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Abstract

Holography holds promise for simplifying computations in quantum gravity. In part
I of this thesis, we construct holographic boundary theories for linearized gravity, for a
general family of finite or quasi-local boundaries, which capture diffeomorphisms acting on
the boundary. These boundary theories are directly derived from the dynamics of general
relativity by computing the effective action for a geometric boundary observable, which
measures the geodesic length from a given boundary point to some centre in the bulk
manifold. We identify the general form for these boundary theories and find that these
are Liouville–like with a coupling to the boundary Ricci scalar. This is illustrated with
various examples, each of which offers interesting insights into the structure of holographic
boundary theories. We also compute the gravitational one-loop partition function for 4D
linearized gravity, including graviton degrees of freedom via a recursion relation method.

Furthermore, discretization of general relativity is a promising route towards quantum
gravity. Discrete geometries have a finite number of degrees of freedom and can mimic
aspects of quantum geometry. However, the selection of the correct discrete freedoms
and description of their dynamics has remained a challenging problem. Again, several
approaches to four-dimensional quantum gravity, such as loop quantum gravity and holog-
raphy, situate areas as their fundamental variables. With these motivations, we explore
in part II classical area Regge calculus, an alternative to standard Regge calculus where
instead of lengths, the areas of a simplicial discretization are fundamental. There are a
number of surprises: though the equations of motion impose flatness, we show that diffeo-
morphism symmetry is broken for a large class of area Regge geometries. This is due to
degrees of freedom not available in the length Regge calculus. We enumerate and character-
ize these non-metric, or ‘twisted’, degrees of freedom and provide tools for understanding
their dynamics. The non-metric degrees of freedom also lead to fewer invariances of the
area Regge action—in comparison to the length action—under local changes of the trian-
gulation (Pachner moves). This means that invariance properties can be used to classify
the dynamics of spin foam models. Our results lay a promising foundation for understand-
ing the dynamics of the non-metric degrees of freedom in loop quantum gravity and spin
foams. In the quantum theory, the choice of area variables kinematics can easily lead to
gravitational dynamics peaked on flat space–times. We show that this is due to how regions
are glued in the gravitational path integral via a discrete spin foam model. We introduce a
family of ‘effective’ spin foam models that incorporate a quantum area spectrum, impose
gluing constraints as strongly as possible, and leverage the discrete general relativity ac-
tion to specify amplitudes. These effective spin foam models avoid flatness in a restricted
regime of the parameter space.
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Chapter 1

Introduction

The theory of general relativity has for over a century served as the theoretical underpin-
ning for the nature of space, time and gravitation. This theory unifies the geometry of
space and time with the gravitational field. Precisely, it describes the effects of gravitation
as the curvature of space–time. As a consequence, this led to a paradigm shift from how
space and time was described by Newtonian physics. In Einstein’s theory, space–time is
no longer considered a static background on which matter fields propagate, rather, the
geometry of space–time is itself dynamical. Different geometries of space–time correspond
to different histories of the universe.

The fundamental degrees of freedom of general relativity are encoded in a quantity
known as the metric tensor which describes the geometry and causal structure of space–
time. Its dynamics is governed by the Einstein field equations which describe the relation
between space–time geometry and the distribution of matter content within. Thus gen-
eral relativity provides a precise relationship between the geometry of space–time and the
properties of matter.

Since its inception, the theory of general relativity has enjoyed many rich theoretical and
physical applications. For example, the study of astrophysics, cosmology, black hole physics
and most recently gravitational wave physics are all based on the principles of general
relativity. It has also provided many successful predictions of gravitational phenomena
such as time dilation, precession of Mercury’s orbit, bending of light, gravitational waves
and several others.

In spite of all these great accomplishments, general relativity remains incomplete as
a fundamental theory of nature. The incompleteness is manifested in the breakdown of
the theory due to the presence of singularities in the context of gravitational collapse
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CHAPTER 1. INTRODUCTION

inside black holes. Quantum theory—a framework which describes the behaviour of atoms
and molecules in the universe—underlies the descriptions of three out of the four known
fundamental forces of nature with the exception of gravity. The frameworks of general
relativity and quantum theory are incompatible with each other. These challenges can be
overcome possibly by finding a quantum theory of gravity which is capable of providing a
quantum description of the gravitational field.

The formulations of general relativity and quantum field theory are both based on the
notion of classical space–time. Since the properties of gravity are encoded in the geometry
of space–time, one expects a quantum theory of gravity to be based on quantum geometries
or the geometry of a quantum space–time. Finding a consistent theory of quantum gravity
which is valid over small and large energy scales is currently one of the unsolved problems
in physics.

One of the critical questions in the theory of quantum gravity and quantum space–
time is; what are the fundamental degrees of freedom described by? In this thesis, we
shall explore two themes which are capable of addressing this question. The first theme is
holographic dualities—based on the holographic principle—which suggests that the degrees
of freedom of a quantum theory of gravity in a d dimensional space–time region can be
encoded on its (d− 1) dimensional boundary. The holographic principle was motivated by
black hole thermodynamics which conjectures that the maximal entropy of a space–time
region scales as the area of its boundary surface rather than its volume.

The second theme is concerned with discrete approaches to the theory of quantum
gravity. In these approaches there exist different notions of quantum geometries and which
one is best suited for quantum gravity is unclear. In particular, it is not obvious what
geometric variables account for the fundamental degrees of freedom of quantum geometry.
We expound on the two themes separately in the next two sections. Specifically, we will
review some literatures that serves as motivations to the aspects of the two themes which
we shall focus on in this thesis.

1.1 Holographic dualities

The most explored example of holographic dualities is the AdS/CFT correspondence which
proposes that a quantum gravity theory in anti-de Sitter space–time can be dually described
by a conformal field theory on its asymptotic boundary. That is, the partition functions
of such dual boundary field theories, which would depend on the (asymptotic) boundary
metric, can be interpreted as a partition function for gravity, which is however restricted
to asymptotic boundary data.
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CHAPTER 1. INTRODUCTION

In the first part of this thesis, we will be interested in extending such holographic
dualities to finite and more general boundaries of space–time. One reason is that the
partition function with boundary can also serve as the vacuum (physical) wave function for
gravity [7]. Thus aiming to employ holography to construct such physical wave functions,
we need to understand such dualities for arbitrary boundaries.

A holographic boundary field theory would allow an easier access to the partition func-
tion of quantum gravity: instead of solving the full bulk dynamics of quantum gravity for
given boundary data, and deal with the diffeomorphism gauge theory, one would have to
“just” solve the dynamics of the boundary field theory. For this to be a useful approach,
the boundary field theory should be ideally local or an approximation to a local theory,
with finitely many fields. Note that otherwise the notion of holographic boundary field the-
ory is quite empty, as one can construct boundary field theories by integrating out almost
all bulk fields, except some degrees of freedom that one can attribute to the boundary.
This will however generically lead to non–local boundary field theories, which could be
converted to local ones at the price of introducing infinitely many fields.

The construction of “quasi-local” holographic dualities has already been quite successful
for 3D gravity. Here, due to the topological nature of the theory, one can indeed expect to
encounter a local field theory, if one goes through the procedure which will be describe in
this thesis. Thus there are a number of approaches in which such boundary field theories for
gravity can be constructed. Moreover, again due to the fact that there are no propagating
bulk degrees of freedom, the boundary field theories describe so-called boundary degrees
of freedom, which in the case of gravity can often be understood as encoding the shape of
the boundary in the embedding space time.

We briefly review some of the developments which serve as motivation to this current
work. Most of these works are based on asymptotic boundaries. This starts with the
relation between the Chern–Simons description of AdS3 gravity [8] to its Wess-Zumino-
Witten (WZW) boundary theory [9–11], which however relies on connection boundary
data. Restricting to asymptotically AdS3 boundary conditions, one obtains a constrained
(chiral) WZW model which is equivalent to Liouville theory [12–16]. Liouville boundary
field theory also appears for asymptotically flat boundary conditions as the flat limit of
asymptotic AdS3 [17].

Carlip in [18] has argued that a dual Liouville boundary theory arises from the breaking
of (normal) diffeomorphisms by the presence of the asymptotic boundary also in AdS3

gravity in metric formulation. There are also other derivations [18–20] of Liouville theory
from the asymptotic AdS3 boundary based on metric gravity.

The Euclidean partition function has been computed for AdS3 [21] and flat space–
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CHAPTER 1. INTRODUCTION

time [22] with torus boundaries at asymptotic infinity. These computations were done in
the metric formulation using heat kernel methods. In both cases, the results were found
to be one-loop exact and given by the vacuum character of the gravitational asymptotic
symmetry groups: Virasoro group for AdS3 and Bondi-Metzner-Sachs (BMS3) group for
flat space–time.

Using metric boundary data, [23] showed that a Liouville like dual field theory can
also be identified more directly for finite boundaries. This work considered a specific
background space time, the twisted thermal flat space [24], and employed (linearized) Regge
calculus [25], a discretization of gravity, in which the variables are given by edge lengths in
a piecewise flat geometry. Thus these variables can be identified as geodesic lengths. Using
discretization independence of the one-loop partition function of the theory [26], one can
choose a discretization in which a class of variables describes the geodesic lengths from the
boundary to some central axis. These can be taken as boundary field variables, and one
can thus easily integrate out all variables except these boundary field variables. In [23],
the authors also computed the one-loop partition function for a finite boundary, which led
to the similar result as for asymptotically flat boundaries [22].

In the approach of [23], the boundary field theory is directly derived from gravity and
obtained as an effective action for a geometric observable, which encodes the shape of
the boundary.1 Thus one has the advantage that the boundary field theory gives direct
access to the dynamics of a geometric observable, which allows a “bulk reconstruction”.
Such effective actions for geometric observables have also been studied independently from
holographic considerations [29, 30].

The choice of the geodesic distance from the boundary to a centre also resonates with
Carlip’s arguments [18]. In fact, we will see that the geodesic distance captures the change
in the shape of the boundary that arises from diffeomorphisms generated by vector fields
normal to the boundary.

Quasi-local holographic dualities have also been derived in a completely non-perturbative
framework [31–36], in particular for the Ponzano-Regge model [37] of 3D quantum gravity.
This model constitutes a quantization of first order (Palatini) gravity. It offers precise con-
trol on the (quantum) boundary conditions and their (quantum) geometric interpretations
via loop quantum gravity techniques [38]. In particular one can again choose (quantum)
metric boundary conditions. Different kinds of boundary field theories arise, e.g. in the
form of spin chain models, or in the form of sigma models, depending on the precise choice

1Note that this is not a Dirac observable, as Dirac observables should be independent of the shape
of the boundary, and are very hard to come by, see e.g. [27, 28]. Here the chosen geometrical observable
should rather encode the shape of the boundary.
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CHAPTER 1. INTRODUCTION

of (quantum) boundary conditions and the choice of geometric variable that describes the
embedding of the boundary. In particular [34] provides a fully non-perturbative version of
having the geodesic lengths as a boundary field, in which case one obtains so–called rigid
solid on solid models as boundary theories. In [32], the authors performed the semiclassical
analysis for a particular family of boundary conditions, which are encoded in a particular
choice of boundary wave functions [39]. This led to a confirmation of the one-loop partition
function found in [22,23], albeit with Planckian corrections, which arise due to the fact that
the Ponzano–Regge framework allows for an arbitrary winding number of the boundary
around the central axis.

To a great extent these works rely on the topological nature of 3D gravity. Thus the
question arises whether these constructions can be also applied to 4D gravity. A first
step to answer this question can be found in [3] of which I am a co–author. There, we
used again (linearized) Regge calculus to consider a background space–time, which is a 4D
version of twisted thermal flat space. Restricting to boundary data which induce a 4D flat
solution, [3] finds a 3D Liouville-type boundary theory. However, due to the fact that 4D
Regge calculus does not feature a local discretization independent measure [40], it is hard
to extend this result to the (one-loop) quantum theory.2

To extend these results to more general backgrounds and to tackle the main task,
namely including gravitons, we need a framework that is applicable to 4D gravity and
for which we can expect to solve the dynamics. Being particularly interested in length
observables, we will therefore consider (linearized) metric gravity. As the geodesic lengths
has so far been shown to be a convenient choice for the boundary field, which moreover
is connected to obtaining Liouville (like) boundary theories, we will stick with this choice.
This does however present us with a challenge, namely to compute the effective action for
a composite observable.

In part I of this thesis, we develop and test a general framework in which such effective
actions can be computed. As we will see this allows us to consider more general backgrounds
and boundaries in general dimensions and to systematize and greatly extend the results
which have been obtained so far. The challenge is to describe observables which capture
graviton propagating degrees of freedom.

We shall now shift gears and discuss aspects of discrete approaches to quantum geom-
etry which we will consider in part II of this thesis.

2One can consider a model for quantum flat space [41], for which a discretization independent model
does exist. In this case one can compute the one-loop partition function [3], which captures the effect of
the boundary degrees of freedom.
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CHAPTER 1. INTRODUCTION

1.2 Quantum geometry

The quantization of space–time geometry is an interplay between its symplectic and met-
rical features. In three dimensions, alignment between these two facets of geometry allows
construction of a discrete, simplicial path integral formulation of quantum gravity, the
Ponzano-Regge model [37]. In this model, space–time is decomposed into a large collection
of tetrahedra that are glued along a subset of edges with matched lengths. The metri-
cal and symplectic aspects of this geometry nicely align: the lengths encode the intrinsic
metric and the dihedral angles of the tetrahedra encode the extrinsic geometry and these
two sets of variables are canonically conjugated to each other [23, 42]. In the Euclidean
signature case the angles are compact, which leads to discrete spectra for the lengths.

In four dimensions the situation is more subtle, and there is tension between the sym-
plectic and the metrical aspects. In a space–time split, the metric has two natural dis-
cretizations: (i) the lengths of edges, and (ii) the extrinsic curvature angles, which are
defined on 2D faces. These variables are not canonically conjugate. This is manifested in
the different versions of Regge calculus, a discrete formulation of general relativity, based
on edge lengths [25] and face areas [43] respectively. A Regge formulation based on areas
and angles [44] also exists.

If the lengths are taken as fundamental, then the conjugate variables are contractions
of the curvature angles with certain area-length derivatives [45]. If the curvature angles are
taken to be fundamental, the conjugate variables are the face areas— whose quantization
should then give a discrete area spectrum. The area version of Regge calculus is equivalent
to length Regge calculus if one implements constraints that ensure that the configurations
arise from a consistent length assignment [44, 46, 47]. Weakening these constraints or not
implementing them at all leads, however, to a different dynamics based on a configuration
space of generalized discrete geometries.

Area variables arise naturally in connection reformulations of general relativity (e.g.
with gauge group SU(2) or SO(3, 1), [48]). In Loop Quantum Gravity (LQG), the cur-
vature of a space–time is encoded in the (Ashtekar-Barbero) connection variables which
are exponentiated to holonomies. The natural conjugated variables are electric (or triad)
fields, which are integrated over two-dimensional faces—from these variables one constructs
the areas of these faces [49–51]. The same structure of canonically conjugated variables
appears in lattice gauge field theories.

The conjugated variables that appear in the construction of the phase space for (3+1)-
dimensional simplicial geometries are areas of triangles with dihedral angles hinging on
them [52, 53]. The dihedral angles and areas encode the extrinsic curvature and intrinsic
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curvature respectively.

Spin foam models [54]—discrete geometry path integral quantization—of LQG focus on
this set of ‘curvature-area’ variables. This focus has led to a rich set of results e.g., discrete
area and volume spectra [49–51,55–57]. Area variables also play a central role in holography
[58,59], in particular for the reconstruction of geometry from entanglement [60,61]. Discrete
area spectra are key in many approaches to black hole entropy counting [62–65].

In spite of these motivating arguments, questions about area and area-angle Regge
calculus abound. Even for a small simplicial complex, the areas greatly outnumber the
edge lengths. What is the nature of these extra degrees of freedom? In particular, there
are multidimensional families of area configurations that have no corresponding description
in the length Regge calculus. What are these ‘non-metric’ area Regge configurations? Do
they have a correspondent in continuum general relativity? Most importantly, can we
understand the dynamics of these degrees of freedom? These questions and several others
are discussed in the second part of this thesis.

LQG is a well developed theory of quantum geometry. At the classical level, vari-
ous phase space descriptions of simplicial geometries have been constructed [53, 66–71]
In the quantum theory, rigorous representations of geometric observables as operators on
continuum Hilbert spaces are available [72–75]. And in the covariant theory spin foam
amplitudes [76–81] describe the dynamics for these quantum geometries. The quantum
geometries can be analyzed in a semiclassical limit [55, 82–89], which here means that the
discrete areas become large in comparison to the Planck areas. These works show that the
Regge action [25] emerges in this semiclassical limit.

The classical limit of the first four-dimensional spin foam model for gravity, the Barrett–
Crane model, was suggested to describe area Regge calculus [90]. However, it was pointed
out that area Regge calculus does not describe general relativity [43]. This is because the
equations of motions impose flatness and area variables describe a bigger configuration
space than that provided by (piecewise) simplicial geometries.

Recent arguments show that the Barrett-Crane model cannot lead to general relativity
dynamics [91], see also the discussion [92].3 This has motivated ‘new’ models [77–81], whose
boundary Hilbert space matches those of canonical LQG. However, these models describe a
class of generalized simplicial geometries. In particular, they identify a well-defined length
geometry and a matching of areas along faces of glued triangles. However, the shapes of
the glued triangles need not to match. The constraints that impose the matching of these

3In fact, we will later in this thesis propose a model which provides a ‘correction’ to the Barett-Crane
model.
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shapes have been worked out in [44] and are known as gluing conditions or shape matching
constraints. Figure 1.1 illustrates these generalized geometries for two pairs of tetrahedra.

Figure 1.1: Two examples of the generalized simplicial geometries considered in quantum
gravity. In both cases the pairs of tetrahedra are glued along their pale shaded faces and
the areas of these triangles agree. On the left the shape mismatch is mild, while on the
right it is more extreme.

Intriguingly, shape matching constraints are not automatically implemented in a clas-
sical version of LQG, that is, in the description of the phase space of (3 + 1)-dimensional
simplicial geometries [53]. This has been linked, in [66], to the much discussed question
of whether one should implement, in addition to the primary simplicity constraints, sec-
ondary simplicity constraints in spin foam models or not [93–95]. References [67] and [96]
show that the enlarged space of simplicial geometries can also explain the appearance of
the Barbero-Immirzi parameter in LQG.4

The work [71] described these same generalized simplicial geometries in a phase space
parametrization that included a ‘twisting angle’ and provided a derivation from canonical
LQG, using the phase space associated to the cotangent bundle T ∗SU(2) of each triangle.
(See [97] for an earlier derivation of the twisting angles from spin foams.) This led to the
term ‘twisted’ geometries, which is now the most common name for this class of general-
ized simplicial geometries.5 Indeed a link to twistors has been proposed in [99, 100], and
extended further in [101]. A proposal for a 4-simplex action for twisted geometries beyond
the shape-matched sector appears in [102]. Secondary simplicity constraints do arise in
this context [103] and, intriguingly, only admit solutions in the sector of shape matched
configurations. On the other hand, in [104] the authors describe a splitting of the connec-
tion for the generalized spatial geometry into torsion and torsionless parts which is solved

4That is, the fact that the Barbero-Immirzi parameter appears in the spectrum of geometric observables,
despite the fact that classically it only parametrizes a canonical transformation of the theory’s variables.

5See also [98] for an alternative interpretation of twisted geometries in terms of ‘spinning’ geometries.
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for shape matched configurations. This highlights the question of what kind of dynamics
one can attribute to these generalized geometries and it is one of our central themes.

While [104] provides a construction for a Levi–Civita connection for the twisted geome-
tries, in a sense, they identify an exponentiated version of the symmetric part of a more
general connection. There is a left-over part of the connection’s holonomy that acts within
the plane of the triangle along which two tetrahedra are glued. This can be understood
as the non-symmetric part and therefore as describing torsion degrees of freedom. This
provides yet another alternative interpretation for the additional degrees of freedom that
appear for the generalized or twisted geometries. Another viewpoint is confirmed in anal-
ysis of a higher gauge topological BFCG action [6] where we interpreted edge simplicity
constraints as torsionless conditions.

We shall refer to these degrees of freedom as non-metric, in the sense that they ex-
tend the space of simplicial, piecewise linear and piecewise flat (or homogeneously curved)
geometries beyond a length description.

One has thus reached quite a detailed understanding of the generalized space of geome-
tries that underlies LQG. So far this understanding is strictly on the kinematical level and
there is not a clear understanding of what kind of dynamics the spin foam models pre-
scribe for the additional degrees of freedom present in these non-metric geometries. This
understanding is necessary to clarify whether the current spin foam models can describe
the dynamics of general relativity, or whether additional constraints need to be added to
suppress the non-metric degrees of freedom. Again, see [103] for a canonical analysis of
this question.

The examples of length Regge calculus and area Regge calculus show that such an
enlarged configuration space of geometries can lead to a danger of having flat dynamics.
Indeed this possibility of a flat dynamics has arisen in the semiclassical analysis of spin foam
amplitudes [83,88,105–109]. The semiclassical analysis allows only limited information on
how strongly the constraints are imposed, this is one reason why the so-called flatness
problem has yet to receive a satisfactory resolution [109]. Indeed, we will see in chapter
9 of this thesis that the discreteness of the areas prevents a sharp imposition of these
constraints.

It is important in the analysis of spin foams to find out if they lead to area Regge
calculus or length Regge calculus dynamics. To this end we will consider in part II of this
thesis a rigorous study of area Regge calculus. Even on the classical level, the dynamics
(and kinematics) of area Regge calculus remains poorly understood [110–112]. But, area
Regge calculus does provide a dynamics for the non-metric degrees of freedom, which also
appear in spin foams. The action of area Regge calculus numerically coincides with that of
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length Regge calculus (on configurations which can be matched to each other), and as we
have noted above the Regge action (in variables that include areas) appears as the classical
limit of Barrett-Crane-type spin foam models. In fact, area Regge calculus is still the best
candidate for the classical limit of the Barrett-Crane model. The semiclassical analysis
of the newer spin foam models feature the appearance of dominating saddle points that
describe so-called vector geometries [89,113,114]. Additional shape mismatched configura-
tions and generalized Regge actions appear also at the saddle point of non-simplicial spin
foams, as shown in [115] for regular hypercuboids and in [89] more generally. While area
Regge calculus will shed light on the dynamics of all these spin foams, we expect that a
better candidate for their classical limit is area-angle Regge calculus [89], which includes
the three-dimensional dihedral angles as independent variables [44].

In part II of this thesis, we aim at a broader understanding of the possible dynamics of
such generalized geometries arising from LQG. This can provide effective descriptions for
quantum gravity models, which will help to understand their dynamics and to improve the
models. We also aim to provide a foundation and tools for future studies of the dynamics
of area-angle Regge calculus.

Theories in which areas are the fundamental variables are also interesting in a wider
context. The investigations of area metrics in the continuum by Schuller et al [116] are
motivated by string theory. Recently it has been suggested that quantum gravity and a
notion of quantum geometry can be rebuilt from the entanglement structure of (possibly
matter) quantum fields [117,118]. In particular Ryu and Takayanagi [119] propose that in
a holographic setup the entanglement of the dual boundary field can be used to measure
the areas (in (3+1) dimensions) of surfaces extending into the bulk. Thus, also here, areas
appear to be more fundamental. In some sense areas are more natural than length in
(3 + 1) dimensions as the flow of a vector field through a surface can be used to measure
the area of this surface.

Outline of thesis

In part I of this thesis, we shall discuss the holographic dualities for linearized gravity
using the metric formulation. We begin in chapter 2 with a computation of the effective
action for geodesic distances. A first key result will be the computation of the Hamilton–
Jacobi functional for (linearized) gravity, restricting only to dynamics which describes
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diffeomorphisms, for a large family of boundaries6, in section 2.1. It turns out that a
convenient way to express this Hamilton–Jacobi function is in terms of the diffeomor-
phism generating vector field that generates the on-shell metric perturbations. In fact, the
Hamilton–Jacobi functional is local in terms of these vector fields. Note however that the
vector fields themselves are non-local functionals of the boundary metric data.

This allows us to propose in section 2.2 a field theory for a scalar field defined on the
boundary, whose Hamilton–Jacobi functional reproduces the one for gravity (restricted to
the diffeomorphism sector) and whose equation of motion imposes that the scalar field
equals the geodesic lengths from the boundary to some centre. To compute more directly
the effective action for the geodesic lengths we introduce in section 2.3 a Lagrange multiplier
method.

In chapter 3, we compute explicitly the dual boundary actions for three different exam-
ples of three dimensional backgrounds. We will see in section 3.1 and 3.2 that a priori this
method does not lead to the expected results for the cases of backgrounds with intrinsically
flat boundaries, such as the torus boundaries appearing for the twisted thermal flat space–
time and AdS3, which form our first two examples. The reason is that the geodesic lengths
turn out to be in a certain sense a degenerate observable. This can be changed however by
carefully implementing smoothness conditions at the central axis of the solid torus. This
procedure will lead to an effective action, which differs from the one proposed in section
2.2 by the insertion of a non-local operator. This insertion also implements a remnant of
the diffeomorphism symmetry of the gravitational theory, which turns the precise location
of the central axis into a gauge degree of freedom, also for the boundary field theory.

The third example, which we consider in section 3.3, is a three dimensional spherical
boundary in flat space (and thus with intrinsic background curvature), which has so far
not been discussed in the literature. Here the mechanism for constructing the effective
action differs slightly from the one with flat boundaries, as the smoothness conditions at
the centre play less of a key role. The effective action will be local and agree with the
proposed one from section 2.2.

Using our framework, we will also consider an example of a background in four di-
mensions given by the twisted thermal flat space–time in chapter 4. We will compute the
dual boundary field theory for the gauge sector and also compute the Hamilton–Jacobi
functional for the boundary metric data featuring gravitons.

We will close with a discussion and outlook in chapter 5. To avoid deviating from the
key points in the main body of the thesis, we deferred all more involved calculations and

6We consider boundaries with homogeneous intrinsic curvature DA
bR = 0 and with non-vanishing

extrinsic curvature.
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proofs to the appendices. This includes the defining formulas for the parametrization of the
diffeomorphism sector in Appendix A.1, and the calculation of the restricted Hamilton–
Jacobi functional in Appendix A.2. In appendix B, we proof some useful formulas which are
needed for subsequent appendices. We discuss the derivation of solutions to the linearized
Einstein equations with a Lagrange multiplier term in Appendices C. In particular, we find
solutions for backgrounds with intrinsic flat boundaries in section C.1 and with spherical
boundaries in section C.2. In Appendix E we derive the smoothness conditions which
we need to implement at the centre of the bulk manifolds. Appendix F discusses the
computation of effective actions for observables, which in a certain sense are degenerate.
Finally, Appendix G collects definitions for spherical vector and tensor harmonics, which
are useful to discuss the example with spherical boundary in section 3.3.

In part II of this thesis we revisit area Regge calculus. In Chapter 6, we address an
ambiguity problem that arises in the original formulation of the theory, which makes the
action ill-defined for configurations with right angles. We circumvent this problem by
constructing a first order formulation. In Section 6.3 we analyze certain aspects of the
dynamics of linearized area Regge calculus. Here we consider, in particular, setups that
are helpful in distinguishing between length-Regge-type dynamics and area-type dynamics
in spin foams. To this end we consider configurations that describe Pachner moves, that
is, local changes in the triangulation in Section 7.1. We will indeed see that length and
area Regge calculus behave differently under these Pachner moves. We provide a canonical
analysis of the dynamics using tent moves in Section 7.2. Tent moves also allow a compar-
ison of the counting of (propagating or physical) degrees of freedom between length and
area Regge calculus. We will see that area Regge calculus has generically more propagating
degrees of freedom than length Regge calculus, and that the additional degrees of freedom
can be matched to specific variables describing the non-matching of the shapes of (glued)
triangles.

In Chapter 8 we show that non-metricity (torsion) also breaks diffeomorphism symme-
try. In particular, we show that certain three-dimensional dihedral angles can be used to
capture the peculiar non-metricity of area Regge calculus and to parametrize the extent of
the diffeomorphism breaking.

To tackle the question of whether a discrete, locally independent area spectrum is
consistent with the dynamics of general relativity, we propose a family of ‘effective’ models
in chapter 9. These models contain all the necessary ingredients and are relevant for spin
foams. We will explore the implications of all of these findings in chapter 10.
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Chapter 2

Effective actions for geodesic lengths

In this chapter we will determine directly from the diffeomorphism sector of (linearized)
Einstein’s metric gravitational theory, dual boundary field theories for a variety of back-
grounds and boundaries with different topologies. These boundary field theories arise
as effective theories for geodesic lengths variables. The computations can be performed
for quasi-local boundaries at finite distance, and allow for negative, vanishing or positive
cosmological constant. The limit to asymptotic boundaries can be considered easily in
this framework by imposing the appropriate boundary conditions at infinity. These dual
boundary field theories allow for an easy computation of the gravitational (one-loop) par-
tition function restricted to the diffeomorphism sector for quasi-local boundaries at finite
distance.

2.1 The Hamilton–Jacobi action for linearized gravity

One key ingredient needed to determine the dual boundary theories is the Hamilton–Jacobi
functional, that is the on-shell action for gravity. Later, we will show how the linearized
gravitational Hamilton–Jacobi functional can be used to compute the one-loop partition
function for gravity. Thus, in this section, we will determine the (restricted) Hamilton–
Jacobi functional for linearized gravity, for a large class of boundaries.

To start, we will summarize our conventions and define the type of boundaries we
will be considering here. We will then introduce a convenient parametrization of the
boundary metric perturbations in terms of diffeomorphism generating vector fields and
curvature excitation (graviton) fields. This allows to split the metric perturbations into
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CHAPTER 2. EFFECTIVE ACTIONS FOR GEODESIC LENGTHS

diffeomorphism sector– the part that is described by the diffeomorphism vector fields– and
graviton sector–the part described by the graviton fields.

The first key result we will present is to invert the relationship between boundary metric
perturbations and the vector fields, that is to express the vector field components in terms
of the boundary metric perturbations for the diffeomorphism sector.

Using our first result, we will evaluate the Hamilton–Jacobi functional restricted to the
diffeomorphism sector. (This amounts to the classical limit of the physical vacuum wave
function associated to the given boundary when restricted to the diffeomorphism sector.)
This is our second key result. It turns out that the restricted Hamilton–Jacobi functional
is a local functional, if we use the parametrization in terms of diffeomorphism generating
vector fields. To avoid deviating from the key points in this section, we have deferred most
of the involved computations and proofs to the appendices.

2.1.1 Assumptions and conventions

We consider linearized gravity in dimensions d ≥ 3 with Euclidean signature, on a space–
time manifold (M, gab) with a cosmological constant term Λ and a smooth closed boundary
(∂M,hab). The (Euclidean) Einstein-Hilbert action with the Gibbs-Hawking-York (GHY)
boundary term is given by

S = − 1

2κ

∫
M
ddx
√
g (R− 2Λ) − 1

κ

∫
∂M

d(d−1)y ε
√
hK , (2.1)

where κ = 8πGN , GN is Newton’s constant. We have used R to denote the Ricci scalar
and K the trace of the extrinsic curvature. The parameter ε = ±1 depends on the sign
convention for boundary extrinsic curvature, we will later specify our convention.

We choose the background solution to be expressed in Gaussian normal coordinates

ds2 = gabdx
adxb = dr2 + hABdy

AdyB (2.2)

where the space–time coordinates have the form xa = (⊥, yA) with ⊥ as an index for the
radial coordinate r ∈ R+. We will assume r = 0 to define a bulk submanifold and the
boundary to be given by a set of points with fixed radial coordinate r = rbdry. Also, we
will allow the manifold to have two boundary components (“inner” and “outer”) at two
different radial coordinates. Here, we denote the space–time indices by a, b, . . . and the
‘spatial’ indices A,B, . . . for the r = const. hypersurfaces.
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With the use of Gaussian coordinates, the extrinsic curvature is defined by KAB =
1
2
∂⊥hAB. This differs however by a sign from the extrinsic curvature tensor associated

to an “inner” boundary, which has outward pointing normal na = (−1, 0, . . .). We have
therefore used the variable ε = ±1 to make this sign explicit.

We consider perturbations around a background metric

gab = gab + δgab = gab + γab , (2.3)

and describe with γ⊥⊥, γ⊥A and γAB the various components of the metric perturbations
according to the foliation defined by the r = const surfaces. The linearized action will
be given by expanding the Lagrangian density up to quadratic order in the perturbation
variables γab. Under a linearized coordinate transformation with change of coordinates
xa 7→ xa + ξa, the metric perturbations transform as Lξgab.

The non-vanishing components of the Christoffel symbols associated with the metric in
Gaussian coordinates

Γ⊥AB = −KAB , ΓA⊥B = KA
B , ΓABC = bΓABC , (2.4)

allow to express the relation between the space–time covariant derivatives ∇ on (M, gab)
and spatial covariant derivatives D on radial foliations (Σ⊥,hAB).

We will use bold Latin fonts to denote space–time, spatial tensors and normal Latin
fonts to denote background tensors except for the Christoffel symbols denoted with Γ.
For example KAB, KAB represent the full extrinsic curvature and background extrinsic
curvature respectively. We will also denote the curvature tensors on the r = const boundary
hypersurface with the superscript b, so that bR is the boundary Ricci scalar.

We shall consider a family of background solutions whose Weyl curvature tensor as-
sociated to the metric vanishes. In d dimensions, the Riemann curvature tensor can be
decomposed in terms of the Ricci tensor as

Rabce = Cabce −
2

(d− 1)(d− 2)
Rga[cge]b +

2

(d− 2)

(
ga[cRe]b +Ra[cge]b

)
, (2.5)

where Cabce is the Weyl curvature tensor which is traceless and conformally invariant.
Taking the trace of the vacuum Einstein equations gives the Ricci scalar R = 2dΛ

(d−2)
and

inserting the vacuum Einstein equations into the decomposition (2.5) (if Cabce = 0), yields

Rabce =
4Λ

(d− 1)(d− 2)
ga[cge]b . (2.6)
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These background solutions describe homogeneously curved or maximally symmetric (isotropic
and homogeneous) space–times also referred to as Einstein manifolds. These solutions can
therefore be classified by the sign of the cosmological constant. For Λ > 0, we will have
space–times that are locally spherical, Λ < 0 describe locally hyperbolic space–times and
Λ = 0 describe locally (Euclidean) flat space–times. For dimensions d = 3, the Weyl tensor
vanishes identically by dimension analysis and hence all vacuum solutions have homoge-
neous curvature. Thus the class of background solutions we consider captures all vacuum
solutions in three dimensions.

Finally, we will assume for the background intrinsic curvature for the boundary manifold
at the r = const hypersurfaces to be covariantly constant (DA

bRB
CDE = 0).

Gauss–Codazzi Relations

We will make use of the Gauss-Codazzi relations which ensure an embedding of the hy-
persurfaces into the vacuum solutions. The Gauss relations, which relate the Riemann
tensor of the d−dimensional manifold and the Riemann tensor of the (d− 1)−dimensional
hypersurfaces is given by

bRABC
D = RABC

D +KACKB
D −KBCKA

D , (2.7)

where bRABC
D is the (d − 1)−dimensional Riemann tensor associated to the boundary

metric h. For vacuum solutions to the Einstein equations, the Ricci tensor and Ricci scalar
satisfy

Rab =
2Λ

d− 2
gab and R =

2dΛ

d− 2
(2.8)

and for such solutions the contracted Gauss relations become

bRAB =
2Λ

d− 1
hAB +KKAB −KA

CKCB , (2.9)

bR = 2Λ +K2 −KABK
AB . (2.10)

The last equation (2.10) which is also referred to as the scalar Gauss relation coincides with
the Hamiltonian constraint, that is the (⊥⊥) component of the vacuum Einstein equations.

Furthermore, the Codazzi relations state that

DAKBC −DBKAC = RABCen
e =

max. sym. sol.
0 ,

DAKB
A −DBKA

A = RBen
e =

vac.-sol.
0 . (2.11)
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The equations DAKB
A − DBKA

A = 0 in the last line (contracted Codazzi relations)
coincide with the momentum constraints, that is the (⊥ A)–components of the Einstein
equations.

2.1.2 Perturbative expansion of the action

To compute the linearized Hamilton–Jacobi functional (HJF) up to quadratic order, we
will need to expand the action (2.1) up to second order terms of metric perturbations (2.3).
We therefore compute this expansion in this section.

Zeroth, first and second order contributions

The zeroth term is given by the action evaluated on the (background) solution. Using
our assumption of homogeneous curvature background with R = 2d

(d−2)
Λ, the zeroth order

action is given by

S(0) = −1

κ

2Λ

(d− 2)
dV − 1

κ

∫
∂M

d(d−1)y ε
√
hK (2.12)

where dV is the volume of the manifold M.

The first order variation of the bulk term in the action (2.1) gives

δ(Sbulk) =
1

2κ

∫
M
ddx
√
g
(
Gab + Λgab

)
δgab +

1

2κ

∫
∂M

d(d−1)y
√
h
(
2δK +KABδgAB)

)
. (2.13)

This bulk variation together with the variation of the
√
hK term in the boundary action

gives the first variation of the action (γab = δgab)

S(1) =
1

2κ

∫
M
ddx
√
g
(
Gab + Λgab

)
γab +

1

2κ

∫
∂M
d(d−1)y ε πABγAB (2.14)

and determines the (background) equations of motions as well as the first order of the
on-shell action. It also determines the background momentum πAB =

√
h(KAB −KhAB)

which is conjugated to the metric.
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The variation of the first order bulk and boundary terms of the action give the second
order bulk and boundary terms respectively

−κS(2) = −1

2

∫
ddx δ

(√
g
(
Gab + Λgab

))
δgab −

1

2

∫
∂M
d(d−1)y ε δ(

√
h(KAB − KhAB))δgAB

=
1

2

∫
ddx
√
g γab

(
V abcdγcd + 1

2
Gabcdef∇c∇dγef

)
+

1

2

∫
∂M
d(d−1)y ε γab

(
(B1)abcdγcd + (B2)abecd∇eγcd

)
(2.15)

The expressions for all the background tensors appearing in the second order action (2.15)
are detailed in Appendix C. (See also the appendix in [23] for a derivation of the second
order action). From the bulk term we get the linearized equations of motion for the metric
perturbations

Ĝab := V abcdγcd + 1
2
Gabcdef∇c∇dγef = 0 . (2.16)

The linearized equations are not all independent but satisfy the divergence equation

∇aĜ
ab = 0 , (2.17)

which follows from the Bianchi identity. This dependence is attributed to diffeomorphism
symmetry: the d dependencies suggest that the equations of motion leave d parameters in
the metric undetermined– indeed these are the gauge degrees of freedom implied by the
diffeomorphism symmetry of the action.

2.1.3 Mode decomposition of the boundary metric perturbations

Here, we will consider a convenient splitting of the boundary metric perturbations. In
general dimensions, the boundary data determines two different classes of solutions – those
which are equivalent to a solution diffeomorphism equivalent to the background and those
which include (linearized) curvature excitations on top of the background, that is bulk
gravitons. We split the induced boundary metric fluctuations γAB accordingly into the
diffeomorphism sector ζAB and the graviton sector χAB.

The diffeomorphism sector can be defined via a symmetric projector ζAB = DPCD
ABγCD

which projects the metric perturbations onto the part generated by linearized diffeomor-
phisms

ζAB = [Lξg]AB = 2KABξ
⊥ +DAξB +DBξA

= 2KABξ
⊥ + [Lξ||h]AB . (2.18)
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The graviton sector is defined as being invariant under the action of linearized diffeomor-
phisms on the metric fluctuations via a symmetric projector χAB = GPCD

ABγCD. The two
sectors are orthogonal with respect to the inner product on the space of symmetric tensors
on the hypersurface Σ⊥ defined by

〈γ, γ′〉 :=
1

(d−1)V

∫
Σ⊥

d(d−1)y
√
h γABh

AChBDγ′CD , (2.19)

where (d−1)V is the (d − 1)-dimensional volume of the hypersurface Σ⊥. Using the inner
product, we get that the graviton metric perturbations satisfy

DAχAB = 0 , KABχAB = 0 . (2.20)

where we have used the assumption that the boundary hypersurface is closed.1 The first
condition implies that graviton modes are transversal, the second condition implies that
the “K−trace” vanishes. If KAB ∼ gAB, the graviton sector is described by transverse
traceless modes.

In summary, the induced metric perturbations can be parametrized as

γAB = DPCD
ABγCD + GPCD

ABγCD = ζAB + χAB (2.21)

where GPCD
AB = ICDAB − DPCD

AB , with I the identity operator on symmetric tensors.

