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Abstract

Sea ice covers over seven percent of the world’s oceans. Due to the effect of global warming,
Arctic’s ice extent has decreased significantly in the past decades. This reduction in sea
ice cover is opening new pathways for the international shipping community through the
Arctic. Due to the lengthening of the open water season, the Canadian Arctic has also
observed a three-fold increase in the shipping traffic in the past few years. Although the ice
extent has reduced, the risks and hazards involved in shipping through these regions are
still significant. To promote safe and efficient maritime activities in the Canadian Arctic,
Canadian Ice Service (CIS) provides information about ice in Canada’s navigable waters.
CIS uses Synthetic Aperture Radar (SAR) images as one of the prominent sources to gain
insights about the ice conditions in Canadian waters. Automated SAR image interpretation
is a complex task and requires algorithms to learn complex and rich features. Convolutional
neural networks (CNNs) have demonstrated their ability to learn such features and have
been used in various image classification, segmentation and object detection tasks. In this
thesis, we first propose a method to detect marginal ice zones (MIZs) in SAR images.
This method uses transfer learning combined with a multi-scale patch technique to detect
the MIZs. The multi-scale patch technique involves generating the segmentation masks
over different patch sizes for the same image. These masks are later stacked together and
thresholded to generate the final MIZ prediction mask for an image. Later we dive deep
into the MIZs and focus on segmenting sea ice floes. We propose a segmentation model
optimized for the task of ice floe segmentation in SAR images. The model is based on a
fully convolutional architecture with residual connections. In addition to this, a conditional
random field is also used as a post-processing step. The whole network is trained end-to-
end using a dual loss function. Qualitative and quantitative analysis suggests that our
model beats the conventional segmentation architectures for the task of ice floe detection.
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Chapter 1

Introduction

Sea ice is one of the greatest physical constraints for shipping activities in the Arctic. Due
to lengthening of the open-water season, maritime traffic in the Arctic has increased three-
fold over the past few years [1]. The story is similar for the Canadian Arctic as well, with
Hudson Strait being the most traffic prone area [3]. Despite the reduction in extent and
thickness of ice across the Arctic, the risks and hazards involved in Arctic shipping remain
significant.

The transition region from ocean water to sea ice is called the marginal ice zone (MIZ).
MIZs are defined as regions with sea ice concentration between 15% to 80% [65]. MIZs are
very dynamic regions containing ice floes, ice eddies and ice drift etc. As the ice melts, the
ice pack becomes more mobile, allowing hazards such as ice floes to break away. These ice
floes move at high speeds and can cause damage to vessels and man-made structures [8].
Ice charting is done by the Canadian Ice Services (CIS) for estimating ice concentration
to make management decisions for ensuring safety and efficient maritime activities in the
Canadian Arctic [93]. CIS uses data from various data sources for the production of ice
charts and development of guidelines for mariners. One of the prominent data sources
used for the task of sea ice monitoring is Synthetic Aperture Radar (SAR) which provides
high spatial resolution images irrespective of the daylight conditions [99]. Due to the
recent advancements in satellite technology and launch of new SAR satellites e.g. RCM
(RADARSAT Constellation Mission), the volume of available SAR data is increasing. For
the sea ice community, these data are typically interpreted by experts.

To process the vast volumes of available data in real-time, there is a need for automated
methods for sea ice detection. Previous studies by Steer et al. [101], Toyota et al. [109],
Holt et al. [41], Hwang et al. [46], Clausi et al. [18] and Zhu et al. [127] used image
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processing techniques coupled with machine learning on SAR images for the task of ice-
water segmentation. SAR images usually have an intrinsic speckle noise in them due to
the coherent nature of imaging process [20]. The presence of this speckle noise is one
of the main factors limiting the accuracy of the previously proposed methods [101, 127].
To circumvent this issue, instead of using SAR images some studies (Hall et al. [32], Lu
et al. [67], Heyn et al. [38, 39] and Wang et al. [115]) used data from vessel mounted
cameras for identifying ice floes. This approach does not have the issue of speckle noise
contamination. However, geometric error compensation is required to tackle the problem
of underestimation/overestimation of ice cover caused due to oblique sensor placement [67].

Recently, the use of data driven approaches such as neural networks has gained trac-
tion in the image processing community due to availability of large image datasets and
advancements in graphics processors. Neural networks have shown to outperform tradi-
tional machine learning techniques for various image processing tasks such as classification,
segmentation and object detection etc. [5]. Specific to the task of remote sensing, neural
network models have been applied for image classification, object detection, segmentation,
super-resolution and de-noising etc.

This research aims to develop automated methods to ease the tedious task of manually
interpreting SAR images for sea ice detection. In this thesis two approaches for sea ice
detection have been explored. We annotated a dataset of over 150 SAR images for the
task of MIZ and sea ice floe detection. The first approach focuses on detecting MIZs using
a convolutional neural network (CNN). Here, the convolutional neural network is used as
a fixed feature extractor (Chapter 3). Later, we propose a fully convolutional network
optimized for the task of ice floe segmentation. We performed various tests to demonstrate
the performance of our methods.

1.1 Thesis Contribution

The main contributions of this thesis are as follows:

• Network based transfer learning for marginal ice zone (MIZ) detection in SAR images
using convolutional neural networks (CNNs) was explored. Various classification
models were investigated for the above task. A mutliscale technique is proposed to
generate the MIZ segmentation masks. Results from visual inspection suggest that
the presented approach was successfully able to detect marginal ice zones .

• RUF (Residual-UNET-CRF): a tailored convolutional neural network for sea ice floe
segmentation in SAR images is presented. RUF features an architecture inspired from

2



residual connections [37], UNETs [87] and conditional random fields [106]. The pre-
sented method is trained using a dual loss function. In comparison to FCN8 [66] and
DeepLabV3 [14], RUF achieved an impressive average improvement in performance
with an F1 score of 74.52 (108.5% increment), mIOU of 66.26 (120.5% increment)
and mPA of 77.88 (110.3% increment).

1.2 Thesis Outline

The remainder of thesis is organized as follows: In Chapter 2 background related to sea
ice, remote sensing, convolutional neural networks, various classification and segmentation
models, and transfer learning is discussed. Next, the network based transfer learning
approach for marginal ice zone detection is presented in Chapter 3. Later in Chapter 4,
RUF architecture for ice floe segmentation is explained. Finally, in Chapter 5, summary
and conclusion of this thesis are presented.
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Chapter 2

Background

This chapter is divided into two sections, sea ice remote sensing and convolutional neural
networks (CNNs). The first section provides the background regarding sea ice, marginal ice
zones (MIZs) and, synthetic aperture radar (SAR). The second section provides the back-
ground of convolutional neural networks along with various classification and segmentation
architectures used in this study. In the last section various transfer learning techniques are
discussed.

2.1 Sea Ice and Remote Sensing

2.1.1 Sea Ice

Sea ice occupies about 7 percent area of the world’s oceans [112]. Even though sea ice is a
local phenomenon occurring near the polar regions of the earth, it has a prominent impact
on global climate, flora, and fauna. Moreover, sea ice impacts the global economies as it
has a significant impact on polar navigation and resource extraction.

The formation of sea ice is a thermodynamic process. The freezing of sea-water leads
to the formation of tiny crystals called Fazil. Most salt and other ions in the seawater
drain out upon crystallization. As ice floats on water, the salinity of water under the sea
ice cover becomes higher than normal, and this water freezes at lower temperatures due
to dissolved impurities [72, 107]. This layer of cold water creates a barrier between the
warmer ocean water and the newly formed sea ice, allowing the ice sheet to grow from
below and increase in thickness [81]. When sea ice grows, salt and other ions which were
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Figure 2.1: An image of Arctic sea ice. (Photo by Paul Nicklen, National Geographic
Creative [76])

earlier expelled during the formation of the ice layer get trapped in the ice [107]. These
ions crystallize and concentrate together to form brine droplets that give sea ice its opaque
and porous texture [107].

When ice floats on the ocean it becomes a part of the oceanographic system, which
means that it is in constant motion. Convergent and divergent forces act on sea ice due
to winds and currents. Divergent forces release ice pressure and lead to thinning of ice
while convergent forces increase the thickness via ridging as illustrated in Fig. 2.2. These
dynamic forces lead to pressured ice, the formation of ridges and breakup-up of icepack
into floes; posing hazards for vessels and offshore structures [108, 60].

