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Abstract

The automotive industry is rapidly developing more advanced vehicle propulsion sys-
tems, autonomous driving, emissions reduction, and improved fuel efficiency. Optimal
control theory has evolved such that a system can be controlled in real-time based on
values predicted by models over a control horizon. Controller performance depends on the
accuracy of the predictive model. The purpose of this work is to develop acausal high-
fidelity control-oriented plant models of engine air path components that simulate faster
than real-time to design and tune the required controllers. The desired features of these
models are that they be physics-based and use physically-meaningful design parameters.
These features are desired to make these models extensible over different generations of
the engine air path components.

The considered engine in this work is the engine of the Toyota Prius 2015 Plug-in
hybrid. An acausal mean value thermal engine block model is developed. The engine
block model includes computations done on thermal effects in the engine block, engine air
intake and exhaust streams, lubricant oil, and coolant. Model parameters are identified
and validated experimentally.

Acausal physics-based models, including spatial variation in variables, are introduced
for the engine manifold and catalytic converter. The models are based on one-dimensional
partial differential equations. A novel method based on orthogonal collocation is devised to
model quasi-one-dimensional compressible flows inside engine manifolds. A similar method-
ology is used to model the catalytic converter, transforming the system of partial differential
equations into a system of ordinary differential equations in state-space form. Both high
fidelity models simulate faster than real-time.

The developed models are showcased by designing and tuning a low-level engine shaft
speed adaptive model predictive controller than can be used to control speed, e.g. in an
adaptive cruise controller or autonomous car. The controller manipulates engine throttle
and air to fuel ratio to achieve the desired engine shaft speed at minimal fuel consumption.
The tuned Model Predictive controller is compared to a tuned PID controller by simulating
a drive cycle followed by the Toyota engine.
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Chapter 1

Introduction

1.1 Control-Oriented Models

In closed loop system controls, the system is controlled using feedback measurements, as
sketched in figure 1.1. When a model-based controller is designed or implemented, an
approximating model for the plant or system is required. In on-line controllers, it is a
basic and inevitable requirement that the provided model be computed faster than real
time so that the controller can act based on predicted values.

There are three categories of models based on model accuracy and computational time:

Empirical Models These models are meta models of a dataset of experimental data; they
are accurate and fast for controllers to operate. The drawback is that these models
are entirely based on experimental values and correlations, so they are tailored to
the considered system or plant. If a change happens, such as a dimension change for
example, the model may become invalid.

Computational Models These models are based on well-known physical equations, such
as Navier-Stokes for fluids, utilizing the computational power of computers. Exam-
ples are in finite volume methods for fluids analysis, and finite element methods for
stress-strain solid analysis. These models are not suitable for controls analysis since
their computational time is much slower than real time.

Control-Oriented Models These models incorporate first principle equations and are
computationally fast, which makes them suitable for controls analysis and design. To

1
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−
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Figure 1.1: A Typical Feedback Control Block Diagram

achieve both of these virtues, assumptions are made to reduce the order of equations,
e.g. assume linear models (superposition principle), reduce the number of dimensions,
or remove negligible terms from governing equations.

The focus of this work is to create acausal control-oriented models that have some
dimensional variation. These models are tailored for the components found along the air
path of engines.

It is worth noting that in control-oriented models, the most important aspect is that
the model must simulate within real time. This is in contrast with computational models
where accuracy is the most important aspect; i.e. it is sufficient for a control-oriented model
to reach the region of the solution with a loose error bound as long as the simulation of
the model is faster that real time.

1.2 Acausal System Thermo-Fluid Modelling

Acausal physical models are models based on components, in contrast with block diagrams
or signal block models that are based on equations. Each component is modelled, where all
relational equations between the input and states are defined as ordinary differential alge-
braic equations (ODAEs). In this approach, the ODAEs are given to the acausal simulation
software in equation form, and these equations are manipulated by the computer software
to find the states in terms of the user inputs at run time. The first open-source language
utilized to define the equations is Modelica�, and the most prominent set of software for
this task are Dassault Systèmes AB’s Dymola�, MapleSoft’s MapleSim�, Mathworks’ Sim-
scape�, and Wolfram Mathematica’s SystemModeler�. A main feature of acausal models
is that generated components do not have a predefined input or output since connections

2



are made from flanges that can act as inputs or outputs, as illustrated in figure 1.2. Model
equations inputs and states are determined by the simulation software, based on the inputs
of the end-user, while manipulating the equations. Flanges of acausal models correspond
to component terminals; thus, the number of flanges in an acausal model is the same as
the number of terminals in the modelled component.

Input Output
Block Diagram

(a) Causal System

FlangeA FlangeB

Component

(b) Acausal System

Figure 1.2: Block Diagram for Causal and Acausal System Models

To illustrate the advantage of the component oriented approach of acausal modelling,
consider the RC electrical circuit shown in figure 1.3. The electrical resistance is considered
to be linear and temperature independent with a constant resistivity following Ohm’s law.
Similarly, the capacitor is considered to have a constant capacitance that relates the current
to the time derivative of the voltage. If causal modelling is to be made, the first step is to
characterize the inputs and outputs of this system. At every open port, either the through
or across variables may be defined. For the configuration given in figure 1.3, four types of
inputs may be defined: the voltage at port 1, the voltage at port 2, the current at port 1,
or the current at port 2. The next step is to derive the equations; for this case, the nodal
voltage method is to be used around node A. Note that the equations will differ between
the different input types: voltage or current. The next step is to order the equations
to express the states in terms of the inputs, and finally a signal diagram is drawn and
implemented in a simulation software such as Simulink�. Thus, this is a four step process:

1. Identify the inputs and states in the system

2. Derive the equations

3. Draw the signal block diagram

4. Simulate the system to find the solution

In acausal modelling, the resistors R1 and R2, and capacitance C are placed in the
acausal software in a configuration as shown in figure 1.3. Sources and sinks, or ports,
are then added to the system for the inputs and states, respectively, and a simulation is
performed. This approach has two advantages. First of all the man-hours needed to derive
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Figure 1.3: RC Electric Circuit

the equations and construct the signal block diagrams is eliminated since “flattening” the
equations is done by the simulation software, and second, if the input variable type is
changed, instead of re-deriving the equations, the task for the end user is to change the
source type and the analysis can be changed according to the problem variation.

For the computer software to be able to generate the equations, all the through and
across variables – in this example, voltages and currents – must be related to each other
in the “terminal equations” of the component models.

A disadvantage of acausal modelling is that, in general, acausal modelling is more in-
volved compared to causal modelling. System topology needs to be taken into consideration
when creating model blocks due to the definition of flanges. Also, in acausal modelling,
equations are automatically generated and solved by computer software. Automatic equa-
tion generation may result in complications for systems with a spatial variation represented
by PDE systems. Such equations may prove cumbersome to manipulate in cases of reversed
flows, which should be considered when creating an acausal model. Also, modifying nu-
merical solution techniques to solve the generated system of DAEs is, in many cases, not
possible. To provide a simple example in acausal models in MapleSim� and Simscape�, it
is not possible to access solutions from the previous iteration by placing memory blocks in
Maplesim� or Simscape�. Such a disadvantage is present since acausal modelling avoids
algebraic loops. Including a memory block introduces complications in automatic software
generation. Due to these issues, acausal model equations are treated by modifying equa-
tions symbolics by introducing, changing or removing equation terms compared to treating
solutions at the numerical solver level. Thus, creating acausal models involves understand-
ing the physics behind the modelling equations to assess the terms that can be modified,
if required.