In dimensions d ≥ 4, the graviton sector will feature propagating local degrees of
freedom. Constructing the HJF will require (case dependent) solutions to the equations of
motion. The diffeomorphism sector on the other hand can be discussed in general terms
for backgrounds satisfying the assumptions in section 2.1.1. In the next sub-section we will
therefore concentrate on the diffeomorphism sector and keep the discussion general.

2.1.4 The diffeomorphism sector

Let us require that the relationship between the metric fluctuations projected onto the
diffeomorphism sector ζAB and the diffeomorphism inducing vector field (ξ⊥, ξA) in (2.18)
is invertible. Using the shorthand π̃AB =

(
KAB −KhAB

)
which is the de-densitized con-

jugate momentum π̃AB = h−1/2πAB, we will now state our first result.

1If the manifold ∂M has a boundary, we can still choose appropriate boundary conditions such that
the conditions (2.20) still hold.
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Result 1: The diffeomorphism vector field components can be determined from the
following equations

ΠABζAB = ∆ ξ⊥ ,

2π̃BCδ′bΓABC = DABξB +QABDBξ
⊥ (2.22)

where

ΠAB =
(
hAChBD − hABhCD

)
DCDD − bRAB ,

δ′ bΓABC =
1

2
hAD (DBζCD +DCζBD −DDζBC) ,

∆ = 2π̃ABDADB − 2 bRABKAB ,

DAB = 2π̃CD
(
DCDDh

A
B + bRA

CBD

)
,

QAB = 2
(
2π̃BCKA

C − π̃CDKCDh
AB
)

. (2.23)

The proof of Result 1 can be found in Appendix A.1. Note that we have used δ′ to denote
the restriction of the metric variations to the diffeomorphism sector (δ′gAB ≡ ζAB).

To obtain ξ⊥ and ξA we need to invert the operators ∆ (on the space of spatial scalars)
and DAB (on the space of spatial vectors). Thus the vector components are non-local func-
tionals of the spatial metric perturbations. Note that by construction, ξ⊥ is a functional
of the boundary metric perturbations, which is invariant under (linearized) boundary tan-
gential diffeomorphisms. This suggest a relation of ΠABζAB to the first variation of the
boundary Ricci scalar, which is also vanishing on boundary tangential diffeomorphisms. In
fact, the variation of the boundary Ricci scalar satisfies

δ(bR) =
(
DADB − hABDCD

C
)
γAB − bRABγAB = ΠABγAB (2.24)

where the operator ΠAB is given in (2.23). If we restrict to the metric perturbations to the
diffeomorphism sector, we get a relation between between the first variation of the Ricci
scalar and the normal component ξ⊥, that is δ′(bR) = ΠABζAB = ∆ξ⊥.

Using the Gauss-Codazzi relations and the assumption of the background, we can fur-
ther expand QAB as

QAB = 2

((
bRhAB − 2 bRAB

)
− 2Λ

(d− 3)

(d− 1)
hAB

)
. (2.25)

In dimensions d = 3, the background tensor QAB vanishes automatically since the Ricci
scalar for two dimensional surfaces satisfies 2RAB = 1

2
2RhAB.

21
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Having found the components ξ⊥ and ξA as functions of the boundary metric compo-
nents ζAB, we can express the lapse ζ⊥⊥ and shift ζ⊥A as functions of generating vector
fields

(
ξ⊥, ξA

)
and thus in terms of ζAB. This can be computed from the components

Ĝ⊥⊥, Ĝ⊥A of the linearized equations (2.16), and they are given by,

ζ⊥⊥ = 2∂⊥ξ
⊥

ζ⊥A = ∇⊥ξA +∇Aξ⊥

= DAξ
⊥ + hAB∂⊥ξ

B . (2.26)

We now determine the first and second order Hamilton–Jacobi functional (HJF) for
general backgrounds (satisfying the assumptions of section 2.1.1), if we restrict to the dif-
feomorphism sector. This appears in a particular simple form if we use the parametrization
of this sector in terms of the vector field components (ξ⊥, ξA). This is our second result.

Result 2: The first and second order Hamilton–Jacobi functional for the diffeomor-
phism sector (using our assumptions in section 2.1.1) are given by

DS
(1)
HJ = −1

κ

∫
∂M

d(d−1)y
√
h ε
(

bR− 2Λ
)
ξ⊥ ,

DS
(2)
HJ = − 1

2κ

∫
∂M

d(d−1)y
√
hε

(
ξ⊥(∆ +QABKAB)ξ⊥ + ξ⊥QABDAξB −

ξAQ
ABDBξ

⊥ − ξADABξB
)

. (2.27)

The differential operators ∆ and DAB are defined in (2.23) and the background tensor QAB

is given in equation (2.25). We provide a derivation of these results in Appendix A.2. We
remind the reader that ε is a sign that depends on the orientation of the normal vector to
the boundary.

The HJF contributions given in (2.27) are local functionals, as expressed in terms of the
vector field components (ξ⊥, ξA). These are however non-local functionals of the induced
metric perturbations. The second order HJF will decouple into normal and tangential
terms only when QAB vanishes, for example in three dimensions.

As we will see the lengths of geodesics which are normal (in the background geometry)
to the boundary will be basically given by ξ⊥ when restricted to the diffeomorphism sector.
The differential operator ∆ will therefore also be a key ingredient in the effective action
for the geodesic lengths.

22



CHAPTER 2. EFFECTIVE ACTIONS FOR GEODESIC LENGTHS

2.2 Dual boundary field theories

For the diffeomorphism sector, there are no local physical degrees of freedom. However,
diffeomorphisms can affect the metric on the boundary and its derivatives: as we have
seen, this contributes to the Hamilton–Jacobi functional (HJF). In 3D or in higher dimen-
sions restricted to the diffeomorphism sector, this is the only contribution to the HJF. In
this sense, all dynamics is captured by the boundary. The dynamics been captured by
the boundary space–time, makes it a perfect playground for explicit realizations of the
bulk/boundary correspondence. Here we are interested in defining a (local) field theory
that is defined in terms of local fields on the boundary manifold, whose HJF agrees with
that of gravity. We will refer to such a field theory as dual boundary field theory.

We shall look for boundary fields directly related to the observables of the gravitational
theory. The gravitational HJF measures the extrinsic curvature of the boundary and
describes the deformation of the shape of the boundary. Therefore, we shall consider
boundary fields which describe the embedding of the boundary in the (homogeneously
curved) bulk solution.

One such choice is the geodesic distance between two space–time points. More precisely,
we consider a geodesic from a point (rout, y

A) on the boundary ∂M to a point (r = 0, yA)
(central bulk axis). We can therefore understand the geodesic length as a field defined on
the boundary itself.

Since the metric is of Gaussian form with respect to the radius and the boundary is
a r = const. surface, the tangent vector to the background geodesic is orthogonal to the
boundary. For this reason the geodesic length will be to first order in the (boundary)
metric perturbations invariant under boundary tangential diffeomorphisms. Thus we can
only expect to reproduce the part of the gravitational HJF, which is invariant under these
boundary tangential diffeomorphisms, that is the part quadratic in ξ⊥. On the other hand,
knowing that the first order of the geodesic lengths is boundary diffeomorphism invariant,
we can suspect that it is proportional to ξ⊥ evaluated on the boundary, which in turn is
related to the first variation of the boundary Ricci scalar.

In the following we will determine the (first order of the) geodesic length as a function
of the boundary metric. This will allow us to ‘guess’ a candidate for a dual field theory,
which (i) reproduces the equation of motion for this geodesic length and (ii) reproduces
the boundary diffeomorphism invariant part of the gravitational HJF. In the process we
will encounter a subtlety, namely that the geodesic lengths is also affected by the position
of the central axis or point. This position is determined by the bulk metric perturbations,
which are however gauge degrees of freedom.
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In general, the positions of a central point or axis do however require d degrees of
freedom for a central point and d degrees of freedom per axis point, whereas the boundary
field describes one degree of freedom per boundary point. Indeed, we will see later, that
this arbitrariness affects only certain momentum modes of the boundary field. But this
feature will be also responsible for a certain modification which arise, if we determine the
action for the geodesic length more directly from the gravitational action.

In section 2.2.2 we will furthermore find dual fields which reproduce the parts of the
gravitational HJF which describe tangential boundary diffeomorphisms.

2.2.1 Action for the geodesic length

To start, we need to know the lengths of geodesics (r(τ), yA) as a functional of the metric
perturbations to first order. As a second step we express these lengths as functionals of
the boundary metric.

Note that the parametrized curves xa(τ) = (rin+(rout−rin)τ, 0, . . .) between two points
(rin, y

A) and (rout, y
A) with τ ∈ [0, 1] are affinely parametrized geodesics with respect to

background metrics of the form (2.2). This follows from the geodesic equation

dxa

dτ
∇a

dxb

dτ
= Γb⊥⊥ (rout − rin)2 = 0 . (2.28)

We now consider a geodesic za(τ) with respect to the full metric gab with fixed endpoints
za(0) and za(1). As explained in Appendix D its length is given to first order in metric
perturbations by

`g =
1

2(rout − rin)

∫ 1

0

dτ
dxa

dτ

dxb

dτ
γab(x(τ)) =

1

2

∫ rout

rin

dr γ⊥⊥(r) . (2.29)

For a solution generated by a diffeomorphism parametrized by a vector field ξa, the
first order metric perturbation is given by

γ⊥⊥ ≡ ζ⊥⊥ = (Lξg)⊥⊥ =
(2.2)

2∂⊥ξ
⊥. (2.30)

We thus find

`g = ξ⊥(rout)− ξ⊥(rin) . (2.31)
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With (2.22) and the expression for the variation of the boundary Ricci scalar, we can
express the ξ⊥ component as a functional of the boundary metric

ξ⊥ =
1

∆
ΠABζAB =

1

∆
δ′(bR) . (2.32)

But we see that the geodesic lengths needs the metric γAB at the outer boundary at rout and
inner boundary at rin. In the following, we will assume that rin = 0 describes a central axis
or point. We will later see that in these cases, making certain smoothness assumptions on
the metric perturbations and Fourier transforming in the spatial yA coordinates, ξ⊥(r = 0)
is indeed vanishing for almost all momentum modes. The following will hold for momentum
modes for which ξ⊥(r = 0) is vanishing. For these modes we have that `g = ξ⊥(rout) is a
functional of the (outer) boundary metric only.

Let us consider the action

DSρ =
1

2κ

∫
d(d−1)y

√
h

(
ρ (∆ +QABKAB) ρ− 2ρ (∆ +QABKAB)

1

∆
δ′(bR)

)
(2.33)

which leads to the equation of motion

ρ =
1

∆
δ′(bR) = ξ⊥ . (2.34)

This shows that on-shell ρ = `g, and that the on-shell action

DSρ =
solu
− 1

2κ

∫
d2y
√
h ξ⊥(∆ +QABKAB)ξ⊥ (2.35)

does indeed reproduce the boundary tangential invariant part of the gravitational Hamilton–
Jacobi functional.

The action (2.33) is the guessed dual boundary action with a quadratic term defined by
(∆+QABKAB) and a Liouville-like coupling to the boundary Ricci scalar. For backgrounds
with QAB = 0, this boundary action will be a local functional of the field ρ. One subtlety
is that the δ′ projection to the diffeomorphism sector might be considered non-local (but
it acts on γAB and not on ρ).

In chapters 3 and 4 we will derive effective actions for the geodesic length observable
more directly from the gravitational action. That is, we integrate out from the gravitational
action all fields excepts for a degree of freedom describing the geodesic lengths. This
resulting effective action will be very similar to (2.33), but there will be also a non-local
modification. This modification will take into account that ξ⊥(r = 0) might be non-
vanishing for certain momentum modes.
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2.2.2 Action for the boundary tangential diffeomorphisms

So far we have found a boundary theory which reproduces the boundary diffeomorphism
invariant part of the gravitational on-shell action. Its equation of motion for the field ρ
imposes that ρ = ξ⊥, where ξ⊥ is understood as a functional of the boundary metric.
Similarly we can find an action which reproduces the remaining parts of the gravitational
on-shell action, which are quadratic in the tangential boundary diffeomorphism parameters
ξA. The dynamical variable is a boundary vector field σA and the equations of motion will
impose that σA = ξA.

To this end remember that the relation between ξA and the boundary metric pertur-
bations is given by

2π̃BC δ′ bΓABC −QABDB

(
∆−1ΠCDζCD

)
= DAB ξB . (2.36)

The action

DSσ = − 1

2κ

∫
d(d−1)y

√
h
(
σADABσB − 2σAhAD

(
2π̃BC δ′ bΓDBC −QBDDB

(
∆−1ΠCEζCE

)))
(2.37)

leads to the equation of motion

DABσB = hAD
(
2π̃BCδ′bΓDBC −QBDDB

(
∆−1ΠCEζCE

))
(2.38)

which are solved by σA = ξA. On-shell the action evaluates to

DSσ =
solu

1

2κ

∫
d(d−1)y

√
h ξADABξB. (2.39)

Hence we can define a boundary theory, with a scalar field ρ and vector field σA with
action given by a combination of the actions DS(ρ,σ) = DSρ + DSσ. The non-local terms
(∆−1) appearing in both actions vanish when QAB vanishes. The combined action DS(ρ,σ)

reproduces the normal and tangential components of the second order gravitational on-shell
action

DS̃
(2)
HJ = − 1

2κ

∫
d(d−1)y

√
h
(
ξ⊥
(
∆ +QABKAB

)
ξ⊥ − ξADAB ξB

)
(2.40)

but without the mixed terms.
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2.3 The effective action for the geodesic length

We have seen that we can postulate an action for a boundary field theory, such that the
boundary field variable evaluates to the geodesic lengths on solutions, and the action re-
produces the (boundary diffeomorphism invariant part of the) Hamilton–Jacobi functional
(HJF) of gravity restricted to the diffeomorphism sector. Later we will encounter examples
for which the postulated action will differ in some subtle ways from the effective action
for the geodesic lengths. This effective action is obtained by integrating out all degrees
of freedom from the gravitational action, except those parametrizing the geodesic lengths.
These differences concern in particular the proper reflection of the (gauge) symmetries
of the theory, and are, as we will discuss, important for the one-loop correction for the
gravitational partition function.

Integrating out all variables except for the geodesic lengths is difficult to do directly2, as
the geodesic length is a composite observable in terms of the metric perturbations. Instead
we will add a Lagrange multiplier term to the second order action,

−κS(2)
λ =

1

2

∫
M

ddx
√
g γab

(
V abcd γcd + 1

2
Gabcdef ∇c∇dγef

)
+

1

2

∫
∂M

d(d−1)y
√
h ε γab

(
(B1)abcdγcd + (B2)abcde∇cγde

)
+

1

2

∫
∂M

d(d−1)y λ(y) (ρ(y)− `g[γ⊥⊥]) (2.41)

where λ is a scalar density with respect to the boundary metric, which we treat as first
order variable. The boundary field ρ is a scalar, and the λ equation of motion imposes
that, evaluated on solutions, it gives the geodesic length

`g =
1

2

∫ rout

rin

dr γ⊥⊥ . (2.42)

Here we allow for now to have either one outer boundary or one outer and an inner
boundary. In the latter case we consider geodesics which go from the point (rout, y) on the
outer boundary to the point (rin, y) on the inner boundary. In the case where we have only
an outer boundary the geodesic goes from (rout, y) to a bulk point (r = 0, Pr→0(y)) where
Pr→0(y) is a projection of the y–coordinate to the set of points described by r = 0.

2This can be achieved in Regge calculus [3, 23], but requires to employ a discretization of the theory,
which might break the underlying diffeomorphism symmetry for backgrounds with curvature [52,120].
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Varying the action (2.41) with respect to the metric components we find the equations
of motion

Ĝab :=
(
V abcd γcd + 1

2
Gabcdef ∇c∇dγef

)
=

1

4

λ(y)√
h
δa⊥δ

b
⊥ , (2.43)

where we have used that with our choice of Gaussian coordinates
√
g =
√
h.

At this point one might wonder about the fate of the contracted Bianchi identities

∇aĜ
ab = 0 (2.44)

which guarantee that d number of the (vacuum) Einstein equations are redundant. But
the divergence is also vanishing for the right hand side of (2.43)

∇a
λ(y)√
h
δa⊥δ

b
⊥ =

(
λ(y)∂⊥

1√
h

+
λ(y)√
h

ΓAA⊥

)
δ⊥b = 0 . (2.45)

Hence we still have d number of redundancies between the equations of motion. In the
examples, we will consider in the following, it is sufficient to consider the equations (2.43)
for a =⊥ and b =⊥, A.

In the next two chapters we will work through several examples in three dimensions
and four dimensions. Specifically, we shall consider a torus boundary embedded into three
dimensional flat space–time, a torus boundary embedded into hyperbolic space–time, and
a spherical boundary embedded into three dimensional flat space–time. We shall also later
consider a four dimensional flat space with a 3-torus boundary embedded in flat space–
time. The cases with a torus boundary have a boundary internal curvature bR = 0 and
we will see that these cases are qualitatively different from the spherical boundary where
bR 6= 0.

In particular for the cases with bR = 0 the solution for the lapse γ⊥⊥ resulting from
(2.43) will not depend on λ. (See Appendix C.1 for the proof.) This prevents us from
finding a solution for λ, and the resulting action will be simply the gravitational HJF with
the Lagrange multiplier term added.

There is however a resolution, if we consider only having an outer boundary and thus
include r = 0 into the bulk manifoldM. In this case one has to take into account smooth-
ness conditions for the metric perturbations at r = 0. These conditions will constraint
certain Taylor expansion coefficients of the ‘spatial’ metric components γAB, and in case
we have a Lagrange multiplier term, render these λ–dependent. This mechanism will allow
us to find an effective action for the geodesics lengths which can also serve as a gravita-
tional dual boundary field theory. The subtle point here is that certain properties of this
boundary field theory are determined by the smoothness conditions at r = 0, even if we
consider an asymptotic boundary rout →∞.
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Chapter 3

Holographic dualities for 3D gravity

In this chapter, we will focus mainly on three dimensional examples of background space–
times which satisfy our initial assumptions in section 2.1.1 and compute their dual bound-
ary field theories as effective action for geodesic lengths. We will also compute the one-loop
partition function directly from the dual boundary theory. The examples will consist of
flat space–time with vanishing cosmological constant, hyperbolic space–time with a torus
boundary and also a flat space–time with a spherical boundary.

In three dimensions, there are no local propagating gravitational degrees of freedom for
pure Einstein’s gravity due to the vanishing of the Weyl curvature. All vacuum solutions
are therefore equivalent to homogeneous curvature solutions. This leads to the fact that
the boundary metric perturbations of the linearized theory feature only the diffeomorphism
sector (there are no gravitational waves) γAB = ζAB.

Using the parametrization given in terms of diffeomorphism vector fields (2.18) for
the boundary metric, we get a simplified Hamilton–Jacobi functional (HJF). The three
dimensional second-order HJF is given by

S
(2)
HJ = − 1

2κ

∫
∂M

d2y
(
ξ⊥∆ ξ⊥ − ξADAB ξB

)
. (3.1)

The differential operators appearing in the HJF are given in (2.23), where QAB vanishes
automatically in 3D. Let us now consider our background examples.
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3.1 Twisted thermal flat space with torus boundary

As our first example, we consider a background flat geometry (vanishing cosmological
constant) known as the twisted or thermal spinning flat space. An effective action for the
geodesic lengths has been found in [23] using a Regge discretization of gravity.

The metric of thermal spinning flat space is given by

ds2 = dr2 + dt2 + r2dθ2 (3.2)

with periodic identification (r, t, θ) ∼ (r, t+β, θ+ γ) in addition to the usual identification
θ ∼ θ + 2π for the angular variable. This particular space–time has been considered
in [22] with the boundary at asymptotic infinity where the authors computed the one-loop
partition function using heat kernel methods.

For space–time with 0 ≤ r ≤ rout, we obtain a solid-torus with a torus topology
at the boundary. Cycles contractible in the bulk manifold include curves described by
t = const, r = const and non–contractible cycles are given by curves along θ = const and
r = const. The solid-torus can be obtained by identifying the top and bottom discs of a
cylinder of height β, with a twisting angle (or angular potential) γ. See figure (3.1).

β

γ

Figure 3.1: A twisted torus flat space–time obtained by identifying the top and bottom of
the cylinder of height β with a twist γ along the t = const surface.

There is one non-vanishing component of the (background) extrinsic curvature given
by Kθθ = r and the trace of the extrinsic curvature given by K = 1

r
. The boundary

(background) intrinsic curvature vanishes, i.e., 2R = 0. Hence we obtain for the differential
operators ∆ = −2

r
∂2
t and DAB = −2

r
∂2
t h

A
B. These only involve derivatives in t–direction.

As the intrinsic curvature is vanishing we can define a Fourier transform for the metric
perturbation components. We have to be however careful to implement the periodicity
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(r, t, θ) ∼ (r, t + β, θ + γ) of these functions into the Fourier transform. This can be
done by ‘twisting’ the phase factors for the Fourier transform so that these have the same
periodicity:

γab(r, kt, kθ) =
1√
2πβ

∫ β/2

−β/2
dt

∫ π

−π
dθ γab(r, t, θ) e

−iθkθe−i 2πt
β

(k′t−
γ
2π
kθ) , (3.3)

where we will use the abbreviation kt := 2π
β

(k′t −
γ
2π
kθ), and kθ, k

′
t ∈ Z. The inverse

transform is given by

γab(r, t, θ) =
1√
2πβ

∑
kt,kθ

γab(r, kt, kθ) e
iθkθei 2πt

β
(k′t−

γ
2π
kθ) . (3.4)

We shall now discuss the equations of motions for the modified action (2.41) with a
Lagrange multiplier term and compute from it the dual boundary action.

3.1.1 Equations of motion

Using the Fourier transform the equations of motion (2.43)

Ĝab =
1

4

λ(y)√
h
δa⊥δ

b
⊥ , (3.5)

can be straightforwardly evaluated. The radial components G⊥⊥, G⊥A of the equations of
motion can be use to solve for the lapse and shift components γ⊥⊥, γ⊥A of the metric per-
turbations. (See also Appendix C.1, which discusses the solutions for general backgrounds
with flat spatial slices, that is with bR = 0.)

One finds

γ⊥⊥ = 2∂⊥

(
1

2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ
kt
γθt

))
= 2∂⊥ξ

⊥ ,

γ⊥θ = ikθ
1

2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ
kt
γθt

)
+ r2∂⊥

(
i

r2

(
kθ
2k2

t

γtt −
1

kt
γθt

))
− ikθλ

1

4k2
t

= ikθξ
⊥ + r2∂⊥ξ

θ − ikθλ
1

4k2
t

,

γ⊥t = ikt
1

2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ
kt
γθt

)
+ ∂⊥

(
− i

2kt
γtt

)
− iktλ

1

4k2
t

= iktξ
⊥ + ∂⊥ξ

t − iktλ
1

4k2
t

. (3.6)
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For λ = 0 these confirm the relations (2.26) between the metric perturbations and the
diffeomorphism generating vector ξa. Note also that the λ dependence can be described
by replacing ξ⊥ by

ξ̂⊥ = ξ⊥ − 1

2∆

λ√
h

= ξ⊥ − 1

4k2
t

λ . (3.7)

Using the solutions for lapse and shift perturbations in the remaining equations ĜAB =
0, one finds that these are automatically satisfied, see also the discussion in section 2.3.

Thus, if we are solving the equations for r ∈ [rin, rout] with rin > 0, we can conclude
that the metric perturbations γAB, can be freely chosen in the bulk. If we consider only
an outer boundary and thus include r = 0 in M, we will however argue that we have
to impose some smoothness conditions on the metric components at r = 0. We will see
that this restricts certain Taylor expansion coefficients (arising from an expansion around
r = 0) of the spatial metric components.

We have one remaining equation, coming from the variation of the Lagrange multiplier,
namely

ρ =
1

2

∫ rout

rin

dr γ⊥⊥ = ξ⊥(rout)− ξ⊥(rin) , (3.8)

where1

ξ⊥ =
1

2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ
kt
γθt

)
(3.9)

does not depend on λ, at least not for non-vanishing radius. Considering the case with
non-vanishing rin, rout this equation only involves fixed boundary data and the field ρ,
which we treat here as parameter, and not as a variable to solve for. There is no variable
left, for which we can solve (3.8) and thus λ remains a free parameter.

3.1.2 Evaluating the action on solutions

We proceed by inserting the solutions (3.6) into the action with Lagrange multiplier term
(2.41). Let us first consider the case that we have an outer boundary at rout and an inner
boundary at rin.

1We could also write ρ = ξ̂⊥(rout)− ξ̂⊥(rin) with a λ-dependent ξ̂⊥(r) defined in (3.7). However, note

that the λ-dependent terms drop out, as the λ–dependent term in ξ̂⊥(r) is r-independent.
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From the bulk term of the action we get a contribution

−κS(2)
bulk =

1

2

∫
M
d3x
√
g γab Ĝ

ab =
1

8

∫
M
d2ydr γ⊥⊥(r, y)λ(y) =

1

4

∫
∂M
d2y λ(y) εξ⊥ ,(3.10)

where ε = +1 for the outer boundary component and ε = −1 for the inner boundary
component.

The boundary terms split into two parts: the first part arises from the vacuum solution
(without λ), and the second part appears due to the presence of λ. We have determined the

first part S
(2)
HJ in (3.1) (and for general backgrounds in Appendix A.2). The λ–dependent

part is derived in Appendix C.3, (for flat boundaries and also for spherical boundaries)
where it is shown that it amounts also to a boundary integral over ελξ⊥. We thus have

−κS(2)
bdry = −κS(2)

HJ −
1

4

∫
∂M
d2y ελ(y)ξ⊥ . (3.11)

We see that the λ–dependent terms cancel from the gravitational action2. We are left
with the gravitational HJF and the Lagrange multiplier term

−κS(2)
λ =

solu
−κS(2)

HJ +
1

4

∫
(∂M)out

d2y λ(y) (ρ(y)− `g[(γAB)out, (γAB)in]) (3.12)

where the geodesic lengths `g is now understood as a functional of the boundary metric
perturbations.

This is an effective action for the geodesic lengths as the boundary field ρ evaluates to
the geodesic length on solutions. But we cannot interpret (3.12) as a proper dual boundary
field theory for gravity.

Note that the same cancellation between the λ-dependent terms in the bulk and bound-
ary contributions to the action seems to appear if we have only an outer boundary, that is
in the case where the 3-manifoldM is the full solid torus. This however conflicts with the
result of [23], which used a Regge calculus set-up. There the geodesic length variables can
be explicitly identified with certain edge lengths, which serve as basic variables in Regge
calculus. This allows to integrate out all variables except for those edge lengths identified
with the geodesic lengths. This results in an effective action, which can be interpreted as
a dual boundary field theory.

In fact, adopting the approach of [23] to the case of an outer and inner boundary,
that is to a torus ring, one finds the same result as in (3.12). As one now deals with a

2The cancellation of the λ–dependent terms happens in general for backgrounds with a flat boundary.
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finite dimensional system one can identify the reason for this behaviour. To this end one
splits the variables into two sets. The first set of variables L give the geodesic lengths,
the other set E contains all remaining edge lengths. The linearized action has a Hessian
with non–vanishing3 determinant, which allows to integrate out all variables. However,
the subdeterminant associated to the variables E is actually vanishing. Thus we cannot
integrate out straightforwardly all variables but the geodesic lengths. If one uses an action
with a Lagrange multiplier term one will find that λ remains a free parameter, and that
the on-shell action is of the form (3.12), that is given by the Hamilton–Jacobi functional of
the original system plus the Lagrange multiplier term. Appendix F, explains this general
mechanism.

This opens the question, why one gets a different result in Regge calculus for the case
with just the outer boundary, that is for the solid torus [23]? The answer is, that in
Regge calculus certain conditions, which guarantee the smoothness of the solution (in the
continuum limit) around r = 0 are automatically implemented. We will therefore proceed
by implementing similar smoothness conditions for the continuum theory.

3.1.3 Implementing smoothness conditions for the metric at r = 0

The smoothness conditions we are going to impose arise from assuming Taylor expandable
metric perturbations around the origin in Cartesian coordinates. After transformation
from Cartesian to cylindrical coordinates we can deduce a certain behaviour in the radial
coordinate r:

γ⊥θ = a
(1)
rθ r + a

(2)
rθ r

2 + O(r3) ,

γθθ = a
(2)
θθ r

2 + O(r3) ,

γθt = a
(1)
θt r + a

(2)
θt r

2 + O(r3) , (3.13)

and all other metric perturbations starting with r0 terms. For a detailed derivation we
refer to Appendix E. We will impose these conditions for the metric perturbations, also for
the case that we include the Lagrange multiplier term.

We will see that we need to consider three separate cases, namely |kθ| ≥ 2, kθ = ±1
and kθ = 0. We will start with the generic case |kθ| ≥ 2.

3Linearized Regge calculus on a flat background exhibits a remnant of the gauge symmetries of the
continuum theory [52, 120, 121]. But these gauge symmetries are associated to bulk vertices and one
can triangulate the torus ring without any such bulk vertices, but nevertheless allow for an arbitrarily
fine boundary triangulation. Thus one would not find gauge symmetries for this case. Note that the
triangulation invariance of 3D linearized Regge calculus (and the associated one-loop partition function)
[26] allows to use the coarsest possible bulk triangulation.
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3.1.4 For modes |kθ| ≥ 2

For the convenience of the reader we again display the solutions for the lapse and shift
variables (3.6):

γ⊥⊥ = 2∂⊥

(
1

2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ
kt
γθt

))
,

γ⊥θ = ikθ
1

2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ
kt
γθt

)
+ r2∂⊥

(
i

r2

(
kθ
2k2

t

γtt −
1

kt
γθt

))
− ikθλ

1

4k2
t

,

γ⊥t = ikt
1

2r

(
γθθ +

k2
θ

k2
t

γtt − 2
kθ
kt
γθt

)
+ ∂⊥

(
− i

2kt
γtt

)
− iktλ

1

4k2
t

. (3.14)

We Taylor expand all metric perturbations in r and arrive at equations for the expansion
coefficients a

(n)
ab . Imposing the conditions that a

(n)
ab = 0 for n < 0 and that a

(0)
aθ = 0 as well

as a
(1)
θθ = 0 we arrive at the conclusions:

• In order for a
(−2)
rr to vanish, we need

k2
θ

k2
t

a
(0)
tt = 0 . (3.15)

Thus, we have a
(0)
tt = 0 for kθ 6= 0. This also ensures that a

(−1)
rθ and a

(−1)
rt vanishes.

• Notice that, according to the first equation in (3.14) the coefficient a
(−1)
rr vanishes

and we do allow for non–vanishing a
(0)
rr . The remaining requirement comes from

demanding that a
(0)
rθ is vanishing. This leads to the equation (for kθ 6= 0)(

1− 1

k2
θ

)(
k2
θ

k2
t

a
(1)
tt − 2

kθ
kt
a

(1)
θt

)
=

λ

2k2
t

. (3.16)

In summary we obtain the conditions (3.15) and (3.16) for the boundary components of
the metric. We also see that we need a special treatment for the case kθ = 0 and kθ = ±1.
(The case k2

t = 4π2

β2 (k′t−
γ
2π
kθ)

2 = 0, which arises for rational values for γ
2π

will be discussed

in section 3.1.7.)

Note that both (3.15) and (3.16) are a restriction on expansion coefficients for the spatial
metric perturbations. These conditions also determine the value of the r–component ξ⊥ of
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the diffeomorphism generating vector field at r = 0,

ξ⊥(0) = lim
r→0

1

2r

(
γθθ(r) +

k2
θ

k2
t

γtt(r)− 2
kθ
kt
γθt(r)

)
=

1

2

(
k2
θ

k2
t

a
(1)
tt − 2

kθ
kt
a

(1)
θt

)
=

1

4

k2
θ

(k2
θ − 1)

λ

k2
t

(3.17)

which now is λ–dependent.

Thus, considering the equation of motion imposed by the Lagrange multiplier, we find

ρ =
1

2

∫ rout

0

dr γ⊥⊥(r) =

∫ rout

0

dr ∂⊥ξ
⊥(r) = ξ⊥(rout)− ξ⊥(0) , (3.18)

where

ξ⊥(rout) =
1

2rout

(
γθθ(rout) +

k2
θ

k2
t

γtt(rout)− 2
kθ
kt
γθt(rout)

)
(3.19)

is a function of the boundary data. As ξ⊥(0) is now λ–dependent, we do obtain a solution
for the Lagrange multiplier

λ = 4k2
t

(
1− 1

k2
θ

)(
ξ⊥(rout)− ρ

)
. (3.20)

The evaluation of the action proceeds similarly as in section 3.1.2. The bulk term still
leads to

−κS(2)
bulk =

1

4

∫
∂M
d2y λ(y) (ξ⊥(rout, y)− ξ⊥(0, y)) , (3.21)

where we have used ε = +1 as we have only the outer boundary. The boundary term gives

−κS(2)
bdry = −κS(2)

HJ(rout)−
1

4

∫
∂M
d2y λ(y)ξ⊥(rout, y) . (3.22)

The Lagrange multiplier term vanishes on the solutions to (3.18).
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Thus the terms with λξ⊥(rout) still cancel, but we remain with the λξ⊥(0) term. We
therefore obtain

−κS(2)
λ =

solu
−κS(2)

HJ(rout)−
1

4

∫
∂M
d2y λ(y)ξ⊥(0, y)

= −κS(2)
HJ(rout) +

∫
∂M
d2y

(
ξ⊥(rout)− ρ

)
∂2
t

(
1 +

1

∂2
θ

)(
ξ⊥(rout)− ρ

)
= −κS(2)

HJ(rout) +

∫
∂M
d2y ξ⊥(rout)∂

2
t

(
1 +

1

∂2
θ

)
ξ⊥(rout) +∫

∂M
d2y

(
ρ ∂2

t

(
1 +

1

∂2
θ

)
ρ− 2ρ ∂2

t

(
1 +

1

∂2
θ

)
ξ⊥(rout)

)
. (3.23)

The Hamilton–Jacobi functional is given by (remember that ∆ = −2r−1∂2
t )

−κS(2)
HJ(rout) =

1

2

∫
∂M
d2y
√
h
(
ξ⊥∆ξ⊥ − ξADAB ξB

)
= −

∫
∂M
d2y

(
ξ⊥∂2

t ξ
⊥ − ξAhAB∂2

t ξ
B
)
(3.24)

and with ξ⊥ = ∆−1δ(2R) = −2−1r∂−2
t δ(2R) we can write

−κS(2)
λ =

solu
−1

2

∫
∂M
d2y
√
h

(
ρ∆

(
1 +

1

∂2
θ

)
ρ− 2ρ

(
1 +

1

∂2
θ

)
δ(2R)

)
+

1

2

∫
∂M
d2y
√
h

(
ξ⊥∆

1

∂2
θ

ξ⊥ − ξADAB ξB
)

. (3.25)

This does define an action for the boundary field ρ, whose on-shell value does reproduce
the gravitational HJF.

We note that the ρ-dependent part of the effective action (3.25) given by

κS ′ρ :=
1

2

∫
∂M
d2y
√
h

(
ρ∆

(
1 +

1

∂2
θ

)
ρ− 2ρ

(
1 +

1

∂2
θ

)
δ(2R)

)
(3.26)

differs from the action Sρ (2.33) which we found in section 2.2.1 by an insertion of the non–

local operator (1 + ∂−2
θ ). (It does also reproduce S

(2)
HJ multiplied with this factor.) This

insertion has an important consequence: the effective action for the geodesic lengths S ′ρ
does vanish for modes kθ = ±1. The effective action is furthermore ill–defined for kθ = 0.

As we will see shortly, the modes kθ = ±1 have a special status, as we can have in
this case a non-vanishing ξ⊥(r = 0) (for vanishing λ). It can be expressed as a function of
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the spatial metric components. But in the bulk these are gauge degrees of freedom. We
therefore cannot determine the geodesic length at kθ = ±1 from the boundary data. In
fact, in the Regge calculus set-up [23] the geodesic length variables at kθ = ±1 can be
identified with gauge parameters resulting from the residual diffeomorphism symmetry of
Regge calculus [52, 120, 121]. For this reason the effective action for the geodesic length
should vanish — and we show below that it in fact does.

For the case kθ = 0 one has also a diffeomorphism generating vector field, which does
not need to vanish at r = 0. But this time it is the component ξ⊥ that does not need
to vanish and can be furthermore identified as a gauge parameter. We will see that here
we are back to a situation similar to what we described for the case with two boundaries:
one cannot straightforwardly integrate out all variables except the geodesic lengths and
the on-shell value of the action Sλ will reproduce the Hamilton–Jacobi functional and the
Lagrange multiplier term.

The special status of these modes is also reflected in the one-loop partition function
for gravity, which reproduces the vacuum character of the BMS3 group [22,23]. As we will
discuss shortly in section 3.1.9 the one-loop determinant for gravity does coincide with the
one-loop determinant of the boundary field theory (3.26). Here it is important that this
determinant does only include a product over the modes kθ ≥ 2, as the modes kθ = 0 and
kθ = ±1 do describe gauge degrees of freedom [23].

3.1.5 For modes with kθ = 0

For kθ = 0 we obtain the following solutions for the lapse and shift components

γ⊥⊥ = 2∂⊥

(
1

2r
γθθ

)
= 2∂⊥ξ

⊥ ,

γ⊥θ = r2∂⊥

(
− i

r2

1

kt
γθt

)
= r2∂⊥ξ

θ ,

γ⊥t = ikt
1

2r
γθθ + ∂⊥

(
− i

2kt
γtt

)
− iktλ

1

4k2
t

= iktξ
⊥ + ∂⊥ξ

t − iktλ
1

4k2
t

. (3.27)

We see that for kθ = 0 we can have a
(0)
tt 6= 0. This is the only non–vanishing component

of the spatial metric γAB at r = 0, and as it remains arbitrary, should be understood as
gauge parameter. Note that this (additional) gauge parameter only appears for kθ = 0, as
it is forced to vanish for kθ 6= 0 by the equations of motion.
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We also see that the vector field component ξ⊥ does vanish at r = 0. The requirement
that a

(0)
rθ vanishes, imposes a

(1)
θt = 0. From the last equation in (3.27) we obtain that the

only λ–dependent shift component is given by

a
(0)
rt = − i

2kt
a

(1)
tt − iktλ

1

4k2
t

. (3.28)

From the Lagrange multiplier equation we obtain

ρ = ξ⊥(rout) =
1

2rout

γθθ(rout) , (3.29)

where different from the general case, we do not have a λ–dependent term since we have
ξ⊥(r = 0, kθ = 0) = 0.

Therefore we cannot determine λ as a function of ρ and the boundary variables. We are
now in the same situation as described for the case with two boundaries in section 3.1.2.
One can compute explicitly that the evaluation of the action yields the same result as in
this case, namely

κS
(2)
λ |kθ=0 =

solu
κS

(2)
HJ |kθ=0 + 1

4
λ
(
ρ− ξ⊥(rout)

)
|kθ=0

. (3.30)

3.1.6 For modes with kθ = ±1

Here we find from equation (3.16) that(
1− 1

k2
θ

)(
k2
θ

k2
t

a
(1)
tt − 2

kθ
kt
a

(1)
θt

)
=

λ

2k2
t

!
= 0 , (3.31)

and thus λ = 0. The vector field component ξ⊥(0) does not need to vanish and is given by

ξ⊥(0) =
1

2

(
k2
θ

k2
t

a
(1)
tt − 2

kθ
kt
a

(1)
θt

)
. (3.32)

Thus we have for the geodesic length variable

ρ = ξ⊥(rout)− ξ⊥(0) . (3.33)

But here we should understand ξ⊥(0) as a bulk variable – in fact it is a gauge parameter,
that only appears at kθ = ±1.

Inserting the solutions into the action, we will have due to λ = 0, that

κS
(2)
λ (kθ = ±1) =

solu
κS

(2)
HJ(kθ = ±1) (3.34)

and that thus the effective action for the boundary field ρ vanishes. This is also confirmed
in the Regge calculus setting [23].
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3.1.7 Modes with kt = 0

Remember that we have defined kt := 2π
β

(k′t−
γ
2π
kθ). Thus, if γ is a rational multiple of 2π

there will be certain k′t, kθ ∈ Z for which kt = 0. At these angles and for such modes with
kt = 0 we do not have a well–posed boundary problem, that is solutions do not exist for
all possible boundary metric fluctuations.4 The condition of rational γ can be translated
in how geodesics along the torus would wind around this torus, see [31, 32].

These modes with kt = 0 will lead to divergencies of the one–loop correction, which
appear for all rational angles. This can be treated with an ad-hoc regularization, as in [22].
Alternatively, one can use a discretization, e.g. Regge calculus as in [23] or the Ponzano–
Regge model as in [31–33]. Such a discretization allows only rational angles γ, but the
discretization does introduce a cut–off. For a given rational angle, there is a choice of
(minimal) discretization, for which such modes with kt = 0 do not appear.