2.1.2 Marginal Ice Zones (MIZs)

Sea ice concentration is defined as the coverage of sea ice in a given geographic area, and
it ranges from 0 percent to 100 percent. The transition regions from consolidated ice to
open water areas are called Marginal Ice Zones.
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Figure 2.2: Illustration of different processes contributing changes in sea ice thickness.
Reproduced from AMAP, 2012. [73]

MIZs are regions of intermediate ice concentration (eg. between 15% and 80%) [65].
In these regions, there are interactions between air, ice, and ocean. The MIZ cover is very
sensitive to the wind. When the wind is off the ice cover, strips of ice bands drift and
diffuse away from the main ice cover. However, the ice edge is very sharp when the wind
is towards ice cover. MIZs have large seasonal and year-to-year variations in cover. In
summers, waves can penetrate deep into the ice cover breaking it into ice floes. These ice
floes are discrete masses of frozen seawater. Their lateral sizes span orders of magnitude,
from small ice floes of the order of centimeters to fused ice floes with size on the order
of kilometers. The ice floes are known to cause ice jams and damage the hulls of ships.
Detection of ice floes is important for managing offshore Arctic operations such as:

• Initializing ice-ocean models and validation of generated results [23, 70, 91, 92].

• Detection of hazards for maritime traffic [78, 69].

• Provide an early warning for a case of ice compaction event [116, 78].

• Conduct empirical analysis for estimation of ice load on stationary structures [55, 78].
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2.1.3 Synthetic Aperture Radar (SAR)

Synthetic aperture radar (SAR) is a form of radar that uses ‘active’ remote sensing tech-
nology in the microwave region (low frequency e.g. 5 GHz) to capture images. SAR sends
electromagnetic radiation pulses to the ground and collects the back-scatter as measure-
ments. Due to the active nature of measurements, SAR does not require solar illumination
for scene capture around the globe and can be used irrespective of daylight conditions.
SAR systems have all-weather capability as they use longer wavelengths than optical sys-
tems, allowing them to penetrate clouds and haze to acquire images [99]. To capture
images of large areas at high resolutions, SAR systems use the motion of radar antenna
along with signal processing to ‘synthesize’ the radar’s aperture allowing it to create high-
resolution images with relatively small antennas. These characteristics make SAR systems
an optimum candidate for remote sensing operations in the Arctic, where clear skies are
scarce.

SAR operates at swath widths between 18 and 500 km, and spatial resolutions be-
tween 1 and 1000 m. This property allows them to be used for observing both regional
and local variations in the sea ice cover parameters. Finally, as SAR systems measure
back-scatter from the transmitted radar pulses, this allows data collection in different po-
larization modes. Polarisation is the orientation of electromagnetic radiation transmitted
and received by the antenna. SAR systems have four polarisation configurations:

• HH. Transmission: Horizontal, Reception: Horizontal

• HV. Transmission: Horizontal, Reception: Vertical

• VH. Transmission: Vertical, Reception: Horizontal

• VV. Transmission: Vertical, Reception: Vertical

HH and VV are called like-polarised, as transmission and reception polarisation is the
same. HV and VH are called cross-polarized, transmission, and reception polarisation
are different. SAR systems like RADARSAT-2 can coherently transmit and receive both
horizontal and vertical polarization. Different polarization aid in gathering different but
correlated information about the same surface. Scattering of radiation from a given sur-
face depends upon the polarisation of the incident radiation. Using multiple polarization
signatures may help in selecting the optimum polarization for imaging a particular feature
and to differentiate between different features of interest.

Canadian Ice Service (CIS) utilized data obtained from RADARSAT-2 satellite to mon-
itor the environment, manage natural resources and perform coast line surveillance from
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April 2013 till June 2020. Some relevant specifications of the RADARSAT-2 satellite are
given below:

• High spatial resolution: 1 m - 100 m (depending on operation mode)

• Swath width: 18 km - 500 km (depending on operation mode)

• Polarisation: Single, Dual or Quad

• Sensor specifications: C-band wavelength 56 mm, frequency 5.4 GHz

2.1.4 Sea ice and SAR imagery

SAR systems image a surface by measuring the back-scatter off the medium. This back-
scatter comprises of surface scattering and volume scattering. Surface scattering occurs on
the surface boundary between two mediums, while volume scattering occurs upon penetra-
tion into the medium. In the case of mediums with high ion concentration (ocean water,
young sea ice, wet snow), the dielectric constant is high. Materials with a higher dielectric
constant exhibit a greater attenuation to the penetrating electromagnetic fields, thus very
low volume scattering. The dielectric constant is a dimensionless complex quantity with
real and imaginary parts. The amount of surface scattering depends upon the roughness
of the surface; such that, rougher surfaces have a stronger back-scatter.

For sea ice observations, the main frequency bands covered by SAR are L-band (wave-
length 150 - 300 mm, frequency 1 - 2 GHz, C-band (38 - 75 mm, 4 - 8 GHz), X-band (24
- 38 cm, 8 - 12.5 GHz) and Ku-band (17 - 24 mm, 12.5 - 18 GHz). The appearance of sea
ice in SAR images is affected by the radar polarization, viewing geometry, frequency, of
the ice type, noise intensity, and spatial resolution [111, 4, 25]:

• Polarization: Ocean clutter is better suppressed in HH polarization than VV po-
larization. Hence, HH polarization is preferred for differentiating between ice and
water. During the presence of high wind speeds, ocean water can appear brighter
than sea ice in like-polarization. In such cases, cross-polarization can be used [56, 25].

• Incidence angle: As incidence angle increases the contrast between the appear-
ance of rough and smooth ice increases. HH polarization is strongly effected by the
incidence angle than VV polarization [51].
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• Frequency: Penetration depth of L-band is up to the depth of tens of centimeters,
while that of C-band and X-band is of the order of centimeters [33, 27, 10]. X-band
is more sensitive to the surface and sub-surface layer properties than C-band due to
lower penetration. L-band is able to better differentiate between structures such as
brash ice, ridges, and rubble than C-band.

• Noise intensity: Minimum detectable radar intensity determines the noise intensity.
In cross-polarization modes, the back-scatter intensity of both smooth young sea
ice and open water can fall below the noise intensity. Thus, making it difficult to
differentiate between early stages of ice growth [25].

• Spatial resolution: To obtain detailed information about the ice surface, spatial
resolution better than 10 m is required. Data products of higher spatial resolutions
have narrower swaths. But, wider swaths are preferred for operational mapping along
shipping routes, with the drawback that smaller ice structures cannot be recognized
in the coarser spatial resolutions [25].

2.1.5 Study Area

The geographical area under study is comprised of Hudson Strait and Ungava Bay located
in Eastern Canada, and their outflow into the Labrador Sea in the North Atlantic. A
picture of this area is shown in Fig.2.3. Hudson Strait links the Hudson Bay with the
Labrador Sea and the Atlantic Ocean. Hudson Strait serves as the passage between north-
ern seaports of Ontario and Manitoba with the Atlantic Ocean. Hudson Strait on average
is 150 km wide with a minimum width of 70 km at the eastern end [26]. The strait a
steep-sided U-shaped profile and ranges from 300 to 900 m in depth. Hudson Strait has a
two-way circulation system. Seawater from the Labrador Sea runs from east to west along
the northern half of the strait into the Hudson Bay, while fresher water with lower salt
content leaves the strait from the southern half [103, 102]. The net volume of flow (the
difference between outflow and inflow) through the Hudson Strait is about 42000 cubic
meters per second into the Atlantic Ocean.

Hudson Strait’s ice cover lasts for about 8 months of the year. A typical ice cycle for the
formation and melting of sea ice in this area is as follows: The freeze-up usually progresses
from the western end of the Hudson Strait towards the eastern end. First sea ice intrusions
can be observed in later October and early November through the Foxe Channel. In situ
freeze-up is observed in mid-Novermber with the formation of land-fast ice along the coasts
of Baffin Island, Quebec, and Ungava Bay [42, 95]. By early December most of the Strait
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Figure 2.3: Geographic area of study including Hudson Bay, Hudson Strait, Ungava Bay
and Labrador Sea. Red polygon represents the geographic extent of a SAR scene described
below.

is covered with drift ice, except the land-fast ice in the Ungava Bay inlets and Baffin Island
coasts. The thickness of land-fast ice can reach a maximum of 110 cm to 160 cm [95]. The
area witnesses a slow melting of the ice pack in early July, which increases rapidly though
summer months [90]. There is a complete meltdown of sea ice usually during the second
week of August, with the availability of vast open waters [12].