Due to the ever-increasing demand for fast online models and simulations, current
acausal physical simulation software – such as MapleSim� and Simscape� – can pre-compile
the derived and flattened equations into a pre-compiled C file. This procedure is crucial
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for large system configurations and/or models used in optimization calculations where
the equation generation time is removed and the compiled code is optimized, as much as
possible, to make the simulation as fast as possible. MapleSim� is the best software for
this task because it uses symbolic computing.

In this work, control-oriented acausal models are to be developed for engine air path
components described in the next section.

1.3 Engine Air Path

A typical air path for a diesel or gasoline engine is sketched in figure 1.4. In a diesel engine,
fuel is injected into the cylinder either through an injection chamber or directly. For a
petrol engine, a fuel injector is present in the intake manifold before the engine cylinders
[37]. Exhaust gas recirculation (EGR) is found in all diesel engines, and it is increasingly
used in petrol four-stroke engines to reduce pollutant emissions. Compressors are present
in diesel engines to raise the pressure of air at the cylinder inlet to facilitate diesel fuel
combustion; air is also compressed in turbocharged and supercharged gasoline engines. The
compressor is driven by a turbine utilizing the exhaust in diesel and turbocharged engines;
in supercharged engines, the compressor is driven by the engine shaft. The considered
engine in this thesis is the engine of the 2015 plug-in hybrid Toyota Prius, which is an
engine that neither includes a super nor a turbo-charger.

A catalytic converter is utilized after the engine exhaust to minimize the unwanted
pollutants produced by the engine. A catalyst, usually a precious metal, is used to react
with unwanted species converting them into Carbon Dioxide and water. In a three-way
catalytic converter, Carbon Monoxide and Nitrogen Oxides are the species that are to be
reduced. It is worth noting that in cold starts, catalytic converters are not efficient and
may, sometimes, increase the unwanted species instead of reducing them, as shown in this
thesis.

A diesel particulate filter (DPF) is used to remove the soot and particulate matter from
a diesel engine and is connected after the turbine. Also, in both diesel and gasoline engines
the engine cylinders are water cooled, where water is the working fluid that transfers energy
between the engine cylinder and engine cooler that cools the water back to an appropriate
temperature.
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Figure 1.4: Engine Air Path

1.4 Contributions of this Research

Spatial Variation The spatial variation of different states is included in the models of
the studied components in this work, namely, the engine manifold and catalytic
converter. A significant contribution to this topic is that spatial gradients are treated
by transforming the system of Partial Differential Equations (PDEs) to a larger
system of Ordinary Differential Equations (ODEs). Equation transformation is done
by applying the Orthogonal Collocation procedure on the one-dimensional non-linear
partial differential equations transforming them into a system of ordinary differential
equations. A similar methodology was applied to model Lithium-ion batteries [22]
and diesel particulate filters [32]. The best part is that these generated ODEs can be
solved an order of magnitude faster than real-time using a fixed step implicit solver
as required by controllers.

Symbolic Computing Traditionally, spectral methods, orthogonal collocation and Galerkin-
based methods are applied to compressible fluid flow in simple geometries [12]. In
spectral methods, spatial Fast Fourier Transform (FFT) is applied to transform a
system of PDEs into a system of PDEs with a lower order in space, as evident in
DNS turbulence simulations [61]. For one-dimensional systems, FFT transforms the
considered system of PDEs into a system of ODEs. A drawback of this approach is
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the computational cost of performing the inverse Fourier transform on the solution to
obtain the space-variant state. In orthogonal collocation, numerical differentiation is
traditionally applied to calculate the fitting functions [10]. Galerkin-based methods
are applied in Finite Element Method (FEM) configurations, in which the equations
are written in terms of matrices and numerical linear algebra methods are applied;
this is also the case in finite volume methods. In this work, the symbolic computing
power of Maple� and MapleSim� is utilized to generate the system of equations de-
rived by orthogonal collocation removing the inaccuracies in numerical calculations.
This is the first application of symbolic techniques to automate the treatment of the
hyperbolic convective PDEs that describe a quasi-one-dimensional compressible flow
and a catalytic converter model.

Engine Manifold Model The engine manifold is modelled with spatial variation utiliz-
ing Euler’s equations, a system of partial differential equations used to model com-
pressible, quasi-one-dimensional flow with heat transfer and friction effects [31, 58].
A significant challenge in treating Euler’s equations is attributed to the non-linear
inertia term that can not be neglected in such flows. Traditionally, the method of
characteristics is utilized to solve Euler’s equations [75]. A novel method is devised
to solve Euler’s equations by integrating orthogonal collocation with the method of
characteristics (MOC-OC). An application of a channel with compressible fluid flow,
area changing effects, frictional effects and heat transfer effects is treated. MOC-
OC is compared with an ANSYS CFX� simulation that includes Applications were
previously made for channels without area changing effects.

Catalytic Converter Model A real-time model that includes spatial variation is devel-
oped for engine catalytic converters. The developed model includes the dynamics of
both the engine exhaust air stream and catalytic converter substrate. Previously de-
veloped models include only the dynamics of the engine exhaust air stream [3, 43, 88].

Acausal Thermal-Fluids The created models in this work are acausal models [1]. This
implies that a user can ideally place components without worrying about flow di-
rection or boundary condition type. The work in developing the topology analysis
and component models can be extended to different realms that require thermal-fluid
modelling such as gas cycles, refrigeration cycles, and HVAC&R applications. It is
worth mentioning that these acausal models are one-dimensional models, with spatial
variation, in contrast with lumped models available in the literature.

Linear Graphs A method is devised to use the mathematical power of linear graphs to
study the topology of thermal fluid systems. The proposed method is an extension of
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the methodology stated by Chandrashekar and Wong [17]. In Modelica�, bond graph
methods were modified by introducing new connectors. Similarly, Mathworks Sim-
Scape� has a proprietary method for generating connecting equations that represent
the system topology.

As a summary, the main focus of this work is to model the air path components shown
in figure 1.4 in an acausal setting – namely, the throttle, EGR, engine cylinders, and
catalytic converter. These models are preferred to be physics-based models to reduce
the reliance over experimental black box models as much as possible. Ideally, an end
user would be able to include these models in a drag and drop software environment
like MapleSim�, provide the boundary conditions to the created models and initiate a
simulation to obtain results. Historically, empirical models based on lookup tables derived
from experimental data were developed [37] to facilitate real time computations. Recently,
Computational Fluid Dynamics models with a fine three dimensional mesh including RANS
turbulence and combustion models are able to predict the pressure and mass flow rate
inside the engine cylinder with reasonable accuracy [63]; nevertheless, these models are
computationally expensive for this analysis. Thus a 0D lumped model was developed
by tuning coefficients with the turbulent length scale that is derived from various three
dimensional CFD simulations to approximate the appropriate turbulence length scale and
corresponding turbulent viscosity and velocity [64].

1.5 Document Organisation

In chapter 2, a detailed literature review for the considered models is presented. This
literature review includes the history of model equations and solutions. Also, a literature
search was done to investigate the current trends in system topology and connectors.

In chapter 3, detailing the work done in system topology analysis, the current work on
system connectors is presented with a working example simulated in MapleSim�.

