1

dBi mi(β̂)
}

+
N̂B

0

N̂B

{ 1

N̂B
0

∑
i∈ŜB,0

dBi mi(β̂)
}

=
1

N̂B

∑
i∈SA

yi −mi(β̂)

πi(θ̂cv)
+

1

N̂B

∑
i∈SB

dBi mi(β̂).

We refer to µ̂HYB as the hybrid estimator, since different estimating methods are adopted
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for the two subpopulations. We notice that the estimator µ̂HYB has a similar form to

a classic doubly robust estimator, and parameter τ and its estimator do not explicitly

appear in the formula. However, estimator µ̂HYB does not have the DR property if τ is

non-negligible.

To derive asymptotic properties of estimator µ̂HYB, we assume that parameter β for

the prediction model is obtained from the following estimating equations,

∑
i∈SA

{
yi −m(xi,β)

}
xi = 0. (4.3.8)

Moreover, similarly to assumptions made on the DR estimators in Chapter 2, we assume

that there exists a constant vector β∗ such that β̂ = β∗+Op(n
− 1

2
A ) regardless of the model

specification.

Theorem 4.1. Under Assumptions A1 and A3, as well as regularity conditions C1–C6

and C8, the estimator µ̂HYB has the following asymptotic properties when the incomplete

sampling frame is generated by the deterministic mechanism.

(i) The estimator µ̂HYB can be expressed as,

µ̂HYB = (1− τ)µy,1 + τm̄∗0 + op(1),

where m̄∗0 = N−1
0

∑
i∈U0 mi(β

∗).

(ii) The asymptotic variance formula of µ̂HYB is given by V ar(µ̂HYB) = VHYB +op(n
−1
A ),

where

VHYB =
1

N2

N∑
i=1

πAi {1− πAi }s2
i +

1

N2
Vp
(∑
i∈SB

dBi li
)
,

si = {yi − mi(β
∗)}/πAi − cᵀ

2xi + cᵀ
1

{
yi − mi(β

∗)
}
xi, li = fi − fN − N−1

∑
i∈SA si, fi =

mi(β
∗) + πAi cᵀ

2xiI(xi ∈ R1), fN = N−1
∑

N

i=1 fi, and

cᵀ
1 =

{∑
i∈U0

ṁi(β
∗)ᵀ
}{∑

i∈U1

πAi ṁi(β
∗)ᵀxi

}−1

,
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cᵀ
2 =

[∑
i∈U1

(1− πAi ){yi −mi(β
∗)}xᵀ

i

]{∑
i∈U1

πAi (1− πAi )xix
ᵀ
i

}−1

.

Based on the asymptotic variance formula VHYB, a consistent variance estimator for

µ̂HYB is computed as,

vHYB =
1

N2

∑
i∈SA

{1− πi(θ̂cv)}ŝ2
i +

1

N2

∑
i∈SB

∑
j∈SB

πBij − πBi πBj
πBijπ

B
j π

B
i

l̂il̂j + op(n
− 1

2
A ),

with

ŝi =
yi −mi(β̂)

πi(θ̂cv)
− ĉᵀ

2xi + ĉᵀ
1

{
yi −mi(β̂)

}
xi,

and

l̂i = f̂i −
1

N

∑
i∈SB

dBi f̂i −
1

N

∑
i∈SA

ŝi,

where f̂i = mi(β̂)+πi(θ̂cv)ĉ
ᵀ
2xiI(xi ∈ CnA), ĉᵀ

1 =
{∑

i∈ŜB,0 d
B
i ṁi(β̂)ᵀ

}{∑
i∈SA ṁi(β̂)ᵀxi

}−1
,

ĉᵀ
2 =

[∑
i∈SA{1−πi(θ̂cv)}/πi(θ̂cv){yi−mi(β̂)}xᵀ

i

][∑
i∈ŜB,1 d

B
i πi(θ̂cv){1− πi(θ̂cv)}xix

ᵀ
i

]−1
.

Result (i) shows that the hybrid estimator µ̂HYB is approximately unbiased if the re-

gression model is correctly specified or τ = 0. The regression model assumption however

is hard to check, and the issue of extrapolation is of concern for the subpopulation U0. So

we suggest getting more information from U0 when τ is relatively large.

If budget permits, the conundrum of the positivity violation can be solved by using a

second-phase sample. Assume that a second-phase sample S(2)
B,0, which contains measure-

ments on y, is drawn from the sample ŜB,0. Then we can consider the following model-

assisted estimator of µy,0,

µ̂0,SP =
1

N̂B
0

∑
i∈S(2)B,0

dB2id
B

i {yi −mi(β̂pl)}+
1

N̂B
0

∑
i∈ŜB,0

dBi mi(β̂pl),

where β̂pl is obtained from the pooled sample SA ∪ S(2)
B,0, and dB2i is the design weights for

sample S(2)
B,0 conditional on SB. The estimator µ̂0,SP is approximately unbiased irrespective
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of the specification of the regression model, and has efficiency gain when the regression

model is correctly specified. Finally, if we let µ̂y,1 = µ̂1,DR and µ̂y,0 = µ̂0,SP , then the

resulting estimator of µy under the deterministic mechanism is given by

µ̂SP =
1

N̂B

[∑
i∈SA

yi −mi(β̂pl)

πi(θ̂cv)
+
∑
i∈S(2)B,0

dB2id
B

i {yi −mi(β̂pl)}+
∑
i∈SB

dBi mi(β̂pl)

]
.

The estimator µ̂SP has the DR property, and it is also free of the extrapolation issue

since sample SA and sample S(2)
B,0 are used collectively to derive the regression model.

