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Abstract 

 

A data driven approach was used in this study to investigate the drivers of nutrient water 

quality across the Laurentian Great Lakes drainage basin. Monitored time series of nutrient 

water quality and discharge were modelled using a dynamic regression-based model. Random 

forest machine learning was used as a framework to assess drivers of nutrient water quality, 

using mean annual flow-weighted concentrations (FWCs) and ratios calculated from modelled 

water quality, combined with spatial factors from monitored watersheds.  Analysis revealed that 

landscape variables of developed land use, tile drained land, and wetland area played important 

roles in controlling nitrate and nitrite (DIN) and soluble reactive phosphorus (SRP) FWCs, while 

soil type and wetland area was important for controlling particulate phosphorus (PP) FWCs. 

Fertilizer and manure practices were important controls in nutrient ratios of SRP:Total 

Phosphorus (TP), and DIN:TP, with developed land use, manure application, and tile drained 

land important for the former, and developed land use and manure application (vs synthetic 

fertilizer application) important for the latter. Plots of feature contribution were generated to 

isolate the effect that spatial variables had in machine learning models and revealed underlying 

behaviour of important controls in driving nutrient water quality across the basin. Random forest 

models were further developed to predict FWCs and ratios of nutrients across all watersheds 

within the Great Lakes drainage basin. Modelled results revealed hot spots of high DIN, SRP 

and PP in the watersheds along the southeastern shores of Lake Huron, on the eastern 

watersheds of the Huron-Erie corridor, and in the southwestern watersheds of Lake Erie. High 

SRP:TP ratio hot spots were seen in watersheds along the southeastern shores of Lake Huron 

and along the eastern side of the Huron-Erie corridor. Hot spots of low DIN:TP ratios with high 

nutrient export were seen in the southwestern watersheds of Lake Erie, which has implications 

for harmful algal growth. Nutrient ratios across the Great Lakes watersheds compared similarly 

to other heavily human impacted catchments of the Baltic Sea and western Europe. Annual 
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basin loads of DIN, SRP, and TP were estimated from random forest models for each year from 

2000-2016. Calculated annual nutrient loadings of SRP and TP were consistent with other 

published values of Great Lakes watershed estimates and revealed highest loadings during 

2011 when the largest recorded algal bloom in Lake Erie occurred to date. Overall, this data-

driven analysis of nutrient water quality reinforces and refines our process understanding of 

nutrient pollution dynamics across the Great Lakes drainage basin. 
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1.0 Introduction 

1.1 Eutrophication and the Great Lakes 

Anthropogenic nutrient inputs into water bodies pose serious threats to our water 

resources, particularly within the Laurentian Great Lakes basin. Excessive nitrogen and 

phosphorus loading into groundwater and surface water bodies can lead to significant water 

quality challenges downstream due to eutrophication (V. H. Smith, Joye, and Howarth 2006; 

Anderson, Glibert, and Burkholder 2002; Schindler 2006). Eutrophication describes the 

phenomenon of increased algal productivity associated with the nutrient enrichment of a water 

body. This enrichment promotes the rapid growth of harmful algal blooms (HABs) and nuisance 

algae blooms which are hazardous to both humans and ecosystem function. HABs produce 

toxins that are lethal to both humans and wildlife. Increased algal mass causes deep water 

(hypolimnetic) hypoxia in stratified water bodies, as oxygen is stripped out of the water column 

from increased respiration, creating ecologic “dead zones”. Consequences of eutrophication 

include ecosystem loss, fish kills, drinking water supply contamination, and diminished 

recreation, resulting in massive environmental, social and economic costs (Dodds et al. 2009; 

Pretty et al. 2003; Moss et al. 2011). Globally, billions of dollars are lost each year due to costs 

associated with eutrophication (Pretty et al. 2003; Dodds et al. 2009) . 

The Great Lakes basin is particularly vulnerable to water quality threats due to its highly 

populated urban areas and substantial amount of agricultural land use (Environment and 

Climate Change Canada and Ontario Ministry of the Environment and Climate Change 2018a; 

Environment and Climate Change Canada and U.S. Environmental Protection Agency 2017). In 

the 1960’s and 70’s, Lake Erie’s water quality and biological diversity was severely degraded 

due to hypolimnetic hypoxia caused primarily by point sources of phosphorus from sewage 
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discharge (Lee, Rast, and Jones 1978; Beeton 1965; Schelske 1979).  In 1972, the Great Lakes 

Water Quality Agreement (GLWQA) was initiated as a binational agreement between Canada 

and the United States as an effort to control algal blooms and ecosystem losses, particularly 

within Lake Erie. The GLWQA initially focused on phosphorus reduction strategies of point 

source pollution , which were widely successful for improving water quality (Scavia et al. 2014; 

Colborne et al. 2019; Dove and Chapra 2015). Measures were implemented to reduce 

phosphorus in detergents and wastewater treatment plant discharge through legislated plant 

upgrades. These phosphorus reductions led to significant observed improvements in Lake Erie 

water quality during the 1980’s and early 90’s, although phosphorus sequestered from invasive 

zebra mussels and quagga mussels may have exaggerated improvements (Scavia et al. 2019). 

Despite these nutrient reduction efforts, eutrophication problems persist in the Great Lakes due 

to excessive nutrient loading in watersheds, primarily from non-point sources (Scavia et al. 

2014; Dolan and Chapra 2012; Baker et al. 2014; Bootsma et al. 2015; Le Moal et al. 2019). In 

the last 25 years, Lake Erie has experienced a re-eutrophication, with increasing trends in algal 

blooms and hypolimnetic hypoxia despite reduced total phosphorus loads (Kane et al. 2014). 

Water quality challenges from eutrophication in the Great Lakes are ongoing. Lake Erie 

routinely experiences algal blooms in the western and central basin during the summer months 

and in the summer of 2011, it experienced the largest recorded algal bloom in history as it 

stands (Michalak et al. 2013). In the summer of 2014, Toledo, Ohio’s fourth largest city, issued a 

“do not drink” water advisory, due to HABs in the Lake (Fitzsimmons 2014). The city 

experienced elevated levels of microcystin in their drinking water, a lethal neurotoxin produced 

by the HABs’ species of cyanobacteria (blue green algae)  (Jetoo, Grover, and Krantzberg 

2015). While much focus is on Lake Erie, HABs are also often recorded in shoreline areas of the 

other Great Lakes, including Muskegon Bay and Green Bay in Lake Michigan, Saginaw Bay and 

Georgian Bay in Lake Huron, and Hamilton Harbor, Oswego Harbor, and Bay of Quinte in Lake 

Ontario (Environment and Climate Change Canada and Ontario Ministry of the Environment and 
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Climate Change 2018a; Environment and Climate Change Canada and U.S. Environmental 

Protection Agency 2017). Cladophora, a nuisance algae, is problematic in the nearshore 

regions of Lake Michigan, Lake Ontario, and Lake Erie, and causes fouling of beaches and 

shorelines, and fouling of water intakes for drinking and cooling systems (Environment and 

Climate Change Canada and U.S. Environmental Protection Agency 2017; Bootsma et al. 

2015).   

 

Figure 1 – Aerial Image (brightened) of the Laurentian Great Lakes in 2015 showing algal 
blooms in Lake Erie (“NOAA Great Lakes Environmental Research Laboratory’s Albums” 2015) 

To combat the ongoing problem, binational agreements in 2016 between Canada and 

the U.S. have set the goal of reducing total phosphorus (TP) and soluble reactive phosphorus 

(SRP) loads into Lake Erie by 40 percent from 2008 levels by 2025 (Environment and Climate 

Change Canada and Ontario Ministry of the Environment and Climate Change 2018b; US EPA 

2018) . 
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1.2 Challenges in Nutrient Management 

Sources of nutrient pollution are generally categorized as point or non-point sources. 

Examples of the former include wastewater treatment outlets and septic systems, and typical 

examples of the latter include agricultural and urban runoff. While measures taken to control 

point sources in the Great Lakes basin have been generally considered successful, non-point 

sources are more difficult and costly to control (Schindler 2006; Lee 1973). Non-point sources of 

fertilizers applied on fields in excess of crop requirements accumulate in the landscape and 

enter riverine systems through surface and subsurface pathways. This contributes to current 

and future eutrophication problems in downstream water bodies (Han, Allan, and Bosch 2012). 

Non-point sources are deemed as the major source of nutrient pollution and driver of 

eutrophication in the Great Lakes, and strategies to improve water quality should focus on 

reducing these sources of nutrients, particularly phosphorus delivery (Lee 1973; Joosse and 

Baker 2011; Le Moal et al. 2019; Carpenter et al. 1998). 

Phosphorus pollution in Lake Erie is widely accepted as the driver of eutrophication in 

the lake, and phosphorus is often the limiting nutrient in freshwater environments for algal 

growth (Correll 1998; Environment and Climate Change Canada and U.S. Environmental 

Protection Agency 2017; Schindler 1974; Sharpley et al. 1994).  The form of phosphorus is key 

to consider for management, especially since dissolved forms (SRP) are more bioavailable and 

conducive to algal growth (Baker et al. 2014). While TP loadings to Lake Erie have remained 

stable in recent years, SRP loads have increased, correlating with increasing algal blooms 

(Douglas R. Smith, King, and Williams 2015; Joosse and Baker 2011; Daloğlu, Cho, and Scavia 

2012). Management strategies for phosphorus should be tailored to the specific form they are 

targeting; TP management does not necessarily translate to SRP management. This is 

especially important as desired outcomes of management strategies may conflict. For example, 

while no tillage agricultural practices lead to TP reductions from less particulate forms entering 
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waterways, this strategy increases SRP losses from fields (Lam et al. 2016; Douglas R. Smith et 

al. 2015). As such, targeted management of specific forms of nutrients, particularly phosphorus, 

is important to consider for implementing effective reduction strategies in the Great Lakes basin. 

It is key to manage nitrogen pollution in conjunction with phosphorus since outcomes are 

often at odds with each other when considered separately. Broad strategies that only consider 

phosphorus reductions may be inadequate to address local nutrient processing and cycling 

conditions in some freshwater environments, especially where phosphorus is easily recycled 

(Conley et al. 2009). Furthermore, coastal and estuarine systems are often nitrogen limited, and 

strategies that focus solely on phosphorus upstream could exacerbate eutrophication 

challenges in these downstream environments (Conley et al. 2009; V. H. Smith and Schindler 

2009). In the context of the Great Lakes drainage basin, this could have impacts downstream in 

the St. Lawrence River and the Gulf of St. Lawrence.  Therefore, managing nitrogen and 

phosphorus together is crucial in aligning both broad and specific nutrient water quality goals. 

Although increased nutrient export and concentrations are major drivers of 

eutrophication, nutrient ratios of phosphorus and nitrogen in aquatic systems are also important 

for management, especially when considering harmful algal growth and trophodynamics (Glibert 

and Burkholder 2011; Glibert et al. 2011; Saaltink et al. 2014). Freshwater systems that are 

enriched in phosphorus are more conducive to the growth of HAB organisms like cyanobacteria 

(Anderson, Glibert, and Burkholder 2002). Cyanobacteria favour low nitrogen to phosphorus 

ratios due to their ability to fix N2 from the atmosphere (V. H. Smith and Schindler 2009). This is 

particularly concerning as cyanobacteria produce toxins that are lethal to humans, wildlife, and 

livestock, while also rendering drinking water resources unusable. Strategies that only focus on 

specific nutrients for management (i.e. only phosphorus or nitrogen) may overlook the 

eutrophication challenges associated with altered nutrient ratios. Therefore, focus on managing 

pollution should also consider the breadth of the nutrient water quality regime, rather than only 

single problematic pollutants. 
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Best management practices (BMPs) can be implemented to reduce nutrient loads from 

non-point sources. BMPs include measures such as buffer strips, cover crops, livestock fencing, 

tillage and fertilizer application practices. These practices intercept and treat nutrient rich runoff 

prior to entering waterways or prevent nutrient pollution at the source. Combinative approaches 

that use multiple different BMPs in conjunction are more effective in reducing nutrient loads from 

non-point sources than individual BMP use (Scavia et al. 2019; Bosch et al. 2013; Lam et al. 

2016). Furthermore, BMP’s performance has been shown to be most effective when targeting 

hot spots of nutrient pollution, rather than distributed or random placement on the landscape 

(Bosch et al. 2013; Park et al. 1994). Therefore, it is key to recognize and isolate hot spots of 

nutrient pollution to better implement reduction strategies. 

It is challenging to consider all aspects of nutrient water quality for management. 

Targeted reduction strategies for specific forms of nutrients should be balanced with the 

objective of remediating the entire nutrient water quality regime so that desired outcomes do not 

conflict. This challenge in management is further compounded given our lack of knowledge in 

where adverse nutrient water quality problems exist in the Great Lakes basin. Identifying hot 

spots for the entire extent of poor nutrient water quality is essential in applying targeted and 

broad reduction strategies. In this study, our analysis investigated drivers and controls of 

nutrient pollution from a more comprehensive view of water quality. This was conducted by 

considering nitrogen water quality in conjunction with phosphorus, while also considering critical 

nutrient ratios. By doing so, we have identified hot spots and drivers of nutrient pollution through 

a more complete picture of the nutrient water quality challenges facing the Laurentian Great 

Lakes basin. 
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1.3 Gaps in Understanding and a New Approach 

“We suggest that future research be focused on the cumulative effects of nutrient loading and 

other human-caused insults to lakes” (V. H. Smith and Schindler 2009) 

Many factors add to the difficulty of parsing out the effects of non-point sources of 

nutrient inputs and their impacts to receiving waters. Nutrient export not only depends on the 

activities and sources within a watershed, but also on the local hydrology and biogeochemical 

processes, making source characterization and load estimation troublesome (Hamilton 2012). 

Much work in hydrology focuses on trying to capture the vast heterogeneity of landscapes and 

incorporate this into our process understanding (McDonnell et al. 2007; Wagener et al. 2010). 

However, when considering nutrient management, there are many gaps in our understanding 

from source to sink. Recent gaps include the long-term effectiveness of various agricultural 

practices for nutrient reduction at the field scale (H. Jarvie et al. 2017; Douglas R. Smith et al. 

2015; H. P. Jarvie et al. 2013; Scavia et al. 2017). Uncertainty exists pertaining to the impacts of 

climate change on nutrient transport and the efficacy of BMPs (Kalcic et al. 2019; Bosch et al. 