In chapter 4, detailing the work done in engine block modelling, a mean value engine
model that includes the thermal phenomena of the engine is developed. This model was
validated with the 2015 Toyota Prius Plug-in hybrid engine. The models presented in
chapters 4 and 5 are done using custom MapleSim� connectors instead of the topology
model presented in chapter 3, conforming to Modelica� and MapleSim� conventions.

In chapter 5, detailing the work in engine air path modelling, a new technique is de-
scribed to solve the manifold model equations using Maple� for symbolic computations and
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MapleSim� or MATLAB� for the numerical computations. Nozzels and diffusers examples
are compared with FVM solvers (ANSYS CFX�) and Method of Characteristics (MOC).
An experimental study was also done on the manifold model. In addition, a catalytic
converter model is developed with comparisons to experimental published data.

In chapter 6, detailing the work in engine shaft speed controller design. The developed
models in chapters 4 and 5 are used to develop a detailed Model Predictive Controller
(MPC) whose aim is to control the speed of the engine shaft minimizing the amount of fuel
consumption and unwanted engine emissions. A simplified PID controller is also devised
as a reference controller for engine shaft speed control.

Chapter 7 states the conclusions and future work of this PhD thesis.
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Chapter 2

Literature Review

2.1 Thermo-Fluid Connectors

On of the major challenges in system modelling is to find the relations between the compo-
nent terminals, or topology. Traditionally this has been done utilizing bond graph methods
[9], and graph theory approaches [16].

In bond graph methods, variables are classified into effort and flow variables as shown
in table 2.1 for different engineering domains. The main idea in a bond graph is that
both the effort and flow variables are defined at both nodes of a component. For example
considering the component shown in figure 1.2b, the effort and flow variables must be
defined in both flanges ‘A’ and ‘B’.

Table 2.1: Effort and Flow Variables For Different Systems

Analysis Type Effort Variable Flow Variable

Electrical Voltage Current
Linear Mechanical Velocity Force
Angular Mechanics Angular Velocity Torque
Hydraulics Pressure Flow Rate
Thermal Temperature Heat Transfer Rate

In terms of software implementations Modelica� utilizes bond graphs [11]. The multi-
body library component in MapleSim� utilizes linear graph theory [73]. Mathworks’ Sim-
scape� uses the proprietary Physical Networks Approach [52]. An advantage in Simscape�
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– as shall be clarified in chapter 3 – is the fact that equations are to be defined for each
flow direction; i.e., referring to figure 1.2b, a set for equations shall be defined for the flow
from flange ‘A’ to flange ‘B’ and a second set of equations can be defined for the flow
from flange ‘B’ to flange ‘A’. As a side note, SimScape� currently performs symbolic ma-
nipulations of the stated equations using Mathworks MuPad symbolic engine�. Currently,
the leading modelling in this field, and the language of our interest, is Modelica� with an
implementation in MapleSim�.

A thermal-fluid library was developed for compressible and incompressible pipe net-
works in Modelica�; the library included the through and across variables stated in table
2.2 [13]. In this approach, it can be assumed that the fluid and thermal parts are modelled
as different graphs and are interlaced over each other. As a side note, this approach is
utilized to model the thermal library component in MapleSim�.

Table 2.2: Through and Across Variables For the Thermal-Fluid library

Fluid Thermal

Across Pressure P Enthalpy h

Through Mass Flow Rate ṁ Enthalpy Flow Rate ḣ

The problem in the connector defined in the thermal-fluid is that it failed in simulating
the simple case of a flow between two reservoirs at different temperatures; this case is
illustrated in detail in chapter 3. A more recent approach is defined in stream connectors
[28]. Stream connectors are based on the idea that convected variables that are carried
with the flow are to be treated in a manner different than Effort and Flow variables; these
variables are named stream variables and may include the convected variables temperature
T , enthalpy h, or concentration C.

The idea behind stream connectors is to present an “instream” function to represent the
stream variable that is entering a component. The function definition is stated in equation
(2.1) for a stream assumed to be entering for a positive mass flow rate from a mixing
environment with hmix. A positive flow rate indicates that the flow is moving from the
mixing environment into the component. In a nutshell, the function grabs the upstream
enthalpy value for positive flow. On the other hand, if the flow is negative, the enthalpy is
set to be an unknown by setting it to be equal to itself.

instream (hout,j) =

{
hmix if ṁj > 0
hout,j otherwise

(2.1)
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For a connection of n components, the “instream” function of the enthalpy assumed to
be entering component numbered i is expressed as shown in equation (2.2).

instream (houtflow,i) =

∑
j=1..n,j 6=i houtflow,j max (−ṁj, ε̄)∑

j=1..n,j 6=i max (−ṁj, ε̄)
(2.2)

The reason for placing a computationally small number ε is to get rid of the singularity
that occurs when the flow at all nodes is equal to zero or

∑
j=1..n max (−ṁj, ε̄) = 0. It

can be argued that ε̄ will be eliminated from the fraction when all flow rates are equal to
zero; however, when some flow rates are equal to zero, the value of ε̄ becomes a numerical
anomaly in the enthalpy calculation.

Linear graph-theoretic analysis for thermal fluid systems was applied by Chandrashekar
and Wong [17]. The approach was applied to complete thermodynamic cycles that have
a zero net energy change with the environment. Nevertheless, the analysis was done on
incompressible flows applied on lumped models for components that are arranged in a
thermodynamic cycle. In this analysis, the graph-theoretic approach was done for stand-
alone components that include compressible flows.

As a conclusion, system topology analysis approaches includes bond graph methods
that are utilized in Dymola�. This approach leads to a numerical singularity at zero flow.
On an other track, the developed graph-theoretic approach assumes lumped components
that include incompressible fluids and these components operate in a complete closed
thermodynamic cycle. This greatly limits the applicability of the graph-theoretic approach.

2.2 High Fidelity and Control-Oriented Engine Mod-

els

An engine is essentially a mechanical power generator that converts fuel heating value to
mechanical power by combustion. A main characteristic of this phenomena is the engine
fuel conversion efficiency defined in equation (2.3) as the product of combustion and in-
dicated thermal efficiencies. Combustion efficiencies are in the range of 95% to 98% in
gasoline engines [37]; this implies that the main factor in an engine model is the indicated
thermal efficiency ηind. The interest in this thesis is in developing a plant model of the
engine block that can be used as a high fidelity model for controller design applications.
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Thus, a mean value engine model is developed.

Fuel Conversion Efficiency = Combustion Efficiency

× Indicated Thermal Efficiency
(2.3)

The indicated engine efficiency is considered to be dependent upon the engine volu-
metric efficiency, valve timing, normalized air to fuel ratio, crankshaft speed, and intake
manifold pressure. A major part of a mean value model is to identify this dependency for
a given engine.

An engine mean value model was developed by Hendricks et al. [36]. The model in-
cluded three states, namely, the fuel film mass flow, the crankshaft speed, and the absolute
intake manifold pressure. This model required three inputs, the throttle angle, the in-
jected fuel flow, and the injection timing angle. The engine load was considered to be a
disturbance in the model simulation. The modelling methodology was done by identifying
instantaneous and transient variables, representing the instantaneous variables by simple
algebraic functional relations and representing dynamic variables by using ODEs. The
volumetric efficiency was determined experimentally and surface-fitted in terms of engine
shaft speed and intake manifold pressure. A similar approach is made in the current work
for the engine volumetric efficiency.

