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Abstract

We investigate spins models on the pyrochlore and the breathing pyrochlore lattice.

Specifically, we study polarized neutron scattering in classical spin ice modelled via Ising

spins with anti-ferromagnetic interactions. We find that the non-spin flip channel (NSF)

of polarized neutron scattering is flat (q-independent) because the neutron polarization

projects the flat eigenvalues of the adjacency matrix as the (magnetic) neutron scattering

intensity in the [hhl] plane, within the large-N approximation. The NSF intensity is shown

to be inversely proportional to the stiffness of the emergent theory describing the system

at low temperatures. We show that polarized neutron scattering probes the correlations

of the emergent fluxes along and perpendicular to the neutron polarization direction. We

further study the model in the presence of further-neighbour interactions and provide a

prescription to obtain the Lagrange multiplier in the large-N approximation, when the

NSF is not flat in such cases.

In further chapters, we investigate Heisenberg spins on a breathing pyrochlore lattice in

the presence of second nearest-neighbour interaction J2. We note the competition between

J2 and Jb (exchange interaction in the larger tetrahedron), which results in a variety of

ordered phases. We obtain phase diagrams (at the mean field level) for the case of constant

large ferromagnetic and anti-ferromagnetic Ja (exchange coupling in smaller tetrahedron)

while Jb and J2 are varied. We find a plethora of competing phases and explore the

breathing regimes of the phase diagrams. Finally, we find a hitherto unreported phase

with ordering wavevector 2π
a

(qq0) and a state with sub-extensive line degeneracies along
2π
a

(hhh) directions in the eigenspectra.
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Chapter 1

Introduction

The usual historical stance of physics and natural sciences in general has been to isolate

each part of a particular system, then keenly investigate it and extend the understanding

to explain the properties of the whole. The underlying assumption being, the whole is a

sum of its parts [1]. This line of inquiry has led humanity to ever more subtler dissection

of nature and its constituents, in the search for an elusive fundamental pattern. In this

fashion, one reduces matter to molecules to atoms to nuclei and electrons to leptons, quarks

and bosons. What lies beyond is not yet known.

In this thesis, we will follow a holistic attitude as exemplified by P.W. Anderson’s

statement of ‘More is Different’ [1] . The key understanding (in contrast to the reductionist

attitude) being that collective behaviour of the underlying constituents results in novel

phenomena unseen amongst the isolated parts. We will dwell on a particular length/energy

scale of our choice and try to understand the collective behaviour and not just the individual
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behaviour, of a particular many body system. We aim to be close to experiment and

material realization while trying to utilize intuitive mathematical models. These models

must be complex enough to capture the qualitative physics of our chosen system, easy

enough to solve in real time using contemporary computers and must be directly linkable

to experimental results. In this way, we hope to discover novel ways in which matter

organizes itself, as well as promote materials where such novel physics might be probed.

The fundamental question one may ask is: Given the information about various con-

stituents of a system, how do the ‘emergent’ properties of the system arise out of interacting

internal degrees of freedom? As a case study, we choose the problem of interacting spins on

a lattice to model magnetic phenomena in matter. The energy scale chosen is in the meV

range, characterized by the energy of the neutrons and energy scale of typical magnetic

phenomena being probed in this thesis (see Sec. 2.1). A simple yet effective mathematical

model to study such a system of interacting degrees of freedom is the Heisenberg/Ising

family of spin models given by:

H =
∑
<i,j>

JijSi · Sj. (1.1)

Here, Si is a classical Heisenberg or an Ising (no vector product for this case and denoted

by σ in later chapters) spin at site i and the sum is over connected neighbours (i and j) in

〈i, j〉. Jij is the adjacency matrix (see Appendix A.4) containing the information of which

spins are interacting. We shall use variants of this model in this thesis to study magnetic

systems and how the spins behave at different temperatures. Frustration is a key concept,

which is the ambiguity of a clear choice of how a spin should orient in the presence of

2



Figure 1.1: Figures illustrate frustrated spins with anti-ferromagnetic (AFM) nearest-
neighbour coupling, on (a) triangular and (b) tetrahedral units. The energy is minimized
when neighbouring spins anti-align. The ‘?’ show the sites on which spins cannot minimize
the energy by orienting either way and are ‘frustrated.’

competing interactions, which are trying to align it in different directions. At low enough

temperatures of the order of the exchange energy J , typical unfrustrated systems order

in a certain way and are described by local order parameters. This ordering is found by

minimizing the Helmholtz free energy. However, interestingly, in frustrated systems the

spins order at a temperature much lower than the characteristic energy scale given by

the exchange interaction [2, 3]. Key examples of geometric frustration are compounds

with magnetic moments interacting anti-ferromagnetically and residing on lattices with

triangular motifs (such as the triangular lattice, the kagomé lattice, the pyrochlore lattice,

etc. See Fig. 1.1). Since all interactions cannot be satisfied simultaneously due to geometry

and the strength of the interactions, interesting magnetic states with suppressed long range

order but finite short range spin-correlations may arise [3, 4].
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This raises the interesting question of whether spins can remain fluctuating down to

T = 0 and never order (in a ‘spin liquid’ state) for frustrated systems. This is still an

ongoing avenue of research and there are various proposals and much debate [4, 5, 6, 7,

8]. In the paramagnetic phase, the spins are uncorrelated whilst fluctuating randomly.

Any material will be paramagnetic at high temperatures. At low temperatures, the ‘spin

liquid’ is fluctuating and disordered in some sense, but also highly correlated. This state,

where the spins are fluctuating (like a paramagnet) but also correlated has been called a

‘cooperative paramagnet’ [6, 9, 10]. Essentially, both the terms: ‘cooperative paramagnet’

and ‘classical spin liquid’ indicate the same phenomena of fluctuating but correlated spins

when temperature T is in the range, Tc < T < J . Here, J (exchange coupling) is the

overall energy scale of the problem and Tc is the temperature of the transition at low

temperatures.

At this point, the observable, linear susceptibility χ plays an enlightening role. It is a

measure of how the magnetization m (total sum of spins
∑

i S
z
i ) of a material responds to

an (small) external field intensity hz i.e. χ = (∂m
∂h

)T (T held constant). χ is tensorial for

general systems but is a scalar for isotropic systems (such as the Heisenberg model). At

high temperature, one can show that χ is related to the correlation between magnetizations

which on evaluation yield a spin-spin correlation function [11, 12]. Up to a multiplicative

constant, χ takes the form:

χ(T ) ∝ 1

T

∑
i,j

〈Szi Szj 〉. (1.2)

Correlation functions are important observable quantities and we shall be discussing them

in detail, especially for the case of neutron scattering in later chapters (see Chap. 2). At

4



high temperatures, χ follows the Curie-Weiss law given by:

χ(T ) ∝ 1

T −ΘCW

. (1.3)

Here, ΘCW is the Curie-Weiss temperature and at high temperatures is given by the sum of

the exchange interactions, with all neighbours of a given site i.e. ΘCW ∝
∑

i Jij where Jij

is the interaction between site i and j. ΘCW thus provides a way to approximately infer the

strength and signs of the couplings. In general, negative ΘCW indicates anti-ferromagnetism

and positive ΘCW indicates ferromagnetic couplings. The presence of further-neighbour in-

teractions may complicate this naive analysis. The transition temperature Tc (called TN for

anti-ferromagnetic couplings) is found when χ develops a divergence (for FM) or a sharp

peak (for AFM) at a certain temperature. In unfrustrated systems, this transition temper-

ature, Tc ≈ |ΘCW| while for frustrated systems, TN � ΘCW (see Fig. 1.2). The frustrated

system at temperature T , for TN < T � |ΘCW| is thus fluctuating and shows no ordering

(no sharp peak but a broad peak in χ vs T [2]) and is in the ‘cooperative paramagnetic’

regime. As shown in Fig. 1.2, χ−1 is follows the Curie-Weiss Law (above Tc) and its x-

intercept is used to determine ΘCW. Summarizing, while an unfrustrated system orders at

Tc (or TN) ≈ ΘCW, a frustrated system (typically) orders at a much lower temperature TN

� |ΘCW|. In two dimensions, the anti-ferromagnetic nearest neighbour Ising model on a

triangular lattice is a well known example of geometrical frustration. In three dimensions,

the pyrochlore lattice (see Appendix A), which is composed of tetrahedral motifs serves

as a canonical example of geometrical frustration (see Fig. 1.1). For discussions on spin

liquids in the context of frustrated magnets, see Refs. [3, 4, 5, 7, 8, 13, 14, 15, 16]. In this

5



Figure 1.2: Figures show typical susceptibility inverse (χ−1) vs temperature (T ) plots. (a)
and (b) illustrate the case for unfrustrated systems and (c) illustrates the case of anti-
ferromagnetic frustrated system. (a) is ferromagnetic and ΘCW ≈ Tc, where Tc is the
transition (critical) temperature and ΘCW is the Curie-Weiss temperature. (b) illustrates
the scenario for unfrustrated anti-ferromagnetic systems where ΘCW ≈ TN , where TN is the
Néel temperature. The ΘCW for ferromagnetic (positive) and anti-ferromagnetic (negative)
case differ by a sign (further-neighbour interactions of different signs will change this naive
view). (c) illustrates the case for frustrated systems, where ΘCW � TN . The frustrated
system thus, orders only at temperatures TN much lower than ΘCW.

thesis, we study the case of anti-ferromagnetic Ising pseudospins on a pyrochlore lattice,

wherein, at low temperatures, a Coulomb phase is stablized [17, 18, 19, 20]. In Chap. 2,

we review neutron scattering and obtain expressions for the spin-spin correlation functions

using mean field theory and the large-N approximation. In Chap. 3, we investigate polar-

ized neutron scattering in spin ice [20]. We find that polarized neutron scattering may be

useful in directly measuring the stiffness of the emergent coarse-grained fields (collection

of spins treated as an emergent field of fluxes and charges). In Chap. 4, we study the

case of Heisenberg spins on a breathing pyrochlore lattice [21, 22, 23] (see Appendix A.3)

and obtain phase diagrams in the presence of further-neighbour coupling J2 (see Appendix

A.4). We find a variety of ordered phases one of which was hitherto unreported. Another

6



of these phases is composed of AFM interacting emergent magnetic moments1. Finally, in

Chap. 5, we conclude and list further avenues one may wish to explore.

1This is the effective AFM-FCC phase described in Chap. 4. This phase occurs for Heisenberg spins
on a breathing pyrochlore. The emergent magnetic moments are clusters of spins on a tetrahedron which
interact ferromagnetically and align to form effective moments. The effective moments in turn reside on a
FCC lattice and interact with each other via AFM coupling, hence the name.

7



Chapter 2

Methods

In this chapter, we derive and present some of the equations utilized in the following

chapters. This includes a brief introduction to magnetic neutron scattering, where the

primary quantity of interest is the spin-spin correlation function. Then, we describe how

this quantity may be obtained from mean-field theory and large-N analysis. In this thesis,

there is no distinction between contravariant (ri) and covariant (ri) indices and indices

may be subscript or superscript when convenient.

2.1 Neutron Scattering

We begin with neutron scattering, an important experimental technique to probe the struc-

ture and dynamics of condensed matter systems [24]. The discovery of the neutron by

Chadwick in 1932 ushered in the nuclear age for humanity and led to ever more increasing

knowledge of the nuclear length scale as well as deeper fundamental connections between

8



various subfields of physics [25]. We shall introduce the key equations here and refer the

interested reader to the Refs. [12, 24, 26, 27, 28, 29, 30] for more detailed discussions.

Further information about neutron sources: reactor and spallation sources, may be found

in Ref. [31].

Basics of Neutron Scattering

The neutron is a neutral particle with a magnetic moment and mass of 1.67× 10−27kg. It

interacts with the nuclei (via strong interaction1), the nuclear magnetic moments and with

the unpaired electrons in the sample, producing only a small disturbance in the system [24].

The contributions are called nuclear and magnetic contributions to the neutron scattering

intensity, respectively [28, 29]. Moreover, the interaction of the neutrons with light atoms

(e.g. Hydrogen, Oxygen, Carbon) allows clearer distinction of isotopes as compared to

X-rays [24]. The de Broglie wavelength of the neutron is given by h
mv

where h is the

Planck constant, m is the mass and v is the velocity of the impinging neutron. In an

experiment, the thermal distribution of velocities of the neutrons in a neutron beam follow

the Maxwell-Boltzmann distribution [28]. The corresponding de Broglie wavelength for

slow thermal neutrons is in the angstrom length scale with energies ranging from 0.1 meV

to 100 meV matching closely with the energy scale of elementary excitations in condensed

matter, further details of which may be found in Refs. [24, 28]. Our aim in the neutron

scattering problem, is to determine the probability of a neutron with initial wavevector

(momentum if ~ ≡ 1) k, impinging on a sample and exiting with final wavevector k′. The

1This is modelled via a Fermi pseudo-potential not discussed in this thesis.
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Figure 2.1: Figues shows momentum transfer Q in a neutron scattering event off a crystal
in reciprocal space. The spheres here are reciprocal lattice sites. k is the initial and k′

is the final momenta of the neutron (~ = 1). Panel (a) shows the case of elastic neutron
scattering where Q is an exact reciprocal vector G. Since after the scattering event Q is
known, one may obtain structural information (magnetic and nuclear) of the sample using
elastic neutron scattering. Panel (b) shows the case when the momentum transfer Q is
not equal to a reciprocal vector G, in which case Q can be decomposed into G and an
excitation with wavevector q i.e. Q = q + G. Inelastic neutron scattering, is thus a great
tool to probe elementary excitations of comparable energy scales (to the neutron) such as
spin waves [24], crystal field transition frequencies [16] and phonons [29].



momentum transfer and energy transfer are given by:

Q ≡ k− k′ = G + q, (2.1)

~ω =
~2

2m
(k2 − k′2). (2.2)

Here, G is a reciprocal lattice site vector, q is the wavevector of an elementary excitation

in the sample (see Fig. 2.1) and ω is the frequency of the excitation. If q 6= 0, we have

inelastic neutron scattering with non-zero energy transfer [24]. However, if q = 0 and Q

is an exact reciprocal lattice vector, we obtain elastic scattering which is of interest to us

in this thesis.

Key quantities of interest are cross-sections [24, 27, 29, 32] (see Fig. 2.2) which include

the double differential cross-section given by:

d2σ

dΩdE
=

C

ηφN

1

∆Ω∆E
. (2.3)

Here σ is the cross-section, Ω the solid angle, dE the differential energy of the neutron,

φ is the neutron flux (per unit area and time), η provides a measure of efficiency of the

detector, N denotes the number of identical neutrons in the beam. C is the neutron count

per unit time obtained in infinitesimal energy ∆E and solid angle ∆Ω . If the experiment

does not analyze the energies of the neutron and just counts neutrons scattered in solid

angle ∆Ω, we find the energy integrated differential cross-section given by:

dσ

dΩ
=

C

ηφN

1

∆Ω
. (2.4)
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Similarly, integrating out the solid angle, we obtain the total cross section, counting all

exiting neutrons in all directions, giving:

σTotal =
C

ηφN
. (2.5)

The cross sections above are related via:

dσ

dΩ
=

∫ ∞
0

dE(
d2σ

dΩdE
), (2.6)

σTotal =

∫
dΩ

dσ

dΩ
, (2.7)

where the second integral is taken along all directions.

Consider a neutron scattering event with initial and final neutron momenta k, k′. The

initial and final spin state of the neutron is σ and σ′. Let the initial state of the sample be

|λ〉 and the final state be |λ′〉 (see Fig. 2.2). Using the Born Approximation (refraction,

extinction and multiple scattering events of the neutron beam are ignored) and Fermi’s

Golden Rule [12, 26, 27, 28, 29, 32], one obtains the double differential cross-section given

by:

d2σ

dΩdE
= (

m

2π~2
)2k

′

k

∑
λ,λ′,σ,σ′

pλpσ|〈k′, σ′, λ′|Ũ |k′, σ, λ〉|2 × δ(~ω + Eλ − Eλ′). (2.8)

Here pλ represents the thermal probability of the states of the initial scatterer |λ〉. pσ is the

polarization probability of the neutron with initial state |σ〉. k, k′ are the magnitudes of

the initial and final neutron momenta and the delta function enforces energy conservation

12
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Figure 2.2: In this illustration, we show an impinging neutron with momentum k (~ = 1),
interacting with the sample in an initial state |λ〉. After the scattering event, the neutron
exits with momentum k′ through an infinitesimal solid angle dΩ. The resulting difference
in momentum transfer, Q, lies in the plane of scattering and is given by Q = k− k′ .



between initial and final states. Ũ is the interaction operator of the neutron with the sam-

ple and has both nuclear and magnetic terms [24, 29]. Modelling the nuclear contribution

by a Fermi pseudo-potential (assuming nuclei at fixed positions) and the initial and final

state of the neutron as plane waves, yields a double differential cross-section proportional

to the scattering length and a (time dependent) two-point correlator between Fourier trans-

formed locations of the nuclei in the sample [24, 29]. The cross-section further has two

contributions namely an incoherent nuclear contribution coming from correlation between

the same nucleus at different times leading to no interference effects, while the coherent

nuclear contribution comes from both correlations between the same nuclei at different

times as well as different nuclei at different times, which leads to interference effects [29].

The interested reader may refer to Refs. [24, 26, 27, 28, 29, 30] for further details.

Magnetic Neutron Scattering

We are interested in magnetic neutron scattering, where the neutron interaction operator

Ũ is composed of the neutron magnetic moment operator µ̃ and the local magnetic field

of the sample H. The neutron moment operator, µ̃ = γµNσ̃, where γ = −1.91, is the

gyromagnetic ratio, µN = 5.05×10−27 J/T (here J and T are Joule and Tesla, respectively)

is the nuclear magneton and σ̃ is the Pauli spin operator for the neutron (no factor of 1/2

in the definition). The interaction operator is given by [24, 28, 29]:

Ũ = −µ̃ ·H, (2.9)
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where H, the local in-sample magnetic field has two contributions coming from the spin of

the electron and the magnetic field generated by the orbital motion of the electron [28]:

H = ∇× (
µ̃e ×R

|R|3
)− e

c
(
ve ×R

|R|3
). (2.10)

Here, e is the electron charge, c is the velocity of light, ve is the orbital velocity of the

electron and R is the location of the point where the magnetic field H is computed. µ̃e

in the above equation is the magnetic dipole moment operator of the electron and is given

by:

µ̃e = −geµBS̃, (2.11)

where S̃ is the spin operator of the electron (includes a factor of 1/2 in comparison with

Pauli spin operator for the neutron) and µB is the Bohr magneton. ge is the dimensionless

electron spin g-factor given approximately by 2.0023. Substituting Eq. (2.10) in Eq. (2.8),

we obtain the working formula for magnetic neutron scattering [24]:

d2σ

dΩdE
= G(Q)

∑
α,β

(δαβ −
QαQβ

|Q|2
)Sαβ(Q, ω), (2.12)

where the function G(Q) is given by:

G(Q) = (γr0)2F2(Q)e−2W (Q), (2.13)
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and Sαβ(Q, ω), which is the essential quantity of interest, is given by:

Sαβ(Q, ω) =
∑
j,j′

eiQ·(Rj−Rj′ )
∑
λ,λ′

pλ〈λ|Sαj |λ′〉〈λ′|S
β
j′ |λ〉 × δ(~ω + Eλ − Eλ′). (2.14)

In the above equations, the function G(Q) is composed of the square of the classical electron

radius, r2
0 ≈ 10−24 cm2 which sets the overall magnitude of the magnetic contribution and

is of the same order as that of nuclear cross-section [24, 29]. F(Q) is the dimensionless

magnetic form factor given by the Fourier transform of the unpaired electron cloud density

around an ion. It increases with decreasing magnitude of Q [24]. e−2W (Q) is the Debye-

Waller factor2 which accounts for the dynamical and static displacements of the nuclei in

the sample [30, 33, 34]. The sum in Eq. (2.12) is over spin components i.e. α, β ∈ [x, y, z].

The neutron polarization factor (δαβ− QαQβ
|Q|2 ), ensures that the neutron only interacts with

magnetic moments in the plane perpendicular to momentum transfer Q. The magnetic

scattering function Sαβ(Q, ω) in Eq. (2.14), is composed of a Fourier transform of the

locations of the moments Ri and Rj, thermal averages of the spin components Sαi and

an energy conserving delta function. The algebraic procedure to derive Eq. (2.12) is quite

involved and we refer the reader to the Refs. [24, 29] for explicit details.

Using the integral representation of the δ function and integrating out ω we obtain the

expression of elastic total magnetic neutron scattering used in this thesis [12, 24, 26, 29]:

dσ(Q)

dΩ
= C

∑
j,j′

〈Sj⊥ · Sj′⊥〉eiQ·(Rj−Rj′ ), (2.15)

2It follows from the Fourier transform of the two point correlators of the displacements of the same
nuclei at infinitely long times. It accounts for the lessening of intensity (attenuation) of the neutron beam
due to atomic lattice vibrations in the sample.
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where F(Q) and other constants (µB, γ, etc) have been absorbed in the constant, C. Here,

the correlator is between projections of spins perpendicular to neutron momentum transfer

Q and given by:

〈Sj⊥ · Sj′⊥〉 =
∑
α,β

(δαβ −
QαQβ

|Q|2
)〈Sαj S

β
j′〉. (2.16)

Thus, we see that magnetic neutron scattering probes the spin-spin correlations in the

plane perpendicular to Q. To obtain expressions for the correlation functions 〈Sαj S
β
j′〉, we

utilize mean-field theory and large-N analysis detailed in later sections.

Polarized Neutron Scattering

In the previous sections, the initial and final spin state of the neutrons |σ〉 were summed

over for the case of unpolarized neutrons. Polarizing the neutron spins along a particular

axis (say ẑ), one can further resolve the magnetic neutron scattering contributions into

the spin flip channel (SF) and the non-spin flip channel (NSF). This allows much more

experimental leeway and has been used for distinguishing between incoherent and param-

agnetic scattering, less ambigious determination of magnetic structures and differentiating

excitations such as phonons and magnons [24, 28, 29].