4.3.3 Extension to practical scenarios

The split-population approach is also a useful technique in analyzing practical violations of

the positive assumption. There are two types of positivity violations in general, theoretical

violation and practical violation (Petersen et al., 2012). Theoretical violation occurs when

there exists some unit i ∈ U with πAi = 0, which is also the interest of this chapter.

The practical violation generally refers to scenarios where some units have extremely small

(near zero) propensity scores. Small propensity scores are as problematic as zero propensity

scores. For instance, if units with small propensity score are drawn into sample SA, then

IPW estimators could get highly inflated due to inverting these small propensity scores.

The erratic behaviour of IPW estimators would be reflected on the large variance and the

large finite sample bias.

Various procedures have been developed under practical violations to obtain stable

IPW estimators. One type of strategy is to avoid extreme weights for SA through specific

weighting procedures, for example, Molina et al. (2019), Li et al. (2018), Zubizarreta

(2015). Trimming is also a popular strategy, but usually at the cost of increased bias. For

example, Crump et al. (2009) suggested to discard units with extreme propensity scores,

so certain efficiency optimization can be achieved. Ma and Wang (2019) investigated

asymptotic properties of trimmed IPW estimators, and suggested a trimming threshold
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which achieves small mean squared errors.

However, it is still rather challenging to apply the above methods if sample SA only

contains a limited amount of units with small propensity score. We divide population U
into subpopulations U̇1 and U̇0, where U̇0 contains units with near zero propensity score,

and U̇1 consists of the rest of units. If U̇0 takes a large portion of U , but with few units being

selected into sample SA, then the behaviour of sample SA can hardly represent the behaviour

of U̇0 no matter which type of adjustment is applied. Data following this structure are very

similar to those generated from the deterministic mechanism with Φ(xi) = π(xi,θ). One

may still consider the split-population approach and second-phase sampling as potential

treatments for practical violations.

4.4 Simulation Studies

In this section, we conduct simulation studies to investigate performances of aforementioned

inferential procedures when the sampling frame is not complete. The stochastic mechanism

and the deterministic mechanism are adopted in Section 4.4.1 and Section 4.4.2 respectively.

4.4.1 Performance under the stochastic mechanism

We consider a finite population of size N = 20,000, with frame indicator variable zi and two

auxiliary variables x1i ∼ N(0,1) and x2i ∼ Exponential(mean = 1). Denote the proportion

of the population uncovered by the frame by γ, which is calculated as γ = N−1
∑

N

i=1(1−zi).
We generate zi from the Bernoulli distribution with mean value ψi, which follows logistic

regression model,

log

(
ψi

1− ψi

)
= ω + 0.5x1i + 0.5x2i , i = 1,2, · · · ,N ,

where intercept ω is chosen such that N−1
∑

N

i=1 ψi = 1− γ.
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For the response variable y, we consider a linear regression model (ξ),

yi = 3 + x1i − x2i + αzi + σεi , i = 1,2, · · · ,N ,

where α is the coefficient for covariate z which we will specify later.

The error terms εi’s are generated independently from N(0,1), and the value of σ is

chosen such that ρ = 0.5, where ρ is the correlation coefficient between y and the linear

predictor.

Sample SA is selected by the Poisson sampling method from set Ŭ1 = {i ∈ U : zi = 1}
with probabilities π̆Ai , which follow

log

(
π̆Ai

1− π̆Ai

)
= φ+ 0.6x1i − 0.3x2i ,

where intercept φ is set such that
∑

i∈Ŭ1 π̆
A
i = nA, and nA is the target sample size of SA.

Note π̆Ai is not the same as the propensity score πAi = P (Ri = 1 | x1i, x2i).

The probability sample SB with the target size nB is drawn by the randomized system-

atic PPS sampling method. The inclusion probability πBi is proportional to vi = c + x2i,

where the constant c is chosen to control the variation of the survey weights such that

max vi/min vi = 50.

We fix the finite population and indicator variable z once generated, and repeatedly

draw sample SA with nA = 1,000 and sample SB with nB = 500, for B = 5,000 times. For

each simulation run, we compute the following estimators based on SA and SB.

• The naive estimator based on the sample mean of SA, i.e., µ̂A = 1/nA
∑

i∈SA yi.

• The regression type estimator µ̂REG. The working model used for computation is

linear regression model m(xi,β) = β0+β1x1i+β2x2i, and the parameter β is obtained

by the least square method.
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• The two IPW estimators µ̂IPW1 and µ̂IPW2. The working model we use to estimate

propensity scores πAi is a single logistic regression model π(xi,θ) =
{

1 + exp(−θ −
θ1x1i − θ2x2i)

}−1
, and parameter θ is estimated by the maximum pseudo likelihood

method.

• The calibration type IPW estimator µ̂IPW,cal. The working model considered for

propensity scores is the same as that in the IPW approach, but the parameter is

obtained from the calibration type estimating equations (4.2.4).

• The NN imputation based estimator µ̂NN .

• The two estimators obtained by the KR-NN imputation. One has ε = 0.5, and

denoted by µ̂KR,0.5. The other has ε = 0.1, and denoted by µ̂KR,0.1. The calibration

step follows the typical Deville and Särndal (1992)’s calibration weighting method

with the distance function being chosen as
∑

i∈S̃B,1(wi − d
B
i )2/dBi .

• The two estimators obtained by the stable weights method: one with δ =

(0.05, 0.05)ᵀ, denoted by µ̂SW,0.05; and the other with δ = (0.01, 0.01)ᵀ, denoted by

µ̂SW,0.01.

• A doubly robust estimator in the form of (2.4.14), denoted by µ̂DR2, with two working

models being specified by π(xi,θ) and m(xi,β).

For a given estimator µ̂, its performance is evaluated through the %RB and MSE.