A control-oriented low fidelity engine was developed by Hendricks et al. [35] where the
mean value model was placed as a block diagram. The model reduction technique was
made by identifying the overall engine thermal efficiencies experimentally and determining
a surface fit function in terms of engine shaft speed and intake manifold pressure. Also,
time constants were identified to model the three dynamic states stated by Hendricks et
al.

The engine mechanical component was modelled by Hendricks et al. by applying a
conservation of kinetic energy balance. The final equation for engine speed is written
in terms of friction power Pfric, pumping power Ppump, load power Pload as shown in
equation (2.4). The load power is an input to the model, the pumping and friction powers
are computed from a surface fit model in terms of the engine shaft speed and manifold
pressure. The symbolic form of this surface fit is given in equation (2.5).

Ṅ = −Pfric + Ppump + Pload

JcrancN
+Huηindṁf

(
t− 60

2ncylN

)
(2.4)

Pfric + Ppump = N
(
a0 + a1N + a2N

2
)

+N (a3 + a4N) pim (2.5)
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Adibi Asl et al. have extended the model of Hendricks et al. by including spark angle
in the engine indicated efficiency [2]. In the work of Adibi Asl eta al., the spark timing
efficiency ηSA was considered to be dependent on the spark angle as shown in equation
(2.6).

ηSA = h13 + h14 (θ − θmbt) + h15 (θ − θmbt)2 (2.6)

In the work of Franco et al. [27], two basic subsystems for the engine model were
identified; the in-cylinder pressure model P , and a mass elastic model. The in-cylinder
pressure model is given in equation (2.7) in terms of the instantaneous cylinder volume V ,
the net heat release of the engine Qn, and the specific heat ratio γ. These models were
identified using frequency analysis on experimental data on a detailed cycle by cycle model.

dP

dt
= −γP

V

dV

dt
+
γ − 1

V

dQn

dt
(2.7)

It was shown that lubricating oil temperature has an effect on the friction mean ef-
fective pressure [40, 80, 84]. The oil and lubricant temperatures also affect engine fuel
consumption [80]. Engine data indicates that as the engine warms up to oil and coolant
temperatures between 100 °C and 120 °C, fuel consumption decreases and engine cylinder
friction decreases. This results in an engine efficiency drop from a theoretical value of 35%
to a value between 10% and 12% due to engine cold start effects [84].

Dimensional analysis was utilized by Patton et al. [56] to identify an expression for the
frictional mean effective pressure Pfme. They have found that the frictional mean effective
pressure (kPa) is a function of the engine bore B (mm), bearing diameter Db (mm), engine
stroke S (mm), engine shaft speed N (rpm), number of cylinders in the engine ncyl, number
of bearings nb, number of valves nv, bearing length Lb (mm), intake manifold pressure Pim,
atmospheric pressure P∞, compression ratio rc, and mean piston speed Sp as shown in
equation (2.8).

Pfme = 1.22× 105

(
Db

B2Sncyl

)
+ 2× 3.03× 10−4

(
ND3

bLbnb
B2Sncyl

)
+ 1.35× 10−10

(
D2
bN

2nb
ncyl

)
+ 2.94× 102

(
Sp
B

)
+ 4.06× 104

(
1 +

1000

N

)
1

B2

+ 6.89

(
Pim
P∞

)[
0.088rc + 0.182r1.33−KSp

c

]
(2.8)
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The effect of lubricating oil temperature on the friction mean effective pressure was
included in equation (2.8) by introducing a viscosity scaling term as given in equation
(2.9) [71]. The parameter µ0(T0) represents the reference viscosity of the engine oil as
provided in calibration data. This model was generalised over several engines by Shayler
et al. [76].

µscaling =

√
µ(T )

µ0(T0)
(2.9)

To estimate lubricant oil and coolant temperatures, a thermal engine model is needed.
For an engine thermal model, the engine is considered to be divided into three compart-
ments: head, block and oil sump. A thermal resistance based model was developed by
Bohac et al. [7] to calculate the temperatures in these compartments. The thermal masses
that are considered are those of the engine head, engine block, coolant, and oil. In this
work, linear graph theory is utilized to expand the model of Bohac et al to include the
engine radiator and oil cooling block.

To create a complete model for the engine thermals, the hydraulic circuits of lubricant
and coolant need to be modelled in order of obtaining states representing the mass flow
rates of oil and coolant as functions of time or crank angle. As shown by Klingebiel and
Kahlstorf, such representations require detailed models of the lubricant hydraulic pipeline
and oil pump characteristics [41]. This is considered to be beyond the scope of this work,
so oil mass flows is approximated from experimental data.

Physics-based models of engine emissions are cycle by cycle two zone combustion models
that are computationally expensive for this study [1, 4, 67]. These models divide the
gaseous space inside the engine into two control volumes: burned and un-burned. ODEs are
derived for the different considered species over each control volume in each cylinder. It was
determined by numerical testing using MapleSim� that such a model is computationally
expensive and can not be extended in this study. For this reason, an experimentally derived
black box model is used in this work.

2.3 Manifold Models

Basic models that were introduced for manifolds have included quasi-steady models of
engines that discard the transient effects and model the manifold as a channel with Fanno
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flow as shown in equation (2.10) [37].

ṁair =
CDAt(θ)pamb√

RTamb

(
pim
pamb

) 1
γ

(
2γ

γ − 1

[
1−

(
pim
pamb

) γ−1
γ

]) 1
2

(2.10)

Initial models characterising manifolds as channels with transient one dimensional com-
pressible flow effects were stated in Shapiro’s classic on compressible flows [75]. For this
thesis, the appropriate equations are derived in Appendix A. It was suggested to solve the
equations using the Method of Characteristics (MOC) [75, 5, 68]. They deduced that the
method of characteristics is well-suited to solve the system since it is a system of strictly
hyperbolic equations with a single space and a single time variable.

In the method of characteristics, the system of PDEs is reduced into a system of ODEs
along the characteristic lines. To apply the method, the system of PDEs that describe
quasi-one dimensional fluid flow with area variation, frictional losses and heat transfer are
written as shown in equations (2.11). The continuity equation is represented in equation
(2.11a), the momentum equation is represented in equation (2.11b), and the energy equa-
tion is represented in equation (2.11c). System of equations (2.11) is utilized to define a
relation between the fluid axial velocity u, absolute pressure P , and density ρ in terms of
the frictional force per unit mass G and the the heat transfer per unit mass %. A detailed
discussion on (2.11) is presented in Appendix A.