We motivate just the basic idea that the neutron spin is flipped if it interacts with

magnetic moments perpendicular to the neutron polarization (ẑ here) and the spin is

not flipped if the magnetic moment in the sample is parallel to ẑ (see Fig. 2.3). Consider

the Pauli spin operators in the magnetic moment operator of the neutron, µ̃ = −γµNσ̃ .

Its eigenstates corresponding to σ̃z is the up and down state: |+〉 and |−〉. Because of

the orthogonality of neutron spin states and its momentum states, the matrix element in
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Figure 2.3: Figure shows an impinging neutron (green spheres) with polarization shown
via green arrows (initially along NSF). The local magnetic moment (red spheres) direction
is illustrated via a brown arrow. In (a), the initial neutron (sphere below) polarization
is parallel to the local magnetic moment being probed (both along NSF), the neutron
spin remains unchanged after scattering. In (b), the magnetic moment (now along SF) is
perpendicular to the neutron polarization (along NSF), the outgoing neutron will undergo
a spin-flip process. Inset shows the NSF (along neutron polarization), SF directions and
the momentum transfer along Q̂. Thus, all contribution to magnetic neutron scattering
perpendicular to Q̂ may be further resolved along two orthogonal axes corresponding to
the NSF (along neutron polarization) and the SF channel.



Eq. (2.8) may be written as [24]:

〈k′, σ′, λ′|Ũ |k′, σ, λ〉 = 〈k′, λ′|Ũ |k′, λ〉〈σ′|Ũ |σ〉. (2.17)

Considering the second term 〈σ′|Ũ |σ〉 with just the magnetic part3 of Ũ ∝M · σ̃ [24], where

M is defined as the probed local magnetic moment of an ion in the system, perpendicular

to the momentum transfer Q. Denoting the final and initial neutron spin states σ′, σ as

either up |+〉 or down |−〉, we obtain 4 processes: 2 spin flip processes, |+〉 → |−〉 and

|−〉 → |+〉 as well as 2 non-spin flip processes, |+〉 → |+〉 and |−〉 → |−〉. M · σ̃ has three

terms namely Mxσx +Myσy +M zσz. The first two terms with σy and σx, flip the spin of

the neutron since σx, σy may be written as creation and annihilation operators of up/down

states, while the action of σz will return back its eigenstates. This leads to:

〈+|Ũ |+〉 ∝ M z, (2.18)

〈−|Ũ |−〉 ∝ M z, (2.19)

〈−|Ũ |+〉 ∝ (Mx + iMy), (2.20)

〈+|Ũ |−〉 ∝ (Mx − iMy). (2.21)

The above expressions show that if the local magnetic moment probed in the sample is

pointing along the neutron polarization axis ẑ, the neutron spin will not flip. However,

if it is pointing perpendicular to neutron polarization (and also perpendicular to Q) the

neutron spin will flip.

3We do not treat the nuclear structural and nuclear magnetic contributions here.
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Summarizing, we find that the neutron is an exemplary probe of condensed matter

systems. A scattering event obtains both nuclear and magnetic information. The magnetic

part probes the spin-spin correlations in the sample perpendicular to neutron momentum

transfer Q and one may further resolve the contributions to the SF and NSF channel using

polarized neutron scattering. The SF channel has information of spins perpendicular to the

neutron polarization while the NSF channel contains information about spins parallel to

the neutron polarization. In the next sections, we derive the correlation functions 〈Sαj S
β
j′〉

using the large-N approximation and mean-field theory.

2.2 Mean-Field Theory

In this section, we will derive the expressions for the spin-spin correlation function which is

an important ingredient in magnetic neutron scattering (see Sec. 2.1), using the mean-field

formalism (MFT). Our analysis closely follows that of the Refs. [35, 36] which should be

consulted for further details. We begin with the general Heisenberg Hamiltonian:

H =
1

2

∑
i,j,a,b

∑
µ,ν

Jµνab (i, j)SµiaS
ν
jb −

∑
i,a,µ

hµiaS
µ
ia. (2.22)

Here, i, j denote denote sites on the parent Bravais lattice (FCC lattice for the case of

the pyrochlore lattice, see Appendix A.2) and a, b label the sublattices. µ, ν are the spin

components. Sµia represents the µ-th component of a classical spin at Bravais lattice site

i with sublattice label a. Jµνab (i, j) is the adjacency matrix element (see Appendix A.4),

connecting the spin components (µ, ν) residing on sites (i, a) and (j, b). The factor of 1/2
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accounts for double counting and hµia is a magnetic field interacting with the spin on site

(i, a). We utilize the formalism of variational MFT, where we assume a simple form of

the density matrix [35, 36]. Specifically, the full many-body density matrix is written as

a product of the single site density matrices. The variational parameters are then these

single site density matrices which are varied to minimize the free energy. The free energy

is given by:

F = E − TS, (2.23)

where T is the temperature, S is the entropy and E is the internal energy. Using the

many-body density matrix (ρ) we write down the variational free energy Fv, as given

below:

Fv = Tr[ρH] + T Tr[ρ ln(ρ)], (2.24)

where the Trace (Tr) is taken over the spins. The variational free energy Fv, provides an

upper bound to the actual free energy F i.e. Fv > F [36]. The minima of Fv is then our

best approximation of the minima of the true (unknown) free energy F . For a system of

N un-entangled particles, the MF form of ρ is given by the product of the single particle

density matrices ρai :

ρ =
∏
i,a

ρai (Sia), (2.25)
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where the product is a direct product of individual Hilbert (vector) spaces of each spin Sia.

Using Lagrange multipliers (ξ, Aia) to enforce the constraints:

Tr[ρai ] = 1, (2.26)

Tr[ρaiSia] = mia, (2.27)

we rewrite the variational free energy as (Eq. (2.5a) in Ref. [35]):

Fv = Tr[ρH] +
∑
i,a

T (Tr[ρia ln(ρia)− ξiaρia − ρiaSia ·Aia] + mia ·Aia + ξia) . (2.28)

Here mia is a vector-order parameter. Differentiating Fv w.r.t. ρia, we obtain:

(ln(ρia) + 1)− ξia − Sia ·Aia = 0, (2.29)

which yields:

ρia = Cia e
(Sia·Aia). (2.30)

Here Cia = e(ρia−1). Using the normalization condition Tr[ρai ] = 1 and solving a hyper-

spherical integral [35], we obtain:

C−1
ia = Tr[e(Sia·Aia)] =

4π

|Aia|
sinh(|Aia|) = Zia, (2.31)

where Ziais the single particle partition function. Thus,

ρia =
e(Sia·Aia)

Zia
. (2.32)
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Substituting the above equation and Eq. (2.27) in Eq. (2.28), we obtain [35, 36]:

Fv =
1

2

∑
i,j,a,b

∑
µ,ν

Jµνab (i, j)mµ
iam

ν
jb −

∑
i,a,µ

hµiam
µ
ia + T

∑
i,a

(mia ·Aia − ln(Zia)). (2.33)

From the second constraint, we find the relationship between Aia and mia (see Eq. (2.7a)

in Ref. [35]):

mia = Aia

(
coth(|Aia|)−

1

|Aia|

)
, (2.34)

which on Taylor expanding the hyperbolic cotangent function to first order, yields:

Aia = 3mia. (2.35)

Expanding the logarithm in Eq. (2.33) and substituting the above equation in Eq. (2.33),

the free energy is written in terms of the order parameters mia which takes the following

form [35, 36]:

Fv =
1

2

∑
i,j,a,b

∑
µ,ν

mµ
ia (3δµνδijδab T + Jµνab (i, j))mν

jb −
∑
i,a,µ

hµiam
µ
ia − T Ntot ln(C). (2.36)

Here C is a model dependent constant. Ntot is the total number of sites in the lattice. We

now Fourier transform the above equation using [36]:

mµ
ia =

∑
q

ma,µ
q eiq.Ria , (2.37)

Jµνab (i, j) =
1

NB

∑
q

Jµνab (q)eiQ·(Ra
i−rbj), (2.38)
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where Ria is the position of the spin in Bravais lattice point i with sublattice label a

within the unit cell and NB is the number of Bravais lattice sites. The Fourier transformed

variational free energy divided by NB, denoted by Fv = Fv(q)/NB, is given by [35, 36]:

Fv =
1

2

∑
a,b,µ,ν,

∑
q

maµ
q (3T δabδµν + Jµνab (q))mbν

−q −
∑
a,b,µ,ν,

∑
q

(
maµ

q h
aµ
q δabδµν

)
− T Ns ln(C).

(2.39)

Here Ns = Ntot/NB is the number of sublattices in each unit cell. To diagonalize the

second order term in the above expression, we transform to the normal modes of the order

parameter:

maµ
q =

Ns∑
α=1

3∑
x=1

φα,xq Uαx
aµ (q), (2.40)

where α and x label the normal modes and U(q)αxaµ is the (a, µ) component of the (α, x)

eigenvector of the Fourier transformed interaction matrix J(q) given in Eq. (2.38). Thus,

U(q) is the unitary matrix which diagonalizes J(q) via a unitary transformation given

by U(q)† J(q)U(q) = λ(q). Substituting Eq. (2.40) in Eq. (2.39), the free energy up to

quadratic order is given by [35, 36]:

Fv =
1

2

∑
q

∑
α,x

φαxq (3T + λαx(q))φαx−q − T
∑
q

φαxq h̃αxq − T Ns ln(C), (2.41)

where λαx(q) is the eigenvalue of J(Q) corresponding to the (α, µ) eigenvector. In the

second term, h̃αxq is given by:

h̃αxq =
1

T

∑
a,µ

haµq U
αx
aµ (q). (2.42)
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The partition function using the variational free energy is given by the general defini-

tion [36]:

Z = Tr[ e
−Fv
T ], (2.43)

where the trace is over all the normal modes and given by :

Tr ≡
∏
q,α,x

∫ ∞
−∞

dφαxq . (2.44)

Using Eq. (2.41), the partition function then takes the following form [36]:

Z =
∏
q,α,x

(
2π

3 + λαx (q)
T

) 1
2

exp

[
|h̃αxq |2

2(3 + λαx (q)
T

)

]
. (2.45)

The correlation functions of the normal modes are now given by double differentiating

w.r.t. h̃αxq , giving:

〈φαxq φβyq′ 〉 =
δαβδxyδq+q′,0

3 + λαx (q)
T

. (2.46)

The spin-spin correlation functions are given in terms of the normal modes by [36]:

〈SµiaSνjb〉 =
∑
q,q′

∑
α,β

∑
x,y

〈φαxq φβyq 〉Uαx
aµ (q)Uβy

bν (q)× e−iq·Ria−iq′·Rjb . (2.47)

For the purposes of this thesis, we are interested in the Fourier transformed total4 spin-spin

correlations S(Q) (often called spin susceptibility or the spin structure factor colloquially)

4Total here refers to summing over all sublattice contributions.
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which for isotropic spins is given by:

S(Q) =
1

NB

∑
µ,ν

∑
i,j,a,b

〈Sµia Sνjb〉 δµν exp[iQ · (Ria −Rjb)]. (2.48)

Here Q = G + q, where Q is the analog of momentum transfer and may take any value,

G are the reciprocal lattice vectors and q is a wavevector in the first Brillouin zone (see

Appendix A.2). Substituting Eq. (2.46) and Eq. (2.47) in Eq. (2.48), we obtain the desired

result :

1

NB

S(Q) =
Ns∑
a,b,α

3∑
x,µ

(
Uαx
aµ (q)Uαx

bµ (q)

3 + λαx (q)
T

)
eiG·(ra−rb), (2.49)

where ra and rb are locations of the sublattices a, b in the unit cell. The structure factors

(for the nearest-neighbour Heisenberg model on a pyrochlore lattice) computed using mean-

field theory are displayed in Fig. 2.4. To compute the structure factor, first, for a given

Q, we obtain the reciprocal lattice vector G and the wavevector in the FBZ, q, using

Q = G + q. Then, the eigenvectors U(q) and eigenvalues λ(q), are computed and the

formula given above is utilized. The above equations are valid for T > Tc where the MF

critical temperature is given by:

Tc = −λ
α
x(qord)

3
, (2.50)

where qord are the wavevectors where the eigenvalues are minimum for all eigenbands

(referring to the 3Ns eigenvalues in q-space) globally. The negative sign is because the

global minimum eigenvalues will be negative. At T = Tc, the denominator in Eq. (2.49)

goes to zero5. At T = Tc + ∆, for arbitarily small number ∆, the intensity of S(Q) at qord

5Right above criticality, the structure factor shows divergening peaks at the wavevectors, qord.
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is maximum6 as shown in panel (d) of Fig. 2.4. To characterize S(Q) for different exchange

parameters we utilize reduced temperature τ , which acts as a measure of separation from

criticality and is given by:

τ ≡ T − Tc
Tc

(2.51)

Thus, we have obtained expressions for the total spin-spin correlations S(Q), in this thesis

which shall be utilized in later chapters. In the next section, we shall utilize another

method, known as the large-N approximation to obtain the spin structure factors. This

will enable us to study polarized neutron scattering in later chapters.

6The intensity is also controlled by the numerator of Eq. (2.49), called the form factors discussed in
Chap. 4
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Figure 2.4: Figures show the spin structure factors S(Q) (using MFT) in the [hhl]-plane
for nearest-neighbour Heisenberg spins on a pyrochlore lattice. The left panels (a) and
(c) are at (relatively) high temperatures given by τ = 10−1, while the panels on the right
(b) and (d) are at lower temperature characterized by τ = 10−3. The axes are in units
of 2π

a
. (a), (b) have anti-ferromagnetically (J/T = 1) interacting spins while (d), (c) have

ferromagnetic coupling(J/T = −1). The colors denote intensities in arbitary units.



2.3 Large-N

In this section, we discuss the specifics of the Large-N approximation. Variants of this

technique are often called by different names such as the spherical model [37, 38, 39] and the

Onsager reaction field theory [40, 41]. Another technique called the self consistent Gaussian

approximation [11, 42] is essentially equivalent to the large-N approximation described

here [11, 43]. A modern reference to large-N expansions in the context of field theories

may be found in Ref. [44]. The large-N approximation is quite effective in frustrated

magnets and have been utilized to study the bulk pyrochlore [11, 15, 21, 42, 43, 45, 46],

pyrochlore thin films [47] as well as the kagomé lattice [14, 48].

The key idea is to soften the spin normalization constraint |S|2 = S2, to spins obeying

the normalization constraint only on average given by 〈|S|2〉 = S2. We incorporate the

softened spin normalization constraint in the partition function using Lagrange multiplier

λ, which in the limit of infinite spin components, N → ∞ , becomes exactly solvable.

Although the results are strictly valid for N → ∞, for spins on a pyrochlore, they are

found to agree well with Monte Carlo simulations of the Heisenberg (N = 3) [42, 43] as

well as the Ising (N = 1) model [43]. The N = 2 case is more subtle and collapses to the

N = 1 case due to an order by disorder mechanism [43].

We briefly describe the derivation in this section and refer the interested reader to the

Refs. [11, 15, 43] for further details. We shall solely concentrate on the Heisenberg and

Ising cases in this thesis (for the pyrochlore lattice) and our goal is to obtain the spin-spin

correlation functions, which will be utilized in later chapters. We begin with the general
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Hamiltonian with O(N) spins:

H =
1

2

∑
i,j

N∑
µν

Jµνij S
µ
i S

ν
j , (2.52)

where Sµi are classical O(N) spins, i,j refer to the sites (notation changed from previous

section) and µ, ν are the spin components. Jµνij is the adjacency matrix (see Appendix

A.4) in real space with matrix element 1 if the sites (and components) are connected and

0 if not. The partition function Z, is defined by:

Z =
∑

exp (−βH) . (2.53)

Here β is the inverse temperature and the sum is over all possible states. For N -component

spins with magnitude of each component as unity, we have the normalization constraint,

|S|2 = N . We enforce this constraint using a delta function δ(|S|2 − N). The partition

function is then rewritten as:

Z =
∏
j

∫
(
∏
µ

dSµj )
[
δ(|Sj|2 −N)

]
exp(−βH). (2.54)

Here the first product is over the lattice sites j and the second product is over spin com-

ponents µ. The integral takes values from −∞ to +∞ for the scalar fields for each spin

component Sµj . The δ function is re-expressed using its integral form δ(x) =
∫∞
−∞ dξe

iξx
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which yields:

Z =
∏
j

∫ ∞
−∞

(
∏
µ

dSµj dξj) exp

[
−1

2

∑
j

(iξj(|Sj|2 −N)

]
exp(−βH). (2.55)

Redefining ξµνij = ξiδ
µνδij , rearranging the exponents and using the fact that for isotropic

spins Jµνij = Jijδ
µν , we obtain:

Z =

∫
DSDξ exp

[
N

2
Tr[iξ]

]
exp

[
−1

2

∑
ij

∑
µν

Sµi M
µν
ij S

ν
j

]
, (2.56)

where the short hand for the integral measures (over sites j and components µ ) are given

by:

DS =
∏
µ,j

dSµj , (2.57)

Dξ =
∏
j

dξj, (2.58)

and the matrix Mµν
ij in Eq. (2.56), is given by :

Mµν
ij = iξiδ

µνδij + βJµνij = (iξ + βJ)µνij . (2.59)

The integral over the each spin component is now a Gaussian and the integrals are evaluated

to give:

Z =

∫
Dξ exp

[
N

2
Tr[iξ]

] [
(2π)Ns

detM

]N/2
, (2.60)

where Ns is the number of sites and N is the number of spin components. Extra factors
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of 2π are dropped. Using the standard identity ln(detM) = Tr(lnM) to write:

1√
detM

= exp

[
−1

2
Tr[ lnM ]

]
, (2.61)

and substituiting Eq. (2.61) in Eq. (2.60) we obtain:

Z =

∫
Dξ exp

[
−N

2
(−Tr[λ] + Tr[ lnM ])

]
. (2.62)

Here λ = iξ7 and λj is equivalent on all sites [11]. We see that for N → ∞, the function

inside the exponent diverges. A saddle point integral is computed for N → ∞, near the

maximum of the exponent and yields the spin length constraint [11] given by:

〈Sµi Sνi 〉 = δµν(λ+ βJ)−1
ii , (2.63)

where Jii is an adjacency matrix element for the same site. This is true for isotropic

spins and we see that the different spin components are uncorrelated. We set the spin

normalization for three component spins, 〈Si · Si〉 = 1. Individual components are then

given by 〈Sµj S
µ
j 〉 = 1/3. This, on summing over all sites, yields [11]:

Tr [λI + βJ ]−1 =
Ns

3
, (2.64)

where Ns is the total number of sites. On Fourier transformation, M−1 in Eq. (2.59)

7In the following analysis, to compute the integral in Eq. (2.62), one has to analytically continue the
contour from the real axis, and deform it to run across the saddle point on the imaginary axis, however
the details of the contour do not matter, except that it passes over the saddle point parallel to the real
axis.
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becomes block diagonal and we obtain a normalization condition in Fourier space given

by [11]: ∑
q∈FBZ

∑
a

[λI + βJ(q)]−1
aa =

Ns

3
, (2.65)

where J(q) is the Fourier transformed interaction matrix (see Appendix A.4). The sum

over q has to be taken over the first Brillouin zone (FBZ) (see Appendix A.2) and a are the

sublattice labels. For the case of the pyrochlore, Ns = NFCC Nsubs = 4NFCC where NFCC is

the number of Bravais lattice points which in this case is a face centered cubic (FCC) lattice

(see Ref. [49] and Appendix A). Nsubs are the number of sublattices in an unit cell which

is 4 for the case of the pyrochlore lattice. We shall utilize the above equation Eq. (2.65),

to self consistently solve for λ, which is dependent on temperature. From the partition

function, Eq. (2.62) we obtain the spin-spin correlations 〈Sµi Sνj 〉 by differentiating ln(Z)

w.r.t. to Jij [11, 15, 43, 47] which yields:

〈Sµi Sνj 〉 = δµν(λI + βJ)−1
ij . (2.66)

In Fourier space, this translates to the key equation used in this thesis (valid for isotropic

spins), defined below [11, 21, 42, 43]:

〈Sµa (−q)Sνb (q)〉 = (λI + βJ(q))−1
ab δµν . (2.67)

The spin structure factor S(q), introduced in the previous section (see Eq. (2.48)) is then

obtained as [21]:

S(q) =
∑
µ,ν

∑
a,b

(λI + βJ(q))−1
ab δµν . (2.68)
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We remind the reader that here q refers to any wavevector (in and beyond the FBZ). Plots

of the spin structure factors (using large-N) in reciprocal space are provided in Chapter 4

(Fig. 4.4, Fig. 4.6, Fig. 4.9).

In this section, we used the large-N approximation to compute the spin-spin correlation

functions which shall be used in the later sections. We saw that to make sense of the theory,

the Lagrange multiplier λ has to be computed self-consistently using Eq. (2.65). We give

a brief account of how this is implemented and then move on to the next chapters where

this formalism is utilized.

Implementation

To solve for the spin length constrain given by:

∑
q∈FBZ

∑
a

[λI + βJ(q)]−1
aa =

Ns

3
, (2.69)

we transform it to the diagonal basis where the above equation reads as:

∑
q∈FBZ

∑
a

1

λ+ βEaa(q)
=
Ns

3
. (2.70)

Here Eaa(q) are the diagonal entries i.e. the eigenvalues (labeled by a) of J(q), which are

in general q-dependent.

For the purpose of this thesis, we solved the above constraint equation numerically using

Python and Numpy [50]. This was done by simultaneously trying to resolve two conditions

(called C1 and C2 here respectively) which were obtained by rearranging Eq. (2.65) which
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are given by:

C1 :
∑

q∈FBZ

∑
a

1

λi + βEaa(q)
− Ns

3
= δi, (2.71)

(2.72)

C2 :
3

Ns

∑
q∈FBZ

∑
a

1

1 + βEaa(q)
λi

= λi+1.