We consider scenarios with different proportions of sampling frame by setting γ = 0, 0.2,

and 0.4; and for each value of γ, we let parameter α in the model ξ take the value of

0, 0.5 and 1 respectively. When α = 0, the covariates (x1,x2) are confounding variables

for R and y, which is in line with the defined stochastic mechanism. When α 6= 0, the

covariates (x1,x2, z) are confounding variables for R and y, which is a more complicated

process than the interested stochastic mechanism. In Table 4.1, the values of (µy,µy,1,µy,0)

for each combination of γ and α are listed, which roughly indicate the discrepancy between
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two subpopulations. The simulated performance of 11 point estimators are presented in

Table 4.2, with some key observations being summarized as follows.

Table 4.1: Population and Subpopulation Means (µy,µy,1,µy,0)
under the Stochastic Mechanism

γ = 0 γ = 0.2 γ = 0.4
α = 0 (2.01, NA, NA) (2.01, 2.05, 1.86) (2.01, 2.04, 1.97)
α = 0.5 (2.51, NA, NA) (2.41, 2.55, 1.86) (2.31, 2.54, 1.97)
α = 1 (3.01, NA, NA) (2.82, 3.05, 1.85) (2.61, 3.04, 1.98)

(1) The unadjusted sample mean µ̂A always has the largest bias among reported es-

timators. The rest of estimators, except for µ̂SW,0.05, have comparable performance for

each case, and demonstrate very similar trend under changes in α and γ. (2) Under the

defined stochastic mechanism, i.e., α = 0, all the approaches considered, expect for the

stable weights method with δ = (0.05, 0.05)ᵀ, have acceptable performance in terms of

both %RB and MSE. The IPW estimators µ̂IPW1 and µ̂IPW2 show negligible biases when

α = 0, which means the single logistic regression model is a reasonable fit to the two-stage

sampling process. (3) When γ = 0, i.e., the sampling frame is complete, no discernible bias

is observed for any of the adjusted estimators (except for µ̂SW,0.05) considered. (4) When

α 6= 0 and γ 6= 0, bias emerges for every adjusted estimators; and there is an obvious

pattern that bias grows with α and γ. But compared to µ̂A, adjusted estimators still have

dramatic improvement regarding %RB and MSE. (5) The performance of stable weights

estimators and NN based estimators heavily depends on the specification of δ and ε re-

spectively. Stable weights estimator µ̂SW,0.01 has much better performance than estimator

µ̂SW,0.05 in terms of %RB and MSE. For the NN based approach, we compare estimators

µ̂NN , µ̂KR,0.5 and µ̂KR,0.1, and found biases decrease with the value of ε.

4.4.2 Performance under the deterministic mechanism

We consider a finite population of size N = 20,000, with three auxiliary variables x1, x2

and x3. Variables x1 and x2 are generated by the same way as in the previous section,
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Table 4.2: Simulated %RB and MSE×102 of Estimators of µy
under the Stochastic Mechanism

Estimator
γ = 0 γ = 0.2 γ = 0.4

%RB MSE %RB MSE %RB MSE

α = 0 µ̂A 38.81 61.64 41.27 69.63 40.83 68.13
µ̂REG -0.50 1.42 0.19 1.49 -0.84 1.45
µ̂IPW1 -0.65 4.61 0.38 4.42 -0.67 4.01
µ̂IPW2 -1.80 4.44 -0.42 4.25 -0.85 4.09
µ̂IPW,cal -0.12 1.49 0.78 1.59 -0.06 1.55
µ̂NN 1.21 3.79 2.17 4.08 1.47 3.88
µ̂KR,0.5 0.58 3.67 1.33 4.38 0.97 5.54
µ̂KR,0.1 0.05 3.76 0.72 4.65 0.00 6.09
µ̂SW,0.05 4.65 2.00 5.47 2.40 4.46 1.96
µ̂SW,0.01 0.69 1.19 1.47 1.32 0.56 1.20
µ̂DR2 -0.10 1.54 0.79 1.61 -0.09 1.57

α = 0.5 µ̂A 31.08 61.64 38.49 87.02 44.31 105.45
µ̂REG -0.40 1.42 4.24 2.56 8.02 4.88
µ̂IPW1 -0.25 4.84 4.60 5.98 8.25 7.96
µ̂IPW2 -1.45 4.44 3.75 5.09 8.02 7.53
µ̂IPW,cal -0.10 1.49 4.74 2.90 8.70 5.63
µ̂NN 0.97 3.79 5.90 6.01 10.04 9.29
µ̂KR,0.5 0.46 3.67 5.20 5.99 9.61 10.60
µ̂KR,0.1 0.04 3.76 4.69 6.03 8.76 10.38
µ̂SW,0.05 3.73 2.00 8.64 5.57 12.64 9.70
µ̂SW,0.01 0.55 1.19 5.32 2.90 9.24 5.77
µ̂DR2 -0.08 1.54 4.75 2.93 8.68 5.63

α = 1 µ̂A 25.92 61.64 36.51 106.44 46.99 150.95
µ̂REG -0.33 1.42 7.14 5.61 14.83 16.49
µ̂IPW1 0.01 5.21 7.63 9.87 15.14 20.45
µ̂IPW2 -1.21 4.44 6.73 7.93 14.86 19.21
µ̂IPW,cal -0.08 1.49 7.58 6.22 15.46 17.95
µ̂NN 0.81 3.79 8.58 10.04 16.65 23.09
µ̂KR,0.5 0.39 3.67 7.97 9.70 16.28 24.18
µ̂KR,0.1 0.04 3.76 7.54 9.52 15.51 23.19
µ̂SW,0.05 3.11 2.00 10.92 10.72 18.93 25.63
µ̂SW,0.01 0.46 1.19 8.07 6.47 15.92 18.54
µ̂DR2 -0.07 1.54 7.59 6.25 15.44 17.92
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and variable x3 follows Bernoulli distribution with mean of 0.5. The response variable yi

follows the regression model,

yi = 3 + x1i + x2i + x3i − ηx2
1i + σεi , i = 1,2, · · · ,N ,

where η is the coefficient for covariate x2
1. Error terms εi’s and the value of σ are generated

by the same way as in previous section such that ρ = 0.5 for the response model.