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= −ρu

A

dA

dx
(2.11a)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
= G (2.11b)

∂P

∂t
+ u

∂P

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= ρ (γ − 1) [%− uG] (2.11c)

Note that the equations are non-linear due to the inertia terms u∂u
∂x

, u∂P
∂x

, u ∂ρ
∂x

, ρ∂u
∂x

.
Recently, it was verified that non-linear inertia effects in compressible flows are apparent
when the ratio of the channel length to the channel diameter is greater than 10 (L/D > 10)
[8]. Conversely, if the length of the channel is small, it can be treated as a lumped system
and inertia effects or spatial derivatives shall be removed from the analysis.
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Consider the chain rule relations in equations (2.12).

dP = dt
∂P

∂t
+ dx

∂P

∂x
(2.12a)

du = dt
∂u

∂t
+ dx

∂u

∂x
(2.12b)

dρ = dt
∂ρ

∂t
+ dx

∂ρ

∂x
(2.12c)

After manipulating systems (2.11) and (2.12), the characteristic lines are found and are
stated in equation (2.13). Note that the characteristic lines are lines of singularities of the
system.

dx

dt
= u+ a (Mach Line I) (2.13a)

dx

dt
= u− a (Mach Line II) (2.13b)

dx

dt
= u (Path Lines) (2.13c)

Systems (2.12) and (2.13) are written in matrix format. Cramer’s rule is applied to
the resulting system. For the solution to exist, the Jacobian in the numerators of the
calculated ratios are set to zero. The obtained ordinary differential equations are shown in
system (2.14).

du|I +
2

γ − 1
da|I =

[
−au
A

dA

dx
+ γ

%

a
+G

(
1− u

a

)
+
a2

γ

∂

∂x

(
ln
a

2γ
γ−1

P

)]
dt|I (2.14a)

du|II −
2

γ − 1
da|II =

[
au

A

dA

dx
− γ %

a
+G

(
1 +

u

a

)
+
a2

γ

∂

∂x

(
ln
a

2γ
γ−1

P

)]
dt|II (2.14b)

dp|path =
2γ

γ − 1

P

a
da|path − ρ (%− uG) dt|path (2.14c)

Introduce the two Riemann Variables as shown in equations (2.14) [68].

dΓ+ = du|I +
2

γ − 1
da|I (2.15a)

dΓ− = du|II −
2

γ − 1
da|II (2.15b)

17



Three sets of ordinary differential equations are produced. The first set of equations is
set (2.16) for Mach Line I, the second set of equations is set (2.17) for Mach Line II, and
the third set of equations is set (2.18) for the path lines.

dΓ+

dt

∣∣∣∣
I

= −au
A

dA

dx
+ γ

%

a
+G

(
1− u

a

)
+
a2

γ

∂

∂x

(
ln
a

2γ
γ−1

P

)
(2.16a)

dx

dt
= u+ a or x = (u+ a) t+ x+

0 (2.16b)

dΓ+

dt

∣∣∣∣
II

=
au

A

dA

dx
− γ %

a
+G

(
1 +

u

a

)
+
a2

γ

∂

∂x

(
ln
a

2γ
γ−1

P

)
(2.17a)

dx

dt
= u− a or x = (u− a) t+ x−0 (2.17b)

dp|path =
2γ

γ − 1

P

a
da|path − ρ (%− uG) dt|path (2.18a)

dx

dt
= u or x = ut+ xpath0 (2.18b)

This system of equations was first solved by Jenny [39] using graphical techniques.
Numerical solutions for the characteristic equations were introduced by Benson [5]. Ben-
son’s techniques included first-order approximations for the right hand side (RHS) of the
equation sets (2.16), (2.17) and (2.18). Thus, the method was a first-order method and
it suffered from requiring very small time steps (on the order of 0.01 ms) to solve the
equations.

The Method of Characteristics improved with time; the calculation of the path lines
improved due to the work of Payri et al. [57]. Finally, Pearson and Winterbone have
modified the method to have high computational speeds [58]. The modified method is
reported to be two orders of magnitude faster in terms of computational time compared
to the method proposed by Benson.

The method of characteristics is still in wide use for calculating flows inside manifolds
[20, 31]. A major drawback of the method is that it is not conserved, i.e. there is no
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guarantee that the solution satisfies the conservation of mass equation, nor is there any
guarantee that the continuity, momentum or energy equation is solved correctly. To address
this issue, a conserved technique was developed by Van Hove and Sirens [81]. Currently
the Quasi-Propagatory Model that is derived from the method of characteristics [20] is the
preferred method for control-oriented modelling. The Quasi-Propagatory model is a model
that relates the lumped – or middle point – velocity and pressure in the manifold to the
velocities and pressures at the boundaries of the manifold. The different boundaries are
stated in Appendix C and the method is detailed in Appendix D.

Due to their nature, Finite Volume Methods (FVMs) are inherently conserved. The
lowest spatial discretisation schemes are first-order upwind schemes [21, 70]; higher-order
methods include QUICK [21]. Higher-order central differencing methods include Lax-
Wendroff Schemes [47]. The drawback behind these techniques is that when performing
spatial discretisation, only the neighbouring nodes are considered. Traditionally, a col-
located grid is used to find a solution to the system; i.e. for every control volume, the
pressure is solved at the center of the volume and the velocities are solved at the bound-
aries of the volume as defined in the Semi-Implicit Method for Pressure Linked Equations
(SIMPLE) algorithm. This induces an extra set of equations that need to be solved itera-
tively at each time step, increasing the solution time. More advanced techniques includes
higher order approximations but, again, the solution at every node is written in terms of
the neighbouring nodes requiring a large number of nodes for an accurate solution (in the
order of hundreds or thousands). Another issue is in the truncation error of computations.
The truncation error is of polynomial order O (∆xn), where n is the order of the spatial
discretisation scheme.

On another track, spectral methods were applied to solve fluid flow problems [12]. In
these methods, the solution function is assumed to be a single continuous function over the
whole domain. Usually the function is selected to be either a series of sine functions sin (x),
cosine functions cos (x), complex Euler exponentials exp (ix), or Chebyshev Polynomials.
The system of ODEs is obtained by applying the Fourier transform to the system of PDEs,
then plugging the series approximation of the function into the generated ODEs. The
ODE system is solved and an inverse Fourier transform is applied to get the solution. This
transform is facilitated due to the selected basis of the approximated series. The drawback
behind this approach is that the inertia term in Euler’s fluid flow equations is non-linear
and this requires a numerical Fast Fourier Transform that is computationally expensive,
especially for high frequencies. In spectral methods the truncation order decreases expo-
nentially. Thus the bottleneck of the numerical scheme is the order of the scheme used for
the time variable.

In finite element and discrete finite element methods, a weak formulation is made
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by multiplying the given PDEs by a weight function and integrating the result [38]. If
the procedure is done over the whole domain and the weight function is selected to be
the Delta-Dirac function, and a series of basis functions is selected, the method becomes
orthogonal collocation. It can also be considered – as shown in chapter 5 – that orthogonal
collocation can be derived from a spectral analysis point of view to solve the set of ODEs
derived along the characteristic lines. Orthogonal collocation is applied symbolically to
solve linear PDEs in [10].

2.4 Catalytic Converter Models

Catalytic converter models may be categorized into control-oriented and high-fidelity physics-
based models. CFD simulation of the whole catalytic converter (CC) is not practical for
control purposes since it requires a high computational power [49]. For this reason, detailed
computational models of catalytic converters are based on two- and three-dimensional fi-
nite volume modelling of a single channel in the converter. This single-channel model is
then extrapolated to cover the whole converter. An attempt has been made for a de-
tailed adaptive mesh full-scale model on a 4-node parallel cluster for 354,300 cells of a
CC. The computational time of this attempt is 24 hours [45] for a steady-state simulation.
In the current work, a dynamic high fidelity real-time model is desired; for this reason, a
single-channel one-dimensional model is considered.

The engine exhaust flow in the catalytic converter is assumed to be incompressible.
Assuming that the channel cross-sectional area does not change, the velocity inside the
channel is constant, implying that there is no need for a model for fluid flow inside the
manifold. The model is created to model the temperature profile of engine exhaust gases
and, more importantly, the concentration profiles of different species in the converter.