Here i labels the iterations performed to resolve the above two conditions C1 and C2. To

compute the above sums one has to sample q-points over the FBZ (see Appendix A.2 and

Fig. A.2). Then for each q, the sum over the eigenindex a is computed. The implementation

scheme to find λ is briefed below:

1. Consider an initial guess, λi.

2. Compute C1. If δ1 < 10−5, stop. Output λi as the final result.

3. In C1, if δ1 > 10−5, use λi in C2 to find new guess point λi+1.

4. Use λi+1 in C1 to find δi+1

5. If δi+1 < δi, continue the process, if not then add or subtract (depending on the sign

of δi+1, subtract if δi+1 < 0 ) ∆λ = ±10−3 to λi+1 and use as new guess point λi+2.

6. Reiterate till δ < 10−5 and |λi+1 − λi| < 10−4 and make sure that λi > 0.

7. Return final λ

This procedure essentially allows us to progressively get closer to the true unknown λ

by iterating alternatively between λ+ η and λ− η, as η, an arbitary number, gets smaller.
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Below a certain temperature, an instability develops and λ either diverges and solutions

to Eq. (2.70) cannot be found or converges to zero (see Fig. 2.5).

Thus, in this chapter, we developed the tools required for our subsequent discussions.

We obtained expressions for neutron scattering, where the primary quantity of interest is a

spin-spin correlation function. We also obtained expressions for the spin-spin correlations

using MFT and large-N approximation. Finally, we obtained formulae for the structure

factor, S(Q), which is the ideal scattering obtained (same along both spin flip channel

and non-spin flip channel since they are orthogonal) for isotropic interactions and isotropic

g-factor 8. Armed with these tools, we begin our discussions on spin ice, detailed in the

next chapter.

8The g-factor connects spin components to magnetic dipole moments of an ion. For the case of isotropic
g-factor, the magnetic moment of an ion lies along the same direction as its spin.

36



37

Figure 2.5: Figure showing λ vs T (in log-scale) for AFM Ising pyrochlore (see Chap. 3)
with various further-neighbour interactions J2 and J3a (see Fig. 3.6(a) and Appendix A.4).
Note that when there are no further-neighbour interactions J2 = J3a = 0, λ takes a value
of 0.5 at low temperatures and 1.0 at high temperatures. For the extended spin ice (see
Sec. 3.3.3, J2 = J3a ≡ J ′ 6= 0, for −0.5 < J ′ < 0.25, λ follows the same trend as that of
just the nearest-neighbour case (the red, purple and blue lines coincide). Here we see λ for
a negative J2 diverges while a positive J2 drops to 0.



Chapter 3

Polarized Neutron Scattering in

Classical Spin Ice

3.1 Materials, motivation and models

In this section, we investigate the physics of classical spin ice [51], an extensively studied

family of geometrically frustrated magnetic compounds with the chemical formula R2M2O7.

Here both M4+ (non-magnetic transition metal like Ti) and R3+ (magnetic rare earth ions

like Dy and Ho) reside on an interpenetrating tetrahedral lattice (see Fig. 3.1(a) and

Fig. A.1 in Appendix A). Canonical dipolar spin ice compounds are holmium titanate

(Ho2Ti2O7) [52, 53] and dysprosium titanate (Dy2Ti2O7) [51, 54], which have been studied

for the last three decades. Crystal electric fields result in a strong single ion-anisotropy

(along the easy axis 〈111〉 directions) and a low-lying isolated ground state doublet [20].
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Further, as detailed in Ref. [55], non-Ising exchange terms arise from high-rank inter-ionic

multipolar interactions which are induced via weak super-exchange (mediated through the

anions) and are highly suppressed1. Thus, this system may be modelled with a toy model

of Ising pseudo-spins constrained to lie along the local 〈111〉 directions interacting via

ferromagnetic interactions [20]. The Hamiltonian is given by:

H = −J
∑
〈i,j〉

Si · Sj −D
∑
i

(Si · ẑi)2. (3.1)

Here J is the interaction strength, D is single-ion anisotropy energy scale, i and j

label nearest-neighbour sites. At temperatures below D, the effective moments Si, are

constrained such that Si = σiẑi, where ẑi are along the local 〈111〉 axis and σi are Ising

pseudo-spins and take values of ±1. Rearranging the Hamiltonian yields:

H = −J
∑
〈i,j〉

σi · σj(ẑi · ẑi), (3.2)

=
J

3

∑
〈i,j〉

σi · σj, (3.3)

where ẑi · ẑj = −1
3

when i and j are on different sublattices. Thus, ferromagnetic in-

teractions in the magnetic moments along 〈111〉 directions are modelled via an anti-

ferromagnetic Ising model [20, 56]. We interpret σi = ±1 as the pseudo-spin either pointing

outside the tetrahedra or inwards towards its centre along the easy 〈111〉 directions (see

Fig. 3.1(b)). The anti-ferromagnetic Ising model on a pyrochlore lattice may be written as

1In Ref. [55], this was shown for Ho2Ti2O7 and Dy2Ti2O7 and the transverse exchange was theoretically
found to be two orders of magnitude smaller than the nearest-neighbour Ising coupling.
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Figure 3.1: Panel (a) shows two tetrahedra in the pyrochlore lattice with nearest neighbour
interaction J . (b) shows spins constrained along the local 〈111〉 directions following the
2-in 2-out ice-rules.

a sum over the spins in each tetrahedron (up to an additive constant) [3]:

H =
J

6

∑
�

(∑
i∈�

σi

)2

. (3.4)

The extra factor of 1
2

is to account for double counting2. The first sum runs over tetrahedra

(�) and the second sum runs over spins in one single tetrahedron, which is minimized if∑
i∈� σi = 0, i.e. two of the spins are pointing in and two are pointing out (see Fig. 3.1(b)).

The magnetic ground state manifold, composed of spin configurations with the lowest

energy, is extensive in this case. There are several possibilities in which the spins may

follow the two-in two-out rules and further, flipping the spins on a hexagon (in the kagomé

2The multiplicative factor of 1/3 will be dropped in the ensuing analysis.
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layer, see Fig. A.4 and Fig. A.3) do not change the energy of the system. This is the

source of the massive ground state degeneracy in spin ice and results in observable residual

Pauling entropy [54]. Similar physics is observed in various other systems such as in cation

ordering of inverse spinel (studied by Anderson [9, 20]) and in water ice where the two-

in two-out rules have an exact analog, i.e. the Bernal-Fowler ice-rules which govern the

displacements of protons in water ice [57].

The materials mentioned above, Ho2Ti2O7 and Dy2Ti2O7, are actually dipolar spin ice

material with additional dipolar interactions [20] not considered in this work. However, the

essential physics still remains valid in this model since the dipolar interactions were shown

to project onto the ice-states and display projective equivalence [58]. While for dipolar spin

ice, the NSF channel (in a neutron scattering experiment) shows a checkerboard pattern

(see Fig. 3.2 B), for the nearest-neighbour model we find a q-independent (flat) NSF (see

Fig. 3.2 E).

Theoretically, the physics of spin ice results in the ice-rules and this shows up as char-

acteristic pinch-point 3 features (see Fig. 3.2, Fig. 3.7 and Fig. 3.8) which show the neutron

scattering) in the spin-spin correlation function and in neutron scattering. This has been

verified multiple times in simulations [15, 42, 45, 58]. Even though unpolarized neutron

scattering experiments were done on Ho2Ti2O7 before [52, 53, 59], it was only after careful

polarized neutron scattering was done [19] that the pinch-points were properly resolved

and clearly visible (see Fig. 3.2). However, there is a subtlety in the experiment described

in Ref. [19]. Firstly, the experiment was done at T = 1.7K and not at T = 0K which is

3The bow-tie features in the structure factor and neutron scattering are called pinch-points in the
literature. These are characteristic features of a system in a Coulomb phase and indicates the ice-rules
being followed by the magnetic moments in the magnetic ground state.
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Figure 3.2: Results taken directly from Ref. [19]. Figures show (magnetic) polarized (elas-
tic) neutron scattering results on Ho2Ti2O7 in the SF channel (A), NSF channel (B) and
the sum of the two channels, the total neutron scattering (C). The experiment was done
at T = 1.7K Note the bow-tie features (at [111] and [200]) called pinch-points in panel
(A) and (C). Panels D, E, F are Monte Carlo simulations. Panel E is the nearest neigh-
bour model showing flat NSF in a Monte Carlo simulation. The gradation towards the
origin is due to the inclusion of holmium form factor (see appendices in Ref. [19]). Panel
D shows the SF channel and characteristic pinch-points at wavevectors [200] and [111]
(and other symmetry related wavevectors). Results are taken directly from 2009 Science
publication by Fennel et.al. [19] (licensed content title: Magnetic Coulomb phase in the
spin ice Ho2Ti2O7). Their results are displayed in this thesis after due permission from the
licensed content publisher: “The American Association for the Advancement of Science”
for licensed content publication in “Science” with License number: 4872570850019.



impossible experimentally and this is where the Coulomb phase is theoretically understood

to exist. Further, the crossover from the paramagnetic regime to the Coulomb phase is

signalled by a broad peak in the specific heat (magnetic part) and this occurs at T ≈ 1.9K

(see Fig. 3 in Ref. [53]) for Ho2Ti2O7. Thus, this experiment was done right below crossover

and arguably, not in the Coulomb phase. Monte Carlo simulations were also undertaken in

the same work for the nearest-neighbour case, which show bow-tie features in the spin flip

channel (SF) and a q-independent non-spin flip channel (NSF) in the [hhl] plane. While

the NSF is clearly q-independent in the simulation (gradation towards the origin is from

adding the holmium form factor to the simulation), the experiment reveals checkerboard

like structures reminiscent of further-neighbour interactions (such as in Fig. 3.10(c)).

Interestingly, Monte Carlo simulations of the nearest-neighbour model [60, 61] and the

related spin-1/2 local XXZ model4 in its classical SI regime [62], show the NSF channel to

be completely flat and featureless (in the [hhl] plane), but it is not understood why it is so.

We shall attempt to build an intuitive proof of why the NSF channel is flat (in the [hhl]

plane) for all temperatures for AFM Ising spins on a pyrochlore lattice. In doing so, we

shall also find two other cases with flat bands (extended spin ice [63] and Ising spins on a

breathing pyrochlore) and expose the connection between the flat eigenbands and the flat

NSF channel in the [hhl] plane. First, we take a short detour through some basic results

and then we shall provide the key results in this thesis.

4The XXZ model is given by an anisotropic bilinear exchange hamiltonian with inequivalent transverse
(along local ẑ) and longitudinal (in local x̂-ŷ plane) exchange couplings.
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3.2 Preliminary Results

3.2.1 Emergent Fields, Fluxes and Monopoles

The two-in two-out rules (called ice-rules) discussed in the previous sections constrain the

magnetic moments such that two moments are pointing in and two are pointing out of

the tetrahedron (see Fig. 3.1). This magnetic ground state is highly degenerate and every

moment satisfies the local two-in two-out constraints. These local constraints may be

mapped to a divergence free condition in the fluxes of an emergent field and the coarse-

grained description is analogous to that of electromagnetism with defects of the local

constraint acting as effective charges [17]. Thus, the system has been called a Coulomb

phase. We derive only a few basic results and refer the interested reader for more complete

discussions to Refs. [3, 17, 18, 64, 65].

We remind the reader that in the pyrochlore lattice, the centroid of each tetrahedron is

a point on the dual diamond lattice. Hence, the midpoints of the bonds of a diamond lattice

define the sites of the pyrochlore lattice. Magnetic moments with easy axis anisotropy lie

along the bonds of the diamond lattice [11]. On coarse graining, the spin-configurations

are mapped to fluxes B and charges M on the bonds of the diamond lattice via:

M =
1

2

∑
a∈�

σa, (3.5)

B =

√
4

3

∑
a∈�

σaẑa, (3.6)

where the sums are over the tetrahedra, denoted by �. a are the sites in a tetrahedra i.e.
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the 4 sublattices and the pre-factors are chosen for convenience.

If the ice-rules are being upheld, the fluxes are conserved at each diamond vertex with

two flux lines entering and two exiting it. This leads to a divergence free constraint [17]:

∇ ·B(r) = 0, (3.7)

where B(r) is the coarse grained B, at longer length scale than the unit cell but shorter

than the dimensions of the system and centred at arbitary coordinates r. The Helmholtz

free energy then takes the following form [17, 18, 45]:

F =
Tλ

2V

∫
d3r|B(r)|2, (3.8)

where T is the temperature, V is the volume of the unit cell and λ5 is the stiffness. This

has the same form as that of electromagnetism which is why spin ice at low temperatures

is said to exist in a Coulomb phase. Eq. (3.8) and Eq. (3.7) imply dipolar correlations

(∝ ∇r∇r′
1

r−r′ ; r, r′ are positions of sites ) in real space and pinch-points in the momentum

space spin-spin correlation function [18, 45]. These pinch-points may be seen in Fig. 3.2

Fig. 3.7(a), Fig. 3.7(b) and Fig. 3.8 and are signatures of the Coulomb phase.

5Here λ is the stiffness, as well as connected to the large-N Lagrange multiplier λ. It is worthwhile to
mention at this point that in the literature [11, 21, 42], the adjacency matrix is often added/subtracted
to a multiple of the identity matrix for ease of computation [21] of correlation functions and solving self
consistently for λ. Also one has to put an onsite term to interpret λ as the stiffness of the Coulomb phase
of Heisenberg AFM spins on a pyrochlore [11].
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3.2.2 Flat bands in the Eigen-spectrum

We start with the AFM Ising model on the pyrochlore lattice, rewriting the Hamiltonian

in Eq. (3.3) as:

H = J
∑
〈i,j〉

σi · σj, (3.9)

=
1

2

∑
i,j,a,b

Ja,bij σ
a
i σ

b
j . (3.10)

Here, the magnitude of J is set to unity (J = +1) and Ja,bij is the adjacency matrix. Here

i, j are FCC site labels and a, b are sublattice labels. The adjacency matrix (see Appendix

A and Appendix A.4) in the nearest neighbor case, in real space, is given by elements 1

if (i, a) and (j, b) are nearest neighbour or 0 if (i, a) and (j, b) represent the same site or

are not connected by a single nearest neighbour bond. The factor of 1/2 is to account for

double counting. Fourier transforming the adjacency matrix makes it diagonal in position

space with 4× 4 sublattice blocks. The Fourier transform of the spins is effected by:

σaj =
1√
NFCC

∑
q∈FBZ

σa(q)eiq·Ra
i , (3.11)

σa(q) =
1√
NFCC

∑
j∈a

σaj e
−iq·Ra

i . (3.12)

Here, NFCC is the number of spins in each sublattice which is total number of sites in

the pyrochlore divided by 4. Ra
i denotes the location of the moment given by sublattice

a and FCC site i. Substituting the Fourier transform Eq. (3.12) into the Hamiltonian
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(Eq. (3.10)), we may rewrite the Hamiltonian in Fourier space given by:

H =
∑
q

∑
a,b

Jab(q)σa(−q)σb(q). (3.13)

Here a, b are the sublattice labels (a, b ∈ [1, 2, 3, 4]) and the Fourier transformed adjacency

matrix is obtained by (see Appendix A.4):

Jab(q) =
∑
ij

Jabij e
iq·(Ra

i−Rb
j), (3.14)

which is a 4× 4 matrix in sublattice space and given by:

J(q) =



0 2 cos
( qx+qy

4

)
2 cos

(
qx+qz

4

)
2 cos

( qy+qz
4

)
2 cos

( qx+qy
4

)
0 2 cos

( qy−qz
4

)
2 cos

(
qx−qz

4

)
2 cos

(
qx+qz

4

)
2 cos

( qy−qz
4

)
0 2 cos

( qx−qy
4

)
2 cos

( qy+qz
4

)
2 cos

(
qx−qz

4

)
2 cos

( qx−qy
4

)
0


.

Now, we may compute the eigenvalues of Jab(q) using Wolfram Mathematica to obtain:

E1,2 = −2, (3.15)

E3,4(q) = 2± 2
√
G(q). (3.16)

Here E1,2 are q-independent, minimum and dispersionless while E3,4(q) are dispersive

bands. G(q) in general is a function of cosines and sines and in general q-dependent.

We provide a working expression for G(q) below (see Eq. (3.21)). Following Ref. [42], to
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interpret λ as the stiffness of the emergent fields, we add to Jab(q), a constant times the

identity:

Jab(q)→ Jab(q) + 2JI4×4, (3.17)

where J is the strength of nearest-neighbour interactions, which is unity for the purposes of

this text. This does not change the physics of the model. The eigenvectors of Jab(q) (now,

with the constant shift, Jab(q) is referred to as the interaction matrix) are unchanged and

the eigenvalues pick up an additive constant. This is seen easily for a general operator Õ

and its normalized eigenvectors |ε〉 corresponding to eigenvalues ε given by:

〈ε|(Õ + cI4×4)|ε〉 = ε+ c, (3.18)

where c is an arbitary constant. Similarly, the transformation Eq. (3.17) shifts the eigen-

values of Jab(q). Specifically, the minimum eigenvalues shift from −2 to 0 and are given

by:

E1,2 = 0, (3.19)

E3,4(q) = 4± 2
√
G(q). (3.20)

Here, G(q) is given by the expression:

G(q) = cos
(qx

2

)
cos
(qy

2

)
+ cos

(qx
2

)
cos
(qz

2

)
+ cos

(qy
2

)
cos
(qz

2

)
+ 1. (3.21)
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Figure 3.3: Eigenbands (intensity along the z axis) of the nearest neighbour model in
reciprocal space in the (hh l) plane for panel (a) and in (h 0 l) plane for panel (b). Both
show (2 degenerate) low lying flat bands. The x, y axes are wavevectors in units of 2π

a
.

The two eigenvalues in Eq. (3.20), corresponding to E1,2 is minimum and 0 for every

wavevector q, in the BZ. These are the flat (q-independent) low-lying (2 degenerate) eigen-

bands shown in Fig. 3.3. One notes that the dispersive bands corresponding to E3,4 are

always at higher energies and touch the flat bands at q = 0, q = 2π
a

[111] and other sym-

metry related points. As we shall see in later sections, this flat band plays a key role in

the flat NSF neutron scattering channel in the [hhl] plane for Ising spins on a pyrochlore.

First, we consider a special eigenvector of Jab(q) of the form:

|P 〉 =
1√
2

(0, 0,−1, 1). (3.22)
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This is an eigenvector corresponding to the null eigenvalues E1,2 in the [hhl] plane. This

eigenvector may be obtained in a brute force fashion from Wolfram Mathematica’s analyti-

cal schemes and rotating the 2 degenerate eigenvectors corresponding to E1,2 appropriately

or we can simply motivate it by inspecting the form of the interaction matrix, Jab(q), in

the [hhl] plane. This is given by:

Jab(hhl) =



2 2 cos
(
h
2

)
2 cos

(
h+l

4

)
2 cos

(
h+l

4

)
2 cos

(
h
2

)
2 2 cos

(
h−l

4

)
2 cos

(
h−l

4

)
2 cos

(
h+l

4

)
2 cos

(
h−l

4

)
2 2

2 cos
(
h+l

4

)
2 cos

(
h−l

4

)
2 2.


(3.23)

Note that the column 3 and 4 as well as row 3 and 4 are exactly equal with a shared sub-

block composed of the same number 2. This is shown in red. Here qx = qy = h and qz = l.

The form of the above matrix implies trivially that |P 〉 is an eigenvector of Jab(hhl), i.e. :

〈P |Jab(hhl)|P 〉 = 0. (3.24)

Thus, we have established |P 〉 as an eigenvector of the interaction matrix in the [hhl] plane

corresponding to the flat eigenvalues. We shall see in the next section how this eigenvector

pops back up on considering the geometrical properties of the pyrochlore and polarized

neutron scattering. We further noted that displacing any one sublattice in a tetrahedron

by a small number δ′, destroys the tetrahedral symmetry and dispersion arises in one of

the flat bands. This further shows that flat bands are connected to the geometry of the

pyrochlore.

50



3.2.3 Geometrical Insight into Polarized Neutron Scattering

The total energy-integrated magnetic scattering cross-section was obtained in Eq. (2.15)

as:

dσ(Q)

dΩ
=
C[F(Q)]2

NFCC

∑
i,j

∑
a,b

〈µai⊥ · µbj⊥〉eiQ·Rab
ij . (3.25)

Here C is a constant, Ω the solid angle, F(Q) is magnetic form factor for the probed

magnetic ions and Q is the momentum transfer between the initial and final neutron

momenta. Q = G+qBZ, where qBZ lies in the FBZ of the FCC lattice (see Appendix A.2)

and G are FCC reciprocal lattice vectors. Here µai⊥
6 represents the magnetic moment at

FCC site i and sublattice a. The ⊥ represents the fact that the neutrons are only able

to probe moments perpendicular to the the neutron momentum transfer Q (see Sec. 2.1).

This implies:

µai⊥ = µai − (µai ·Q)Q/|Q|2. (3.26)

The magnetic moment µai is composed of the spin, the g-factor and the Bohr magneton µB.

The g-factor is in general a site dependent tensor which connects the microscopic spins S

to magnetic moments (interacting with the neutron):

µηi = µB

∑
ν

gηνSνi , (3.27)

6Here, µi and µai⊥ are vectors and should be boldfaced.
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where the η, ν are spin-components, i represents the lattice sites. For Ising spins σi con-

strained along the local easy axes this simplifies as:

µai = (gzµB)σai ẑ
a. (3.28)

We absorb the factor (gzµB) in the constant in the expression Eq. (3.25) and Eq. (3.26)

reduces to :

σai⊥
7 = σai ẑ

a − (σai ẑ
a ·Q)Q/|Q|2. (3.29)

One may substitute the above in Eq. (3.25) and work out the trigonometric identities

to separate out the NSF and the SF channel contributions. A more intuitive picture is

obtained by considering Eq. (3.29). The first term on the right is the original vector

along ẑa and the second term subtracts the projection of ẑa along Q̂ from the original

vector. Then, one is left with the entirety of the original vector σai ẑ
a projected in the

plane perpendicular to Q̂. This plane may be decomposed into two axes along the neutron

polarization P̂ and perpendicular to both P̂ and Q̂, call it R̂ (see Fig. 3.4).