Propensity scores follow the deterministic mechanism, and the underlying values used

for truncation are given by,

log

(
Φi

1− Φi

)
= 1− 0.6x1i + 0.5x2i + 0.8x3i , i = 1,2, · · · ,N .

Let Q(τ) denote the τth percentile of {Φ1, · · · ,ΦN}. If Φi ≤ Q(τ), then set πAi = 0; if

Φi > Q(τ), then generate πAi from model

log

(
πAi

1− πAi

)
= θ + 0.3x1i − 0.3x2i + 0.5x3i ,

where the intercept θ is chosen such that
∑

N

i=1 π
A
i = nA. Sample SA is selected by the

Poisson sampling method with inclusion probabilities specified by πAi , and SB is selected

by the same strategies as described in the previous section.

The 11 point estimators described in the last section, plus the estimators µ̂HYB and µ̂SP

are investigated. For estimators µ̂IPW1, µ̂IPW2, µ̂IPW,cal, µ̂DR2, we adopt the logistic regres-

sion model π(xi,θ) =
{

1+exp(−θ0−θ1x1i−θ2x2i−θ3x3i)
}−1

for the propensity scores, but

do not take the truncation step into consideration. For estimators µ̂REG, µ̂DR2 and µ̂HYB,

the model m(xi,β) = β0 + β1x1i + β2x2i + β3x3i is adopted for the outcome regression, i.e.,

covariate x2
1i is missing in the working model. The misspecified model is considered here

since the specification of the outcome regression is especially challenging under the deter-

ministic mechanism. For the proposed hybrid estimator µ̂HYB, model π(xi,θ) and m(xi,β)

are considered as working models, and sample SB is split by the convex hull method. To
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calculate estimator µ̂SP , a second-phase sample S(2)
B,0 is obtained by SRS without replace-

ment, and the sample size is set to the 20% of the size of ŜB,0. Both the propensity score

model and the prediction model are correctly specified under the second-phase sampling

approach.

We compare these approaches under several scenarios, and in particular consider τ =

0, 0.2, 0.4, and η = 0, 0.5, 1. Values of (µy,µy,1,µy,0) are listed in Table 4.3 for different

combinations of τ and η.

Table 4.3: Population and Subpopulation Means (µy,µy,1,µy,0)
under the Deterministic Mechanism

τ = 0 τ = 0.2 τ = 0.4
η = 0 (4.53, NA, NA) (4.53, 4.49, 4.72) (4.53, 4.53, 4.52)
η = 0.5 (4.03, NA, NA) (4.03, 4.06, 3.91) (4.03, 4.06, 3.97)
η = 1 (3.52, NA, NA) (3.52, 3.63, 3.11) (3.52, 3.59, 3.42)

Simulation results of point estimators with nA = 1,000, nB = 500 and B = 5,000, are

reported in Table 4.4, and based on which we have following observations. (1) The naive

estimator µ̂A has relatively large biases in all the scenarios. (2) When η = 0, estimators

dependent on the regression prediction show small %RB. The reason is that the working

model m(xi,β) is a correctly specified model for the outcome regression when η = 0.

Some noticeable bias can be observed for the estimator µ̂IPW1, especially when τ = 0.4;

while µ̂IPW2 has surprisingly good performance. (3) When τ = 0 and η 6= 0, estimators

which rely on the propensity score model have promising performance, while µ̂REG, µ̂SW,0.05,

µ̂SW,0.01, µ̂KR,0.5 and µ̂KR,0.1 have biases which increase with the value of η. (4) In general,

performance of all the estimators deteriorate as τ and η increase. Estimator µ̂SP is an

exception since it gains the DR property by using additional information from S(2)
B,0. (5)

The proposed hybrid estimator has relatively small %RB across all the scenarios, and its

performance is especially robust when τ 6= 0. (6) Similarly to results in Table 4.2, we still

found that the stable weights estimator µ̂SW,0.01 has better performance than µ̂SW,0.05. For

the NN based approach, estimator µ̂KR,0.1 which has the most precise matching criteria
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however has the worst performance when η 6= 0. This is an opposite pattern to what we

observe from the stochastic mechanism.

Moreover, we evaluate the convex hull method by its classification accuracy (AC), which

is defined as,

AC =

∑
ŜB,0 I(i ∈ U0) +

∑
ŜB,1 I(i ∈ U1)

nB
× 100.

Given τ = 0, 0.2 and 0.4, simulated AC of the convex hull method is 97.54, 97.88 and 98.29

respectively. To examine its performance under smaller sizes for SA, we also conduct a

simulation with nA = 500, and the new setting gives corresponding results of 95.44, 96.1

and 96.9. So the convex hull method generally works better with a larger sample size, but

still has acceptable performance when the sample size is fairly small.

Lastly, we briefly check the performance of the variance estimator vHYB. Its %RB by

comparing with the Monte-carlo simulated variance, and %CP of its associated Wald-type

95% CIs are reported in Table 4.5. It can be observed that the %RB of vHYB is relatively

small for all the cases considered. The coverage rates of associated Wald-type CIs are close

to the nominal value when either η = 0 or τ = 0, but the under-coverage issue rises when

η 6= 0 and τ 6= 0 due to the biased point estimator µ̂HYB (see Table 4.4).