2014).  Another particularly prominent gap is the lasting impacts and contribution of nutrient 

legacies in the landscape (Hamilton 2012; Van Meter and Basu 2017; Meals, Dressing, and 

Davenport 2010). Efforts have been made to quantify the lag time between the implementation 

of reduction strategies and when observed improvements can be expected, although 

uncertainty still exists in landscape responses. Sources, flow paths, and geochemical processes 

in groundwater are often neglected as a non-point source of nutrients, and processes at reactive 

interfaces, such as riparian and hyporheic zones, are not well understood, especially in the 

Great Lakes basin (Robinson 2015). Riverine fluxes of nutrients not only vary with discharge, 

but also with time and season, and sparse stream water quality measurements fail to 

adequately fully capture these dynamics (Hirsch, Moyer, and Archfield 2010). These gaps of 

knowledge are especially important when considering equifinality, as isolating the effect of 
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multiple compounding factors in nutrient dynamics is difficult in poorly understood systems, 

especially when observations are limited. This contributes to the complexity of accurately 

capturing the heterogeneity of nutrient dynamics and responses within watersheds. Therefore, 

more holistic methods are needed to bridge our gaps in understanding to tackle the challenge of 

eutrophication in the Great Lakes. 

Downstream water quality signatures can be assessed to explore the behaviour and 

drivers of nutrient export and to better understand the processes within upstream watersheds 

(Sivapalan 2006). For example, isotopic analysis can be used to determine the origins of water 

(e.g. runoff, groundwater) or dissolved constituents in downstream discharges (Gibson et al. 

2002; Cole et al. 2004). Downstream water quality signatures gathered from these studies often 

offer one of the few metrics available for assessment of complex environmental systems 

upstream. However, using this approach remains challenging due to limited resources in 

monitoring, computation, and personnel.  

Recently, machine learning methods have grown in popularity as tools to assess 

environmental signatures and systems, while avoiding challenges associated with other 

methods (Tyralis, Papacharalampous, and Langousis 2019). Machine learning offers an 

alternative to mechanistic modelling or experimental based work and can be used in conjunction 

to support findings and conclusions. Because of our gaps in understanding, many in the 

research community advocate for a holistic approach to evaluating environmental challenges in 

hydrology and nutrient pollution (McDonnell et al. 2007; Wagener et al. 2010; H. P. Jarvie et al. 

2013; Moss 2008; Withers et al. 2014). This means an approach that evaluates the entirety of 

the challenge by looking at the cumulative effects of nutrient pollution, rather than focusing on 

individual processes or parts. This “big-picture” evaluation is crucial, especially given our 

incomplete understanding of the detailed physical, biological, and chemical interactions of 

nutrients in our environment. Machine learning can bridge our detailed process understanding of 

complex environmental systems to a more universal, encompassing point of view. These 
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methods offer a simplistic, yet analytically robust framework to evaluate environmental 

challenges from holistic perspectives.  

Random forest (RF) regression is one particular machine learning tool that has been 

used to evaluate nutrient water quality of surface waters and groundwater within North America 

(King, Cheruvelil, and Pollard 2019; Carlisle, Falcone, and Meador 2009; Read et al. 2015; 

Shen et al. 2020; Dugan et al. 2020). It has grown in popularity in recent years as a tool for 

hydrological modelling and assessment. These data driven models have been shown to have 

similar or increased predictive power when compared to other widely used and applied empirical 

and process-based models (Tyralis, Papacharalampous, and Langousis 2019; Solomatine and 

Ostfeld 2008). Advantages to RF models include their non-parametric nature and their ability to 

handle noisy, nonlinear, and intercorrelated data (Tyralis, Papacharalampous, and Langousis 

2019; Breiman 2001; Meinshausen 2006). These models are also robust to overfitting, and can 

use both continuous and categorical variables (Breiman 2001; Meinshausen 2006; Liaw and 

Wiener 2002). To the authors' best knowledge, as it stands, this paper presents the first 

application of this tool for stream nutrient water quality of the entire drainage basin of the 

Laurentian Great Lakes. 

1.4 Research Objectives 

 The objective of this analysis is to improve our understanding of the behaviour and 

responses of Great Lakes watersheds to nutrient pollution, by applying a data-driven approach 

to investigate trends in water quality. To move towards more targeted nutrient management, we 

must acknowledge and better characterize the heterogeneity of responses and behaviours of 

Great Lakes watersheds to nutrient inputs.  

The following research questions have been posited to frame the objectives and context 

of this research: 
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1. What landscape variables drive nutrient pollution in the Great Lakes watersheds? 

a. What spatial factors are important in annual flow weighted concentrations? 

b. What spatial factors are important in annual flow weighted ratios? 

 

2. What are the spatial patterns of nutrient pollution across the Great Lakes watersheds? 

a. What are the annual flow weighted concentrations of nutrients in the Great Lakes 

watersheds? 

b. What are the annual flow weighted ratios of nutrients in the Great Lakes 

watersheds? 

 

3. What is the magnitude of annual nutrient loads into the Great Lakes? 
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2.0 Methodology 

2.1 Source Datasets and Pre-processing  

2.1.1 Study Area 

The Laurentian Great Lakes drainage basin lies on the Canada-United States border, 

within the Canadian province of Ontario, and the American states of Minnesota, Wisconsin, 

Illinois, Indiana, Michigan, Ohio, Pennsylvania, and New York. The total basin area is more than 

520,000 km2, with 59% in the United States, and the remaining 41% in Ontario, Canada (Neff et 

al. 2005; MacDonagh-Dumler, Pebbles, and Gannon 2003). The Great Lakes span an area of 

244,000 km2, with more than 17,000 km of shoreline and contain approximately 23,000 km3 of 

water, about one fifth of the world’s surface freshwater supply. The basin is home to over 33 

million people and the lakes provide drinking water to millions of Americans and Canadians who 

reside near its shores (Environment and Climate Change Canada and U.S. Environmental 

Protection Agency 2017; MacDonagh-Dumler, Pebbles, and Gannon 2003). The Great Lakes 

are also relied upon for transportation, fishing, industry, agriculture, and recreation.  

The physical characteristics of the Great Lakes basin vary widely from north to south 

Basin (Canada, Shear, and Wittig 1995; Neff et al. 2005). In the northern parts of the basin, 

around Lake Superior and northern Lake Huron and Georgian Bay, a granite bedrock known as 

the Canadian Shield is the common feature of the terrain surface, with a thin cover of acidic 

soils and mostly conifer dominated forests. In the southern basin, soils are deeper and more 

fertile, with varying deposits of sand, silt, clay, and boulders from past glaciation, and underlaid 

by sedimentary rock of limestone, sandstone, shale, and gypsum. The south is also home to 

most of the agriculture and urban centres of the basin, with major cities including Milwaukee and 
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Chicago on Lake Michigan, Detroit, Buffalo, and Cleveland on Lake Erie, and Toronto and 

Hamilton on Lake Ontario.  

Climate also varies widely in the Great Lakes basin (Canada, Shear, and Wittig 1995; 

Neff et al. 2005). Average July temperatures range from 25°C in Indiana, Ohio, Michigan, and 

Illinois to the south, to 17°C in the north and eastern regions from Lake Superior. Average 

January temperatures range from -2°C in Indiana and Ohio in the south, to -20°C in the northern 

basin of Lake Superior. Average annual precipitation ranges from greater than 1200 mm in 

regions east of Lake Ontario, to less than 690 mm in regions west of Lake Superior. Snowfall 

varies even more than precipitation, with the most hard-hit areas generally to the east of each 

Great Lake. 
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Figure 2 – Water quality monitoring stations and watersheds of the Laurentian Great Lakes 
drainage basin used in this study. 

2.1.2 Flow and Water Quality Data Sources 

Discharge data for Canada was obtained from Environment and Climate Change 

Canada’s (ECCC) discharge monitoring network (“Environment and Climate Change Canada 

Historical Hydrometric Data” 2016), while discharge data for the United States was obtained 

from the United States Geological Survey (USGS) (“National Water Information System” 2016). 

Water quality data for Canada was obtained from the Provincial Water Quality Monitoring 

Network (PWQMN) (“Provincial (Stream) Water Quality Monitoring Network” 2016), while that 

for the United States was obtained from the USGS (“National Water Information System” 2016). 
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Monitored water quality constituents used in this analysis were nitrogen (DIN) as combined 

nitrate and nitrite, Soluble Reactive Phosphorus (SRP) and Particulate Phosphorus (PP). PP 

concentrations were calculated by subtracting SRP from monitored Total Phosphorus (TP). 

Monitoring stations in the Great Lakes drainage basin (Figure 2) were selected such that 

both discharge and water quality were measured in co-located areas on the same river body. 

Discharge stations were selected that were sufficiently close to the water quality stations, based 

on the two following decision criteria: 1) The water quality and streamflow station lay on the 

same river stem; 2) the percent difference in drainage area between the water quality and 

discharge station was less than 15%. Stations with more than 40 records and data between 

2000 and 2016 were selected. Using these criteria, 159, 160, 159, and 195 stations were 

selected with water quality data for DIN, SRP, PP, and TP, respectively. In total, 202 co-located 

monitoring stations across the Great Lakes basin were used in this study. 

Two nutrient ratios were calculated from monitored data and used in this study: SRP to 

TP (SRP:TP), and DIN to TP (DIN:TP). The SRP:TP ratio is a useful water quality metric that 

represents the fraction of phosphorus that is bioavailable. The DIN:TP ratio can yield insights 

into nutrient limitation, showing whether a water quality regime is potentially nitrogen or 

phosphorus limited. This is important for algal growth, as certain species and communities can 

favour different nutrient limiting regimes, such as cyanobacteria under low DIN:TP ratios. 

2.1.3 Spatial Data Sources on Catchment Attributes 

Spatial data was used for developing models of watershed nutrient water quality. 

Geoprocessing of spatial data was performed using ArcGIS, version 10. Spatial data sources 

were often specific to each country, as data coverings for the United States seldom overlapped 

with Ontario, and vice versa.  A summary of the spatial data sources used can be found in Table 

A.1 of the Appendix. Catchments draining to United States monitoring stations were delineated 
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using ARCGIS’s hydrology toolbox. Catchments draining to Canadian monitoring stations were 

delineated using the Ontario Flow Assessment Tool (OFAT) from the Ontario Ministry of Natural 

Resources and Forestry.  

Spatial data were aggregated into single spatial variable values for each watershed. 

These values were calculated using an area-weighted approach for geoprocessing spatial 

objects within a watershed, as given by the following equation:  

  

 
𝑋𝑎𝑣𝑔 =  

∑ 𝑋𝑖𝐴𝑖
𝑛
𝑖=1

𝐴𝑡𝑜𝑡𝑎𝑙
  (1) 

 

where 𝑋𝑎𝑣𝑔 is the calculated spatial variable value used for the watershed, 𝑋𝑖 is the numerical 

value of the 𝑖𝑡ℎ  spatial object within the bounds of the watershed, 𝐴𝑖 is the area of with the 𝑖𝑡ℎ  

spatial object, and 𝐴𝑡𝑜𝑡𝑎𝑙 is the total area of the watershed.  

Land use data for the Great Lakes drainage basin was obtained from the 2015 

Agriculture and Agri-Food Canada annual crop inventory for Ontario, and from the 2011 

National Land Cover Database for the United States. Gridded land use data was aggregated 

into groups based on relevant land use and crop codes. Land use was grouped into spatial 

variables of percent forested land cover, percent wetland cover, and percent developed land 

cover (agricultural and urban land use). Tile drainage data for Ontario was obtained from the 

Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), and for the United States 

from the United States Census of Agriculture, National Agricultural Statistics Services. 

Population density data for Ontario was obtained from 2011 Census data from Statistics 

Canada, and data for the United states was obtained from sub-county 2010 census data from 

the United States Census Bureau.  Precipitation and temperature data were obtained from the 

WorldClim database at 1 km resolution (Fick and Hijmans 2017). Climate variables used were 

the average annual precipitation in millimetres per year in a watershed, and average annual 
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temperature in degrees Celsius of a watershed. Slope data for the United States was obtained 

from the hydrologic landscape regions of the United States dataset (Wolock, Winter, and 

Mcmahon 2004). Ontario slope data was geoprocessed from a 30m digital elevation model 

obtained from OFAT. Slope variables were given as average percent slope in a watershed. Soil 

data for the United States was obtained from the Soil Survey Geographic Database by the 

United States Department of Agriculture, and soil data for Ontario was obtained from the 

National Soil Database by the Canadian Soil Information Service. There were gaps in soil data 

coverage for Northern Ontario and these were filled using data from the Harmonized World Soil 

Database (Fischer et al. 2008). Livestock density data for cattle, swine and chickens were 

obtained from the Food and Agriculture Organization of the United Nations (FAO) as part of 

their Gridded Livestock of the World v 2.01. Cattle, swine and chicken densities were then 

converted into a single “Livestock Equivalent Density” using animal unit coefficients for Ontario 

from Statistics Canada (Government of Canada 2001). These coefficients are based on the 

amount of manure each animal type would produce to fertilize a standardized acreage of 

cropland. 

Watershed delineation, in addition to the geoprocessing of land use, tile drained land, 

population density, climate, slope, and soil type spatial data, used in this work was conducted 

by Chowdhury (2018). Processing of livestock density spatial data was performed by the author. 

2.1.4 Weighted Regression on Time, Discharge and Season (WRTDS) 

Water quality measurements are often sparse and therefore it is difficult to effectively 

represent the water quality regime in a stream. A Weighted Regression in Time Discharge and 

Season (WRTDS) model was applied for each tributary station using monitored water quality 

and discharge to generate continuous daily water quality for the co-located stations. WRTDS 

has grown in popularity in recent years as a water quality processing tool, and has been used 
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for nutrient load estimation and analysis in the United States, including the Mississippi River 

(Sprague, Hirsch, and Aulenbach 2011), Lake Champlain tributaries (Medalie, Hirsch, and 

Archfield 2012), and the Susquehanna River Basin (Q. Zhang, Brady, and Ball 2013; Qian 

Zhang, Harman, and Ball 2016). WRTDS, developed by Hirsch et. al, is a dynamic model for 

water quality that not only accounts for concentration-discharge relationships, but also 

incorporates seasonal and time variability (Hirsch, Moyer, and Archfield 2010). It is developed 

using the following equation structure: 

 

 ln(𝑐) = 𝛽0 + 𝛽1𝑡 + 𝛽2 ln(𝑄) + 𝛽3 sin(2𝜋𝑡) + 𝛽4 cos(2𝜋𝑡) + 𝜖 
(2) 

 

where 𝑐 is concentration, 𝑡 is the time as a fraction of the year (e.g. Jan. 1st  = 0, and Dec. 31st  

= 1), 𝑄 is the average daily streamflow, 𝛽0-4 are regression coefficients, and ε is the residual 

error (Hirsch, Moyer, and Archfield 2010). This regression model is fitted to monitored discharge 

and water quality time series data. Regression coefficients, 𝛽0-4, are not static, and are unique to 

each point from regression fitting. The equation structure has linear dependencies of 

concentration with discharge (natural log transformed) and time, in addition to sinusoidal 

dependencies with time of season. As such, this regression model calculates daily 

concentrations based on regressed relationships with discharge, time of year, and season. 