A sample scene from the dataset is shown in Fig. 2.4. This scene captures the eastern
end of the Hudson Strait and the tip of Labrador. The scene contains different ice types,
water, and land. It can be observed that the smooth surface of the ocean appears very dark
while the rough land and ice appear quite bright. As HH scenes are strongly affected by
the incidence angle, water in the scene appears dark in the far left while it appears bright
in the far right. As the scene is captured in late May, a thick ice cover with embedded
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Figure 2.4: A sample RADARSAT-2 SAR scene captured on May 26, 2011 in HH polari-
sation. Akpatok island (blue) and Resolution island (green) are highlighted for reference.
Some floes embedded in ice cover are marked with a yellow oval. Some floes with homoge-
neous boundaries are marked with red ovals.

floes (marked with yellow oval) can be observed next to the Akpatok island. Marginal ice
zones containing ice eddies and ice floes can be seen throughout the image. But it is very
difficult to discern between different floes (marked with red ovals next to Akpatok island
and Resolution island). It can be noticed that the ice floes show a lot of variation both
in their shapes and sizes. Due to the complex nature of such scenes, the use of intelligent
models for detecting various features in SAR images arises.
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2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network which are used to
process data that has a grid-like topology [30]. Time-series data can be thought to be
composed of 1-D grids, while images being 2-D grids and videos as 3-D grids. Currently,
CNNs are one of the most popular image recognition architectures. CNN architectures were
initially inspired from understanding of the cat visual cortex [45]. In the visual cortex, each
neuron is sensitive to a specific region in the visual field. The organization of neurons is in
a layered architecture, which leads to a belief that different layers are used to understand
different levels of abstraction in the images. This principle is not much different from
machine learning’s hierarchical feature extraction. A typical CNN architecture comprises
of convolutional layer, pooling layer, activation layer, batch-normalization, dropout, and
fully connected layer.

2.2.1 Convolutional Layer

The name ‘convolutional’ come from the utilization of the mathematical convolution op-
eration (a linear operation/activation). The discrete time convolution of two 1-D discrete
time signals f and g is defined as follow:

c[n] = f [n] ∗ g[n] =
∞∑

v=−∞

f [v]g[n− v], (2.1)

such that n & v are variables with discrete values. In case of a 2-D convolution the
above operation becomes:

c[m,n] = f [m,n] ∗ g[m,n] =
∞∑

v=−∞

∞∑
u=−∞

f [v, u]g[m− v, n− u], (2.2)

such that m, n, u &, v are variables with discrete values. In case of an image, these values
would range between the image dimensions and not (−∞,∞). A visual example of 2-D
convolution is shown in Fig. 2.5.

2.2.2 Activation Function Layer

Convolutional layer linearly maps the input to output. As most of the real world problems
involve some degree of non-linearity, a non-linear property must be induced in the neural
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Figure 2.5: An example of 2-D convolution.

networks. Activation functions are responsible for inducing this non-linearity. Activation
functions are an abstraction of action potential in a neuron; such that these are responsible
in deciding if a neuron should fire or not. In case of neural networks, the activation function
decides if the information received from the neuron in previous layer is relevant to the task
or not. The activation function ϕ is applied element-wise to input x with weight W and
bias b. The output C becomes:

C = ϕ(W ∗ x+ b). (2.3)

Currently, a default recommendation for the activation function is the rectified linear
unit or ReLu [74, 50]. In the past, neural network architectures have used sigmoid and
tanh as activation functions. ReLu activation function can be defined as:

ϕ(z) = max(0, z). (2.4)

ReLu is simply a max operator, such that if the input z is greater than 0, then the
information is useful, else not. ReLu is a piecewise linear function with two linear pieces
and allows the model to be easily optimized using gradient-based methods. The output
of ReLu is not squished between any bounds as in the case of sigmoid and tanh, avoiding
the vanishing gradient problem [30]. A visual representation of ReLu activation function
is shown in Fig. 2.6.
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Figure 2.6: ReLu non linearity visualized.

2.2.3 Pooling Layer

Pooling operation is applied to the feature maps obtained from the non-linear activation
layer. Pooling is a spatial reduction operation that produces another layer with the same
depth of that of the original layer [126]. The values in the new layer represent the statistical
summary of the nearby regions in the original layer.

Figure 2.7: Illustration of max pooling operation on a 4× 4 layer with a region/kernel size
of 2× 2.

As the summary of the statistics of a local region (k × k pixels) in the previous layer
is placed 1 pixel apart in the new layer, the computational efficiency of the next layer is
improved by roughly k times [30]. Pooling is applied to the input image or feature map by
dividing it into non-overlapping patches and then sampling each patch. A visual example
of max pooling operation is shown in Fig. 2.7.
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2.2.4 Batch Normalization (BNorm) Layer

Batch normalization (BNorn) [48] is a type of adaptive reparameterization, devised to
improve the training of models with many layers. BNorm addresses the problem of vanish-
ing and exploding gradient where the activation gradients of the consecutive layers either
increase or decrease in magnitude.

Considering the output of previous layer v as a batch with m examples, such that
v(1), v(2), v(3), ...v(m) are the m activation values. We calculate the mean(µ) and standard
deviation(σ2) for the given batch and normalize the input v as:

µ←− 1

m

m∑
i=1

v(i), (2.5)

σ2 ←− 1

m

m∑
i=1

(v(i) − µ)2, (2.6)

v̂(i) ←− v(i) − µ√
σ2 + ε

.

where ε is added to regularize the cases with same activations. For better optimization,
two trainable parameters, a shift(α) and scale(β) are applied to v̂(i) [48]:

a(m) ←− αv̂(i) + β. (2.7)

2.2.5 Dropout

Dropout [100] uses probability to drop certain neurons in a network while training. A node
is dropped from the network with probability p, where p is a parameter. These nodes are
dropped temporarily. Dropout is used as a regularizer in the network. It can be thought
of as an ensemble method as dropping various neurons creates different networks.

2.2.6 Fully Connected Layer

Multiple fully connected layers can be connected to the final spatial layer such that each
neuron in the previous layer is connected to the next layer. Each fully connected layer
consists of matrix multiplication of input from previous layer xl−1, similar to equation 2.3:

Cl = φl(Wlxl−1 + bl), (2.8)
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where, Cl is the output, Wl are the weights and bl is the bias of layer l in the network.

Since all the neurons in both of the layers are densely connected, the number of trainable
parameters increases rapidly when fully connected layers are used in a network.

2.2.7 CNN Architecture

A typical CNN architecture combines the components explained above; various convolution
and relu layers are stacked together, followed by a pooling layer. The last layer of the
network is application-specific. In case the task is classification, the last layer is composed of
a fully connected layer. While for the task of segmentation, the last layer is a convolutional
layer, resulting in a fully convolutional network. Batch Normalization and Dropout layers
are also incorporated in the architecture as explained above to enhance model training and
generalization abilities.

2.3 Classificaiton

Classification in terms of computer vision refers to the process of categorizing various
input images to given classes. In this research, CNN based image classification networks,
namely VGG, ResNet, and DenseNet have been used. Brief details about each network are
provided below:

2.3.1 VGG

VGG was one of the top-performing networks for the ISLVRC 2014 competition and was
developed by Simonyan and Zisserman [98]. VGG focuses on reducing the convolutional
kernel sizes but increasing the network depth with more layers. VGG architecture uses a
stacked configuration of 3×3 kernel to simulate the receptive field of 5×5 and 7×7 receptive
fields. A deeper network has more nonlinearity as compared to a shallower network due to
the presence of a greater number of ReLu layers [2].

For comparison, three stacked convolutional layers with kernels of size 3 × 3 require
3(32C2) = 27C2 parameters, in place of one convolutional layer with kernel size 7 × 7,
that requires 72C2 = 49C2 parameters. Therefore, the number of parameters are reduced
drastically and can be put to use in increasing the model depth.
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The problem with a greater number of layers is that, as the number of layers increases,
the sensitivity of parameter weight initialization also increases. This may cause instability
in the model and impede training. To tackle this issue VGG trains a subset of layers first,
before training the model in the deeper configuration. Refer to [98] for more details.

2.3.2 ResNet

ResNet was proposed by He et al. [37]. In most of the feedforward network the lth layer is
connected to (l+ 1)th layer, but ResNet architecture connects lth layer and (l+ r)th layer
where r > 1. Fig. 2.8 shows a residual block with this behavior. These skip connections
allow copying between layers which enables efficient gradient propagation through the
network. Zagoruyko et al. [121] supports increasing the number of filters in each layer
rather than increasing the number of layers to improve the performance. Refer to [37] for
more information.

Figure 2.8: Residual learning block. Reproduced from [37].

2.3.3 DenseNet

DenseNet [44] concatenates all the feature maps of previous (l− 1) layers to the lth layer.
This architecture is similar to ResNet as information from previous layers is used via skip
connections to extract different levels of abstraction. Instead of adding the output from the
previous layer in case of ResNet, DenseNet concatenates the output from previous layers
Refer to [44] for more information.
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2.4 Segmentation

Segmentation in terms of computer vision refers to the process of performing pixel-level
labeling about given object categories for all the pixels in an image. In this research, we
focus on semantic segmentation which is the task of clustering various parts of an image
together that belong to the same object category. UNET and Conditional Random Fields
(CRFs) architectures used in this thesis are discussed in the next section.