4.5 Discussion

In the current chapter, we have investigated two mechanisms for incomplete frames. It

can be summarized from the limited simulation studies that making inferences with non-

probability samples is possible under the incomplete frame, but it is particularly challenging

if the positivity assumption is violated. In fact, the mechanism of the positivity violation

in practice can be far more complicated than the simple process we consider. Therefore, we

can expect issues with conventional procedures with more severe departures from scenarios

we discussed.

The issue of zero propensity scores should be tackled in a systematic manner. The
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Table 4.4: Simulated %RB and MSE×102 of Estimators of µy
under the Deterministic Mechanism

Estimator
τ = 0 τ = 0.2 τ = 0.4

%RB MSE %RB MSE %RB MSE

η = 0 µ̂A 17.23 61.90 18.47 70.99 21.79 98.48
µ̂REG -0.03 1.55 -0.04 1.45 0.36 1.70
µ̂IPW1 0.22 3.01 -1.43 2.68 -9.68 20.88
µ̂IPW2 -0.09 1.67 0.00 1.39 0.66 1.64
µ̂IPW,cal 0.00 1.58 -0.01 1.49 0.49 2.37
µ̂NN 0.12 4.15 0.22 5.55 2.72 10.32
µ̂KR,0.5 0.02 4.14 -0.24 5.12 1.04 9.17
µ̂KR,0.1 -0.06 4.84 -0.10 5.33 0.57 9.07
µ̂SW,0.05 1.28 1.54 2.34 2.10 1.31 1.86
µ̂SW,0.01 0.24 1.29 0.35 1.19 0.54 1.86
µ̂DR2 -0.01 1.59 0.00 1.47 0.39 1.75
µ̂HYB 0.00 1.59 0.04 1.48 0.42 1.72
µ̂SP NA NA -0.03 4.83 0.08 7.14

η = 0.5 µ̂A 16.91 47.40 23.56 91.03 27.82 126.59
µ̂REG 2.82 2.88 3.71 3.81 4.83 5.75
µ̂IPW1 0.16 2.90 1.96 2.93 -6.54 8.67
µ̂IPW2 -0.13 2.19 3.44 3.60 4.16 4.77
µ̂IPW,cal 0.01 1.91 3.85 4.10 5.79 8.11
µ̂NN 0.69 5.13 2.26 7.63 6.02 16.67
µ̂KR,0.5 1.03 5.20 3.49 8.25 6.86 18.65
µ̂KR,0.1 4.78 9.52 5.82 11.94 7.80 20.99
µ̂SW,0.05 3.48 3.22 6.32 7.64 6.38 8.43
µ̂SW,0.01 2.59 2.44 4.24 4.25 5.78 7.56
µ̂DR2 -0.10 2.02 3.39 3.57 4.71 5.73
µ̂HYB -0.02 2.03 2.14 2.57 3.66 4.31
µ̂SP NA NA -1.10 6.61 -0.65 9.39

η = 1 µ̂A 16.53 35.44 30.17 114.40 35.68 159.43
µ̂REG 6.48 7.58 8.53 11.14 10.63 16.81
µ̂IPW1 0.09 3.56 6.33 7.76 -2.48 2.99
µ̂IPW2 -0.19 3.34 7.87 10.08 8.70 12.19
µ̂IPW,cal 0.03 2.83 8.82 11.99 12.69 23.80
µ̂NN 1.41 8.02 4.81 13.33 10.43 30.02
µ̂KR,0.5 2.30 8.40 8.26 18.08 14.59 43.35
µ̂KR,0.1 10.99 23.84 13.41 32.07 17.21 53.89
µ̂SW,0.05 6.32 6.86 11.43 17.93 12.95 23.46
µ̂SW,0.01 5.61 5.95 9.24 12.51 12.57 22.74
µ̂DR2 -0.23 3.35 7.76 9.84 10.35 16.39
µ̂HYB -0.04 3.45 4.85 5.67 7.91 10.96
µ̂SP NA NA -2.49 11.79 -1.60 16.17
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Table 4.5: Simulated %RB of the Variance Estimator vHYB.

τ = 0 τ = 0.2 τ = 0.4
%RB %CP %RB %CP %RB %CP

η = 0 6.57 95.60 5.01 95.60 5.44 95.34
η = 0.5 5.05 95.60 3.66 90.04 5.77 83.58
η = 1 3.88 95.06 2.39 81.14 5.71 66.78

primary step is to check if the positivity assumption is met. The proposed split-population

method is a useful technique to help understand the data structure and check the potential

violation of the positivity assumption. In particular, the convex hull classification method,

although developed for the deterministic mechanism, can be viewed as a diagnostic tool to

examine if sample SA and sample SB have enough overlap. One can also refer to external

studies to understand zero propensity scores. For example, as internet users grow rapidly,

there is an increasing amount of national surveys aiming at the online behaviour of the

population. The following list contains a series of questions found among these surveys.

• The frequency of using internet to express opinions about political or community

issues within the last 12 months (Current Population Survey, Civic Engagement

Supplement, 2013);

• Whether or not the adult uses the internet or email and the frequency at which they

are used (National Health Interview Survey, 2017);

• Internet use in the past 30 days (Behavioural Risk Factor Surveillance System, 2017);

• Internet access and frequency of use (National Household Education Survey, 2016).

These questions are extremely useful in indicating the characteristics of web-survey par-

ticipants, and shed light on the differences between internet users and non-users.

After preliminary investigations, specific estimation strategies can be derived based on

the newly acquired knowledge about samples and the population. The proposed hybrid

estimator is an example of choosing estimation procedures according to the re-categorized
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sample, and the resulting estimator shows robustness in the simulation studies considered.

When the issue of positivity violation is severe, the second-phase sampling method is a

possible remedy. Even though taking a second-phase sample is subject to extra costs, both

theory and simulation studies show that it can improve inferential results by getting crucial

data of the response variable from the subpopulation U0.