WRTDS was implemented for monitored water quality using the EGRET package in R from the 

USGS. 

WRTDS fits the regression equation based on “distances” in time, discharge, and 

season from the monitored data. Time distance is the difference in the time at the estimation 

point to the time of monitored data, in units of fractions of a year. Discharge distance is the 

difference in the natural log-transformed discharge at the estimation point to the natural log-

transformed discharge of monitored data, in units of natural log-transformed flow. Seasonal 
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distance is the difference between seasons in the estimation point and monitored data, in units 

of fraction of a year (e.g. the seasonal distance between September 1, 2011 and September 1, 

2012 equals zero, while the seasonal distance between September 1, 2011 and December 1, 

2012 equals 0.25). Distances in time, discharge, and season for each monitored data point are 

weighted for fitting the regression equation based on Tukey’s Tricube Weight Function given 

below:  

 

 

𝜔 =  {(1 − (
𝑑

ℎ
)

3

)

3

𝑖𝑓 |𝑑| ≤ ℎ

0 𝑖𝑓 |𝑑|  > ℎ 

 
(3) 

 

 

where 𝜔 is the unitless weight, 𝑑 is the distance in time, discharge, or season, and ℎ is the half 

window width in the same units as distance (Tukey 1977). The overall weight for each 

monitored data point is the product of the weights for time, discharge, and seasonal distances. 

This Tri-Cube weight function ensures that data points close to the estimation point are fitted to 

the regression better than those farther away. This weighting structure assigns greater weights 

to monitored data points that are closer to the estimation point in time discharge and season, 

while monitored data points that are farther away are cubically less weighted. Monitored data 

points with distances greater than the half window width are given weights of zero and are 

therefore not considered for fitting. Half window widths for discharge and season were set at the 

recommended values of 0.5 and 2 natural log units (Hirsch and De Cicco 2015). Half window 

widths for time were recommended as 7 years, although including the time varying component 

in WRTDS would induce non-stationarity in the regression (i.e. concentrations would be 

changing with time). To invoke stationarity into WRTDS, half-window widths were manipulated 

and set to 100 years. In this sense, all time distances in the monitored data would be weighted 

equal to 1 at any estimation point, and therefore the time component would be static in the 
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regression (i.e. 𝛽1 would not change at any estimation point). As such, the regression would 

only capture discharge and seasonal relationships with concentration from the monitored data.  

WRTDS provides an approach that minimizes bias to estimating the concentration of a 

tributary given the date and discharge of estimation (Hirsch, Moyer, and Archfield 2010). While 

concentration data is log-transformed in the regression equation structure, re-transformation 

bias is corrected in actual concentrations through a weighted smearing estimator (Duan 1983). 

Regression coefficients in WRTDs are unique to each estimation point, and as such are 

unbiased to other estimations. Furthermore, weights for distances between monitored data 

points and estimation points are determined so that the nearest points have the greatest effect 

in estimated nutrient concentrations. WRTDS is a free-form regression method that is dynamic 

to a wide range of water quality regimes, while accounting for hydrologic factors specific to 

stream water chemistry.  

Bias was assessed in WRTDS results by comparing monitored data with predicted data 

from the regression. Modelled data that exceeded our bias criteria was eliminated from further 

use. For each monitoring station, a Flux Bias value was assessed, as given by the following 

equations: 

 
𝑃 =  ∑  𝐶𝑖,𝑊𝑅𝑇𝐷𝑆

 𝑄𝑖 

𝑛

𝑖=1

 
(4) 

 

 
𝑂 = ∑ 𝐶𝑖,𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  𝑄𝑖

𝑛

𝑖=1

 
(5) 

 

 
 𝐵 =

𝑃 − 𝑂

𝑂
   (6) 

 

where 𝐵 is the Flux Bias, 𝑃 is the predicted flux, 𝑂 is the observed flux, 𝑛 is the number of 

observed data points,  𝐶𝑖,𝑊𝑅𝑇𝐷𝑆
 is the estimated concentration at day 𝑖 from WRTDS, 𝐶𝑖,𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 
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is the observed concentration at day 𝑖 from the monitored station data, and 𝑄𝑖 is the observed 

discharge at day 𝑖 from the monitored station data. Positive values of Flux Bias indicate 

overestimation of concentrations by WRTDS, while negative values indicate underestimation. 

Stations that had Flux Bias values of less than -0.15 and greater than +0.15 were deemed too 

biased in their WRTDS results, and as such were omitted from further use in this analysis. 

2.1.5 Annual Flow Weighted Concentration (FWC) 

Annual flow-weighted concentrations (FWC) of DIN, SRP and PP were used as a metric 

to assess the effect of various spatial factors on nutrient water quality.  

      

 
𝐹𝑊𝐶 =  

∑ 𝐶𝑖 𝑄𝑖

∑ 𝑄𝑖
 (7) 

 

where, 𝐶𝑖  is the concentration on day 𝑖 and  𝑄𝑖 is the discharge on day 𝑖. Daily concentrations 

were estimated using WRTDS applied to monitored concentration data from the PWQMN 

(“Provincial (Stream) Water Quality Monitoring Network” 2016) and USGS (“Water Quality 

Portal” 2020), while daily discharge was obtained from ECCC (Environment and Climate 

Change Canada 2020) and the USGS (“Water Quality Portal” 2020). Nutrient ratios were 

calculated by dividing their respective FWCs. The FWCs and ratios for monitored watersheds 

were then used for developing nutrient water quality models.  

FWCs are independent of discharge and can be used to capture a snapshot of water 

quality that is not affected by year to year variation in discharge and precipitation. Average 

annual FWCs are useful signatures for assessing the water quality within a watershed, provided 

land use and activities are stationary on an annual basis. FWCs can be used for calculating 
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receiving loads, as discharge from a watershed can be used in conjunction with FWCs to 

calculate receiving loads.  

2.1.6 Variable Selection and Collinearity 

Spatial variables were screened prior to modelling to minimize collinearity and 

redundancy in the data set following methodologies adopted by Jolliffe (Jolliffe 1972; 1973) and 

Mansfield and Helms (Mansfield and Helms 1982). This was applied so that important spatial 

drivers of nutrient water quality could be better assessed; collinearity and redundancy pose 

challenges when trying to determine the effect a variable has on a model or system’s response. 

A correlation matrix and variance inflation factors (VIF) were computed to assess collinearity 

between variables. A principal component analysis (PCA) was also conducted on select 

variables for further variable reduction to assess and limit redundant information in the 

independent variable set. The correlation matrix of all variables was generated and assessed for 

collinearity between specific variables. VIFs were calculated to quantify collinearity of a single 

variable with all independent variables. The correlation matrix and VIFs can be seen in Figure 

A.1 in the Appendix. 

Forested land use was omitted from use in this study due to its significant correlation 

and intercorrelation with other independent variables. Forested land use showed high 

correlation with specific variables, as shown by the high correlation coefficients with developed 

land, wetlands, and silt and clay soils (Figure A.1). Forested land use also showed high 

intercorrelation amongst all variables as given by its large VIF. Forested land use was omitted 

because of this high correlation and intercorrelation, and intercorrelation was then reassessed 

among the remaining variables. As seen by the smaller VIF values without forested land use, 

the intercorrelation amongst the remaining variables was significantly lower (Figure A.1). VIF 

values were less than 10 without forested land use, which is considered an acceptable cut-off 
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for intercorrelation (Stine 1995; Chatterjee and Yilmaz 2016). As such, forested land use was 

omitted from further use. 

Average percent slope, average annual temperature, and average annual precipitation 

were considered to have redundant information with developed land use and were omitted from 

use in this analysis. Correlation coefficients between these variables were significant (p-values 

< 0.01), indicating that they likely shared information and were assessed for redundancy and 

removal. PCA offers insight into the information (i.e. variance) that variables share with one 

another, by projecting them into new variables, called “components”, that do not share 

information with each other. Components are then ranked by the amount of information that 

they contain, with the first component (Component 1) having the most information, and the last 

component (Component N) having the least information. Each component is proportionally 

made up of projections of the original variables, with more significant variables having higher 

proportions in a component. Components were extracted from spatial variables of slope, 

temperature, precipitation and developed land use, and were assessed for variable reduction in 

accordance with traditional PCA methods (Jolliffe 1972; Al‐Kandari and Jolliffe 2005). Variables 

with the highest proportions in components with the lowest information were omitted. These 

omitted variables were considered redundant, since information associated with these variables 

accounted for the least information in the entire data set. As such, average percent slope, 

average annual temperature, and average annual precipitation had the highest proportions in 

the three smallest components, as seen in Figure A.2 of the Appendix. This indicates these 

variables have little additional information when compared to developed land use. Therefore, 

these variables were deemed to have redundant information and were omitted from further use. 

Watershed drainage area was omitted as a variable for use in this analysis. During 

preliminary stages of this research, watershed area was considered as a potential driver for 

nutrient water quality. However, it was consistently shown to be among the least important 

variables in random forest models for nutrient FWCs and ratios (variable importance is 
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discussed in Section 2.2.2). Additionally, model performance remained unchanged with its 

omission.  Because of its unimportance and lack of predictive power in nutrient water quality 

models, watershed area was omitted from further use in this analysis. 

2.2 Modelling Framework 

Random forest (RF) machine learning was used as a modelling framework to assess 

controls on nutrient FWCs and ratios in monitored watersheds of the Great Lakes. Variable 

importance and feature contribution metrics determined from this framework were used to 

assess drivers and behaviours of nutrient water quality across spatial variables within monitored 

watersheds. RF models underwent a training and validation process before then being applied 

to predict nutrient water quality across the entire ungauged basin of the Great Lakes, with 

metrics of uncertainty reflected in modelled predictions. 

2.2.1 Random Forest Machine Learning Structure 

RF models generate fitted binary decision trees based on random, independent 

sampling (with replacement) of independent variables and data (Figure 3) (Breiman 2001). 

Nodes where decisions are split are determined through minimizing mean square error in the 

sampled data. RF regression was applied in this analysis, meaning that an average value was 

taken from each numerical output of all the generated decision trees. Since many decision trees 

were generated, a distribution of predictions was also obtained, and this was used for estimating 

standard error and prediction uncertainty.  
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Figure 3 – Simplified diagram of random forest regression structure. Adapted from Jagannath 
(2017). 

The independent variables used in this study were the spatial factors within watersheds 

remaining after variable selection: the percentage of developed land use, the percentage of 

wetlands, the percentage of land tile drained area, percent of silt and clay soils, and livestock 

densities. Variables were selected to minimize collinear dependencies and redundancy (see 

Section 2.1.5), so variable importance could be better assessed.  

To perform the analysis, MATLAB’s Statistics and Machine Learning Toolbox was used 

by applying their bagged regression tree ensemble functions. Models were specified to generate 

1000 decision trees, with error converging to a minimum well below the number of trees 

generated in each model. Error convergence over the number of trees grown can be found in 

Figure A.3 of the Appendix. Standard values were used for the fraction of data sampling with 

replacement, and the fraction of variable sampling at decision splits, set as 1 and ⅓, 

respectively (Breiman 2001). A sample decision tree from an RF model used in this analysis can 

be seen in Figure A.5 of the Appendix. 
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2.2.2 Variable Importance 

RF models are commonly used to assess which variables are most important for 

response. Variable importance is determined though perturbing input variables and determining 

which variable causes the greatest deviation in mean square error (Grömping 2009). Variable 

importance is given by the following equation structure: 

 

 

𝑉𝑡,𝑋𝑗
=

1

𝑛𝑂𝑂𝐵𝑡

 ∑ (𝑦𝑖 − 𝑦𝑖̂ (𝑋𝑗 𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑))
2

𝑛𝑂𝑂𝐵𝑡

𝑖=1

− 𝑂𝑂𝐵𝑀𝑆𝐸𝑡 
(8) 

 

 

where 𝑉𝑡,𝑋𝑗
 is the variable importance of the variable 𝑋𝑗 for decision tree 𝑡 in the RF model, 

𝑛𝑂𝑂𝐵𝑡
 is the number of “Out of Bag” (OOB) observations for the decision tree, 𝑦𝑖 is the prediction 

of the decision tree for the 𝑖𝑡ℎ OOB observation, and 𝑦𝑖̂ (𝑋𝑗 𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑) is the prediction when the 

variable 𝑋𝑗 is perturbed, and 𝑂𝑂𝐵𝑀𝑆𝐸𝑡 is the mean square error for the decision tree across all 

OOB observations. “Out of Bag” refers to observations that were not sampled during training of 

the decision tree 𝑡, and therefore indicate an unbiased estimate of error for that tree. An overall 

variable importance for the variable 𝑋𝑗  in entire RF model is then taken as the average value 

across all decision trees in the model. In this study, the variable importance was taken as an 

average value across all 1000 decision trees.  

The perturbed variable that results in the greatest change in mean square error is 

considered the most important. This sensitivity analysis was performed to determine which 

independent spatial variables were most important in the RF framework. Variables that were 

expected to be the most dominant controls in nutrient water quality were also expected to have 

the greatest importance, since changes in these spatial variables would result in the greatest 

changes in concentrations and ratios. To assess the importance of spatial factors remaining 
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after variable selection, a RF model for each of the three nutrient water quality parameters (DIN, 

SRP and PP) and two ratios (SRP:TP and DIN:TP) was generated using all spatial parameters 

of gauged watersheds as independent variables. 