As discussed in [31, 32] the appearance of such divergencies seems to be an artifact of
the linearization, or in the quantum theory an artifact of the semiclassical (or one-loop)
approximation, at least if one considers a boundary with finite radius. [31] shows however
that the exact partition function, for a particular choice of boundary conditions, does
reproduce the divergence structure in the limit to infinite radius.

3.1.8 The limit of large radius

We found as effective action for the geodesic length

κS ′ρ :=
1

2

∫
∂M
d2y
√
h

(
ρ∆

(
1 +

1

∂2
θ

)
ρ− 2ρ

(
1 +

1

∂2
θ

)
δ(2R)

)
(3.35)

which features a non-local operator (1 + 1/∂2
θ ). If we fix however the physical wave lengths

of the angular modes r−2∂2
θ = const. = C we see that(

1 +
1

r2

1

C

)
−→
r→∞

1 , (3.36)

and the effective action becomes local and we recover the action Sρ as proposed in section
2.2.1.

4The boundary fluctuations for which one can and cannot find solutions for lapse and shift can be read
off from (3.14). Eg. allowing only for non–vanishing fluctuations γθθ still allows for a solution.
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In this way we define (radial) scalings

[kθ] = 1 , [γtt] = 0 , [γθθ] = 2 , [γθt] = 1 . (3.37)

Then we have [ξ⊥] = 1 and [ξθ] = −1 as well as [ξt] = 0. We have also [∆] = −1 and
[Dθθ] = +1 as well as [Dtt] = −1. We thus find that [ξ⊥∆ξ⊥] = +1 comes with the
dominant radial scaling, as compared to the terms which are not invariant under boundary
tangential diffeomorphisms, which are given by [ξθDθθξθ] = −1 and [ξtDttξt] = −1. In this
sense we have that for large radius the boundary diffeomorphism invariant term ξ⊥∆ξ⊥

dominates.

3.1.9 One-loop determinant of the dual boundary field theory

By construction we have that the dual action S ′ρ reproduces the (boundary diffeomorphism

invariant part of the) gravitational action – modulo the insertion of (1 + ∂−2
θ ). (To com-

pensate, one adds the gravitational action with −∂−2
θ inserted.) Here we will show that the

dual action also reproduces the one-loop determinant of gravity, which has been computed
in the continuum for asymptotic boundaries in [22] and in the discrete for finite boundaries
in [23].

To compute the one-loop determinant for S ′ρ given in (3.26), we will adopt a simple

lattice regularization for the Hessian of the action, which is given by k2
t (1− k−2

θ ):

k2
θ →

(
2− 2 cos

(
2π

Nθ

))−1(
2− 2 cos

(
2π

Nθ

κθ

))
k2
t →

N2
t

β2

(
2− 2 cos

(
2π

Nt

(κt −
γ

2π
κθ)

))
, (3.38)

where κθ = 0, . . . , Nθ − 1 and κt = 0, . . . Nt − 1. With this choice we still have that
(1− k−2

θ ) = 0 for κθ = ±1. Now, as our dual action is only defined for |kθ| ≥ 2 we consider

Nθ−2∏
κθ=2

1−
2− 2 cos

(
2π
Nθ

)
2− 2 cos

(
2π
Nθ
κθ

)
 =

1

2 + 2 cos
(

2π
Nθ

) (3.39)

and

Nt−1∏
κt=0

(
2− 2 cos

(
2π

Nt

(κt −
γ

2π
κθ)

))
= 2− 2 cos(γκθ) . (3.40)
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Ignoring some inessential constants we therefore have

Nθ−2∏
κθ=2

Nt−1∏
κt=0

1√
k2
t (1− k−2

θ )
∼

Nθ/2−1∏
κθ=2

1

|1− qκθ |2
(3.41)

where q = exp(iγ). This reproduces the one-loop determinant of the gravitational theory
[22, 23]. Thus the (only) essential contribution to the one-loop determinant arises from
the degrees of freedom describing the geodesic lengths from the boundary to some central
point. This confirms the interpretation of the action S ′ρ as dual action for gravity.

Note that to get the correct result, it is essential to not to include the modes kθ = 0 and
kθ = ±1, which in our case follows from the appearance of the non-local operator (1−k−1

θ ).
The exclusion of the kθ = ±1 modes is a feature of the vacuum BMS3 character [122], which
is reproduced by the one-loop partition function for asymptotic boundaries [22]. Inserting
a point particle in the centre, one rather expects a massive character. Indeed the insertion
of a point particle will break the diffeomorphism symmetry described by the kθ = ±1
modes. This can be also expected to happen in the current framework, as we would have
to modify the smoothness conditions, which we introduced in section 3.1.3, and which were
essential for obtaining a suitable dual action.

3.2 Twisted thermal AdS3 space with finite boundary

Next we will consider as background AdS3 space with metric

ds2 = dr2 + sinh2r dθ2 + cosh2r dt2 , (3.42)

where we have fixed Λ = −1. As for the flat space metric we impose the periodicity
conditions (r, t, θ) ∼ (r, t+ β, θ + γ) and θ ∼ θ + 2π for the angular variable. This defines
twisted thermal AdS3 space (see figure 3.2). The one-loop partition function for this
background with asymptotic boundary has been computed from the gravity side in [21] and
reproduces the vacuum character of the asymptotic symmetries of AdS3 space [123]. This
example has been intensively discussed in the literature, e.g. [14–16] and references therein.
The derivation of the (Liouville) dual boundary field theory starts often with the Chern-
Simons formulation of 3D gravity. One exception is [18], which derives a dual boundary
theory from the breaking of diffeomorphism symmetry at the asymptotic boundary. In
fact the field introduced in [18] agrees (in the linearized theory) with the geodesic distance
employed here. Our derivation of the dual field theory is somewhat more direct and also
applicable to finite boundaries.
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γ

Figure 3.2: Torus boundary with twist parameter γ.

We will again consider a torus boundary at r = rout and thus the background intrinsic
curvature of the boundary (which we constrained to be homogeneous) has to vanish.

The computation of the effective geodesic action is very similar to the flat case, and
we will therefore be brief. One again, we will invoke smoothness conditions at r = 0 in
order to obtain an effective action, which can also serve as dual boundary field theory. The
modes kθ = 0 and kθ = ±1 will also play a special role.

One difference with the flat case is that the extrinsic curvature has now full rank

Kθθ = Ktt = cosh r sinh r , Kθt = 0 and K = tanh r + coth r . (3.43)

Thus

∆ = 2(KCD −KhCD)DCDD =
−2

coshr sinhr

(
∂2
θ + ∂2

t

)
=
−2√
h

(
∂2
θ + ∂2

t

)
(3.44)

is now non-degenerate.

The Fourier transformation for the y = (θ, t) variables can be defined as for the flat
background, see (3.3), which allows us to invert the various differential operators.

3.2.1 Equations of motion and evaluation of the action

The equations of motion

Ĝab =
1

4

λ(y)√
h
δa⊥δ

b
⊥ , (3.45)

resulting from varying γab in the Lagrange multiplier action (2.41) can be solved for the
lapse and shift metric perturbations. The solutions are given by

γ⊥⊥ = 2∂⊥ξ
⊥, γ⊥A = ikA

(
ξ⊥ − 1

4(k2
t + k2

θ)

)
+ hAB∂⊥ξ

B (3.46)
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where the vector fields are given as functions of the boundary perturbations

ξ⊥ =
k2
θγtt + k2

t γθθ − 2ktkθγtθ
2 coshr sinhr(k2

t + k2
θ)

(3.47)

ξθ =
ikθγtt − ikθγθθ − 2iktγtθ

2 sinh2r(k2
t + k2

θ)
(3.48)

ξt =
−iktγtt + iktγθθ − 2ikθγtθ

2 cosh2r(k2
t + k2

θ)
. (3.49)

Thus the lapse and shift perturbations arise by replacing ξ⊥ with

ξ̂⊥ = ξ⊥ − 1

2∆

λ√
h

= ξ⊥ − 1

4(k2
t + k2

θ)
. (3.50)

As for the flat case we have that the solution for γ⊥⊥ a priori does not involve λ. Appendix
C shows that this will be always the case for foliations for which bR = 0. Thus we will
also find here that for the case of an outer and inner boundary, λ remains a free parameter
and the action (2.41) evaluated on the solutions (3.46) will just reproduce the gravitational
Hamilton–Jacobi functional plus the Lagrange multiplier term.

If we consider only the case of an outer boundary we have to impose smoothness
conditions (see Appendix E)

γ⊥θ =ra
(1)
rθ + r2a

(2)
rθ +O(r3) , (3.51)

γθθ =r2a
(2)
θθ +O(r3) , (3.52)

γtθ =ra
(1)
tθ + r2a

(2)
rθ +O(r3) , (3.53)

for r = 0 with the remaining metric components starting with a
(0)
ab r

0 coefficients.

Ensuring that a
(−2)
rr = 0 requires again kθa

(0)
tt = 0. To make a

(1)
rθ vanish we need

λ = (k2
θ − 1)(2a

(1)
tt − 4

kt
kθ
a

(1)
tθ ) . (3.54)

This leads to a non-vanishing vector component ξ⊥ at r = 0:

ξ⊥(r=0) =
1

4

k2
θ

(k2
θ − 1)

λ

(k2
t + k2

θ)
, (3.55)

44



CHAPTER 3. HOLOGRAPHIC DUALITIES FOR 3D GRAVITY

which allows us to solve the Lagrange multiplier equation ρ = ξ⊥(rout)− ξ⊥(r=0) for λ:

λ = 4(k2
t + k2

θ)

(
1− 1

k2
θ

)
(ξ⊥(rout)− ρ) . (3.56)

The evaluation of the action proceeds completely parallel to the flat case and we arrive
at

−κS(2)
λ =

solu
−1

4

∫
∂M
d2y
√
h

(
ρ∆

(
1 +

1

∂2
θ

)
ρ− 2ρ

(
1 +

1

∂2
θ

)
δ(2R)

)
+

1

4

∫
∂M
d2y
√
h

(
ξ⊥∆

1

∂2
θ

ξ⊥ − ξADAB ξB
)

. (3.57)

where now ∆ = −2
coshr sinhr

(∂2
θ + ∂2

t ) and
√
h = coshr sinhr.

The cases kθ = ±1 and kθ = 0 again require special attention. For kθ = ±1 we find
that λ = 0 and that thus the action for the field ρ vanishes. For kθ = 0 we have that
ξ⊥(r=0) vanishes, and that thus λ remains undetermined. The on-shell evaluation of the
λ–action will therefore give the same result (3.30) as in the flat case.

In summary, we find that the action for the boundary field ρ features the same insertion
of the non-local differential operator (1 + ∂−2

θ ) as in the flat case

κS ′ρ :=
1

4

∫
∂M
d2y
√
h

(
ρ∆

(
1 +

1

∂2
θ

)
ρ− 2ρ

(
1 +

1

∂2
θ

)
δ(2R)

)
. (3.58)

3.2.2 One-loop correction from the dual field

We have thus found an effective boundary action for the AdS3 background. The kinetic
part is describing a free scalar field on a torus. Additionally we have the operator (1+∂−2

θ )
but we have seen in section 3.1.9, that, apart from suppressing the kθ = ±1 modes, this
operator does only contribute a constant to the one-loop partition function. But the
Laplace operator ∆ ∼ ∂2

t + ∂2
θ defined on the torus leads to the one-loop correction [124]∏

κθ≥2

1

|1− qκθ |2
(3.59)

where q = exp(iτ) with the torus modular parameter τ = 1
2π

(γ− iβ). This agrees with the
one-loop correction computed directly from gravity [21] with the structure of the Virasoro
character.
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3.3 Flat space with spherical boundary

We have seen that for the cases with flat boundaries, that is with bR = 0, we need to
carefully take into account smoothness conditions at r = 0, to obtain an effective action,
which can also be interpreted as dual field theory. This effective action does however
differ by the insertion of a non-local operator from the action, which we postulated in
section 2.2.1. This non-local operator plays an important role in transferring correctly the
symmetries of the gravitational theory to the dual field theory.

Let us now consider a case in three dimensions with non-vanishing background intrinsic
curvature 2R 6= 0. As we consider only boundaries with homogeneous curvature, we have
to change the topology. We will choose a spherical one. Using Regge lengths one can argue
that for a sphere boundary the effective action for the geodesic length should be local5 and
that we thus might confirm the action we postulated in section 2.2.1.

We choose as background metric

ds2 = dr2 + r2dθ2 + r2 sin2θdϕ2 (3.60)

with spherical boundary defined by r = const. The intrinsic boundary curvature is now
non–vanishing 2R = 2

r2
. We will see that this alters the computations in several ways from

the cases with intrinsically flat boundary.

We have furthermore KCD = 1
2
KhCD and thus KAB −KhAB = −1

2
K. This gives

∆ = −
(
KDCDC + 2RK

)
= −2

r

(
DCDC + 2

r2

)
,

DAB = −
(
KDCDC + 1

2
2RK

)
hAB = −2

r

(
DCDC + 1

r2

)
hAB (3.61)

with K = 2
r

and 2R = 2
r2

.

As we have now intrinsic curvature, the differential operators Dθ and Dϕ are non-
commuting and we cannot simultaneously diagonalize these operators. However one can
use scalar, vector and tensor spherical harmonics, which allow for the diagonalization of
the spherical Laplacian ∆S(d−1) = hABDADB acting on scalars, vectors and second rank
tensors. Furthermore one has certain properties for the divergence of the vector and tensor
harmonics as well as for the trace of the tensor harmonics, see appendix G.

5The reason is that the one-loop partition function for 3D Regge calculus is bulk triangulation indepen-
dent [26]. One can therefore choose the coarsest bulk triangulation available. For the spherical boundary
one can choose a triangulation with only one bulk vertex and where all bulk edges go from the boundary to
this bulk vertex. The edge lengths can therefore be interpreted as geodesic lengths and the Regge action,
which is local, can be identified with the effective action for the geodesic lengths [3].
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We will however not need these harmonics for most of the discussion. It will be sufficient
to know that we can find the inverse of the operators ∆ and DAB, e.g. by using the spherical
harmonics to diagonalize these operators.

3.3.1 Solutions to the equations of motion

We again start by solving the lapse and shift components of the equations of motion

Ĝab =
1

4

λ(y)√
h
δa⊥δ

b
⊥ , (3.62)

for the lapse and shift components of the metric perturbations. The derivation of the
solutions is now more involved, due to the non-commutativity of the differential operators.
We have collected the essential details in appendix C.2 (for general sphere in flat space)
and reproduce here just the resulting solutions for lapse and shift:

γ⊥⊥ = 2∂⊥

(
ξ⊥ − 1

2

1

∆

λ√
h

)
,

γ⊥B = DB

(
ξ⊥ − 1

2

1

∆

λ√
h

)
+ hAB∂⊥ξ

A . (3.63)

We again find that the introduction of the Lagrange multiplier amounts to shifting the
vector component ξ⊥ to

ξ̂⊥ = ξ⊥ − 1

2

1

∆

λ√
h

. (3.64)

But different from the cases with flat boundary we now have a λ–dependence for the lapse
components γ⊥⊥. Here it arises due to the fact that

√
h∆ is now r–dependent.

Let us also shortly discuss the smoothness conditions for the metric perturbations at
r = 0. Assuming Taylor expandable metric perturbations in Cartesian coordinates and
transforming these to spherical coordinates, see Appendix E, we find that γ⊥⊥ has an
expansion in the r–coordinate that starts with r0, γ⊥A components start with an r1–term
and the γAB–components start with r2.

Now assuming that the γAB components start with r2 one will find that the solutions
(3.63) ensure that the remaining conditions are satisfied. This also holds if we include a
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non–vanishing λ. To see this, one can use the scaling properties of the differential operators
in r, e.g.

∆ = r−3∆̃ , DAB = r−3D̃A B , ΠAB = r−4Π̃AB ,
√
h = r2

√
h̃ (3.65)

where Õ is the operator O evaluated at r = 1.

Using these scaling properties we can also deduce that the vector component ξ⊥ is
vanishing at r = 0, that is we have ξ⊥(r = 0) = 0 as well as ξ̂⊥(r = 0) = 0.

Finally we consider the Lagrange multiplier equation, which is now given by

ρ =
1

2

∫ rout

rin

dr γ⊥⊥ = ξ̂⊥(rout)− ξ̂⊥(rin)

= ξ⊥(rout)− ξ⊥(rin)− (rout − rin)

2
√
h̃∆̃

λ (3.66)

Thus we obtain as a solution for λ

λ =
2
√
h̃∆̃

(rout − rin)

(
ξ⊥(rout)− ξ⊥(rin)− ρ

)
, (3.67)

where ξ⊥(r = 0) = 0.

3.3.2 Evaluation of the action

Let us consider the case that we have an outer boundary at rout and an inner boundary at
rin. As we have ξ̂⊥(r = 0) = ξ⊥(r = 0) = 0, it will be straightforward to derive from this
the case with only an outer boundary.

For the evaluation of the boundary we need to consider the bulk and boundary term
in (2.41) – the Lagrange multiplier term vanishes on solutions of (3.67). We will however
treat for the moment λ as a variable, and only use the explicit solution for λ at the very
end.

The bulk term gives evaluated on solutions of (3.62)

−κS(2)
bulk =

1

2

∫
M

d3x
√
g γab Ĝ

ab =
1

8

∫
M

d2ydr γ⊥⊥(r, y)λ(y)

=
1

4

∫
(∂M)out

d2y λ (ξ̂⊥(rout)− ξ̂⊥(rin)) . (3.68)
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Note that we now have ξ̂⊥ appearing, instead of just ξ⊥. (In the cases with flat boundaries
(ξ̂⊥ − ξ⊥) is constant in r and we could thus use ξ⊥.)

For the boundary term we find (see Appendix C.3)

−κS(2)
bdry = −κS(2)

HJ −
1

4

∫
(∂M)out

d2y λ
(
ξ⊥(rout)− ξ⊥(rin)

)
. (3.69)

We are thus left with

−κS(2)
λ =

solu
−κS(2)

HJ +
1

4

∫
(∂M)out

d2y λ
(

(ξ̂⊥ − ξ⊥)(rout)− (ξ̂⊥ − ξ⊥)(rin)
)

= −κS(2)
HJ −

1

4

∫
(∂M)out

d2y λ
(rout − rin)

2
√
h̃∆̃

λ . (3.70)

Inserting the solution (3.67) for λ

λ =
2
√
h̃∆̃

(rout − rin)

(
ξ⊥(rout)− ξ⊥(rin)− ρ

)
, (3.71)

we obtain

−κS(2)
λ =

solu
−κS(2)

HJ −
1

2

∫
(∂M)out

d2y

√
h̃

(rout − rin)

[
ρ∆̃ρ − 2ρ∆̃

(
ξ⊥(rout)− ξ⊥(rin)

)
+

(
ξ⊥(rout)− ξ⊥(rin)

)
∆̃
(
ξ⊥(rout)− ξ⊥(rin)

) ]
.(3.72)

The terms in S
(2)
HJ , in which ξ⊥ appears are given by

√
hξ⊥(rout)∆ξ

⊥(rout) = r−1
out

√
h̃ξ⊥(rout)∆̃ξ

⊥(rout) and

−
√
hξ⊥(rin)∆ξ⊥(rin) = −r−1

in

√
h̃ξ⊥(rin)∆̃ξ⊥(rin) (3.73)

Thus, for rin 6= 0 we will not have a cancellation between these terms and

(rout − rin)−1
√
h̃
(
ξ⊥(rout)− ξ⊥(rin)

)
∆̃
(
ξ⊥(rout)− ξ⊥(rin)

)
(3.74)

appearing in (3.72).

Thus, although (3.72) is an effective action for the geodesic lengths between the outer
and inner boundary, we cannot interpret the ρ–dependent part as a dual action for gravity.
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This might not be a surprise as the geodesic lengths does only detect the difference between
ξ⊥(rout) and ξ⊥(rin), whereas for the evaluation of the gravitational boundary term we need
to know both ξ⊥(rout) and ξ⊥(rin).

These problems do not appear if we choose to have only an outer boundary, that is
rin = 0, in which case we have ξ⊥(rin) = 0. Then we can write

−κS(2)
λ =

solu
−κS(2)

HJ −
1

2

∫
∂M
d2y
√
h

[
ρ∆ρ − 2ρ∆ξ⊥(rout) + ξ⊥(rout)∆ξ

⊥(rout)

]
.

= −1

2

∫
∂M
d2y
√
h
(
ρ∆ρ − 2ρ δ( 2R)

)
− 1

2

∫
∂M
d2y
√
h ξADABξB . (3.75)

The ρ-dependent part is given by

S ′ρ = −1

2

∫
∂M
d2y
√
h
(
ρ∆ρ − 2ρ δ (2R)

)
(3.76)

and can be taken as dual boundary field theory, which reproduces the boundary-diffeomorphism
invariant part of the gravitational HJF.

Thus we see that for the case of a three dimensional spherical boundary we produce
exactly the action Sρ which we derived in section 2.2.1, that is S ′ρ = Sρ. Different from the
cases with flat boundary discussed previously there is no insertion of a non-local operator
in S ′ρ.

Note that there are also special modes, that appear for the spherical boundary. Using
spherical harmonics Y lm one will find that ∆ is vanishing on Y lm with l = 1. One thus
has three modes l = 1 and m = −1, 0,+1 for which S ′ρ is vanishing. These modes do
describe the geometric position of the central point at r = 0, which is encoded in the
metric perturbations γAB around r = 0. Thus, we can understand these three modes as
(diffeomorphism) gauge parameters for the gravitational field, which do happen to affect
the geodesic length variable.

As discussed above we can use the Regge calculus set-up to argue that the geodesic
effective action should be indeed local. In (3.72) there is still the term ξADABξB, which is a
priori non-local through the expressions of ξA in terms of the boundary metric components
γBC . Using the spherical (tensor) harmonics in Appendix G one finds however that ξA is
determined by

ξΨ = 1
2
γΨ , ξΦ = 1

2
γΦ (3.77)

where we used an expansion γAB = γΨΨAB + γΦΦAB + γΘΘAB and ξA = ξΨΨA + ξΦΦB of
the metric and vector field into tensor and vector harmonics respectively. Note that ΨAB

and ΦAB are a basis for the trace free part of the metric perturbations.
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Chapter 4

Twisted thermal flat space in 4D
with finite boundary

The method to construct holographic duals directly from gravity, which we have employed
in chapter 2, allows to study four dimensional linearized gravity. In this regard, we consider
in this chapter an example of a four dimensional background spacetime which satisfies
the assumptions laid out in section 2.1.1. Four dimensional gravity is not topological,
the (linearized) equations of motion describe propagating degrees of freedom. Thus, the
challenge is to have a description that capture the propagating degrees of freedom.

In four dimensions, the boundary metric perturbations feature a diffeomorphism sector
and a graviton sector (see the discussion in section 2.1.3). The graviton sector is described
by two propagating degrees of freedom. For the diffeomorphism sector, we will find a dual
boundary field theory as effective action for geodesic lengths. This dual theory will turn
out to be in a simple form with a coupling to the three dimensional Ricci scalar.

The example of the background we consider in this chapter also appears in [3], using
the (linearized) Regge calculus certain. There, we considered a very coarse triangulation
and computed directly the effective action for geodesic lengths. Thus the effective action
only approximates very well the diffeomorphism sector of the theory.

As warm-up for later computing the one-loop partition function, we will determine
the Hamilton–Jacobi functional (HJF) expanded around the four dimensional background
which we describe next.
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4.1 Twisted thermal flat space with finite boundary

The background geometry we consider here is a generalization of the twisted or spinning
thermal flat space considered in section 3.1 from three to four dimensions. This background
is a solution to Einstein’s equation (with Euclidean signature) with a vanishing cosmological
constant.

The metric of thermal spinning flat space in four dimensions is given by

ds2 = dr2 + hABdy
AdyB = dr2 + r2dθ2 + dt2 + dz2 (4.1)

with the coordinates subject to periodic identifications

(r, θ, t, z) ∼ (r, θ + γt, t+ βt, z) and (r, θ, t, z) ∼ (r, θ + γz, t, z + βz) (4.2)

in addition to the usual identification θ ∼ θ + 2π for the angular variable and r ≥ 0. The
space time is flat, but features moduli parameters (βt, γt, βz, γz) that turn out to lead to
interesting structure for the one-loop correction.

If the space–time manifold has only an outer boundary at r = rout at a finite distance,
then the radial coordinate takes values r ∈ [0, rout]. The spacetime manifold therefore has
a topology of a solid 3-torus with a 3-torus boundary topology. In the case the space–
time manifold has an outer boundary at r = rout and an inner boundary at r = rin, i.e.,
r ∈ [rin, rout], the resulting topology is a toroidal annulus. A property of these annuli is
that one can glue two of these together (if the outer radius of one matches the inner radius
of the other), and obtain again a toroidal annulus. This gluing operation can be used to
define recursion relations, that can be used to determine the path integral for the toroidal
annulus, along the lines of [125].

The boundary at r = const is flat (with respect to the background metric). This
allows to define a ‘twisted’ Fourier transformation for the metric perturbation components
respecting the periodic identifications in (4.2). The twisted Fourier transformed metric
perturbations is given by

γab(r, kθ, kt, kz) =
1√

2πβtβz

∫
∂M

d3y γab(r, θ, t, z) e−i(θkθ+tkt+zkz) , (4.3)

where we have the twisted frequencies kt, kz given by

kt :=
2π

βt
(k′t −

γt
2π
kθ), kz :=

2π

βz
(k′z −

γz
2π
kθ) (4.4)

with the Fourier modes kθ, k
′
t, k
′
z ∈ Z. The inverse transform is given by

γab(r, θ, t, z) =
1√

2πβtβz

∑
kθ,kt,kz

γab(r, kθ, kt, kz) e
i(θkθ+tkt+zkz) . (4.5)
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β β β

Figure 4.1: [From left to right] A solid torus, a toroidal annulus and two annuli glued
together in 3D. The top and bottom are identified in all figures.

4.1.1 Parametrization of metric perturbation

As already discussed in section 2.1.3, the boundary metric fluctuations can be split into a
part ζAB, which is induced by diffeomorphisms, and a part χAB, which describes graviton
sector. These sectors can be described by projectors which are orthogonal with respect to
to the inner product (2.19) for the boundary metric perturbations.

The diffeomorphism sector is spanned by vector fields (ξ⊥, ξA), and the graviton sector
is spanned by two functions w, x such that in the Fourier transformed picture, we obtain

γAB = ζAB + χAB = 2KABξ
⊥ + ikAξB + ikBξA +WAB w +XAB x . (4.6)

where the components of the graviton perturbations are given by

(Xθθ, Xtt, Xzz, Xθt, Xθz, Xtz) =

√
2

r2∆b

(
0,− kθktkz

(k2
t + k2

z)
,
kθktkz

(k2
t + k2

z)
,
r2kz

2
,−r

2kt
2
,
kθ(k

2
t − k2

z)

2(k2
t + k2

z)

)
(Wθθ,Wtt,Wzz,Wθt,Wθz,Wtz) =

1

(k2
t + k2

z)

(
0, k2

z , k
2
t , 0, 0,−ktkz

)
, (4.7)

and where ∆b :=
k2θ
r2

+k2
t +k2

z ≡ DADA is the ‘spatial’ Laplacian. The perturbations WAB
1

and XAB are orthogonal to the diffeomorphism sector and also to each other with respect
to the inner product

〈γ, γ′〉 :=
1

3V

∫
d3y
√
h γABh

AChBDγ′CD =
1

2πβtβz

∑
kθ,k

′
t,k
′
z

γAB(k)hAChBDγ′CD(−k) (4.8)

1The perturbation WAB = δiAδ
j
BP

T
ij where i, j ∈ {t, z} and PTij = δij − ∂i∂j

(∂2
t+∂

2
z)

is the 2D transverse

projector in t− z plane.
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where 3V :=
∫
d3y
√
h = 2πβtβzr is the volume for the hypersurface. The x and w param-

eters are therefore given by

w[γ] :=
〈γ,W 〉
〈W,W 〉

=
1

(k2
t + k2

z)

(
k2
zγtt + k2

t γzz − 2ktkzγtz
)

,

x[γ] :=
〈γ,X〉
〈X,X〉

=
1

r

√
2

∆b

(
kθktkz
k2
t + k2

z

(γzz − γtt) + kzγθt − ktγθz +
kθ(k

2
t − k2

z)

k2
t + k2

z

γtz

)
. (4.9)

We have inverse differential operators (acting along a boundary component) appearing
in WAB and XAB, the projectors constitute therefore non-local operators. The projectors
can be restricted to either the outer and inner boundary component. However, to suppress
bulk gravitons, we need to demand that w = 0 and x = 0 at both boundary components. Of
course, bulk diffeomorphisms can appear even if we set the ξ−parameters at the boundary
to zero. The HJF will however only depend on the boundary diffeomorphisms, and their
contribution factorizes over the boundary components.

4.2 Dual boundary field theory for geodesic lengths

In section 2.1.4, we have computed the (restricted) Hamilton–Jacobi functional (HJF) for
general backgrounds satisfying our assumptions in section 2.1.1. The second-order HJF
(2.27) is particularly in a simple form and allowed to compute holographic dual boundary
theories in chapter 3 for various three dimensional background space–time manifolds.

Here, we will restrict the boundary metric perturbations (4.6) to the diffeomorphism
sector and compute the effective action for the geodesic distances (corresponding dual
boundary field theory). The computations share many similarities with the 3D case and
so we will be brief.

For our background metric (4.1), the (background) tensor QAB which is defined in
(2.23) vanishes and hence the second-order HJF for the diffeomorphism sector is given by

DS
(2)
HJ = − 1

2κ

∫
∂M

d3y
√
h
(
ξ⊥∆ξ⊥ − ξADABξB

)
, (4.10)

where ∆ = −2
r
(∂2
t + ∂2

z ) and DAB = −2
r
(∂2
t + ∂2

z )hAB. The second order HJF is a local
functional given in terms of the diffeomorphism vector fields ξa and also separates into
normal and tangential parts.
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Considering the λ-dependent action (2.41), the solutions to the equations of motion

Ĝab =
1

4

λ√
h
δa⊥δ

b
⊥ , (4.11)

has been determined in appendix C.1 for manifolds with flat boundaries in any dimension
when the boundary metric perturbations are restricted to the diffeomorphism sector. If
the manifold has one outer boundary with 0 ≤ r ≤ rout, we can find the solution to the
Lagrange multiplier by implementing smoothness conditions at the origin r = 0. The origin
here describes a two dimensional (t and z directions) sub–manifold in the bulk space–time.
The smoothness conditions are

γab = a
(1)
ab r + a

(2)
ab r

2 +O(r3) for ab = rθ, θt, θz;

γθθ = a
(2)
ab r

2 +O(r3) , (4.12)

with the coefficients of the remaining components start with a
(0)
ab .

Restricting to the diffeomorphism sector, the Taylor expansions of the components ζ⊥⊥
and ζ⊥θ give a condition on Lagrange multiplier,

ξ⊥(0) =
1

2

k2
θ

1− k2
θ

1

∆

λ√
h

= ξ⊥(rout)− ρ . (4.13)

Thus the modes kθ = 0,±1 and
√
h∆ ∼ (k2

t + k2
z) = 0 need special treatments.

Let us now discuss the modes satisfying |kθ| ≥ 2 and (k2
t + k2

z) 6= 0. The evaluation of
the Lagrange multiplier equation (4.13) leads to the (restricted) effective action

−κ DS
(2)
λ =

solu
−κ DS

(2)
HJ(rout)−

1

4

∫
∂M

d3y λ(y) ξ⊥(0, y)

= −1

4

∫
∂M
d3y
√
h

(
ρ

(
1 +

1

∂2
θ

)
∆ ρ− 2ρ

(
1 +

1

∂2
θ

)
δ′(3R)

)
+

1

4

∫
∂M
d3y
√
h

(
ξ⊥∆

1

∂2
θ

ξ⊥ − ξADAB ξB
)

. (4.14)

Here, δ′ represents the restriction of variations to the diffeomorphism sector (γAB ≡ ζAB).

The ρ−dependent part describing the action for the boundary field ρ

κ DS ′ρ =
1

4

∫
∂M
d3y
√
h

(
ρ

(
1 +

1

∂2
θ

)
∆ ρ− 2ρ

(
1 +

1

∂2
θ

)
δ′(3R)

)
(4.15)
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features the same insertion of the non-local differential operator (1 + ∂−2
θ ) just as in case

of a torus boundary in three dimensions.

For the modes kθ = 0, λ remains a free parameter and hence we do not get a proper
dual boundary theory. For kθ = ±1, we get the solution λ = 0 and the effective action is

DS
(2)
λ (kθ = ±1) =

sol

DS
(2)
HJ(kθ = ±1) . (4.16)

Hence the dual boundary action vanishes in this case. These modes are related to gauge
degrees of freedom and corresponds to null vectors in the Regge setting.

In the case where we have two boundaries, rin ≤ r ≤ rout, the Lagrange multiplier
remains a free parameter and we do not get a proper dual boundary field theory just as in
the three dimensional case.

In summary, we have computed the effective action of geodesic lengths (4.15) when
restricted to the diffeomorphism sector in 4D for the dual boundary theory. Surprisingly,
the boundary theory is Liouville-like with a coupling of the (linearized) boundary Ricci
scalar. It also has the same form as its 3D counterpart with same non-local insertion
(1 + ∂−2

θ ).

The geodesic length observable which we have used to derive the dual boundary theory
for the diffeomorphism sector is not capable of describing the graviton degrees of freedom.
In the future, we will look for other geometric observables which can capture propagating
degrees of freedom. Nonetheless, we can still compute the Hamilton–Jacobi functional
and one–loop partition function (including gravitons) directly from the linearized action
in section 2.1.2.

4.3 Computation of the Hamilton–Jacobi functional

As we have seen, the linearized Hamilton–Jacobi functional (HJF) is needed to deter-
mine the holographic dual boundary theory and also the gravitational one-loop partition
function. The HJF also serves as ‘perfect action’ for gravity which is invariant under
diffeomorphisms [126].

We will therefore compute here the HJF using the full metric perturbations (4.6) in-
cluding the graviton sector and with Dirichlet boundary conditions. The HJF will therefore
depend on the metric perturbations γAB at r = rout, if we only have an outer boundary
or at r = rout and r = rin, if we have outer and inner boundaries (see figure 4.1). In the
latter case, where we consider a region with two boundaries, the HJF will be shown to
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be invariant under subdivisions in the radial direction, that is, if we ‘glue’ two regions at
a common boundary, the resulting effective action after integrating out the shared bulk
variables will be of the same form as the HJF for each region. (See the discussion in section
4.4.) In what follows, we will give technical details that go into computing the HJF.

4.3.1 Zeroth and First order contributions

The zeroth and first order of the HJF result from the Gibbons-Hawking-York boundary
term and can be determined without solving equations of motions for the metric pertur-
bations. The trace of the boundary extrinsic curvature is given by K = 1

r
and hence the

zeroth order contribution from a given boundary component to the effective action gives

S
(0)
HJ = −1

κ

∫
∂M

d3y ε
√
hK = −

∑
ε

ε
2πβtβz
κ

= −
∑
ε

ε

4GN

βtβz . (4.17)

where the sum over ε is pertained to the boundary components, ε = +1 for an outer
boundary and ε = −1 for an inner boundary.2 Thus, in the case where we have two
boundaries, the zeroth order contributions from both boundaries cancels out and hence
vanishes.

For the background space time (4.1), the first order contribution vanishes for diffeomor-
phisms, whose generating vector field is normal to the boundary, and which can therefore
interpreted as moving the boundary. These boundary normal diffeomorphisms are some-
times referred to as boundary gravitons (not to be confused with bulk gravitons). As shown
in appendix A.2, this vanishing of the first order contribution applies to boundaries and
space–times where (2Λ− bR) = 0. Thus the first order contribution to the HJF comes only
from the graviton modes:

S
(1)
HJ = − 1

2κ

∫
∂M

d3y ε
√
h (KAB −KhAB)γAB = − 1

2κ

∫
∂M

d3y εw . (4.18)

where we have used the parametrization (4.6) for the boundary metric perturbations.

4.3.2 Second-order: Equations of motion

The second-order HJF quadratic in the metric perturbations encodes the linearized dy-
namics. Therefore, there will be different types of contributions to the HJF, which arise

2The sum over ε is also implicit in the integral over the boundary ∂M.

57



CHAPTER 4. TWISTED THERMAL FLAT SPACE IN 4D WITH FINITE BOUNDARY

from the split of the metric perturbations into the diffeomorphism sector and the sector
describing (bulk) gravitons.

Let us consider the bulk equations of motion

Ĝab = 0 (4.19)

for the linearized theory. See appendix C for definition of Ĝab. Due to diffeomorphism
symmetry of the action we expect that four of the ten equations are redundant. We expect
therefore only six independent equations – and we can use four to solve for lapse γ⊥⊥ and
shift γ⊥A, and the remaining two for the graviton modes w and x.

Indeed Ĝ⊥⊥ = 0 and Ĝ⊥A = 0 appear without radial derivatives acting on the lapse
γ⊥⊥ and shift γ⊥A components. We therefore use these equations to solve the lapse and
shift components γ⊥⊥ and γ⊥A:

γ⊥⊥ = ∂⊥

(
2ξ⊥ +

r∆b

(k2
t + k2

z)
w

)
− w ,

γ⊥θ = ikθ

(
ξ⊥ +

r∆b

2(k2
t + k2

z)
w

)
+ r2∂⊥

(
ξθ +

ikθ
2r2(k2

t + k2
z)
w

)
,

γ⊥t = ikt

(
ξ⊥ +

r∆b

2(k2
t + k2

z)
w

)
+ ∂⊥

(
ξt − ikt

2(k2
t + k2

z)
w

)
− i

√
2

∆3
b

kθkz
r2

x ,

γ⊥z = ikz

(
ξ⊥ +

r∆b

2(k2
t + k2

z)
w

)
+ ∂⊥

(
ξz − ikz

2(k2
t + k2

z)
w

)
+ i

√
2

∆3
b

kθkt
r2

x , (4.20)

where we have made use of the expansion (4.6). These solutions are valid away from r = 0
and also for (k2

t + k2
z) 6= 0. Thus, the modes satisfying (k2

t + k2
z) = 0 will require special

treatment.

Substituting these solutions for the lapse and shift components (4.20) into the remaining
equations ĜAB = 0 (the ), we find that these six equations reduce to two equations for the
w- and x-mode respectively:

d2

dr2
w +

1

r

d

dr
w − ∆bw = 0 ,

d2

dr2
x+

1

r

d

dr
x−

(
∆b +

(k2
t + k2

z)

r2∆b

(
1− 3 k2

θ

r2∆b

))
x = 0 . (4.21)

Note that ∆b = 1
r2
k2
θ + k2

t + k2
z ≡ −( 1

r2
∂2
θ + ∂2

t + ∂2
z ) includes an r-dependence.
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The equation of motion for the w–graviton mode is the Laplace equation in 4D polar
coordinates, hence, it is the modified Bessel differential equation whose general solution is
given in terms of the modified Bessel functions3

w = c1 I|kθ|(r
√

(k2
t + k2

z)) + c2K|kθ|(r
√

(k2
t + k2

z)) , (4.22)

where c1 and c2 are constants to be determined.

The equation for the x-mode can be related to the equation for the w-mode: Expressing
the x-mode as x = 1√

∆b

d
dr
q and using this in the x-mode equation in (4.21), we find

1√
∆b

(
d

dr
+ ∆b

d

dr

1

∆b

)(
d2

dr2
+

1

r

d

dr
− ∆b

)
q = 0 , (4.23)

where the differential operator in the second bracket does coincide with the one defining
the equation for the w-mode.

Thus, the general solution for the x-mode differential equation is given by

x =
1√
∆b

(
c3

d

dr
I|kθ|(r

√
(k2
t + k2

z)) + c4
d

dr
K|kθ|(r

√
(k2
t + k2

z))

)
, (4.24)

where c3 and c4 are constants.

4.3.3 Second order: Hamilton–Jacobi functional

Here we will compute the second order HJF, by evaluating the second-order action (2.15)
on solutions. As the bulk term of the second-order action vanishes for solutions of (4.19),
we can restrict our attention to the boundary terms appearing in (2.15). For convenience,
we rewrite the boundary action, given by

−κS(2)
bdry =

1

2

∫
∂M

d3y
√
h ε γab

(
Babcd

1 γcd +Babecd
2 ∇eγcd

)
where the (background) tensors are

Babcd
1 =

1

2
(Khab −Kab)gcd − hachbdK − habKcd + hacKbd + hbdKac

Babecd
2 =

1

2

((
haehbd − habhed

)
nc +

(
hachbe − habhce

)
nd −

(
hachbd − habhcd

)
ne
)
, (4.25)

3Ikθ (r) and Kkθ (r) are modified Bessel function of order kθ which are the two linearly independent
solutions to the modified Bessel equation.
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na is the normal to the boundary and ε = ±1 denotes the orientation of the boundary
component.