A two-dimensional transient channel model for temperatures and concentrations in a
catalytic converter monolith was developed and solved using orthogonal collocation by
Young and Finlayson [88]. In this model, chemical reaction rates were modelled as black-
box models utilizing curve fits bypassing the modelling of chemical kinetics [89]. A quasi-
steady approximation for the gaseous phase was applied in the study of Young and Fin-
layson. It was shown by Heck et al. that one- and two- dimensional models of the monolith
predict a similar performance of the catalytic converter [34]. For purposes of the current
study, a one-dimensional transient model that includes chemical reaction rates is adopted.

In the work done by Koltsakis et al. [42], a one-dimensional system of equations was
discretized into several control volumes. Employing analytical solutions over the domain of
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the discretized control volumes in the one-dimensional space, a ‘number of transfer units’
(NTU) based solution is obtained as given in equation (2.19). The number of transfer
units is computed from the convective heat transfer coefficient h, the surface area of the
considered element Ai, and the mass flow rate inside the catalytic converter channel ṁ.
The NTUs enable the computation of the exhaust temperature Tg,i and the substrate
temperature Ts,i in each element. The corresponding heat fluxes are calculated by invoking
equation (2.20) on a node i.

NTUh =
hAi
ṁcp

(2.19a)

Tg,i+1 = Ts,i + (Tg,i − Ts,i) e−NTUh (2.19b)

qconv,i =
ṁcp
Vi

(Tg,i − Ts,i)
(
1− e−NTUh

)
(2.20)

As for the substrate temperature, a two-dimensional cylindrical coordinate partial dif-
ferential equation is used to find the temperature field as given in equation (2.21). This
PDE was solved by Koltsakis et al. using the alternative direction implicit (ADI) technique
– an iterative numerical technique used to solve systems of equations represented as diago-
nally dominant sparse matrices. The source term in equation (2.21) includes the chemical
reaction rates Rk and the heat of formation of these reactions ∆Hk. As for chemical kinet-
ics, six chemical reaction equations are considered with six species; namely Oxygen (CO),
Carbon Dioxide (CO2), Carbon Monoxide (CO), Water (H2O), Nitrogen Oxide (NO), and
unburned fuel (HC). The reaction rates of these chemical reactions are modelled with first-
order time constants using the Arrhenius equation as detailed in chapter 5. It is worth to
note that nitrogen oxide reduction reactions and water gas and steam-forming reactions
were not included in this model. Also, oxygen storage reaction rates are not included in
equation (2.21). An updated oxygen storage model is detailed in another article [43].

ρscp,s
∂Ts
∂t

= λs,x
∂2Ts
∂x2

+ λs,r
1

r

∂

∂r

(
∂Ts
∂r

)
+ qconv +

6∑
k=1

(−∆Hk)Rk (2.21)

A high-fidelity plant model of a single channel three-way catalytic converter was de-
veloped in the work of Santos and Costa [72]. In that model, it was assumed that the
substrate temperature varies only in the axial (x) direction reducing the PDE in (2.21)
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to a one-dimensional transient PDE. This is done by introducing an effectiveness factor
ε as shown in equation (2.22). Gas temperature was modelled using the quasi-steady as-
sumption. The overall system of equations was also solved using the NTU method coupled
with an explicit integrator. Newton’s method was used to solve the quasi-steady algebraic
equation at every time step.

(1− ε) ρscp,s + (1− ε)λs
∂2Ts
∂x2

= hgsS (Tg − Ts) +
4∑
j=1

(−∆Hj)Rj (2.22)

For chemical kinetics, four chemical reactions were considered in the model of Santos
and Costa; however, oxygen storage, nitrogen oxide reduction reactions, and water gas and
steam forming reactions were not included in this model. On an other hand, expressions
of Sherwood and Nussult numbers stated by Ramanthan et al. [65] were used in the
developing flow regions.

Dubien et al. studied the effect of including steam forming chemical reactions in the
catalytic converter model [24]. A detailed chemical kinetics model was presented by Ra-
manthan et al. [66]. That model includes fifteen chemical reactions to model the oxidation
reactions, nitrogen oxide reduction reactions, water gas and steam forming reactions, and
oxygen storage reaction. This model is used in this thesis as a basis of modelling the
chemical kinetics in a catalytic converter as detailed in section 5.2. Temperature analysis
in this thesis is similar to the work done by Santos and Costa. Andrianov et al [3] states a
model that includes all transient terms in all of the heat and mass conservation equations.
This model is used in this thesis as the basis of modelling the thermals inside the catalytic
converter.
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Chapter 3

Graph Theory Representation

3.1 Variable Representation

A requirement in modelling is to be able to relate the different components that constitute
a system to each other. Generally this is done mainly by bond graph approaches and graph-
theoretic approaches. The focus of this work is to do the model representation utilizing
a Graph-Theoretic approach. In a graph-theoretic approach, the topology of the system
is represented by a linear graph with defined through and across variables. The across
variables are the variables measured across different nodes and the through variables are
the values that define the flow between the different nodes. In an engineering system,
theoretically, the across variables are variables that can be measured without intervening
with the system flow in parallel to the components. On the other hand, through variables
in the system are variables of the system that are measured by placing the meter in series
with the system flow intervening with the flow. Examples of across and through variables
are the respective voltages and currents of different electrical components. Typical through
and across variables are shown in table 3.1.

In this analysis, for the hydraulic part, the selected across and through variables are the
pressure P and mass flow rate ṁ respectively. For the thermal part the selected through
and across variables are the heat transfer rate q and the temperature T . For gaseous flows
including more than one species, Dalton’s assumption is applied where each species has
a partial pressure and the sum of all partial pressures constitutes the overall pressure;
moreover, it is assumed that all fluids occupy the overall volume. This assumption is valid
for gaseous mixtures that are the main concern of this work. For liquids, the concentration
can be used as an across variable, and the molar flow rate is the through variable. Thus,
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the selected across variable is the partial pressure and the through variable is the molar
flow rate of the species ṅ. The reason for selecting molar flow rates for the flow of each
species is that flow of species are involved in chemical reactions that are defined in terms of
the number of moles of the respective specie. The selected variables are shown in table 3.2
for the particular case of a three species flow in engines. With a high level view on engines,
the selected species are Air, Fuel, and Burned Gas.