Thus, the spin vectors may be written as components along the orthogonal 3D axes P̂,

Q̂ and R̂. As discussed (in Sec. 2.1), if the neutron polarization direction is parallel/anti-

parallel to the direction of the local magnetic moment probed in the system, the spin of

the incoming and outgoing neutron remains unchanged, which is the non-spin flip (NSF)

channel. However, if the neutron polarization is perpendicular to the alignment of the local

magnetic moment probed, the spin of the neutron will flip and this is called the spin flip

(SF) channel.

7σai⊥ is a vector and should be boldfaced.
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So, summarizing, the local magnetic moment in the sample may be aligned in any

direction and have components projected along axes P̂, Q̂ and R̂. The incoming neutron

polarization is along P̂. All contributions to the neutron scattering from magnetic moments

along Q̂ are not probed. Magnetic moments along P̂ do not flip the spins of the incoming

neutrons while magnetic moments along R̂ flip the spin of the neutrons. By separating

the neutron scattering contributions along P̂ and R̂, we effectively separate the SF and

NSF channel. By considering the sum of contributions along P̂ and R̂, we obtain the total

neutron scattering given by the expression in Eq. (3.25). From here on forth, we shall

replace P̂ by ẑNSF and R̂ by ẑSF. This implies that Eq. (3.29) can be rewritten as as vector

projected along ẑNSF and ẑSF, which is given by:

σai⊥ = σai (ẑ
a · ẑNSF)ẑNSF + σai (ẑ

a · ẑSF)ẑSF. (3.30)

The expectation value in Eq. (3.25) may be re-expressed as:

〈µai⊥ · µbj⊥〉 = (gzµB)2〈σai⊥ · σbj⊥〉. (3.31)

The factor (gzµB)2 is absorbed into the constant upfront of Eq. (3.25) and the expression

for the dot product using Eq. (3.30):

〈σai⊥ · σbj⊥〉 = 〈σai σbj〉(ẑa · ẑNSF)(ẑb · ẑNSF) + 〈σai σbj〉(ẑa · ẑSF)(ẑb · ẑSF). (3.32)

Using Eq. (3.32) and Eq. (3.25), we rewrite the channel-separated total neutron scat-
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Figure 3.4: Figure shows the geometry of polarized neutron scattering when the neutron
polarization is along P̂ which is ẑNSF in this case. Q is the momentum transfer given
by the difference of initial and final neutron momenta (k, k′ respectively). Magnetic
moments along Q̂ will not contribute to the scattering. Only magnetic moments along P̂
will contribute to the non-spin flip (NSF) channel. Magnetic moments along R̂ = P̂ × Q̂
will contribute to the spin-flip channel (SF) and is ẑSF in this case. If contributions along
P̂ and R̂ are not resolved (but are just added), we obtain the total (elastic) magnetic
neutron scattering.



tering cross-section (elastic) where all the constants are absorbed in C:

dσ(Q)

dΩ
= C

(∑
a

∑
b

〈σa(−Q)σb(Q)〉(ẑa · ẑNSF)(ẑb · ẑNSF)

)

+

(∑
a

∑
b

〈σa(−Q)σb(Q)〉(ẑa · ẑSF)(ẑb · ẑSF)

)
. (3.33)

Here the NSF channel may be separated easily and is given by the expression:

dσ(Q)

dΩ
|NSF = C

(∑
a

∑
b

〈σa(−Q)σb(Q)〉(ẑa · ẑNSF)(ẑb · ẑNSF)

)
. (3.34)

In the experiment conducted by Fennel et al. (Ref. [19]), the neutron polarization direction

chosen is given by PFennel = [11̄0], QFennel = [hhl] and RFennel = PFennel × QFennel. As

discussed before, magnetic moments along P̂Fennel (denoted as ẑNSF hereon) lead to non-

spin flip scattering (NSF) contribution and moments along R̂Fennel (denoted by ẑSF) lead

to a contribution to the spin flip (SF) channel. Studying the projector (ẑa · ẑNSF), which

is a 4× 1 row vector, we find:

(ẑa · ẑNSF) =


±
√

2/3 if a ≡ 3, 4

0 if a ≡ 1, 2

. (3.35)

Here, a are the sublattice labels. We see that only 2 of the four sublattices (labelled by 3, 4

in our sublattice conventions. See Appendix A for sublattice conventions) in a tetrahedron

contribute to the NSF scattering. This was noted by Fennel et al. in the appendix of their
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2009 Science paper [19]. Denoting the projector (ẑa · ẑNSF) as P a, we see:

P a = (ẑa · ẑNSF) =

√
2

3
(0, 0,−1,+1). (3.36)

We see that the neutron projector for the NSF channel in the (hhl) plane P a, for two

sublattices (a = 1, 2), is null. These two sublattices do not contribute to the NSF channel

in the (hhl) plane. Rewriting Eq. (3.34) with the projector P a, we obtain:

dσ(Q)

dΩ
|NSF = C

(∑
a

∑
b

P a〈σa(−Q)σb(Q)〉P b

)
. (3.37)

The projector P a contains the information about the geometry of the arrangements of spins

(along local easy axes ẑa) as well as the neutron polarization directions ẑNSF. Thus, the 16

term sum in Eq. (3.37) reduces to just 4 terms because of purely geometric reasons. Only

a, b ≡ 3, 4 sublattices (see Fig. A.1 and Appendix A for sublattice conventions) contribute

and Eq. (3.37) reduces to just the sums over these sublattices, giving:

dσ(Q)

dΩ
|NSF =

2

3
(〈σ4(−Q)σ4(Q)〉+ 〈σ3(−Q)σ3(Q)〉 − 〈σ4(−Q)σ3(Q)〉 − 〈σ3(−Q)σ4(Q)〉),

(3.38)

where the constants up-front are implicit. Since all lattice points are equivalent in the para-

magnetic regime 8, 〈σ4(−Q)σ4(Q)〉 = 〈σ3(−Q)σ3(Q)〉 and 〈σ4(−Q)σ3(Q)〉 = 〈σ3(−Q)σ4(Q)〉,
8For temperatures above the transition, no symmetry is broken and all lattice points are equivalent.

For the large-N case, the model always remains paramagnetic [11] and no symmetry is broken above the
large-N instability, below which λ, the lagrange multiplier cannot be found.
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this reduces Eq. (3.38) further :

dσ(Q)

dΩ
|NSF =

4

3
(〈σ3(−Q)σ3(Q)〉 − 〈σ3(−Q)σ4(Q)〉 (3.39)

Eq. (3.39) shows explicitly how NSF channel contributions come solely from sublattices 3

and 4. Thus, only chains of spins corresponding to 3, 4 sublattices contribute, which are

the so called α-chains (see Fig. 3.5 and Fig. A.1). Incidentally, the α-chains extend parallel

to the neutron polarization ẑNSF (see Fig. 3.5 ) :

r3 − r4 =
1

4
(1,−1, 0) ∝ ẑNSF. (3.40)

Here, r3 and r4 are the positions of sublattice 3 and 4. However, this does not shed

light as to why the NSF scattering is Q-independent. In general, the Fourier transformed

correlation fuctions in Eq. (3.39) should be different and dependent on Q and it is unclear

how the two correlation functions conspire to yeild a flat NSF. The careful reader might

note that the vector form of the projector P a (Eq. (3.49)) is proportional to the special

eigenvector |P 〉 (Eq. (3.22)) of the interaction matrix Jab(Q) upto a multiplicative constant.

This equivalence is the key insight which will help us connect flat NSF to the flat bands

as discussed in the next section.

In this section, we discussed some preliminary results regarding polarized magnetic

neutron scattering and saw how only the α-chains contribute to the scattering intensity

in the NSF channel. In the next sections, we develop the key results and findings of this

project.
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Figure 3.5: The geometry of the polarized neutron scattering is such that only two sub-
lattices of the tetrahedron (sublattices 3 and 4 in our convention, showed as blue and red
spheres, see Appendix A for sublattice convention) contribute to the NSF channel scatter-
ing. These form chains in the lattice and are called α-chains in this thesis. The α-chains
extend in both directions and parallel α-chains may be reached by hopping over two bonds
in any direction starting on either sublattice 3 or 4. Further, the direction of the α-chain
happens to be parallel to the neutron polarization direction ẑNSF in the experiment done
by Fennel et al. in Ref. [19]. Also see Fig. A.1



3.3 Key Results

3.3.1 Flat Bands to flat NSF

We saw in previous sections how the interaction matrix Jab(q), hosts two degenerate flat

eigenbands and one of the eigenvectors |P 〉 (Eq. (3.22)) (in the [hhl] plane!) corresponding

to the q-independent eigenvalues is proportional (upto some multiplicative constant) to the

neutron scattering projector P a (Eq. (3.49)) for the NSF channel. This projector encodes

the information of the α-chains (see Fig. 3.5) and of the alignment of the spins (the easy axis

anisotropy in this case) projected onto the polarization direction of the incoming neutron

spin. We rewrite for convenience:

(ẑa · ẑNSF) = P a ∝ |P 〉 ∝ (0, 0,−1,+1). (3.41)

For the rest of this chapter, we utilize the large-N approximation (Eq. (2.68)) and compute

the spin-spin correlation functions [15] which are given by (see Eq. (2.67)) :

〈σa(−Q)σb(Q)〉 = (λI4×4 + βJ(Q))−1
ab . (3.42)

Here, λ (temperature dependent quantity) is found self-consistently from the spin length

constraint and β is the inverse temperature. Q and q are used interchangeably and refer

to all possible wavevectors. Using the interaction matrices with constant diagonal shits

(Eq. (3.17)), λ is interpreted as the stiffness of the Coulomb phase [11]. The expression
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for the polarized neutron scattering (Eq. (3.37)) for the NSF channel is given by:

dσ(Q)

dΩ

∣∣∣∣
NSF

= C

(∑
a

∑
b

P a〈σa(−Q)σb(Q)〉P b

)
. (3.43)

Ignoring the constant upfront and substituting Eq. (3.42) in the above we obtain:

dσ(Q)

dΩ

∣∣∣∣
NSF

=
∑
a

∑
b

P a(λI4×4 + βJ(Q))−1
ab P

b. (3.44)

We noted before how |P 〉 ∝ P a and is the eigenvector for the flat band in the (hhl) plane.

We refer to the neutron projector P a as P or |P 〉 for the remainder of the presentation.

The eigenvectors do not change on addition of a multiple of the identity, mutiplying a

constant to the matrix and inverting it. This is seen easily for a general operator Õ and

its normalized eigenvectors |ε〉 corresponding to eigenvalues ε:

〈ε|βÕ|ε〉 = εβ, (3.45)

〈ε|(βÕ + cI4x4)|ε〉 = βε+ c, (3.46)

〈ε|(βÕ + cI4x4)−1|ε〉 = (βε+ c)−1. (3.47)

The same follows for the correlation matrix M−1
ab = (λI4×4 + βJ(Q))−1

ab and Eq. (3.44)

which is written in matrix multiplication form:

dσ(Q)

dΩ

∣∣∣∣
NSF

= P (M)−1P T . (3.48)
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where P is the projector for the neutron scattering and is proportional to the eigenvector

of the flat bands. P is given by:

P =

√
2

3
(0, 0,−1,+1). (3.49)

In the [hhl] plane, sandwiching the interaction matrix Jab(hhl) between the neutron pro-

jectors:

〈P |J(hhl)|P 〉 = 0, (3.50)

〈P |βJ(hhl)|P 〉 = 0, (3.51)

〈P |λI4×4 + βJ(hhl)|P 〉 =
4λ

3
. (3.52)

This yields our final result for the flat NSF, as described in the large-N approximation:

dσ(Q)

dΩ

∣∣∣∣
NSF

= P (M)−1P T =
4

3λ
. (3.53)

Thus, we see that the NSF channel of the polarized neutron scattering (in the [hhl]) plane

effectively projects the flat bands of the interaction matrix J(Q) and results in a flat NSF.

This happens since only spins in the α-chain contribute.

3.3.2 Measuring the emergent field

We found that the NSF channel intensity is Q-independent and given by 4
3λ

where λ is

computed self-consistently from the spin length constraint in Eq. (2.70). In the large-
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N approximation, utilizing Eq. (3.17), λ is interpreted as the stiffness of the Coulomb

phase [11]. To clarify what the neutron scattering is picking up, we transform the neutron

scattering expression:

dσ(Q)

dΩ
= C

(∑
a

∑
b

〈σa(−Q)σb(Q)〉
[
(ẑa · ẑNSF)(ẑb · ẑNSF) + (ẑa · ẑSF)(ẑb · ẑSF)

])
,

(3.54)

to the flux/charge picture using the transformation (see Eq. (3.6)):

M(Q) =
1

2

∑
a∈�

σa(Q), (3.55)

B(Q) =

√
4

3

∑
a∈�

σa(Q)ẑa. (3.56)

We obtain:

dσ(Q)

dΩ

∣∣∣∣
NSF

=
4

3

〈
|B(Q) · ẑNSF|2

〉
, (3.57)

dσ(Q)

dΩ

∣∣∣∣
SF

=
4

3

〈
|B(Q) · ẑSF|2

〉
. (3.58)

So, we see here clearly, the NSF and SF channels are probing the correlations between

the emergent fluxes along ẑNSF and ẑSF directions respectively. Thus, in this subsection,

the magnetic neutron scattering is shown to effectively probe the correlations between

the emergent fluxes in this system. In the next subsection, we shall study the effects of

further-neighbour interactions in this model.
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Figure 3.6: Figures show further-neighbour couplings on the pyrochlore lattice. Panel (b)
is the kagomé layer slice of the pyrochlore lattice perpendicular to 〈111〉 direction.

3.3.3 Extended spin ice and effect of further-neighbour interac-

tions.

In this subsection, we consider the effect of further-neighbor interactions. In general,

further-neighbour interactions will perturb the ground-state degeneracy which manifests

as flat eigenbands of the interaction matrix J(q). Consequently, the NSF scattering is

expected to be dispersive. The Hamiltonian is given by:

H =
∑
q

∑
a,b

Jab(q)σa(−q)σb(q), (3.59)

where the adjacency matrix J(q) includes further-neighbor exchange:

Jab(q) = J(Aab(q) +
J2

J
Cab(q) +

J3a

J
Dab(q) +

J3b

J
Eab(q)). (3.60)
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Here, J is the interaction strength for nearest-neighbour couplings and Aab is the nearest-

neigbour adjacency matrix. J2, J3a and J3b refer to the magnitude of further-neighbour ex-

change corresponding to the 2nd nearest neighbour and two inequivalent further-neighbour

couplings. Cab(q), Dab(q), Eab(q)9 are their Fourier transformed adjacency matrices (see

Appendix A.4).

We saw before, how Aab(q) (referred to as Jab(q) in previous sections) has an eigenvector

|P 〉 corresponding to flat eigenvalues in the [hhl] plane. Arbitary choices of the coupling

strengths perturb this flat-eigenband and lead to dispersive eigenmodes. However, a special

case is obtained when J2 = J3a ≡ J ′ and J3b = 0. For −0.5 < J ′ < 0.25, it was noted that

the spin ice ground state with spins following the ice-rules is maintained [63]. This has

been called extended spin ice (ESI) in the literature and we refer the interested reader to

Refs. [46, 63, 66] for further details and discussions. Considering the ESI case and following

Refs. [21, 42] we shift the adjacency matrices (optional step):

J ′Cab(q)→ J ′Cab(q) + 4J ′I4x4, (3.61)

J ′Dab(q)→ J ′Dab(q)− 6J ′I4x4. (3.62)

Now, the new matrices with constant shifts are referred to as the interaction matrices10 (fol-

lowing Ref. [11]). In the [hhl] plane, the further-neigbour matrices J ′Cab(hhl)+J ′Dab(hhl)

9To keep names of adjacency matrices consistent, we term the nearest-neighbour exchange Aab(q),
we reserve Bab(q) for the breathing pyrochlore case with two inequivalent nearest-neighbour couplings
(see Chap. 4). We term the further-neighbour adjacency matrices in order as Cab(q), Dab(q), Eab(q)
corresponding to the second nearest-neighbour coupling J2 and the two inequivalent third neighbour cou-
plings J3a and J3b. Finally, simply Jab(q) is the full adjacency matrix with both nearest-neighbour and
further-neighbour exchange given in Eq. (3.60)

10Before the constant shift is added we have the usual adjacency matrices. After the constant shift is
added we call these new matrices the interaction matrices [11].
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together have the same form as in Eq. (3.23), namely the 3, 4 sublattice sub-block having

the same elements given by:


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h+l
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
(3.63)

Here the C refers to the cosine function. It is readily seen that the NSF projector |P 〉 ∝

(0, 0,−1, 1), is also an eigenvector of above matrix with 0 eigenvalue. Thus we see that

each term in the interaction matrix:

Jab(q) = J(Aab(q) +
J ′

J
Cab(q) +

J ′

J
Dab(q)), (3.64)

with q ∈ [hhl], share the same eigenvector |P 〉 corresponding to flat eigenvalues. Thus,

M−1
ab = (λI4×4 + βJ(Q))−1

ab will also have the same eigenvector |P 〉. For the NSF neutron

scattering Eq. (3.48) we then have:

dσ(Q)

dΩ
|NSF = P (M)−1P T =

4

3λ
. (3.65)

Thus, the NSF channel scattering for the ESI case is also q-independent. The above

analysis works out in a similar fashion for Ising spins (constrained along the local easy

axis) on a breathing pyrochlore (see Appendix A.3) by inspecting the interaction matrices

(provided in Appendix A.4) in the [hhl] plane. The ESI result may also be deduced from the
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fact that the matrix given by Cab(q)+Dab(q) can be written as a polynomial of Aab(q) and

will share eigenvectors (see appendices of Ref. [46]). Deviations from flatness are produced

when J2 6= J3a, as well as the addition of J3b interactions. The question then arises if some

qualitative feature in the non-flat NSF can provide us insights into the relevant further-

neighbour interactions. Further, it turns out, that in the large-N approximation, one may

extract λ from the neutron scattering intensity using certain general identities detailed

below.

Considering the actual intensity of the NSF channel and the SF channel, one finds the

geometrical identities true along the high symmetry lines (see panels (g), (h) and (i) of

Fig. 3.7 - 3.10. Also see Fig. (3), panel A in Ref. [19]):

dσ(Q)

dΩ

∣∣∣∣NSF

hhh

=
dσ(Q)

dΩ

∣∣∣∣SF

hhh

, (3.66)

dσ(Q)

dΩ

∣∣∣∣NSF

hhh̄

=
dσ(Q)

dΩ

∣∣∣∣SF

hhh̄

, (3.67)

dσ(Q)

dΩ

∣∣∣∣NSF

00l

=
dσ(Q)

dΩ

∣∣∣∣SF

00l

. (3.68)

Here, the NSF and SF scattering intensity along the above mentioned lines in q-space show

exactly the same intensity. In the large-N approximation, we compute the intensities along

the high symmetry directions of the SF and NSF channel and find :

dσ(Q)

dΩ

∣∣∣∣NSF

hhh

=
dσ(Q)

dΩ

∣∣∣∣SF

hhh

=
dσ(Q)

dΩ

∣∣∣∣NSF

hhh̄

=
dσ(Q)

dΩ

∣∣∣∣SF

hhh̄

= K(h), (3.69)
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where K(h) is given by:

K(h) =
4

3

(
1

λ+ w−w cos(h)
T

)
, (3.70)

where w = 2(J2−J3a+4J3b). Here, we have also considered the third neighbour interaction

J3b (see Appendix A.4). Note w is zero for ESI (J2 = J3a, J3b = 0) where q-independent

NSF scattering is obtained. Depending on the sign of w, either the minimum or the

maximum will be 4
3λ

. Using the above equation, an easy scheme may be used to obtain λ

from the neutron scattering intensities. The procedure is:

1. Obtain the line cuts along the (hhh) directions, K(h). (here h is not in units of

2π/a, further we remind the reader that the primitive unit cell length, a = 1 in this

treatment.)

2. Obtain intensity K(h) at points h = π and h = π/2.

3. Utilize the identity 2
K(π/2)

− 1
K(π)

= 3λ
4

to obtain the stiffness from the neutron

scattering intensity.

3.3.4 Summary

In this chapter, we investigated Ising spins on a pyrochlore lattice and found:

• Flat bands (q-independent) in the eigenspectrum corresponding to eigenvector |P 〉

(see Eq. (3.22)) in the [hhl] plane.

• Geometrically, the NSF channel has contributions only from two of the four sublat-

tices in a tetrahedron. In this thesis, these are sublattices 3 and 4 which define the
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α-chains (see Fig. 3.5 and Fig. A.1).

• The neutron scattering expression (in Fourier space) may be written as 〈P |M−1|P 〉

(see Eq. (3.48)) wherein the neutron projector |P 〉, is proportional to the eigenvector

for the flat bands (for NSF scattering) in the [hhl] plane. This yields Eq. (3.53), i.e.

dσ(Q)
dΩ
|NSF = 4

3λ
.

• NSF is also flat for ESI (J2 = J3a, see Ref. [63]) and Ising spins on a breathing

pyrochlore (see next chapter and Appendix A.3) as the interaction matrix in these

cases share the eigenvector |P 〉 corresponding to the flat bands in the [hhl] plane.

• The flat NSF intensity provides us a way to directly measure the stiffness of the

Coulomb phase. The neutron scattering probes correlations of the emergent fluxes

along (and perpendicular to) the neutron polarization directions (see Eq. (3.58)).