2.2.3 Feature Contribution (FC) 

Feature Contribution (FC) was used to assess the influence and relationships spatial 

variables had on nutrient concentrations and ratios in the RF models. FC is a useful way to 

assess the effects of variables in “black box” modelling, like machine learning. FC reveals the 

behaviour of a model with respect to a model variable, while the effects of other variables are 

averaged out. FC was adapted from partial dependence interpretation (Friedman 2001) 

For any given model, 𝑓(𝑋), where 𝑋 is the entire variable set for that model, let 𝑋𝑆 be a 

single variable of that set, and 𝑋𝐶 be the complementary set (i.e. all the other variables), such 

that 𝑓(𝑋) = 𝑓(𝑋𝑆 , 𝑋𝐶). The FC for a variable of a model can be given by the following equations: 

 

 
𝑓𝑆(𝑋𝑆) = 𝐸𝐶  [𝑓(𝑋𝑆, 𝑋𝐶)] =  ∫ 𝑓(𝑋𝑆 , 𝑋𝐶) 𝑝𝑐(𝑋𝐶)𝑑𝑋𝐶 (9) 

 

 
𝑝𝑐(𝑋𝐶) ≈ ∫ 𝑝(𝑋)𝑑𝑋𝑠 (10) 

 

where 𝑓𝑆(𝑋𝑆) is the FC of the single variable in the model, and 𝑝𝑐(𝑋𝐶) is the marginal 

probability of the complimentary set 𝑋𝐶. Feature Contribution is the expected value of the model 

for a variable, 𝑋𝑆, when all the other variables, 𝑋𝐶, are not taken into consideration. This can be 

approximated by the following: 
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𝑓𝑆(𝑋𝑆) ≈

1

𝑁
∑ 𝑓(𝑋𝑆 , 𝑋𝑖

𝐶)

𝑁

𝑖=1 

 
(11) 

 

 𝑋𝑖 = (𝑋𝑖
𝑆, 𝑋𝑖

𝐶) (12) 

 

where 𝑋𝑖 are observed data, 𝑋𝑖
𝑆 is the 𝑖𝑡ℎ observations for the variable, and 𝑋𝑖

𝐶 are the 𝑖𝑡ℎ 

observations for the complementary data sets. For interpretability, FC’s were mean subtracted 

and normalized by the standard deviation, as given by the following: 

 

 
𝑓𝑆(𝑋𝑆)′  =

𝑓𝑆(𝑋𝑆) − 𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 (13) 

 

 Where 𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 are the mean and standard deviation of observed 

responses, respectively. This standardization of FCs was conducted so that they could be 

compared across different nutrient concentrations and ratios, where magnitudes and units 

differed for responses (e.g. µg/L vs mg/L vs mol:mol). 

Plots of FC show the average effect a variable has on the response of a model, while 

isolated from the effects of other variables (Friedman 2001). This effect is shown as the 

variable’s contribution to the response in standard deviations from the mean overall predicted 

value. For example, an FC value of 0 shows that a variable has no effect in nutrient 

concentrations or ratios predicted by the model at that point. However, a positive value shows 

an increasing effect on predicted nutrient concentrations and ratios compared to the mean 

overall prediction, and a value of less than zero shows a decreasing effect compared to the 

mean overall prediction. Since FC is associated with a specific variable, each observation in the 

data set has an associated FC value for each spatial variable used in the RF model. FCs for RF 
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models were implemented using the plot partial dependence tool in MATLAB’s Statistics and 

Machine Learning Toolbox. 

2.2.4 Model Training and Validation 

RF models do not require an independent data set as traditionally set aside during 

training and then used for cross-validation. Instead, “Out of Bag” (OOB) data, data that is not 

sampled and used in model development, can be used to provide estimates of unbiased model 

performance and validation (Breiman 2001; Tyralis, Papacharalampous, and Langousis 2019). 

Since the fraction of data sampling with replacement was set to 1, the OOB data used for model 

development is approximately ⅓ of the entire data set. The other approximately ⅔ of data was 

used for training of RF models. Since sampling was conducted randomly in the RF Model, 

random number generators were seeded with the same starting values for reproducibility of 

results during model training and validation. 

Selecting and training RF models for use in prediction was an iterative process. A final 

RF model was developed for each of the three nutrient water quality parameters (DIN, SRP and 

PP) and two ratios (SRP:TP and DIN:TP) using the spatial variables deemed most important to 

water quality response from variable importance metrics. Models were then iteratively 

generated, starting with the two most important spatial variables, and then adding subsequent 

variables in decreasing order of variable importance. Final models were then selected using 

those with the spatial variables that yielded the minimum OOB mean square error, or with error 

changing by less than 1%. This methodology for RF model development is consistent with those 

outlined in other studies and publications (Ziegler and König 2014; Díaz-Uriarte and Alvarez de 

Andrés 2006). Results RF model training and development can be found in Table A.2 through 

Table A.6 of the Appendix, with final RF models for each nutrient water quality constituent 
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selected indicated in bold. Final RF models were then applied to the entire unmonitored Great 

Lakes basin for spatial analysis of hot spots and loading calculations. 

2.2.5 Model Prediction and Coefficient of Variation (CV) 

 Final RF models were used to predict FWCs and ratios across all ungauged watersheds 

of the Laurentian Great Lakes. This was done by using the spatial parameters of ungauged 

basins for input into the RF models to predict concentrations or ratios. Modelled nutrient water 

quality across the entire Great Lakes basin was then mapped and assessed for spatial patterns. 

Additionally, coefficients of variation (CV) were calculated as a measure of uncertainty in 

predictions based on the variability of predictions from decision trees. Since RF models were 

specified to generate 1000 decision trees, a distribution of predictions was obtained and used 

for estimating standard error and prediction uncertainty.  CVs were calculated by dividing the 

standard error of decision tree predictions by the mean predicted response for each watershed, 

as given by the following equation: 

 𝐶𝑉 =
𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝜇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 
 (14) 

 

where 𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is the standard deviation of model predictions for the watershed from each 

decision tree in the RF model, and 𝜇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is the mean predicted nutrient water quality value 

for the watershed from the RF model. CVs allow us to estimate the uncertainty in predictions, 

with lower CV values indicating lower uncertainty. Higher CVs indicate greater variability in RF 

predictions and higher uncertainty. 
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3.0 Results and Discussion 

3.1 Monitored Nutrient Concentrations across the Great Lakes 

Basin  

Monitored nutrient concentration data in the Great Lakes basin was processed using 

WRTDS in conjunction with monitored discharge data to generate mean annual flow-weighted 

concentrations (FWCs) across 17 years (2000-2016). The mean annual FWC values ranged 

widely across the Great Lakes basin, from 0.06 – 9.5 mg/L for DIN, 2 – 296 𝜇g/L for SRP, and 6 

– 808 𝜇g/L for PP (Table 1). A subset of the 202 stations analyzed in this study (133 stations for 

DIN, 114 stations for SRP, and 130 stations for PP) had flux bias values between -/+ 0.15 and 

were used for further analysis in RF models.  

 

Table 1 – Summary of nutrient FWCs (mg/L) from WRTDS processing for monitoring stations in 
the Great Lakes drainage basin 

Nutrient 
Number of 
Stations 

Mean 
Observed 

FWC 

Standard 
Deviation 

Median 
FWC 

Maximum 
Observed 

FWC 

Minimum 
Observed 

FWC 

DIN 133 2.33 2.01 1.71 9.51 0.06 

SRP 114 0.041 0.053 0.018 0.296 0.002 

PP 106 0.106 0.125 0.061 0.808 0.006 
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3.1.1 Dominant Controls on the Mean Annual FWC 

Variable importance metrics, quantified using the RF modelling framework, were used to 

understand dominant controls on the mean annual FWC across the subset of monitored 

watersheds. Variable importance shows how sensitive modelled FWCs are to change when 

values of a variable are perturbed; variables that cause greater changes in FWCs are 

considered more important than those that do not (Grömping 2009; Tyralis, Papacharalampous, 

& Langousis 2019).  

We found the percent developed land use, and the percent tile drained land to be the 

most important controls for dissolved nutrients, DIN and SRP (Figure 4). Strong positive 

correlations were observed between DIN and SRP and these spatial variables, and 

relationships clearly showed increased FWCs with increases in developed land use and tile 

drainage (Figure 5). Relationships with percent developed land use demonstrates the effect of 

non-point sources as a dominant driver of elevated nutrient concentrations in water bodies. We 

found percent wetland area and percent silt and clay soils to be the most important controls for 

PP (Figure 4). Wetlands were strongly negatively correlated with DIN, SRP, and PP FWCs, 

consistent with the understanding and observation of wetlands as nutrient sinks in 

anthropogenic landscapes. (Hansen et al. 2018; Dagnew, Scavia, Wang, Muenich, and Kalcic 

2019). However, inverse cross correlation was also apparent between wetland cover and 

developed land cover, potentially hampering the trends observed in the data. 

Tile drained land had significant positive correlations with nutrient FWCs. This shows the 

effect of engineered underground drainage systems as a driver in facilitating greater dissolved 

nutrient transport by circumventing the nutrient removal capacity of the soil column (Basu, 

Thompson, and Rao 2011). Variable importance for tile drained land was greatest for DIN, while 

lowest for PP. This is likely because DIN is transported through subsurface pathways in the 

landscape, and thus export would increase in the presence of tile drains. However, PP is 
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transported through both surface and subsurface pathways as it exists in less mobile particulate 

form (vs. DIN is dissolved). The variable importance for tile drains is higher for SRP when 

compared to PP, further highlighting the greater transport of dissolved forms of nutrients through 

subsurface pathways enhanced by tile drains (Figure 4). Trends in FWCs from raw monitored 

PP data across developed land use, tile drained land, and wetlands appear less clear compared 

to DIN and SRP (Figure 5 and Figure 5). Scatter was more apparent, suggesting a weaker 

influence of landscape variables as drivers of PP when compared to DIN and SRP.  

The percentage of silt and clay soil in a watershed was significantly positively correlated 

with all nutrient FWCs (Figure 4). This indicates elevated nutrient water quality from greater 

losses of nutrients in landscapes with finer soil types, likely due to the increased erosion 

potential from silt and clay soils when compared other coarser soil types (e.g. sand and gravel). 

This is further supported by its highest variable importance with PP, showing that finer soil types 

are major drivers of particulate concentrations due to the greater potential for erosion losses.  

Population density was significantly positively correlated with SRP and PP, likely 

indicating the role of human sewage discharges in elevating phosphorus concentrations. It is of 

note that while positive correlation was observed with DIN, this correlation was not significant 

(p-value >0.05). Variable importance for population density was not among the greatest for SRP 

and PP, showing that it is a lesser driver of nutrient pollution compared to wetlands, tile drained 

land and developed land use. This could be attributed to success of point source controls, such 

as wastewater treatment upgrades and phosphorus reductions in detergents, implemented 

because of the GLWQA. 

Livestock density was significantly positively correlated with nutrient FWCs, showing the 

role of manure in increasing nutrient concentrations. Livestock densities also had high variable 

importance in DIN and SRP FWCs. Fields applied with manure have been shown to have higher 

SRP losses than conventional fertilizers, especially when tile drains are present (Hodgkinson et 

al. 2002; Kinley et al. 2007; Kleinman et al. 2005). Dissolve inorganic nitrogen losses from 
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fertilizer and manure applied in agricultural fields accounts for the majority of dissolved inorganic 

nitrogen exported globally from river mouths (Glibert 2020; Dumont et al. 2005). Correlations 

with livestock density and PP were less significant, and variable importance for PP was much 

less than DIN and SRP. This all corroborates the importance and significant positive 

correlations of livestock manure in DIN and SRP FWCs, indicating it plays a key role as a driver 

of dissolved nutrient water quality.  

As previously mentioned, watershed area did not emerge as an important control in any 

of the nutrient FWCs. During preliminary stages of this research, variable importance for 

watershed area was consistently the least important spatial variable for DIN, SRP and PP, and 

trends in relationships were not evident. As such, watershed area was omitted from use in this 

analysis. 
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Figure 4 – Variable importance of spatial variables for modelled FWCs. FWCs are nitrogen 
(DIN) as combined nitrate and nitrite, soluble reactive phosphorus (SRP) and particulate 
phosphorus (PP) Correlations were determined using Mann-Kendall tests (* denotes p<0.05, ** 
denotes p<0.01).  
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Figure 5 – Relationships between mean annual nutrient FWCs (mg/L) and select spatial 
variables across monitored watersheds in the Great Lakes basin (a-l). Marker colour indicates 
area of monitored watershed.  
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3.1.2 Feature Contribution Plots for FWCs 

 Feature contribution (FC) plots were generated to illustrate the effect of important spatial 

variables in the RF machine learning models (Figure 6). FC plots are a useful way to gain 

insights into the inner workings of machine learning models and other complex black box 

models. These plots allow the reader to see how predictor variables effect the model’s 

prediction, while separated from the effects of other predictor variables. In this study, the 

predictor variables are the six spatial variables used for developing RF models, and the 

predictions are the average annual nutrient flow-weighted concentrations. Every monitored 

watershed has six FC values associated with it and the sum of these values show the difference 

between the predicted concentration for that watershed and the overall mean prediction of the 

model. This difference is given in units of standard deviations of the sample data. Therefore, FC 

values near zero show that a spatial variable has little to no effect on the modelled 

concentrations. FC values greater than zero indicate that the spatial variable has a positive 

effect, causing a greater predicted concentration than the overall mean prediction. FC values 

less than zero show the variable has a negative effect, causing a prediction less than the overall 

mean predicted concentration. Higher absolute values of FC show a larger effect of the variable 

in causing changes to predicted concentrations. For example, in Figure 6b and Figure 6c, 60% 

tile drained land (FC ≈ 1.5) plays a larger role in increasing predicted DIN concentrations than 

20% wetland area does in decreasing predicted concentrations (FC ≈ -0.5). Furthermore, FCs 

are additive, such that a positive value from one spatial variable can cancel out a negative value 

from another spatial variable. 

General trends were apparent  in how spatial variables influenced nutrient 

concentrations when looking at the FC plots. Increasing developed land use at high percent 

land cover caused higher increases in nutrient concentrations, as seen by the higher positive 

FC values with increasing percent developed land use at higher proportions (Figure 6a, Figure 
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6e, & Figure 6i). This supports our understanding that non-point sources are the major driver of 

nutrient pollution in the Great Lakes. Similarly, greater presence of tile drained land resulted in 

higher increases in nutrient concentrations, as seen by FCs increasing from zero with increasing 

percent tile drainage (Figure 6b, Figure 6f, & Figure 6j). This illustrates the impact of increased 

nutrient export from subsurface drainage networks. Wetlands showed a decreasing effect on 

nutrient concentrations, where more wetland area caused FCs to decrease from zero, until a 

certain threshold, whereby FCs then plateaued (Figure 6c, Figure 6g, & Figure 6k). This shows 

the effects of wetlands as nutrient sinks, and their ability to reduce nutrient pollution with more 

wetland cover until a certain threshold. These overall trends show that hotspots with the highest 

nutrient concentrations for all species occur in watersheds where there is a high proportion of 

developed land use, high proportion of tile drained land, and low proportion of wetland cover. 