Table 3.1: Through and Across Variables For Different Systems

Analysis Type Across Variable Through Variable

Electrical Voltage Current
Linear Mechanical Velocity Force
Angular Mechanics Angular Velocity Torque
Hydraulics Pressure Flow Rate
Thermal Temperature Heat Transfer Rate

Table 3.2: Through and Across Variables For Thermo-Fluid Systems

Bulk Flow Species

Fluid Thermal Air Fuel Burned

Across P T Pa Pf Pb
Through ṁ q ṅa ṅf ṅb

One of the biggest problems in modelling thermal fluid systems is the issue of reversible
flow situations. To illustrate such a case, consider the simple example of a flow between
two reservoirs at different pressures and temperatures as shown in figure 3.1. A fluid flow
is going to occur according to both the generalized Bernoulli’s equation and Navier-Stokes
equation; this difference is due to the pressure gradient in the flow direction. Since the
main concern of this work is one-dimensional flows, the pressure gradient is considered to
be ∂P

∂x
. The fluid flow is related to the pressure difference, in which the simplest transient

relation is for frictionless uniform horizontal pipe flow between velocity (u) and endpoint
pressures (P1 and P2) as derived from the unsteady Bernoulli equation in equation (3.1). It
is noticed that the pressure - flow relation (terminal equation) is dependent on the pressure
difference (across variable, P1 − P2) between the nodes. Parameters in this formulation
include the pipe length L, pipe diameter Dav, and gravitational acceleration g.
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L

g

du

dt
=
P1 − P2

ρg
− f L

Dav

|u|u
2g

(3.1)

T1, P1 T2, P2

Case 1

Case 2

ṁ1,2, q1,2

(a) System Schematic

1 2
1,2

(b) Linear Graph of Case 1

Figure 3.1: Schematic of a Flow Between Two Reservoirs

The problem is that in the case of temperatures, due to the nature of the convective
equations, the temperature is dependent on the upstream node temperature. In analysis
terms, it is considered that the upstream temperature value is known and the downstream
value is unknown, or the temperature of the fluid leaving the system is equal to the temper-
ature of the fluid inside the system. To have a stable numerical method in solving lumped
convective system ODEs and discrete model PDEs, the convective variables should be
weighted in favour of the upstream variable value in a spatial discretisation to solve the
respective ODEs [21]. For a lumped channel with incompressible flow, this formulation is
stated in equation (3.2a) for Case 1 and equation (3.2b) for Case 2 considering simple one-
dimensional incompressible flows. Note that in Case 1, or equation (3.2a), the unknown
temperature T is defined as the temperature just before reservoir 2; similarly, in Case 2,
or equation 3.2b, the unknown temperature T is defined as the temperature just before
reservoir 1.

ρ V cp
dT

dt
= qin + ṁ1,2cp (T1 − T ) if ṁ1,2 ≥ 0 (3.2a)

ρ V cp
dT

dt
= qin + ṁ1,2cp (T2 − T ) if ṁ1,2 ≤ 0 (3.2b)
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The main problem that is introduced in topology analysis is the value of nodal replace-
ment. In case 1, fluid flow is considered to flow from reservoir 1 represented by node 1 to
reservoir 2 represented by node 2 as shown in figure 3.1b. In this scenario, the unknown
temperature value is just before node 2; this implies that the temperature at node 2 is
equal to the temperature T of the fluid inside the considered pipe. The issue that arises
is that node 2 is a reservoir with a predefined temperature, and T is the temperature
inside the considered pipe just before the reservoir. A similar case occurs for case 2. It can
be argued that the temperature value of the downstream reservoir be removed altogether
from the analysis, but this argument is refuted for the case of a pulsating flow that changes
direction between reservoirs 1 and 2 since the temperature of both reservoirs are needed.

To circumvent this problem, it is suggested to insert virtual nodes inside the thermal
fluid element that represents the average fluid temperature or convected variable inside
the thermal fluid system. These virtual nodes are treated just like normal nodes in linear
graph theory; nevertheless, the main difference between these nodes and normal nodes is
that these nodes are placed inside the elements (instead of placing them at the element
connection peripherals) representing the values of variables inside the considered compo-
nent. Utilizing the idea of virtual nodes, the linear graph that represents the components
of the system shown in figure 3.1 is shown in figure 3.2. The virtual node is named (1,2)
indicating that it is in the components connecting nodes 1 and 2. In this work, the virtual
nodes are gray coloured and the ground node g represents the environment.

A solution to this problem is to introduce an extra node and edge in the reservoir
component to be able to circumvent the upstream temperature issue.

Another problem that arises due to the convective nature of heat transfer is the temper-
ature value of the virtual node at zero flow. When the flow is exactly zero, the convective
heat transfer is not present and setting the temperature value T is not possible by using
equation (3.2), especially if the temperature values of both reservoirs are different since
both equations (3.2a) and (3.2b) apply simultaneously at zero flow; the system of equations
results in T = T1 = T2. It is clear that if T1 6= T2 the set of equations (3.2) has no solution.
A solution is proposed in Modelica� by adding a computationally small number (ε) to the
flow rate of the system to avoid cases of singularities arising due to zero flow.

In this work, it is proposed to return to heat transfer fundamentals to resolve this
situation. There are three basic modes of heat transfer:

conduction Conduction heat transfer is the heat transfer that occurs due to the energy
transfer between adjacent molecules. This mode of heat transfer is most apparent in
solids, or inside static fluids.
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Figure 3.2: First Case Temperature Plots

convection Convection heat transfer is the heat transfer due to the bulk fluid flow. Con-
vection is usually divided into two parts, forced and natural convection. In forced
convection the bulk flow is induced due an external factor (pump, fan, blower, com-
pressor, etc...). Natural convection is due to flow due to density variation. For
example, it is known that at constant pressures, the density of air decreases as the
temperature of air increases; this density variation induces buoyant flow and in turn
the buoyant flow is a driver for natural convective heat exchange.

radiation Radiation occurs between different surfaces and is most apparent if the surfaces
are in a vacuum. For cases of internal flow (as is in this work), radiation is usually
neglected.

Since the main concern of this analysis is heat transfer with fluid streams, radiation heat
transfer can be neglected. Moreover, heat transfer due to buoyant flow can be neglected
since flows due to density gradients can be discarded in places that are bound by height,
i.e. horizontal, tilted and short vertical pipes, channels, and thermal fluid components that
are the subject of this study. The two remaining modes of heat transfer are conduction
and forced convection. When there is no flow in the system, there is no heat exchange
by forced convection and the only considered mode of heat transfer would be conduction.
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The anomaly in equations (3.2) appeared because conduction was neglected. To include
conduction, the set of equations (3.2) are modified to the set of equations (3.3).

ρV cp
dT

dt
= qin + ṁincp (T1 − T )− kA∂T

∂x
(3.3a)

ρV cp
dT

dt
= qin + ṁincp (T2 − T )− kA∂T

∂x
(3.3b)

Since conductive heat transfer has a dependence on the temperature profile of the
fluid inside the component, including conduction in the considered system of equations
dictates the presumption or knowledge of the fluid temperature profile spatial derivative.
For lumped analysis, the spatial profiles of the variables are not computed or assumed. In
this work, a linear temperature profile is considered. It is worth mentioning that this is the
exact profile for channels with uniform heat transfer flux, for all other components this is
an approximation. Utilizing this assumption, equations (3.3) can be written as equations
(3.4). The considered conduction length in equation (3.4) is the distance between the
virtual node and the end nodes, and for the case of channels is half the length of the
channel.

ρV cp
dT

dt
= qin + ṁincp (T1 − T )−

(
kA

L

)
(T1 − T ) (3.4a)

ρV cp
dT

dt
= qin + ṁincp (T2 − T )−

(
kA

L

)
(T2 − T ) (3.4b)

At zero flow, steady state conditions, equations (3.4) are simplified to T = T1+T2
2

indicating that the temperature inside the component is the average of the temperatures
at the boundaries.

3.2 System-Level Modelling

To illustrate the usage of the linear graph method to represent topology and generate
system equations, consider a mixing box whose dimensions and schematics are shown in
figure 3.3. The pipes that are connected to the mixing zone, i.e. pipes a, b, and c, are
represented by lumped pipe models as shown in Appendix B. In this model it is assumed
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4 + 5 (T − 300) W

Figure 3.3: The schematic of the considered mixer

that the mixing zone is an ideal zone where inertia and thermal mass effects are neglected.
The linear graph representation is shown in figure 3.4. Details about constructing the
corresponding linear graphs are found in Appendix E.