• A general scheme may be utilized to obtain the stiffness λ in the presence of further-

neighbour interactions, as detailed in the previous section, using Eq. (3.70) and the

geometrical identities of Eq. (3.69).

In this chapter, we studied Ising pseudo-spins on the pyrochlore lattice. We looked

at magnetic neutron scattering using the Large-N approximation and further studied the

spin flip and non-spin flip channels for polarized neutron scattering. In the next chapter,

we shall study Heisenberg spins on a related lattice called the breathing pyrochlore lattice.

Therein, we find various ordered phases including one ordered phase which is unreported in

previous studies and a state characterized by line degeneracies11. We also find a phase with

11Line degeneracies in the momentum space eigenspectrum of the adjacency matrix
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emergent tetrahedral clusters interacting via AFM exchange and a classical spin liquid for

nearest-neighbour AFM interactions.

69



70

Figure 3.7: Figure shows neutron scattering structure factors S(Q) (using large-N) for spin
ice, in the [hhl] plane ((a), (b) and (c)), [hk0] plane ((d), (e) and (f)) and its intensities
on linecuts along (00h), (hhh) and (hh0) lines ((g), (h) and (i) respectively). (a) and
(d) show the total neutron scattering while (b), (e) and (c), (f) show the SF and NSF
channels respectively. Note the characteristic pinch-points at [111] and [200]. (c) shows
the NSF channel, flat (upto machine precision) with intensity, 4

3λ
≈ 2.6139. (g), (h), (i)

show equality of intensities along the aforementioned directions. Parameters: T = 0.1,
J = 1, λ = 0.510075. The axes are in units of 2π

a
, except the y-axes of (g), (h) and (i)

which are intensities, read off as 2.6139..+ Int.× 10−12, where “Int.” is the y-axis value.
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Figure 3.8: Figure shows neutron scattering structure factors S(Q) (using large-N) for
ESI, in the [hhl] plane ((a), (b) and (c)), [hk0] plane ((d), (e) and (f)) and its intensities
on linecuts along (00h), (hhh) and (hh0) lines ((g), (h) and (i) respectively). (a) and
(d) show the total neutron scattering while (b), (e) and (c), (f) show the SF and NSF
channels respectively. The pinch-points persist in ESI and the NSF channel is still flat
(upto machine precision) with intensity 4

3λ
≈ 2.610. (g), (h), (i) show equality of intensities

(upto machine precision) along the aforementioned directions. Parameters: T = 0.1, J = 1,
J2 = J3a = 0.02, λ = 0.5107969. The axes are in units of 2π

a
, except the y-axes of (g), (h)

and (i) which are intensities, to be read off as 2.610.. + Int. × 10−12, where “Int.” is the
y-axis value. .
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Figure 3.9: Neutron scattering structure factors S(Q) (using large-N) for spin slush: A
point on the ESI line given by J2 = J3a = J/4, at which the spins exhibit dynamical
heterogeneity and the ground state is composed of two-in/two-out as well as three-in/one-
out, three-out/one-in and all-in/all-out configurations of spins (see Ref. [63] for further
details). Plots are in the [hhl] plane ((a), (b) and (c)), [hk0] plane ((d), (e) and (f)) and
its intensities on linecuts along (00h), (hhh) and (hh0) lines ((g), (h) and (i) respectively).
(a) and (d) show the total neutron scattering while (b), (e) and (c), (f) show the SF and
NSF channels respectively. The scattering shows half moon features, centred at the zone
centres characteristic of spin slush. (g), (h), (i) display the linecuts showing q-independent
neutron intensities. The NSF channel is flat with intensity 4

3λ
≈ 1.6284. Parameters:

T = 0.4, J = 1, J2 = J3a = 0.25, λ = 0.818779. The axes are in units of 2π
a

, except the
y-axes of (g), (h) and (i) which are intensities, read as 1.628 + Int.× 10−12.
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Figure 3.10: Figure shows neutron scattering structure factors S(Q) (using large-N) for
Ising spins on a pyrochlore interacting via further-neighbour interactions, J2 and J3a of
unequal magnitudes. S(Q) is shown in the [hhl] plane ((a), (b) and (c)), [hk0] plane ((d),
(e) and (f)) and its intensities on linecuts along (00h), (hhh) and (hh0) lines ((g), (h) and
(i) respectively). (a) and (d) show the total neutron scattering while (b), (e) and (c), (f)
show the SF and NSF channels respectively. Note the checkerboard pattern in the NSF
channel. (g), (h), (i) show equal intensities along the aforementioned directions.This would
have been flat if J2 = J3a, but is now modulated via Eq. (3.70) and the maxima is given
by 4

3λ
≈ 4.573. Parameters: T = 1.6, J = 1, J2 = −0.1, J3a = −0.2, λ = 0.2915469. The

axes are in units of 2π
a

except the y-axes of (g), (h) and (i) which are intensities.



Chapter 4

Heisenberg Spins on a Breathing

Pyrochlore Lattice

4.1 Introduction and Materials

In this chapter, we study Heisenberg spins on a breathing pyrochlore lattice (see Appendix

A.3). The breathing pyrochlore lattice is composed of corner-sharing tetrahedra of two

different sizes, i.e. all the “up” tetrahedra are larger (in our conventions) than the “down”

tetrahedra (see Fig. 4.1). This breathing anisotropy leads to two new free parameters. One

of these is due to the ratio (Bf ≡ Jb
Ja

) of interaction strengths between the larger (Jb) and

smaller tetrahedra (Ja) and the other parameter is the ratio between the bond lengths of

the two tetrahedra given by γ ≡ Lb
La

. Here, Lb is the bond length of the bigger tetrahedra

and La is that of the smaller tetrahedra (see Fig. 4.1(b)). After a short discussion of

74



Figure 4.1: Figures illustrate the breathing pyrochlore with blue large tetrahedra and
small red ones. Panel (a) shows the breathing lattice and illustrates that the breathing
pyrochlore may be constructed from tetrahedra of just one type i.e. either the red ones or
the blue ones (the author suggests imagining the blue tetrahedra to be transparent). Panel
(b) shows a tetrahedral unit with the two couplings introduced in the text namely Ja and
Jb as well as the bond lengths i.e. La and Lb.

materials and relevant models, we first review the Ja and Jb case, to survey the magnetic

phases without any further-neighbour coupling. We find the well studied classical spin

liquid for both AF Ja and Jb, the ferromagnet for both FM Ja and Jb and for oppositely

signed Ja and Jb, we find a phase with clusters of spins behaving as emergent moments and

interacting via AFM interactions [21]. We then add a further J2 coupling (see Fig. 4.10),

study the ordered phases at the mean field level and provide phase diagrams of the same.

Naturally, one begins by asking what happens in the extreme case where either coupling

Ja or Jb is negligibly small. This is the isolated tetrahedra limit where the single tetrahedron

model is valid [23, 67]. The breathing pyrochlore lattice is constructed with layers of small
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tetrahedra where the big tetrahedra just take up the space between the layers (see Fig. 4.1

and Appendix A.3), thus the ions in a small tetrahedra cluster together and the physics of

the isolated tetrahedra emerges.

Ba3Yb2Zn5O11 (BYZO) is an example of such a compound where the interactions are

significant for just the small Yb3+ tetrahedra (Bf ≈ 0) [23, 67, 68, 69]. Moreover, the bond-

length ratio γ is close to 2, leading to effectively decoupled tetrahedron. Inelastic neutron

scattering and thermodynamic data were used to extract the relevant parameters for the

effective single tetrahedron anisotropic exchange model and found predominant Heisenberg

anti-ferromagnetic exchange with a large Dzyaloshinskii-Moriya interaction [67].

Intermediate range of Bf is realized in a family of A-site ordered spinels [70, 71] (space

group F4̄3m) involving transition metal ions on a breathing pyrochlore lattice. This so

called chromium breathing pyrochlore family has recently gained much attention [22, 72]

and consists of a broad range of compounds. Most notably LiInCr4O8, LiGaCr4O8, LiInCr4

S8, LiGaCr4S8, CuInCr4S8 and CuInCr4Se8 were studied using density functional theory

(DFT) [73] and PFFRG (pseudo-fermion functional renormalization group) [13, 74, 75, 76]

and it was concluded that further-neighbour exchange leads to appreciable change in the

low temperature correlations and magnetic behaviour as compared to just the nearest-

neighbour case [22].

Further, while the oxide materials have anti-ferromagnetic nearest-neighbour interac-

tions, substitution of the oxygen with larger anions such as sulfur or selenium was noted

to enhance ferromagnetic exchange couplings for one or both tetrahedra [21, 22]. DFT

analysis was carried out at low temperature for LiInCr4O8 and LiGaCr4S8. All the above
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Material Ja Jb Material Ja Jb

LiInCr4O8 AFM AFM LiGaCr4S8 FM FM

LiGaCr4O8 AFM AFM CuInCr4S8 AFM FM

LiInCr4S8 FM FM CuInCr4Se8 FM FM

Table 4.1: Showing the nearest-neighbour exchange couplings obtained from the DFT
analysis of Ref. [22] at room temperatures. Larger anions such as selenium and sulpher
are seen to enhance FM couplings as compared to oxygen.

mentioned compounds were also analyzed (using DFT) at room temperature. They found

that, while LiInCr4O8 and LiGaCr4O8 have spins on both tetrahedra interacting via anti-

ferromagnetic exchange, LiInCr4S8 , LiGaCr4S8 and CuInCr4Se8 have both Ja and Jb as

ferromagnetic. CuInCr4S8 was found to have opposite signs for the two tetrahedra [22] (see

Tab. 4.1). Further-neighbour interactions also play a prominent role in these compounds

with larger coupling strengths in the sulfide compounds.

The isotropic Heisenberg model with anti-ferromagnetic Ja = Jb is a classical spin

liquid [21, 22] and has a large groundstate degeneracy, which manifests as two low-lying

flat bands (see Sec. 3.2.2 and Fig. 4.4) in the eigenspectrum. The addition of J2 and other

further-neighbor interactions typically lift this ground state degeneracy and the model

tansitions into an ordered state (below Tc acc. to MFT, see Eq. (2.50)).

Interestingly, the compounds LiInCr4O8 and LiGaCr4O8, first synthesized in 1966 [70,

77], undergo a two-state symmetry lowering process: a magneto-structural transition fol-

lowed by magnetic ordering as one lowers the temperature [72, 78]. The effect of distortions

and spin-lattice coupling was theoretically examined based on a “site-phonon” Heisenberg
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model. Such a model leads to effective bi-quadratic spin-spin interaction which drives the

system to order into a qord = (1/2, 1/2, 1/2) state in the presence of strong spin-lattice

coupling and into a qord = (1, 1, 0) state when spin-lattice coupling is weak [72]. The

chromium ions have a spin of S = 3/2 and our large-N and MFT computations should be

quite relevant for temperatures above any such aforementioned transition [21, 22].

In the next section, we introduce the Hamiltonian for isotropic spins residing on a

breathing lattice. We first analyze the scenario for Ja 6= Jb and then consider the effect of

next nearest-neighbour exchange coupling, J2.

4.2 Model Hamiltonians

In this section, we introduce the effective Heisenberg Hamiltonian with inequivalent nearest-

neighbour exchange couplings Ja and Jb. It is given by [21]:

H =
1

2

 ∑
(i,c); (j,d)∈A

JaA
cd
ij Sci · Sdj +

∑
(i,c); (j,d)∈B

JbB
cd
ij Sci · Sdj

 . (4.1)

Here Ja is the magnetic exchange between ions in the smaller tetrahedra while Jb represent

the couplings in the larger tetrahedra. i, j are FCC site labels and c, d are sublattice

labels. The first and second sum are between spins in the small (A) and big (B) tetrahedra

respectively. Acdij and Bcd
ij are the adjacency matrices for the small and big tetrahedra in

real space. Their Fourier transforms may be found in Appendix A.4. Further information

on the breathing lattice may be found in Appendix A.3. The Fourier transform definition
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is reproduced for convenience and is given by:

J cd(q) =
∑
i,j

J cdij e
iq·(Rc

i−Rd
j ). (4.2)

Here, J(q) is the Fourier transformed adjacency matrix and Ra
i denotes the site on FCC

lattice point i and sublattice c. Here, J cdij is the real space adjacency matrix and is given

by:

J cdij = JaA
cd
ij + JbB

cd
ij (4.3)

We study the eigensystem of J(q) and utilize the ordering wavevectors (qord) to characterize

the phases. The qord are the wavevectors at which the eigenvalues of J(q) is a global

minimum (further discussed in later sections, see Sec. 4.3.2 and Eq. (2.50) and ensuing

discussions).
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Figure 4.2: Mean field phase diagram for Ja and Jb. A Coulomb spin liquid is stabilized
when both exchange parameters are AFM and positive (in the first quadrant). Negative
parameters result in a FM ordered phase with ordering wavevector (qord) = 2π

a
(0, 0, 0).

Oppositely signed Ja and Jb result in an effective AFM-FCC phase with ordering wavevec-
tors of the type (qord) ≡ 2π

a
(h, 0, 1) and other symmetry related points, in which h is not

selected at the MF level, thus exhibiting a line degeneracy.



4.2.1 Review of Ja - Jb Phase Diagram

We first review the expected phases and spin-structure factors with differing Ja and Jb

but with no further-neighbour interactions. While Benton and Shannon constructed their

phase diagram using analytical arguments [21], we do so by characterizing the ordering

wavevectors at which the eigenvalue of the momentum space adjacency matrix is minimum

for all q-vectors in the FBZ (see Fig. 4.2, Eq. (2.50) and following discussions, also see

Ref. [35]). In this section, Q and q are used interchangeably and denote any wavevector

in reciprocal space. The transition temperature, Tc, according to mean-field theory is this

global minimum eigenvalue divided by the number of components of the spins. We denote

the four unique eigenvalues in q-space as Λ1, Λ2, Λ3 and Λ4.

For Ja = Jb, that is the isotropic limit, there are two degenerate low lying flat (inde-

pendent of q) bands in the eigenspectrum (see Sec. 3.2.2 and Fig. 4.3) indicating mas-

sive ground state degeneracy in the FBZ leading to the characteristic pinch-points (see

Fig. 4.4(c)) in the spin structure factor [11, 19, 21, 42, 43, 45, 79]. Likewise, for different

anti-ferromagnetic Ja and Jb, this degeneracy persists and we observe pinch-points (see

Fig. 4.4(c)) at low temperatures hinting at the existence of a Coulomb phase [11, 17, 45].

This q-independent degeneracy may be further investigated by analytically computing the

eigenvalues, two (six when using 12× 12 adjacency matrix1) of which are given by [21]:

Λ1 = Λ2 = −Ja − Jb. (4.4)

1The Fourier transformed 12× 12 adjacency matrix for isotropic interactions takes the form Jcd(q) δµν
where c, d are sublattice labels and µ, ν are spin components.
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Figure 4.3: Eigenvalues Λ(q), as a function of q in units of 2π
a

(h takes values in the ticks).
Here Ja = 1 and Jb = 0.5. Note the low lying flat bands along the (hhh) and (hh0)
signifying massive ground state degeneracy.

Figure 4.4: Spin susceptibilities S(Q) in the [hhl] and [hk0] planes using large-N approx-
imation. Note the pinch-points in panel (a) (in the [hhl] plane) at [220] Intensity has
arbitary units and the axes are in units of 2π

a
. Here Ja = 1, Jb = 0.5 and T/Ja = 0.005.



This is the minimum branch for both anti-ferromagnetic Ja and Jb. This condition leads

to net spin of each tetrahedron vanishing separately to minimize the Hamiltonian [60, 79].

To show this, we rewrite the sum in the Hamiltonian as a sum over spins in each tetrahedra

(magnetization is denoted by Mτ ) and a sum over terahedra (an overall additive constant

ignored here [79]), given by:

H =
1

2

(
Ja
∑
τ∈A

Mτ
2 + Jb

∑
τ∈B

Mτ
2

)
, (4.5)

where the magnetization in each tetrahedra is given by:

Mτ =
∑
a∈τ

Sa.

Here, Sa is a spin in the tetrahedron denoted by τ . The above equation shows that Mτ = 0

is a classical ground state of the system with positive Ja and Jb [21, 79]. The other two

eigenvalues are q-dependent and are given by:

Λ3,4(q) = Ja + Jb ±G(q), (4.6)

where G(q) is given by:

G(q) = 2

√
JaJb cos

(qz
2

)(
cos
(qx

2

)
+ cos

(qy
2

))
+ JaJb cos

(qx
2

)
cos
(qy

2

)
− JaJb + J2

a + J2
b .

Fig. 4.3 and Fig. 4.4 illustrate the case for Ja = 1 , Jb = 0.5. The eigenvalues,

Λ(q), which are functions of the reciprocal lattice vectors q are plotted along the (hhh)
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and (hh0) lines showing the persistent degeneracy in the FBZ. Fig. 4.4 shows the spin

structure factors S(Q) (computed using Eq. (2.68) and Eq. (2.65)2) and the pinch-points

therein at 2π
a

(0, 0, 2), 2π
a

(0, 2, 2) and symmetry related points. Thus we see, for the case of

anti-ferromagnetic and inequivalent Ja and Jb , there is a degenerate classical ground state

(which translates to extensive number of degenerate ordering wavevectors at the MF level)

and the model is in a Coulomb phase at low temperatures [21].

When Ja and Jb are both ferromagnetic (negative in our convention), the Hamiltonian

(4.5) is minimum for Mτ
2 = 1. Thus the magnetization on each tetrahedra is maximal and

the system has a collinear ferromagnetic ground state (see Fig. 4.17(a)). This is further

illustrated in Fig. 4.5 showing the eigenvalues and the spin-susceptibility (Fig. 4.6) S(Q)3.

Fig. 4.5 shows the minimum of the eigenvalues appearing at 2π
a

(0, 0, 0) and other zone

centres signifying a q = 0 ferromagnetic ordered state.

When Ja and Jb are of opposite sign, the ferromagnetic tetrahedra with four spins

collinearly align and behave as a single magnetic moment (effective S = 6 for Cr3+ ions4)

which interacts anti-ferromagnetically with the other effective moments arranged in an

FCC lattice (see Fig. 4.7). The system thus behaves as an effective FCC anti-ferromagnet

(effective AFM-FCC) and the spin structure factor S(Q) of this system is given by S(Q)

of the FCC anti-ferromagnet multiplied with the square of the Fourier transform of the py-

rochlore magnetic basis form factor (see appendices of Ref. [22]). In the nearest-neighbour

anti-ferromagnetic FCC model, it is known that thermal fluctuations favour states with

2In the large-N approximation, we first find the lagrange multiplier λ using Eq. (2.65) and then sub-
stitute it in Eq. (2.68) to obtain the structure factor which is plotted in q-space.

3Q and q are used interchangably here.
4S = 3/2 for Cr3+ ions.

84



85

Figure 4.5: Eigenvalues Λ(q), as functions of q in units of 2π
a

(h takes values of the ticks).
Here Ja= -0.7 and Jb= -0.5. Note the minima at ordering vectors 2π

a
(0, 0, 0) and other

symmetry related points.

Figure 4.6: Spin susceptibilities S(Q) in the [hhl] and [hk0] planes using large-N approxi-
mation. Intensity has arbitrary units and the axes are in units of 2π

a
. Here Ja = -0.7, Jb =

-0.5 and T/Ja = 0.6 showing peaks at ordering vectors 2π
a

(0, 0, 0) and other zone centers.



Figure 4.7: Figures show the effective anti-ferromagnet on a FCC lattice. (a) Ferromag-
netically interacting spins on a tetrahedra, cluster to form effective magnetic moments. (b)
shows these effective moments (anti-ferromagnetically interacting) on the FCC lattice.

qord = 2π
a

(1, 0, 0) referred to Type I AFM [80] as evidenced by spin-wave calculations and

Monte-Carlo simulations [81, 82]. The breathing pyrochlore with Ja and Jb of opposite

signs has a line degeneracy along the 2π
a

(1, 0, h) and symmetry related directions [21]. This

is illustrated in Fig. 4.8, where the black dashed lines are the minima along the 2π
a

(h, 0, 1)

direction. In this phase the spin structure factor show distinctive square ring features as

shown in Fig. 4.9(b).

Similar to the case of AFM spins on the FCC lattice, one expects order by disorder

to select the ordering wavevectors given by qord = 2π
a

(1, 0, 0) and its symmetry related

points [21]. This is further strengthened by pseudo-fermion functional renormalization

group (PFFRG) calculations [79] which take into consideration both thermal and quantum

order by disorder phenomena and show the selection of ordering vectors qord = 2π
a

(1, 0, 0)
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Figure 4.8: Eigenvalues Λ(q), as functions of wavevectors q in units of 2π
a

. Here Ja= 1 and
Jb= -0.5. Note the degenerate minima at ordering vectors of the form 2π

a
(q, 0, 1) and other

symmetry related points.

Figure 4.9: Spin susceptibilities S(Q) in the [hhl] and [hk0] planes using large-N approxi-
mation. Note the square ring features in the [hk0] plane. Intensity has arbitrary units and
the axes are in units of 2π

a
. Here Ja = 1, Jb = -0.5 and T/Ja = 0.1.



in this system.

This subextensive (line degeneracies) classical ground state degeneracy is indicated by

the formation of square ring features of S(Q) in the [hk0] plane (see Fig. 4.9(c)) which

extend from 2π
a

(1, 0,−1) to 2π
a

(1, 0,+1). This phase is called the effective AFM-FCC phase

in this thesis.

Summarizing, we find:

• Coulomb phase when Ja, Jb > 0.

• Ferromagnet when Ja, Jb < 0.

• Effective AFM-FCC phase when Ja × Jb < 0.

In this section, we studied the effect of inequivalent nearest-neighbour exchange Ja 6= Jb.