Using the parametrization (4.6) for the boundary metric perturbations, and the solu-
tions (4.20), the second–order action (2.15) evaluated on solutions become

−κS(2) =
sol

1

2

∫
∂M

d3y
√
h ε

(
ξ⊥∆ ξ⊥ + ξADABξB +

2
(
2K∂Aξ

A + ξ⊥∆b

)
w + 2

√
−2

r2∆b

K(∂zξt − ∂tξz)∂θx +

∆bw

∆
(r2∆b − 1)w + w ∂⊥w −

x

2r

(
1− ∂2

θ

r2∆b

)
x− 1

2
x ∂⊥x

)
, (4.26)

where ∆ = −2
r
(∂2
t + ∂2

z ),DAB = −2
r
(∂2
t + ∂2

z )hAB, K = 1
r

and ∆b = −( 1
r2
∂2
θ + ∂2

t + ∂2
z ). In

terms of Fourier modes we have

−κS(2) =
sol

∑
ε

ε

4

∑
kθ,k

′
t,k
′
z

(
ξ̄⊥∆̃ ξ⊥ + ξ̄AD̃ABξB +

2i

√
2

r2∆b

x̄(kzkθξt − ktkθξz)− 2w̄
(
r∆bξ

⊥ + ikAξ
A
)

+

w̄
∆b

∆̃
(1− r2∆b)w + r w̄ ∂⊥w − x̄

(
1

2
+

k2
θ

2r2∆b

)
x− r

2
x̄ ∂⊥x

)
+ cc , (4.27)

where we have ∆̃ = 2(k2
t + k2

z), D̃AB = 2(k2
t + k2

z)hAB. The bar indicates ξ̄(r, kθ, k
′
t, k
′
z) =

ξ(r,−kθ,−k′t,−k′z) and cc stands for complex conjugation. The sum over ε is a sum over
orientations of the boundary components.

We see that the contributions to the second-order HJF split into three types: (a) the
first is quadratic in the perturbations describing diffeomorphisms, (b) the second part
mixes diffeomorphism and graviton sector, (c) the third part has terms quadratic in the
graviton perturbations.

The type (a) contribution to the HJF which arises from diffeomorphism induced defor-
mation of the background metric, can be computed for a wide class of backgrounds and
boundaries, (see appendix A.2) and are localized. We have also found a (dual) boundary
field theory (4.15) defined on each boundary component for these diffeomorphisms. In
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summary, we get

−κS(2)
HJ-io-a = 1

4

∑
kθ,k

′
t,k
′
z

((
ξ̄⊥∆̃ ξ⊥ + ξ̄AD̃ABξB

)
(rout)−

(
ξ̄⊥∆̃ ξ⊥ + ξ̄AD̃ABξB

)
(rin)

)
+ cc

−κS(2)
HJ-o-a = 1

4

∑
kθ,k

′
t,k
′
z

(
ξ̄⊥∆̃ ξ⊥ + ξ̄AD̃ABξB

)
(rout) + cc (4.28)

where S
(2)
HJ-io-a is contribution for the case of two (inner and outer) boundaries and S

(2)
HJ-o-a

is the contribution for when we have an outer boundary only (solid-torus).

Type (b) contributions to the HJF mix the diffeomorphism and the graviton sector.
These terms can be read from the second line of (4.27) and are also localized to the
boundary and readily given by

−κS(2)
HJ-io-b = 1

4

∑
kθ,k

′
t,k
′
z

(
2i

√
2

r2∆b

x̄(kzkθξt − ktkθξz)− 2w̄
(
r∆bξ

⊥ + ikAξ
A
) )∣∣∣rout

rin
+ cc

−κS(2)
HJ-o-b = 1

4

∑
kθ,k

′
t,k
′
z

(
2i

√
2

r2∆b

x̄(kzkθξt − ktkθξz)− 2w̄
(
r∆bξ

⊥ + ikAξ
A
) )

(rout) + cc . (4.29)

The graviton sector

The part quadratic in the graviton perturbations involve radial derivatives, and thus the
solution to the graviton equation of motions. To evaluate the terms appearing in the type
(c) part, we need to fix the constants c1, c2 and c3, c4 in the graviton solutions (4.22) and
(4.24), respectively. To this end we have to solve the (Dirichlet) boundary value problem,
so that these constants become functions of the boundary values of the graviton modes w
and x respectively.

We start with the case of two boundaries (toroidal annulus) and abbreviate the bound-
ary values as

w(rin) = win, w(rout) = wout, x(rin) = xin, x(rout) = xout.
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The constants c1, c2 and c3, c4 can be readily computed to be

c1 =
winK|kθ|(r̂out)− woutK|kθ|(r̂in)

I|kθ|(r̂in)K|kθ|(r̂out)− I|kθ|(r̂out)K|kθ|(r̂in)

c2 =
wout I|kθ|(r̂in)− win I|kθ|(r̂out)

I|kθ|(r̂in)K|kθ|(r̂out)− I|kθ|(r̂out)K|kθ|(r̂in)

c3 =
xin

√
∆b(rin) d

drout
K|kθ|(r̂2)− xout

√
∆b(rout)

d
drin
K|kθ|(r̂in)

d
drin
I|kθ|(r̂in) d

drout
K|kθ|(r̂out)− d

drout
I|kθ|(r̂2) d

drin
K|kθ|(r̂in)

(4.30)

c4 =
xout

√
∆b(rout)

d
drin
I|kθ|(r̂in)− xin

√
∆b(rin) d

drout
I|kθ|(r̂out)

d
drin
I|kθ|(r̂in) d

drout
K|kθ|(r̂out)− d

drout
I|kθ|(r̂out)

d
drin
K|kθ|(r̂in)

where we denote r̂i :=
√

(k2
t + k2

z)ri and ∆b(ri) :=
k2θ
r2i

+ k2
t + k2

z for i ∈ {in, out}. Using

(4.30) for the quadratic graviton part in (4.27) we obtain the graviton contribution to the
HJF to be

−κS(2)
HJ-io-c(rout, rin) =

1

4

∑
kθ,k

′
t,k
′
z

(
fin w̄inwin + fout w̄outwout + fio w̄inwout +

gin x̄inxin + gout x̄outxout + gio x̄inxout

)
+ cc . (4.31)

where

fio(rin, rout, k) =
2

I|kθ|(r̂in)K|kθ|(r̂out)− I|kθ|(r̂out)K|kθ|(r̂in)

fin(rin, rout, k) = rin
∂

∂rin

log (fio(rin, rout, k)) +
∆b(rin)

2(k2
t + k2

z)
(r2

in∆b(rin)− 1)

fout(rin, rout, k) = −fin(rout, rin, k)

gio(rin, rout, k) =

√
∆b(rin)∆b(rout)

d
drin
I|kθ|(r̂in) d

drout
K|kθ|(r̂out)− d

drout
I|kθ|(r̂out)

d
drin
K|kθ|(r̂in)

gin(rin, rout, k) =
1

2

(
1 +

k2
θ

r2
in∆b(rin)

)
− 1

2
rin

∂

∂rin

log (gio(rin, rout, k))

gout(rin, rout, k) = −gin(rout, rin, k) , (4.32)

are the coefficient functions. The functions fio, gio describe a coupling of the w and x
graviton modes between the two boundaries.
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In the case where we have only an outer boundary at r = rout, we will require that
the graviton solutions are smooth at the origin, r = 0. By definition, the modified Bessel
function K|kθ|(r) diverges4 at r = 0, thus to get smoothness, we set the constants c2

and c4 appearing in the graviton solutions (4.22),(4.24) to zero. We therefore, only need to
determine the constants c1 and c3. Using the boundary conditions w(rout) = wout, x(rout) =
xout, we indeed obtain the graviton solutions:

w(r) =
I|kθ|(r̂)
I|kθ|(r̂out)

wout , x(r) =

√
∆b(rout)

∆b

I|kθ−1|(r̂) + I|kθ+1|(r̂)

I|kθ−1|(r̂out) + I|kθ+1|(r̂out)
xout , (4.33)

where r̂ = r
√

(k2
t + k2

z) and the solutions are valid for all Fourier modes except (k2
t +k2

z) =
0. These modes will require special treatment.

Using the solutions (4.33), and ε = +1 for an outer boundary, we get the contribution
to the second order HJF of the solid torus coming from the quadratic graviton part is given
by

−κS(2)
HJ-o-c(rout) =

1

4

∑
kθ,k

′
t,k
′
z

(
f̃out w̄outwout + g̃out x̄outxout

)
+ cc , (4.34)

where

f̃out(rout, k) = rout
d

drout

(
log
(
I|kθ|(r̂out)

))
+

∆b(rout)

∆̃
(1− r2

out∆b(rout))

g̃out(rout, k) = −1

2
rout

d

drout

(
log
(
I|kθ−1|(r̂out) + I|kθ+1|(r̂out)

))
− 1

2

(
1 +

2 k2
θ

r2
out∆b(rout)

)
. (4.35)

Modes with kθ = k′t = k′z = 0

Now, we will determine the contributions to the HJF coming from special modes (k2
t +k2

z) =
0. Note that, the twisted frequencies are given by kt = 2π

βt
(k′t−

γt
2π
kθ) and kz = 2π

βz
(k′z−

γz
2π
kθ)

with k = (kθ, k
′
t, k
′
z) ∈ Z3. Thus (k2

t + k2
z) is vanishing, if kθ = k′t = k′z = 0 or if γt/2π and

γz/2π are rational and the momenta satisfy kθ = 2π
γt
kt = 2π

γz
kz.

Let us consider the modes kθ = k′t = k′z = 0. The components of the (linearized) bulk

4The point r = 0 is a regular singular point for the Bessel equation.
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tensor defined in appendix C have to satisfy the following equations of motion:

Ĝrr = − 1

2r
∂r(γtt + γzz), ĜrA = 0, Ĝθθ = − 1

2r2
∂2
r (γtt + γzz)

Ĝθt =
1

2r
∂r

(
1

r
∂rγθt

)
, Ĝθz =

1

2r
∂r

(
1

r
∂rγθz

)
, Ĝtz =

1

2r
∂r (r∂rγtz) , (4.36)

Ĝtt =
1

2r
∂r

(
γrr +

1

r2
γθθ −

1

r
∂rγθθ − r∂rγzz

)
, Ĝzz =

1

2r
∂r

(
γrr +

1

r2
γθθ −

1

r
∂rγθθ − r∂rγtt

)
,

where the index A appearing in the first line stands for A = θ, t, z.

The solutions to these equations of motion can be parametrized as follows

γrr = c0 + 2∂rξ
r, γrθ = r2∂rξ

θ, γrB = ∂rξ
B,

γθθ = 2rξr, γtt = −c1 log(r) + c2, γzz = c1 log(r) + c3,

γθt = c4 r
2 + c5, γθz = c6 r

2 + c7, γtz = c8 log(r) + c9 (4.37)

where B = z, t. Here ξa are the components of the diffeomorphism generating vector field
and ci, i ∈ {0, · · · , 9} are additional parameters appearing in the solutions.

Substituting the solutions (4.37) into the second-order action, the bulk term vanishes
and the boundary term evaluates to the second-order HJF. For the case where we have two
boundary components, an inner boundary at r = rin and an outer boundary at r = rout,
the second order HJF is given by

κS
(2)
HJ|k=0

=
1

2

(
C1 (r2

out − r2
in) + C2(log(rout)− log(rin)) + C3(log(rout)

2 − log(rin)2)
)
(4.38)

where the coefficients are given by

C1 = 2(c4
2 + c6

2), C2 = c1(c1 − 2c2 + 2c3) + c8(c8 + 4c9), C3 = 2(c1
2 + c8

2) . (4.39)

Using the Dirichlet boundary conditions, we determine the constants ci to be

c1 = − γtt(rout)− γtt(rin)

log(rout)− log(rin)
=

γzz(rout)− γzz(rin)

log(rout)− log(rin)
,

c2 =
γtt(rout) log(rin)− γtt(rin) log(rout)

log(rin)− log(rout)
, c3 =

γzz(rout) log(rin)− γzz(rin) log(rout)

log(rin)− log(rout)
,

c4 =
γθt(rin)− γθt(rout)

r2
in − r2

out

, c5 =
γθt(rout)r

2
in − γθt(rin)r2

out

r2
in − r2

out

,

c6 =
γθz(rin)− γθz(rout)

r2
in − r2

out

, c7 =
γθz(rout)r

2
in − γθz(rin)r2

out

r2
in − r2

out

,

c8 =
γtz(rin)− γtz(rout)

log(rin)− log(rout)
, c9 =

γtz(rout) log(rin)− γtz(rin) log(rout)

log(rin)− log(rout)
. (4.40)
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In the case of only an outer boundary, we will again require smoothness of the metric
perturbations at the origin. We find that for the solutions (4.37), some parameters have
to vanish

c1 = 0, c5 = 0, c7 = 0, c8 = 0 . (4.41)

The contribution to the Hamilton-Jacobi Functional is then given by

κS
(2)
HJ|k=0

=
1

4

(
(c2 − c3)2 + c0(c2 + c3) + 4c2

9 + 4(c2
4 + c2

6)r2
out

)
. , (4.42)

where

c2 = γtt(rout) , c3 = γzz(rout) , c9 = γtz(rout) , c4 =
γθt(rout)

r2
out

, c6 =
γθz(rout)

r2
out

(4.43)

and c0 can be determined as

c0 = γrr(rout)−
[
∂r
γθθ(r)

r

]
r=rout

. (4.44)

We have therefore determined in this section the continuum gravitational (linearized)
HJF for space–time regions with topology of a toroidal annuli and also a solid 3-torus.
In the next section, we will discuss a computation of path integrals for diffeomorphism
invariant systems and for regions with boundaries via recursion relations method. This
method will be used to determine the gravitational one-loop correction.

4.4 Path integrals via recursion relations

For regions with boundaries, we can ‘glue’ the path integrals for two neighbouring regions.
In our case, we consider the path integrals Z(r1, r2) and Z(r2, r3) for the regions with
radial coordinates r ∈ [r1, r2] and r ∈ [r2, r3], respectively. This means, we can obtain the
path integral Z(r1, r3) by integrating the data associated with the shared boundary

Z(r3, r1) =

∫
Dµ(γAB(r2)) Z(r3, r2)Z(r2, r1) , (4.45)

where Dµ(γAB(r)) is a measure over the induced metric perturbations on the r = const.
hypersurface. On the classical level we can ‘glue’ the HJF’s for these two regions and
obtain the HJF for [r3, r1]:

S
(2)
HJ(r3, r1) = extremize

γAB(r2)

(
S

(2)
HJ(r3, r2) + S

(2)
HJ(r2, r1)

)
, (4.46)
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where we extremize the sum of the HJF’s over the induced metric perturbations γAB(r2).

These convolution properties motivate to define and compute the HJF and the path
integral via a discretization: the input is here the path integral for a region with radial
coordinate r ∈ [ri, ri+1] where (ri+1−ri) are small. One requires smallness as one most often
can only provide an approximation to the path integral, but hopes that the approximation
error are small for small regions. Note that for a gravitational theory, this smallness for
the radial coordinate could be seen as a rather meaningless requirement, as the physical
lengths of the [ri, ri+1] segments are determined by the metric, which is a variable. Thus
the segments could become arbitrarily large. This turns out to be a key problem for the
discretization of diffeomorphism invariant theories.5

One can however use the convolution properties (4.45) and (4.46), and starting from

an initial guess 0Z(ri+1, ri)) and 0S
(2)
HJ(ri+1, ri), compute 1Z(ri+2, ri) and 1S

(2)
HJ(ri+2, ri). If

we can do this computation for general values for the radii rj, we can see that operation
as either refining the discretization or as coarse graining. With the refining interpretation,
nZ(rout, rin)) and nS

(2)
HJ(rout, rin) give better and better approximation for a region with fixed

radial interval [rin, rout].

In the limit n→∞ we can expect to obtain the continuum limit for both the HJF and
path integral. Thus, ∞Z(rout, rin) and ∞S

(2)
HJ(rout, rin) satisfy the fixed point conditions

∞Z(rout, rin) =

∫
Dµ(γAB(rsub)) ∞Z(rout, rsub)∞Z(rsub, rin) , (4.47)

and

∞S
(2)
HJ(r3, r1) = extremize

γAB(r2)

(
∞S

(2)
HJ(r3, r2) + ∞S

(2)
HJ(r2, r1)

)
(4.48)

respectively. One can actually attempt to directly solve the fixed point conditions and
in this way obtain (a certain part of) the path integral and the HJF. This strategy has
been proposed in [125] and has been successfully tested for the harmonic and anharmonic
oscillator.

This strategy applies only to the part of the path integral and the HJF, which describe
the propagating degrees of freedom, that is in our case the graviton modes. Indeed, for
the second order HJF described in section 4.3.3, we only obtain non-trivial fixed point
relations for the type (c) contributions. The contributions (a) and (b) localize to one
boundary component, and come for an outer and inner boundary with different signs, and

5In the expansion used here, the background metric provides a meaning to “small”
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thus cancel out for the glued boundaries. The fixed point condition (4.48) is therefore
automatically satisfied for these contributions.

Let us illustrate how this procedure [125] works for the construction of the one-loop
partition function, restricted to a graviton mode w with fixed momenta (kθ, k

′
t, k
′
z). One

starts with an ansatz for the path integral

0Zw(rout, rin) = 0µ(rout, rin) exp

(
−1

~
0S

(2)
HJw(k, rout, rin)

)
, (4.49)

where

0S
(2)
HJw(k, rout, rin) =

(
0fin(rout, rin)w2

in + 0fout(rout, rin)w2
out + 0fio(rout, rin)winwout

)
, (4.50)

and the 0f(rout, rin) coefficients can be for instance constructed from a discretization of
the Lagrangian describing the w-mode dynamics. (See section 4.3.3.) We have chosen the
measure term 0µ(rout, rin), to depend only on the evolution parameter r and not for instance
on w. This choice is justified as the form of the path integral will be stable under the
iteration. The convolution property (4.45) for the path integral leads then to the following
recursion relations for the nf(rout, rin) coefficient functions and measure nµ(rout, rin):

n+1fin(rout, rin) = nfin(rsub, rin)− (nfio(rsub, rin))2

4 (nfin(rout, rsub) + nfout(rsub, rin))

n+1fout(rout, rin) = nfout(rout, rsub)− (nfio(rout, rsub))2

4 (nfin(rout, rsub) + nfout(rsub, rin))

n+1fio(rout, rin) = −
nfio(rout, rsub)nfio(rsub, rin)

2 (nfin(rout, rsub) + nfout(rsub, rin))

n+1µ(rout, rin) =

√
π~ nµ(rout, rsub) nµ(rsub, rin)

2
√

(nfin(rout, rsub) + nfout(rsub, rin))
, (4.51)

where for the measure term, we considered Dµ(w(rsub)) = dw(rsub)µ(rout, rsub)µ(rsub, rin).

Here one can choose rsub to be some point in the interval (rin, rout), but we can expect to
obtain a better convergence for a regular subdivision, e.g. rsub = 1

2
(rin + rout). For n→∞

we obtain the fixed point condition – which has to hold for any choice of rsub ∈ (rin, rout).
Instead of applying the recursion relations to obtain (an approximation to) the coefficient
functions ∞f one can also directly attempt to solve the fixed point conditions. For an
example see [125].
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We have already computed the coefficient functions f and g, appearing in the HJF for
the w- and x-modes respectively, in (4.32). These coefficient functions do indeed satisfy
the fixed point conditions derived from (4.51).6

4.5 The one-loop correction

Here we will utilize the convolution property (4.45)

Z(r3, r1) =

∫
Dµ(γAB(r2)) Z(r3, r2)Z(r2, r1) , (4.52)

to determine the one-loop correction M(r2, r1) for the partition function

Z(r2, r1) ≈

(∏
k

M(k, r2, r1)

)
exp

(
−1

~

(
S

(0)
HJ(r2, r1) + S

(1)
HJ(r2, r1) + S

(2)
HJ(r2, r1)

))
(4.53)

for a region with two boundaries. We exclude the null mode kθ = k′t = k′z = 0. Dµ(γAB(r))
is a measure over the induced metric perturbations on the r = const. hypersurface. After
Fourier transform we can assume that this measure is of the form

Dµ(γAB(r)) =
∏
A≤B

∏
k

m(k, r) dγAB(k) (4.54)

where m(r, k) is some positive function of the radius r and the momenta (kθ, k
′
t, k
′
z).

Next we will use the parametrization of the metric components γAB in terms of the
diffeomorphism parameters (ξ⊥, ξA) and the graviton modes (w, x), see (4.6) . The corre-
sponding transformation of the measure is given by∏

A≤B

dγAB(k) = 2
√

2r4(k2
t + k2

z)
√

∆b dξ
r

(∏
A

dξA

)
dwdx . (4.55)

As we have chosen WAB and XAB with components in (4.7) to be, modulo constants,
orthonormal vectors spanning the graviton sector. We can understand the determinant to
arise from the transformation acting on the diffeomorphism sector.

We can now discuss separately the integration over the diffeomorphism modes and the
integration over the graviton modes.

6As a consistency check, we have checked that gluing a cylinder space–time region to an annulus space–
time region (see figure 4.1), the resulting HJF is given by that of a cylinder and moreover, the coefficients
satisfy fixed point conditions.
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4.5.1 Gauge sector

As we discussed in section 4.4, gluing the HJF’s for two regions [r1, r2] and [r2, r3] along
r2, the contributions coming from the diffeomorphism sector drop out, and we are only left
with a non-trivial integration over the graviton modes.

Thus the diffeomorphism parameters (ξr, ξθ, ξt, ξz) are indeed gauge parameters, which
parametrize non-compact gauge orbits. To obtain a finite partition function we set the
integration over these orbits to 1. To this end we will assume that the measure over the
gauge orbits is

Dgo(γ) = q(r)
∏
k

(
dξr
∏
A

dξA

)
, (4.56)

so that

Dµ(γAB(r)) = Dgo(γ)×
∏
k

m(k, r)

q(r)
2
√

2r4(k2
t + k2

z)
√

∆b dwdx . (4.57)

We split the one-loop correction M = D × G into a contribution D associated to
the diffeomorphisms and a contribution G associated to the gravitons. Requiring the
convolution property (4.52) to hold, leads to the following condition on M

D(k, r3, r1)G(k, r3, r1) = 2
√

2
m(r2, k)

q(r2)
r4

2(k2
t + k2

z)
√

∆b(r2) D(k, r3, r2)D(k, r2, r1)×

F (k, r3, r2, r1)G(k, r3, r2)G(k, r2, r1) (4.58)

where F (k, r3, r2, r1) results from the integration over the graviton modes. Demanding
that the diffeomorphism and graviton contributions separate, we obtain the requirement

G(k, r3, r1) = F (k, r3, r2, r1)G(k, r3, r2)G(k, r2, r1) (4.59)

for the graviton modes and

D(k, r2, r1) =
1

2
√

2(k2
t + k2

z)

√
q(r1)q(r2)√

m(k, r2)m(k, r1)r2
2r

2
1

1

∆
1
4
b (r2)∆

1
4
b (r1)

(4.60)

for the diffeomorphism modes.
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4.5.2 Graviton sector

The recursion relation (4.59) describes the one-loop correction associated to the graviton
sector. The factor F results from a Gaussian integration, defined by the second order
contribution to the HJF by the w- and x graviton modes, see (4.31). Inserting this factor
we obtain

G(k, r3, r1) =

√
π~

4(fin(r3, r2) + fout(r1, r2))

√
π~

4(gin(r3, r2) + gout(r1, r2))
G(k, r3, r2)G(k, r2, r1) , (4.61)

where fin, fout, gin, gout are the coefficients for the second-order HJF defined in (4.32). Note
that we have suppressed their dependence on the Fourier modes kθ, k

′
t, k
′
z. The correspond-

ing fixed point condition is solved by

G(k, r2, r1) =

√
−2 fio(r2, r1)

π~

√
−2 gio(r2, r1)

π~
, (4.62)

where fio, gio are coefficients in (4.32) that couple the two boundaries.
The one-loop correction for a toroidal annulus region (4.53) is therefore given by

M(k, r2, r1) =

√
q(r1)q(r2)√

m(k, r2)m(k, r1)r2
2r

2
1

1

2
√

2(k2
t + k2

z)∆
1
4
b (r2)∆

1
4
b (r1)

√
−2 fio(r2, r1)

π~

√
−2 gio(r2, r1)

π~

(4.63)

where

fio(r1, r2, k) =
2

I|kθ|(r̂1)K|kθ|(r̂2)− I|kθ|(r̂2)K|kθ|(r̂1)

gio(r1, r2, k) =

√
∆b(r1)∆b(r2)

d
dr1
I|kθ|(r̂1) d

dr2
K|kθ|(r̂2)− d

dr2
I|kθ|(r̂2) d

dr1
K|kθ|(r̂1)

. (4.64)

4.5.3 Case for solid 3-torus with one boundary

Let us consider the case for one boundary. We will make use of the previous results by
gluing a cylinder region with one boundary at r = r1 to an annulus with two boundaries
r ∈ [r1, r2], such that the following convolution property holds:

Zτ (r2) =

∫
Dµ(γAB(r1)) Z(r2, r1)Zτ (r1) . (4.65)
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This determines the one-loop correction M(r2) for the cylinder to be

Zτ (r2) ≈

(∏
k

Mτ (k, r2)

)
exp

(
−1

~

(
S

(0)
HJ(r2) + S

(1)
HJ(r2) + S

(2)
HJ(r2)

))
. (4.66)

Here, we will use the form of measure given in (4.57) and also the one-loop correction
Mτ = Dτ × Gτ into a diffeomorphism contribution Dτ and a graviton contribution Gτ .
The convolution property (4.65) therefore, lead to the relations

Dτ (k, r2) = 2
√

2
m(r1, k)

q(r1)
r4

1(k2
t + k2

z)
√

∆b(r1) D(k, r2, r1)Dτ (k, r1) ,

Gτ (k, r2) = F (k, r2, r1)G(k, r2, r1)Gτ (k, r1) , (4.67)

where the factor F again results from integration over graviton modes. These relations
do not specify Dτ and Gτ uniquely. For example, one could multiply these terms by an
r–independent factor and still satisfy the recursion relations.

Using (4.60) for the contribution from the torus annulus, we get that the relation for
the diffeomorphism part is solved by

Dτ (k, r1) =
1

2
√

2(k2
t + k2

z)

√
q(r1)√

m(k, r1)r2
1

1

∆
1
4
b (r1)

. (4.68)

Inserting the factor from integration of the graviton modes, the relation for the graviton
contribution is given by

Gτ (k, r2) =

√
π~

4(fin(r2, r1) + f̃out(r1))

√
π~

4(gin(r2, r1) + g̃out(r1))
G(k, r2, r1)Gτ (k, r1) , (4.69)

where fin, gin are the coefficients of the HJF that couple the two boundaries (4.32), and
f̃out, g̃out are the coefficients (4.35) from the one boundary case. Using the solution (4.62)
and the properties of the modified Bessel functions, we find that the fixed point condition
is solved by

Gτ (k, r1) =

√
1

I|kθ|(r̂1)

√√√√ ∆
1
2
b (r1)

d
dr1
I|kθ|(r̂1)

. (4.70)

The one-loop correction for a cylinder region (4.53) with one boundary is therefore given
by

Mτ (k, r1) =

√
q(r1)√

m(k, r1)r2
1

1

2
√

2(k2
t + k2

z)∆
1
4
b (r1)

√
1

I|kθ|(r̂1)

√√√√ ∆
1
2
b (r1)

d
dr1
I|kθ|(r̂1)

. (4.71)
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Apart from the ambiguities in the recursion relations (4.67), we also expect some gauge
parameters for the special modes kθ = 0,±1, as found in [3]. We do not discuss these
special cases here. However, we have demonstrated using the recursion relations method,
one can compute the gravitational one-loop partition function for 4D gravity including
gravitons. It is of much interest to know the one-loop correction (4.71) in the limit of small
r1 and compare results in discrete gravity [3] using Regge calculus.

We will conclude this section with the following remarks:

By construction the one-loop correction and the HJF computed via the recursion re-
lation are invariant under subdivisions in the radial intervals. Thus the path integral
and Hamilton–Jacobi functional are also discretization invariant in the radial direction
and therefore, serve as a ‘perfect propagator’ and a ‘perfect action’ for gravity respectively.
The results for the graviton sector is quite involved, i.e., it include modified Bessel functions
and so it cannot be “guessed”, but rather needs to be computed. For discretized gravity,
the procedure which we have employed here will help restore diffeomorphism symmetry
(not only under linearized diffeos, but in moving around subdivision in r-intervals).

We used Fourier transformation in (θ, t, z) directions, and for second order the gravi-
tational system reduces to a one parameter system in radial direction, for which we can
define a perfect discretization. The Fourier transform defines a regular subdivision in the
(θ, t, z) directions. Changing to a more irregular lattice is in principle possible, but would
lead to much more complicated expressions.
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Chapter 5

Discussions and Outlook

In this work we determined holographic boundary theories for linearized metric gravity
in three dimensions and for the gauge sector in four dimensions. We found these dual
boundary theories directly by computing the effective action for a geometric observable
as determined from the gravitational action. This geometric observable is the geodesic
distance from the boundary to some centre or central axis and describes so–called boundary
degrees of freedom [18, 127, 128], or boundary gravitons. This degree of freedom encodes
the shape of the (fluctuating) boundary in the embedding space time. Together with
the holographic boundary theories we also determined the Hamilton–Jacobi functional for
linearized gravity, for a large class of boundaries.

The resulting boundary theories depend on the chosen type of boundary and the choice
of cosmological constant. It is known that Liouville theory arises for an asymptotic AdS3

boundary [14,16,18,129]. We have shown that the effective theory for the geodesic lengths
leads to Liouville like theories also for finite and more general boundaries. In particular
one can always expect a Liouville-like coupling to the Ricci–scalar of the boundary. The
reason is that the first variation of the Ricci–scalar is proportional to the first variation of
the lengths of geodesics that start normal to the boundary.

For the examples we have considered, the boundary theories are furthermore defined
by a quadratic form given by ∆ = 2(KCD −KhCD)DCDD − bRABKAB. For background
space–times with vanishing boundary intrinsic curvature, this gives a (non-degenerate) flat
Laplacian for the torus boundary in AdS3 space and a degenerate Laplacian for the torus
boundary in flat space. For a spherical boundary in 3D flat space we obtain a differential
operator proportional to the Laplacian on the sphere, but also a mass term resulting from
bRABKAB.
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We have seen that in the case of a manifold with a torus boundary the derivation of
the effective action for the geodesic lengths requires some subtle procedure. This is the
imposition of smoothness condition at the central axis at r = 0. It leads to the insertion
of a non-local operator (1 + ∂−2

θ ) into the effective action.

This has an important consequence, namely that the modes kθ = ±1 describe a gauge
freedom of the boundary field theory. Indeed this follows from diffeomorphism symmetry
modes, which affect the precise definition of the central axis. Accordingly the geodesic
length at these modes is a gauge parameter and the geodesic effective action is independent
of the boundary field and just given by the gravitational Hamilton–Jacobi functional, which
does not depend on the boundary field, for kθ = ±1. The kθ = 0 mode is also affected by
diffeomorphism symmetry – but here it is a diffeomorphism along the central axis, which
to first order does not affect the lengths of the geodesics. In this case the geodesic effective
action is given by the gravitational Hamilton–Jacobi functional, but with the addition of
the Lagrange multiplier term, which imposes that the boundary field mode reproduces the
geodesic length at kθ = 0.

This illustrates an interesting interplay between the bulk and the possibly asymptotic
boundary. It deserves further study: for instance the inclusion of a point particle at
r = 0 should change the smoothness conditions, and in fact break the gauge symmetry
at kθ = ±1. Correspondingly one would expect that the one–loop partition function now
reproduces a massive BMS3 character instead of the vacuum one, see also [32, 130]. This
has been confirmed in the Regge calculus certain [131].The one–loop partition function
which we have computed for the flat torus also reproduces the vacuum BMS3 character
(the symmetry group at asymptotic infinity).

Another interesting direction is to investigate other geometric observables. For the
asymptotically flat [17] and AdS boundaries [16] one can employ certain angle variables,
which are better suited to capture the BMS or Virasoro symmetry respectively. It would
be interesting to see whether one can also identify germs for these symmetries at finite
boundaries. It would also be interesting to study Lorentzian space–times, null boundaries,
BTZ black holes and different boundary conditions [132–134].

The method to construct holographic duals directly from gravity, which we employed
here allowed to study the 4D case. In this regard we have computed the geodesic length
effective action for a 4D generalization of twisted thermal flat space. We restricted to
boundary conditions which impose flat perturbations, that is excluded propagating bulk
gravitons and the resulting boundary action is then however a straightforward generaliza-
tion of the 3D result, that is given by the same action with a Liouville like coupling to the
boundary Ricci scalar and a degenerate kinetic term. The next step is to study how the
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inclusion of bulk gravitons affects the geodesic effective action, and in particular whether
non-localities arise [2]. One might also be led to introduce additional boundary fields,
which encode (better than the geodesic length) the dynamics of the bulk gravitons. A key
question will be which kind of geometric observables are best suited for such boundary
fields.

To compute the gravitational one-loop correction, we introduced a new method which
relied on recursion relations. This method was motivated by the convolution property of
the gravitational path integral. This allowed us also also to compute the so called perfect
action and perfect propagator for discrete gravity. This is the first time such a computation
has been carried out for a 4D theory involving graviton degrees of freedom. (See [135]
paper for earlier results, which include scalar fields, vector fields but only 3D linearized
gravity.) The results show that perfect actions for theories with propagating degrees of
freedom cannot be guessed but rather need to be computed in a suitable truncation scheme.
Discretization of gravitational systems usually break diffeomorphism symmetry [126]. Our
method applied to discrete gravitational systems can help restore the broken symmetries
and also ensure discretization independence.

We hope that these investigations will help for the understanding of the renormalization
flow of quantum gravity models, e.g. [136–138]. A key issue is to find suitable truncations,
as one otherwise has to deal with an infinite dimensional space of possible couplings. The
framework introduced in [38,139–141] employs boundaries and boundary Hilbert spaces to
determine dynamically preferred truncation maps. Here a crucial question is to identify
geometric boundary observables which encode efficiently the bulk dynamics, which is also
a key point in the quasi-local holography program.
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Part II

Quantum geometry based on area
variables
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This part of the thesis is based on materials from the following two papers:

• The Degrees of Freedom of Area Regge Calculus: Dynamics, Non-metricity, and
Broken Diffeomorphisms (with Bianca Dittrich and Hal M Haggard) [4].

• Effective Spin Foam Models for Four-Dimensional Quantum Gravity (with Bianca
Dittrich and Hal M Haggard) [5].
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Chapter 6

Actions for discretized gravity

Regge in [25] formulated a discretization of gravity based on a simplicial decomposition
of the continuum manifold. Here, we introduce a different discrete theory inspired by
Regge calculus and playing a prominent role in the dynamics of spin foams. In this theory
areas (instead of lengths) are taken as fundamental [43]. This leads to quite a different
dynamics from length Regge calculus. The original version of area Regge calculus [43]
suffers from ambiguities. These ambiguities appear due to certain configurations with
right-angles make the action based on area variables ill-defined. We cure this problem by
constructing a first order formulation for area Regge calculus. We will also analyze gauge
symmetries and dynamics of the linearized area Regge calculus. Our analysis will lead to
tools to distinguish between length and area Regge dynamics in (the semi classical limit
of) spin foams.1

Let us start with a review of Length Regge Calculus (LRC). In LRC one substitutes
the metric by lengths le assigned to the edges e of a triangulation ∆ of a four dimensional
manifold with a boundary triangulation ∂∆ of the boundary manifold. The le determine
the triangle areas At(le) and the 4D (internal) dihedral angles θσt (le) in 4-simplices σ.
Varying the LRC action

SLRC =
∑
t∈∂∆

πAt(le) +
∑
t∈∆

2πAt(le)−
∑
σ

∑
t⊃σ

At(le)θ
σ
t (le)

≡ 1
2

∑
t∈∂∆

Set (le) +
∑
t∈∆

Set (le) +
∑
σ

Seσ(le) (6.1)

1Although this can be generalized to Lorentz signature, here we adopt Euclidean signature geometries.
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with respect to the bulk lengths leads to the dynamics∑
t⊃e

∂At(le)

∂le
εt(le) = 0 , with εt = 2π −

∑
σ⊃t

θσt (le) , (6.2)

where the deficit angle εt is a measure of the curvature concentrated on the triangle t. The
boundary term is known as the Gibbons-Hawking-Hartle-Sorkin boundary term [142] which
is analogous to the Gibbons-Hawking-York boundary term in Einstein Hilbert action. In
the limit of a very fine triangulation one recovers Einstein’s equations [143].

In part II of this thesis, we will mostly employ a formulation in terms of area variables.
We, thus, define the Area Regge Calculus (ARC) action [43] for 4D triangulations, whose
value on configurations with At = At(le) agrees with the LRC action

SARC = 1
2

∑
t∈∂∆

SAt (At) +
∑
t∈∆

SAt (At) +
∑
σ

SAσ (At), (6.3)

where SAt (At) = 2πAt and SAσ (At) = At θ
σ
t (At′). Strikingly, freely varying the bulk areas

one finds the equations of motion εt = 0, which impose flatness. This is due to the Schläfli
identity [144] (for a modern symplectic proof see [145])∑

t⊂σ

At δθ
σ
t = 0 , (6.4)

which holds for arbitrary variations δθσt of the dihedral angles in a simplex σ and, in effect,
leads to a vanishing of the variations of the deficit angles

∑
tAt δεt = 0.

The dihedral angles θσt are uniquely determined from the (flat) geometry of the simplex
σ, which is defined by its 10 edge lengths. The action (6.3), however, requires the dihedral
angles as functions of the 10 triangle areas of the simplex. Unfortunately, the 10 areas
of a four-simplex do not uniquely determine the 10 length variables. This is due to the
fact that the areas are quadratic functions of the edge lengths. A particular example of
this ambiguity is the “Tuckey–configuration,” which has all edge lengths equal to 1 except
for one edge with length

√
b, [43]. For both the values b and 4 − b, triangles sharing the

latter edge have equal areas. Nonetheless, in configuration space and away from right angle
configurations, one can locally2 invert the 10 functions At(le) that give the simplex’s areas
in terms of its lengths. We will denote the resulting functions Lσe (A), where A collectively
signifies the 10 areas associated to σ.

2These functions also depend on a discrete parameter that accounts for the multiple roots that appear
in the inversion of At(le). This discrete parameter appears as a summation variable for the (constrained)
Area Regge path integral. To ease notation we will suppress this parameter.
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To cure the problem with the ambiguities of the action we will consider first order Regge
calculus. An alternative, presented in section 6.2, is to replace flat simplices by simplices
with homogeneous curvature. This framework is useful for modeling space–times with a
cosmological constant. We will work here mostly with the flat simplex version. There are
also other versions of Regge calculus based on area and angle variables [44], which we do
not consider in this chapter.

6.1 First order Area–Regge calculus

To circumvent the problem of finding the dihedral angles as functions of the areas we will
treat these dihedral angles θσt as independent variables. This amounts to a first order
area Regge calculus. First order frameworks for the standard length Regge calculus were
defined by Barrett [146] for the flat case and in [147] for the case of homogeneously curved
simplices.

The mechanism behind our first order formulation is the same as in [146], with the im-
portant difference that here the equations of motion impose flatness. On a given simplex
the full set of dihedral angles and areas provides more data than necessary to determine
the geometry of the simplex. Hence these variables cannot be specified completely inde-
pendently, or the dihedral angles might not be compatible with the areas. Consistency of
these data will be imposed by an equation of motion that follows from the variation of the
dihedral angles.

The dihedral angles of a (flat) simplex are also not independent. Define the angle Gram
matrix

Gσ
ij :=

{
1 for i = j

− cos(θσij) for i 6= j
, (6.5)

where i, j ∈ {1, . . . , 5} label the five vertices of the simplex σ and θσij is the dihedral angle
opposite the edge connecting vertices i and j. Then the dihedral angles must satisfy the
constraint that the determinant of the angle Gram matrix Gσ vanishes. In Appendix I we
prove this claim and give a general structural characterization of the Gram matrix.