The spatial variables also exhibited threshold effects in certain cases.  FCs for wetlands 

decreased from zero as percent area increased to a threshold value of approximately 15%, after 

which values appeared to stabilize (Figure 6c, Figure 6g, & Figure 6k). This showed a reduction 

in modelled nutrient concentrations due to increased wetland area until this threshold, 

highlighting their role as sinks in nutrient removal. However, after wetland area exceeded 15%, 

FCs plateaued at negative values. This demonstrated that there was a negligible effect in 

modelled concentrations when wetland area exceeded 15%. These results perhaps suggest 

there may be little difference in nutrient load reduction for strategies that restore wetland area 

beyond 15% of a watershed. This threshold value of 15% wetland area may be valuable to 

consider for nutrient managers looking at watershed scale strategies in maximizing nutrient 

reductions. Threshold behaviour was also apparent when looking at developed land use, as 

increases in FCs from zero were not seen until after approximately 50%, 65% and 75% land 

cover, for DIN, SRP, and PP, respectively (Figure 6a, Figure 6e, & Figure 6i). This perhaps 

suggests that at the watershed scale, the effect of developed land use of less than these 

threshold values may be negligible with respect to increasing nutrient loads, and subsequently, 
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that developed land use greater than these thresholds would have adverse effects to 

downstream nutrient water quality for each nutrient species. Again, this threshold behaviour 

may be valuable for nutrient managers looking at watershed scale strategies for load reductions. 

Threshold behaviour was also apparent with soil type, as increases in FCs from zero were not 

seen until approximately 75%, 55% and 65% silt and clay soil cover for DIN, SRP and PP, 

respectively (Figure 6d, Figure 6h, & Figure 6l). This perhaps shows that high percent cover of 

finer soil types causes elevated concentrations for these nutrient species, while the effects from 

lower percent cover may be negligible. 

Threshold behaviour in nutrient water quality is valuable to consider from a management 

perspective, especially for strategies like wetland restoration and land use changes for nutrient 

load reduction. Management strategies that apply thresholds could better allocate resources, 

while achieving similar performance in overall nutrient load reduction, compared to more 

blanketed, wide sweeping approaches. Using the threshold behaviour seen by FC, an ideal 

point of 15% wetland area and 50-75% developed land use emerges (dependant on nutrient 

species), that perhaps reveals a tipping point in nutrient water quality from when land use 

begins to have adverse impacts. This is especially important for balancing interests among 

stakeholders in nutrient pollution; strategies should be taken to not overburden agriculture and 

urban development while still maximizing the potential for nutrient load reductions.  However, 

due to the limited number of monitored watersheds in this study encompassing this threshold, it 

is recommended that more investigation be taken prior to leveraging these thresholds for 

nutrient management.  

Individual FC plots revealed that the influence of spatial variables varies as a function of 

nutrient species. This can be seen by comparing the magnitude of FC between different nutrient 

species for certain spatial variables. The decreasing effects of wetlands for nutrient 

concentrations appear greatest for PP (Figure 6k), as seen by the greater absolute FC values 

compared to DIN and SRP (Figure 6c & Figure 6g). This highlights the major function of 
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wetlands in settling out suspended sediments from watershed runoff, thereby removing 

particulate forms of nutrients from entering waterways. Tile drainage density had the strongest 

effects for DIN, then SRP, while its effect was minimal for PP (Figure 6b, Figure 6f, & Figure 6j). 

This shows the ability of tile drains in favouring transport of dissolved forms of nutrients over 

particulate forms. High percentages of developed land use had a greater effect in increasing 

DIN and SRP concentrations when compared to PP (Figure 6b, Figure 6f, & Figure 6j). This 

shows the more dominant effect of dissolved nutrient losses from agricultural activities and 

urban land use in increasing dissolved nutrient concentrations downstream. Soil type appeared 

to have the greatest effect in PP (Figure 6l), with greater proportions of silt and clay soils 

showing large FC values when compared to dissolved nutrients of DIN and SRP (Figure 6d & 

Figure 6h). This highlights the greater potential of erosion and sediment transport for finer soil 

types in elevating downstream particulate forms of nutrient water quality when compared to 

dissolved forms. Overall, this demonstrates that watersheds with high developed land use, high 

proportions of tile drained land, and low wetland cover result in hot spots of high DIN and SRP 

concentrations. Additionally, watersheds with high proportions of fine soil cover and low wetland 

cover result in hot spots of high PP concentrations.  
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Figure 6 – Feature contribution plots for the top four important predictor spatial variables for 

nutrient concentrations (a-l). Feature contribution shows the effect a spatial variable has in 

model predictions, separate from the effects of other spatial variables in the model. Feature 

contribution values greater than zero indicate that the spatial variable causes a predicted 

nutrient concentration greater than the mean prediction. Feature contribution values less than 

zero indicate that the spatial variable causes a predicted nutrient concentration less than the 

mean prediction. Solid line indicates a feature contribution value of zero. Data points were 

coloured based on watershed area. Vertical axis units are given as standard deviations from the 

overall mean predicted nutrient concentration. 
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3.1.3 Random Forest Model Prediction for FWCs  

  The RF models performed adequately for all three constituents during validation; 

models for dissolved nutrients, especially DIN, performed significantly better when compared to 

PP (Figure 7). Models for DIN, SRP and PP accounted for 81%, 54% and 31% of the variation 

in unbiased FWCs, respectively. For SRP and PP, the model underestimated the small number 

of highest FWCs. This underprediction could be attributed to the difficulty of RF models in 

extrapolating outside the normal range of training data, as is the case with these few observed 

high FWCs (Tyralis, Papacharalampous, and Langousis 2019). Additionally, phosphorus 

dynamics in the landscape are more complex than nitrogen, with sorption, desorption, and 

redox chemistry integral to its translation and transformation through the landscape. This 

process complexity for phosphorus may explain the lower model performance in capturing 

downstream water quality from generic spatial variables, especially for less mobile particulate 

forms. 

 

Figure 7 – Predictive (1:1) measure of RF flow-weighted concentrations against WRTDS-
estimated flow-weighted concentrations for DIN, SRP, and PP. Data points were coloured 
based on watershed area. R2 values are given for Trained and OOB datasets. Trained data 
refers to all data used in model development and provides a metric of biased performance. OOB 
refers to “Out of Bag” data and indicates data not used in model development and provides a 
metric of unbiased performance and validation. 
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3.2 Predicted Nutrient Concentrations across the Great Lakes 

Basin 

 Final RF models for each nutrient water quality parameter were applied to estimate 

FWCs for all ungauged watersheds of the Great Lakes drainage basin. RF models were 

generated using 1000 decision trees, with each tree having a prediction of average annual 

FWC. A mean value from all 1000 decision trees was used to predict average annual FWCs for 

each of the Great Lakes watersheds. Additionally, coefficients of variation (CV) were calculated 

as a measure of uncertainty in predictions based on the variability of predictions from decision 

trees. The CVs allow us to estimate the uncertainty in predictions, with lower CV values 

indicating lower uncertainty. CVs were calculated by dividing the standard error of decision tree 

predictions by the mean predicted response for each watershed. The spatial distribution of 

predicted average annual FWCs and their associated CVs for each nutrient parameter can be 

seen in Figure 8. Modelled FWCs across the entire Great Lakes basin, as well as those for each 

of the five Great Lakes, are summarized in Table 2. 
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Figure 8 – Spatial distribution of RF modelled average annual FWCs (a-c) with CVs of 
predictions (d-f) for the Laurentian Great Lakes watersheds. CVs show uncertainty in 
predictions, with higher (darker) values indicating higher relative variation in modelled results. 
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Predicted FWCs were generally highest in the southwestern drainage basin of Lake Erie, 

particularly in the Maumee, Sandusky, and Cedar-Portage watersheds, and Maitland and 

Ausable watersheds on the southeastern shores of Lake Huron, and in the Thames, Sydenham, 

Cedar, and Rondeau watersheds along the eastern side of the Huron-Erie corridor. These hot 

spots of nitrogen and phosphorus generally coincide with areas of high developed land use 

(>80%), high tile drained land area (>40%), and low wetland area (<5%). Again, this highlights 

the dominance of non-point source nutrient pollution in the Great Lakes drainage Basin. Low 

CVs for predictions generally coincide with watersheds where FWCs were highest, thus 

lowering the uncertainty in these high predictions. This was likely attributed to the large number 

of monitoring stations in these areas that were used for training models (Figure 2). In contrast, 

fewer monitoring stations were present in low concentration watersheds, such as around Lake 

Superior and Georgian Bay in Lake Huron (Figure 2). This has practical merit for nutrient 

managers, as there is lower uncertainty in predictions where nutrient concentrations are highest, 

making these areas low risk for targeted nutrient reduction strategies.  

 High phosphorus FWCs in the Lake Erie drainage basin support the consensus that 

excessive phosphorus loadings from non-point sources cause eutrophication and summer algal 

blooms in the Lake. The highest PP concentrations were predicted in the southwestern 

watersheds of Lake Erie, in the Maumee, Cedar-Portage, Huron-Vermilion, and Black-Rocky 

watersheds, along the eastern (Canadian) side of the Huron-Erie corridor, in the Ausable, 

Cedar, Sydenham, and Thames watersheds, and in the Niagara watershed of Lake Ontario. 

(Figure 8c). The highest SRP concentrations were predicted in the southwestern watersheds of 

Lake Erie, specifically in the Maumee, Sandusky, and Cedar-Portage watersheds, and along the 

eastern (Canadian) side of the Huron-Erie corridor in the Ausable, Sydenham, Thames and 

Rondeau watersheds (Figure 8b). SRP hot spots with lower PP concentrations may get 

overlooked if focus on phosphorus reduction only considers TP targets. This is especially 

significant considering the greater bioavailability of soluble forms of phosphorus for the 
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promotion of algae growth, when compared to particulate forms (Baker et al. 2014). 

Furthermore, management practices in these hot spots of SRP and PP can be targeted towards 

their respective elevated forms of phosphorus, rather than general TP reduction strategies.  

The data driven results were also consistent with findings from mechanistic, processed 

based models. Higher SRP FWCs from RF models on the Canadian side of the Huron-Erie 

corridor were consistent with recent SWAT models that also show high dissolved phosphorus 

losses in these areas (Figure A.6) (Scavia et al. 2019; Dagnew, Scavia, Wang, Muenich, and 

Kalcic 2019; Dagnew, Scavia, Wang, Muenich, Long, et al. 2019). Consistency with mechanistic 

findings adds confidence in the data driven results of nutrient water quality across the Great 

Lakes basin.  

 

Table 2 – Summary of area-weighted mean FWC values modelled (mg/L) for drainage basins 
across the Great Lakes watersheds. 

Nutrient 
All Basins 

Mean 
Erie Mean 

Huron 
Mean 

Michigan 
Mean 

Ontario 
Mean 

Superior 
Mean 

DIN 1.33 3.91 1.01 1.09 1.02 0.26 

SRP 0.026 0.085 0.017 0.017 0.019 0.008 

PP 0.088 0.191 0.075 0.059 0.066 0.074 

3.3 Monitored Nutrient Ratios across the Great Lakes Basin 

Mean annual flow weighted ratios for monitored watersheds were generated using 

nutrient FWCs from monitored data processed using WRTDS across 17 years (2000-2016). The 

mean annual ratios across the Great Lakes watersheds ranged widely in the Great Lakes basin, 

from 0.03 – 0.74 for SRP:TP, and 1.1–124 for DIN:TP in mol:mol (Table 3). A subset of the 202 
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stations analyzed in the study (106 stations for SRP:TP, and 109 stations for DIN:TP) had flux 

bias values between -/+ 0.15 and were used for further analysis in RF models.  

 

Table 3 – Summary of nutrient ratios (mol:mol) from WRTDS processing for monitoring stations 
in the Great Lakes drainage basin 

Ratio 
Number of 
Stations 

Mean 
Ratio 

Standard 
Deviation 

Median 
Ratio 

Maximum 
Observed 

Ratio 

Minimum 
Observed 

Ratio 

SRP:TP 106 0.28 0.13 0.27 0.74 0.03 

DIN:TP 109 54.9 48.3 42.5 273.5 0.9 

 

3.3.1 Dominant Controls on the Mean Annual Ratios 

The importance of spatial variables for nutrient ratios was assessed using the machine 

learning framework to understand dominant controls and drivers of nutrient water quality. Figure 

9 shows the results of the variable importance analysis and shows correlations of spatial 

variables with the raw ratios. Figure 10 shows raw scatter plots of ratios processed from 

monitored watersheds in the Great Lakes basin across important spatial variables. 

The proportion of developed land use, livestock density, tile drained land, silt and clay 

soil and population density were positively correlated with the proportion of bioavailable P 

(SRP:TP), while negative correlations were present with the proportion of wetland area. These 

correlations were the same when looking at the proportion of DIN relative to TP (DIN:TP). When 

looking at the importance of spatial variables to nutrient ratios, the impacts of agricultural 

manure and fertilizer appeared evident. Overall, more scatter was apparent when looking at 
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relationships between nutrient ratios and spatial variables (Figure 10), compared to those for 

nutrient FWCs (Figure 5). 

Livestock density, developed land use, and tile drained land were found to be the most 

important spatial variables for SRP:TP and they were significantly positively correlated to 

SRP:TP ratios (Figure 9). Increases in tile drain density increases the flow through the 

subsurface pathways, and thus likely increases SRP:TP ratios from greater dissolved transport.  

Fields applied with manure have been shown to have higher SRP losses, when compared to 

synthetic fertilizers, especially in the presence of tile drains, and thus would lead to increased 

SRP:TP ratios downstream (Hodgkinson et al. 2002; Kinley et al. 2007; Kleinman et al. 2005). 

As the amount of developed (agricultural) land in a watershed increases, so too would the SRP 

losses from tile drains and manure application, explaining its importance and positive correlation 

with SRP:TP ratios. It is of note that application methods, rates and timing of fertilizer and 

manure, in addition to tillage practices, would also have an effect on the phosphorus losses 

from agricultural fields, but such information was not available at this scale (Bundy, Andraski, 

and Powell 2001; D. R. Smith et al. 2007; Tabbara 2003; Withers, Clay, and Breeze 2001).  

Positive correlations were observed between DIN:TP ratios and livestock densities and 

they also exhibited high variable importance (Figure 9).  Fertilizer and manure from agriculture 

accounts for the majority of dissolved inorganic nitrogen export (Glibert 2020; Dumont et al. 