This analysis has not considered any further-neighbour exchange. However, the effect of

further-neighbour interactions is significant and plays a key role in the physics of such sys-

tems [11, 22, 42]. In the next section, we consider the effect of further-neighbour interac-

tions and analyze what happens in the system in the presence of a second nearest-neighbour

J2 interaction.
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Figure 4.10: Figure showing part of the breathing pyrochlore with nearest-neighbour ex-
change couplings Ja and Jb. Also included are second nearest-neighbour coupling J2 and
two inequivalent third neighbour coupling J3a and J3b connecting same sublattices in dif-
ferent tetrahedra.



4.2.2 Why study the effect of further-neighbour interactions?

In the pure Ja − Jb model with both ferromagnetic exchange, while one expects ferromag-

netic q = 0 order such as in CuInCr4Se8 [70], two of the studied chromium sulfides, (in

Ref. [22]) LiInCr4S8 and LiGaCr4S8 were theoretically found to not order ferromagnetically

(both have ferromagnetic Ja, Jb). Instead, their spin-structure factors show square ring

features indicating that the system is an effective AFM-FCC just like CuInCr4S8 (where

it is expected) [22]. This behaviour is readily explained by considering Jeff
FCC, which is the

effective coupling between magnetic moments on the FCC lattice given by [22, 83]:

Jeff
FCC = (JAFM + 4J2 + 2J3a + 2J3b)/16. (4.7)

Here JAFM is the nearest-neighbour coupling of the anti-ferromagnetically coupled tetra-

hedra. J2, J3a and J3b are the second and two inequivalent third neighbour couplings

respectively (see Fig. 4.10). Jeff
FCC for LiInCr4S8, LiGaCr4S8 and CuInCr4S8 is positive (ef-

fective FCC-AFM) while it is negative (ferromagnetic) for CuInCr4Se8. Most notably, a

recent neutron scattering study on LiGaCr4S8, found both ferromagnetic nearest-neighbour

exchange Ja and Jb, with anti-ferromagnetic further-neighbour exchange [83], qualitatively

agreeing with the DFT based estimations in Ref. [22]. This material is understood to sta-

blize in the effective AFM-FCC phase (discussed in previous section) where ferromagnetic

tetrahedral clusters reside on an FCC lattice with emergent moments interacting via an

anti-ferromagnetic exchange [21, 22, 83].

Since there are no materials in the universe which are modelled exactly with nearest-

neighbour exchange and since these magnetic pyrochlore materials are very sensitive to
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further-neighbour exchange [11, 42, 79], it is of considerable interest to undertake a sys-

tematic study of the effect of further-neighbor interactions in the breathing system to

characterize the different ordered phases as well as to uncover interesting phenomena.

Such studies would hopefully also encourage experimentalists to grow crystals of candidate

materials to study them further.

91



(a) (b)

Figure 4.11: Panel (a) shows the breathing pyrochlore with second nearest neighbour
interactions, J2. (b) shows the kagomé plane perpendicular to the 〈111〉 directions of
the breathing pyrochlore (see Fig. A.3). This figure illustrates competing FM J2 and
Jb exchange (of comparable magnitudes) which, if J2 wins, the spin will point along the
“green” arrow while if Jb wins, will point along the “red” arrow.

4.3 Competition between J2 and Jb

4.3.1 Motivation

The breathing pyrochlore system offers a unique opportunity to study the physics of highly

frustrated spins on corner sharing tetrahedra of two different sizes interacting via Ja and

Jb. Depending on the material, one may have Ja and Jb of opposite signs as well as

differing magnitudes [21]. Most real materials additionally have non-zero further-neighbor

interactions (see Fig. 4.10). Such further-neighbour interactions play a key role in lifting the
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extensive ground state degeneracy of the pure AFM Heisenberg model on the pyrochlore

lattice [11, 42]. For example, in the previous subsection, we discussed how (theoretically)

ferromagnetic order is evaded in LiInCr4S8, LiGaCr4S8 with ferromagnetic Ja, Jb , due to

the action of further-neighbour couplings [22].

In this section, we investigate the effect of adding a second nearest-neighbor coupling

J2 on the breathing pyrochlore. Fig. 4.11 shows the three interactions that are the subject

of this study. The plane projected perpendicular to the 〈111〉 directions are alternating

kagomé and triangular planes, wherein the interactions are showed in Fig. 4.11(b) (also

see Fig. A.3). In Fig. 4.11(b), we illustrate the scenario when the Ja coupling is large and

anti-ferromagnetic such that the vector sum of the classical spins on the small tetrahedra is

0, while Jb and J2 are much smaller (compared to Ja) and of comparable magnitudes. Note

how Jb and J2 conspire to frustrate the system when both the couplings are simultaneously

ferromagnetic or anti-ferromagnetic.

In the presence of such competing microscopic interactions, the system is expected to

order into a variety of different phases depending on the magnitude and signs of Jb and J2,

analogous to the case of the J − J2 model studied in Ref. [79]. In the following sections,

we have undertaken a characterization of these classical ordered states at the mean field

level and have investigated the high temperature spin-susceptibility of the different phases

using mean field theory.
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4.3.2 Methods

We start with the Heisenberg model on the breathing pyrochlore with next-nearest neighbor

interactions J2, given by.

H =
∑
〈i,j〉A

JaAij (Si · Sj) +
∑
〈i,j〉B

JbBij (Si · Sj) +
∑
〈〈i,j〉〉

J2Cij (Si · Sj) . (4.8)

Ja (Jb) is the coupling strength and Aij (Bij) the adjacency matrix of the small (large)

tetrahedra (see Appendix A.4). 〈i, j〉A ( 〈i, j〉B) denotes pairs of spins in a small (large)

tetrahedra5. The third sum takes pairs of second nearest neighbour spins (denoted by

〈〈i, j〉〉) with interaction strength J2 and Cij is its usual adjacency matrix (see Appendix

A.4). The rest of the discussion in this chapter utilizes mean-field theory (MF) developed

in Chap. 2. According to the mean-field description [35, 36] (sign convention with positive

J as AFM), the temperature below which the system orders is the MF critical temperature

Tc, given by:

Tc = −Λmin(q)

3
, (4.9)

where Λmin(q) is the minimum of the eigenvalues for all wavevectors q. The symmetry

related set of reciprocal wavevectors q at which this occurs are termed ordering wavevectors,

qord. We remind the reader that the wavevectors q are in units of 2π
a

where a is the unit

cell dimension. For the remainder of this presentation, we may refer to wavevectors 2π
a

(pqr)

as (pqr) (removing the 2π
a

for convenience), especially while characterizing ordered phases

but at times will use 2π
a

(pqr) for clarity.

5Here i and j are just labelling all the sites in the pyrochlore lattice. In other sections of this thesis, i
and j refer to FCC lattce site labels and are specified as such.
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At criticality, different phases are expected to have different ordering wavevectors qord,

which characterize them [35]. The configuration of the spins in the system at T → Tc is

completely controlled by these ordering wavevectors6. To find these qord, we Fourier trans-

form the adjacency matrices and diagonalize them to find their global minimum eigenvalues

over all wavevectors q in the FBZ (see Appendix A.2). The Fourier transformed adjacency

matrices are given in Appendix A.4 and may be computed via:

J cd(q) =
∑
k,l

J cdkl e
iq·(Rc

k−R
d
l ), (4.10)

where the sum is over all FCC sites k and l. c and d label the sublattices and Rc
k is the

location of the spin in sublattice c of FCC site k. Here J cdkl , the adjacency matrix is given

by:

J cdkl = JaA
cd
kl + JbB

cd
kl + J2C

cd
kl . (4.11)

We also utilize the spin structure factor formulae using mean field theory, developed in the

text (Eq. (2.49)), reproduced here for convenience:

S(Q) =
4∑

c,d,α

3∑
x,µ

(
Uαx
cµ (q)Uαx

dµ (q)

3 + λαx (q)
T

)
eiG·(rc−rd). (4.12)

We remind the reader that in the above equation, U(q) is the unitary matrix which diag-

onalizes J(q) to λ(q), which is the diagonal matrix with eigenvalue entries. The labels c,

6This is irrespective of whether the “strong” spin length constraint (|S|2 = S2) utilized in the Luttinger-
Tisza method is upheld [84]. The question of the ground state at T = 0 (as investigated using Luttinger-
Tisza method in Refs. [79, 85, 86]) is complementary but distinct from the question of classical ordered
phases at Tc. Our work deals with the latter case.
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d refer to the sublattices and rc is the position of the c-th sublattice inside the unit cell.

µ labels the spin components and α, x index the eigenvectors and the eigenvalues. Here

Q = q + G where G is a reciprocal lattice vector and q is a reciprocal vector in the FBZ.

We rearrange Eq. (4.12) and define the quantity F µx
α (Q) in the following way:

F µx
α (Q) =

∑
c

Uµx
cα (q) eiG·rc , (4.13)

where F µx
α (Q) is referred to as the magnetic unit cell form factor. Substituing the above

equation in Eq. (4.12) and summing over µ, the structure factor S(Q) is rewritten in the

following way:

S(Q) =
∑
α,x

|F x
α (Q)|2

3 + λαx (q)
T

. (4.14)

At T → Tc , only the critical (soft)7 modes will contribute significantly. Thus, we present

S(Q) plots corresponding to the reduced temperature characterized by τ = T−Tc
Tc

. The

structure factor at criticality will read:

S(Q) =
∑
θ

|F θ(Q)|2

3 + λθ(q)
T

, (4.15)

where the θ labels the critical modes. Just computing the numerator of the above equa-

tion, we obtain the sum of the magnetic unit cell form factor squared for just the critical

modes. This quantity at the MF ordering wavevectors qord, denoted by f , has been further

7Critical or soft modes refer to the eigenmodes of J(q) labelled by x, α here, which correspond to the
branches in which the global minimum of the eigenvalues exist. These are the modes which contribute
maximally to the structure factor intensity at T → Tc.
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computed to differentiate between phases in the following sections. f is given by:

f =
∑
θ

|F θ(qord)|2. (4.16)

This quantity is just the numerator of Eq. (4.15) and is a number. It characterizes the

intensity of the structure factor at the ordering wavevectors qord, without considering the

modulation of the eigenvalues in the denominator of Eq. (4.15).

4.3.3 Implementation

Thus, the basic implementation scheme is to find the ordering wavevector qord as well as

the global minimum eigenvalue, Λmin(q). This implies that one has to mesh over all q in

the Brillouin Zone (see Appendix A.2), find the global minimum of the eigenvalues and

obtain qord for each tuple, Jb and J2. We obtain all symmetry related qord and refer to

only one of these for the rest of the presentation. This has been done numerically using

Python’s numpy module [50] and using Scipy’s optimization modules [87]. The modules

allow an easy way to implement the following minimization algorithms:

• Global minimization routine by brute force sampling over the BZ

• Nelder-Mead method also known as the downhill simplex method [88, 89, 90].

• Modified Powell algorithm (MP) [91].

• Truncated Newton algorithm (TN) [92].
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• Conjugate Gradient (CG) method/Fletcher Reeves algorithm in pp. 120 - 122 of

Ref. [92].

• BFGS (Broyden, Fletcher, Goldfarb and Shanno algorithm) pp. 136 in Ref. [92].

• Limited memory BFGS: L-BFGS [93]

• COBYLA (Constrained Optimization by Linear Approximation method) [94].

Further details may be found in Appendix B. The above algorithms are given an initial

guess point around which they finds the minima. We implemented all the above algorithms

such that they work in a sequence to save processing times8. The implementation scheme

is briefed below:

1. A mesh of q-vectors in the FBZ is generated.

2. The global minimization scheme outputs wavevectors qold corresponding to the global

minimum (this is relaxed a bit as explained in the next section).

3. The wavevectors from above qold, are used as guess points for the Nelder-Mead

method. This generates new wavevectors qnew. The eigenvalues (in the minimum

branch) corresponding to qnew is checked against qold. If the eigenvalues correspond-

ing to qnew is smaller, qnew is the output ordering wavevectors at Tc.

4. If the Nelder-Mead method does not work or stagnates for too long, qold is then used

an input for the modified Powell algorithm.

8Trying to simultaneously use all the algorithms and comparing the results is quite time consuming.
Instead one algorithm is utilized at a time.
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5. If this does not work then the next algorithm in the sequence is used with initial

guess point qold.

In practice, we note that only in very rare cases, the Nelder-Mead method will not work.

One has to provide new parameters (called adaptive parameters which modify how the

simplex moves) in the Nelder-Mead algorithm for three dimensional problems such as in

this work. The use of adaptive parameters [90] makes the method more accurate for 3D

systems of interest (for the same number of simplex steps).

In general, we observed that the derivative based methods (TN, CG, BFGS, L-BFGS)

fail near points of inflection. The Nelder-Mead method stagnates at local extrema and the

modified Powell algorithm may have issues on surfaces with discrete peaks. Moreover, one

must be aware of the possibility of stagnation at a local minimum. This indicates that the

initial guess point given to these algorithms must be close to the global minima. Thus,

in our work we have first implemented a global minimization of q-vectors in the FBZ and

these qs then function as our guess points for the above algorithms.

Further, we also implemented a valley-tracking algorithm, which was useful in exposing

certain subtleties of the phase diagram such as tracking the minima and qord of the multiply

modulated spiral phase (MMS) which stabilizes in only a small region of the phase diagram

discussed below. The basic scheme is:

• Find ordering wavevectors qinit for particular J2 and Jb.

• Vary the exchange parameters (either J2, Jb or both) by small number ∆.
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• Utilize qinit as a guess point for the Nelder-Mead method at new J2 and/or Jb to find

ordering wavevectors for the new exchange parameters qnew.

• Vary the exchange parameters again by a small amount and use qnew as new guess

points and repeat.

In this way we may continuously track the global minima valley as it modulates with

the exchange parameters, J2 and Jb. The phase diagrams (Fig. 4.12 and Fig. 4.16) were

constructed via multiple samples of parameters, J2 and Jb, which ranged from 502 samples

in usual runs to 1502 samples to investigate subtler features of the phase diagram (using

Python’s numpy [50] and Scipy [87] modules). Three complementary approaches were used

to find the ordering wavevetors for a given set parameters J2 and Jb, detailed below:

• The first approach being a brute force sampling over q-space in the FBZ with 703

points.

• The second approach, which yields better results, consists of sampling over 253 points

(in the FBZ) and sorting the wavevectors by their corresponding eigenvalues (of

J(q)). After sorting, we choose the wavevectors corresponding to the global minima

Emin, as well as the wavevectors corresponding to eigenvalues in the range Emin ± δ,

where δ is set to 10−10. This δ value might seem small but near the phase boundaries,

many different eigenmodes are competing which may have local minima very near

the global minima. After these wavevectors have been identified, they are sent as

initial input to the minimization algorithms developed above and yield better results

as compared to the brute force approach.
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• The valley-tracking algorithm was used to investigate the (1
2

1
2

1
2
), the multiply mod-

ulated spiral phase and their boundaries.

In this section, we set out the basic implementation scheme to study the various ordered

phases in the Ja-Jb-J2 model. We also provided details of how the phase diagrams were

obtained. In the next section, we introduce the phase diagrams, briefly discuss previous

studies and then jump right into the findings from the phase diagrams.

4.4 Mean Field Phase Diagram Jb vs J2

In this section, we provide details of the two obtained MF phase diagrams. The first phase

diagram referred to as PD1, has Ja set to unity and anti-ferromagnetic (positive sign in our

conventions) while varying Jb and J2 from [−Ja, Ja]. In the second phase diagram (PD2),

Ja is set to unity and is ferromagnetic (negative sign in our convention) while Jb and J2

are varied from [−Ja, Ja]. Cuts of PD1 and PD2 at certain lines, such as Ja = +1; Jb = −1

(in PD1) and Ja = −1; Jb = +1 (in PD2) with varying J2, will describe the same physics

since swapping the labels a and b do not change the system or its physics (note that the

bond length ratio γ = 1 for both PD1 and PD2).

Certain sections of the ground state phase diagrams have been previously studied in

the literature, namely the non-breathing limits Ja = Jb = ±1 vs J2 [79, 85, 86], where

their respective phase diagrams were studied and phases were characterized via Luttinger-

Tisza analysis and iterative minimization procedures. The J − J2 with J2 < 0 (FM)

model has been studied and found incommensurate (qq0) order [95, 96] and multiple-q
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incommensurate spirals [97]. Studies with further-neighbor (J3a, J3b, etc) interaction were

done as early as the year 1991, in the J1 − J2 − J3 − J4 Heisenberg model in Ref. [35]

(where they considered J3a = J3b) and much much more recently by Conlon et al. [42]

where they showed the supression of pinch-points on addition of weak further-neighbour

interactions. The J3a interaction (see Fig. 4.10) has been noted to result in similar effects

as the J2 interaction with a negative sign [11, 22, 42] and similar phases are expected to

stabilize with a J3a interaction, which has to be further investigated.

However, to the best of our knowledge this is the first study of the breathing pyrochlore

system with Ja 6= Jb and varying J2. In particular, the oppositely signed Ja, Jb quadrants

(defined below) of the phase diagrams had not yet been investigated before this work. On

studying the phase diagrams, we uncover phase competition, a possibly unreported phase

with ordering wavevector of the form (qq0) and a phase boundary with line degeneracies

along the (qqq) directions.

In the following sections, we discuss the obtained phase diagrams by referring to their

quadrants. In both phase diagrams, the first quadrant is Jb, J2 > 0, the second quadrant is

Jb > 0, J2 < 0, the third quadrant is Jb, J2 < 0 and the fourth quadrant is Jb < 0, J2 > 0.
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Figure 4.12: Phase diagram PD1 with Ja = +1 (AFM) and variation between Jb (y-axis)
and J2 (x-axis). The phases are characterized by qord as described in the text. The red
dashes along Jb > 0, J2 = 0 is the Coulomb phase described above. The (qq0) phase
along Ja = Jb = +1 in the second quadrant with J2 < 0 has been called the Kawamura
phase [79, 95, 97]. In the third quadrant with Jb < 0 and J2 < 0 the blue dotted line
is the phase boundary between the (1

2
1
2

1
2
) phase and the FM phase where there are line

degeneracies along the (qqq) directions. The orange strip (in the same quadrant) is the
heretofore unreported (qq0) phase and is sandwiched between the (1

2
1
2

1
2
) phase and the

effective AFM-FCC phase and becomes thinner as the magnitude of Jb gets smaller. This
strip has been noted to exist upto Jb = −0.05, but will require very high resolution in
sampling over J2 and Jb to investigate further. This phase diagram has been constructed
using multiple runs of varied resolutions over the parameters J2 and Jb. Each run consisted
of either brute force sampling over the BZ with 703 points or sampling over 253 points and
using the minima of that process as an input for the standard minimization algorithms to
find the global minimum eigenvalue.



Figure 4.13: Eigenvalues Λ(Q) along Q = 2π
a

(q00) (q along x-axes). Here, Ja = Jb = 1
and J2 is AFM. (a) shows the flat bands in the Coulomb phase. (b) shows minima at
q = 2, 0,−2 and is in the coplanar k = 0 phase. (c) shows 2nd and 3rd eigenvalues develop
deeper minima at ordering wavevectors 2π

a
(q00) centered on 2π

a
(000), signifying the planar

spiral phase [79, 85]

4.4.1 PD1: Ja = +1 (AFM) and Jb vs J2

The Heisenberg model on the pyrochlore lattice with AFM interactions Ja and Jb, as

mentioned above, has two degenerate flat bands in q-space where the minimum eigenvalue

is given by |Ja + Jb|. If Ja and Jb are oppositely signed, then the effective AFM-FCC (see

Fig. 4.8) phase with line degeneracies along wavevectors of the form 2π
a

(q, 1, 0) ensues. If

both Ja and Jb are FM, the FM phase ensues where the minima are in the dispersive bands

and the flat bands reside at higher energies (see Fig. 4.5). Addition of J2 into the mix leads

to a variety of new phases with both FM and AFM J2, causing dispersion in the flat bands
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(see Fig. 4.13 and Fig. 4.14). The dispersion results in the selection of (soft) critical modes

at the mean field Tc , which results in an ordered state characterized by the form of the

ordering wavevectors qord for which one or more of the eigenvalues are a global minimum.

In this section, we discuss PD1 (see Fig. 4.12) with AFM Ja = +1. When Ja = 1, Jb > 0

and J2 = 0, one finds a Coulomb spin liquid [11, 17, 18] phase with extensive groundstate

degeneracy which shows up in our mean field analysis in the form of degenerate flat q-

independent eigenbands in the FBZ.

In the first quadrant9 with AFM J2 we find a phase with ordering wavevectors of the

form 2π
a

(2, 0, 0) (see Fig. 4.13) extending upto J2/Ja = 0.499 along Ja = Jb = +1. This

phase has been studied by Lapa et al. [85, 86] and more recently by Iqbal et al. [79] who

find that the spins on each sublattice are ordered ferromagnetically. However, the spins on

different sublattices are not parallel and the spins in each tetrahedra vectorially sum up

to zero. This phase is dubbed the k = 0 phase. Intuitively, the AFM J2 coupling may be

viewed as having the same effect as in FM J3a which couples the same sublattices ferro-

magnetically. This may be seen in the S(Q) as subdominant peaks at the 2π
a

(1, 1, 1) [79]

(see panels (a),(b) of Fig. 4.19). This phase extends further into the phase diagram in the

first quadrant.

For J2/Ja > 0.5, we find the planar spiral (PS) phase [79, 85, 86] with ordering wavevec-

tors of the form 2π
a

(q, 0, 0) with incommensurate q (see Fig. 4.13). On the Ja = Jb line, this

q evolves from 0 to 0.46. In the first quadrant, this phase extends downwards where the

wavevector component q increases with increasing J2. This phase extends into the fourth

9We have used boldface to emphasize the different quadrants and bring the attention of the reader
quickly to the sections of interest.
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Figure 4.14: Eigenvalues Λ(Q) along Q = 2π
a

(qq0) (q along x-axes). Here Ja = Jb = 1 and
J2 is FM. (a) shows the flat bands in the Coulomb phase. (b) and (c) show the develop-
ment of broad minima centering around 2π

a
(110) and taking incommensurate values near

2π
a

(0.73∗, 0.73∗, 0). The star denotes that they are real numbers with truncated decimals.

quadrant where the opposite trend takes place where q decreases with increasing J2. As

we move from the k = 0 phase to PS, the peak at (200) separates into two peaks, one of

which is inside the FBZ and of the form (q00) (Fig. 4.13(c)). This is observed in S(Q)

(see panels (c), (d) of Fig. 4.19) and in Fig. 4.13 where the minimum of the eigenbands at

(000) morph into two minima centred on (000) at wavevectors of the form (±q00).