4.6 Technical Details

Proof of Theorem 4.1.

If the asymptotic expansion of µ̂HYB is available, then results (i) and (ii) of Theorem

4.1 can be easily proved. We expand µ̂HYB and derive VHYB through following steps. Step

1 proves that θ̂cv = θ̃ + op(n
− 1

2
A ); Step 2 finds asymptotic expressions of estimated model

parameters β̂ and θ̂cv; Step 3 uses the linearization method to deal with variations from

multiple sources; Step 4 obtains variance formula through the final asymptotic expression.

Step 1:

For the proposed hybrid estimator µ̂HYB, its estimated model parameter θ̂cv is obtained

by solving equation ∑
i∈SA

xi −
∑
i∈ŜB,1

dBi πi(θ)xi = 0. (4.6.9)

By comparing (4.6.9) to (4.3.7), it is easy to observe that the extra variation is induced

by identifying set ŜB,1. Our first goal is to show that this additional variation is negligible,

i.e., θ̂cv = θ̃ + op(n
− 1

2 ), where θ̃ is the solution to (4.3.7). To prove this equivalency, it

suffices to show

1

N1

{ ∑
i∈ŜB,1

dBi πi(θ0)xi −
∑
i∈SB,1

dBi πi(θ0)xi

}
= op(n

− 1
2

A ).
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This result is immediately implied by the following derivations if Condition C8 holds

uniformly over all i:

1

N1

∑
i∈SA

xi −
1

N1

∑
i∈ŜB,1

dBi πi(θ0)xi

=
1

N1

∑
i∈SA

xiI(xi ∈ CnA)− 1

N1

∑
i∈SB,1

dBi πi(θ0)xiI(xi ∈ CnA)

=
1

N1

∑
i∈SA

xi
{
I(xi ∈ R1) + op(1)

}
− 1

N1

∑
i∈SB,1

dBi πi(θ0)xi
{
I(xi ∈ R1) + op(1)

}
=

1

N1

{∑
i∈SA

xiI(xi ∈ R1)−
∑
i∈SB,1

dBi πi(θ0)xiI(xi ∈ R1)
}

+
1

N1

{∑
i∈SA

xi −
∑
i∈SB,1

dBi πi(θ0)xi

}
op(1)

=
1

N1

{∑
i∈SA

xi −
∑
i∈SB,1

dBi πi(θ0)xi

}
+ op(n

− 1
2

A ).

Step 2:

According to estimating equations in (4.3.8) and by the linearization technique, we

have

β̂ − β∗ = M1

[∑
i∈SA

{
yi −mi(β

∗)
}
xi

]
+ op(n

− 1
2

A ),

where M1 =
{∑

i∈U1 π
A
i ṁi(β

∗)ᵀxi

}−1

. Similarly, based on the result from Step 1, the

estimator θ̂cv can be written as

θ̂cv − θ0 = M2

(∑
i∈SA

xi −
∑
i∈SB,1

dBi π
A

i xi

)
+ op(n

− 1
2

A ),

where M2 =
{∑

i∈U1 π
A
i (1− πAi )xix

ᵀ
i

}−1

.

Step 3:

We investigate the variation of µ̂HYB induced by different sources. We first consider the
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estimated parameter β̂, and rewrite µ̂HYB as,

µ̂HYB =
1

N̂B

{∑
i∈SA

yi −mi(β̂)

πi(θ̂cv)
+
∑
i∈SB,1

dBi mi(β̂) +
∑
i∈SB,0

dBi mi(β̂)

}
,

By the similar argument for Theorem 2.2, we can show that the variation of estimating β

is negligible for the first two components of above expression. The estimator µ̂HYB can be

further simplified to

µ̂HYB =
1

N̂B

{∑
i∈SA

yi −mi(β
∗)

πi(θ̂cv)
+
∑
i∈SB,1

dBi mi(β
∗) +

∑
i∈SB,0

dBi mi(β̂)

}
+ op(n

− 1
2

A ). (4.6.10)

The third component of (4.6.10) is the only one which contains β̂, and the expansion of

this component is given by

1

N̂B

∑
i∈SB,0

dBi mi(β̂) =
1

N̂B

∑
i∈SB,0

dBi mi(β
∗) + cᵀ

1

[
1

N̂B

∑
i∈SA

{
yi −mi(β

∗)xi
}]

+ op(n
− 1

2
A ),

where cᵀ
1 =

{∑
i∈U0 ṁi(β

∗)ᵀ
}
M1 .

Next, we examine the first component of (4.6.10), which contains the variation coming

from computing θ̂cv. By Taylor expansion, we have

1

N̂B

{∑
i∈SA

yi −mi(β
∗)

πAi

}
=

1

N̂B

{∑
i∈SA

yi −mi(β
∗)

πAi

}
− cᵀ

2

(
1

N̂B

∑
i∈SA

xi −
1

N̂B

∑
i∈SB,1

dBi π
A

i xi

)
(4.6.11)

+ op(n
− 1

2
A ),

where cᵀ
2 =

[∑
i∈U1(1− π

A
i ){yi −mi(β

∗)}xᵀ
i

]
M2.

Finally, we apply the linearization technique again to deal with the variation contributed
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by the probability sampling, and obtain the following asymptotic expansion,

µ̂HYB = (2− N̂B

N
)

1

N

∑
i∈SA

si + fN +
1

N

∑
i∈SB

dBi (fi − fN) + op(n
− 1

2
A ),

where si = {yi−mi(β
∗)}/πAi −cᵀ

2xi+cᵀ
1

{
yi−mi(β

∗)
}
xi, fi = mi(β

∗)+πAi cᵀ
2xiI(xi ∈ R1),

and fN = N−1
∑

N

i=1 fi.