2.4.1 UNET

UNET was proposed by Ronneberger et al. [87] for segmenting biomedical images. UNET
architecture comprises of two parts, an encoder (downsampling path) and a decoder (up-
sampling path). UNET is a fully convolutional architecture, the encoding path extracts
features using 3× 3 convolutions, reducing the dimensions for feature maps. The decoding
path increases the dimensions of feature maps while reducing the feature maps. Simi-
lar to DenseNet, UNET uses skip connections for transferring information across various
encoding-decoding blocks. Skip connections help in integrating the location information
in the downsampling paths to the contextual information in the upsampling paths. Refer
to [87] for more information.

2.4.2 Fully-Connected Conditional Random Fields: FC-CRFs

In a semantic segmentation task, the pixel-wise predictions of the CNN models are prone
to having inaccurate boundaries. To reduce inaccuracies in the boundary, global and
contextual information models such as CRFs can be used in conjunction with the CNNs
[14].

In the case of semantic segmentation the label of each pixel is xi ∈ {1, ...., X}, where i
is a pixel in image I with N pixels. In a fully connected CRF, as one pixel in the image is
connected with all other pixels, the model energy function can be written as

E(x̂|I) =
N∑
i=1

Ψi(x̂i|I) +
N∑
i=1

N∑
j=1

Ψi,j(x̂i, x̂j|I). (2.9)

The unary potential Ψi(x̂i|I) = − logP (xi), where P (xi) is the probability of label as-
signment at pixel i as computed by the CNN. The pairwise potential accounts for joint
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distribution of pixel pairs i, j as

Ψi,j(x̂i, x̂j|I) = µ(xi, xj)

[
wα exp

(
−
|pi − pj|2

2θ21
− |ci − cj|2

2θ22

)
+wβ exp

(
−
|pi − pj|2

2θ23

)
, (2.10)

where µ(xi, xj) is a compatibility transformation such as in Potts model: µ(xi, xj) = 1 if
xi 6= xj, and zero otherwise. The expression contains two Gaussian kernels. The bilateral
kernel depends on both pixel positions (p) and RGB colour (c), whereas the unilateral
kernel depends only on pixel positions. Bilateral kernel forces the pixels within close
proximity and similar color to have similar labels, while the unilateral kernel emphasizes
on edge smoothness. wα, wβ, θ1, θ2 and θ3 are the learnable parameters in the model. Refer
to [57] for more information.

2.4.3 Convolutional Conditional Random Fields: Conv-CRFs

Conv-CRFs have an add-on assumption of conditional independence over the FC-CRFs.
In the Conv-CRF model, two pixels i, j are considered conditionally independent when
their L1 norm is greater than a threshold: d(i, j) > k where d(·) is the L1 norm and k is
the distance threshold or the filter size. It means that the pairwise potential is zero for all
the pixels which are at a distance greater than the threshold k. Hence, energy function in
equation 2.9 can be rewritten as

E(x̂|I) =
N∑
i=1

Ψi(x̂i|I) +
N∑
i=1

k×k∑
j=1

Ψi,j(x̂i, x̂j|I). (2.11)

This greatly reduces the computational complexity of the pairwise potential. Teichmann
et al. also implemented an efficient message passing framework similar to 2d convolutions
of CNNs that can be efficiently implemented using convolutional libraries [106].

The capability of Conv-CRFs to learn Gaussian features is demonstrated by [106], where
the input features of the unilateral/smoothness kernel are initialized same as hand-crafted
features [59], but are later learned and modified during the CRF training.

2.5 Using Pre-trained Models

Supervised training of deep learning models requires lots of labelled data. Image labelling
is a demanding task and requires personnel armed with domain specific knowledge (similar
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Figure 2.9: Illustration of network based transfer learning from Domain X to Domain Y.
Model X is pre-trained for Task X. Model Y is build over Model X by freezing some of the
initial layers and training the later layers by back-propagation.

to the issue faced by CIS for ice charting). For most of the practical problems, it is rare to
find a labelled dataset of sufficient size to train a deep neural network of choice. A popular
technique to solve this issue is by the use of transfer learning. A visual representation of
learning using pretrained models is provided in Fig. 2.9.

Transfer learning is a machine learning technique that aims on applying the knowledge
gained by solving one problem to solve a different but related problem. It has been observed
that the earlier layers of a deep CNN learning primitive features such as Gabor features,
color segments and edges [120, 2], while the deeper layers learn more complex features
related the specific task. Deeper features (specific to dataset) are much more sensitive to
task at hand than the primitive features (common across various image datasets), which
are learned in almost all tasks [120, 2]. This knowledge allows us to use a pre-trained model
by fixing the learned weights for some of it’s initial layers and training only the weights of
the deeper layers for our dataset. The two major transfer learning scenarios are as follows:

• Fixed-Feature Extraction: When a CNN is used as a fixed feature extractor, the
last layer is replaced by another task-specific layer. Assuming total n layers in the
network, weights of the initial n − 1 layers will be kept frozen (they will not be
updated) during training. While, only the newly added last layer or the softmax
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classifier is trained on the available datatset.

• Fine-Tuning: In this scenario, weights of the last n layers (which were frozen other-
wise) are updated during training. The number of layers of be trained depends upon
the size of dataset and the number of trainable parameters in the layers. Fine-Tuning
is prone to overfitting when an excessive number of layers are trained on a relatively
smaller dataset. To avoid this issue, the learning rate of the network is kept quite
small.

2.6 Sea Ice and Deep Learning

Sea ice charting is typically done by national ice services to identify the boundaries between
ice and open water, and to identify the dominant ice types an ice concentration for a given
region. In the past years, due to the improvement in both aerial and remote sensing
sensors, numerous studies using sea ice data have emerged [34]. These studies cover ice-
water segmentation [63, 40, 117], ice concentration estimation [113, 16, 52], ice thickness
estimation [97, 53] and ice type classification [122, 79] in detail.

For the task of ice floe detection, various researchers have used different data platforms.
Studies conducted by Hall et al. [32], Lu et al. [67], Heyn et al. [38, 39] and Wang et
al. [115] used vessel mounted camera sensors to obtain photographic data to identify ice
floes. However, due to the oblique sensor placement, accurate measurement of sensor
height, tilt, and focal length are required to calculate the geometric distortion. Moreover,
compensation to ship sway caused due to possible floe collisions and far range shadowing is
required for the success of these methods. Hence, later studies used SAR images to avoid
such problems.

Images obtained from SAR provide a continuous stream of high spatial resolution
data irrespective of the weather conditions and natural illumination. Earlier studier
[101, 109, 41, 46, 18, 127] aimed to solve the problem of ice floe identification in two steps.
The first step involved the ice-water segmentation while the second step involved delin-
eating different floes. Studies by Steer et al.and Toyota et al. [101, 109] involved different
thresholding methods for sea ice segmentation followed by morphological dilation/erosion
operations to split different floes. Holt et al. [41] used local dynamic thresholding [35]
and shrinking/growing algorithm [110] for floe segmentation. Hwang et al. [46] proposed
a segmentation technique using Kernel Graph Cuts (KGC) [88] for ice-water segmentation
and a combination of distance transformation, watershed [54] and a rule-based boundary
re-validation processing for floe splitting [85]. Graphical models such as Markov Random
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Field and Conditional Random Field have also been used for the task of sea ice segmenta-
tion [18, 127]. Due to the presence of speckle noise in SAR images, it is quite difficult to use
traditional machine learning techniques. Depending on sea ice conditions, incidence angle,
and sea surface roughness, SAR image distributions can vary from Gaussian to Gamma.
CNNs have proven to be good at learning the low and high-level abstract features from raw
images. Recently, Singh et al. compared various segmentation models (e.g. DeepLab [14],
UNet [87], SegNet [6], DenseNet [46]) for the task of river ice floe segmentation. Zhang et
al. [123] introduced a convolutional network with dual attention streams for ice segmenta-
tion in rivers. Research from both Singh et al. and Zhang et al. focused on segmenting ice
floes in rivers using optical data collected from drones.

The main objective of this thesis was to develop automated methods for sea ice segmen-
tation in SAR images. In this research we use SAR data for the task of MIZ detection and
ice floe segmentation. We developed two approaches using CNNs to solve this task. In the
first approach, we developed a segmentation pipeline using a multi-scale patch technique
to detect MIZs in SAR images. In the second approach, we developed a new segmentation
architecture to detect individual ice floes in the MIZs of SAR images.
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Chapter 3

MIZ detection using transfer learning

Shipping traffic has grown steadily in the Arctic in recent years. One of the reasons for this
increased traffic is the lengthening of open water season, which is accompanied by increases
in the area covered by intermediate ice concentrations, or marginal ice zones (MIZs). In this
chapter, a deep learning based method for automatic detection of MIZs in the RADARSAT-
2 satellite images is presented. A synthetic aperture radar (SAR) dataset is manually
annotated to train, test, and refine the method. Various convolutional neural network
(CNN) models are evaluated as fixed feature extractors for the task of classification. To aid
the classification accuracy a weighted binary cross-entropy loss criterion is used. Finally, to
refine the segmentation process, a multi-scale patch technique is used. In this technique, for
each image, different segmentation masks are calculated independently for different patch
sizes. These segmentation masks are stacked together and averaged with equal weights. A
thresholding operation is performed on this mask to generate the MIZ probability mask
for the image. The analysis of the results demonstrates that CNN model predictions
obtained with multiple sizes of spatial windows are able to detect MIZs in SAR images.
The objectives of the study presented in this chapter are:

• To annotate and preprocess a SAR image dataset to be suitable as an input to the
CNN.