In the second quadrant of PD1 (Fig. 4.12) with J2 < 0, we find a 2π
a

(q, q, 0) ordered

state which has been extensively studied in the literature [79, 86, 95, 96, 97] and dubbed

the Kawamura Phase. It is a superposition of spirals with the ordering wavevectors and

approximately fulfils the constraint of spins summing to zero in each tetrahedron [79]. For

small FM J2, a partially ordered metastable collinear phase at finite temperatures was

found using Monte Carlo simulations by Chern et al. [96]. This phase was found to transi-
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tion to the Kawamura phase at low temperatures. In our analysis, we find incommensurate

2π
a

(q, q, 0) which evolves from q = 0.741 to q = 0.727 along Ja = Jb = +1. This phase

also extends further in the phase diagram and approximate modulation of q is noted from

0.7 to 0.74. The eigenvalues has further minima at incommensurate peaks/valleys near

2π
a

(5∗/4, 5∗/4, 0) [79]. These so called satellite peaks in Ref. [96] were attributed to finite

size effects but are actually present in the eigenspectrum. This may be noted as the twin

minima in Fig. 4.14 and peaks at (qq0) in panels (a) and (b) of Fig. 4.20. It would be

interesting to consider if the exotic phase described in Ref. [96] extends to the breathing

regime and the third quadrant. We also find the ferromagnetic phase (described in pre-

vious sections) with ordering wavevectors 2π
a

(0, 0, 0) in the second quadrant of the phase

diagram.

In the third quadrant, we find five distinct phases including the previously described

Kawamura phase, the effective AFM-FCC phase with 2π
a

(q, 1, 0) wavevectors and the ferro-

magnetic phase. We also find an ordered phase characterized by commensurate10 ordering

wavevectors 2π
a

(1
2
, 1

2
, 1

2
), which has been dubbed the Cubooctahedral stack [79, 85, 86].

However, we note that this name has been given to a 2π
a

(1
2
, 1

2
, 1

2
) ordered state in the

Ja = Jb = −1 line in PD2 (see Fig. 4.16) and thus we refer to it primarily with (1
2
, 1

2
, 1

2
).

In this phase, spins in the kagomé layer point towards the 12 vertices of the Cubocta-

hedron and realizes a 12 sublattice magnetic structure [79, 85, 86]. Similar phases have

been found [35] and discussed in the literature such as by Fritsch et al. [98] where elastic

neutron scattering on the non-breathing compound, Tb2Ti2O7, noted peaks at 2π
a

(1
2
, 1

2
, 1

2
)

10In our numerical calculations, we find each wavevector component as numbers which are exactly 1/2,
upto machine precision
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Figure 4.15: Figure shows minimum eigenvalues Λ(Q) along Q = 2π
a

(qq0) and Q = 2π
a

(qqq).
Here Ja = 1,Jb = −0.3 and J2 is FM. The x-axis is just the numerical value of q. (a) shows
a broad minima from q = −0.5 to +0.5. This is the (q10) phase. In (b), the blackdots show
minima at wavevectors of the form (qq0) which is the unreported phase. Panel (c) shows
the sharp minima at ordering wavevectors 2π

a
(1

2
, 1

2
, 1

2
) and then (d) shows the resurgence of

the (qq0) peak in the Kawamura phase (compare with Fig. 4.12).

and symmetry related wavevectors. Fig. 4.15(c) illustrates this case and shows minima in

the eigenvalues at (1
2
, 1

2
, 1

2
). The peaks at (1

2
, 1

2
, 1

2
) may be noted in the structure factors

(see panels (c) and (d) of Fig. 4.20). As the magnitude of FM J2 increases, the Kawamura

phase is stablized (see Fig. 4.15(d)) for moderately ferromagnetic Jb. Further increasing

the magnitude of J2, the FM (000) phase ensues.

Sandwiched between the effective AFM-FCC (q10) phase and the (1
2
, 1

2
, 1

2
) phase, we

find a heretofore unreported phase with ordering wavevectors 2π
a

(q, q, 0), where q may ap-

proximately take values between 1 and 0.8. This phase has been noted to have vanishingly

small width upto Jb/|Ja| = 0.05. Interestingly, the same phase extends into PD2 (see

Fig. 4.16) with Ja = −1. Here, we see an approximate symmetry in the regions of PD1

(Fig. 4.12) given by Ja = +1; Jb < 0; J2 ∈ [0,−0.2] and PD2 (Fig. 4.16) parameterized by
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Ja = −1; Jb > 0; J2 ∈ [0,−0.2] in the second quadrant of PD2. This symmetry should be

investigated more to find out why for this range of values of J2, only the fact that Ja and

Jb are oppositely signed is enough to guarantee this approximate symmetry. The structure

factors for this phase is provided in panels (c) and (d) of Fig. 4.21. The fourth quadrant

hosts the above mentioned (q00) and effective AFM-FCC (q10) phase. At this point we

jump into the next phase diagram PD2.
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Figure 4.16: Phase diagram with Ja = −1 (FM) and variation between Jb (y-axis) and J2

(x-axis). The first quadrant i.e. Jb, J2 > 0 (AFM) and the third quadrant with Jb, J2 < 0
(FM) is entirely dominated by one phase, the FM (0, 0, 0) phase for the latter and the
Effective AFM-FCC phase with (q10) ordering wavevectors for the former. In the second
quadrant (J2 > 0 , Jb < 0), the orange strip is the unreported (qq0) phase described in
the text which is observed to be sandwiched between the (1

2
1
2

1
2
) phase and the (q10) phase

and becomes thinner as the magnitude of Jb becomes smaller. This strip has been noted
to exist upto Jb = 0.05 but will require higher resolution in sampling over J2 and Jb to
investigate further. In the fourth quadrant with Jb < 0 and J2 > 0, we find the double
twist (DT) phase with (qq0) type wavevectors [79, 85] and the (1

2
1
2

1
2
) phase. Sandwiched

between the two is the multiply modulated spiral (MMS) phase with (qqp) type ordering
wavevectors, which is shown here in bright yellow. The DT phase has been observed to
extend upto Jb = −0.05 while the MMS phase straddles along the DT phase but becomes
vanishingly thin upto Jb = −0.5, at the resolution studied. This phase diagram has been
constructed using multiple runs of varied resolutions over the parameters J2 and Jb. Each
run consisted of either brute force sampling over the BZ with 703 points or sampling over
253 points and using the minima of that as an input for the standard python minimization
algorithms to find the global minimum eigenvalue.



4.4.2 PD2: Ja = −1 (FM) and Jb vs J2

Whilst in the previous phase diagram, we held the Ja interactions as dominant and AFM,

here we investigate the opposite case. Ja is set to unity and is ferromagnetic which results

in a large part of the phase diagram (Fig. 4.16) being covered with the FM (000) phase.

This includes entirety of the third quadrant, which is expected since all the interactions

are ferromagnetic. The majority of the second quadrant is also dominated by the FM

phase. The subtler details of the second quadrant are discussed below.

The first quadrant of PD2 is entirely the effective AFM-FCC phase with line degenera-

cies along (q10). This is expected since this phase is a consequence of oppositely signed

interactions in Ja and Jb which happens in the first quadrant (Ja = −1, Jb > 0; J2 > 0).

The anti-ferromagnetic J2 and Jb coupling here can be intuitively seen to connect the

emergent tetrahedral clusters (due to large FM Ja) and stablizes effective moments on the

ferromagnetic tetrahedra (residing on a FCC lattice) interacting with each other via AFM

exchange. This has been illustrated in Fig. 4.17(b)

A very small FM J2 approximately around −1.3 is enough to destablize the degener-

ate modes along (q10) in the effective AFM-FCC phase. Intuitively, once Ja is large and

FM, emergent clusters form in the ferromagnetically interacting tetrahedra. Jb and J2

then control how the emergent clusters interact. When J2 is ferromagnetic and Jb is anti-

ferromagnetic, there is frustration and a small J2 ≈ −1.35 suffices to stablize ferromagnetic

order. This is illustrated in Fig. 4.17(a).

In between the (q10) and the FM phase we find and categorize three distinct regions

in the second quadrant (see Fig. 4.16). In particular, increasing the magnitude of ferro-
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Figure 4.17: In both these figures, Ja is large and ferromagnetic resulting in the clustering
of effective moments at the ferromagnetically interacting tetrahedra (small ones in this
case). Both these figures illustrate how Jb and J2 serve as interactions between the effective
clusters. On the left panel (a), we see FM J2 and Jb will lead to the FM ordered state
being stablized where the moments point in the same direction. On the right panel (b), we
illustrate how a AFM J2 coupling serves to enhance the effective AFM interaction between
the clusters especially in the presence of AFM Jb and stablizes the (q10) phase. Spins are
slightly canted to show the existence of fluctuations at temperatures T below the overall
energy scale of the problem but above the transition at Tc i.e. Ja > T > Tc.



magnetic J2, we enter the (q∗q∗0) phase at approximately J2 = −0.129 (Ja = −1, Jb = +1)

where q∗ ≈ 0.8869 and evolves to q∗ ≈ 0.8318 at J2 ≈ −0.134 wherein the (1
2

1
2

1
2
) phase is

realized. This is the same hitherto unreported (qq0) phase as found above, in Fig. 4.12,

since it continuously connects the second quadrant of Fig. 4.16 to the third quadrant of

Fig. 4.12 via a common line along Ja ∗ Jb = −1 where the labels may be flipped without

changing the physics.

In the second quadrant, we observe that this (qq0) phase extends all the way upto

Jb ≈ 0.05 and this strip becomes vanishingly thin as we follow it towards the origin. The

(1
2

1
2

1
2
) phase also extends towards the origin and the width becomes quite small and we

noted (while investigating the phases near the origin with more resolved qord searches) that

the (1
2

1
2

1
2
) extend atleast upto Jb ≈ ±0.005 in the second and fourth quadrants.

In the fourth quadrant of Fig. 4.16, we find six distinct regions. Following the x-axis

i.e. Ja = −1, Jb = −1 and varying J2 > 0 we find a ferromagnetic phase extending upto

J2 ≈ 0.171. This FM phase extends further up all the way to the origin as magnitude

of Jb becomes smaller. For J2 > 0.171, a (1
2

1
2

1
2
) phase is stablized and extends towards

the origin. We noted that this phase exists all the way upto Jb ≈ ±0.005 near the origin

but the width of the strip becomes quite thin. The (1
2

1
2

1
2
) phase extends all the way

upto J2 ≈ 0.375, where in, the multiply modulated spiral (MMS) phase begins. Lapa et

al. [85, 86] found that this transition takes place at J2 ≈ 0.4 and Iqbal et al. [79] finds it at

J2 ≈ 0.3965. This difference is attributed to much higher resolution in sampling of J2 and

Ja. Further, Iqbal [79] finds ordering wavevectors of the form 2π
a

(3
4
, 1

4
, 1

2
) and Lapa [86] in

their less resolved analysis find wavevectors of the form 2π
a

(3∗

4
, 1∗

4
, 1

2
) and 2π

a
(3

4
, 3

4
, 0). Iqbal’s

work utilized 323 and Lapa’s work utilized 83 sample points in q-space. Our analysis with
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upto 703 points and 253 points with the standard minimization algorithms (see Appendix

B) and valley-tracking11 reveals that the ordering wavevector in the MMS phase has the

form, (ppq). As J2 increases, the ordering wavevectors in the (1
2

1
2

1
2
) phase change in a

characteristic way while entering the (ppq) regime. Two of the components in (1
2

1
2

1
2
) start

increasing towards 0.7 while the other one starts decreasing. Typical ordering wavevectors

evolve in the fashion (1
2

1
2

1
2
) to (0.6∗ 0.6∗ 0.3∗) to (0.7∗ 0.7∗ 0). We note, for a few cases,

the eigenvalues corresponding to (ppq) wavevectors and the ones proposed in previous

works [79, 86] have a difference of less than 0.15% with the minima being the eigenvalues

corresponding to wavevectors that we found. This phase is observed to extend atleast upto

Jb ≈ −0.6 and becomes vanishingly small beyond that. The structure factor for MMS may

be found in Fig. 4.22. On the Ja = Jb = −1 line one finds the MMS ordering wavevectors

(0.7∗, 0.7∗, 0) at J2 ≈ 0.4307 increasing which, we find the double twist phase (DT).

This transition from the MMS to the DT phase has been found in Ref. [79] as J2 = 0.475,

and in Ref. [86] as J2 = 0.43. The DT phase has been studied in the literature [79, 86]

and is understood to be a composite of two spirals with the same form of the ordering

wavevector (qq0). We also find ordering wavevectors of the form (qq0) in this regime where

q ≈ [0.7, 0.8]. We noted that the DT phase extends into the phase diagram (towards the

origin) and exists upto Jb = −0.005 and has relatively more width that the (qq0) phase

in the second quadrant of PD2. Further increasing J2 upto J2 = 0.7677, the planar

spiral phase with wavevectors of the form (q00) is stabilized for the remainder of the phase

11The valley-tracking algorithm is good for tracking the minimum eigenvalues and the corresponding
ordering wavevectors as Jb and J2 are varied. However, if minima develop (on varying Jb and J2) away
from the wavevectors being tracked, the algorithm will not pick this up. Thus, we rechecked the ordering
wavevectors found via valley-tracking with those found via global searches and by utilizing the standard
minimization algorithms described in the text.
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diagram. Here q varies approximately from 1.11 to 0.839 as J2 is increased to +1. The

planar spiral phase extends into the phase diagram and vanishes when the magnitude of

Jb is small while J2 is large and AFM (see Fig. 4.16).

This is a first study on the third and fourth quadrants of PD1 (Fig. 4.12) and

the first and second quadrants of PD2 (Fig. 4.16). Since we found three disconnected

regions with ordering wavevectors of the form (qq0), we hypothesize that the previously

unreported (qq0) phase that we found, is distinct from both the Kawamura and the double

twist phase. However, at the MF level, this distinction is not very apparent. Whereas

the Kawamura phase has ordering wavevectors of the form (qq0) with q ∈ [0.7, 0.74], the

DT phase has (qq0) with approximate q ∈ [0.7, 0.8] and the unreported (qq0) phase with

q ∈ [0.8, 1.0].

Computing the value of the magnetic form factor squared f (see Eq. (4.16)) at criticality,

and at the ordering wavevector qord, lends approximate but ultimately inconclusive support

to the above claim. f takes the form:

f ∝
∑
α

|Fα(qord)|2. (4.17)

Here α runs over the critical modes and F (qord) is the “critical” magnetic unit cell

form factor. The square of this number denoted by f , takes an exact value of 12.0 for the

ferromagnetic phase. For the other phases, we find:

• f ∈ [2.1− 2.3] for the Kawamura Phase,

• f ∈ [6− 9] for the DT phase,
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• f ∈ [4.2− 4.6] in the new (qq0),

• f ∈ [5.3− 5.6] for the (1
2

1
2

1
2
) phase.

This is not conclusive enough to claim that the unreported (qq0) phase is distinct from the

DT and Kawamura phase and has to be further investigated.

4.4.3 (hhh) degenerate state

In both PD1 and PD2 (Fig. 4.12 and Fig. 4.16), at the boundary of the (1
2

1
2

1
2
) phase and the

ferromagnetic phase, we find a state with accidental line degeneracies in the eigenspectrum

along the 〈111〉 directions (in cubic coordinates) in the FBZ i.e. the line joining the Γ

point to the L point in the FBZ (see Appendix A.2 and Fig. A.2). This state, shown as a

blue dashed line in the phase diagrams (PD1 and PD2), exists only in the third quadrant

of PD1 but extends throughout the second and fourth quadrants of PD2 (Fig. 4.16).

The specifics of its existence near the origin has to be refined since the extent of the (1
2

1
2

1
2
)

phase gets thinner near the origin.

Plotting the minimum eigenvalues across the boundary shows a flat band at a higher

energy than the ferromagnetic phase (see panels (a) and (b) of Fig. 4.18). Plotting the

ordering wavevectors corresponding to the minimum eigenvalues at this boundary reveals

a line degeneracy along (hhh) directions (see Fig. 4.18(d)). In Fig. 4.18(c), we plot all

wavevectors corresponding to the minimum eigenvalue as well as eigenvalues close to the

global minima. The wavevectors corresponding to eigenvalues close to the global minimum

are the competing modes right above the MF transition temperature, Tc. Since this state
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Location

(by quadrant)
Parametric equation Extent of J2

PD1 Fig. 4.12: III

Ja = +1
Jb =

−4(J2+3J2
2 )

(1+4J2)
[−0.3∗, 1

2
√

3
]

PD2 Fig. 4.16: II and IV

Ja = −1
Jb =

−4(−J2+3J2
2 )

−1+4J2
[− 1

2
√

3
, 1

6
]

Table 4.2: Parametric equations of Jb and J2 along which the (hhh) degenerate state may
be found in the above mentioned phase diagrams.The star * denotes an estimation.

exists on just a line, it is interesting to study the competing modes from the ordered phases

on either side of the boundary, above criticality. This is exposed by a tolerance parameter,

∆, given by:

∆ =
Eg − E
Eg

× 100. (4.18)

Here Eg is the global minimum eigenvalue, E is the eigenvalue being considered. Specifying

∆, we can sort the ordering wavevectors with eigenvalues close to Eg. At ∆ = 1% this

is effectively sampling over the competing modes above the transition temperature Tc in

the cooperative-paramagnetic regime where these higher energy modes can be accessed.

In Fig. 4.18(c) we find a sphere with cylindrical arms extending outwards along the 〈111〉

directions. The spherical structure near q = 0 signifies proximity to the ferromagnetic

regime and accessibility of these modes at T > Tc.

The question of how certain modes, from this degenerate line, will be selected either

via thermal or by quantum fuctuations is an open question beyond the scope of this thesis.

Material realization in this state is slim since this state can be found only along a line in
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the phase diagram. However, if there is a material candidate near this line, ordering at

Tc will seem a trivial FM (0, 0, 0) phase. However, above Tc, the degenerate (hhh) modes,

in close competition with the (000) modes, become accessible and may lead to interesting

physics when Ja > T > Tc (cooperative paramagnetic regime).

In the offchance one does find a candidate exactly on the line, one naively expects

ferromagnet like scattering at high temperatures but possibly exotic physics at very low

temperatures, such as novel order by disorder phenomena [81, 99, 100, 101, 102]. A tensor

spin liquid was also recently proposed in Ref. [103] with singularities in the structure factors

along 〈111〉 (which means the eigenvalues are minimum and degenerate along (hhh) as in

our case), found in a related but different (and anisotropic) model for a specific point in

the parameter space where three different ordered phases meet.

We have further computed the equation of the line along which this (hhh) degenerate

state exists which was found by analytical inspection of eigenvalues. In particular, the

dispersive eigenvalues are of the form, E = X+Y (q)±
√
Z(q). In this state, the eigenvalues

accidentally become flat, so the q-dependent part outside the square-root must negate

exactly the q-dependent part coming from within the square-root. Analyzing Z(q), we

parameterized the boundary which is summarized in Tab. 4.2. The spin structure factors

for this state, showing crossed lines along (hhh), is displayed in Fig. 4.22.

4.4.4 Summary

We analyzed the phase diagrams Jb vs J2, corresponding to constant AFM Ja (PD1) and FM

Ja (PD2). For the sections of PD1 and PD2 studied in the literature, we find agreement of
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Figure 4.18: Phase boundaries of the (1
2

1
2

1
2
) phase and the ferromagnetic phase host a

peculiar state where the minimum eigenvalues Λ(q) show an accidental degeneracy along
the 〈111〉 directions in the BZ. Panels (a) and (b) both show the minimum eigenvalue Λ(q)
along the (qqq) directions. The x-axes are wavevectors q in units of 2π

a
. The blue and the

green are the aforementioned phase at the boundary of which one finds a flat band as J2

is varied. (c) and (d) are three dimensional sections inside the FBZ of the FCC lattice
plotting the wavevectors corresponding to energies including and above the global minima
characterized by ∆ (see Eq. (4.18)). The axes are in units of 2π

a
and extend to half the

FBZ in each direction. (c) ∆ = 1% and shows the modes which will be excited above the
transition in the correlated-paramagnetic regime. (d) is close to criticality with ∆ = 10−6%
which show the soft q-modes along the [hhh] and symmetry related directions. Parameters
provided in the form [Ja,Jb,J2]: (a) In the first PD 3rd quadrant. Blue: [1,-0.5,-0.302] ;
Green: [1,-0.5,-0.306]; Pink: [1,-0.5,-0.3038]. (b) In the second PD 4th quadrant. Blue:
[-1,-1,0.167] ; Green: [-1,-1,0.166]; Pink: [-1,-1,0.16667]. (c),(d): any generic point on this
boundary, uses parameters from (b).



the qord found in our work [79, 85, 86], except for the case of MMS where finer resolution

of the q-mesh (of the FBZ) reveals qord ≡ (ppq). For the hitherto unexplored regions

(namely, Ja and Jb of opposite sign) we find (all phases summarized in Tab. 4.3):

• A (1
2
, 1

2
, 1

2
) phase.

• An unreported (qq0) phase.

• The effective AFM-FCC (q10) phase with degenerate q.

• The planar spiral (q00) phase.

• The Kawamura phase (only in PD1).

• A state with line degeneracies along (hhh).