2005) and manure often has higher nitrogen to phosphorus ratios than synthetic fertilizer blends 

(Allan, Murray, and Child 2018; Munroe et al. 2018). As such, nutrient losses from fields applied 

with manure would generally shift the DIN:TP ratio higher compared to fields applied with 

synthetic fertilizers. This demonstrates that manure is a major driver in nitrogen to phosphorus 

ratios downstream. Increased local atmospheric deposition from ammonia volatilization of 

animal waste would also support the high importance and positive correlation of these livestock 

densities with DIN:TP. However, it is expected that atmospheric deposition would be small 
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compared to the overall contribution of nitrogen losses from agricultural fields (Whitall, 

Hendrickson, and Paerl 2003; Paerl 1997).  

The variable importance of wetlands was low for SRP:TP ratios suggesting that it is a 

weaker driver in SRP:TP ratios when compared to developed land use, livestock density and tile 

drained land. However, wetland area showed significant negative correlation with SRP:TP 

ratios.  While wetlands were negatively correlated with DIN:TP ratios, this correlation was not 

significant (p-value >0.05), and variable importance was also low. This suggests that wetlands 

are not a strong driver of nitrogen to phosphorus ratios as well. 

Silt and clay soils were significantly positively correlated with SRP:TP ratios yet showed 

low variable importance. While variable importance was higher for DIN:TP ratios, the positive 

correlations observed were not significant (p-value >0.05). This all demonstrates that soil type is 

a weak driver of nutrient ratios downstream. 

While population density had positive correlations with SRP:TP and DIN:TP, these 

correlations were not significant (p-value >0.05). Additionally, population density had low 

variable importance, further suggesting that the effects of human sewage discharges do not 

drive nutrient ratios in the Great Lakes basin. This could be due to success of the point source 

controls implemented from the GLWQA.  
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Figure 9 – Variable importance of spatial variables for modelled nutrient ratios. Ratios are 
soluble reactive phosphorus over total phosphorus (top) and nitrogen as nitrate and nitrite over 
total phosphorus (bottom). Correlations were determined using Mann-Kendall tests (* denotes 
p<0.05, ** denotes p<0.01). Bold variable names show those selected for final models. 
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Figure 10 – Relationships between mean annual flow-weighted nutrient ratios (mol:mol) and 
select important spatial variables across monitored watersheds in the Great Lakes basin (a-j). 
Marker colour indicates area of monitored watershed.  

3.3.2 Feature Contribution Relationships for Nutrient Ratios  

FC plots revealed general trends in how spatial variables influenced nutrient ratios 

(Figure 11).  Overall, trends appeared less clear compared to the those observed for nutrient 

FWCs (Figure 6). High percentages of developed land use and high densities of livestock had 

high positive FC values for both SRP:TP and DIN:TP ratios (Figure 11a, Figure 11d, Figure 11f, 

& Figure 11i). High proportions of tile drained land and high proportions of silt and clay soils had 

positive FC values for SRP:TP ratios (Figure 11b & Figure 11e). High proportions of silt and clay 

soil cover had negative FC values for DIN:TP ratios (Figure 11j). This demonstrates that the 

highest SRP:TP ratios occurred in watersheds with high developed land use, high livestock 



 51  
 

densities, high tile drained land, and high percentages of silt and clay soil cover, while the 

highest DIN:TP ratios were seen in watersheds with high developed land use, high livestock 

densities, and low proportions of silt and clay soils.  

We found percent developed land use to exhibit a threshold behaviour for both SRP:TP 

ratios, and DIN:TP ratios, although its effect on SRP:TP ratio was greater. Percent developed 

land use had a negligible effect of SRP:TP ratios till a threshold value of 60%, beyond which it 

increased approximately linearly to an FC value of 1 at 80% developed land use (Figure 11a). 

Developed land use also exhibited threshold behaviour in its effect on increasing DIN:TP ratios. 

Positive FC values were observed for developed land use between 50% and 90%, while FC 

values were equal to zero at both low (< 50%) and high (> 90%) proportions of developed land 

use (Figure 11f). 

In contrast to this threshold behaviour for percent developed land use, FC values for 

livestock density appeared to increase monotonically for SRP:TP (Figure 11d). This highlights 

the impacts of manure application in increasing SRP losses from agricultural fields. This 

threshold behaviour for SRP:TP ratios also coincided well with previously discussed threshold 

behaviour for nutrient FWCs in Section 3.1.2 and may provide additional value for nutrient 

management. Livestock density also appears to have a significant effect in increasing DIN:TP 

ratios. At densities of greater than 5 equivalent head per square kilometer, FC values are 

consistently high, although there is scatter in the high values (Figure 11i). This can be attributed 

to the higher nitrogen to phosphorus content in manure compared to synthetic fertilizers.  

Percent tile drained land showed a threshold effect in SRP:TP ratios – FC values are 

near zero until about 40% tile drainage, after which values increase monotonically and plateau 

at 1 at 60% tile drains (Figure 11b). Tile drains facilitate increased dissolved phosphorus export 

through subsurface pathways, and thus increases in tile drain density increases SRP:TP ratios. 

Tile drained land, however, did not appear to have a major effect in DIN:TP ratios, as FC values 

fluctuated near zero across all proportions of drained land (Figure 11g). 
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Wetland area within a watershed showed little effect in influencing SRP:TP and DIN:TP 

ratios. For SRP:TP, FC values fluctuated near zero across the entire range of wetland areas 

(Figure 11c). This suggests wetlands were not a major driver for SRP:TP ratios, despite their 

role in reducing SRP and PP concentrations. For DIN:TP, FC values showed a small negative 

trend for wetland area greater than 20% (Figure 11h). Higher proportions of wetland area 

decrease both DIN and TP, but these suggests that it decreases DIN at a proportionally lower 

rate compared to P.  

Soil type had a small and threshold driven effect on nutrient ratios. For SRP:TP ratios, 

beyond a threshold of 50% silt and clay soil, increasing proportions of fine soils increased the 

predicted ratio (Figure 11e). For DIN:TP, beyond a threshold of 60% silt and clay soil, increasing 

proportion of fine soils decreased DIN:TP ratios (Figure 11j). Increasing proportions of fine soils 

would increase erosion and thus increase TP transport leading to decrease in DIN:TP ratios. 
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Figure 11 – Feature contribution plots for the top five important predictor spatial variables for 
nutrient ratios (a-j). Feature contribution shows the effect a spatial variable has in model 
predictions, separate from the effects of other spatial variables in the model. Feature 
contribution values greater than zero indicate that the spatial variable causes a predicted 
nutrient ratio greater than the mean prediction. Feature contribution values less than zero 
indicate that the spatial variable causes a predicted nutrient ratio less than the mean prediction. 
Solid line indicates a feature contribution value of zero. Data points were coloured based on 
watershed area. Vertical axis units are given as standard deviations from the overall mean 
predicted nutrient ratio. 

3.3.3 Random Forest Model Prediction for Nutrient Ratios 

Final RF models for SRP:TP and DIN:TP ratios performed similarly with lower R2 values 

compared to predictions of the individual nutrient concentrations. Models for SRP:TP and 

DIN:TP accounted for 34%, and 22% of the variation in water quality ratios for out-of-bag 

observations. The model appeared to overestimate the lowest SRP:TP ratios (<0.2) and 

underestimate the highest ones. The spatial distribution of the watersheds with the worst 
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predictions were investigated and no spatial trends were seen to explain their low SRP:TP ratios 

(e.g. low developed land use, high wetland area, low livestock densities etc.). This suggests 

they were outliers in the relationships drawn from spatial data by the machine learning models, 

possibly explaining their poor prediction performance in these low values. Site specific 

conditions for these watersheds may explain their low SRP:TP ratios, and these local effects 

would not be captured in the generic spatial variables used in this study for the RF model. This 

could include the nuanced effects of small-scale precipitation, local nutrient cycling conditions, 

and/or seasonal dynamics that are specific to these monitored watersheds.  

 

Figure 12 – Predictive (1:1) measure of RF flow-weighted ratios against WRTDS-estimated 
flow-weighted ratios for SRP:TP and DIN:TP. Data points were coloured based on watershed 
area. R2 values are given for Trained and OOB datasets. Trained data refers to all data used in 
model development and provides a metric of biased performance. OOB refers to “Out of Bag” 
data and indicates data not used in model development and provides a metric of unbiased 
performance and validation. 

3.4 Predicted Nutrient Ratios across the Great Lakes Basin 

 Using the final developed RF models, nutrient ratios were predicted for the entire Great 

Lakes drainage basin (Figure 13). Predicted ratios across the Great Lakes basin were spatially 

consistent with predicted nutrient FWCs (Figure 8).  Modelled ratios across the entire Great 

Lakes basin, as well as those for each of the five Great Lakes, are summarized in Table 4. 
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Figure 13 – Spatial distribution of RF modelled average annual ratios (a-b) with CVs of 
prediction (c-d) for the Laurentian Great Lakes watersheds. 

 The area with the highest SRP:TP ratios was seen in the Pentangore, Maitland, 

Sydenham, and Thames watersheds on the southeastern shore of Lake Huron and along the 

eastern side of the Huron-Erie corridor (Figure 13a). These watersheds are dominated by 

agricultural land use (>75%) and have high livestock densities. This hot spot may be of interest 

to nutrient managers because of its high relative input of bioavailable phosphorus into Lake 

Huron and the Huron-Erie corridor. This bioavailable phosphorus could be a significant 

contributor to algal growth in the lake. High DIN:TP was also seen in the Birch-Willow, 
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Southwest Georgian Bay and Maitland watersheds of Lake Huron, and the Duck-Pensaukee 

and Door-Kewaunee watersheds of Lake Michigan, near Green Bay (Figure 13). Again, hot 

spots of SRP:TP and DIN:TP generally had low CVs (<1), reducing uncertainty in the modelled 

results. 

Watersheds in southwestern Lake Erie, such as the Maumee, Sandusky, Cedar-

Portage, Detroit, and the Ottawa-Stony watersheds, and in the eastern watersheds of the 

Huron-Erie corridor, such as the Cedar and Sydenham watersheds, had low DIN:TP ratios, 

highlighting potentially phosphorus enriched regimes. These watersheds also had high nutrient 

FWCs (Figure 8), showing high nutrient export with low DIN:TP ratios. Lower DIN:TP inputs 

from these watersheds could shift DIN:TP ratios lower downstream in Lake Erie, promoting the 

growth of harmful cyanobacteria blooms that favour these low ratios (V. H. Smith and Schindler 

2009).  

Watersheds along northern Lake Superior and Georgian Bay had low SRP:TP and 

DIN:TP ratios. These areas also coincided with low nutrient FWCs (Figure 8) and illustrates the 

nutrient water quality regime of less human impacted catchments.  

 

Table 4 – Summary of area-weighted mean ratio values modelled (mol:mol) for drainage basins 
across the Great Lakes watersheds. 

Ratio All Basins Erie Basin 
Huron 
Basin 

Michigan 
Basin 

Ontario 
Basin 

Superior 
Basin 

SRP:TP 0.23 0.31 0.22 0.24 0.22 0.18 

DIN:TP 40 45 40 48 50 21 
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 Modelled ratios across the Great Lakes basin (Table 4) were compared with ratios from 

other large drainage systems in published studies. Ratios in the Great Lakes basin were similar 

to values recorded in the Narragansett Bay watershed in Rhode Island and Massachusetts, 

from July-October 2012, where mean DIN:TP ratios were 40, and mean SRP:TP ratios were 

0.40 (Smucker et al. 2016). DIN:TP ratios for the Great Lakes watersheds were similar to the 

average N:P ratio of 49.1 observed in the Baltic sea drainage basin from 1970-2000 (Saaltink et 

al. 2014). DIN:TP ratios of the Great Lakes watersheds compared well with the human impacted 

western European drainage basins of the Seine, Somme and Scheldt Rivers, where ratios for 

the wet year of 1996 and the dry year of 2001 were 35 and 51, 45.4 and 66.5, and 30.1 and 

38.7, respectively (Thieu, Billen, and Garnier 2009). While average SRP:TP values for the Great 

Lakes watersheds were much lower compared to the average SRP:TP ratio of 0.60 observed 

between 2000-2005 for the San Francisco Estuary (Sacramento – San Joaquin River Bay 

Delta), DIN:TP ratios of the Great Lakes watersheds were much higher than their average value 

of 18.0 (Glibert et al. 2011). 

 Modelled ratios across the Great Lakes basin were also compared to ratios for impacted 

and unimpacted monitored streams and rivers across the U.S. by Maranger et. al (2018). 

Modelled average DIN:TP ratios for the Lake Erie, Huron, Michigan, and Ontario basins were 

consistent with the 75th percentile TN:TP ratio of 44.6 for monitored streams across the United 

States. In contrast, average DIN:TP ratios for streams in the Lake Superior basin were more 

aligned with the median TN:TP ratio of 24.7 for United States’ rivers and streams (Maranger, 

Jones, and Cotner 2018).  
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3.5 Nutrient Loads from the Great Lakes Basin 

3.5.1 Modelled Annual Loadings 

Annual nutrient loads were estimated to determine the export to the Great Lakes from 

tributary sources for years 2000 to 2016. Loads were calculated using RF modelled FWCs 

across the entire drainage basin, and annual area-discharge regression relationships for years 

2000 to 2016 from monitored watersheds (Figure A.4). As such, estimated loads were driven by 

differences in annual discharge, consistent with precipitation as the main driver of interannual 

variability in nutrient loads (Sinha and Michalak 2016). Annual average FWC’s are independent 

of discharge and can be scaled with annual discharge to calculate annual loads, assuming 

stationarity in the landscape (i.e. no changes in land use between years). Average annual basin 

loads for each of the Great Lakes is presented in Table 5 below. Estimated annual nutrient 

loads for each year from 2000-2016 for DIN, SRP, and TP are summarized in Table A.7 through 

Table A.9 in the Appendix.  

 

Table 5 – Mean annual modelled basin loads to the Laurentian Great Lakes in tonnes/year for 
period of 2000-2016. SE refers to the standard error of predictions. 