Step 4:

Based on the above expansion, we can easily obtain asymptotic variance formula VHYB

such that V ar(µ̂HYB) = VHYB + op(n
−1
A ). Specifically, VHYB has the form of

VHYB =
1

N2

N∑
i=1

πAi (1− πAi )s2
i + V arp

{
1

N

∑
i∈SB

dBi

(
fi − fN −

1

N

∑
i∈SA

si

)}
,

where the first component is the variance attributed to the selection mechanism for sample

SA, and the second component is resulted from the probability sampling for SB and its

exact formula depends on the specific strategy of taking SB.
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Chapter 5

Discussion and Future Work

5.1 Summary

Researchers frequently encounter the dilemma that pertinent data is not available while

obtaining new data is inefficient and expensive. Facing this challenge, more and more

researchers choose to incorporate data from unconventional sources into their project.

Among various novel data sources, web-based non-probability surveys have received the

most attention and have rapidly become one of the most exciting topics in the area. How-

ever, inferences made from web-based survey samples and other non-probability samples

are frequently questioned due to the absence of a mature theoretical framework.

My thesis establishes a general framework for statistical inferences with non-probability

survey samples when relevant auxiliary information is available from a probability survey

sample. Under this setup, discussions are made upon: model assumptions, data integration,

inferential methods and applications on different data types. Moreover, the potential issue

of zero propensity scores is highlighted and further investigated.

The starting point of the thesis is to adjust the intrinsic selection bias and make valid

inferences with web-based and other non-probability survey samples. In particular, a rig-

orous procedure for estimating propensity scores is proposed in Chapter 2. While existing
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methods of estimating propensity scores are largely ad hoc, our method gives a class of

estimators which are consistent under commonly used assumptions. This is an important

contribution to the area since estimating propensity scores is the most fundamental step of

the QR approach. Doubly robust estimation is another major topic. Several DR point esti-

mators and associated variance formulas are given in Chapter 2, which can be immediately

applied to real data analyses.

In Chapter 3, we consider the use of PEL approach with non-probability survey sam-

ples. While the PEL approach and the QR approach are comparable to some extent, we

found that PEL approach has more advantages in certain scenarios. For example, it has

more flexible structures to utilize auxiliary information, which leads to multiple robustness

naturally. Coupled with the model-calibration technique, PEL approach is also a robust

way to estimate distribution functions and quantiles. Moreover, PEL-ratio-based CIs show

relatively stable performance in the simulation studies considered, and outperform Wald-

type CIs under the scenario of our interest.

In Chapter 4, two mechanisms for incomplete frames, namely, stochastic mechanism and

deterministic mechanism, are investigated. We show that the positivity assumption holds

under the stochastic mechanism, which means the discussed QR, MI and PEL approach

can be directly applied. Meanwhile, zero propensity scores occur under the deterministic

mechanism, which raises inferential challenges for aforementioned approaches. To con-

struct more robust estimators under the deterministic mechanism, we suggest a two-step

split-population approach, which is carried out by (1) dividing the population into sub-

populations by zero and non-zero propensity scores, and (2) choosing suitable estimating

method based on the features of the two subpopulations. At the end of the chapter, we

also conduct a series of simulation studies to evaluate some popular procedures under in-

complete frames. The results further reveal issues of ignoring zero propensity scores when

using non-probability samples for inferences.
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5.2 Extensions and Future Directions

In the thesis, we mainly focus on the estimation of finite population means under the

context of non-probability survey samples. As a matter of fact, our work can be potentially

extended for broader uses in a wider range of settings. A few interesting directions are

listed below.

5.2.1 Applications to multiple data sources problem

Online activities leave digital traces, and the nature of these traces is data. As more and

more activities have being moved online, researchers in either the traditional area like

survey sampling or the modern field such as machine learning, all face the same challenge

of extracting useful information from different data sources.

The idea of constructing pseudo likelihood functions given in (2.3.3) and estimating

equations given in (2.3.7) by using multiple data sources can be easily extended beyond the

survey data context. In particular, our idea enjoys two features which could be meaningful

to many research topics.

Firstly, data linkage is not required. Data linkage is a popular strategy to combine

multiple datasets, which is often performed before statistical analysis. The gist of data

linkage is to link the records from different datasets if they belongs to the same entity. The

link among datasets is usually the ID of the entity, for example, sample SA and sample

SB can be merged by entity if both datasets contain entities’ phone number. But different

datasets often use different items as ID, which means the extra information is required to

link IDs first. Moreover, IDs which are critical for the data linkage, such as name, account

number, IP address are often removed for confidentiality. Our method bypasses the data

linkage step, and can effectively cope with independently generated and unpaired datasets.

Secondly, by replacing unknown population quantities with sample based estimators,

less of data needs to be gathered for our proposed method than a typical classification
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method. This technique is appealing to many practical situations. Consider the following

hypothetical scenario. A medical researcher aims to build a model to predict if a person

has the disease or not. Assume the database of positive cases is fairly complete, but no

data have been collected for negative cases. By convention, researchers need obtain the

data of all the negative cases in the population to build a logistic model. However, our

method could largely save time and costs by only requiring a sample of the population.

This technique is also a potential treatment to the computational difficulty attributed to

the large data size. Specifically, if the computational complexity of some quantity grows

with the data size substantially, then we can draw a sample from the original data and

compute the sample based estimator corresponding to the quantity of interest.