• A ferromagnetic phase
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State
Ordering Wavevectors

in units of 2π
a

Location

(by quadrant)

Coulomb Spin Liquid All q ∈ BZ PD1: I

Planar spiral (k00)

PD1: I and IV

PD2: IV

k = 0 (200) PD1: I

Ferromagnet (000)

PD1: II and III

PD2 : II, III and IV

Cuboctahedral stack (1
2

1
2

1
2
)

PD1 : III

PD2: II and IV

Effective FCC-AFM (k10)
PD1 : III and IV

PD2: I, II and IV

Multiply modulated spiral (ppq) PD2: IV

(kk0) type I

“Kawamura”
(kk0); k∗ ∈ [0.7, 0.74] PD1: II and III

(kk0) type II

“Double twist”
(kk0); k∗ ∈ [0.7, 0.8] PD2: IV

(kk0) type III (kk0) ; k∗ ∈ [0.8, 1]
PD1: III

PD2: II

Degenerate (hhh) line (hhh)
PD1: III

PD2: II and IV

Table 4.3: Summary of the phase diagrams and ordered phases obtained. The * represent
the fact that these are incommensurate and are approximate since we have used a finite
mesh and numerical schemes. The domains provided are also estimations and finer, more
resolved searches especially near the phase boundaries might ammend these.



Figure 4.19: Figures show the spin structure factors S(Q) (using MFT) for various pa-
rameter sets in the [hhl] plane for high temperature (τ = 10−1 for (a) and (c)) and low
temperature (τ = 10−3 for (b) and (d)). The x and y axes are in units of 2π

a
. (a) and

(b) illustrate the k = 0 state showing peaks at (200) with parameters: Ja = 1, Jb = 0.7,
J2 = 0.3. (c) and (d) show the planar spiral phase (PS) with peaks at (q00). (c), (d)
obtained using parameters: Ja = 1, Jb = 0.8, J2 = 0.8



Figure 4.20: Figures show the spin structure factors S(Q) (using MFT) for various pa-
rameter sets in the [hhl] plane for high temperature (τ = 10−1 for (a) and (c)) and low
temperature (τ = 10−3 for (b) and (d)). The x and y axes are in units of 2π

a
. (a) and

(b) show the Kawamura phase with parameters Ja = 1, Jb = 0.7, J2 = −0.3. (c) and (d)
shows the (1

2
1
2

1
2
) phase with parameters Ja = 1, Jb = −0.7, J2 = −0.2.



Figure 4.21: Figures show the spin structure factors S(Q) (using MFT) for various pa-
rameter sets in the [hhl] plane for high temperature (τ = 10−1 for (a) and (c)) and low
temperature (τ = 10−3 for (b) and (d)). The x and y axes are in units of 2π

a
. (a) and (b)

illustrates the double twist (DT) phase with parameters: Ja = −1, Jb = −0.8, J2 = 0.4. (c)
and (d) shows the heretofore unreported (qq0) phase with parameters: Ja = −1, Jb = 0.8,
J2 = −0.116.



Figure 4.22: Figures show the spin structure factors S(Q) (using MFT) for various pa-
rameter sets in the [hhl] plane for high temperature (τ = 10−1 for (a) and (c)) and low
temperature (τ = 10−3 for (b) and (d)). The x and y axes are in units of 2π

a
. (a) and (b)

show the MMS phase with parameters Ja = −1, Jb = −0.9, J2 = 0.375. (c) and (d) show
the (hhh) degenerate state with parameters: Ja = 1, Jb = −0.9425, J2 = −0.29.



Chapter 5

Discussions, Conclusions and Future

Directions

In this thesis, we discussed spin models on a pyrochlore and breathing pyrochlore lattice

(see Appendix A and Appendix A.3). We introduce key methods and formulae in Chap. 2

including the expressions for neutron scattering where the important quantity of interest

is a spin-spin correlation function. We then obtained the expressions for the spin-spin

correlation functions using mean-field theory and the large-N analysis. We discuss and

summarize the next chapters below.

Chapter 3

In Chap. 3, we studied the case of Ising spins on a pyrochlore lattice where the spins are

constrained to point along the local 〈111〉 directions. We found:
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• q-independent flat bands of the Fourier transformed adjacency matrix (see Appendix

A.4) corresponding to eigenvector |P 〉 (Eq. (3.22)) in the [hhl] plane.

• The neutron scattering probes only spins in an α-chain (see Fig. 3.5).

• The neutron scattering is written as 〈P |M−1|P 〉 (see Eq. (3.48)). Here |P 〉 is the neu-

tron polarization projector (for non-spin flip scattering) proportional to the eigenvec-

tors for the flat bands, in the [hhl] plane. This yields Eq. (3.53), i.e. dσ(Q)
dΩ
|NSF = 4

3λ
.

• The non-spin flip channel is also q-independent for extended spin ice1 as well as Ising

spins (constrained along 〈111〉 directions) on a breathing pyrochlore lattice.

• The non-spin flip channel of polarized neutron scattering probes the stiffness of the

emergent fields and neutron scattering probes the correlations between the emergent

fluxes.

• One may obtain λ from the neutron scattering by using Eq. (3.70) and the identities

provided in Eq. (3.69).

There are further unexplored and compelling avenues of research captured briefly

through the follwoing questions:

• What are the geometrical reasons for the flat bands of the interaction matrix J(q)?

• Why is a constant shift (Eq. (3.17)) required to interpret λ as the flux stiffness?

What happens when a different constant shift (such as the ground state energy as

used in Ref. [21]) is utilized?

1See Ref. [63] for details on extended spin ice
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• How can one reinterpret models with further-neighbour interactions into the flux/charge

picture? Does it always make sense? What is the interpretation of λ in this case?

• Depending on the constant shift, why does λ either drop to 0 or diverge?

• What does it mean that the linecuts for the spin flip and non-spin flip channel

(in spin ice and extended spin ice) are maximally correlated (has maximum and

equal intensity) along the directions provided in Eq. (3.69)? Why are the intensities

maximum and equal for both the spin flip and non-spin flip channels?

• Can actual highly calibrated neutron scattering experiments be done wherein one

may obtain the stiffness of the emergent fields, λ?

Chapter 4

In Chap. 4, we studied Heisenberg spins on a breathing pyrochlore lattice in the abscence

as well as the presence of further-neighbour interaction J2. We characterized the phases by

their ordering wavevectors qord at which the eigenvalues of the adjacency matrix is a global

minimum in all the first Brillouin zone. We obtained two phase diagrams where nearest

neighbour coupling Ja is either anti-ferromagnetic (PD1) or ferromagnetic (PD2). We found

a variety of phases stabilized (shown in Fig. 4.12 and Fig. 4.16) which are summarized in

Tab. 4.3.

In particular, we found that in the interface of two phases, namely the (1
2

1
2

1
2
) and

the ferromagnetic (000) phase, there exists a state with line degeneracies along the (hhh)

directions (in the Fourier transformed eigenspectra, in the first Brillouin zone). We also
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found a (qq0) ordered phase sandwiched between the (1
2

1
2

1
2
) and the effective AFM-FCC

(q10) phase. We believe this (qq0) phase is unreported and may be distinct from the

double twist and Kawamura phase with similar ordering wavevectors. Further analysis is

required to confirm this. Future avenues of investigation and some interesting comments

and questions regarding Heisenberg spins on breathing pyrochlores are briefed below:

• The effect of bond length ratios γ is outside the scope of this thesis and needs to be

investigated to study the phase diagram for γ 6= 1.

• How do thermal and quantum fluctuations play out in the (hhh) degenerate state?

• Does the (hhh) degenerate line acquire a finite width when taking into account quan-

tum mechanical effects? (For example the Coulomb spin liquid exists only on a line

in the phase diagram. PFFRG analysis suggests that this line widens out for the

quantum case and the Coulomb phase is stablized for small values of J2. See Fig. 16

in Ref. [79] )

• Does this (hhh) line and the new (qq0) exist in the phase diagram with J3a and J3b?

• What is the difference between the new (qq0), the Kawamura and the double twist

phases? Why is there an approximate symmetry in PD1 (Fig. 4.12) given by Ja =

+1; Jb < 0; J2 ∈ [0,−0.2] and PD2 (Fig. 4.16) parameterized by Ja = −1; Jb >

0; J2 ∈ [0,−0.2] in the second quadrant of PD2?

• Does the partially ordered metastable phase described in Ref. [96] extend to Kawa-

mura phase in the breathing regimes of PD1 (see Fig. 4.12) ?
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• What are the extents of the multiply modulated spiral, the double twist, the (1
2

1
2

1
2
)

and the new (qq0) phase towards the origins of their respective phase diagrams? (see

Fig. 4.12 and Fig. 4.16)

Conclusions

In this thesis, we saw how in the magnetic ground state, AFM Ising spins on a pyrochlore

lattice, result in a Coulomb phase with emergent fluxes following a local divergence free

constraint. We saw how polarized neutron scattering picks up a measure (specifically the

stiffness) of this Coulomb phase. Next, we studied Heisenberg spins on a breathing py-

rochlore lattice where further-neighbour interactions perturb the ground-state degeneracy

and result in a plethora of ordered phases. We verified our findings with previous works

and amended the ordering wavevectors for the multiply modulated spiral phase. One of

the ordered phases consists of emergent clusters which interact with each other (the ef-

fective AFM-FCC phase) anti-ferromagnetically. We also found a previously unreported

ordered phase and the (hhh) degenerate state where further studies (both theoretical and

experimental) are required to answer the aforementioned questions.
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Appendix A

Lattices and Conventions

A.1 Pyrochlore lattice

We have used global Cartesian (cubic) axes in this thesis. The pyrochlore lattice is a lattice

of corner sharing tetrahedra where each tetrahedron of one type (up or down) reside on a

Face Centred Cubic (FCC) lattice (see Fig. A.1). The FCC lattice and reciprocal lattice

vectors are given below in Tab. A.1. Further information may be obtained from Ref. [49].

This choice of unit cell contains four tetrahedra and sixteen spins. If one sublattice of the

terahedron is at the origin, the other sublattices reside at half the distance of the FCC basis

vectors (denoted by R here). The sublattice positions are denoted by r here and the FCC

reciprocal lattice vectors are given by G. We have also provided the directions of the easy

axis for spins constrained to lie along the local 〈111〉 axes in the pyrochlore lattice. Real

space quantities have units of conventional unit cell length a. Reciprocal space quantities
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Figure A.1: Figure shows three tetrahedra in the pyrochlore lattice. The sublattice conven-
tions used in this thesis are given in the legend above with the dark grey spheres showing
sublattice 1. Sublattice 1 of each tetrahedron are the FCC centres (shown here of greater
radius) at (a

2
,a
2
,0) and symmetry related points (see Tab. A.1). The red and blue spheres

are sublattices 3 and 4 composing the α-chain (see Fig. 3.5 and Chap. 3) which is denoted
by a purple arrow. a is the conventional unit cell length.



Index FCC basis vectors R Sublattice positions r Reciprocal lattice vectors G Local ẑ

1 [000] [000] [000] 1√
3
[111]

2 1
2
[110] 1

4
[110] [111̄] 1√

3
[1̄1̄1]

3 1
2
[101] 1

4
[101] [11̄1] 1√

3
[1̄11̄]

4 1
2
[011] 1

4
[011] [1̄11] 1√

3
[11̄1̄]

Table A.1: Lattice conventions for the pyrochlore used in this report

are in units of 2π
a

. We summarize the conventions utilized in this thesis in Tab. A.1.

A.2 First Brillouin zone of the FCC lattice

The First Brillouin Zone (FBZ) of the FCC lattice is the Wigner Seitz cell of the Body

Centred Cubic (BCC) lattice [49]. The conditions are:

0 ≤ |qx|+ |qy|+ |qz| ≤
3π

a
, (A.1)

0 ≤ |qx| ≤
2π

a
, (A.2)

0 ≤ |qy| ≤
2π

a
, (A.3)

0 ≤ |qz| ≤
2π

a
. (A.4)

(A.5)

Here, the individual components of q-space vectors are denoted by qx/qy/qz and using

these formulae, one can efficiently sample over the FBZ. The extended Brillouin zone is

sometimes referred to in the literature, which is obtained by doubling the right hand side
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Figure A.2: Panels (a) and (b) showing the First Brillouin Zone (FBZ) of FCC Lattice.
Figure (a) is made using Wolfram Mathematica. Figure (b) is sourced from Wikipedia and
is a Google stock image.

of the above equations (2π to 4π, 3π to 6π).

A.3 Breathing Pyrochlore lattice

The breathing pyrochlore is similar to the pyrochlore in that it is constructed with corner

sharing tetrahedra of different sizes (see Fig. 4.1, Fig. A.3, Fig. 4.11, Fig. A.4). We consider

the up/bigger tetrahedra to be on the positive side of the origin. If the bond distance of

the smaller tetrahedra is d, let the bond lengths of the larger tetrahedra be γd. This yields

a relationship between the conventional unit cell length a to d given by:

a =
√

2d(γ + 1). (A.6)
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Index FCC basis vectors R Sublattice positions r Recip. lattice vectors G

1 [000] [000] [000]

2 a
2
[110] γd√

2
[110] 2π

a
[111̄]

3 a
2
[101] γd√

2
[101] 2π

a
[11̄1]

4 a
2
[011] γd√

2
[011] 2π

a
[1̄11]

Table A.2: Lattice conventions for the breathing pyrochlore. If γ = 1 (non breathing) and
d = 1/

√
8 we get back a = 1 and the same sublattice positions as the (non-breathing)

pyrochlore lattice. Otherwise, Eq. (A.6) may be used to keep a at unity.

Using this formula one may vary the bond length ratios γ and smaller bond distance d to

keep a at unity. Otherwise, using a non-unity magnitude a, one may construct the FBZ

using the above provided formulae in Eq. (A.1-A.5). The conventions are summarized in

Tab. A.2. The breathing lattice is shown in Fig. A.3, Fig. A.4 and Fig. 4.1.
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Figure A.3: Figure showing the rotation of the breathing pyrochlore lattice. Panel (c)
shows the lattice when the 〈111〉 directions are perpendicular to the page, wherein the
kagomé layer is seen in perspective.

Figure A.4: Figures show further-neighbour couplings in (a) pyrochlore lattice, (b) breath-
ing pyrochlore lattice. Panels show perspective of the lattices, perpendicular to the 〈111〉
direction wherein the pryochlore lattice is seen as alternating layers of kagomé and trian-
gular lattices.



A.4 Further-Neighbour Interactions and Adjacency

Matrices

Here, we describe the adjacency matrices used in this thesis to work with a breathing or

non-breathing pyrochlore lattice and further-neighbour interactions. We have utilized at-

most three further-neighbour interactions in this thesis, given by second nearest neighbour

interaction J2 and two inequivalent third neighbour interactions J3a and J3b (see Fig. A.4).

The adjacency matrix in real space is given by elements 1 if the sites are connected or 0 if

the sites are not connected. The Fourier transform convention used is given by:

Jab(q) =
∑
i,j

Jabij e
iq·(Ra

i−Rb
j). (A.7)

Here Ra
i is the location of a site with indices a, b representing sublattice labels and

i, j labelling the Bravais lattice sites. q is a wavevector in reciprocal space. The nearest

neighbour adjacency is given by:

JNN(q) =



0 2 cos
( qx+qy

4

)
2 cos

(
qx+qz

4

)
2 cos

( qy+qz
4

)
2 cos

( qx+qy
4

)
0 2 cos

( qy−qz
4

)
2 cos

(
qx−qz

4

)
2 cos

(
qx+qz

4

)
2 cos

( qy−qz
4

)
0 2 cos

( qx−qy
4

)
2 cos

( qy+qz
4

)
2 cos

(
qx−qz

4

)
2 cos

( qx−qy
4

)
0


.

For the case of the breathing pyrochlore, JNN
1 breaks up into two parts, one for Ja and

1If the lattice is not breathing then this matrix is referred to simply as A(q). If the lattice is a breathing
pyrochlore, the two inequivalent nearest-neighbour adjacency matrices is reffered to as A(q) and B(q).
For a non-breathing pyrochlore lattice with Ja = Jb, JNN(q) = A(q) +B(q).
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another for Jb. The bond length ratio is given by γ. The adjacency matrices are then given

by:

A(q) =



0 e−
1
4
i(x+y) e−

1
4
i(x+z) e−

1
4
i(y+z)

e
1
4
i(x+y) 0 e

1
4
i(y−z) e

1
4
i(x−z)

e
1
4
i(x+z) e−

1
4
i(y−z) 0 e

1
4
i(x−y)

e
1
4
i(y+z) e−

1
4
i(x−z) e−

1
4
i(x−y) 0


. (A.8)

Here and in further equations x, y, z refer to qx, qy, and qz (to conserve space). The

adjacency matrix for Jb corresponding to the ‘larger’ tetrahedra is given by (only differernce

being extra factor of γ in the exponent):

B(q) =



0 e
1
4
iγ(x+y) e

1
4
iγ(x+z) e

1
4
iγ(y+z)

e−
1
4
iγ(x+y) 0 e−

1
4
iγ(y−z) e−

1
4
iγ(x−z)

e−
1
4
iγ(x+z) e

1
4
iγ(y−z) 0 e−

1
4
iγ(x−y)

e−
1
4
iγ(y+z) e

1
4
iγ(x−z) e

1
4
iγ(x−y) 0


. (A.9)

The second nearest-neighbour interaction, J2, connects sites of different sublattices and

hops over two bonds ∦ to each other (see Fig. A.4). The Fourier transformed adjacency

matrices for J2 is given by:

C(q) =



0 4 cos
(
z
2

)
cos
(
x−y

4

)
4 cos

(
y
2

)
cos
(
x−z

4

)
4 cos

(
x
2

)
cos
(
y−z

4

)
4 cos

(
z
2

)
cos
(
x−y

4

)
0 4 cos

(
x
2

)
cos
(
y+z

4

)
4 cos

(
y
2

)
cos
(
x+z

4

)
4 cos

(
y
2

)
cos
(
x−z

4

)
4 cos

(
x
2

)
cos
(
y+z

4

)
0 4 cos

(
z
2

)
cos
(
x+y

4

)
4 cos

(
x
2

)
cos
(
y−z

4

)
4 cos

(
y
2

)
cos
(
x+z

4

)
4 cos

(
z
2

)
cos
(
x+y

4

)
0


.
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There are two inequivalent third farthest neighbour interactions J3a and J3b which connect

the same sublattices. J3a connects sites reached by hopping over two bonds parallel to

each other and J3b connects sites at opposite ends of the hexagon in the kagomé layer (see

Fig. A.4). The Fourier transformed Adjacency matrices are diagonal since only the same

sublattices are connected. They are given by:

D(q) = diag[2

(
C

(
x+ y

2

)
+ C

(
x+ z

2

)
+ C

(
y + z

2

))
,

2

(
C

(
x+ y

2

)
+ C

(
x− z

2

)
+ C

(
y − z

2

))
,

2

(
C

(
x− y

2

)
+ C

(
x+ z

2

)
+ C

(
y − z

2

))
,

2

(
C

(
x− y

2

)
+ C

(
x− z

2

)
+ C

(
y + z

2

))
].

These are just diagonal entries of the matrix, the rest of the elements are 0. C here refers

to a cosine function. J3b is also a diagonal matrix given by:

E(q) = diag[2

(
C

(
x− y

2

)
+ C

(
x− z

2

)
+ C

(
y − z

2

))
,

2

(
C

(
x− y

2

)
+ C

(
x+ z

2

)
+ C

(
y + z

2

))
,

2

(
C

(
x+ y

2

)
+ C

(
x− z

2

)
+ C

(
y + z

2

))
,

2

(
C

(
x+ y

2

)
+ C

(
x+ z

2

)
+ C

(
y − z

2

))
].

These are the usual adjacency matrices found in the literature [11, 42, 43] for the Pyrochlore

lattice.
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Appendix B

Minimization Implementation

Discussions

In Chap. 4, we utilized the standard algorithms in Scipy’s optimization modules (Ref. [87])

and a brute force global minimization routine. The global minimization found the approx-

imate minima of the adjacency matrix (J(q)) and used these as initial guess points for

the optimization algorithms. The optimization algorithms are easily implemented and we

refer the reader to the documentation (Ref. [87] and Ref. [50]). Some key observations are

briefed below.

The Nelder-Mead method also known as the downhill simplex method constructs a

simplex in the parameter space centred at the guess points and moves the simplex ac-

cording to certain rules. These are given in Refs. [88, 89]. This method may stagnate at

local minima and a proper guess point has to be provided for efficient use. For dimen-
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sions greater than 2, adaptive parameters have to be utilized which modify the way that

the simplex moves. Adaptive parameters may be used in Scipy by using an extra com-

mand: options=‘adaptive’: True. Further details on adaptive parameters may be found in

Ref. [90].

The Modified Powell algorithm (MP) takes a guess point and draws 3 arbitary axes.

The algorithm searches along these lines for a minimum and on finding it, displaces the

axes to this point. It then reorients the axes and repeats the above process till the global

minimum is found. We found that the minima found using MP are not as precise as the

Nelder Mead method but the stagnation at local extrema is much rarer. This method may

develop problems on flat surfaces with peaks or valleys. In general, this method is useful to

find approximate guess points after which the Nelder Mead method may find more precise

minima. Further details may be obtained from Ref. [91]. The rest of the methods are used

only sparingly for cases where the above algorithms do not work. They are enumerated as:

• Truncated Newton Algorithm (TN) [92],

• Conjugate Gradient (CG) method in pp. 120 - 122 of Ref. [92],

• BFGS (Broyden, Fletcher, Goldfarb and Shanno Algorithm) pp. 136 in Ref. [92],

• Limited memory- L-BFGS [93],

• COBYLA (Constrained Optimization by Linear Approximation method) [94].

These are derivative based (except COBYLA) methods and in general, do not perform as

well as the Nelder Mead or the Modified Powell algorithms. They fail at points of inflection
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and commonly stagnate at local minima (except the COBYLA algorithm which was noted

to perform surprisingly well, compared to the other algorithms).
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