 

Lake Erie Lake Huron Lake Michigan Lake Ontario Lake Superior 

Annual 
Load 

SE 
Annual 

Load 
SE 

Annual 
Load 

SE 
Annual 

Load 
SE 

Annual 
Load 

SE 

DIN 120,586 2,832 53,624 10,517 48,775 7,814 27,931 3,483 10,241 12,568 

SRP 2,584 65 928 300 776 306 565 66 321 353 

TP 8,541 92 4,895 425 3,673 433 2,358 94 3,506 500 
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Lake Erie had the largest modelled annual basin loads for DIN, SRP, and TP of all the 

Great Lakes by a wide margin (Table 5). These massive loads explain the underlying causes of 

the eutrophication problems that persist in Lake Erie. Lake Erie had the lowest relative and 

absolute standard error in model predictions for DIN, SRP, and TP for each of the Great Lakes, 

indicating the lowest uncertainty in these estimated loads. This is likely attributed to the large 

number of monitored watersheds in the Lake Erie basin used to train the RF models compared 

to the other Great Lakes basins (Figure 2). The second largest loadings occurred in Lake Huron 

for all nutrient constituents (Table 5). These high loadings in Lake Erie and Huron reflect the hot 

spots of nutrient pollution seen in watersheds of these drainage basins (Figure 8) and shows the 

effect of anthropogenic landscapes in driving nutrient pollution. Lake Superior had the lowest 

nutrient loads for dissolved nutrients, DIN and SRP. The Lake Superior basin is the least human 

impacted of all the Great Lakes (Table 5), and these low DIN and SRP loads highlight that low 

dissolved nutrient export coincides with low anthropogenic impacts within a watershed. Lake 

Ontario had the lowest TP loadings of any of the Great Lake (Table 5). This is likely due to Lake 

Ontario having the smallest drainage basin of the Great Lakes (MacDonagh-Dumler, Pebbles, 

and Gannon 2003), and thus less TP export from less drainage discharge.  

3.5.2 Comparison with Literature Estimates 

Great Lakes basin loading estimates were compared to loads published in literature to 

assess modelled results. Figure 14 and Figure 15 show annual modelled loads and annual 

published basin load values, for SRP and TP, respectively. Overall, estimated loading compared 

similarly with other published estimates.  
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Figure 14 – Annual SRP loading to Lake Erie from RF model (blue) compared to annual loads 
from Maccoux et al. (2016) (orange).  

Average annual SRP export to Lake Erie was estimated to be approximately 2,600 

tonnes per year, which was consistent with loads published by Maccoux et al. (2016), where the 

annual load estimates ranged from 2,627 to 3,482 tonnes per year between 2009 and 2013 

(Figure 14). Trends in SRP loading year to year were also similar with Maccoux et al. (2016) 

estimates. Both modelled and published values showed peak SRP loadings in 2011, which 

coincided with the largest algal bloom recorded in Lake Erie to date (Michalak et al. 2013).   
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Figure 15 – Annual TP loading to Great Lakes from RF models (blue) compared to annual loads 
from Maccoux et al. (2016) (orange), Dolan and Chapra (2012) (yellow), and Robertson et al. 
(2019) (purple). 
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Average annual TP estimates to Lake Erie were approximately 8,500 tonnes per year. 

This is similar to estimates reported by Maccoux et al. (2016) and Dolan and Chapra (2012) 

where Lake Erie TP loads ranged from 8,024 to 11,946 tonnes per year between 2003 and 

2013, and 6,252 to 11,584 tonnes per year between 2000 and 2008, respectively. Calculated 

loads were also like Robertson et al. (2019), who estimated Lake Erie watershed loadings of 

8,900 tonnes for the year 2002. Again, modelled TP loadings were greatest for the year 2011, 

which coincided with the largest recorded algal bloom in Lake Erie to date (Figure 15).  

TP loadings for other Great Lakes were also consistent with published values, however 

larger uncertainty exists in both modelled results in this study and other published results, as 

seen by the greater standard error in annual loads to Lakes Michigan, Ontario, Superior, and 

Huron, when compared to Lake Erie (Figure 15). This is likely attributed to the fewer number of 

monitoring stations for the drainage basins of these lakes as opposed to the greater number in 

the highly impacted Lake Erie basin (Figure 2). Average annual TP load estimates for Lake 

Michigan were approximately 3,700 tonnes per year, compared to similar load estimates 

reported by Dolan and Chapra (2012) of 2,472 to 4,548 tonnes for 2000-2008, and Robertson et 

al. (2019) of 3,770 tonnes for 2002. TP estimates for Lake Superior were approximately 3,500 

tonnes per year, consistent with estimates from Dolan and Chapra (2012) where TP loads 

estimates from 2000-2008 were approximately 2,091 to 6,512 tonnes per year. Average annual 

TP estimates for Lake Ontario were approximately 2,400 tonnes per year and were generally 

less than estimates by Dolan and Chapra (2012) of 2,798 to 4,098 tonnes per year from 2000-

2008. Modelled annual TP loadings for Lake Huron were much higher than annual loadings 

calculated by Dolan and Chapra (2012), and Robertson et al. (2019). The discharge driven 

approach to load estimation likely accounts for the observed differences between published 

values and load estimates for Lake Ontario and Lake Huron. Lake Huron has the largest 

drainage basin of the Great Lakes, while Lake Ontario has the smallest. As such, due to the 

area-discharge relationships used for load estimation, the basin area of these lakes could 
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explain why estimated Lake Ontario loads were lower than published values, while Lake Huron 

loads were higher. 

Methodologies for published loads were different than those used by this study, likely 

explaining the differences in estimated loads. Dolan and Chapra (2012), and Maccoux et al. 

(2016) calculated loads from monitored tributaries using the Stratified Beale’s Ratio Estimator 

(SBRE), while loads from unmonitored tributaries were calculated using the unit area load (UAL) 

method. SBRE estimates loads by sorting and separating monitored water quality data into 

groups based on the monitored daily discharge for each tributary. Annual loads for each 

tributary are then estimated from relationships drawn between the average monitored load and 

the average monitored discharge in each of these groups (Beale 1962; Dolan, Yui, and Geist 

1981). The WRTDS method, which explicitly captures the relationships between concentration 

and discharge that vary with time and season, is a more robust method for estimating annual 

loads from sparse concentration data (Hirsch, Moyer, and Archfield 2010). The UAL method 

estimates loads for unmonitored watersheds based on loads from nearby monitored 

watersheds. However, unlike the RF approach, this method fails to capture the land use types 

that are unique to unmonitored basins. Robertson et al. (2019) also calculated loads from 

monitored watersheds using Stratified Beale’s Ratio Estimator, however, they then used these 

loads for training their SPARROW model. SPARROW is a multiple linear regression model that 

uses watershed attributes to calculate nutrient loads. These attributes are associated with 

sources and sinks of nutrients and include wastewater treatment plants, fertilizer application and 

forested, wetland and shrubland area. Differences between loads calculated from Robertson et 

al. (2019) and in this paper could be attributed to the linear nature of SPARROW versus the 

non-parametric capability of RF models, in addition to the fewer variables, and larger 

watersheds used in this study. 

The estimated loads presented here are key for understanding the current conditions of 

the Great Lakes and potential paths forward in nutrient management. They offer insight into the 
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magnitude of the underlying driver of modern-day eutrophication challenges. While TP loads, 

primarily from point sources, have been reduced due to the GLWQA in 1978, water quality 

challenges from nutrient pollution still persist in the Great Lakes (Robertson and Saad 2011). By 

quantifying nutrient loads, managers can be better informed on the performance of past 

reduction strategies, while also establishing a baseline to develop and adapt new strategies to 

achieve future targets. This is especially important for measuring progress on the recent 40% 

reduction targets for SRP and TP, set binationally to improve Lake Erie’s water quality.   
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4.0 Conclusions 

The consequences of eutrophication from anthropogenic nutrient pollution pose serious 

threats to our water resources in the Great Lakes basin. A data driven approach in this study 

was undertaken to assess the drivers and behaviour of nutrient water quality within the Great 

Lakes basin. Monitored water quality and discharge across the basin were used in conjunction 

with statistical methods and machine learning models to evaluate relationships between nutrient 

water quality and spatial variables (e.g. soil type, land use, population density etc.). This 

analysis highlighted the impacts of anthropogenic landscapes and non-point sources in altering 

the nutrient water quality regime downstream. 

The results from our analysis showed land use (i.e. percent developed land, tile drained 

land, percent wetlands, etc.) as the strongest driver of flow-weighted concentrations for DIN, 

SRP, and PP. Variable importance metrics revealed that developed land use and percent tile 

drained land, were the important drivers of DIN and SRP, while soil type and wetland area were 

the most important drivers of PP concentrations. Feature contribution plots showed that the 

highest DIN and SRP concentration hot spots in watersheds were due to high developed land 

use, high proportions of tile drained land, and low wetland cover. The highest PP concentration 

hot spots were due to high proportions of fine soil cover and low wetland cover. Threshold 

behaviour in drivers of nutrient concentrations was observed, particularly when looking at 

percent wetland area and developed land use in a catchment. This behaviour may be valuable 

for nutrient managers to use when considering wetland restoration strategies for nutrient 

reduction while balancing interests of stakeholders. Variable importance metrics highlighted the 

role of manure and fertilizer practices in driving nutrient ratios of SRP:TP and DIN:TP. Livestock 

density, developed land use and tile drained land, were shown to be important drivers in 

SRP:TP ratios, while livestock density, developed land use, and soil type were shown to be 

important drivers in DIN:TP. Feature contribution plots for ratios revealed that the highest 
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SRP:TP and DIN:TP ratios in the basin were due to high developed land use and high livestock 

densities, while high proportions of tile drainage also played a significant role in elevating 

DIN:TP ratios. Overall, these anthropogenic drivers of nutrient water quality highlight the 

underlying impacts of human sources and practices of nutrient pollution in the Great Lakes 

drainage basin. 

RF models were used to estimate nutrient concentrations and ratios across all 

watersheds in the Great Lakes basin to identify nutrient hot spots. Hot spots for DIN, SRP, and 

PP were found in the southwestern watersheds of Lake Erie, the southeastern shores of Lake 

Huron, and in the watersheds along the eastern side of the Huron-Erie corridor. Lowest nutrient 

FWCs were observed in northern Lake Huron and Lake Superior watersheds, where there are 

fewer human impacted catchments. Hot spots for high SRP:TP were also found in the 

watersheds along the eastern side of the Huron-Erie corridor, and in the southeastern shores of 

Lake Huron. Despite high nutrient export, low DIN:TP ratios were seen in the watersheds of 

southwestern Lake Erie, which could have implications in promoting the growth of harmful algal 

blooms in the lake. Overall, nutrient hot spots coincided with heavily human impacted 

catchments, further highlighting the anthropogenic impact of nutrient pollution in the Great 

Lakes. Additionally, nutrient ratios across the Great Lakes basin were consistent with ratios 

found in heavily human impacted catchments like the Baltic Sea and French river systems in 

Western Europe. 

Annual DIN, SRP, and TP loads were estimated using RF modelled concentrations and 

area-discharge relationships from monitored data to determine the total annual export for each 

lake. Lake Erie was observed to have the highest load for all nutrients. Lake Superior showed 

the lowest average annual export for DIN and SRP, and Lake Ontario had the lowest TP export. 

Highest calculated export of SRP and TP occurred in 2011, which also coincided with the 

largest recorded algal bloom in Lake Erie to date. Calculated annual loadings of SRP and TP 
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from the developed models were found to be consistent with other published loadings, adding 

confidence to the modelled results. 

Limitations of this study included the uncertainty in the data itself and the applied 

assumptions. Error and uncertainty inherent in measured nutrient water quality and discharge 

data, in addition to the error inherent in spatial data, were not considered. Monitoring stations 

were constrained to have both water quality and discharge in collocated areas, thus restricting 

the size of the data sets used for WRTDS and machine learning. A greater number of 

monitoring stations would have been ideal in this analysis, especially given the tendency of 

machine learning to use large data sets. Monitoring stations were also biased to the Lake Erie 

drainage basin, and a more uniform distribution of stations across the Great Lakes basin would 

have been ideal. Stationarity with time was assumed in landscape variables and in water quality 

from the years 2000 to 2016; changes in the landscape and water quality regime during the time 

period were ignored. Loadings were calculated using annual area-discharge relationships from 

monitored stations, and the uncertainty of these relationships was not incorporated into 

estimates. While simplicity of spatial data was key to the approach of this study, other spatial 

variables that represent important factors to nutrient water quality would be valuable to include, 

such as spatial data showing groundwater contribution, or the abundance of BMPs. 

Furthermore, while efforts were made to minimize collinearity in the data set, variable 

intercorrelation still existed and potentially hampered assessments of drivers for nutrient water 

quality and statistical assumptions inherent in models. 

Potential paths forward include the assessment of drivers of nutrient water quality under 

different conditions. Do drivers compare in the spring, summer and fall months? Are drivers 

different in low flow vs high flow conditions? Differences in drivers under these conditions may 

yield valuable insights for nutrient managers in temporally targeted reduction strategies. Another 

avenue for future work includes seeing how drivers change with evolving land use and water 

quality regimes. By revoking stationarity assumptions, drivers may differ over time, which would 
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highlight the performance of past reduction strategies while highlighting current nutrient pollution 

challenges in the Great Lakes. It may also be interesting to take a deeper dive into the generic 

spatial variables used in this study and look at more detailed spatial information. For example, 

how would the nutrient reduction capabilities of wetlands change when looking at the 

connectivity and size of wetlands within watersheds? How do different agricultural practices and 

urban land uses play a role in increasing nutrient concentrations from developed land use? 

Loading estimates could be further improved, as the annual discharge used to scale FWCs was 

only a function of watershed area. Greater efforts to better capture discharge could be taken, 

such as incorporating monitored annual precipitation, or monitored discharge from adjacent 

watersheds. Additionally, error could be better aggregated and represented in the models used 

for analysis. While flux bias was assessed in WRTDS, the error in the regression relationships 

could be incorporated and compounded into the error estimates from RF machine learning 

models. Furthermore, more efforts should be made to investigate the potential for nutrient 

management in leveraging the threshold behaviour of wetland and developed land use in their 

effects of reducing nutrient concentrations and loads. 

Recognizing the drivers of nutrient pollution and hot spot locations is critical for nutrient 

managers in implementing targeted management. The results of our analysis support our 

current understanding of nutrient pollution dynamics and are specific to the responses and 

behaviours of the Laurentian Great Lakes drainage basin. This reinforces and refines our 

knowledge of the underlying drivers of nutrient pollution in the Great Lakes and demonstrates 

that stochastic perspectives and machine learning tools can be used to reveal the “big picture” 

behaviour of complex environmental systems. 
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Appendix 

Table A.1 – Sources of spatial data used to determine drivers of nutrient water quality within the 
Great Lakes drainage basin, adapted from Chowdury (2018). 

Data Variable(s) Title Spatial 
Coverage 

Author(s)/Organization 

Land-use (Agriculture, 
Forested, Urban, 
Wetlands, etc.) 

Annual Crop Inventory 
(2015) 

Ontario Agriculture and Agri-Food Canada 

Land-use (Agriculture, 
Forested, Urban, 
Wetlands, etc.) 