As in [146], we impose this constraint on each simplex using a Lagrange multiplyer Λσ.
The action is

SFOA =
∑
t∈∂∆

πAt +
∑
t∈∆

2πAt −
∑
σ

∑
t⊃σ

At θ
σ
t +

∑
σ

Λσ detGσ . (6.6)
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This action leads to the equations of motion

δAt : εt = 2π −
∑
σ⊃t

θσt = 0 ,

δΛσ : detGσ = 0 ,

δθσt : At = Λσ
∂ detGσ

∂θσt
. (6.7)

In Appendix I we find the derivative of the determinant of the angle Gram matrix

∂ detGσ

∂θσij
= [cViVj](θ

σ
kl) sin θσij = [c′Vij](θ

σ
kl) , (6.8)

where Vi is the volume of the tetrahedron obtained by removing from σ the vertex i and
Vij is the area of the triangle obtained by removing vertices i and j. The coefficients c and
c′ are defined in Appendix I and depend on the full simplex. They are dimensionful, as we
have a dimensionless quantity on the left hand side of (6.8). On the right hand side we
have made the dependencies on the angles θσ explicit, but, as the dihedral angles cannot
determine the scale of the simplex, it is only the combined quantities in square brackets
that are well defined functions of the dihedral angles.

Thus, the last equation of motion in (6.7) does, in fact, impose that the dihedral angles
are compatible with the areas. This will be more manifest in the homogeneously curved
case considered below. The second equation of motion imposes that the dihedral angles
come from a simplex. In general (away from right angles) the last two equations of (6.7)
can be solved for the dihedral angles and the Lagrange multiplier in terms of the areas.
This can be achieved locally on each simplex.

6.2 Area Regge calculus for homogeneously curved

simplices

A second approach is to use homogeneously curved simplices. For a curved four-simplex,
the curvature scale breaks the overall scaling symmetry of the flat case and both the
edge lengths and the areas can be expressed as functions of the dihedral angles. Actions
that impose the dynamics for length Regge calculus with homogeneously curved simplices
have been investigated in [147], see also [148–158] for spin foam models and loop gravity
techniques based on homogeneously curved simplices.
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Homogeneously curved simplices allow for a simple solution to the dynamics of length
Regge calculus with a cosmological constant. While in the flat case it is intricate to arrive
at expressions for the Hessian of the action, they are immediate in the constant curvature
case. This will allow us to easily find a second order formulation as well. In the first
order action it will not be necessary to introduce a Lagrange multiplier as the cosmological
constant and curved Schläfli identity address the associated issues completely.

The first order action with cosmological constant Λ = 3κ is

SHC =
∑
t∈∂∆

πAt +
∑
t∈∆

2πAt −
∑
σ

∑
t⊃σ

At θ
σ
t + 3κ

∑
σ

Vσ(θσ) . (6.9)

Here Vσ(θσ) is the volume of the simplex σ, viewed as a function of all of its dihedral
angles. The curved Schläfli identity gives the variation of this volume under an arbitrary
variation of the dihedral angles

3κδVσ =
∑
t⊂σ

Atδθ
σ
t . (6.10)

Note that this properly reduces to the flat Schläfli identity, Eq. (6.4), in the κ→ 0 limit.
Using the Schläfli identity, we have

∂Vσ
∂θσt

=
1

3κ
At(θ

σ) (6.11)

and the equations of motion follow immediately

δAt : εt = 0

δθt : −At + At(θ
σ) = 0. (6.12)

The second of these equations imposes the area agreement, namely, that the independent
area variables At agree with the areas determined by the dihedral angles At(θ

σ).

In anticipation of the more complicated linearization of the next section, we conclude
this section by briefly considering linearization of the constant curvature area Regge cal-
culus. First, split the variables into background values and perturbations

At = A0
t + at ,

θσt = (θσt )0 + ϑσt . (6.13)

The quadratic part of the action can be written as a contribution for each simplex

S
(2)
HC =

∑
σ

S
(2)
HCσ (6.14)
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with the quadratic simplex action

S
(2)
HCσ = −

∑
t⊂σ

atϑ
σ
t +

3κ

2

∑
t,t′⊂σ

ϑσt
∂2Sc
∂θσt ∂θ

σ
t′
ϑσt′ = −

∑
t⊂σ

atϑ
σ
t +

3κ

2

∑
t,t′⊂σ

ϑσt
∂At′(θ

σ)

∂θσt
ϑσt′ ,

(6.15)
where in the second equality we have used the curved Schläfli identity (6.11) again. The
inverse function theorem guarentees that, at least locally, the Hessian

Hσ
tt′ =

∂2Sc
∂θσt ∂θ

σ
t′

=
∂At′(θ

σ)

∂θσt
(6.16)

is invertible and has inverse

(Hσ)−1
tt′ =

∂θσt
∂At′

. (6.17)

These explicit forms allow us to integrate out the ϑσt to obtain the second order linearized
action

S
(2)
HC = − 1

3κ

∑
t,t′⊂σ

at(H
σ)−1
tt′ at′ . (6.18)

While we have found At(θ
σ)t′ analytically, see Appendix H, inverting these functions

to θσt′(At) has so far remained impractical. Nonetheless the Hessians are straightforward
to work with numerically and our results on the homogeneously curved case are found this
way.

6.3 Linearized theory

To analyze the symmetries of the theory and distinguish between physical and gauge de-
grees of freedom we will consider the linearized theory for flat simplices. (We have also
tested some features for the curved simplex case, which we will comment on throughout.)
To this end we will assume a background given by a flat and metric configuration. Flatness
is imposed by the equations of motion. Metricity means that all the areas are determined
from a consistent set of length variables. In chapter 8, we consider more general back-
grounds, and we will see that this is a very special choice of background with an enhanced
symmetry content. This is closely analogous to the special character of flat backgrounds
in length Regge calculus [120,121].
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Let us consider splitting the variables into background plus perturbations

At = A0
t + at ,

Λσ = Λ0
σ + λσ ,

θσt = (θσt )0 + ϑσt . (6.19)

The quadratic part of the action can be written as a contribution for each simplex (with
a boundary there might also be a linear boundary term for the expanded action)

S
(2)
FOA =

∑
σ

Sσ (6.20)

with

Sσ = −
∑
t⊂σ

atϑ
σ
t + λσ

∑
t⊂σ

∂ detGσ

∂θσt
ϑσt +

Λ0
σ

2

∑
t,t′⊂σ

ϑσt
∂2 detGσ

∂θσt ∂θ
σ
t′
ϑσt′ . (6.21)

This can be written as

Sσ = −
∑
t̃⊃σ

at̃ϑ
σ
t̃ +

1

2

∑
t̃,t̃′

ϑσt̃H
σ
t̃t̃′ϑ

σ
t̃ , (6.22)

where we have introduced the extended index t̃ = (0, t) with ϑσ
t̃=0

= λσ and at̃=0 = 0. The
matrix (Hσ)t̃t̃′ is given by

Hσ
00 = 0 , Hσ

0t = Ht0 =
∂ detGσ

∂θσt
,

and Hσ
tt′ = Λ0

σ

∂2 detGσ

∂θσt ∂θ
σ
t′

. (6.23)

Generically (away from right angles) this matrix can be inverted, that is, we can integrate
out the dihedral angles and the λ variables. This gives an effective simplex action expressed
in terms of the area perturbations alone

Sσa = −1

2

∑
t̃,t̃′⊂σ

at̃ ((Hσ)−1)t̃t̃′ at̃′ = −1

2

∑
t,t′⊂σ

at ((Hσ)−1)tt′ at′ , (6.24)

where ((Hσ)−1)tt′ are the tt′-components of the inverse of the full matrix Hσ
t̃t̃′

.
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Leveraging the bordered structure of Hσ
t̃t̃′

, the matrix ((Hσ)−1)tt′ satisfies the condition

0 =
∑
t∈σ

∂ detGσ

∂θσt
((Hσ)−1)tt′

=
∑
t∈σ

c′At(θ
σ) ((Hσ)−1)tt′ , (6.25)

where in the second line we used (6.8). We are hence looking for a set of vectors {vt}t′ which
are orthogonal to the vector with components the areas, wt = At. The Schläfli identity
does indeed provide such vectors: vt = δθσt for any variation δ. Additionally ((Hσ)−1)tt′ is
a symmetric matrix, which suggests

((Hσ)−1)tt′ =
∂θσt
∂At′

. (6.26)

This is confirmed by the fact that the same Hessian arises from the second order action
(6.3) for one simplex, which also shows that ∂θσt /∂At′ is a symmetric matrix. Note that
we obtain the same expression for the Hessian in the flat and in the homogeneously curved
cases. The difficulty for the flat case is that the functions At(θ

σ
t′) are ill-defined—only

θσt (At) can be expected to exist locally in configuration space. However, there is no explicit
expression available for these functions, and thus the route to obtain expressions for (6.26)
is by inverting Hσ

t̃t̃′
, the matrix of (double) derivatives of the angle Gram matrix.

From a computational perspective calculating the first and second derivatives of the
determinant of the angle Gram matrix is straightforward (see Appendix I) and the matrix
Hσ can be inverted numerically on explicit backgrounds. The alternative of computing
∂θ/∂l and multiplying with the (numerically obtained) inverse of ∂A/∂l is cumbersome;
although explicit expressions for ∂θ/∂l are available [159], they are quite involved.

6.3.1 Identifying metric and non-metric perturbations

Generically, a three- or four-dimensional triangulation will have more triangles than edges
and therefore we have more area variables than length variables. A single four-simplex has
the same number, namely 10, of length and area variables and given the areas we can—
modulo ambiguities arising from right angle configurations—compute its length variables.
But, already for the case of two glued four-simplices we have 16 area and 14 length variables.
Computing the lengths for each of the two simplices one will find that the lengths of the
edges of the shared tetrahedron do not necessarily agree. We will refer to configurations
with such a mismatch of length variables non-metric.
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geometric non-
geometric

Figure 6.1: The space of length perturbations maps under Γ to the space of metric area
perturbations. The complement defines the non-metric perturbations.

For the linearized theory, and for a general triangulation, we consider the matrix of
derivatives

Γte :=
∂At
∂Le

, (6.27)

where At are the areas and Le are the length variables. We assume a metric background
and thus the (background) length variables Le are well defined. We will use Γ to identify
the vector space of non-metric area perturbations as the space spanned by its left null
vectors. Note that we can apply this characterization to all lengths and areas of a given
complex, or to only the set of boundary areas and boundary lengths. In the latter case we
will speak of boundary non-metricity.

In more detail, if we call the space of edge lengths L and that of the areas A then Γ can
be seen as a linear map Γ : TL→ TA; these spaces are illustrated in Fig. 6.1. In addition
to the usual kernel of this map, which is spanned by the right null vectors of the matrix
Γte, we will also consider the cokernel, namely the quotient space TA/im(Γ). Equivalently,
this cokernel can be characterized as the kernel of the transpose map ΓT : TA → TL.
Thus it is spanned by the left null vectors of Γte. The cokernel can be thought of as the
extra combinations of areas that go beyond the edge lengths in a given simplicial complex.
More precisely, it measures the degree to which Γ fails to be surjective.

The dimensions of the kernel and cokernel of a linear map are not independent,

dim coker(Γ) = dimTA− dim im(Γ) = dimTA− dimTL+ dim ker(Γ), (6.28)

which serves as a useful sanity check when you find the various null spaces.
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6.3.2 Gauge Symmetries

We turn to potential gauge symmetries of the linearized area Regge action. A quadratic
action features gauge symmetries if its Hessian has null modes that can be localized to
the bulk degrees of freedom. The presence of these null modes means that the solution
under consideration is not uniquely determined by the boundary data—a gauge choice is
required to uniquely specify the solution.

As emphasized in [52] the choice of background on which the Hessian is evaluated is
important. The number of null modes, and therefore the number of gauge symmetries,
might depend on the solution being considered. In this section we consider metric (back-
ground) solutions, while in Section 8 we consider more general backgrounds. On the latter
backgrounds we show that the gauge symmetries of the metric backgrounds are broken.

Because of the equations of motion the deficit angles εt vanish on all bulk triangles.
Thus the background is given by a flat piecewise linear geometry. For any vertex v in
the bulk we can translate its position in the embedding flat geometry without changing
the fact that the geometry is flat; in our four-dimensional triangulation there are four
possible directions in which to do this. This will affect the lengths of the adjacent edges
le → le + δIv le, with I = 1, . . . 4. These translations maintain zero deficit angles and leave
the boundary areas and dihedral angles invariant, that is, they do not change the intrinsic
or extrinsic geometry of the boundary. Thus the area Regge action remains invariant under
(bulk) vertex translations. This gives four gauge symmetries per bulk vertex.3 Note that
the same kind of argument can be made if we use simplices with homogeneous curvature
and the appropriate action (6.9).

In our investigations of Hessians on various metric backgrounds we did not find any
additional gauge symmetries. Examples can be found in section 7.1. As the equations
of motion impose flatness and would seem to suggest a topological theory, which would
require more gauge symmetries, one could ask why there are not more gauge symmetries.
In fact, the action

SBF =
∑
t

At εt(Le) , (6.29)

constructed by Baratin and Freidel [41], is topological. Here the Le are lengths associated
to the edges of a triangulation, and εt(Le) is the deficit angle calculated from these lengths.
The At are not areas a priori, but are treated as independent variables. Thus the At are

3Redundancies could occur, but only globally and thus depending on the topology of the manifold. For
the four-sphere there are 10 such symmetries, 6 rotations and 4 translations.
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Lagrange multipliers imposing the vanishing of the deficit angles. The equations of motion
arising from variations of the length variables are∑

σ

∑
t∈σ

At
∂θσt
∂Le

= 0 . (6.30)

One class of solutions is provided by the Schläfli identity (6.4): choosing At = αAt(Le),
where α is a constant, ensures that Eq. (6.30) is satisfied. These solutions are called Regge
solutions in [41].

Baratin and Freidel analyze the symmetries of this action on the Regge backgrounds.
Apart from the vertex translation symmetry discussed above, there are also three symme-
tries per edge. These arise from perturbations of the Lagrange multipliers At → At+εne

′,I
t ,

with I = 1, 2, 3. The ne
′,I
t are specific perturbations satisfying∑

t

ne
′,I
t

∂εt
∂Le

= 0 for all e, (6.31)

and therefore constitute an additional three gauge symmetries per edge. There are local
redundancies between the gauge parameters, which are thoroughly discussed in [41].

Are there similar symmetries for area Regge calculus? It turns out there are not. Here
we have to consider the Hessian ∂εt/∂At′ . This Hessian can be obtained from

∂εt
∂Le

=
∑
σ

∂θσt
∂Lσe

(6.32)

by multiplying the Hessians associated to each simplex by ∂Lσe/∂At. However, for the
action (6.29), the condition Lσe = Le is imposed on all edges, which is not the case for the
area Regge action. Instead when we multiply these Hessians by ∂Lσe/∂At there are more
equations to satisfy, precisely one for each triangle.

Indeed in the numerical examples studied in the next section we find that ∂εt/∂Le has
the (left) null vectors resulting from Eq. (6.31) whereas ∂εt/∂At′ has only the null vectors
(which are null from the left and right) resulting from the vertex translation symmetry. The
disappearance of the left null vectors in going from ∂εt/∂Le to ∂εt/∂At′ is a consequence
of the fact that there are more areas than length variables and thus more conditions to
satisfy in order to be a left null vector.
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Covariant and Canonical analysis

Here, we shall consider certain aspects of the dynamics of linearized area Regge calculus
both in the covariant formalism and the canonical formalism. In the covariant analysis, we
shall employ the ‘Pachner moves’ which are local changes of the bulk triangulation that
finitely generate any change of the bulk triangulation, [160].

The canonical framework which we will be employing, [45], uses discrete time evolution
steps. The action will serve as a generating function for the canonical transformation that
represents the time evolution [161]. This has the advantage that the covariant equations
of motion are exactly reflected in the canonical framework. The symmetry content is also
mirrored exactly [45], and thus we will find that the vertex translation symmetry leads
to (first order) constraints. The latter can be used to define a notion of continuous time
transformations. (Again here we consider metric background solutions and these features
will only hold on such backgrounds.)

7.1 Pachner moves

We will now study the equations of motion of linearized area Regge calculus on small
simplicial complexes, those that support Pachner moves.

In d dimensions there are (d+ 1) different types of moves referred to as (d+ 1)− 1, d−
2, · · · , 1 − (d + 1). An x − y Pachner move with x + y = d + 2 changes a complex of x
d–simplices into a complex of y d–simplices. A y− x move is the inverse of an x− y move.
In four dimensions we have therefore the 5 − 1 move, the 4 − 2 move, their inverses, and
the 3− 3 move. The subsections below treat each of these moves in turn.
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The Pachner moves allow us to efficiently check the symmetry content of the theory.
We also compare the behavior of the area and length Regge calculi under Pachner moves
and find that there are significant differences. This could be a useful test to classify spin
foam models.

Note that for this analysis we only consider the linearized theory on flat and metric
background solutions. Explicit expressions for the Hessians we have used can be found
in our open-source Area Regge Calculus (ARC) Mathematica code, available at https:

//github.com/Seth-Kurankyi/Area-Regge-Calculus.

7.1.1 5–1 move

We start with the 5–1 move. Its properties in area Regge calculus turn out to be very
similar to the 5–1 move in length Regge calculus. The 5–1 move starts with an initial
configuration of 5 four-simplices sharing a common vertex in the bulk of the triangulation
and removes the bulk vertex to get a single simplex (see Fig. 7.1). As in length Regge
calculus, a solution with 5 four-simplices is most simply constructed by subdividing a single
flat simplex. There is a free choice in this subdivision, namely where to place the bulk
vertex. This leads to the four-dimensional gauge symmetry discussed above and can be
seen as a remnant of the continuum diffeomorphisms.

1

2

34

5 1–5

5–1 0

1

2

34

5

Figure 7.1: A 1–5 move splits a 4-simplex into five 4-simplices by introducing a bulk vertex
0. The 5–1 Pachner move is the inverse and reduces the five 4-simplices on the right to the
one 4-simplex at left by removing the bulk vertex and its associated bulk edges (dashed).

The simplicial complex for the initial configuration of the 5–1 move has 20 triangles
and 15 edges. Of these, 10 triangles and 10 edges are in the boundary, which coincides
with the boundary of a four–simplex. Thus we have 5 bulk edges and 10 bulk triangles.
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We label the vertices of our background solution by (0, 1, . . . , 5), with 0 the bulk vertex.
The background edge lengths are chosen to be lbdry = 1 for edges (i, j) and lbulk =

√
2/5

for edges (0, i) with i, j ∈ {1, . . . , 5}. The effective Hessian matrix describing the linearized
action in terms of area perturbations is

M51
tt′ := −1

2

∑
σ

((Hσ)−1)tt′ , (7.1)

as described in section 6.3, and can be found explicitly for our background.1

As expected, see the discussion in Section 6.3.2, the bulk part of the Hessian has exactly
four null vectors; these correspond to the four vertex translations of the bulk vertex and are
the discrete remnant of diffeomorphism symmetry. The full Hessian has five null vectors:
the four null vectors describing vertex translations and a global scaling symmetry, that
affects also the boundary areas.

We have also considered the (linearized) theory with homogeneously curved simplices.
In this case one also finds four null vectors for the bulk Hessian. There is however no global
null vector, as the scaling symmetry is broken by the homogeneous curvature. Again see
the ARC code for the explicit computations in both the flat and homogeneously curved
cases.

Metricity

As explained in Section 6.3.1, the area perturbations split into metric and non-metric
types. For the 5–1 move all boundary area perturbations are metric (away from right angle
configurations). Conversely, the boundary length perturbations determine the boundary
area perturbations uniquely. Considering the full complex, including bulk areas, there are
5 non-metric area perturbations.

On our chosen background the solutions to the equations of motion are orthogonal to
these non-metric directions. In fact, this holds for general 5–1 backgrounds due to the
subdivision construction introduced above: The boundary data specify (away from right
angle configurations) a metric 4-simplex and thus do not admit non-metric directions.
Meanwhile, the equations of motion impose flatness for the deficit angles appearing in a
subdivision of this metric simplex. Thus the subdivision determines a 4-parameter set of
flat and metric solutions.

1This, and all other explicit calculations can be found in our open-source Area Regge Calculus (ARC)
code.
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This argument shows that, like the length Regge action, the area Regge action is in-
variant under the 5–1 Pachner move. In particular, evaluating the action for a complex
consisting of five simplices on the solution for the bulk variables we find the same value as
for the final configuration consisting of only one simplex.

7.1.2 4–2 move

The 4–2 move starts with a configuration of four 4-simplices sharing a common edge and,
by removing the common edge, ends up with a configuration of two 4-simplices glued along
a (new) shared tetrahedron.
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Figure 7.2: The 2–4 Pachner move takes two 4-simplices σ0 = (1, 2, 3, 4, 5) and
σ1 = (0, 2, 3, 4, 5), which share the boundary tetrahedron (2, 3, 4, 5), to four simplices
σ2, σ3, σ4, σ5 by introducing a bulk edge e(01). The inverse procedure gives the 4–2 move.

The 4–2 move in area Regge calculus has quite different properties from that in length
Regge calculus. The main reason is that the boundary of the complex, which agrees
with the boundary of two glued 4-simplices, admits non-metric data. As we will see this
possibility will be responsible for the non-invariance of the area Regge action under the
4–2 move. The boundary data for the 4–2 move in length Regge calculus, which are given
by the lengths of the edges of the two glued simplices, do not induce curvature. This
means that the solution for the initial configuration of the 4–2 move is flat, and leads to
the invariance of the length Regge action.

The simplicial complex for the initial configuration of the 4–2 move has 20 triangles
and 15 edges. Of these, 16 triangles and 14 edges are in the boundary, which coincides
with the boundary of two glued four–simplices. Thus we have one bulk edge and four bulk
triangles (see Fig. 7.2).
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Again we label vertices (0, 1, . . . , 5) with (01) the bulk edge. Consider the background
edge lengths lbdry = 1 for edges (i, j) and edges (I, i) with i, j ∈ {2, . . . , 5} and I ∈ {0, 1}.
For the bulk edge (0, 1), lbulk =

√
5/2.

The solution for the bulk areas is unique, that is, the bulk Hessian has no null vectors.
The full Hessian has one null vector corresponding to a global scaling symmetry.

Metricity

Amongst the 20 area perturbations of the full complex, five combinations describe non-
metric directions. These are determined by the left null vectors of the matrix Γte. When
restricted to the boundary triangles and edges, there are two null vectors and hence two
non-metric directions. In both cases there are no right null vectors, which means the metric
area perturbations determine the length perturbations uniquely.

Let us first consider a restriction to metric boundary perturbations. (We remind the
reader that these are over a metric background.) We again find a solution by subdivision
in a flat embedding. The embedding determines the bulk edge of the subdivision and as
before the action is invariant when restricted to metric boundary data.

However, this changes if we consider non-metric boundary data. These can be isolated
through a variable transformation for the boundary variables; the new variables will also be
useful for the analysis of the 4–valent tent move in section 7.2. The 16 boundary areas can
be taken to define the areas of two simplices σ0 = (0, 2, 3, 4, 5) and σ1 = (1, 2, 3, 4, 5) that
share a tetrahedron τ = (2, 3, 4, 5). This allows us to consider the following transformation

({a0ij}, {a1ij}, {akij}) → ({l0i}, {φ0
α}, {l1i}, {φ1

α}, {akij}) , (7.2)

where the indices i, j, k take values in {2, 3, 4, 5}. The variables φ0
α with α ∈ {1, 2} are

two 3D dihedral angles at non-opposite edges in the tetrahedron τ and are determined by
the areas of the simplex σ0. The φ1

α describe dihedral angles at the same edges, but are
computed from the areas of the simplex σ1. Finally the lmn are the edge lengths between
vertices m and n. We can construct such a transformation by splitting it into two steps: For
each simplex we first transform the 10 areas to the 10 length variables. We then consider
separately the 6 length variables lij, which determine the tetrahedron τ in σ0 and in σ1.
From these 6 length variables we can define the four areas akij and the dihedral angles φ0

α

and φ1
α. See Appendix J for the explicit transformation needed in the second step.

Clearly, we have a non-metric configuration if φ0
α 6= φ1

α, as these dihedral angles describe
the same geometric quantity, but are computed from the data of different 4-simplices. The

93
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metricity condition is thus that these 3D dihedral angles in the shared tetrahedron coincide.
This is analogous to the metricity condition for tetrahedra identified in [44], which demands
that the 2D dihedral angles of shared triangles should coincide.

We can now introduce two variables tα = φ1
α − φ0

α which isolate the non-metric direc-
tions. For boundary data that give non-vanishing tα the action will fail to be invariant
under the 4–2 move. Interestingly, the effective action for the configuration with four sim-
plices couples the angles φ1

α and φ0
α. This coupling cannot appear for the action with two

simplices, as it is just a sum of two terms S(σ0) and S(σ1) which only depend on the
quantities in σ0 and σ1 respectively.

In summary, for general boundary data the area Regge action is not invariant under the
4–2 Pachner moves and the reason is that the boundary admits non-metric perturbations.

7.1.3 3–3 move

The 3–3 Pachner move transforms a configuration of three 4-simplices in a triangulation
to a different configuration also made up of three simplices. See Fig. 7.3.

In length Regge calculus the 3–3 move is the only one that admits curvature. The
boundary lengths can be chosen such that the bulk triangle has a non-zero deficit angle.
Note that there is no bulk edge and hence no equation of motion to impose in length
Regge calculus. The presence of curvature leads to non-invariance of the action under 3–3
Pachner moves [26].

This leads to a puzzling question for area Regge calculus: if we can choose boundary
data that lead to curvature in the bulk, how are the equations of motion, which demand
flatness, imposed? The resolution will be a subtle interplay between the geometric data
described by the boundary areas on the one hand and the geometric data described by the
boundary lengths on the other.

There are only 19 triangles in this complex—the triangle (3, 4, 5) does not appear.
There are 15 edges and the boundary includes all 15 edges and 18 of the triangles. There
is one bulk triangle.

We consider again the vertices (0, 1, . . . , 5) and the three four-simplices σ(01234), σ(01235)
and σ(01245) which share the bulk triangle t(012). For our background solution the edge
length are lbdry = 1 for edges (i, j) and (I, J) with i, j ∈ {3, . . . , 5} and I, J ∈ {0, 1, 2}.
The edges (I, i) have length lbdry =

√
2/3.

With our background solution we find that the solution for the bulk area is unique and
that the full Hessian has one null vector corresponding to the global scaling symmetry.
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Figure 7.3: The 3–3 Pachner move changes a configuration of three simplices with one
bulk triangle t(0, 1, 2) to a different configuration of three simplices with a bulk triangle
t(3, 4, 5) keeping the boundary geometry fixed.

Metricity

As before the surfeit of area variables allows for area perturbations that are non-metric.
These behave much as before and rather than treat them in detail we will focus on an issue
that is unique to the 3–3 move.

We have just shown that the boundary data uniquely determine the bulk triangle.
Thus even for a metric boundary perturbation of the areas that one would expect to lead
to boundary edge lengths that induce curvature we find a particular bulk triangle. As all
area solutions require flatness, it seems the only possibility is that this solution is non-
metric.

However, it turns out that this is not the case!

Considering Γte we have now to take into account one triangle less than for the other
complexes. It has a co-image of dimension four, but, none of these non-metric perturbations
has a component in the bulk area. The co-image is orthogonal to the vector describing the
solution (i.e. the bulk row of the effective Hessian).

Restricting Γte to boundary triangles and boundary edges we find, surprisingly, that
although it is an 18× 15 matrix, it has a one–dimensional kernel. This means that despite
their number, the 18 boundary areas do not uniquely determine the 15 boundary edge
lengths. If we add the bulk area to the boundary areas—and the resulting set is metric—it
will uniquely determine the (boundary) length perturbations.

Thus, if we solve the equations of motion for a fixed and metric area-perturbation,
we actually fully determine the corresponding (boundary) length perturbation, and, as it
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must, it determines a zero curvature solution.

Considering the background solution cited above one finds that the area Regge action is
invariant under the 3–3 move. That is, the actions for both configurations of the 3–3 move
agree after one has included, for each configuration, the bulk area. However, this invariance
is due to the highly symmetric nature of the background. We have studied less symmetric
backgrounds and found that the area Regge action is not invariant. This can again be
traced back to the non-metric boundary perturbations.

7.1.4 Summary: Pachner moves in area vs. length Regge calcu-
lus

In summary, we have found that both for length and area Regge calculus only the ini-
tial configuration of the 5–1 move features gauge symmetries; these are remnants of the
diffeomorphism symmetry. Both actions are also invariant under the 5–1 move.

For the other Pachner moves one finds however differences: the boundary configuration
for the 4–2 Pachner moves admits non-metric directions. This leads to a non–invariance
of the area Regge action. In contrast, the length Regge action is invariant under the 4–2
Pachner move as the boundary configuration admits only flat solutions.

The 3–3 move is the only one under which the length Regge action is not invariant. The
reason is that the boundary length data generically prescribe a non-vanishing deficit angle
for the bulk triangle. A vanishing deficit angle requires special boundary data. There is
no bulk edge and thus no equation to solve in length Regge calculus.

There is however a bulk triangle and thus an equation of motion—imposing flatness—
in area Regge calculus. Given the fact that the length boundary data generically induce
curvature one might wonder how this flatness is realized. It turns out however that the
area boundary data do not fully determine the length boundary data even though there
are 18 areas and only 15 lengths in the boundary. In fact, it is exactly the bulk area that
is needed to fully determine the boundary lengths, and its value is fixed by the equation
of motion which demands a vanishing deficit angle.

Nevertheless, the area Regge action is also (generically) not invariant under the 3–3
move. The reason again is that non-metric area perturbations can appear in the area
boundary data.
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7.2 Tent moves

We now analyze the linearized dynamics of area Regge calculus in a canonical framework.
This will tell us whether, apart from the constraints expected from the vertex translation
symmetries, there are any further (e.g. second class) constraints, that would reduce the
number of physical degrees of freedom. We will find that this is not the case, and that,
as the number of area variables is typically larger than the number of length variables,
area Regge calculus has a larger number of physical degrees of freedom than length Regge
calculus.

With the discrete time evolution steps that we will employ here for the canonical
framework, we need to decide how to evolve the triangulation stepwise. We use local
evolution moves, which do not change the connectivity of the spatial triangulation, and
are called tent moves [162]. Consider all tetrahedra {τi} that share the vertex v0 in the
triangulation of an equal time hypersurface. The union of these tetrahedra defines the
three-dimensional star of v0. We glue an edge e(v0, v1)—the tent pole—to v0 and thus
obtain a new vertex v1. This new vertex will be connected by new edges with all vertices
adjacent to v0 in the initial (equal-time) triangulation. For each τi we glue a simplex
σi onto τi so that all these simplices share the tent pole e. The tent moves change the
geometric data of the triangulated hypersurface by replacing the three-dimensional star of
v0 with the three-dimensional star of v1.

The canonical framework developed in [45] provides a setting in which to analyze these
tent moves.2 To this end one needs to consider the action ST associated to the triangulation
piece T that is glued onto the hypersurface during the tent move. This piece of triangulation
carries 4 types of variables:

(a) Variables associated to the ‘lower’ boundary of T that will be glued and thus ‘dis-
appear’. These variables are associated to the initial time and the simplices sharing
the vertex v0.

(b) Exactly the same number of ‘new’ variables are associated to the ‘upper’ boundary
of T, and can be associated to the final time.

(c) There will also be variables associated to the corner of the tent T; these are variables
that appear at both the initial and final time. They do not change under the tent
move evolution and, hence, are non-dynamical.

2The more general framework of [45] also allows for Pachner moves of the spatial triangulation. These
can be seen as time evolution steps in which the number of degrees of freedom change.
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(d) Finally, there are variables associated to the bulk of the tent T. In length Regge
calculus the only such variable is the length of the tent pole, while in area Regge
calculus there are all the areas of the triangles that hinge on the tent pole.

The bulk variables can be incorporated into the canonical framework, but the conju-
gated momenta will always be constrained to vanish. This imposes the equations of motion
for the bulk variables, and coincides with the covariant equations of motion. Using the
solutions in the remaining equations gives a reduced phase space. Equivalently one can
integrate out the bulk variables from the action. This leaves only the variables of the types
(a), (b) and (c). We will proceed along the latter path and denote by ST the (effective)
action with the bulk variables integrated out.

The ‘corner’ variables, type (c), are non-dynamical and do not have associated mo-
menta. For the remaining variables, xi0 at the initial time and xi1 at the final time, the
equations

pi0 = −∂ST

∂xi0
, pi1 =

∂ST

∂xi1
(7.3)

serve both to define the momenta and as equations of motion. Solving for the final data
(xi1, p

i
1) in terms of the initial data (xi0, p

i
0) proceeds in two steps: the first set of equations

in (7.3) is solved for the xi1 and then these solutions are used in the second set to find the
pi1.

It can, however, happen that a solution of the first set of equations in terms of xi1 is
not possible. Similarly one might not be able to solve the second set of equations for xi0.
This will be the case if the matrix

∂2ST

∂xi0∂x
j
1

(7.4)

is not invertible, i.e. we have a degenerate Lagrangian system. The matrix will thus have
left null vectors Y i

I . By contracting the first set of equations in (7.3) with such a null vector∑
i

Y i
I p

i
0 = −

∑
i

Y i
I

∂ST

∂xi0
(7.5)

we can project out any linear dependence on perturbations in the variables xj1 around
points where (7.4) is non-invertible. In fact, for a linear theory these equations (7.5) are
linear and thus they will lead directly to constraints.3 These constraints are equations (of

3An in-depth analysis of the various types of constraints that can appear can be found in [163].
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motion) that hold between the configuration variables and momenta at one time. Thus
left null vectors of (7.4) lead to constraints for the data at the initial time. Similarly, right
null vectors Zj

I of (7.4) will lead to constraints at the final time. Gauge symmetries, which
correspond to localizable null vectors for the (bulk) Hessian of the action, always lead
to constraints [45]. The gauge constraints are preserved by the time evolution, or more
precisely, initial data satisfying the initial constraints will be mapped to data satisfying
the final constraints. Correspondingly, the equations of motion will not lead to a unique
solution for the final data in terms of the initial data. Instead we have a gauge freedom,
involving the same number of parameters as we have constraints. This is an expected
consequence of the gauge symmetry of the action.

The main result of our tent move analysis is that we find only constraints resulting
from the gauge symmetry of the action. As in the continuum, we will differentiate between
gauge and physical degrees of freedom. The evolution of the physical degrees of freedom—in
contrast to that of the gauge degrees of freedom—is determined by the tent move equations
of motion. More precisely these are phase space functions that Poisson commute with the
constraints (with the canonical Poisson structure {xi, pj} = δij between variables at one
time).

Note that the definition of a physical degree of freedom depends on the notion of tent
move. For example, we might find that tent moves have physical degrees of freedom,
whereas a more global notion of time evolution might find only gauge degrees of freedom.
The reason is that we consider the ‘corner’ variables (type (c) above) as constant and thus
freeze gauge symmetries that affect these variables (or variables outside the region of the
tent move). In contrast, the notion of a gauge degree of freedom will remain the same even
with a more global time evolution.

As an example, consider the degrees of freedom of length Regge calculus in (2 + 1) and
(3 + 1) dimensions. The (2 + 1)-dimensional Regge calculus is topological: using a global
time evolution one finds that the number of physical degrees of freedom does not depend on
the size of the triangulation, but only on the topology of the underlying space. There are
no local physical degrees of freedom. However, a tent move over a vertex with n adjacent
edges, which we call an n-valent tent move, will have n − 3 physical and three gauge
degrees of freedom. The appearance of physical degrees of freedom for the tent moves is,
nevertheless, consistent with the finding that there are no local physical degrees of freedom
under a global time evolution. The tent moves show that there are three constraints (or
three gauge degrees of freedom) per vertex and modulo a topological constant this agrees
with the number of edges in a two-dimensional triangulation.

Similarly, for (3 + 1)–dimensional Regge calculus an n–valent tent move gives n − 4
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physical and four gauge degrees of freedom. In this case, one also finds local physical
degrees of freedom under global time evolution—the reason is that for a sufficiently large
three-dimensional triangulation the number of edges is generically greater than four times
the number of vertices.4

In the examples considered here we find no additional constraints, beyond those result-
ing from the vertex translation symmetry. There are more dynamical area than dynamical
length variables, and so we have more physical degrees of freedom for area Regge calculus
than in the length calculus. This will also hold in a global time evolution, as generically
there are more triangles than edges in three-dimensional triangulations. We have thus more
kinematical variables in area than in length Regge calculus, but the same gauge freedoms
(in the theories linearized on a metric or flat background respectively).

Here we have studied the 4-valent and 5-valent tent moves in detail. These already
exemplify all the dynamical features that appear in length Regge calculus and those that
we expect to appear in the area calculus. In length Regge calculus the 4-valent tent move
only admits a flat dynamics and all four dynamical degrees of freedom turn out to be gauge.
In contrast, in the area calculus version the 4-valent tent move has six dynamical degrees
of freedom, of which four are gauge and two are physical; the latter represent non-metric
degrees of freedom.

The 5-valent tent move in length Regge calculus admits curvature and out of the five
dynamical degrees of freedom one is physical. In area Regge calculus we find four gauge
and five physical degrees of freedom. Four of these physical degrees of freedom describe
non-metric motions.

One can obtain the equal time triangulated hypersurfaces for higher valent tent moves
from those for lower valent tent moves by subdividing tetrahedra adjacent to the vertex
v0 with 1–4 Pachner moves. In going from an n-valent to an (n + 1)-valent tent move
you add one edge and three triangles all adjacent to v0. This counting shows that an
n–valent tent move has (3n−6) dynamical area variables, which can be compared to the n
dynamical length variables in the length calculus. As we have found no indication of gauge
symmetries beyond vertex translation nor additional (possibly second class) constraints for
the 4–valent and 5–valent tent moves we expect that there are only four gauge degrees of
freedom for all the tent moves. This leads to (3n− 10) physical degrees of freedom for an
n–valent tent move in area Regge calculus, significantly more than the (n − 4) physical
degrees of freedom one finds in length Regge calculus.

4The exceptions are so-called stacked triangulations of the three-sphere, see [45].
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7.2.1 The 4-valent tent move

For a 4-valent tent move at a vertex v we glue four 4-simplices that share the tent pole
onto the 4 tetrahedra that make up the 3D star of the vertex v, see Fig. 7.4. As these
four simplices share an edge they turn out to coincide with the 4 simplex configuration of
the 4–2 Pachner move. The bulk areas that appear in the 4–2 move are the ‘lapse’ areas
of the triangles sharing the tent pole. Thus the effective action for the 4–2 move defines
also the effective action for the tent move. We will denote this action by S4V . Because we
integrate out all bulk variables, S4V only depends on the variables in the boundary of the
complex.
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Figure 7.4: A tent move at the 4-valent vertex 0. Introducing a tent pole e(01) and
connecting the vertex 1 to the vertices in τ(2345) yields the final configuration. This
introduces four bulk areas.

This relation with the 4–2 Pachner move allows us to work again with the background
introduced in Section 7.1.2. (In that background the two simplices that make up the final
configuration of the 4–2 move have positive orientation. For the tent move it is more
typical to consider one simplex with positive and the other (initial) simplex with negative
orientation. This describes a larger tent being erected on top of a smaller base. However,
the tent move is well defined for any choice of orientation. The background chosen here
corresponds to putting up a tent over a pit.)

With a tent move like that depicted in Figure 7.4 we have the following configuration
variables:
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(a) At time 0 we have six areas a0ij (we will use i, j, k ∈ {2, 3, 4, 5} and α ∈ {1, 2}). In
length Regge calculus we have four lengths l0i.

(b) At time 1 we also have six areas a1ij and four lengths l1i.

(c) In addition there are four areas aijk that are non-dynamical ‘corner’ variables, and
appear at both times. There would be six such variables lij in length Regge calculus.

As for the 4–2 move, we have 16 area variables in the boundary of the tent move complex
and 14 length variables.

The boundary of the tetrahedron τ(2, 3, 4, 5) defines the ‘corner’ for the tent move.
We therefore have to keep the four areas of this tetrahedron constant, as its boundary
defines the ‘corner’ for the tent move. This is different from length Regge calculus, where
all six edge lengths of this tetrahedron are fixed. Hence there are two degrees of freedom
associated to this tetrahedron that are dynamical in area Regge calculus but not in the
length calculus. As the areas have to be constant we can identify these two degrees of
freedom as 3D dihedral angles hinging at two non-opposite edges. (Four areas and two
non-opposite 3D dihedral angles determine all the lengths of a tetrahedron, see Appendix
J.) The fact that the 3D dihedral angles can change is key to non-metricity: changing an
angle affects the lengths of the edges of the tetrahedron. These edges are however part of
the ‘corner’ which constitutes the boundary of both equal time hypersurfaces.

We will therefore apply the same variable transformation as in the discussion for the
4–2 move, that is, (remember i, j, k ∈ {2, 3, 4, 5} and α ∈ {1, 2})

({a0ij}, {a1ij}, {aijk}) → ({l0i}, {φ0
α}, {l1i}, {φ1

α}, {akij}) (7.6)

where the (l0i, φ
0
α) and the (l1i, φ

1
α) appear now as dynamical variables at time 0 and time

1, respectively. The akij are the non-dynamical ‘corner’ variables.