• To test various CNN models as fixed feature extractors for MIZ classification.

• To build a segmentation pipeline using a trained classifier for MIZ detection.
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Figure 3.1: Data pre-processing pipeline for the segmentation step. Land and ice concen-
tration masks are computed for every image. A thresholding operation is performed for
both the masks. In our experiments, the threshold was set to 90% ice concentration for
the ice mask.

3.1 Dataset

The dataset is comprised of C-band ScanSAR wide beam mode images acquired from
RADARSAT-2 satellite in HH (horizontal transmit and receive). These images were down-
sampled 4-fold from an original size of 10, 000 × 10, 000 pixels with an original spatial
resolution of 50× 50 m, by averaging over 4× 4 blocks.

Images span over six ice seasons, covering the years 2008 to 2013. Each year the ice
season begins in November and lasts until July of the following year. The geographical area
under study is comprised of Hudson Strait located in Eastern Canada and its outflow into
the Labrador Sea in the North Atlantic. The dataset is divided into two parts, classification,
and segmentation.

The classification set was constructed by extracting patches from 160 images containing
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MIZs spanning five seasons. For patch extraction, manual annotations were created which
were verified by a domain expert. In total, there are 57 positive patches having MIZs and
493 negative patches (either open water (OW) or consolidated ice (CI)). The patch size
varies from 36× 36 pixels to 151× 151 pixels.

The segmentation set contains 105 images from the 2008 season. Images from the
segmentation set were masked using land and high ice concentration masks as shown in
Fig. 3.1. Masking reduces the redundant data in the SAR images as MIZs are a water
body phenomenon. The effective area of search is reduced to water bodies with less than
90% ice concentration.

3.2 Methodology

In this chapter, a two-step approach is employed. In the first step, a CNN network is
trained for the classification task. The trained network is able to classify input patches
as positive (MIZ) or negative (OW or CI). Densenet is selected as the classifier as it has
a relatively low number of trainable parameters and higher image classification accuracy
with respect to other classification models [44]. The best model is selected based on the
validation accuracy and used later in the segmentation step. Images from the segmentation
set are sliced into patches and fed to the classifier for classification. Later, the per patch
classification scores are joined and scaled to the size of the images to render the MIZ
probability masks.

3.2.1 Experimental Setup

For the experiments, PyTorch 1.3.1 and Torchvision 0.4.2 were used [80]. DenseNet161
architecture pre-trained on the ImageNet dataset [24] was selected because it had the
best overall performance on our classification set as shown in Table 3.1. The final fully
connected layer of the model was replaced with a new layer having 2 output nodes, a
softmax activation was used to obtain the probability scores. All the layers except this new
fully connected layer were frozen during training i.e., these parameters were not updated
during the optimization stage. Thus, the network was used as a fixed feature extractor.
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Table 3.1: Comparison of various deep learning models for patch classification step.

Method Accuracy Precision Recall F1-Score

AlexNet 0.86 0.39 0.25 0.30
VGG16 0.89 0.80 0.44 0.57
ResNet50 0.90 0.64 0.78 0.70
DenseNet161 0.98 0.90 1.00 0.95

3.2.2 Classification

The classification set was split into training and validation sets with an 80/20 ratio. The
images were resized to 224×224×3 since the DenseNet161 architecture is designed for RGB
images of this input size. Adam optimizer was used with default settings and a learning
rate of 10−4. A batch size of 16 was used and weighted binary cross-entropy (BCE) was
used as the loss function, which is defined below:

BCE = − 1

N

N∑
i=1

[a yi log(ŷi) + b (1− yi) log(1− ŷi)] (3.1)

where yi is the label or ground truth and ŷi is the prediction for the ith sample, a and b are
the weighting coefficients. For our experiments, a and b were chosen as 0.9 and 0.1 respec-
tively. These numbers represent the ratio of the two classification classes. The best model
was selected based on the highest validation accuracy and was used for the segmentation
step. Data augmentation techniques namely rotation, flipping, and translation were used
to increase the dataset size for training. In deep learning, data augmentation is a widely
used technique for handling over-fitting which also helps to increase the generalization
capability of the model.

3.2.3 Segmentation

The segmentation pipeline is shown in Fig. 3.2. Segmentation masks, representing the
probability of MIZs were generated for the images in the segmentation set. Each segmen-
tation mask is calculated independently for each image for different patch sizes, namely
60 × 60 pixels, 90 × 90 pixels, 120 × 120 pixels, and 180 × 180 pixels with a stride of
half the patch size, respectively. Segmentation masks of each image are stacked together
and averaged with equal weights, followed by thresholding at 50% confidence. The final
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segmentation mask or MIZ probability mask is overlayed on the actual unmasked image
to visualize the results.

3.3 Results and Discussion

Initially, classical machine learning algorithms such as logistic regression (LR) and one-
class support vector machine (OCSVM) were investigated for patch classification, however
unsatisfactory results were obtained. Hence, deep convolutional networks were explored for
this task as they have demonstrated high classification accuracy on big image classification
datasets. One of the reasons for their success is the ability to learn rich feature sets from
the given samples. Deep convolutional networks such as AlexNet, VGG16, ResNet50,
and DenseNet161 were compared and DenseNet161 outperformed all other methods for
our classification set as shown in Table 3.1. Hence, DenseNet161 was chosen for the
segmentation step. MIZ predictions over various SAR scenes are shown in Fig. 3.3, Fig. 3.3,
Fig. 3.5, Fig. 3.6 and Fig. 3.7.

It was observed that the patch size of 90 × 90 pixels is highly successful in detecting
the MIZs, in that it returned large probabilities over regions that appeared to be MIZs.
This could be because both the mean and median of dimensions of the positive samples
(MIZs) in the classification set used to train the model are 90 pixels (meaning most of the
regions manually selected as corresponding the MIZs had a patch size of 90 pixels). An
overall similar patch size might help to classify MIZs in the segmentation step. However,
classifications on this patch size also generated some false positives, in particular over open
water wind roughened regions as shown in Fig. 3.7. To overcome this problem, we intend
to experiment with wind masks so as to mask the areas with high wind intensities. In
the context of our multi-scale approach, we observed that the patch size of 180 × 180
pixels is effectively able to detect open water regions because it is easier for the classifier
to make a decision when looking at a bigger area, but the segmentation masks obtained
at this patch size lose localization. So, we chose a multi-patch size approach to decrease
false positives while detecting most of the MIZs in the images which is evident from the
qualitative analysis of the results. It is also observed that false-positive occurrence and
inference time per image was reduced upon the application of land and ice concentration
masks due to the reduction in the overall data to be processed per image.

In this chapter, an automated method to detect MIZs in RADARSAT-2 satellite images
is presented. It is shown that a pre-trained CNN can easily classify the above phenomenon
when used as a fixed feature extractor. When combined with a multi-scale patch approach,
the fixed feature extractor is able to detect MIZs in the SAR images by taking advantage
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of different sizes of spatial windows even in the case of a data shortage. The obtained
classification results suggest that DenseNet161 performs better than other comparable
CNN architectures for the task of MIZ classification in SAR images.