National Land Cover 
Database (2011) 

U.S. Multi-Resolution Land 
Characteristics (MRLC) Consortium 

Soil Texture (Percent 
Sand, Silt, and Clay) 

Harmonized World Soil 
Database 

Global Food and Agriculture Organization of 
the United Nations (FAO), 

International Institute for Applied 
Systems Analysis (IIASA), ISRIC-
World Soil Information, Institute of 

Soil Science – Chinese Academy of 
Sciences (ISSCAS), Joint Research 
Centre of the European Commission 

(JRC) 

Soil Texture (Percent 
Sand, Silt and Clay) 

Detailed Soil Survey 
(DSS) 

Ontario National Soil Database (NSDB) 

Soil Texture (Percent 
Sand, Silt and Clay) 

Area- and Depth-
Weighted Averages of 

Selected SSURGO 
Variables for the 

Conterminous United 
States and District of 

Columbia 

U.S. Michael E. Wieczorek, USGS-WRD 
MDWSC, Geographer 

Tile Drainage Percentages Tile Drainage Area 
shapefile 

Ontario Ontario Ministry of Agriculture, Food 
and Rural Affairs (OMAFRA) 

Tile Drainage Percentages Tile Drainage Area 
shapefile 

U.S. USDA, NASS, 2012 Census of 
Agriculture 

Climate (Precipitation and 
Temperature) 

Worldclim 2: New 1-km 
spatial resolution climate 
surfaces for global land 

areas (1970-2000) 

Global Fick, S.E. and R.J. Hijmans, 2017 

Slope Ontario Flow Assessment 
Tool (OFAT) 

Ontario Ministry of Natural Resources and 
Forestry 

Slope Hydrologic Landscape 
Regions of the US 

U.S. Wolock, D.M., Thomas, C.W., 
Gerard, M. 
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Population Density Ontario Population 2011 
Census data 

Ontario UWaterloo Geospatial Center 
Library 

Population Density Sub-County 2010 Census 
data 

U.S. United States Census Bureau 

Cattle, Chicken and Pig 
Density 

Gridded Livestock of the 
World v 2.01 

Global FAO 
Robinson, T.P., Wint G.R.W., 

Conchedda G., Van Boeckel T.P., 
Ercoli V., Palamara E., Cinardi G., 
D’Aietti L., Hay S.I., and Gilbert M. 

(2014) 

 

 

 

Figure A.1 – Correlation coefficients (left) and Variance Inflation Factors (right) for all preliminary 
variables assessed.  VIFs are shown for all variables (first column), and all variables except 
forested land use (second column). Large change in VIFs after removal of forested land use 
shows the significant multicollinearity of forested land use amongst all variables 
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Figure A.2 – PCA of select variables assessed for redundant information. Figures show biplots 
for variables of first two components (top left), cumulative information explained by components 
in ascending order (bottom left), and variable proportions (loadings) for each of the four 
components (right). 
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Figure A.3 – Error convergence for RF models grown over 1000 decision trees. 
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Figure A.4 – Linear area-discharge relationships for years 2000 to 2016 used to calculatate loadings in the Laurentian Great Lakes 
drainage basin. 
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Table A.2 – Model training and development results for DIN concentrations. R2 values are given for Trained and OOB datasets. 
Percent Bias and Mean Square Error (MSE) are given for OOB datasets. Trained data refers to all data used in model development 
and provides a metric of biased performance. OOB refers to “Out of Bag” data and indicates data not used in model development 
and provides a metric of unbiased performance and validation. Models in bold indicate variables used for final RF model application. 

Variables 
Trained 

R2 
OOB 

R2 

OOB 
Percent 

Bias 

OOB 
MSE 

Tile Drainage, 0.82 0.72 96 1.132 

Tile Drainage, Developed Land 0.86 0.76 59 0.985 

Tile Drainage, Developed Land, Wetlands 0.87 0.75 55 1.022 

Tile Drainage, Developed Land, Wetlands, Livestock Density 0.91 0.80 45 0.809 

Tile Drainage, Developed Land, Wetlands, Livestock Density, Population Density 0.91 0.81 42 0.755 

Tile Drainage, Developed Land, Wetlands, Livestock Density, Population Density, Silt+Clay 0.91 0.81 45 0.775 

 

Table A.3 – Model training and development results for SRP concentrations. R2 values are given for Trained and OOB datasets. 
Percent Bias and Mean Square Error (MSE) are given for OOB datasets. Trained data refers to all data used in model development 
and provides a metric of biased performance. OOB refers to “Out of Bag” data and indicates data not used in model development 
and provides a metric of unbiased performance and validation. Models in bold indicate variables used for final RF model application. 

Variables 
Trained 

R2 

OOB 

R2 

OOB 

Percent 

Bias 

OOB 

MSE 

Developed Land, 0.68 0.46 69 0.00153 

Developed Land, Tile Drainage, 0.73 0.53 73 0.00130 

Developed Land, Tile Drainage, Silt+Clay 0.74 0.54 85 0.00126 

Developed Land, Tile Drainage, Silt+Clay, Wetlands 0.76 0.51 77 0.00137 

Developed Land, Tile Drainage, Silt+Clay, Wetlands, Livestock Density 0.77 0.53 80 0.00131 

Developed Land, Tile Drainage, Silt+Clay, Wetlands, Livestock Density, Population Density 0.78 0.53 71 0.00128 
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Table A.4 – Model training and development results for PP concentrations. R2 values are given for Trained and OOB datasets. 
Percent Bias and Mean Square Error (MSE) are given for OOB datasets. Trained data refers to all data used in model development 
and provides a metric of biased performance. OOB refers to “Out of Bag” data and indicates data not used in model development 
and provides a metric of unbiased performance and validation. Models in bold indicate variables used for final RF model application. 

Variables 
Trained 

R2 

OOB 

R2 

OOB 

Percent 

Bias 

OOB 

MSE 

Silt+Clay, 0.46 0.12 132 0.0145 

Silt+Clay, Wetlands 0.57 0.21 111 0.0125 

Silt+Clay, Wetlands, Tile Drainage 0.61 0.27 100 0.0114 

Silt+Clay, Wetlands, Tile Drainage, Developed Land 0.64 0.21 100 0.0125 

Silt+Clay, Wetlands, Tile Drainage, Developed Land, Population Density 0.69 0.31 94 0.0108 

Silt+Clay, Wetlands, Tile Drainage, Developed Land, Population Density, Livestock Density 0.70 0.31 94 0.0107 

 

Table A.5 – Model training and development results for SRP:TP ratios. R2 values are given for Trained and OOB datasets. Percent 
Bias and Mean Square Error (MSE) are given for OOB datasets. Trained data refers to all data used in model development and 
provides a metric of biased performance. OOB refers to “Out of Bag” data and indicates data not used in model development and 
provides a metric of unbiased performance and validation. Models in bold indicate variables used for final RF model application. 

Variables 
Trained 

R2 

OOB 

R2 

OOB 

Percent 

Bias 

OOB 

MSE 

Developed Land 0.52 0.14 28 0.0159 

Developed Land, Livestock Density, 0.61 0.22 29 0.0139 

Developed Land, Livestock Density, Tile Drainage 0.70 0.32 26 0.0120 

Developed Land, Livestock Density, Tile Drainage, Silt+Clay 0.76 0.32 26 0.0119 

Developed Land, Livestock Density, Tile Drainage, Silt+Clay, Population Density 0.76 0.32 26 0.0119 

Developed Land, Livestock Density, Tile Drainage, Silt+Clay, Population Density, Wetlands 0.78 0.34 27 0.0117 
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Table A.6 – Model training and development results for DIN:TP ratios. R2 values are given for Trained and OOB datasets. Percent 
Bias and Mean Square Error (MSE) are given for OOB datasets. Trained data refers to all data used in model development and 
provides a metric of biased performance. OOB refers to “Out of Bag” data and indicates data not used in model development and 
provides a metric of unbiased performance and validation. Models in bold indicate variables used for final RF model application 

Variables 
Trained 

R2 

OOB 

R2 

OOB 

Percent 

Bias 

OOB 

MSE 

Livestock Density, 0.42 0.07 113 2328 

Livestock Density, Developed Land 0.62 0.19 110 1880 

Livestock Density, Developed Land, Silt+Clay 0.65 0.22 114 1814 

Livestock Density, Developed Land, Silt+Clay, Wetlands 0.71 0.22 116 1808 

Livestock Density, Developed Land, Silt+Clay, Wetlands, Tile Drainage 0.72 0.22 120 1815 

Livestock Density, Developed Land, Silt+Clay, Wetlands, Tile Drainage, Population Density 0.74 0.21 123 1817 
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Figure A.5 – Example of a decision tree used for RF models of DIN FWC. 
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Figure A.6 – Modelled TP and SRP (DRP) loss yields from SWAT modelling performed by Scavia et al. (Scavia et al. 2019). Results 
show stark contrast of lower to higher losses when comparing the eastern watersheds U.S. to the western watersheds of Canada, 
respectively. 
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Table A.7 – Modelled annual DIN basin loads to the Laurentian Great Lakes in tonnes/year. SE refers to the standard error of 
predictions.   

 Lake Erie Lake Huron Lake Michigan Lake Ontario Lake Superior 

Year 
Annual 

Load 
SE 

Annual 

Load 
SE 

Annual 

Load 
SE 

Annual 

Load 
SE 

Annual 

Load 
SE 

2000 72,531 8,711 182,199 17,996 137,569 17,074 77,993 11,566 172,052 17,841 

2001 88,970 10,888 228,502 23,074 172,053 21,880 96,793 14,713 217,195 22,986 

2002 59,197 7,246 152,082 15,361 114,507 14,566 64,413 9,794 144,568 15,304 

2003 73,830 9,141 192,064 19,640 144,388 18,618 80,871 12,470 183,237 19,616 

2004 78,997 9,606 201,418 20,193 151,797 19,151 85,614 12,908 191,043 20,085 

2005 66,740 8,131 170,546 17,136 128,495 16,251 72,415 10,945 161,867 17,052 

2006 74,289 8,975 187,980 18,703 141,804 17,741 80,190 11,988 177,898 18,572 

2007 68,750 8,426 176,865 17,889 133,145 16,962 74,862 11,400 168,194 17,827 

2008 93,317 11,311 237,025 23,672 178,717 22,453 100,931 15,153 224,564 23,526 

2009 73,068 8,807 184,353 18,289 139,119 17,350 78,751 11,735 174,313 18,149 

2010 63,508 7,721 161,884 16,225 122,006 15,388 68,818 10,373 153,534 16,138 

2011 104,207 12,832 269,501 27,400 202,749 25,978 113,789 17,431 256,680 27,335 

2012 60,430 7,323 153,463 15,324 115,713 14,535 65,353 9,810 145,386 15,229 

2013 88,010 10,689 224,075 22,432 168,902 21,275 95,309 14,347 212,443 22,305 

2014 89,683 10,917 228,935 22,978 172,509 21,792 97,255 14,683 217,218 22,861 

2015 81,316 9,979 209,487 21,218 157,675 20,118 88,610 13,515 199,298 21,150 

2016 77,962 9,514 199,597 20,092 150,347 19,053 84,675 12,825 189,544 20,002 
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Table A.8 – Modelled annual SRP basin loads to the Laurentian Great Lakes in tonnes/year. SE refers to the standard error of 
predictions. 

 Lake Erie Lake Huron Lake Michigan Lake Ontario Lake Superior 

Year 
Annual 

Load 
SE 

Annual 

Load 
SE 

Annual 

Load 
SE 

Annual 

Load 
SE 

Annual 

Load 
SE 

2000 2,402 319 3,944 475 3,186 421 2,054 320 3,311 447 

2001 2,944 404 4,942 608 3,983 538 2,555 407 4,177 575 

2002 1,959 269 3,289 405 2,651 358 1,700 271 2,780 383 

2003 2,442 342 4,152 517 3,341 458 2,137 346 3,522 491 

2004 2,615 355 4,358 532 3,514 471 2,258 357 3,675 503 

2005 2,209 301 3,689 452 2,975 400 1,910 303 3,113 427 

2006 2,460 330 4,068 493 3,284 437 2,113 331 3,423 465 

2007 2,275 313 3,825 471 3,082 417 1,976 316 3,234 446 

2008 3,089 417 5,129 624 4,138 553 2,661 419 4,320 589 

2009 2,420 323 3,990 483 3,222 427 2,075 324 3,354 455 

2010 2,102 285 3,502 428 2,825 379 1,815 287 2,953 404 

2011 3,447 478 5,827 722 4,692 639 3,006 483 4,935 684 

2012 2,001 270 3,321 404 2,679 358 1,723 271 2,797 381 

2013 2,913 394 4,848 592 3,911 524 2,513 397 4,086 559 

2014 2,968 403 4,953 606 3,994 536 2,565 406 4,178 572 

2015 2,691 371 4,530 559 3,649 495 2,340 374 3,832 529 

2016 2,580 352 4,317 530 3,480 469 2,234 355 3,645 501 
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Table A.9 – Modelled annual TP basin loads to the Laurentian Great Lakes in tonnes/year. SE refers to the standard error of 
predictions. 

 Lake Erie Lake Huron Lake Michigan Lake Ontario Lake Superior 

Year 
Annual 

Load 
SE 

Annual 

Load 
SE 

Annual 

Load 
SE 

Annual 

Load 
SE 

Annual 

Load 
SE 

2000 6,779 451 11,431 672 8,871 595 5,792 452 9,517 632 

2001 8,306 571 14,327 860 11,088 761 7,205 576 12,016 814 

2002 5,527 380 9,535 572 7,379 507 4,795 383 7,998 542 

2003 6,888 483 12,038 731 9,302 648 6,027 489 10,138 694 

2004 7,378 502 12,631 753 9,785 667 6,368 505 10,568 711 

2005 6,233 425 10,695 639 8,282 566 5,387 428 8,954 604 

2006 6,941 467 11,791 698 9,142 618 5,960 469 9,841 658 

2007 6,418 442 11,089 667 8,580 590 5,573 446 9,305 631 

2008 8,717 589 14,866 883 11,521 782 7,504 593 12,422 833 

2009 6,828 457 11,565 683 8,970 604 5,851 459 9,642 643 

2010 5,932 403 10,152 605 7,864 536 5,118 406 8,493 571 

2011 9,726 676 16,894 1,021 13,064 904 8,476 683 14,201 967 

2012 5,645 382 9,625 572 7,459 506 4,859 384 8,042 539 

2013 8,221 558 14,053 837 10,888 741 7,088 561 11,752 790 

2014 8,376 571 14,357 857 11,119 759 7,234 575 12,016 810 

2015 7,591 524 13,133 791 10,161 700 6,598 529 11,026 749 

2016 7,280 498 12,516 749 9,690 663 6,301 502 10,486 708 
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