The canonical evolution equations have the following form

pl0i = −∂S4V

∂l0i
=: −

∑
j

M00
i,j l0j −

∑
α

M00
i,αφ

0
α −

∑
(jkl)

M0b
i,jklajkl , (7.7)

pφ0α = −∂S4V

∂φ0
α

=: −
∑
j

M00
α,j l0j −

∑
β

M00
α,βφ

0
β −

∑
β

M01
α,βφ

1
β −

∑
(jkl)

M0b
α,jklajkl ,(7.8)

pl1i =
∂S4V

∂l1i
=:

∑
j

M11
i,j l1j +

∑
α

M11
i,αφ

1
α −

∑
(jkl)

M1b
i,jklajkl , (7.9)

pφ1α =
∂S4V

∂φ1
α

=:
∑
j

M11
α,j l1j +

∑
β

M11
α,βφ

1
β +

∑
β

M10
α,βφ

0
β +

∑
(jkl)

M1b
α,jklajkl .(7.10)
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Here we made use of the fact that the mixed time block of the Hessian for the action,
expressed in terms of xAI with A = 0, 1 at time 0 or 1 respectively,

M01
IJ :=

∂2S4V

∂x0
I∂x

1
J

, (7.11)

has four left and four right null vectors. These are given by the length perturbations l0i and
l1i, respectively. These null vectors result from the vertex translation symmetry discussed
in Sec. 6.3.2.

The presence of these null vectors can be explained as follows: Consider an extension
of the tent move triangulation so that, e.g., the vertex v1 appears as a bulk vertex of the
extended triangulation. Such an extension can be obtained via a second tent move from
time 1 to time 2. The action for the extended triangulation is a sum of two terms S01

and S12—one for the first tent move from time 0 to time 1 and one for the second tent
move between times 1 and 2. As discussed in section 6.3.2, the Hessian of the full action
S01 + S12 has four null vectors corresponding to the vertex translation symmetry of v1,
and thus these null vectors have entries only for variables at time 1. (We assume we have
integrated out all lapse like variables.) Being null vectors for the full Hessian they are
also annihilated by the non-diagonal block M01 of the Hessian for the action S01 + S12,
which coincides with the non-diagonal block of the Hessian for S01 alone. Likewise the null
vectors are annihilated by the non–diagonal block M21 of S12. By time translating the
argument we have that M01 has at least four left null vectors and at least four right null
vectors.

We have not found any further null vectors for the Hessian (7.11) evaluated on the back-
ground described above nor on the other backgrounds we investigated. For the background
described above M00

i,α vanishes, but this is due to the high symmetry of this background
and we did find non-vanishing entries on more general backgrounds.

The null vectors of M01
IJ correspond exactly to the perturbations described by the four

length variables l0i or l1j, as these are independent parameters for the gauge action resulting
from vertex translation of v0 or of v1.

Thus equation (7.7) only involves variables at time 0 (including the non–dynamical
variables), whereas equation (7.9) only involves variables at time 1. These constitute
constraints

CA
i := plAi + (−1)A

∑
j

MAA
i,j lAj + (−1)A

∑
α

MAA
i,α φ

A
α + (−1)A

∑
(jkl)

MAb
i,jklajkl (7.12)
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and these constraints are also preserved by time evolution. The constraints (at a fixed
time) are first class, i.e. they Poisson commute. This follows from the fact that the matrix
MAA

i,j is symmetric.

This also means that given a set of initial data that satisfy the constraint equations the
length variables at time 1 are not determined by the equations of motion (7.7). We can
rather choose these freely. These four length variables represent the lapse and shift gauge
degrees of freedom and describe the position of the ‘tip of the tent’, by giving its distance
to its (four) adjacent vertices.

Non-trivial dynamics will be confined to the angle variables φAα . Changes of these
variables under time evolution means that non-metricity is being generated.

We can however alter the dynamics and impose constraints that ensure φ0
α = φ1

α. This
can be done by hand, but a more elegant procedure is to replace the action we were
considering by the action S01 := S(σ0) + S(σ1) for the 2 simplex configuration of the
4–2 move. (Remember that the effective actions for the 4 simplex and the 2 simplex
configurations agree when projected onto the space of metric boundary perturbations.) By
defining the dynamics using the action S01, all variables at time step 0 decouple from the
variables at time step 1. This leads to constraints for the momenta conjugated to the angle
variables. These momenta at, say, time 0 would only involve the action of the simplex σ0.
The angle variables at time 1 will now also appear as gauge parameters and can be chosen
to agree with the angle variables at time 0.

7.2.2 5–valent tent move

Next we will discuss the 5-valent tent move. In length Regge calculus this move has one
physical degree of freedom and the canonical data, or equivalently, the boundary data,
can be chosen so that the configuration has curvature. As area Regge calculus imposes
flatness, we expect that—as in the 3–3 move—the boundary areas do not completely fix
the lengths on the boundary.

To be more precise we consider a tent move that puts up a tent pole between 0 and
1. The triangulation at time 0 can be obtained from gluing two simplices (02345) and
(02346) along the tetrahedron (0234). Note that this shared tetrahedron (0234) is not part
of the 3D ‘equal time’ hypersurface. In particular, the triangle (234) will not be part of the
boundary data. However, the edges (23), (24), and (34) are part of the tent move complex.

The tent move is performed by gluing 6 simplices (01ij5) and (01ij6), with i, j ∈
{2, 3, 4}, onto the ‘equal time’ hypersurface. The background we will be considering is
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Figure 7.5: A five-valent tent move at the vertex 0 starting from a configuration of two
simplices σ6 = (0, 2, 3, 4, 5) and σ5 = (0, 2, 3, 4, 6) and gluing six simplices on the 3D star
of vertex 0.

given by L0i = L05 = L06 = Lij = Li5 = Li6 = 1 and L1i =
√

9/2 as well as L15 = L16 = 2.

The length of the tent pole can then be computed to be L01 =
√

3/2.

In the following table 7.1 we give the number of triangles for the full tent move complex
and for the various sub-triangulations (T = 0 and T = 1 indicate the vertices 0 and 1 and
again i, j ∈ {2, 3, 4}):

Full complex Boundary Equal time: bulk Equal time: boundary
Areas 29 24 9: {aT ij, a0i5, aT i6} 6: {aij5, aij6}

Lengths 20 19 5: {lT i, lT5, lT6} 9: {lij, li5, li6}

Table 7.1: Number of edges and triangles for the 5-valent tent move complex

The boundary of the tent move complex has 24 triangles and only 19 edges. Considering
the Γte matrix of derivatives of areas with respect to lengths we find one right null vector
and six left null vectors.

Restricting to the data at time T = 0 we have 15 = (9 + 6) triangles and 14 = (5 + 9)
edges. For this case we find that Γte|T=0 has one right null vector and two left null vectors.
The right null vector can indeed be identified with the ‘missing’ area a234. That is, it
represents the linearized expression for this area in terms of the length perturbations. The
two left null vectors can be identified with the differences between a pair of 3D dihedral
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angles in the shared tetrahedron as computed from the 4-simplex containing v = 5 and the
4-simplex containing v = 6, respectively.

Hence, as for the 3–3 move, the area boundary data do not completely determine the
(length) geometry of the boundary. This allows for a dynamics that imposes vanishing
deficit angles.

The fact that one of the areas is not available makes a transformation, similar to the
one we performed for the 4-valent tent move, impossible. We already have non-metric
degrees of freedom at a single time step, those picked out by the two left null vectors of
Γte(0) or of Γte(1). Additionally there are non-metric degrees of freedom that can occur
upon gluing the two time step complexes together.

As in the case of the 4-valent tent move we find exactly four null vectors for the Hessian
block between variables at time T = 0 and at time T = 1. These four null vectors represent
metric perturbations as they are in the image of the map Γ. Hence there are four constraints
that result from each of the vertex translation symmetries of v0 and v1. This leaves five
physical degrees of freedom that split into a metric perturbation (the fifth edge length)
and four non-metric perturbations. The latter describe the (two) non-metric degrees of
freedom appearing within an equal time hypersurface and another two degrees of freedom
describing non-metricity due to time evolution. We also encountered this last type in the
4-valent tent move.

Length Regge calculus has only one physical degree of freedom in the 5-valent tent
move: four of the edge lengths can be viewed as gauge parameters and the fifth as the
physical degree of freedom.5 In area Regge calculus we have four additional degrees of
freedom that arise from the various ways non-metricities can occur, namely, within an
equal time hypersurface and as a result of time evolution.

5A pair of phase space functions that commute with the constraints and thus represent Dirac observables
can be defined using the methods of [28]. These observables can be made to give the values of the fifth edge
length and its conjugated momentum at the point in the gauge orbit where the other four edge lengths
have prescribed values.
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Chapter 8

Non-metricity breaks diffeomorphism
symmetry

For our explorations of the dynamics and of the symmetries of area Regge calculus we have
so far assumed a metric background solution where the length variables can be consistently
defined. For each four-simplex σ (and away from right angle configurations) we can define
10 functions Lσe , which depend on the 10 area variables At, and evaluate to the length of
the edges e of the simplex. Metric configurations are such that the length functions for the
same edge, but coming from different four-simplices, agree.

The presence of gauge symmetries depends on the solution one is considering: the gauge
symmetries specify in which ways we can deform this solution and still obtain a solution
to the equations of motion (with the same boundary data).

The dependence of the number of gauge symmetries on the solution appears, in partic-
ular, if we consider discretizations of continuum systems with gauge symmetries. Often,
and certainly for diffeomorphism symmetry, discretization breaks these gauge symmetries.
There may be, however, special solutions, e.g. flat space in (length) Regge calculus, which
exactly mirror a solution of the continuum theory. In this case the gauge symmetries
around this solution are preserved. A necessary and sufficient criterion for the existence
of gauge symmetries is that the Hessian of the action, evaluated on this solution, has null
vectors localized to the bulk degrees of freedom. Moving away from these special solutions
there is no guarantee that the gauge symmetries still exist.

For (length) Regge calculus reference [121] identified the vertex translation symmetries
as gauge symmetries using a flat background. This work also showed that the vertex trans-
lation symmetries can be matched in a continuum limit to the diffeomorphism symmetry
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of the continuum. Motivated by these findings, [164] and other references argued that the
vertex translation symmetries exist generally for (length) Regge calculus, i.e. for arbitrary
backgrounds.

This turned out not to be the case. Reference [120] considered solutions with curvature
and explicitly evaluated the Hessian of the Regge action on these solutions. This showed
that the vertex translation symmetries are broken by curvature. More precisely, in the
example considered in [120] the lowest eigenvalues grew quadratically with a deficit angle
in the bulk of the triangulation.

The breaking of diffeomorphism symmetry has considerable repercussions for discrete
quantum gravity approaches such as Regge calculus and spin foams [120,165].

In a canonical quantization, diffeomorphism symmetry leads to constraints. A long-
standing problem has been to provide an anomaly free representation of this constraint
algebra in the quantum theory. The breaking of diffeomorphism symmetry by discretiza-
tion, which is often used as a regulator, leads to inconsistent constraints. An alternative
formulation, that of ‘consistent discretizations’ [161], is what we used here. In this frame-
work broken gauge symmetries lead to pseudo-constraints, which are equations of motion
that weakly couple the canonical data of neighboring time slices. (Constraints are equa-
tions of motion that involve the data of only one time.) The replacement of the constraints
by pseudo-constraints means that one has more propagating degrees of freedom than in
the continuum. Degrees of freedom that are gauge in the continuum are now physical.
For example, in Regge calculus the position of the vertices in the embedding space–time
become physical if vertex translation symmetry is broken.

In the covariant formalism, breaking diffeomorphism symmetry leads to an unwanted
dependence on the choice of triangulation. In fact, in [125, 126] it was conjectured that
diffeomorphism symmetry and triangulation invariance are equivalent and shown that
diffeomorphism symmetry implies triangulation invariance for one-dimensional systems.
Restoring diffeomorphism symmetry is crucial in order to remove discretization or regula-
tor dependence [165].

To regain diffeomorphism symmetry the work [126] suggested the construction of an
improved dynamics by coarse graining. The key point here is that, given fixed boundary
data,1 refinement of the triangulation leads to smaller deficit angles as the fixed total
curvature is distributed over more simplices. Diffeomorphism symmetry is then violated to
a lesser extent, and potentially restored, for an infinitely fine triangulation. One constructs

1Refinement and coarse graining of the boundary also plays an important role in the coarse graining
process [139].
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an effective action for a coarser triangulation by taking into account the dynamics of
the finer one. As the coarse lattice now reflects the dynamics of the refined one, it also
exhibits the same amount of diffeomorphism symmetry. Thus one can hope to restore
diffeomorphism symmetry for the effective action in the infinite refinement limit.

This was illustrated successfully in [126] using the example of three-dimensional Regge
calculus with a cosmological constant. Starting from a discretization with flat simplices,
in which diffeomorphism symmetry is broken, the coarse graining procedure yielded as
its fixed point an action describing simplices with homogeneous curvature. This action
features diffeomorphism symmetry, is triangulation invariant, and leads to an anomaly
free constraint algebra [23,126].

This has triggered the development of a program for coarse graining spin foam mod-
els [115,135,141,165–170]. Here the hope is to construct amplitudes for which the regulator
dependence is removed and that explicitly display diffeomorphism symmetry. As discussed
above, one dynamical quantity that leads to a breaking of diffeomorphism symmetry is cur-
vature, [120]. Spin foam models so far seem to display non-metricity (see the introduction
section 1.2). The question we answer here is whether non-metricity can also lead to break-
ing of diffeomorphism symmetry. That it does could be expected due to the connection
between triangulation (non-)invariance and (breaking of) diffeomorphism symmetry, and
the fact that we found that the area Regge action is not invariant under two of the Pachner
moves. Below we show explicitly that diffeomorphism symmetry is broken for non-metric
solutions. This is important for spin foams as it necessitates understanding the dynamics
of the non-metric degrees of freedom. It also explains the breaking of diffeomorphism sym-
metry and the triangulation dependence of the spin foam models conjectured to admit no
curvature degrees of freedom. We explore the implications of these findings in more detail
in the discussion, Section 10.

8.1 Constructing a non-metric solution

To analyze diffeomorphism symmetry for a non-metric solution we have to construct these
solutions explicitly. We then evaluate the Hessian on such a background and check whether
there are any vanishing eigenvalues. We could, for instance, consider two consecutive 4-
valent tent moves such that we have a bulk vertex at the intermediate time step. But, there
is a short cut we can exploit: in Section 7.2.1, where we analyzed the 4-valent tent moves,
we showed that null vectors for the bulk Hessian lead to null vectors for the non-diagonal-
in-time block of the Hessian for the piece of triangulation that is glued onto the initial
triangulation. This piece of triangulation coincides with the initial configuration of the
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4–2 Pachner move. It is therefore sufficient to consider this initial Pachner configuration
and to evaluate a certain part of the Hessian of the associated action to see if any of its
eigenvalues vanish.

To construct a solution with a non-metric area configuration we must first construct
non-metric boundary data for the initial 4–2 Pachner move configuration. To this end we
consider the matrix of derivatives Γte = ∂At/∂Le. Recall that this matrix identifies the
vector space of non-metric area directions. Restricting to the set of boundary areas and
boundary edge lengths of the triangulation, the left null vectors nIbdry of the corresponding
matrix (Γte)bdry describe the boundary area non-metric directions. Here I labels which
null vector is being considered.

Starting from a metric set of boundary areas At, we generate a set of non-metric
boundary areas by adding multiples of these null vectors

Abdry → Aκbdry = Abdry + κI · nIbdry, (8.1)

with κI arbitrary, but small parameters. The set of areas Aκbdry, for non-zero κI , are non-
metric in the sense that the corresponding edge lengths are not well defined (i.e., the length
of a single edge will have different values depending on which simplex it is computed from).

Having fixed the non-metric areas (8.1), we use them to construct a solution to the
equations of motion. Here we use the equations of motion (6.7) derived from the first
order action (6.6). These are solved for the dihedral angles (θσt )κ, a Lagrange multiplier
Λκ
σ for each four–simplex σ, and the bulk area variables Aκbulk. By construction, the set

of dihedral angles computed in this way will automatically be compatible with the areas
and will satisfy the closure condition for each simplex σ. The equations of motion impose
flatness for each of the bulk triangles.

We consider the initial configuration of the 4–2 Pachner move (see Fig. 7.4). The
boundary of this configuration is made up of the two simplices σ0 = (1, 2, 3, 4, 5) and
σ1 = (0, 2, 3, 4, 5), which share the tetrahedron τ = (2, 3, 4, 5). There are 16 triangles and
14 edge lengths contained in this boundary. As in section 7.1.2, we consider the variable
transformation (with i, j, k ∈ {2, 3, 4, 5} and α ∈ {1, 2})(

{Aκ0ij}, {Aκ1ij}, {Aκkij}
)
→
(
{Lκ0i}, {(Φ0

α)κ}, {Lκ1i}, {(Φ1
α)κ}, {Aκkij}

)
, (8.2)

but now for the fully non-perturbative variables (see Appendix J). Here (Φ0
α)κ and (Φ1

α)κ are
the 3D dihedral angles for any choice of two adjacent edges in the tetrahedron shared by the
two simplices in the final configuration of the 4–2 Pachner move, the first viewed from σ1

and the second from σ2. The difference between these dihedral angles, ∆Φκ
α := (Φ1

α − Φ0
α)
κ
,

will make non-metricity transparent (c.f. Fig. 8.1).
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We have chosen an asymmetric, metric background configuration with boundary edge

lengths L1i = L04 = L05 = 1, L02 =
√

8
9
, and L03 =

√
9
8
, with i ∈ {2, 3, 4, 5}. The matrix

(Γte)bdry for this configuration has two left null vectors nIbdry, (I ∈ {1, 2}), the non-metric
directions for these boundary areas. Using these null vectors, we construct the non-metric
areas Aκt using (8.1) and then transform them to length and 3D dihedral angles, as in Eq.
(8.2).
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Figure 8.1: Differences of the 3D dihedral angles ∆Φκ
α = Φκ

α(σ0) − Φκ
α(σ1) of tetrahe-

dron τ(2, 3, 4, 5) computed from the simplices σ0 and σ1 as functions of the non-metricity
parameters κI .

In Figure 8.1, we have plotted the two parameters ∆Φκ
α against κI for the edges (24)

and (25). Fixing κ2 = 0, ∆Φκ
1 increases linearly with κ1 while ∆Φκ

2 decreases, see panels
(a) and (b). On the other hand, fixing κ1 = 0, ∆Φκ

2 grows monotonically with κ2 and ∆Φκ
1

decreases monotonically, panels (c) and (d).
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8.2 Breaking of diffeomorphism symmetry

Having produced a non-metric boundary configuration, we numerically solve for the bulk
variables (Aκbulk, (θ

σ
t )κ,Λκ

σ). These bulk variables belong to the configuration consisting of
the four simplices σ2, σ3, σ4, and σ5 that share the bulk edge (01). We can now evaluate
the Hessian of the area Regge action on these solutions, and, as in Section 7.2.1, com-
pute an effective, linearized action for the 4-valent tent move, but now on a non-metric
background. We find that the mixed time block of the effective Hessian is not singular for
non-vanishing non-metricity parameters. In particular, all eigenvalues of the mixed time
block of the Hessian are non-vanishing.2 The gauge symmetries (vertex translation) are
therefore broken by the non-metric boundary data.
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Figure 8.2: Eigenvalues of the mixed time block of Hessian as a function of ∆Φκ
α. The

lowest eigenvalues are zoomed in at the bottom right corner of (a) and the top right corner
of (b) .

The panels of Figure N.1 show the four smallest eigenvalues as a function of the non-
metricity parameters ∆Φκ

α. We observe that all these eigenvalues, including the lowest
eigenvalue λ4 (shown with a separate scale), grow quadratically with the non-metricity
parameters. Panel (a) is plotted at fixed κ1 = 0, while panel (b) is for κ2 = 0. Similar
behaviors appear for the other two combinations of non-metricity parameter and κI . All

2Using the highly symmetric background from Section 7.1.2 as a starting point, one finds that 1 of
the 4 eigenvalues, which vanished on a metric background, remains zero under a deformation to a non-
metric boundary. Here we have a less symmetric configuration but, as it is close to the very symmetric
background, one of the eigenvalues is growing slowly compared to the others.
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the eigenvalues vanish identically only in the metric case ∆Φκ
1 = ∆Φκ

2 = 0 (or κI = 0).
In practice the eigenvalues are computed numerically and never exactly vanish; at κI = 0
the two non-vanishing eigenvalues are seven orders of magnitude larger than the largest
‘vanishing’ eigenvalue.

We thus can conclude that the vertex translation symmetry, which is present on metric
backgrounds, is broken for non-metric backgrounds. In the examples we considered here,
the relevant Hessian eigenvalues grow quadratically with our non-metricity parameter, the
difference of 3D dihedral angles seen from two different 4-simplices. This is similar to the
findings on diffeomorphism breaking in length Regge calculus [120], where the eigenvalues
also grew quadratically with one of the deficit angles in the bulk triangulation.
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Chapter 9

Effective Spinfoam models

As already discussed in the introduction section 1.2, the quantization of quantum geometry
based on areas as fundamental variables give a discrete area spectrum. This is because the
area variables are conjugated to compact angles variables.1 In spin foam models, which are
discrete geometry path integrals derived from loop quantum gravity (LQG), area variables
are fundamental and have discrete spectra. Area variables also play a central role in
holography [58, 59], in particular, for the reconstruction of geometry from entanglement
[60, 61]. Discrete area spectra are also key in many approaches to black hole entropy
counting.

There is however, a tension between the choice of area variables and the dynamics of
general relativity (GR): the area variables must be constrained to avoid a suppression of
curvature. In this chapter, we will show that the discreteness of area spectra hinders the
sharp imposition of these constraints.

Here we tackle directly the question of whether a discrete, locally independent, area
spectrum is consistent with the dynamics of general relativity. To this end we propose a
family of ‘effective’ models that (a) incorporate a discrete area spectrum, (b) impose the
constraints between the areas as strongly as allowed by the LQG Hilbert space structure,
and (c) use—more directly than current spin foam models—a discretized gravity action for
the amplitudes.

These effective models allow us to show that the flatness problem can be overcome,
but to do so also imposes certain restrictions involving the discretization scale, curvature
per triangle, and the Barbero–Immirzi parameter, which controls the area spectral gap.

1We are considering here Euclidean signature geometries.
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Future work will show whether this is sufficient to ensure general relativistic dynamics in
the continuum limit.

9.1 Discrete, locally-independent areas

We will propose a path integral for 4D quantum gravity regulated by a triangulation of
space–time. We work with quantum amplitudes for Euclidean signature simplices, leaving
the Lorentzian case to future work. Our key assumption is that the areas have a discrete,
prescribed spectrum. Further, we will take these area eigenvalues to be independent, more
precisely (apart from triangle inequalities) the measured values in the kinematical Hilbert
space will not depend on the state away from the measured triangle.

The particular area spectrum we work with is

A(j) = γ`2
P

√
j(j + 1) ∼ γ`2

P (j + 1/2), (9.1)

where j is a half-integer (spin label), `P =
√

8π~G/c3 is the Planck length, γ is the
dimensionless Barbero-Immirzi parameter, and ∼ indicates the large-j asymptotic limit.
We focus on the equispaced asymptotic spectrum. This form for the area spectrum was
first established in LQG [49–51,55–57], but discrete area spectra have been also discussed
in the context of black hole spectroscopy [62].

Before taking up the path integral, we review the use of area variables in simplicial
discretization of GR. These discretizations were first considered by Regge [25] and used
length variables. A wide array of reformulations have been considered [3,43,44,46,47,146,
147, 171], and we use descriptive adjectives to capture the variables used in each form.
The change from length to area variables turns out to be far more subtle than one might
expect. A treatment in the more transparent context of Regge calculus will illuminate the
issues before discussing the path integral.

9.2 Actions for discretized gravity

To make this section self-contained, we will repeat and summarize discrete actions for
gravity which were partially discussed in chapter 6. In length Regge calculus (LRC), the
fundamental variables are lengths le assigned to edges e of a triangulation. The le determine
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the triangle areas At(l) and the 4D (internal )dihedral angles θσt in each 4-simplex σ. The
action

SLRC =
∑
t

ntπAt(l)−
∑
σ

∑
t⊃σ

At(l)θ
σ
t (l) ≡

∑
t

Slt +
∑
σ

Slσ (9.2)

is a discretization of the Einstein-Hilbert action and the corresponding equations of motion
approximate Einstein’s equations [143]. The factor nt ∈ {1, 2} allows for triangulations
with boundary and is 1 for triangles on the boundary and 2 for triangles in the bulk.

The 4-simplices, which are the basic building blocks of the triangulation, each have
10 edges and 10 triangles. One can thus (locally) invert the 10 functions At(l) to give
a simplex’s areas in terms if its lengths. These functions will also depend on a discrete
parameter that account for the multiple roots appearing in the inversion of At(l). This
discrete parameter is a summation variable for the (constrained) Area Regge path inte-
gral. To simplify notation we suppress this parameter here. We will denote the resulting
functions Lσe (A), where A collectively signifies the 10 areas associated to σ. This allows to
define the Area Regge Calculus (ARC) action whose configuration with At = At(le) agrees
with the LRC action

SARC =
∑
t

SAt +
∑
σ

SAσ (9.3)

where SAt = ntπAt and SAσ = Slσ(Lσe (A)). Strikingly, freely varying the bulk action one
finds the deficit angles εt = 2π −

∑
σ⊃t θ

σ
t , which measure curvature, have to vanish (see

also chapter 6). That is the ARC equations of motion impose flatness.

Despite these equations of motion, the theory features propagating degrees of freedom,
which are, however, of a non-geometrical nature. We have analyzed this is detail in section
6.3.1. These arise because the number of matching conditions, when gluing two 4-simplices,
differ between LRC and ARC. For this gluing we need to identify the data of the shared
tetrahedron. As it has six edges and four triangles we match six pairs of lengths in LRC,
but only four pairs of areas in ARC.

This mismatch can be resolved by introducing 3D dihedral angles Φτ,σ
e associated to

edges e in the tetrahedron τ . These angles are determined by the lengths of the tetrahedron,
and can also be expressed as functions of the areas At of the 4-simplex σ. They allow us
to introduce two constraints per bulk tetrahedron

Cσ,σ′

i (A) = Φτ,σ
ei

(A)− Φτ,σ′

ei
(A) i = 1, 2, (9.4)

where (e1, e2) is any choice of a pair of non-opposite edges in τ . Together with matching of
the four areas, the two matching conditions (9.4) ensure that the geometries imposed on
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τ by σ, on the one hand, and by σ′ on the other, agree. Varying the ARC action (9.3) on
the corresponding constraint hypersurface gives equations of motion equivalent to LRC.
(See Appendix L) The constraints (9.4) involve pairs of 4-simplices, and this makes the
specification of free boundary data difficult.

This can be alleviated by introducing auxiliary variables that allow one to localize the
constraints onto pairs of tetrahedra. Indeed, as the constraints feature 3D dihedral angles,
it is natural to introduce these as explicit variables2 φτei , i = 1, 2. We demand for each pair
(τ, σ) with τ ⊂ σ the new constraints

Cσ,τ
i (φ,A) = φτei − Φτ,σ

ei
(A) i = 1, 2. (9.5)

This imposes the constraints (9.4) for each bulk tetrahedron and adds for each boundary
tetrahedron two dihedral angles as boundary data as well as two constraints. In contrast to
(9.4) the constraints (9.5) localize onto 4-simplices. This allows path integral amplitudes
that factorize over the 4-simplices.

An even more local reformulation of the constraints isolates the conditions on the
3D boundary data. It uses the matching for the geometry of a triangle t induced by
the neighbouring tetrahedra τ and τ ′, respectively. This geometry is specified by three
variables, in addition to the area matching we need two constraints

Cτ,τ ′

k (φ,A) = αt,τvk (φ,A)− αt,τ ′vk
(φ,A) k = 1, 2, (9.6)

where αt,τvk denotes the 2D angles at two vertices v1, v2 of t, determined by the geometric
data of τ . Imposing the constraints (9.6) for all 10 pairs of neighbouring tetrahedra (τ, τ ′)
in a simplex σ is equivalent3 to imposing the constraints (9.5) for all 5 tetrahedra in σ [44].

The original form of Area Angle Regge Calculus (AARC) [44] featured the constraints
(9.6). These specify in concrete terms the enlargement of the LQG phase space [53, 71]
as compared to the LRC phase space [45]. We will however see that it is much easier to
implement the versions (9.5) into the path integral. Armed with these understandings, we
take up the path integral.

9.3 Path integral

Next, we construct a path integral quantization, which is based on the Constrained Area
Regge formulation. To incorporate a discrete area spectrum (9.1), we parametrize areas

2Here we introduce two dihedral angles per tetrahedron. One can also introduce all six dihedral angles,
but would then have to add four closure constraints per tetrahedron [44].

3There are (10) redundancies between the (20) constraints (9.6) associated to a simplex.
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by spins, and thus sum over the spin labels jt:

Z =
∑
{jt}

µ(j)
∏
t

At(j)
∏
σ

Aσ(j)
∏
τ∈blk

Gσ,σ′

τ (j) . (9.7)

Here

At = exp(iγ Xπ(jt + 1
2
)) (9.8)

is the weight for the bulk (with X = 2) and boundary (X = 1) triangles. The simplex
amplitude is

Aσ = exp

(
−iγ

∑
t∈σ

(jt + 1
2
)θσt (j)

)
Tσ(j) , (9.9)

where Tσ(j) = 1, if the lengths defined by the areas satisfy the generalized triangle inequal-
ities4, and is vanishing otherwise. The precise form of the measure factor µ(j) will not be
important for the discussion here.5 The product over the At and Aσ amplitudes gives the
exponentiated Area Regge action.6

The factors Gσ,σ′
τ implement the constraints (9.4), and are therefore crucial for imposing

the dynamics of length Regge calculus (LRC) instead of area Regge calculus (ARC).

However, imposing the constraints (9.4) sharply, i.e. setting Gσ,σ′
τ (j) = 1 if the con-

straints are satisfied, and Gσ,σ′
τ (j) = 0 otherwise, leads to a severe problem: As we allow

only discrete (asymptotically equispaced) values for the areas, the constraints (9.4) consti-
tute diophantine conditions for the spin labels. These can only be satisfied for a very small
set of labels with accidental symmetries, e.g. if all 10 pairs of labels match. The resulting
reduction in the density of states prevents a suitable semiclassical limit.

One way out is to weaken the constraints (9.4), e.g. by allowing a certain error interval.
But, one has to navigate between Scylla—reducing too much the density of states—and
Charybdis—imposing a dynamics which does not match GR.

Here we will take guidance from loop quantum gravity. The associated phase space in-
cludes areas at and 3D dihedral angles φτe as variables [53,66,67]. Crucially, the 3D dihedral

4The squared volumes of the various sub-simplices of σ and of σ itself, as defined by the appropriate
Caley-Menger determinants, has to be non-negative.

5It can be specified by requiring a discrete remnant of (approximate) diffeomorphism invariance [26].
6One can also describe a version where one sums over orientation and thus the exponential is replaced

by a cosine.
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angles at two non-opposite edges (e1, e2) in a tetrahedron τ do not Poisson commute

~{φτe1 , φ
τ
e2
} = `2

Pγ
sinαt,τv
At

=
sinαt,τv
(jt + 1

2
)
, (9.10)

where αt,τv is the angle between (e1, e2). (See appendix K for a proof.) This non-commutativity7

arises as the geometry of a tetrahedron is encoded into the set of normals to its triangles,
which are then quantized as (non-commuting) angular momentum operators [55, 56, 173,
175,176].

Respecting the uncertainty relations resulting from (9.10), we can impose the con-
straints only weakly. To achieve an as-strong-as-possible imposition we will employ coher-
ent states in the angle variables. There are different constructions available for tetrahedral
states8 that are coherent in the two degrees of freedom encoding the 3D dihedral an-
gles, but are eigenstates for the area operators [77, 177–179]. We will denote such states
Kτ (φ1, φ2; Φ1,Φ2), where (φ1, φ2) are the arguments of the wave functions and (Φ1,Φ2) are
the angles on which the wave function is peaked. With the associated measure dµτK(φ1, φ2)
we define

Z ′ =
∑
{jt}

µ(j)

∫ ∏
τ

dµτK(φ)
∏
t

At(j)
∏
σ

A′σ(j, φ) , (9.11)

where the new simplex amplitude9 is given by

A′σ(j, φ) = Aσ(j)
∏
τ∈σ

Kτ (φτei ; Φτ,σ
ei

(j)) . (9.12)

Integrating out the dihedral angles for the bulk tetrahedra we regain—modulo boundary
contributions10—a path integral of the form (9.7) where now

Gσ,σ′

τ (j) = 〈Kτ (·; Φτ,σ
ei

(j)) | Kτ (·; Φτ,σ′

ei
(j))〉 . (9.13)

This inner product is peaked on the matching conditions (9.4) and provides a precise sense
in which these conditions are weakly imposed.

7This Poisson bracket (with γ = 1) also appears in the Kapovich-Millson phase space describing linkages
[172]. This phase space can be used to describe the space of shapes of a tetrahedron with fixed areas
[55,56,173]. This non-commutativity was anticipated early on in the length picture [174].

8These are states on the intertwiner Hilbert space H{ji} = Inv
(
⊗4
i=1Vji

)
, where Vj is a spin-j repre-

sentation space for SU(2) and Inv denotes invariance under the global SU(2) action.
9Here we assume that the tetrahedra have an outward orientation. Changing the orientation leads to

a complex conjugated Kτ .
10These are given by a coherent state Kτ for each boundary tetrahedron.
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To further simplify the models we can approximateGσ,σ′
τ by, e.g., Gaussians in the angles

Φτ,σ
ei

. Even more drastically, to count the number of configurations not suppressed by the

Gσ,σ′
τ factor we approximate it with a Heaviside function. That is, we allow (Φτ,σ

ei
,Φτ,σ′

ei
) to

mismatch by as much as

σ(Φ) = β

√
`2
Pγ

sinαt,τv

At
= β

√
sinαt,τv

(jt + 1
2
)
. (9.14)

Here we have introduced a parameter β which can be tuned between (unconstrained) Area
Regge dynamics and a sharp imposition of the matching constraints.

We have also used this criterion to determine the number of allowed configurations on
a complex of two glued 4-simplices, see Appendix M. The configuration we have studied
is symmetry reduced wtih 3 length and 3 area parameters on each of its simplices. For
the two glued simplices there are 4 length and 5 area parameters. The number of length
configurations for the two glued simplices, with area values At ∈ {1

2
, 1, · · · , N}, scales as

N1.03×p, where p = 3 for β = 0 (the shape matching constraints hold exactly), and p = 5
for β = ∞ (the shape matching conditions need not hold). A scaling with N4 arises for
β ≈ 0.15. We also considered just one (symmetry reduced) simplex with p = 2, 3 and 4
lengths and area parameters. The number of configurations scales with N1.03×p. This test
suggests that the weakened matching condition (9.14) does lead to a reasonable number of
configurations.

9.4 Relation to spin foams

Spin foams arise from a discretized SO(4)-gauge formulation of GR [54]. The main object
is a simplex amplitude [76] depending on the spin labels jt and, for the more recent models
[180], on intertwiner labels associated to the tetrahedra. A number of key works have
shown that in the limit of large spins the simplex amplitude includes saddle points peaked
on the cosine of the Regge action [85, 86, 89, 113, 181, 182]. The cosine results from a sum
over orientation, in addition there are further saddle points describing degenerate simplex
configurations. In practice the large spin limit is already obtained with spin values around
j = 10.

The simplex amplitudes require, however, a huge effort for their numerical evalua-
tion [183], and this has hindered deeper insight into the dynamics of spin foams, including
a resolution of the flatness problem [83,88,105–109]. Other open questions include whether
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summing over orientations11 or including degenerate configurations prevent a suitable semi-
classical dynamics [109,184,185].

Here we rather propose to test a key assumption of LQG, namely a Hilbert space de-
scribing independent area variables with a discrete (asymptotically equidistant) spectrum.
As we have argued, this allows only a weak imposition of the shape matching constraints.
It is not clear whether such a weak imposition is consistent with a (semiclassical) gravita-
tional dynamics. To tackle this question, we need workable amplitudes. Thus we propose
to use, instead of the involved spin foam simplex amplitudes, the exponentiated (Area)
Regge action12 together with a mechanism to impose the shape matching constraints. If
it becomes clear that such a model leads to a gravitational dynamics, one can go to more
complicated versions, and e.g. study the effects of including a sum over orientations.

In the following we will elaborate more on a possible relation of our proposed family
of models to various spin foam models. Note that the large j limit of the spin foam
amplitudes reveals only a limited amount of information. For example, one finds that for
the EPRL-FK models the saddle point conditions include the shape matching equations
(9.6) for non-degenerate configurations [85, 86, 89, 113, 181, 182]. However, it is not known
how weakly or strongly these constraints are imposed [109]. Another possible source for
flatness problems is the imposition of the closure (Gauß) constraints [83,88,105–109]. Here
we disregard possible issues with the Gauß constraints and assume that the shape matching
constraints are as strongly implemented as allowed by the LQG kinematics.

The first spin foam amplitude, known as the Barrett-Crane (BC) model [76], featured
only a sum over areas (no sum over 3D dihedral angles). In this model amplitudes factorize
over simplices and thus cannot include a gluing factor Gσ,σ′

τ , as in our proposal (9.7). It
is therefore conjectured that the BC model describes the dynamics of ARC [3, 43]. Thus,
including the factors (9.13) can be seen as correcting the BC model.13

A newer class of models [180], known as EPRL-FK, include a summation over area and
angle variables. Crucially the boundary Hilbert space for these models is the LQG Hilbert
space. With the assumptions outlined above for these spin foam models, we conjecture
that our model (9.11) describes the behavior of these models for larger spins, if sums over
orientations and degenerate configurations can be ignored.

11In 3D the sum over orientations still allows for a semiclassical and continuum limit, which reproduces
continuum GR [35].

12Another possibility is to not take the exponentiated area Regge action as the simplex amplitude Aσ,
but an action resulting from a gauge-reduced SU(2) BF theory, which involves areas and 3D dihedral
angles and leads to a topological theory.

13This would also lead to a boundary Hilbert space coinciding with the LQG Hilbert space (with γ = 1).
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A special feature for our model (9.11) is that it includes an integration over two dihedral
angles per tetrahedron. These two dihedral angles are encoded into only one quantum
number (e.g. if one uses a spin network basis). This is why the coherent states are crucial:
using a Segal-Bargmann (like) transform one can change the amplitudes and integration
from two variables to one quantum number per tetrahedron. This will then allow a more
direct comparison with the EPRL-FK amplitudes.

Instead of a gauge formulation, one can also employ a higher gauge formulation to study
gravity [6, 186, 187]. A related topological state sum model [6, 188] features an amplitude
factor given by the cosine of the Regge action (without having to take a semiclassical limit).
But the model sums over both (discrete) area variables and (continuous) length variables.
Constraining the areas to be functions of the lengths one does obtain a formulation of
gravity. However, insisting on discrete areas leads to the same problem as discussed here
[187], namely a drastic reduction in the density of states. In fact, a canonical analysis [189]
reveals that the corresponding constraint system is, like the shape matching constraints,
second class.

9.5 On the flatness problem

We now take up the question of whether the constraints are implemented sufficiently
strongly to avoid flatness. We consider a first test case consisting of a triangulation where
we can control the scale for the bulk area variable and the bulk curvature through the
boundary data. Specifically we consider a complex consisting of three 4-simplices sharing
a (bulk) triangle. There are no bulk edges, thus no bulk variables to sum over in LRC, and
the (bulk) deficit angle is determined by the boundary lengths. Nonetheless in ARC, there
is one bulk variable to sum over, which imposes a vanishing deficit angle for the internal
triangle.

The shape matching constraints restrict the (effective) summation range for the area
variable and the question arises as to whether this restriction is sufficient to allow for a
non-vanishing expectation value for the bulk deficit angle.

In the following we will perform a more detailed analysis and identify a regime in which
curved configurations can dominate. We will be applying only scaling arguments and ap-
proximate the imposition of the constraints with Gaussians. For the minimal triangulations
investigated here, the boundary spins j and the bulk spins jblk have similar scaling, that
is j ∼ jblk; future work will show how these scales separate in larger triangulations.