In the next chapter, we dive deeper into the marginal ice zones and focus on segmenting
sea ice floes in SAR images.
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(a) (b)

(c) (d)

Figure 3.3: Sample segmentation outputs of some SAR scenes. (a) and (c) are SAR scenes
with acquisition times 20091210105623 and 20091219113354 respectively. (b) and (d) are
the respective MIZ prediction maps overlayed over the SAR images. High MIZ probability
(Blue). Low MIZ probability (Red).
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(a) (b)

(c) (d)

Figure 3.4: Sample segmentation outputs of some SAR scenes. (a) and (c) are SAR scenes
with acquisition times 20100417215245 and 20100528215657 respectively. (b) and (d) are
the respective MIZ prediction maps overlayed over the SAR images. High MIZ probability
(Blue). Low MIZ probability (Red).
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(a) (b)

(c) (d)

Figure 3.5: Sample segmentation outputs of some SAR scenes. (a) and (c) are SAR scenes
with acquisition times 20110516103151 and 20110615105638 respectively. (b) and (d) are
the respective MIZ prediction maps overlayed over the SAR images. High MIZ probability
(Blue). Low MIZ probability (Red).
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(a) (b)

(c) (d)

Figure 3.6: Sample segmentation outputs of some SAR scenes. (a) and (b) are SAR scenes
with acquisition times 20121221110932 and 20140609110514 respectively. (b) and (d) are
the respective MIZ prediction maps overlayed over the SAR images. High MIZ probability
(Blue). Low MIZ probability (Red).
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(a) (b)

(c) (d)

Figure 3.7: Examples of SAR scenes with relatively low classification accuracy where wind
roughened waters are classified as MIZs. (a) and c (scene acquisition times 20081205104812
and 20140603104006 respectively) are SAR scenes with wind roughened ocean water. (b)
and (d) are the respective MIZ prediction maps overlayed over the SAR images. High MIZ
probability (Blue). Low MIZ probability (Red).
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Chapter 4

RUF: A model for sea ice floe
segmentation

In the last chapter, a marginal ice zone (MIZ) segmentation pipeline using transfer learning
was explained. The proposed method used a patch wise approach where classifications
over a small patch size were combined to generate the segmentation mask for the whole
image. In the method, the same is processed 4 times to obtain the desired prediction mask.
Although the generated masks show good results upon verification by visual inspection,
the time spent in processing one image is quite large due to the reprocessing involved.

In this chapter, we propose a segmentation model tailored for detecting ice floes in
SAR images. Rather than using a classifier for patch classification and later stitching the
individual outputs, we use a fully convolutional network that generated the output seg-
mentation masks of the same size of the input image. The model exploits the advantages
of both convolutional neural networks and convolutional conditional random field (Conv-
CRF) in a combined manner. The residual UNET (RES-UNET) computes expressive
features to generate coarse segmentation maps while the Conv-CRF exploits the spatial
co-occurrence pairwise potentials along with the RES-UNET unary/segmentation maps
to generate final predictions. The whole pipeline is trained end-to-end using a dual loss.
Comparison of experimental results with the conventional segmentation networks such as
UNET, DeepLabV3, and FCN-8 demonstrates the effectiveness of the proposed architec-
ture.
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Figure 4.1: The geographical area of interest of captured SAR scenes. Red polygon repre-
sents the geographic extent of a SAR image used in the study.

4.1 Dataset

The dataset is composed of 9 RADARSAT-2 C-band ScanSAR wide-beam mode images
acquired in HH (horizontal transmit and horizontal receive) polarisation. The images were
acquired at a center frequency of 5.405GHz with a 500Km swath width and provide a
nominal pixel spacing of 50m. The SAR images were captured from the area as shown in
Fig. 4.1, with the red polygon describing the extent of one SAR image. Information re-
garding the image acquisition dates, central latitude, and longitude, instances of annotated
floes is given in Table 4.1.
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Table 4.1: Description of RADARSAT-2 scenes dataset that was used to train, validate,
and test various model architectures.

Dataset
Scene Acquisition

Number of Floes Central coordinate
Date Time

Train 2008-11-13 11:29:00 204 63◦32′40′′N,
75◦22′25′′W

2011-06-12 22:12:53 208 60◦28′50′′N,
68◦47′22′′W

2012-06-05 22:42:59 177 62◦38′24′′N,
77◦2′1′′W

2013-06-03 11:25:54 348 62◦47′46′′N,
72◦38′1′′W

2013-06-14 22:34:35 203 62◦38′14′′N,
74◦56′25′′W

Total 1140

Validation 2012-05-08 11:29:49 212 63◦32′40′′N,
75◦22′25′′W

2012-06-06 10:44:18 128 60◦42′8′′N,
65◦1′W

Total 340

Test 2011-06-15 10:56:38 59 62◦20′26′′N,
67◦29′54′′W

2014-06-15 11:29:40 288 63◦30′41′′N,
75◦22′W

Total 347

4.1.1 Data Preprocessing

SAR images have a grainy ‘salt and pepper’ appearance also called speckle noise that
is caused due to random interference between coherent returns. To reduce this intrinsic
contamination of speckle noise, the SAR images were down-sampled fourfold. The down-
sampling operation was carried out by averaging over 4× 4 pixel non-overlapping blocks.
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Figure 4.2: Patch generation for training, validation and testing. Training: input SAR
image (h×w) is land masked and patches of size 480×480 are selected randomly from the
image. For a patch to be considered as a valid training sample, it should not contain more
than 50% black pixels. Validation and testing: land masked SAR image is padded using
black pixels. Patches are drawn serially from the land masked SAR image with a patch
overlap of 50%. Total training/validation extracted from an image are (hp×wp)÷(480×480)

Downsampling operation changed the nominal pixel spacing to 200m with a reduction in
data volume to 1/16 of the original.

Note that the Hudson Strait and the neighboring geographical areas of interest have
a long coastline, and the images have a significant land cover. As ice floes are a water
body phenomenon, pixels representing land in the images were masked as black as shown
in Fig. 4.2. To generate the land masks for the images, we applied a threshold of 0m
elevation to the elevation masks and later a gaussian blur with (5, 5) kernel size to remove
the rough edges along the sea-land boundaries. The elevation masks were generated using
ACE2 5Min digital elevation model with bilinear interpolation using the European Space
Agency (ESA) toolbox, Sentinel Application Platform.
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Figure 4.3: Figure of the proposed network architecture. The lower branch of the architec-
ture consists of the downsampling/encoding path. The upper branch of the architecture
consists of the upsampling/decoding path. Skip connections (interconnections between the
two paths) help in integrating the location information in the downsampling paths to the
contextual information in the upsampling path. The output of the final layer (loosely la-
beled mask) in the upsampling path is fed to the Conv-CRF as unary. Conv-CRF processes
the loosely labeled mask along with input image to generate the Prediction Mask.
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4.1.2 Data Annotation

The dataset contains 9 images with 1, 627 manual annotations of ice floes. For our experi-
ments a single class was defined for annotation, namely ‘floe’ and all the remaining pixels
were categorized as background. In the pixel-level annotations, we used the following
criteria to annotate a closed contour as a floe:

• The contour contains consolidated ice as determined via visual inspection.

• At-least 30 percent of the contour boundary is in contact with seawater.

• The contour contains at-least 60 pixels.

These criteria were chosen to eliminate the closed contours in ice covers (frozen in floes)
and to reduce noise artifacts. The floes were annotated through visual inspection of the
imagery using the Computer Vision Annotation Tool (CVAT) [94].

4.2 Methodology

This section introduces the proposed RUF network architecture. The proposed model
leverages the advantages of residual CNNs and Convolutional Conditional Random Fields
(Conv-CRFs) [106] alongside dual loss function. Residual blocks allow a network to train
easily while the UNET skip connections help in easy information propagation between dif-
ferent layers of the network. To facilitate the learning of the network weights, we jointly
train the RES-UNET and Conv-CRF parts with the dual loss function. The overall ar-
chitecture of the proposed network is illustrated in Fig. 4.3. Information about various
components of the network is given in the subsequent subsections.

4.2.1 End-To-End training

For training the proposed architecture, we first feed the SAR images to the base RES-
UNET network, where pixel-wise segmentation maps from the base network are fed to
the secondary Conv-CRF network as the unary. The secondary Conv-CRF network cleans
up spurious predictions and enhances object boundary predictions. Training these two
parts in an end-to-end manner allows the gradients to flow through the whole pipeline and
enables both the network to learn simultaneously. Hence, with this approach, we optimize
both the models with respect to each other to provide optimum results.
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4.2.2 Dual loss function

For the task of multi-class classification, network weights are generally trained using the
categorical cross entropy loss. In case of segmentation, losses involving ground truth and
prediction overlap are generally employed. To train our network, we optimize the proposed
RUF architecture using a weighted dual loss function including Binary Cross Entropy
(BCE) loss and Soft Dice (SD) loss:

Ltotal = α · LBCE + (1− α) · LDice, (4.1)

where α ∈ [0, 0.5, 1] is the weight parameter. The combination of BCE and Dice loss
has been previously used for medical image segmentation [62]. For the task of ice floe
segmentation, we have adapted the same with alpha as a weighted parameter. BCE loss
measures the classification accuracy of the model prediction and it increases as the predic-
tion diverges from the ground truth [119]. SD loss, which is derived from Dice Coefficient,
measures the similarity between two sets [105]. BCE loss and SD loss can be defined as
Eq: 4.2 and Eq: 4.3 respectively:

LBCE = −
N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)], (4.2)

LDice = 1− 2
∑N

i=1 yiŷi∑N
i=1 ŷi +

∑N
i=1 yi

, (4.3)

where yi is the label or ground truth and, ŷi is the prediction for the ith pixel.

4.3 Metrics

The following metrics were used to evaluate the proposed approach and perform a com-
parison with other standard segmentation approaches.