5.2.2 Model and variable selections

In non-probability survey samples, there are not many researches available for selecting the

model of propensity scores. A popular method of model selection is comparing the adjusted

auxiliary information with benchmark auxiliary information. For example, a small discrep-

ancy between
∑

i∈SA xi/π̂i and
∑

i∈SB d
B
i xi is interpreted as the indication of an adequate

candidate propensity score model, where π̂i is the estimated propensity score based on the

candidate model. This method is not applicable if model parameters are obtained from

calibration type estimating equation (4.2.4), where the discrepancy is always forced to be

zero. Moreover, since the gap between adjusted values and benchmark values can often be

decreased by adding more relevant covariates in the model, this method is inclined to arrive

at over-fitted and less efficient models. Results given in Table 2.9 is a clear manifestation

of this issue. There are other suggestions on the covariate selection for the propensity score

model, for example, including all the covariates related to either the outcome variable or

the selection mechanism, only including covariates related to the outcome variable and

the selection mechanism simultaneously, including covariates only related to the outcome

variable, including covariates only related to the selection mechanism, etc.

The pseudo likelihood function we build in (2.3.3) provides a different angle of the
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model selection. Since the pseudo likelihood function is available, we can compute AIC

and BIC and other criteria for the model selection. Moreover, the error matrix (also

known as confusion matrix in the field of machine learning), a tool often used to assess the

performance of a classification model, can also be approximated. We use the inclusion in

sample SA as an example. Let R̂i be the predicted status of inclusion for unit i, based on

the candidate model. If the estimated propensity score for unit i is larger than 0.5, then

R̂i = 1; otherwise R̂i = 0. The approximated error matrix is given below.

Predicted 1 Predicted 0

Actual 1
∑

i∈SA I(R̂i = 1)
∑

i∈SA I(R̂i = 0)

Actual 0
∑

i∈SB d
B
i I(R̂i = 1)−

∑
i∈SA I(R̂i = 1)

∑
i∈SB d

B
i I(R̂i = 0)−

∑
i∈SA I(R̂i = 0)

Given these evaluation metrics, many other model selection methods become applicable.

For example, k-fold cross validation can be conducted by dividing each datasets into k

subsamples; LASSO regression, also being used to prevent overfitting, can be built upon

pseudo likelihood functions.

When computing DR estimators, we also need to postulate a prediction model. Since

prediction regression model is built by a complete case analysis, many existing model

selection methods are already available. According to Assumption A1, only covariates

which are related to both outcome variable and selection mechanism need to be included

in the analysis. So we can conduct variable selection for two models individually, and then

only use the common covariates which are selected in the both procedures to obtain final

models.

5.2.3 Non-ignorable selection mechanism

Our previous work focuses on the ignorable selection mechanism, i.e., given covariates,

selection mechanism does not depend on the response variable. However, this ignorability

condition may not hold in practice. Consider the following hypothetical scenario.
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There is a self-selection web survey posted at a website, which aims to collect some

income information of site viewers. For each survey participant, a cash incentive will

be offered once survey is completed. However, we can make an educated guess that site

viewers with high income would be less motivated by the cash reward, and be more cautious

about their confidentiality. In this situation where the study variable highly relates to the

response model and no confounding variables available to entirely explain their relation,

our previous approaches are no longer effective for bias adjustment.

Contrary to ignorable mechanism, the scenario describes a non-ignorable missing data

problem. Formally, under the non-ignorable mechanism, the propensity scores are given

by

πAi = P (Ri = 1 | xi, yi), for i = 1, · · ·N,

which is a function of y, and possibly of x, and relation P (Ri = 1 | xi, yi) = P (Ri = 1 | xi)
for i = 1, · · ·N , does not hold.

In general missing data context, a few approaches have been developed to tackle non-

ignorable selection mechanism. See Liu et al. (2020) for a comprehensive review about

existing works. But related researches are still very limited for non-probability samples.

Nevertheless, we found that several treatments which were derived for the general missing

data are promising for the adaptation to the current setting. For instance, methods in Wang

et al. (2014) and Ai et al. (2018) depend on the specially designed estimating equations,

and corresponding estimating equations can be constructed for non-probability samples by

using techniques of obtaining equation (2.3.7), i.e., replacing unknown information with

reference sample based estimators.

5.3 Outlook on Future Development

In spite of the rising applications of non-probability survey samples, there are still many

unexplored aspects about this topic. In the process of our development, we found at least

three broad areas which call for more investigations.
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The first area is the relation between non-probability survey samples and probability

survey samples. While the goal of our thesis is to analyze non-probability survey samples,

the journey of the research however, reveals and confirms the irreplaceable role of repre-

sentative datasets. As internet has wider and wider coverage, many datasets are generated

by online activities. These datasets are mostly non-probability based, so adjustments are

often required to infer the larger population. According to our work in previous chap-

ters, the existing adjustments all rely on the benchmark information provided by some

representative datasets such as probability sample and census. How to conduct traditional

probability samples and what information to be gathered are important topics to study in

order to take advantage of modern data sources.

The second area is the relation between non-probability survey samples and the general

missing data problem. Non-probability survey samples contain the data of participants

only, which obviously belongs to missing data problem. While there are already many

techniques developed to deal with missingness for general missing data, it is sensible to

borrow and adapt these techniques to the current context. However, possibly due to

the difference between the design-based framework and the independent and identically

distributed random variables assumption, as well as the unique two-sample setup in non-

probability survey samples, this kind of extensions have been rarely made. We believe

further explorations on this subject are especially meaningful for data analysts in the

current field since the extensions directly lead to a richer set of analytic tools for non-

probability samples.

The third area is the relation between non-probability survey samples and the modern

data sources. As data can be collected more and more easily through internet, analysts

are facing an increasing amount of large datasets or the so-called big data. Under the

belief that the more the better, these large datasets are often treated as quality data

which contain the unbiased information of the larger population. However, if data itself

is generated by a non-randomized mechanism, more data does not make unrepresentative

datasets more representative (Meng, 2018). It is a practically important task to identify the

hidden applications of non-probability survey samples in these novel fields, and advocate
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the adjustment methods we derive in the current context.
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