From (9.14) we see that the G- functions come with a deviation scaling as σ(Φ) ∼ 1/
√
j

122



CHAPTER 9. EFFECTIVE SPINFOAM MODELS

for the 3D dihedral angle, where we assume that the boundary areas have approximately
equal values determined by the spin value j. Meanwhile, as the dihedral angles Φ(j)
and deficit angles ε(j) are dimensionless, their derivatives scale as ∂Φ/∂jblk ∼ 1/j and
∂ε/∂jblk ∼ 1/j. Thus the deviation σ(jblk) for the (bulk) spin labels and the deficit angle
ε will scale as

σ(jblk) ∼
[
∂Φ(jblk)

∂jblk

]−1

× σ(Φ) ∼ j × 1√
j

=
√
j ,

σ(ε) ∼
[
∂ε(jblk)

∂jblk

]
× σ(jblk) ∼ 1

j
×
√
j =

1√
j
. (9.15)

As angles are invariant under global rescaling, we can choose boundary data that induce
a given deficit angle ε, and then choose a sufficiently large scale j, so that the ε = 0 value
is outside the deviation interval. Thus by going to sufficiently large spins j, the constraint
part of the amplitudes can peak sharply on non-vanishing curvature values.

γ= 0.1

γ= 0.5

γ= 0.01

G

j
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G
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(b) j = 999.5

Figure 9.1: The G function (dashed), which imposes the matching conditions weakly, and
the real part of the product of the amplitude factors At and Aσ as a function of the bulk
spin jblk. The solid graphs show the amplitude for ε ≈ 0.5. Larger γ’s lead to a more
oscillatory behaviour. This example is described in more detail in Appendix B.

The oscillatory behavior resulting from the variation of the action over the σ(jblk)
interval should also be considered, see Fig. 9.1. Having a highly oscillatory amplitude, the
expectation value for the deficit angle will average out to some value different from the one
in LRC. As the action scales with the spin j, this in particular applies in the large j-limit
(away from the stationary points of the ARC action).

This large j-limit is often identified with the semi classical limit for spin foams. The
condition for stationary of the ARC action leads to the flatness—and thus to the flatness
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problem. To avoid this mechanism, we demand a bound n the variation of the action. The
corresponding contribution to the LRC path integral is rather given by a fixed value of the
amplitude, therefore, we demand that

σ(SARC

`2P
) =

1

`2
P

∂(SARC)

∂jblk

×σ(jblk) ∼ γε
√
j

!

. O(1) . (9.16)

Thus, whereas the scaling for the deficit angle (9.15) requires a choice of larger j, (9.16)
demands that with growing j we choose smaller γ. These expectations are confirmed by
an explicit example, see Appendix N.

To distinguish a small ε from a vanishing ε we also need—due to σ(ε) ∼ 1/
√
j—a

scaling with |ε| ∼ 1/
√
j. Thus choosing smaller γ, which makes the area spectrum denser,

allows for a larger range of accessible curvature angles.

We can also interpret (9.16) as a bound on the curvature per triangle ε . 1/(γ
√
j),

which—uncharacteristically—decreases with increasing j, the discretization scale. Note
that a similar bound has been derived by [190] for the EPRL model using an improved
version of the saddle point analysis. Here we have shown that this restriction holds for a
broad range of models, which implement a (locally independent) almost equidistant area
discrete spectra as encountered in LQG.

We have considered the simplest triangulation that differentiates between LRC and
ARC. As we only employed scaling arguments, the conclusions apply also for larger tri-
angulations. For larger triangulations, however, the scale set by the boundary spins will
not determine a unique scale for the bulk spins that lead to significant amplitude contri-
butions. Larger triangulations must, therefore, be studied explicitly. In future work we
will investigate examples including bulk edges and bulk vertices. Finally, to make definite
conclusions on the continuum limit it will be necessary to see how the implementation
of the constraints changes under refining and coarse graining. The models proposed here
simplify this task considerably.
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Discussion

With the aim of reaching a better understanding of spin foam dynamics, we have revisited
area Regge calculus. We have provided a well-defined action principle for flat, as well as
homogeneously curved, simplices and analyzed certain aspects of the covariant dynamics,
in particular, the behavior of area Regge calculus under Pachner moves. The invariance
properties of area Regge calculus under these moves differ from those of length Regge
calculus. Obtaining a semiclassical limit of Pachner moves seems feasible for spin foams
[102,191–193], and so our results can be used as a test to differentiate between the different
types of dynamics in spin foam models.

Interestingly, the equations of motion can impose flatness in the 3–3 move even when
boundary data would seem to induce curvature. This is due to the surprising fact that,
although there are more area than length variables in the boundary, the boundary areas
do not always uniquely determine the boundary lengths.

We have also performed a canonical analysis of area Regge calculus using tent moves.
For the linearized dynamics over a metric background we find the constraints resulting
from the diffeomorphism symmetry of the (linearized) action. The same constraints arise
for (linearized) length Regge calculus on a flat background. We have not found additional
constraints. As there are generically far more areas than lengths, area Regge calculus has
far more physical degrees of freedom then length Regge calculus. In particular, for an
n–valent tent move we expect 3n− 10 physical degrees of freedom in area Regge calculus
and n − 4 physical degrees of freedom in length Regge calculus. We have provided an
in-depth analysis of how the non-metric degrees of freedom appear and discussed how they
can be parametrized in the 4-valent tent move. Our results suggest that the differences of
3D dihedral angles as determined from different four-simplices is a good measure for the
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non-metricity in general.

We analyzed the gauge symmetry content of area Regge calculus and found that on
metric backgrounds area Regge calculus features (discrete remnants of) diffeomorphism
symmetry. These symmetries are broken if one considers non-metric backgrounds. The
breaking can be quantified via the size of the eigenvalues of the Hessian evaluated on
these backgrounds. There is a quadratic dependence on our non-metricity parameter, the
difference of certain 3D dihedral angles.

We also considered in the quantum theory a path integral formulation with discrete area
spectra. Area operators are central in a number of approaches to 4D quantum gravity, no-
tably LQG and holography. Discrete area spectra are a key result of LQG and crucial for
various black hole entropy countings [62–65]. To achieve a quantum dynamics that repro-
duces GR constraints between the areas need to hold. This is, however, hindered if areas
have an asymptotically equispaced spectrum and are (kinematically) locally independent.

The imposition of these constraints is pivotal in spin foam quantization. This leads
to highly involved amplitudes, which has so far prevented a satisfactory resolution of key
dynamical questions, most pressingly whether the models suppress curvature excitations.
Here we proposed a class of effective models, with a transparent encoding of the dynamics
and much more amenable for numerical investigations. In these models the constraints
are imposed as strongly as allowed by the LQG Hilbert space structure, from which the
discrete, locally independent, area spectra result. We emphasize ‘locally independent’
for the following reason: strong imposition of the constraints (that is, first solving the
constraints classically and then quantizing the reduced phase space) should also lead to a
discrete area spectrum. This follows from Bohr’s correspondence principle, as the areas
are also conjugated to (dihedral) angles on the reduced phase space. However, the Dirac
brackets, which define the canonically conjugated pairs, have a non-local structure [53,66,
67,189] and one would expect a reflection of this non-locality in the resulting Hilbert space.

Insisting on the local structure of the (kinematical) Hilbert space and a prescribed area
spectrum we can impose the constraints only weakly. Whether such a weak imposition
of second class constraints leads to the correct dynamics is not understood (even in much
simpler models than gravity) and should be further tested. In particular, for spin foam
models, a too weak imposition of the constraints could lead to suppression of curvature.

Using the effective spin foam models we have found that for triangulations in which
the scale for the areas can be controlled, curvature is not necessarily suppressed. This
result comes with restrictions connecting the average area a ∼ `2

Pγj, the Barbero-Immirzi
parameter γ, and the curvature εt per triangle. The peakedness of the constraints on a
given curvature value does improve with growing spin j, as 1/

√
j, but is independent of γ.
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And, to avoid a highly oscillatory behaviour of the amplitudes over the regime allowed by
the constraints, we need γ

√
jεt ≤ O(1). Not surprisingly, this last condition prefers small

γ, and hence a small spacing in the area spectrum. Furthermore, it can be seen as a bound
on curvature, one which is more stringent for larger spins.

In our example, in Appendix N we need large spin values (and correspondingly small
γ) to obtain an expectation value for the deficit angle that approximates well the classical
value. This justifies our focus on ‘effective’ models, where we replace the full spin foam
simplex amplitude with its large spin asymptotics, given by the cosine (replaced here with
the exponential) of the Regge action. It has been argued in [194], that a double scaling limit
that takes γ small and spins j large, with γj fixed, reproduces the Length Regge equations
of motion. Here, we find also that γ should be small and j large, but that we need for
the combination γ

√
jεt to be of order one or smaller. Such a combination, and the related

bound on curvature has also been identified in [190], based on a generalized stationary
phase analysis of the EPRL/FK amplitudes. Using much simpler inputs, we have shown
that such a bound does not depend on specific choices for the spin foam amplitudes. The
reason for this bound is rather tied to the LQG Hilbert space and the area spectrum it
leads to. On this Hilbert space the shape matching constraints are non-commutative and
can therefore be imposed only weakly.

The conclusions for the expectation value of the deficit angle hold in general, but assume
that we can control the scale of bulk spin and deficit angles, e.g. via the choice of boundary
data. This is not necessarily the case for larger triangulations. Moreover, to understand
the continuum limit, we would have to investigate how these arguments are impacted by
a coarse graining and renormalization process [195]. The investigation of corresponding
continuum actions [196], in which the geometricity (simplicity) constraints are also imposed
only weakly, might elucidate how these constraints behave under renormalization.

The effective models presented here will make the study of the coarse graining and
renormalization flow [195] much more feasible than for the full spin foam models [180] and
will help to establish whether loop quantum gravity and spin foams allow for a satisfactory
continuum limit.

127



References

[1] S. K. Asante, B. Dittrich, and F. Hopfmueller, Holographic formulation of 3D metric gravity with
finite boundaries, Universe 5 no. 8, (2019) 181, arXiv:1905.10931 [gr-qc].

[2] S. K. Asante and B. Dittrich, One-loop partition functions for bounded regions and perfect
discretizations for 4D gravity,. To appear.

[3] S. K. Asante, B. Dittrich, and H. M. Haggard, Holographic description of boundary gravitons in
(3+1) dimensions, JHEP 01 (2019) 144, arXiv:1811.11744 [hep-th].

[4] S. K. Asante, B. Dittrich, and H. M. Haggard, The Degrees of Freedom of Area Regge Calculus:
Dynamics, Non-metricity, and Broken Diffeomorphisms, Class. Quant. Grav. 35 no. 13, (2018)
135009, arXiv:1802.09551 [gr-qc].

[5] S. K. Asante, B. Dittrich, and H. M. Haggard, Effective Spin Foam Models for Four-Dimensional
Quantum Gravity, arXiv:2004.07013 [gr-qc].

[6] S. K. Asante, B. Dittrich, F. Girelli, A. Riello, and P. Tsimiklis, Quantum geometry from higher
gauge theory, Classical and Quantum Gravity (07, 2020) , arXiv:1908.05970 [gr-qc].

[7] R. Oeckl, A ‘General boundary’ formulation for quantum mechanics and quantum gravity, Phys.
Lett. B 575 (2003) 318–324, arXiv:hep-th/0306025.

[8] E. Witten, (2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46.

[9] E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989)
351–399.

[10] G. Moore and N. Seiberg, Taming the conformal zoo, Physics Letters B 220 no. 3, (1989) 422 – 430.

[11] S. Elitzur, G. W. Moore, A. Schwimmer, and N. Seiberg, Remarks on the Canonical Quantization
of the Chern-Simons-Witten Theory, Nucl. Phys. B 326 (1989) 108–134.

[12] P. Forgacs, A. Wipf, J. Balog, L. Feher, and L. O’Raifeartaigh, Liouville and Toda Theories as
Conformally Reduced WZNW Theories, Phys. Lett. B 227 (1989) 214–220.

[13] A. Alekseev and S. L. Shatashvili, Path Integral Quantization of the Coadjoint Orbits of the
Virasoro Group and 2D Gravity, Nucl. Phys. B 323 (1989) 719–733.

[14] O. Coussaert, M. Henneaux, and P. van Driel, The Asymptotic dynamics of three-dimensional
Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961–2966,
arXiv:gr-qc/9506019.

128

http://dx.doi.org/10.3390/universe5080181
http://arxiv.org/abs/1905.10931
http://dx.doi.org/10.1007/JHEP01(2019)144
http://arxiv.org/abs/1811.11744
http://dx.doi.org/10.1088/1361-6382/aac588
http://dx.doi.org/10.1088/1361-6382/aac588
http://arxiv.org/abs/1802.09551
http://arxiv.org/abs/2004.07013
http://dx.doi.org/10.1088/1361-6382/aba589
http://arxiv.org/abs/1908.05970
http://dx.doi.org/10.1016/j.physletb.2003.08.043
http://dx.doi.org/10.1016/j.physletb.2003.08.043
http://arxiv.org/abs/hep-th/0306025
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/https://doi.org/10.1016/0370-2693(89)90897-6
http://dx.doi.org/10.1016/0550-3213(89)90436-7
http://dx.doi.org/10.1016/S0370-2693(89)80025-5
http://dx.doi.org/10.1016/0550-3213(89)90130-2
http://dx.doi.org/10.1088/0264-9381/12/12/012
http://arxiv.org/abs/gr-qc/9506019


REFERENCES

[15] A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions, JHEP 02
(2010) 029, arXiv:0712.0155 [hep-th].

[16] J. Cotler and K. Jensen, A theory of reparameterizations for AdS3 gravity, JHEP 02 (2019) 079,
arXiv:1808.03263 [hep-th].
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[154] H. M. Haggard, M. Han, W. Kamiński, and A. Riello, SL(2,C) Chern–Simons theory, a non-planar
graph operator, and 4D quantum gravity with a cosmological constant: Semiclassical geometry,
Nucl. Phys. B 900 (2015) 1–79, arXiv:1412.7546 [hep-th].

[155] H. M. Haggard, M. Han, and A. Riello, Encoding Curved Tetrahedra in Face Holonomies: Phase
Space of Shapes from Group-Valued Moment Maps, Annales Henri Poincaré 17 no. 8, (2016)
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Appendix A

Proof of results for diffeomorphism
induced perturbations

In this appendix, we will give a proof of Results 1 given in equations (2.22) relating the
diffeomorphism induced perturbations ζAB and the components ξ⊥, ξA∂A = ξ‖ of the dif-
feomorphism inducing vector field. The result holds for a background space–time satisfying
the vacuum Einstein equations. We shall also give a proof of the first and second order
Hamilton–Jacobi action Results 2 in equations (2.27).

A.1 Vector basis for induced perturbations

From (2.18) we see that a vector field ξ⊥∂⊥ + ξA∂A acting on the background metric leads
to an induced perturbation

ζAB = 2ξ⊥KAB +DAξB +DBξA, (A.1)

where KAB, DA and ξA = hABξ
B pertain to the background.

Our first claim is:

Claim:

ΠABζAB = ∆ξ⊥ + 2DB(bRAB)ξA where (A.2)

ΠAB = DADB −DCD
ChAB − bRAB , (A.3)

∆ = 2(KAB −KhAB)DADB − 2 bRABKAB . (A.4)
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Proof:
For any background and dimensions we have

(DADB −DCD
ChAB)(DAξB +DBξA) = (DADB −DBDA)DBξA + 2DB(DADB −DBDA)ξA

= 2DB(bRABξ
A) . (A.5)

Using bRAB(DAξB +DBξA) = 2 bRABDAξB, we get that

ΠAB(DAξB +DBξA) = 2DB(bRAB)ξA. (A.6)

which vanishes for our (background) homogeneous boundary assumption. Now for the
term proportional to ξ⊥, we obtain

(DADB −DCD
ChAB)(2KABξ

⊥) = 2DADB

(
π̃ABξ⊥

)
= 2π̃ABDADBξ

⊥ , (A.7)

where π̃AB = (KAB −KhAB) and for the second lines we have used the momentum con-
straint DAπ̃

AB = 0 (which follows from the (⊥ A)–components of the Einstein equations).
Putting together equations (A.6) and (A.7), we obtain

ΠABζAB = ∆ξ⊥ + 2DB(bRAB)ξA . (A.8)

This proves our first claim. �

We also get the first result in (2.22) if we apply the homogeneous curvature assumption.

Our second claim is the following:

Claim:

2π̃BC δ′ bΓABC = DAB ξB − 2DB(bRAB)ξ⊥ +QABDBξ
⊥ where (A.9)

DAB = 2π̃CD
(
DCDDh

A
B − bRA

CDB

)
QAB = 2

(
2π̃BCKA

C − π̃CDKCDh
AB
)

. (A.10)

Proof:
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We consider the term with the variation of the boundary Christoffel symbol given by

2π̃BCδ′ bΓABC = π̃BChAD(DBζCD +DCζBD −DDζBC)

= π̃BC (DBDCξD +DBDDξC +DCDBξD +DCDDξB −DDDBξC −DDDCξB)

+ 2π̃BC
(
DB(KA

C ξ
⊥) +DC(KA

Bξ
⊥)−DA(KBCξ

⊥)
)

(A.11)

Using the momentum constraint DAπ̃
AB = 0, the Gauss-Codazzi condition DAKBC −

DBKAC = 0 and the formula for boundary Riemann tensor in term of spatial covariant
derivatives, we can simplify the variation of the boundary Christoffel symbol further:

2π̃BCδ′ bΓABC = 2π̃BC
(
DBDCξ

A − bRA
BCDξ

D
)

+ 2DB(π̃BCKA
C )ξ⊥

+ 2
(
2π̃BCKA

C − π̃CDKCDh
AB
)
DBξ

⊥ (A.12)

Using the contracted Guass-Codazzi relations, the third term in (A.12) is equal to−2DB(bRAB)ξ⊥

and then we finally get

2π̃BCδ′ bΓABC = DAB ξB − 2DB(bRAB)ξ⊥ +QABDBξ
⊥ (A.13)

where we have used the definitions in (A.10). Hence we have proved our second claim. �

We get the second result in equation (2.22) if we apply the homogeneous curvature
assumption. Now, using π̃BCKA

C =
(
KBCKA

C −KKAB
)
, π̃CDKCD =

(
KCDKCD −K2

)
from the Gauss-Codazzi relations and the assumptions on the background, we have

QAB = 2

((
bRhAB − 2bRAB

)
− 2Λ

(d− 3)

(d− 1)
hAB

)
. (A.14)

Note that QAB vanishes identically in three dimensions since two dimensional metrics
satisfy bRAB = 1

2
bRhAB.

Also, we can expand the boundary Riemann curvature in the DAB term using the Gauss-
Codazzi relations to get

DAB = 2π̃CDDCDDh
A
B + 2

(
RACKBC −RKA

B +
2(d− 3)Λ

(d− 2)

(
KA
B −

1

(d− 1)
KhAB

))
(A.15)

A.2 Restricted Hamilton–Jacobi functional

Here we shall prove the equations for the first and second order Hamilton–Jacobi functionals
given in Results 2.
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A.2.1 First order Hamilton–Jacobi functional

Using the parametrization γab = Lξgab for the (projected) boundary metric fluctuations,
the first order of the on-shell action evaluates to

DS
(1)
HJ =

1

2κ

∫
∂M

d(d−1)y
√
hε π̃AB(∇AξB +∇BξA)

=
1

κ

∫
∂M

d(d−1)y
√
hε π̃AB

(
DAξB +KABξ

⊥)
' 1

κ

∫
∂M

d(d−1)y
√
hε
(
−DAπ̃

ABξB + π̃ABKABξ
⊥)

=
1

κ

∫
∂M

d(d−1)y
√
hε
(
2Λ− bR

)
ξ⊥ . (A.16)

where ' represents modulo corner terms and we have used the Gauss–Codazzi relations
(2.10) and (2.11) to arrive at the last line.

A.2.2 Second order Hamilton–Jacobi functional

We consider a (d−1)–dimensional boundary ∂M of a d–dimensional space–time satisfying
the vacuum Einstein equations. We assume the parametrization (A.1) for the (projected)
boundary fluctuations ζAB in terms of the diffeomorphism generating vector field ξa. We
will furthermore assume that the boundary has homogeneous curvature.

The second order of the (restricted) Hamilton–Jacobi functional is then given by

DS
(2)
HJ = − 1

4κ

∫
∂M

d(d−1)y
√
hε

(
ξ⊥(∆ +QABKAB)ξ⊥ + ξ⊥QABDAξB − ξAQABDBξ

⊥ − ξADABξB
)

(A.17)

where

∆ = 2π̃ABDADB − 2bRABKAB ,

DAB = 2π̃CD
(
DCDDh

A
B − bRA

CDB

)
(A.18)

QAB = 2
(
2π̃BCKA

C − π̃CDKCDh
AB
)

.

We remind the reader that we defined the extrinsic curvature tensor through the foliation,
which with our choice of Gaussian coordinates amounts to KAB = 1

2
∂⊥hAB. We thus in-

troduced ε, which is equal to +1 for boundary components where the outward pointing
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normal in the background geometry is given by n ≡ ∂⊥ (that is the outer boundary), and
ε = −1 if n ≡ −∂⊥ (that is the inner boundary).

Proof: We have to evaluate

DS
(2)
HJ =

1

2κ

∫
∂M

d(d−1)y ε δ′(
√
h π̃AB)ζAB . (A.19)

with δ′hAB = ζAB = 2KABξ
⊥ +DAξB +DBξA.

Let us also use the abbreviation π̃AB = (KAB −KhAB) for the spatial tensors, then we
find for the integrand in (A.19)

F := δ′
(√

hπ̃AB
)
ζAB

=
√
h

(
1

2
π̃ABζABh

CDδ′hCD + δ′
(
π̃ABζAB

)
− π̃ABδ′ζAB

)
(A.20)

Now we will use that by definition δ′ξ⊥ = δ′ξA = 0 and that π̃ABDAξB is, modulo a total
divergence, given by ξBDAπ̃

AB, where DAπ̃
AB is the momentum constraint and hence

vanishes. Thus also the variation of π̃ABDAξB vanishes. We also have that the variation
δ′(DAξB) = −ξCδ′bΓCAB and we get :

F '
√
h
(
ξ⊥π̃ABKABh

CDδ′hCD + 2δ′
(
π̃ABKAB

)
ξ⊥ − 2π̃ABδ′KABξ

⊥ + 2π̃ABξCδ
′bΓCAB

)
. (A.21)

We have used ' to indicate equivalence up to total divergences. Now let us consider the
variation appearing in the second term above

δ′
(
π̃ABKAB

)
= δ′

(
(hAChBD − hABhCD)KABKCD

)
= 2π̃AB δ′KAB − 2π̃CAKA

Dδ′hCD . (A.22)

Therefore, the integrand simplifies to

F '
√
h
(
ξ⊥
(
π̃ABKABh

CD − 2π̃ACKD
A

)
δ′hCD + δ′

(
π̃ABKAB

)
ξ⊥ + 2π̃ABξCδ

′bΓCAB
)
. (A.23)

The first two terms in the integrand above can be written as −1
2
ξ⊥QABζAB using the

expression in (A.10). We also have that π̃ABKAB = 2Λ − bR and hence δ′(π̃ABKAB) =
δ′(bR). The variation of the boundary Riemann curvature satisfies δ′(bR) = ΠABζAB.
Thus, we can use the results in (A.2). For the last term, we will use the results in (A.9)
and then get

F ' −
√
h
(
ξ⊥δ′(bR) + 1

2
ξ⊥QABζAB − ξAQABDBξ

⊥ + 2ξADB(bRAB)ξ⊥ − ξADABξB
)
. (A.24)
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PERTURBATIONS

This form of the Hamilton–Jacobi action holds for a generic boundaries without any as-
sumptions on the boundary space–time. Now if we assume that the boundary curvature is
homogeneous, DB(bRAB) = 0, and then we finally get the second order restricted Hamilton–
Jacobi functional

DS
(2)
HJ = − 1

2κ

∫
∂M

d(d−1)y
√
hε

(
ξ⊥(∆ +QABKAB)ξ⊥ + ξ⊥QABDAξB −

ξAQ
ABDBξ

⊥ − ξADABξB
)

.

(A.25)

Hence the proof. �

The explicit forms of the background tensors and the boundary differential operators
appearing in the second order functional are given in Appendix A.1 with simplified terms
in equations (A.14) and (A.15).
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Appendix B

Useful formulas

In this chapter, we will derive some formulas that will be needed for computations in the
next appendices. We mostly use the Gauss and Codazzi relations which are given in section
2.1.1 and the metric (2.2) given in Gaussian coordinates to derive these formulas here.

B.1 Expanding space–time covariant derivatives

First, consider the metric in Gaussian coordinates with the Christoffel symbols (2.4) given
in terms of the extrinsic curvature.The space–time covariant derivatives can be expanded
as

∇Aγ⊥⊥ = DAγ⊥⊥ − 2KB
Aγ⊥B,

∇Aγ⊥B = DAγ⊥B −KC
AγBC +KABγ⊥⊥,

∇AγBC = DAγBC +KABγ⊥C +KACγ⊥B,

∇⊥γAB = ∂⊥γAB −KE
AγBE −KE

BγAE,

∇⊥γ⊥A = ∂⊥γA⊥ −KE
Aγ⊥E, (B.1)

where the spatial covariant derivative DA acts on only the spatial indices B. Note that
∇⊥γAB involves only the spatial metric perturbations.

Employing the equations above (B.1), we can expand the following expressions quadratic
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in the covariant derivatives:

∇A∇BγCD = DADBγCD +DA (KBCγ⊥D +KBDγ⊥C) +KACDBγ⊥D +KADDBγ⊥C

+KAB∇⊥γCD + (KACKBD +KADKBC)γ⊥⊥ −KACK
E
BγDE −KADK

E
BγCE,

∇D∇Cγ⊥B = DDDCγ⊥B +DD (KBCγ⊥⊥)−DD(KE
C γBE) +KCD∇⊥γ⊥B +KBDDCγ⊥⊥

−2KE
CKBDγ⊥E −KE

D (DCγBE +KBCγ⊥E +KCEγ⊥B) ,

∇B∇⊥γCD = DB∇⊥γCD +KBC∇⊥γ⊥D +KBD∇⊥γ⊥C
−KE

B (DEγCD +KCEγ⊥D +KDEγ⊥C ) . (B.2)

B.2 Radial derivatives of boundary tensors

With the abbreviation π̃AB = KAB −KhAB, the contracted Gauss relations satisfy

π̃ABKAB = 2Λ− bR (B.3)

π̃ACKB
C =

2Λ

(d− 1)
hAB − bRAB . (B.4)

The contracted Codazzi relation is also given by DAπ̃
AB = 0 and its equivalent to the

momentum constraint of the Einstein equations. We have assumed the boundary space–
time is homogeneous and hence DA(π̃BCKBC) = 0 and DA(π̃BDKC

D) = 0.

We will compute the radial derivatives for various background boundary tensors. Our
convention is such that the boundary extrinsic curvature is given in terms of the radial
derivative of the boundary metric, that is ∂⊥hAB = 2KAB and ∂⊥h

AB = −2KAB.

The Ricci equation adapted to the Gaussian coordinates satisfies

RA⊥B
⊥ = ∂⊥Γ⊥AB − ΓC⊥BΓ⊥CA

= −∂⊥KAB +KACK
C
B . (B.5)

Using for maximally symmetric solutions RA⊥B
⊥ = 2Λ

(d−1)(d−2)
hAB, we obtain the derivative

of the extrinsic curvature to be

∂⊥KAB = KACK
C
B −

2Λ

(d− 1)(d− 2)
hAB . (B.6)

Contractions of (B.6) with the boundary metric and its radial derivative give the following:

∂⊥K = −KABKAB − 2Λ
(d−2)

∂⊥K
AB = −3KACKB

C − 2Λ
(d−1)(d−2)

hAB

∂⊥π̃
AB = 3(bRAB)− bRhAB −Kπ̃AB + 2Λ (d−3)

(d−1)
hAB . (B.7)
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where we have used the Gauss-Codazzi relations to simplify the last expression.

For the radial derivative of the boundary Christoffel symbols we compute

∂⊥
bΓABC =

1

2
hAE (DA∂⊥hBE +DB∂⊥hAE −DE∂⊥hAB)

= hAE (DAKBE +DBKAE −DEKAB)

=
G.-C.

DBK
A
C = DCK

A
B = DAKBC . (B.8)

Consider the abbreviation HABCD = hABhCD − hAChBD. The following identities hold for
contractions with the extrinsic curvature

HABCDKCD = −π̃AB, HABCDKBC = 0, HABCDKE
BKCE = 0 (B.9)

HABCD(KE
CDBγDE +KE

DDBγCE +KE
BDEγCD +KE

DDCγBE) = 1
2
(∂⊥H

ABCD)DBγCD .

Also, using the Guass-Codazzi relations repeatedly we obtain

1
2
(∂⊥H

ABCD)DADBKCD = 0
1
2
(∂⊥H

ABCD)DADB(DCξD +DDξC) = 2(KCD
bRADBC + bRACKB

C )DAξB
1
2
(∂⊥H

ABCD)KCD = 2 bRAB − bRhAB −Kπ̃AB + 2Λ (d−3)
(d−1)

hAB . (B.10)

B.3 The commutator between radial derivative and

spatial operators

To commute radial derivatives and spatial derivatives, we will make use of the derivatives
of Christoffel symbols in equation (B.8) to get

∂⊥DAξB = DA∂⊥ξB − ∂⊥(bΓCAB)ξC = DA∂⊥ξB −DAK
C
B ξC

∂⊥DAγBC = DA∂⊥γBC −DAK
E
BγCE −DAK

E
C γBE (B.11)

∂⊥DADBγCD = DA∂⊥DBγCD −DAK
E
BDEγCD −DAK

E
CDBγDE −DAK

E
DDBγCE .

We will also need the following commutator[
∂⊥,∆

−1
]

= −∆−1 [∂⊥,∆] ∆−1 (B.12)
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where ∆ = 2π̃ABDADB − 2 bRABKAB. This commutator can be simplified by considering
its action on a scalar function f . The radial derivative acting on the differential operator
∆ satisfies

∂⊥∆f = ∆∂⊥f − 2π̃ABDA(KC
B )DCf + 2∂⊥(π̃AB)DADBf − 2∂⊥(bRABKAB)f

= ∆∂⊥f − 2DA(bRAB)DBf + 2∂⊥(π̃AB)DADBf − 2∂⊥(bRABKAB)f . (B.13)

where we have used the identities in (B.11) to commute radial and spatial covariant deriva-
tives. Let us consider the case where the intrinsic geometry on the boundary is flat, i.e
bR = 0, then the commutator simplifies to

[∂⊥,∆] f =
(
−2Kπ̃AB + 4Λ (d−3)

(d−1)
hAB

)
DADBf = −K∆f + 4Λ (d−3)

(d−1)
DADAf (B.14)

where we have used the formula for ∂⊥π̃
AB given in (B.7) and also that ∆ = 2π̃ABDADB

for flat boundaries.

In the case where the boundary geometry is a spherical Sd−1, the extrinsic curvature
and boundary Ricci curvature satisfies KAB = 1

r
hAB and bRAB = 1

(d−1)
bRhAB = (d−2)

r2
hAB

respectively. Hence we get the following radial derivatives

∂⊥π̃
AB = 1

r
π̃AB , ∂⊥

bRAB = 0 , ∂⊥KAB = −1
r
KAB (B.15)

Using these identities, we can simplify the equations in (B.13) to get the commutator

[∂⊥,∆] f = 2
r
π̃ABDADBf + 2

r
bRABKABf = −1

r
∆f + 4

r
π̃ABDADBf (B.16)

which holds for a spherical boundary.
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Appendix C

Solutions to equations of motion

Here, we will give a general procedure for solving the (linearized) Einstein equations of
motion and then specialize to the cases for which the background boundary is a) flat and
b) spherical. In both cases, we shall consider the diffeomorphism sector of the equations
of motion and find solutions to the lapse and shift (ζ⊥⊥ and ζ⊥A) metric perturbations.

The second order gravitational action with Lagrange multiplier term (2.41) is given by

−κS(2)
λ =

1

2

∫
M

ddx
√
g γab

(
V abcd γcd + 1

2
Gabcdef ∇c∇dγef

)
+

1

2

∫
∂M

d(d−1)y
√
h ε γab

(
(B1)abcdγcd + (B2)abecd∇eγcd

)
+

1

2

∫
(∂M)rout

d(d−1)y λ(y) (ρ(y)− `g[γ⊥⊥]) (C.1)

where we have

V abcd =
1

2

[
1

2
(R− 2Λ)

(
gabgcd − 2gacgbd

)
−Rabgcd − gabRcd + 2

(
gacRbd + gbcRad

)]
Gabcdef = gabgcegdf + gadgbcgef + gaegbfgcd − gabgcdgef − gadgbfgce − gafgbdgce

Babcd
1 =

1

2
(Khab −Kab)gcd − hachbdK − habKcd + hacKbd + hbdKac

Babecd
2 =

1

2

((
haehbd − habhed

)
nc +

(
hachbe − habhce

)
nd −

(
hachbd − habhcd

)
ne
)
. (C.2)

The derivation for the second order expansion of the boundary term can be found in [23].
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Using the form of the Ricci tensor and Ricci scalar for vacuum solutions, we can write

V abcd =
Λ

d− 2

(
2gacgbd − gabgcd

)
. (C.3)

The variation of the action (C.1) with respect to the metric perturbations γab leads to the
equations of motion

Ĝab :=
(
V abcd γcd + 1

2
Gabcdef ∇c∇dγef

)
=

1

4

λ(y)√
h
δa⊥δ

b
⊥ . (C.4)

One can show that γab = ∇aξb + ∇bξa satisfies (C.4) for λ = 0. Here we want to solve
the equations including the Lagrange multiplier term. As explained in section 2.3 it is
sufficient to solve the (⊥⊥) and (⊥ A) components of the equations of motion and solve
for the lapse and shift perturbations.

We therefore, consider the Hamiltonian constraint

H := −2V ⊥⊥cd γcd − G⊥⊥cdef ∇c∇dγef , (C.5)

as well as the momentum constraint

MA := 2V ⊥Acd γcd + G⊥Acdef ∇c∇dγef . (C.6)

To rewrite the constraints we will make use of the fact that we have a maximally
symmetric background solution (2.6) and that the Gauss–Codazzi relations (2.9,2.10,2.11)
hold. Using the shorthand HABCD = hABhCD − hAChBD, we simplify the constraints as

H =
(

2Λ
(d−1)

hABγAB +HABCD∇A∇BγCD

)
MA =

(
4Λ

(d−1)
hABγ⊥B +HABCD(∇B∇⊥γCD +∇D∇Cγ⊥B)

)
. (C.7)

We will make use of the formulas in (B.2) to simplify further the space–time covariant
derivative terms in the Hamiltonian and momentum constraints. After some algebra these
constraints become

H = π̃ABKABγ⊥⊥ + 2π̃ABDAγ⊥B − π̃AB∂⊥γAB + HABCDDADBγCD +RABγAB , (C.8)

MA = 2 bRABγ⊥B + π̃ABDBγ⊥⊥ +HABCD(DDDCγ⊥B + ∂⊥DBγCD −DD(KE
C γBE))

+ 1
2

(
∂⊥H

ABCD
)
DBγCD . (C.9)
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In deriving these equations, we have used the formulas in equation (B.11) to commute
radial and spatial covariant derivatives and also the last identity in (B.9) to simplify the
momentum constraint. In the case of vanishing λ one can solve the Hamiltonian and
momentum constraint equations for the lapse and shift perturbations which will determine
the solutions to the equations of motions (C.4).

The divergence of the momentum constraint MA can be simplified further by using the
following :

HABCDDADDDCγ⊥B =
(
DADB −DBDA

)
DAγ⊥B = 0 (C.10)

which is satisfied since the curvature tensors in its expansion cancel out. Furthermore
HABCDDAK

E
D = 0 as we have DAK

E
D = DDK

E
A = DEKAD due to the Codazzi relation

(2.11). The following identity also holds:identity

DA(HABCD∂⊥DBγCD + 1
2
∂⊥H

ABCDDBγCD) = HABCD∂⊥DADBγCD + 1
2
∂⊥H

ABCDDADBγCD

= ∂⊥(HABCDDADBγCD)− 1
2
∂⊥H

ABCDDADBγCD

(C.11)

We therefore obtain the divergence of the momentum constraint

DAM
A = 2 bRABDAγ⊥B + π̃ABDADBγ⊥⊥ + ∂⊥(HABCDDADBγCD)− 1

2
∂⊥H

ABCDDADBγCD (C.12)

where we have also used that the boundary is homogeneous, that is DA
bRAB = 0.

C.1 Equations of motion for flat boundaries

We will now restrict to the case where the background boundary has vanishing curvature.
The divergence of the momentum constraint in this case satisfies

DAM
A = 1

2
∆γ⊥⊥ − ∂⊥(ΠABγAB)− 1

2
∂⊥(HABCD)DADBγCD (C.13)

where ∆ = 2π̃ABDADB and ΠABγAB = −HABCDDADBγCD, which apply for a flat back-
ground boundary. We have assumed that the operator ∆ is invertible and hence we can
easily find the solution of the lapse γ⊥⊥ from the divergence of the momentum constraint
(C.13).

We will now consider the restriction to the diffeomorphism sector where we adopt a
parametrization

γAB ≡ ζAB = 2KABξ
⊥ +DAξB +DBξA (C.14)
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for the boundary metric perturbations such that we have ΠABζAB = ∆ξ⊥.

The last term in the divergence of the momentum (C.13) restricted to the diffeomor-
phism sector can be simplified using the formulas in (B.10) applied to flat boundaries to
get

1
2
∂⊥(HABCD)DADBζCD = ∂⊥(HABCD)KCDDADBξ

⊥ = (−2Kπ̃AB + 4Λ (d−3)
(d−1)

hAB)DADBξ
⊥ .(C.15)

using the parametrization (C.14). The term on right hand side of (C.15) is equal to the
commutator [∂⊥,∆] which we have computed in (B.14) for the case of vanishing intrinsic
curvature. Hence we get from the divergence DAM

A, the solution for the lapse

ζ⊥⊥ = 2∂⊥ξ
⊥ , (C.16)

We now insert this solution into the linearized Hamiltonian constraint

H = π̃ABKABζ⊥⊥ + 2π̃ABDAζ⊥B − ΠABζAB − π̃AB∂⊥ζAB . (C.17)

Substituting furthermore ζ⊥A = DAξ
⊥ + hAB∂⊥ξ

B, and making use of the identities we
have derived in Appendix B one gets H = 0. To take into account the Lagrange multiplier
term consider the ansatz ζ⊥A = DAξ

⊥ + hAB∂⊥ξ
B + tA. We then have to solve

H = 2π̃ABDAtB
!

= −1

2

λ√
h

. (C.18)

Choosing tB = −DB
1

2∆
λ√
h

we see that we satisfy this equation. The addition of such a tB
to ζ⊥B does leave the momentum constraint (C.9) invariant, if we use that boundary Ricci
curvature tensor vanishes and spatial covariant derivatives commute. Hence the general
solution of the lapse and shift perturbations for the case where the boundary manifold is
flat, i.e., bR = 0 is given by

ζ⊥⊥ = 2∂⊥ξ
⊥ , ζ⊥A = DA

(
ξ⊥ − 1

2∆

λ√
h

)
+ hAB∂⊥ξ

B . (C.19)

In three dimensions or in the case for vanishing cosmological constant we get from (B.14)
the commutator

∂⊥
1

∆

λ√
h

=
1

∆
∂⊥

λ√
h

+
1

∆
K

λ√
h

= 0 (C.20)

where ∂⊥
√
h = −K

√
h and ∂⊥λ = 0. Hence, in three dimensions or in d ≥ 3 with vanishing

cosmological constant, the lapse solution can be accommodated by

ζ⊥⊥ = 2∂⊥ξ̂
⊥ = 2∂⊥

(
ξ⊥ − 1

2∆

λ√
h

)
. (C.21)
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C.2 Equations of motion in spherical coordinates

Here we will consider the diffeomorphism sector of the equations of motions with Lagrange
multiplier term (C.4) for the case with spherical boundary embedded in Euclidean flat
space–time, where we have non-vanishing intrinsic curvature. The metric in spherical
coordinates is given by

ds2 = dr2 + hABdy
AdyB = dr2 + r2dΩSd−1 , (C.22)

where dΩSd−1 is the metric on the spherical boundary. The extrinsic curvature is given by
KAB = 1

r
hAB whiles the Ricci curvature is bRAB = 1

(d−1)
bRhAB = (d−2)

r2
hAB, hence we have

the identities

RAB + 1
r
π̃AB = 0 , 1

2
∂⊥H

ABCD = −2
r
HABCD . (C.23)

Using the definitions of the Hamiltonian H in (C.8) and the divergence of the momen-
tum DAM

A in (C.12), we obtain

DAM
A +

1

r

(
H +

1

2

λ√
h

)
=

1

2
∆γ⊥⊥ − ∂⊥(ΠABγAB)− 1

2r
∂⊥(HABCD)DADBγCD

−1

r
ΠABγAB +

1

2r

λ√
h
. (C.24)

Now consider the induced perturbation with γAB ≡ ζAB restricted to the diffeomorphism
sector in (C.14). We can use the equations (B.10) and the form of the curvature tensor for
the sphere to express the following

1
2
∂⊥(HABCD)DADB(DCξD +DDξC) = 2(KCD

bRADBC + bRACKB
C )DAξB = 0 (C.25)

since bRADBCKCD = 1
r2
π̃AB holds for a spherical boundary. Using the last expression in

(C.23) and the fact that the left hand side of (C.24) vanishes, we get

1

2
∆ζ⊥⊥ = ∂⊥∆ξ⊥ +

1

r
∆ξ⊥ − 4

r
πABDADBξ

⊥ − 1

2r

λ√
h

. (C.26)

The commutator [∂⊥,∆] for the spherical boundary is given in (B.16) and hence the solution
for the lapse for a spherical boundary space–time is given by

ζ⊥⊥ = 2∂⊥ξ
⊥ − 1

r

1

∆

λ√
h

(C.27)
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Inserting the lapse solution (C.27) and ζ⊥A = DAξ
⊥ + hAB∂⊥ξ

B + tB into the ⊥⊥
component of the equation of motion (C.4), we get

H = −1

r

1

∆

λ√
h
π̃ABKAB + 2π̃ABDAtB = RABKAB

1

∆

λ√
h

+ 2π̃ABDAtB
!