1. Mean Intersection over Union (mIoU): mIOU is a popular metric that is often
used for the task of semantic segmentation. mIoU is calculated by averaging the
Jaccard Score (J) over all the given classes in a segmentation task. Jaccard Score
represents the ratio of area of intersection between the ground truth (G) and the
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predicted segmentation (P ) maps to the union between ground truth and predicted
segmentation maps:

J(G,P ) =
|G ∪ P |
|G ∩ P |

, (4.4)

where G and P are the ground truth and predicted segmentation maps, respectively.

2. Mean Pixel Accuracy (mPA): mPA is the ratio of correctly classified pixels per
class, then averaged over the total number of classes. For k+ 1 classes (k foreground
classes and one background):

mPA =
1

k + 1

k∑
i=0

pii∑k
j=0 pij

. (4.5)

3. F1 Score: F1 Score is the harmonic mean of Precision and Recall. Precision and
Recall:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
, (4.6)

where TP is the number true positives, FP is the number of false positives and FN
is the number of false negatives.

4. Dice Score: Dice Coefficient is the ratio of twice the area of intersection between
ground truth and predicted segmentation maps, with the total number of pixels in
the maps:

Dice =
2|G ∩ P |
|G|+ |P |

. (4.7)

Both Dice Coefficient and IoU are positively correlated. In the case of binary seg-
mentation where foreground class is considered as the positive class, F1 Score and
Dice Coefficient are identical:

F1 =
2|G ∩ P |
|G|+ |P |

= Dice. (4.8)

Hence, for our binary segmentation problem of ice floes, in this approach we use refer
Dice Coefficient as F1 Score thereafter.
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4.4 Experiments and Results

RUF is a five-level deep convolutional network with symmetric downsampling and upsam-
pling paths as shown in Fig. 4.3. The downsampling path encodes the image into condensed
representation while the upsampling path decodes this information into pixel-wise catego-
rization. The downsampling path has four residual blocks. Each residual block contains
multiple residual units built with two 3× 3 convolutional layers and a residual connection.
The convolutional layers are accompanied by a BatchNorm2d layer with a ReLu activa-
tion function. Rather than employing a max-pooling operation to downsample the feature
maps [87], we use down conv blocks with strided convolutions. The upsampling path has
a similar structure but rather than using residual blocks we use simple convolutional lay-
ers. Feature maps are upsampled at each level using up conv blocks employing transposed
convolutions. Skip connections concatenate the output of each level in the downsampling
path to the upsampling path and helps in combining coarse information with finer infor-
mation. At the final level, a 1× 1 convolution projects the multi-channel feature maps to
our intermediate segmentation mask. This mask is then processed in conjunction with the
input image to calculate the unary and pairwise potentials of the Conv-CRF for further
refinement. A softmax operation is applied to the output of Conv-CRF to obtain, which
is later thresholded at 50 percent confidence to obtain the prediction mask.

4.4.1 Dataset Split

We split the dataset into train, validation, and test sets with a rough 60 : 20 : 20 ratio
split, such that the train set contains 60% of annotated floes while validation and test sets
each contain 20% of floe annotations. Full SAR images were placed in each set in order to
have truly independent samples across different sets, as shown in Table 4.1. Splitting the
dataset as such allows us to ascertain better generalization of the model.

Training Procedure

There are a total of 1140 annotated floes in the train set which comprise approximately
60% of the overall annotated floes. Due to limited training images, we employ a random
patch draw policy to train the model. An image is first randomly selected from the train
set. We then randomly draw a patch of the given patch size from this selected image.
Fig. 4.2 illustrates the training patch selection process. A patch is considered a valid
training sample if it does not contain more than 50% black area (due to image boundaries
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Figure 4.4: Model training pipeline. Input SAR image is processed as illustrated in Fig. 4.2
to extract patches for the training batch. These patches are fed to the model and the model
parameters are updated according to the loss.

Figure 4.5: Model testing pipeline. Input SAR image is processed as illustrated in Fig. 4.2
to feed patches serially to the trained RUF model for inference. These patches are then
reconstructed to yeild the segmentation mask for the whole image.

or land masking) or contains at least one floe either fully or partially. For example, a patch
with 70% land and containing one floe is a valid sample. The above process is repeated
until we find enough training samples for the training batch. We randomly rotate the
eligible training samples by 0, 90, 180, or 270 degrees as a data augmentation technique to
increase the overall data available to train the models. This data augmentation provides
a regularisation effect that helps the models to generalize better on the overall dataset by
reducing over-fitting.

Validation & Testing Procedure

The validation and test sets contain 2 images each, which account for approximately 20%
of the overall annotated floes. To validate and test the model, patches are extracted serially
from the images with an overlap of 50%. Fig. 4.2 provides details about selecting validation
and testing patches. The validation dataset is used to check if the model is overfitting while
the test dataset is used to compare different models.

4.4.2 Setup

The code was implemented using Pytorch 1.3.1 and Torchvision 0.4.2 open source frame-
works. All the experiments were performed on a Ubuntu 18.04 LTS system with an Intel
i7-4790 CPU@3.6 GHz coupled with 32GB DRAM while using a single NVIDIA GTX
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Table 4.2: Comparison of different unet backbones on validation set. Best results are in
Bold.

Model Parameters mIOU F1 mPA

UNET 7,788,545 70.50 58.77 74.83

VGG-UNET 20,267,281 71.52 60.71 73.62

Inception-UNET 27,161,264 71.59 60.89 74.68

RES-UNET 25,658,402 72.57 62.88 80.40

TITAN X (PASCAL) with 11GB VRAM, running NVIDIA driver 440.64.00 and CUDA
10.2 for computational tasks.

For all experiments, model weights were initialized using kaiming uniform initialization
[36]. To optimize the model parameters further, we used the ADAM optimizer at an initial
1e−4 learning rate. The Conv-CRF was initialized using default parameters from [59, 106]
with an exception, We removed the Gaussian blur as the SAR images in our dataset are
already downsampled with 4-fold averaging.

4.4.3 UNET Backbone-Selection

To select the primary segmentation network for our pipeline, we first compared the UNET
architecture with different backboned UNETs. The key difference between a UNET and a
backboned-UNET being that the two convolutional layers and a 2× 2 maxpooling opera-
tion for each level in the downsampling path are replaced with the different convolutional
blocks of the backbone architecture. While the skip connections and the convolutional
layers in the upsampling path remain the same. Information regarding the number of pa-
rameters and comparison between different UNET architectures is given in Table 4.2. We
use VGG19, Inception V3, and ResNet34 to construct different UNET architectures. We
observe that UNET architecture with a ResNet34 based encoder achieves the best scores
on the validation set and is selected for further improvement. Refer to Table 4.2 for more
information.

4.4.4 Joint training with Conv-CRF

With the UNET backbone selected, we examine different configurations of joint training.
We experiment with decoupled learning, stepwise learning, and end-to-end learning ap-
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Table 4.3: Comparison of different loss functions for various model architectures using end-
to-end training approach on validation set. BCE: Binary cross entropy loss; Dice: Dice
loss; BCE + Dice: Equally weighted BCE and Dice Loss. Best results are in Bold.

Model

Loss function

BCE Dice Dice + BCE

mIoU F1 mPA mIoU F1 mPA mIoU F1 mPA

UNET 65.76 48.66 66.39 65.64 48.61 71.96 70.51 58.78 74.83

RES-UNET 70.83 59.40 74.41 70.32 58.44 75.41 72.57 62.88 80.40

RUF (Ours) 70.91 59.59 75.36 71.39 60.48 74.61 75.07 67.28 81.83

Table 4.4: Comparison of different RUF joint training approaches on validation set. Best
results are in Bold.

Method mIoU F1 mPA

Decoupled 68.25 54.23 72.90
Stepwise 69.73 57.27 74.87
End-to-end 75.07 67.28 81.83

proaches. The results of which are illustrated in Table 4.4. Decoupled learning is based
on the assumption that CRF needs an accurate prediction of the unaries [59] to learn effi-
ciently. In this approach initially only the CNN model is training till loss convergence, i.e.
when the loss begins to saturate. After this step, the CRF is trained as a standalone model
with the CNN output as unary to the CRF. The gradients never flow through the whole
model in an iteration. Stepwise learning is similar to decoupled learning but in the second
step, both the CNN and CRF are trained jointly such that weights of the whole model are
updated in the second step. End-to-end learning involves training the whole architecture
jointly from the very beginning such that the CNN and CRF are able to co-adapt.

We observe that for our task the end-to-end learning approach yielded preeminent
results and thus was used for further experiments.
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Figure 4.6: Comparison between the predictions of RUF model trained using BCE, Dice
and BCE + Dice loss. It can be observed that the predictions obtained by using BCE +
Dice loss have discrete continuous boundaries similar to the ground truth (GT).