= −1

2

λ√
h

. (C.28)

which is again solved by tB = −DB
1

2∆
λ√
h
. Thus the solution to the shift perturbations are

given by

ζ⊥A = DA(ξ⊥ − 1

2∆

λ√
h

) + hAB∂⊥ξ
B . (C.29)

These solutions can be inserted into the spatial–spatial part of the Einstein equations, and
one will find that these evaluate to zero, ĜAB = 0. This can be also expected from the
fact that the divergence of the Einstein equations, including the Lagrange multiplier term,
vanishes identically.

For the geometry of a sphere, we have the scaling properties ∆ = r−3∆̄,
√
h = rd−1

√
h̄

where ∆̄ and
√
h̄ are both independent of the radial coordinate r, and hence we have

∂⊥

(
1

∆

λ√
h

)
=

(4− d)

r

1

∆

λ√
h

. (C.30)

In summary, we obtain that for three dimensions, for all the backgrounds we consider in
chapter 3 of the thesis, the solutions are given by

ζ⊥⊥ = 2∂⊥ξ̂
⊥ , ζ⊥A = DAξ̂

⊥ + hAB∂⊥ξ
B (C.31)

with

ξ̂⊥ = ξ⊥ − 1

2∆

λ√
h

(C.32)

and ξ⊥ and ξA defined in (2.22).

C.3 Lagrange multiplier dependent boundary terms

We have considered the Einstein equations with Lagrange multiplier term

Ĝab =
1

4

λ(y)√
h
δa⊥δ

b
⊥ , (C.33)
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computed from G⊥⊥ and G⊥A equations, the lapse and shift perturbations γ⊥⊥ and γ⊥A.
In all the examples we consider, we find that the solutions of the diffeomorphism sector
can be expressed as

ζ⊥⊥ = 2∂⊥ξ
⊥ + β

1

r

1

∆

λ√
h

,

ζ⊥A = DAξ̂
⊥ + hAB∂⊥ξ

B , (C.34)

where

ξ̂⊥ = ξ⊥ − 1

2∆

λ√
h

, (C.35)

and β = 0 for background with a flat boundary and β = 1 for a spherical boundary. The
components ξa are understood as functionals of the spatial metric perturbations γAB, as
defined in (2.22).

Here we are going to evaluate the (second order) boundary term on solutions of the
form (C.34). We already know the result for λ=0 (see Appendix A.2), we therefore need
only keep track of the λ–dependent terms.

These terms only arise through the lapse and shift components. The only terms where
these appear in the second order contribution to the boundary action (C.1) are given by

ζAB
(
BAB⊥⊥

1 ζ⊥⊥ +BABC⊥D
2 ∇Cζ⊥D +BABCC⊥

2 ∇DζC⊥
)

= ζAB
(
−1

2
π̃ABζ⊥⊥ + (hAChBD − hABhCD)∇Cζ⊥D

)
= ζAB

(
1
2
π̃ABζ⊥⊥ −HABCDDCζ⊥D

)
(C.36)

where π̃AB = KAB − KhAB. For boundaries with vanishing intrinsic curvature ζ⊥⊥ is
independent of λ whiles for spherical boundaries we have bRAB = −1

r
π̃AB. Using the

definition of ΠAB in (2.23), we get that the λ−dependent terms are of the form

ζAB
(

1
2
π̃ABζ⊥⊥ −HABCDDCζ⊥D

)
= ζABΠAB

(
1

2∆

λ√
h

)
, (C.37)

for all the background examples we consider. We therefore obtain the λ−dependent bound-
ary term

1

2

∫
∂M

d(d−1)y
√
hε ζABΠAB

(
1

2∆

λ√
h

)
=

1

4

∫
∂M

d(d−1)y
√
hε (∆−1ΠABζAB)

λ√
h

=
1

4

∫
∂M

d(d−1)y ε λ ξ⊥ (C.38)
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Appendix D

Geodesic length to first order in
metric perturbations

We are interested in the geodesic distance between two fixed coordinate points, for a given
(Euclidean) metric. The full metric will differ from a background metric by a perturbation,
and we need the expansion of the geodesic distance in the metric perturbations to first
order.

The background metric is gab, and the background geodesic xa(τ) with τ ∈ [0, 1]. The
full metric is gab and the g–geodesic will be called x(τ) = x(τ) + δx(τ). We will assume
that x is affinely parametrized, so it has constant modulus w.r.t g and thus satisfies

∇ẋẋ
a = 0,

d

dτ
(ẋaẋbgab) = 0. (D.1)

These equations continue to hold under variations.

We will consider the variation of the square of the geodesic length

L2 =

∫ 1

0

dτ ẋaẋbgab . (D.2)

This is indeed the square length as z(τ) has constant modulus. The variation is given by

δL2 =

∫ 1

0

dτ
[
2
d

dτ

(
δxaẋbgab

)
− 2δxa

d

dτ

(
gabẋ

b
)

+ δxc∂cgabẋ
aẋb + ẋaẋbδgab

]
(D.3)

=2
[
δxaẋbgab

]1

τ=0
− 2

∫ 1

0

dτ δxa(∇ẋẋa) +

∫ 1

0

dτ ẋaẋbδgab , (D.4)
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APPENDIX D. GEODESIC LENGTH TO FIRST ORDER IN METRIC PERTURBATIONS

where second and third term in the first line combine to the covariant derivative in the
second line.

Since δx vanishes at the end points, we can drop the first term. Furthermore as x is an
affine geodesic, we can also drop the second term and are left with

δL2 =

∫ 1

0

dτ ẋaẋbγab , (D.5)

where δgab = γab.

With xa = (rin + (rout − rin)τ, 0, 0) we therefore have for the first order perturbation of
the geodesic length

`g := δL =
1

2(rout − rin)

∫ 1

0

dτ (rout − rin)2 γ⊥⊥ =
1

2

∫ rout

rin

dτ γ⊥⊥(r) . (D.6)
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Appendix E

Smoothness conditions for the metric
at r = 0

Consider the metric perturbations γµν expressed in Cartesian coordinates (x, y, t) such
that the components of the metric γµν are smooth at the origin and can thus be expanded
in a Taylor series in the coordinates. We shall transform the metric from flat into po-
lar coordinates (r, θ, t) and spherical coordinates (r, θ, ϕ) and study the behaviour of the
metric components near the origin r → 0. Let us denote the components of the metric
perturbations in polar or spherical coordinates by γab.

In polar coordinates, we have the transformation of the coordinates and the components
of the metric are given by

x = r cos θ, y = r sin θ, γab = γµν
∂xµ

∂xa
∂xν

∂xb
. (E.1)

The components of the metric in polar coordinates are therefore given by

γ⊥⊥ = γxx cos2 θ + γyy sin2 θ + γxy sin 2θ,

γθθ = r2
(
γxx sin2 θ + γyy cos2 θ − γxy sin 2θ

)
,

γtt = γtt,

γ⊥θ = r
(

1
2

sin(2θ)(γyy − γxx) + γxy cos 2θ
)
,

γ⊥t = γxt cos θ + γyt sin θ,

γθt = r (γyt cos θ − γxt sin θ) . (E.2)

Given that the metric components (γxx, γyy, γtt, γxy, γxt, γyt) are smooth functions near the
origin, a Taylor expansion of the metric perturbations around the origin for the thermal
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flat spinning space is given by

γab = a
(0)
ab + a

(1)
ab r + a

(2)
ab r

2 +O(r3) for ab = rr, tt, rt;

γab = a
(1)
ab r + a

(2)
ab r

2 +O(r3) for ab = rθ, θt;

γθθ = a
(2)
θθ r

2 +O(r3) . (E.3)

In spherical coordinates, we have the coordinate transformation

x = r sin θ cosϕ, y = r sin θ sinϕ, t = r cos θ . (E.4)

The components of the metric in spherical coordinates are given by

γ⊥⊥ = sin2θ(γxx cos2ϕ+ γyy sin2ϕ) + γtt cos2θ + γxy sin2θ sin2ϕ+ sin2θ(γyt sinϕ+ γxt cosϕ),

γθθ = r2
(
cos2θ(γxx cos2ϕ+ γyy sin2ϕ) + γtt sin2θ + γxy cos2θ sin2ϕ− sin2θ(γyt sinϕ+ γxt cosϕ)

)
,

γϕϕ = r2
(
sin2θ(γxx sin2ϕ+ γyy cos2ϕ)− γxy sin2θ sin2ϕ

)
,

γ⊥θ = r
(

1
2

sin2θ(γxx cos2ϕ+ γyy sin2ϕ− γtt + γxy(sin2ϕ+ cos2θ))−2 sin2θ(γxt cosϕ+ γyt sinϕ)
)
,

γ⊥ϕ = r sin2θ
(

1
2

sin2ϕ(γyy − γxx) + γxy cos2ϕ
)
,

γθϕ = r2 sin2θ
(

1
4

sin2ϕ(γyy − γxx) + γxy cos2ϕ
)

. (E.5)

The Taylor expansion for the metric perturbations in spherical space–time region around
the origin r = 0 is thus

γ⊥⊥ = a(0)
rr + a(1)

rr r + a(2)
rr r

2 +O(r3);

γab = a
(1)
ab r + a

(2)
ab r

2 +O(r3) for ab = rθ, rϕ;

γab = a
(2)
ab r

2 +O(r3) for ab = θθ, ϕϕ, θϕ . (E.6)

The Euclidean AdS3 space–time can be described as a hyperbolic hypersurface in a four
dimensional Euclidean manifold R4 with a pseudo-Riemannian metric ηµν = diag(−,+,+,+)1

described by

AdS3 = {xµ = (t1, t2, x1, x2) ∈ R(1,3) | − t21 + t22 + x2
1 + x2

2 = −1} (E.7)

The hypersurface can be parametrized by

t1 = cosh r cosh t, x1 = sinh r cos θ,

t2 = cosh r sinh t, x2 = sinh r sin θ . (E.8)

1In Lorentzian AdS3 space–time, the metric is R(2,2)
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Since we are only interested in the coefficients of the radial coordinates r, we get that
the metric perturbations for the AdS3 metric using the transformation (E.1) gives,

γ⊥⊥ = a1 cosh2 r + b1 sinh(2r) + c1 sinh2 r , γθθ = a4 sinh2 r ,

γ⊥θ = a2 sinh(2r) + b2 sinh2 r , γθt = a5 sinh(2r) , (E.9)

γ⊥t = a3 sinh(2r) + b3 cosh2 r , γtt = a6 cosh2 r .

where the coefficients ai, bi, ci, i = 1, · · · 6 are functions of angular coordinate θ and time
coordinate t. Performing a series expansion of the hyperbolic trigonometric functions of r
in the equations (E.9) above, we get

γab = a
(0)
ab + a

(1)
ab r + a

(2)
ab r

2 +O(r3) for ab = rr, rt, tt;

γab = a
(1)
ab r + a

(2)
ab r

2 +O(r3) for ab = rθ, θt;

γθθ = a
(2)
ab r

2 +O(r3) . (E.10)
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Appendix F

On effective actions

Here we will consider a quadratic dynamical system with two dynamical variables (x, y)
and integrate out one of these variables y in order to define an effective action for the
remaining variable x. We will then consider the case that the action for the variable y is
degenerate and show that the effective action will take a special form. This can be easily
generalized to systems with more variables.

We start with an action

Sλ =
1

2

(
x
y

)t

·M ·
(
x
y

)
+

(
x
y

)t

·
(
bx
by

)
+

(
(ρ− x)

0

)t

·
(
λ
0

)
(F.1)

with dynamical variables (x, y), “boundary values” (bx, by) and a Lagrange multiplier term,
which enforces x = ρ. We will assume that the matrix M is invertible.

Variation with respect to x and y leads to equations of motion, which are solved by(
x
y

)
= −M−1 ·

(
bx
by

)
+M−1 ·

(
λ
0

)
. (F.2)

We will now differentiate two cases, firstly the case (i) Myy 6= 0 (or in the higher–
dimensional case detMyy 6= 0) and secondly the case (ii), which is that Myy = 0.

In case (i), as

(M−1)xx =
Myy

detM
(F.3)
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we find that the solution for x is λ–dependent. Let us denote by x0[bx, by] the solution for
λ = 0. Then we have the solution

x = x0[bx, by] +
Myy

detM
λ , (F.4)

which we insert into the Lagrange multiplier equation ρ = x and solve for λ:

λ =
detM

Myy

(ρ− x0[bx, by]) . (F.5)

Inserting these solutions back into the action we find

Sλ =
sol. forx,y

−1

2

(
bx
by

)t

·M−1 ·
(
bx
by

)
+

1

2

(
λ
0

)t

·M−1 ·
(
λ
0

)
+ λ(ρ− x0[bx, by]− Myy

detM
λ)

=
sol. forλ

detM

Myy

(
1

2
ρ2 − ρ x0[bx, by]

)
+

1

2

detM

Myy

(x0[bx, by])
2 − 1

2

(
bx
by

)t

·M−1 ·
(
bx
by

)
,(F.6)

which can be adopted as effective action for the dynamical variable ρ = x.

For case (ii) we will however find that the solution for x does not depend on λ, but is
determined only by the boundary values x = x0[bx, by]. Thus we cannot solve the Lagrange
multiplier equation ρ = x = x0[bx, by] for λ. We have rather to understand this equation
as a condition on the parameter ρ. Evaluating the action on the solution we obtain

Sλ =
sol. forx,y

−1

2

(
bx
by

)t

·M−1 ·
(
bx
by

)
+ λ(ρ− x0[bx, by]) (F.7)

where λ remains a free variable, enforcing ρ = x0[bx, by]. The term quadratic in λ which
appears in (F.6) is now vanishing, as we have (M−1)xx = 0. Thus the on-shell action is just
given by the on-shell action of Sλ=0 plus the Lagrange multiplier term, with the solution
for x inserted.
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Appendix G

Spherical tensor harmonics

Here we define scalar, vector and tensor spherical harmonics. These spherical harmonics
are eigenfunctions of the Laplace operator and are furthermore characterized by their
divergence and their trace [197]. We denote by Y lm the scalar spherical harmonics (and
omit the indices (l,m)). Furthermore we consider here a unit sphere, that is fix r = 1. The
vector and tensor harmonics are defined by

ΨA = DAY, ΦA = εA
BDBY,

ΨAB = DBDAY + 1
2
l(l + 1)hABY, ΦAB = 1

2
(DAΦB +DBΦA) , ΘAB = hABY .(G.1)

with εθ
ϕ = sin−1θ and εϕ

θ = − sin θ.

We have the following properties for � = DADA:

�Y = −l(l + 1)Y ,

�ΨB = (1− l(l + 1))ΨA , �ΦB = (1− l(l + 1))ΦA ,

�ΨBC = (4− l(l + 1))ΨBC , �ΦBC = (4− l(l + 1))ΦBC , �ΘBC = −l(l + 1)ΘBC .(G.2)

Furthermore

DAΨA = −l(l + 1)Y , DAΦA = 0

DAΨAB = 1
2
(2− l(l + 1))ΨB, DAΦAB = 1

2
(2− l(l + 1))ΦB, DAΘAB = ΨB . (G.3)

Finally we have for the trace of the tensor modes

hABΨAB = 0 , hABΦAB = 0 , hABΘAB = 2Y . (G.4)
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Appendix H

Curved simplex areas as functions of
the dihedral angles

We use the drop vertex notation, where σ(k) is the tetrahedron obtained from the four-
simplex (ijklm) by dropping the vertex k and σ(kl) is the triangle obtained by dropping
vertices k and l. This triangle contains edges σ(ikl) and σ(jkl). Denote the 2D face angle
between these two edges by αij,kl, where the second index pair indicates the triangle σ(kl)
and the first pair indicates the vertices dropped to obtain each of the edges. Similarly,
the 3D dihedral angle in tetrahedron σ(k) between triangles σ(ik) and σ(jk) and hinged
at the edge σ(ijk) is denoted φij,k. Finally, the 4D dihedral angle between the tetrahedra
σ(i) and σ(j) and hinged at σ(ij) is θij.

Because all of these angles are defined in the appropriate tangent space many of the
properties of flat simplices can be carried over to the spherical case. For example, by
intersecting a small enough neighborhood of the vertex m (contained in simplex (ijklm))
by a sphere, the spherical cosine law yields

cosαij,kl =
cosφij,k + cosφil,k cosφjl,k

sinφil,k sinφjl,k
. (H.1)

Carrying out the analogous argument in one higher dimension also yields

cosφij,k =
cos θij + cos θik cos θjk

sin θik sin θjk
. (H.2)

Using these two results we can relate the 2D face angles and the 4D dihedral angles.
First note that all of these dihedral angles take values in the range θ ∈ [0, π] and we can
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ANGLES

safely exchange sin θ =
√

1− cos2 θ. Then after a little algebra, and briefly adopting the
shorthand cos θ ≡ cθ, we have

cαij,kl =
cθij + cθikcθjk + cθilcθjl − cθijc

2θkl + cθilcθjkcθkl + cθjlcθikcθkl√
(1− c2θil − c2θik − c2θkl − 2cθilcθikcθkl)(1− c2θil − c2θik − c2θkl − 2cθilcθikcθkl)

.

(H.3)
Combining this result with the spherical excess formula for the area of a triangle, At =
α + β + γ − π, gives a general expression for At(θ

σ). With the appropriate change to the
formula for the area, the same results apply to a finite simplex in the hyperbolic case.
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Appendix I

The Gram matrix and the derivatives
of its determinant

Consider an n-simplex σ. It has (n + 1) vertices vi, i ∈ {1 · · ·n + 1} and (n + 1) faces fi
(defined as the (n − 1)-simplex obtained by removing the vertex vi from the simplex σ),
each face with a corresponding volume Vi. Let n̂i be the outward unit normal to the face
fi. Each pair of faces fi and fj share a common hinge hij (the (n− 2)-simplex obtained by
removing the vertices vi and vj) and the angle between the unit normals n̂i and n̂j defines
the dihedral angle at the hinge hij

cos θij = −〈n̂i, n̂j〉 , (I.1)

where θij is the dihedral angle between the faces fi and fj. The Gram matrix is defined as
the symmetric matrix Gσ whose elements are given by

Gσ
ij = − cos(θσij) , Gσ

ii = 1.

Every closed flat simplex σ satisfies the closure constraint∑
i

Vi n̂i = 0 , (I.2)

where Vi is the volume of the face fi. Using (I.2), the Gram matrix has a null space given
by the vector with entries {Vi}, i.e.∑

j

Gσ
ijVj =

∑
j

〈n̂i, n̂j〉Vj =
∑
j

〈n̂i, Vj n̂j〉 = 0. (I.3)
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It follows that the Gram matrix is singular and det(Gσ) = 0. Any other null vector of
Gσ is proportional to Vi, therefore Vi is the only null vector for Gσ. For a non-degenerate
simplex the (n+ 1) vectors n̂i span an n-dimensional space, thus there are no further null
vectors for the Gram matrix in this case.

Using Jacobi’s formula for matrices, we can express the derivative of the determinant
of the Gram matrix in terms of its adjugate matrix adj(Gσ):

d det(Gσ) = Tr (adj(Gσ) dGσ) , (I.4)

and the second derivative is given by

dd det(Gσ) = Tr (dadj(Gσ) dGσ) + Tr (adj(Gσ) ddGσ) . (I.5)

The adjugate matrix of any matrix A is defined as the transpose of the matrix of cofactors
of A, with the cofactor matrix given by Cij = (−1)i+j detA(ij) where A(ij) is the matrix
A with the ith row and jth column removed. The adjugate matrix satisfies the relation

adj(A)A = A adj(A) = det(A)I , (I.6)

where I is the identity matrix.

For the second derivative of the Gram matrix we thus need the derivative of the adjugate
of the Gram matrix. The usual trick of taking the derivative of equation (I.6) does not
help, as Gσ is not invertible. We thus have to use the explicit definition of the adjugate in
terms of the determinants of sub-matrices and use again Jacobi’s formula

d(adj(Gσ))ij = (−1)i+jd detGσ(ji) = (−1)i+j Tr (adj(Gσ(ji)) dGσ(ji)) . (I.7)

Following [221] we will now determine the structure of the adjugate ot the Gram matrix.
As noted above the Gram matrix for a non–degenerate simplex has exactly one null vector.
For a symmetric matrix A which has a unique null vector N , the adjugate is given by

adj(A)ij = cNiNj , (I.8)

with c a constant that we will determine below.

Proof

Since A has only one null vector and det(A) = 0, the relation given in (I.6) implies that
the image of adj(A) is contained in the kernel of A, which is given by N . Hence adj(A) has
rank 1. As A and therefore adjA is symmetric we can conclude that adj(A)ij = cNiNj.
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By definition, the principal n minors of an (n+ 1)× (n+ 1) matrix A are given by the
diagonal elements of adj(A). If A has only one zero eigenvalue, then from the characteristic
polynomial, the product of non-zero eigenvalues equals the sum of the principal n minors
of A

c
∑
i

NiNi =
∏
λi 6=0

λi. (I.9)

For the Gram matrix the null vector is given by Ni = Vi and the adjugate is thus
adj(Gσ) = cViVj. The constant c is given by

c =

∏
λi 6=0 λi∑
k V

2
k

=
det(Gσ

ij + ViVj)

(
∑

k V
2
k )

2 . (I.10)

Therefore the derivate of the Gram matrix is

d det(Gσ) = 2c
∑
i<j

ViVj sin(θσij)dθ
σ
ij = 2c

∑
i<j

n

n− 1
V Vijdθ

σ
ij (I.11)

where we used the generalized law of sines (see e.g. [159,222] for a derivation)

sin θij =
n

n− 1

VijV

ViVj
, (I.12)

V is the volume of the simplex σ, and Vij is the volume of the hinge hij.

We thus have

∂ det(Gσ)

∂θij
= c′ Vij , c′ = 2

n

n− 1
V

det(Gσ
ij + ViVj)

(
∑

k V
2
k )

2 . (I.13)
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Appendix J

Edge lengths from areas and dihedral
angles of a tetrahedron

We derive a formula for the edge lengths of a tetrahedron expressed as a function of its
four triangle areas and any two of its dihedral angles along non-opposite edges. As was
explained in Appendix I, the Gram matrix has one null vector whose components are given
by Vi. For a tetrahedron this gives a set of four equations for the 3D dihedral angles φij∑

i 6=j

Vi cosφij − Vj = 0 (J.1)

where Vi is the area of the triangle obtained from τ by dropping the vertex i. We can
solve for four of the dihedral angles as a function of the four areas and two of the dihedral
angles.1 The remaining two dihedral angles must be such that they are non-opposite. In
general, for an n-simplex, n + 1 dihedral angles can be solved for and n of these must be
the dihedral angles of the n hinges of any face fi. As an example, for a tetrahedron τ with

1One might wonder why the closure relations (J.1), which constitute only 3 independent equations for
a tetrahedron, allow one to solve for 4 quantities. The reason is that the φij are also not independent;
they satisfy detGτ = 0.
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TETRAHEDRON

vertices (1, 2, 3, 4) one can solve for the 3D (interior) dihedral angles φij

cosφ14 =
V1 − V2 cosφ12 − V3 cosφ13

V4

, (J.2)

cosφ23 =
V 2

1 + V 2
2 + V 2

3 − V 2
4 − 2V1 (V2 cosφ12 + V3 cosφ13)

2V2V3

, (J.3)

cosφ24 =
−V 2

1 + V 2
2 − V 2

3 + V 2
4 + 2V1V3 cosφ13

2V2V4

, (J.4)

cosφ34 =
−V 2

1 − V 2
2 + V 2

3 + V 2
4 + 2V1V2 cosφ12

2V3V4

. (J.5)

Heron’s formula gives the area of a triangle as a function of its edge lengths. For the
triangle τ(i),

Vi =
1

4

√∑
j,k 6=i

V 2
ijV

2
ik − 2

∑
j 6=i

V 4
ij , (J.6)

where Vij is the length of the edge obtained by dropping the vertices i and j from τ . We
shall also make use of the generalized law of sines in three dimensions

Vij =
2

3

ViVj sinφij
V

, (J.7)

with V the volume of the tetrahedron. Using the generalized law of sines and Heron’s
formula, Eqs. (J.6) and (J.7), one can compute the volume of the tetrahedron as a function
of its four areas and all 6 dihedral angles. The result is given by (N.B. sinφii = 0)

V =
1

3
4

√√√√V 2
i

(∑
j,k

V 2
j V

2
k sin2 φij sin2 φik − 2

∑
j

V 4
j sin4 φij

)
. (J.8)

Substituting this formula into the generalized law of sines, one obtains a formula for the
edge lengths of a tetrahedron as a function of its four areas and all its dihedral angles. Then,
using the four solutions for the dihedral angles from (C2-C5), we get the edge lengths of the
tetrahedron as a function of the areas of the face triangles and two non-opposite dihedral
angles.

As an example, we compute the edge length e(34) of the tetrahedron τ(1, 2, 3, 4) as
a function of the four areas and the dihedral angles φ12 and φ13. Using the short hand
notation sinφij ≡ sφij, we have

V12 =
2
√
V1V2 sφ12

(2 [V 2
2 V

2
3 sφ2

12sφ2
13 + V 2

2 V
2

4 sφ2
12sφ2

14 + V 2
3 V

2
4 sφ2

13sφ2
14]− V 4

2 sφ4
12 − V 4

3 sφ4
13 − V 4

4 sφ4
14)

1/4
,

(J.9)
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where

sin2 φ14 = 1−
(
V1 − V2 cosφ12 − V3 cosφ13

V4

)2

. (J.10)
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Appendix K

Derivation of the brackets between
dihedral angles

.

The Poisson bracket on N copies of the dual to the Lie algebra of su(2) is

{f, g} =
N∑
I=1

~JI ·
(
∂f

∂ ~JI
× ∂g

∂ ~JI

)
, (K.1)

where each of the { ~JI}NI=1 can be thought of as an angular momentum vector ~JI =
(JI1, JI2, JI3). Consider the case N = 4, which gives the phase space of a tetrahedron

described in terms of the Minkowski area vectors ~AI = γ ~JI whose magnitudes AI are equal
to the tetrahedron’s face areas and whose directions are normal to the faces. (References [8]
of the main text provide additional details about this phase space and how it connects to
the geometry of the tetrahedron.) The (internal) dihedral angle φIK between the triangles
labelled by I and K is determined by

~AI · ~AK = −AIAK cosφIK .

Define B12,23 ≡ { ~A1 · ~A2, ~A2 · ~A3} and note that

B12,23 = A1A
2
2A3 sinφ12 sinφ12{φ12, φ23}, (K.2)

where we used the derivation property of the bracket. On the other hand, we can make
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use of Eq. (K.1) to compute

B12,23 =
∑
I

εijkJIi
∂

∂JIj
(A1mA2m)

∂

∂JIk
(A2nA3n)

= −γ ~A1 · ( ~A2 × ~A3) = −γ 9

2
V 2 (K.3)

where we drew on the following expression for the volume of a tetrahedron V 2 = 2
9
~A1 ·

( ~A2 × ~A3). This volume can be also computed through V = 2
3
l−1
IKAIAK sinφIK ,where lIK

is the length of the edge shared by triangles I and K. Using this formula twice gives

B12,23 = − 2γ

l12l23

A1A
2
2A3 sinφ12 sinφ23. (K.4)

Setting the two expressions (K.2) and (K.4) equal gives

{φ12, φ23} = − 2γ

l12l23

. (K.5)

Finally, noting that A2 = 1
2
l12l23 sinα12,23, where α12,23 is the angle between the edges

with lengths l12 and l23, yields the result quoted in the text, Eq. (6),

{φ12, φ23} = −γ sinα12,23

A2

. (K.6)

Of course, the minus sign in this result is just due to the choice of an increasing index
ordering for the bracket.
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Appendix L

Equations of motion from
Area-Angle action

We will show that the equations of motion coming from the area-angle Regge action eval-
uated on a constraint hypersurface coincides with the length Regge equations of motions.
To start, let us consider a version of the area-angle action given by

SAA1 =
∑
t

At εt(At′) +
∑
τ

∑
σ⊃τ

∑
i

λi(σ,τ)

(
φiτ − Φi

(σ,τ)(At)
)

(L.1)

where Φi
(σ,τ)(At) is the 3D dihedral angle in the tetrahedron τ as computed from the areas

in the 4-simplex σ. The Lagrange multiplier term λi(σ,τ), imposes the constraints (9.5) for

each bulk tetrahedra with i labelling two (non-opposite) 3D angles per tetrahedron φiτ
which is shared by two 4-simplices. Also, εt = 2π−

∑
σ⊃t θ

σ
t (At′) is the deficit angle hinged

at the triangle t and φiτ are the 3D angle variables .

A version without explicit 3D angle variables arises after integrating out φiτ . The
corresponding equations of motion demands that

λi(σ,τ) + λi(σ′,τ) = 0 (L.2)

where σ, σ′ are the two 4-simplices sharing τ . Reinserting these solutions into the action
(L.1) leads to

SAA2 =
∑
t

Atεt(At′) +
∑
τ

∑
i

λi(σ,τ)

(
Φi

(σ,τ)(At)− Φi
(σ′,τ)(At)

)
. (L.3)
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APPENDIX L. EQUATIONS OF MOTION FROM AREA-ANGLE ACTION

Note that we have suppressed discrete degeneracy parameters, which distinguish different
roots of the Area-Length system. Variation of the action (L.3) with respect to the areas
At (using Schläfli identity) gives

δSAA2

δAt
= εt(At′) +

∑
τ

∑
i

λiτ

(
∂Φi

(σ,τ)(At)

∂At
−
∂Φi

(σ′,τ)(At)

∂At

)
. (L.4)

Now, we have

∂Φi
(σ,τ)(At)

∂At
=

if τ⊂σ

∂Φi
τ (le)

∂le
· ∂L

σ
e (At)

∂At
(L.5)

where Φi
τ (le) is the 3D dihedral angles defined by lengths in τ and Lσe (At) are the lengths

computed in the simplex σ from its areas. Contracting the equations of motion (L.4)

with ∂At(le)
∂le

and evaluating on ‘geometric’ configurations, At = At(le), the constraint term
becomes

∂Φi
τ (le)

∂le
− ∂Φi

τ (le)

∂le
= 0 (L.6)

and hence drops out. Thus, we remain with∑
t

εt
∂At(le)

∂le
= 0 (L.7)

which give the length Regge equations of motion. As ∂At(le)
∂le

has left null vectors (corre-
sponding to area oreintations of the constraint hypersurface), there are more equations of
motions which involve λ’s and can be expected to therefore fix these Lagrange multipliers.
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Appendix M

Counting of length configurations

We consider a triangulation with certain edge lengths chosen to be equal and then compute
the number of allowed edge length solutions given locally independent discrete asymptot-
ically equidistant area spectra. To start with we consider one 4-simplex with vertices
(12345) and p = 2, 3, 4 length parameters. For p = 2, we set lij = x and li5 = y, where
i, j = 1, 2, 3, 4. For the p = 3 case we choose: lij = x, lmn = y and lim = z where
i, j = 1, 2, 3 and m,n = 4, 5. For p = 4 we have lij = w, li4 = x, li5 = y and l45 = z where
i, j = 1, 2, 3. We count all edge length solutions where the triangle areas take discrete
values At ∈ {1

2
, 1, · · · , N} for N ∈ N. The left panel of Figure M.1 shows a semilog plot

of the number of length solutions for a simplex having p = 2, 3, 4 length parameters. The
number of length configurations scale as N1.03p ≈ Np.

We also consider a gluing of two simplices with vertices σ = (12345) and σ′ = (12346).
For the shared tetrahedron we allow two length parameters u for the edges (12) and (34)
and v for the remaining four edges. All four areas of the tetrahedron therefore agree, and
we are left with one area parameter a = A(u, v, v). Here A(x1, x2, x3) denotes the area of
a triangle with edge lengths (x1, x2, x3). For the simplex σ we introduce additional edge
lengths w for edges (i5) with i = 1, 2, 3, 4. This introduces two more area parameters
b = A(u,w,w) and c = A(v, w, w), giving us three length and three area parameters for
σ. We make the same kind of choices for σ′, that is, w′ gives the length of the edges (i6)
leading to area parameters b′ = A(u,w′, w′) and c′ = A(v, w′, w′). After gluing the complex
has four lengths parameters (u, v, w, w′) and five area parameters (a, b, c, b′, c′).

We proceed to count the number of configurations with all areas valued in {1
2
, 1, · · · , N},

and which have a maximum deviation (9.14) for the pairs (Φτ,σ
ei
,Φτ,σ′

ei
) of 3d dihedral angles

in the shared tetrahedron. The right panel of Fig. M.1 shows the results for various choices
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APPENDIX M. COUNTING OF LENGTH CONFIGURATIONS
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Figure M.1: Log-linear plots of the number L of length configurations as a function of the
maximal area. (a) Count of length configurations with areas up to N in a simplex with
p length parameters. (b) The count for two glued simplices with four length parameters.
The dashed lines show N3, N4 and N5 power law scaling.

of the parameters β. For β = 0, where shape matching is imposed exactly, we find a scaling
N3. This is explained by the fact that requiring exact shape matching forces w = w′, and
thus we have only three parameters. Not imposing the shape matching conditions, we find
a scaling N5 reflecting the five area parameters for the two glued simplices. For β ≈ 0.15
we find a scaling of N4, see Fig. M.1.
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Appendix N

Triangulations with three and with
six 4-simplices

Take three 4-simplices with vertices (12345), (12356) and (13456) respectively, and glue
these around the shared triangle (135). Here all edges and all but the triangle (135) are in
the boundary. Thus we have one bulk triangle and no bulk edge.

We will assume some lengths to be equal, so that we have overall only three length
parameters: x = lij, y = lmn and z = lim, where i, j = 1, 3, 5 and m,n = 2, 4, 6. Corre-
spondingly, we have three area parameters a = A(x, x, x), b = A(x, z, z) and c = A(y, z, z)
where A(x1, x2, x3) denotes the area of a triangle with lengths (x1, x2, x3).

Note that with this special choice of boundary data the boundary areas (b, c) do not
determine the boundary lengths (x, y, z). To do so one also needs the bulk area a. In Area
Angle Regge calculus one has also 3D dihedral angles as boundary data. With the given
symmetry reduction, all boundary tetrahedra have the same geometry, determined by edge
lengths (z, y, z, z, x, z). We can choose a pair of non-opposite edges, both with length z.
Due to our choice of symmetric boundary data, the 3D dihedral angles φz for the z–edges
are all the same—thus we have boundary data (b, c, φz). These determine a bulk deficit
angle εa(b, c, φz).

The matching conditions (9.4) for the bulk tetrahedra are all satisfied due to our sym-
metry reduction. Thus, if we start from the AARC path integral (9.11), and integrate out
the bulk 3D dihedral angles, we will just obtain a multiplicative factor, given by the norm
of the coherent states Kτ (·,Φ).

We can now consider the AARC path integral with boundary, which, after integrating
out the bulk 3D angles, involves only a summation over one spin ja.
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APPENDIX N. TRIANGULATIONS WITH THREE AND WITH SIX 4-SIMPLICES

Alternatively, we can take two such complexes consisting of three 4-simplices each, and
glue these so that we obtain a triangulation of S4. After integrating out all 3D dihedral
angles we will have four area parameters, the areas b, c and the bulk areas a and a′ from
the two complexes respectively. We will compute the expectation value for the deficit angle
〈εa〉—while keeping the areas (a′, b, c) fixed. Classically, i.e. with sharp shape-matching
constraints and fixed (a′, b, c), these data determine the deficit angles εa′ and εa with
εa = εa′ .

The summation for the path integral thus involves only the bulk area parameter a.
There are two contributions to the amplitudes: the exponential of the (Area) Regge ac-
tion, as well as the inner product G(a, a′) between the coherent states, which impose the
matching constraints Φz(a, b, c) = Φz(a

′, b, c). (If we consider the path integral with bound-
ary this factor is given by the coherent state itself, peaked on Φz(a).) We approximate the
factor arising from these inner products between the coherent states by

G(a, a′) = exp

(
− 9

2σ2(Φ)
(Φz(a, b, c)− Φz(a

′, b, c))2

)
with

σ2(Φ) =
1

2

sinα(a, b, c)

(jb + 1/2)
+

1

2

sinα(a′, b, c)

(jb + 1/2)
. (N.1)

where sinα(a, b, c) = 2b/Z2(a, b, c) with Z(a, b, c) the length of a z-edge in the complex
with areas (a, b, c). The factor 9 in the exponential arises because we have 9 boundary
tetrahedra and therefore 9 inner products.

For the computation of the expectation value 〈εa〉(a′, b, c) we use

〈εa〉(a′, b, c) =
1

Z
∑
ja

εa G(a, a′)
∏
t

At
∏
σ

Aσ (N.2)

with

Z =
∑
ja

G(a, a′)
∏
t

At
∏
σ

Aσ (N.3)

and At and Aσ defined in (9.8) and (9.9) above.

The resulting expectation values are shown in Tables N.1 and N.2. Here we have set
jb = jc = j. Thus the pair (j, ja′) determine the scale as well as the deficit angle εa′ .
Classically we have εa = εa′ . To reproduce this result for the expectation value we need a
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APPENDIX N. TRIANGULATIONS WITH THREE AND WITH SIX 4-SIMPLICES

(j + 1
2
, ja′ +

1
2
, εa′) γ = 0.01 γ = 0.1 γ = 0.5

(30, 38.5, 0.52) 0.78− 0.03i 0.68− 0.26i 0.17− 0.32i
(100, 128, 0.54) 0.62− 0.062i 0.55− 0.19i 0.17− 0.27i
(300, 384, 0.54) 0.57− 0.02i 0.51− 0.17i 0.16− 0.25i

(1000, 1280, 0.54) 0.55− 0.01i 0.50− 0.16i 0.16− 0.24i

Table N.1: Expectation value for the deficit angle εa with classical value ≈ 0.5.

(j + 1
2
, ja′ +

1
2
, εa′) γ = 0.01 γ = 0.1 γ = 0.5

(30, 40, 0.08) 0.39− 0.02i 0.33− 0.15i 0.03− 0.14i
(100, 133.5, 0.06) 0.14− 0.01i 0.13− 0.05i 0.03− 0.06i
(300, 400, 0.08) 0.11− 0.00i 0.09− 0.03i 0.03− 0.5i

(1000, 1335, 0.06) 0.07− 0.00i 0.06− 0.02i 0.02− 0.03i

Table N.2: Expectation value for the deficit angle εa with classical value ≈ 0.07.

sufficiently large scale j and a sufficiently small value for the Barbero-Immirzi parameter,
in particular if we consider data leading to a small deficit angle.

In this example the averaging of the deficit angle with the G(a, a′) factor (but without
the At and Aσ factors) tends to over-estimate the curvature angle. This is due to a
certain asymmetry in the example that partially originates with the generalized triangle
inequalities, which restrict a to a ≤ 3

2
b = 3

2
c. The oscillatory behavior of the At and Aσ

factors tends to average out the expectation values—more so for larger Barbero–Immirzi
parameter γ, which leads to more oscillations over the interval where G(a, a′) is sufficiently
large, see Fig. N.1 and Fig. 9.1 (in the main text). Note that the expectation values
do have imaginary contributions. These arise as the G(a, a′) factor peaks away from the
stationary point of the action (where εa = 0), so the imaginary parts do not average out.
As the imaginary contributions are sourced by the oscillatory behaviour of the amplitudes,
they grow with γ. Having imaginary contributions on the order of the real contributions
indicates that the regime is unreliable, even if the (real part of the) expectation value
happens to be near the classical value.
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(b) j = 999.5

Figure N.1: The G(a, a′) factor (dashed) and the real part of the product of the amplitude
factors At and Aσ as a function of ja for εa′ ∼ 0.07 and different γ–values.
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