4.4.5 Dual loss function selection

To select the optimum weights of our dual loss function, we trained different RUF models
using various α values for Ltotal in Eq. 4.1. We evaluated three different configurations with
α ∈ [0, 0.5, 1], which yield only BCE loss, equally-weighted BCE and Dice loss, and only
Dice loss respectively. The results of our experiments are given in Table 4.3. We observe
that using a dual loss comprising of equally-weighted BCE and Dice loss helps the network
to generate better predictions. We observe that training with either only BCE or Dice loss
does help the model loss to converge quickly but the predictions from such models lack
discrete boundaries as illustrated in Fig. 4.6.
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Table 4.5: Comparison of different models for various patch sizes on validation set. Best
results are in Bold.

Patch Size Batch Size mIoU F1 mPA

96 64 70.53 58.81 74.09

192 32 70.77 59.38 77.65

288 16 70.75 59.24 74.16

384 12 71.99 59.77 74.40

480 8 75.07 67.28 81.83

576 6 69.85 57.44 72.13

4.4.6 Patch size selection

As the overall segmentation network configuration is selected, we investigate further to
choose the optimum patch size to train our model. We trained various RUF models be-
ginning with a patch size of 96 × 96 pixels with a batch size of 64 patches. We observed
that this model was able to identify small floes, while it struggled to detect floes which
appear partially in the patch. To overcome this issue we decided to increase the patch size
until we obtain optimum results. To train the subsequent models with bigger patch sizes,
we decreased the batch size to obtain optimum GPU memory utilization. Results of our
experiment are given in Table 4.5. We observed that there is a direct correlation between
bigger patch size and the segmentation accuracy as evident from increasing metrics in Ta-
ble 4.5, with an exception to the patch size of 576 × 576 pixels. One of the reasons for
this reduction is a low batch size. Overall, we observed that the patch size of 480 × 480
resulted in the best performance.

4.4.7 Comparison with other models

Using the optimal input size and other network parameters, we obtained the best results
using our proposed method. We then compared our method with several other standard
segmentation models that are typically used in SAR image segmentation. Test dataset
images are used in this comparison. To gauge the iterative improvement component of
our method, we plot the predictions of UNET, RES-UNET, and RUF together in Fig. 4.7.
Upon initial observation, we notice that both UNET and RES-UNET generate a greater
number of false-positive predictions as compared to RUF. We observe that RUF is able
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Table 4.6: Comparison between various segmentation architectures on test set. Best results
are in Bold.

Model Parameters mIoU F1 mPA

UNET 7,788,545 69.20 56.54 71.87

RES-UNET 27,912,770 71.76 61.24 74.66

FCN8 54,304,086 69.88 57.48 72.24

DLV3 60,991,062 67.47 52.43 68.94

RUF (ours) 26,119,208 74.52 66.26 77.88

to detect floes of various shapes and sizes, while UNET struggles to detect bigger floes.
UNET is also unable to delineate the floes in close proximity to each other. The main
reason for this issue would be the absence of residual connections in the UNET, as the
model is unable to learn finer features as compared to other more complex models. It can
also be observed that both UNET and RES-UNET generate multiple broken boundary
predictions where a single floe is segmented as multiple floes.

We also compare RUF with other standard segmentation models such as FCN-8 (FCN)
and DeepLabV3 (DLV3), the predictions of which are illustrated in Fig. 4.8. We can observe
that the predictions from both FCN and DeepLab do not suffer from false positive, however,
they do struggle to detect bigger floes and delineate floes in close proximity. The absence
of a dense component such as a conditional random field to enhance finer segmentation
details would explain this issue. Apart from these qualitative observations, the superiority
of RUF for the task of ice floe segmentation is also evident from the quantitative analysis
as given in Table 4.6.
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Figure 4.7: Comparison between the predictions of UNET, RES-UNET, and RUF for
the task of ice floe segmentation on patches from the test set. Red ovals highlight some
segmentation results where both UNET and RES-UNET are unable to properly segment
a fully or partially visible ice floe. Blue ovals highlight some segmentation results where
both UNET and RES-UNET give many false positive predictions. It can be observed that
the proposed RUF architecture is able to produce finer segmentation results as compared
to other backbone architectures. Here, Patch and GT denotes original image patch input
and ground truth respectively.
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Figure 4.8: Comparison between the predictions of FCN-8, DeepLabV3, and RUF for
the task of ice floe segmentation on patches from the test set. Red ovals highlight some
segmentation results where both FCN and DLV3 are unable to properly segment a fully
or partially visible ice floe. Green oval highlights a segmentation result where both FCN
and DLV3 are unable to delineate floes in close proximity. It can be observed that the
proposed RUF architecture is able to produce finer segmentation results as compared to
the other frequently used segmentation methods in satellite imaging. Here, Patch and GT
denotes original image patch input and ground truth respectively.
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Chapter 5

Summary and Conclusion

Shipping vessel activity in the Arctic has observed steady growth both in the terms of
volume and traffic over the past few years. According to the recent Arctic Climate Impact
Assessment report, the extent and amount of sea ice in the Arctic region are decreasing
gradually. The shipping industry has displayed a keen interest in the declining sea ice
in the Canadian Arctic as the Northwest Passage of Canadian Arctic Archipelago (CAA)
has the potential to become a seasonally viable shipping route. Although the Arctic is
observing a decline in sea ice extent and thickness, the risks and hazards involved in
sailing through the Arctic are still significant than in the past. One of the reasons for this
behavior being that as the sea ice reduces, particularly in the Marginal Ice Zones (MIZs),
the mobility and thus unpredictability of ice floes and ice-covered areas also increases in
the coming future. Thus, MIZ detection is important in the northern seas to create safe
and efficient navigable routes for ships. The Canadian Ice Service (CIS), is the leading
authority which provides information regarding ice in Canada’s navigable waters. CIS
uses data from various data sources for the production of ice charts and the development
of guidelines for mariners. One of the prominent data sources used for the task of sea
ice monitoring is RADARSAT Constellation Mission equipped with Synthetic Aperture
Radar (SAR) sensors. SAR provides high spatial resolution images irrespective of the
daylight conditions due to the active nature of radars used for image acquisition. SAR
images are not optical images and a certain amount of prerequisite knowledge is required to
understand them. Sea ice experts are employed by CIS for interpretation of these images
in order to produce the image analysis charts. To develop automated sea ice detection
tools, previous studies have used various image processing, machine learning, and neural
network approach as explained in Chapter 2. The main objective of this thesis is to develop
automated methods for sea ice segmentation in SAR images. We presented two approaches
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using convolutional neural networks (CNNs) to solve this task.

In the first approach, we developed a segmentation pipeline to detect MIZs in SAR
images. We manually annotated a dataset of 160 images and extracted over 500 patches.
Later, we explored the network-based transfer learning approach to train a CNN to clas-
sify the patches. The key point of our approach is the multi-scale patch technique. In
this technique, we generate multiple segmentation masks for an image. Each individual
segmentation mask is generated by feeding overlapping patches of a particular inference
size to the network. Later, these segmentation masks are stacked together and thresholded
to generate the final MIZ prediction mask. Results show that upon using a smaller infer-
ence patch size, the network generated predictions with a good recall but also generated
false positive predictions, while a bigger inference patch size was able to classify negative
samples easily. One of the reasons for this behavior may be due to the reason that upon
using a bigger patch size, the network’s decision is based on a larger spatial area. We
observed that our method generates false predictions over severely wind roughened ocean
water. To solve this issue we aim to use wind maps to mask the areas with high wind
velocities. Wind maps have a very coarse spatial resolution, approximately 25 Km × 25
Km per pixel and further study is required to verify their applicability.

In the second approach, we developed a new segmentation architecture to detect indi-
vidual ice floes in the MIZs of SAR images. We manually annotated a dataset of over 1800
floes. For an 1 ×H ×W input image, the network outputs an 1 ×H ×W segmentation
mask. The network is based on a UNET with residual connections where a convolutional
conditional random field (Conv-CRF) is used for post-processing. The whole network is
trained end-to-end using a dual loss function, enabling both the UNET (primary model)
and the Conv-CRF (secondary model) to co-optimize for the task. We observed that a
vanilla UNET was able to some detect floes, but it generated many false-positive predic-
tions and was unable to segment floes of bigger sizes. Upon adding residual connections,
the model was able to detect bigger floes. Both the Conv-CRF joint training and dual
loss functions steps helped the network to segment floes with finer boundaries. To gauge
the performance of our architecture, we performed a quantitative comparison with various
other popular segmentation models like FCN and DeepLabV3. RUF displayed an aver-
age improvement in performance with an F1 score of 74.52 (108.5% increment), mIOU of
66.26 (120.5% increment), and mPA of 77.88 (110.3% increment). In the future, we aim
to experiment with attention networks to improve our results.

In this thesis, two approaches for automatic detection of MIZ and ice floes were explored
and developed. The effectiveness of our models can be gauged from the obtained qualitative
and quantitative results.
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