To induce reversible flows in the mixer, the mass flow rate into the mixer (at Location
1) is set to vary in a sinusoidal fashion as ṁ1 = 6.5× 10−3 sin

(
πt
300

)
kg/s. The pressure of

the downstream (Location 3) is set to be 2 atmospheres. The temperature at Location 1 is
500 K and the temperature at Location 3 is 300 K. For a positive mass flow rate: the flow
passes from left to right in the system shown in figure 3.3 and the upstream temperature is
500 K; for a negative mass flow rate, the upstream temperature is 300 K. Heat is exchanged
between the system shown in figure 3.3 with the surroundings (at a temperature of 300
K) with a convective coefficient of 5 W/m2-K accompanied with a heat loss of 4 W; the
overall heat transfer - that is a function of the system temperature - is given in equation
(3.5).

q = −4 + 5 (T − 300) (3.5)

The simulation is done utilizing MapleSim� for 5 periods (50 seconds) and the results
are displayed in figure 3.5. It is noticed that the temperatures at inlet and outlet switch
between 300 and 500 K at their respective cycles, i.e. when the flow rate in the system is
positive the temperature at Location 1 is 500 K; for a negative flow rate the temperature at
Location 1 is the same as that of temperature at Location 2. The same observation can be
stated for Location 3 that has a temperature of 300 K for negative flows. It is noticed that
for positive flows, the 300 K temperature value is discarded and that for negative flows,
the 500 K temperature value is discarded. Moreover, the temperature profile at Location
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Figure 3.4: The corresponding Linear Graph

2 is C0 continuous (not differentiable) when the flow is equal to zero. This fact induces
the noticed “jumps” in density values shown in figure 3.5d; these lines are not entirely
vertical due to the presence of conduction in the models. If conduction was not present, a
numerical singularity would be present at these positions in the plot.

The Mach number is provided in figure 3.5c showing that the flow in this example
enters into the compressible zone (above a Mach number of around 0.3) of air flow and
compressible effects are present; nevertheless, it is noticed that inertia effects are minimal
in the plots. It is presumed that this is due to the usage of lumped models in this example.
The Mach number is computed as the division of air axial velocity by the speed of sound
as shown in equation (3.6).

M =
u

a
=

u√
γRT

(3.6)
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Figure 3.5: Simulation of Mixing Box at Locations Shown in Figure 3.3
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Chapter 4

Engine Block Models

In this section of the thesis, the interest is in modelling the engine block. The essential
components in an engine block are the throttle, intake manifold, fuel injector, engine
cylinder and exhaust manifold as sketched in figure 4.1. In this work, the model of the
throttle is extended to bi-directional flows, a lumped model is stated for the intake manifold,
a mean value with engine thermals model is stated for the engine cylinders and grey box
models are provided for engine exhausts. Validation is done on a Toyota Prius 2015 Plug-in
hybrid engine whose characteristics are indicated in table 4.1.

The models defined in this chapter are created utilizing Modelica in an acausal format.
A basic engine air path simulation utilizing the models defined in this chapter is performed
in a single simulation as illustrated in the screen-shot shown in figure 4.2. The defined
models are labelled in figure 4.2 referring to the models in this chapter. Note that the
model of the atmosphere or thermal reservoir was detailed in chapter 3. As for the connec-
tor between the engine air path models, a custom connector was created for the acausal

pA
Tamb

ṁair

pB
Tamb

ṁair

pim pim
Tcyl

ṁfuel

Throttle

Intake Manifold Cylinder

Figure 4.1: Basic Air Path Components in an Engine
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flanges. The connector includes the mass flow rate of intake/exhaust gases as a through
variable, the pressure as an across variable, the temperature as a convective variable and
the concentrations of Carbon Dioxide CO2, Carbon Monoxide CO, water vapour H2O, un-
burned fuel HC, Hydrogen H2, Nitrogen Oxides NO, and Oxygen O2 placed in a vector of
convective variables. The treatment of convective variables was detailed in chapter 3 of
this thesis.

Table 4.1: Toyota Prius 2015 Engine Specifications

Displaced Volume 1800 cc
Stroke 88.3 mm
Bore 80.5 mm
Compression Ratio 13:1
Number of Cylinders 4

Intake Manifold

EGR

Throttle

Engine Block

Exhaust Manifold

Engine Shaft Driver Atmosphere

Figure 4.2: MapleSim Implementation of the Engine Model

4.1 Mean Value Engine Model

4.1.1 Engine Throttle Acausal Model

The mass flow rate of air is a function of the internal area of the throttle opening and
pressures at both ends of the manifolds as given in equation (4.1). For an acausal model,
the flow is considered to be a bi-directional flow in which the pressure ratio of the throttle
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outlet pressure pB to the inlet pressure pA of air entering the throttle Π = pB
pA

is the primary

independent variable as shown in equation (4.3).

ṁ =
CDAthpAΨ√

RairTA
(4.1)

The area change inside the manifold is given by equation (4.2) referenced from Heywood
[37]. The area change is related to the throttle angle θ, the throttle shaft diameter d, the
throttle bore diameter D, and the diameter ratio a = d

D
. The values used in this analysis

are the corresponding values of the given Toyota engine.

4Ath
πD2

=

(
1− cos θ

cos θ0

)
+

2

π

[
a

cos θ

√
cos2 θ − a2 cos2 θ0 −

cos θ

cos θ0

sin−1

(
a cos θ0

cos θ

)
−a
√

1− a2 + sin−1 a
] (4.2)

The variable that includes compressible effects in the throttle equation is the flow
function Ψ. The flow function is dependent on the pressure ratio Π and the specific heat
ratio γ. For an acausal valve in which the flow passes in both directions, the flow function
extended from literature [29] to include both upstream and downstream directions as shown
in equation (4.3).

Ψ =


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−
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(

2
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(

2
γ+1

) γ
1−γ

(4.3)

It is noticed that when the throttle is closed, there is no air flow and the pressure ratio
Π = 1. At this value, the derivative of the flow function with respect to the pressure ratio
approaches infinity. Thus, it is noticed that flow function Ψ is not C1 continuous, which
may result in a singularity when attempting to solve the differential-algebraic equations
(DAEs) of the system. A solution to this problem is to define a new flow function Ψ∗ by
applying a curve fit around the no-flow operation point. A threshold value Πth is chosen
to transition between the equations given in (4.3) and the curve fit equation. An exact
fourth-order polynomial curve fit is suggested considering the following conditions:
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� At Π = 1, Ψ∗ = 0

� At Π = Πth, Ψ∗ = Ψ and dΨ
dΠ

= dΨ∗

dΠ

� At Π = 2− Πth, Ψ∗ = Ψ and dΨ
dΠ

= dΨ∗

dΠ

Thus, the modified flow function may be written as shown in equation (4.4). This solu-
tion ensures the continuity and differentiability at all considered pressure ratios eliminating
the resulting singularity that occurs when there is no flow across the throttle.

Ψ∗ =


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(4.4)

The coefficients are given in equation (4.5). The respective derivatives are computed
symbolically utilizing a computer algebraic system (CAS) software (Maple� in the case
of this work). After calculating the symbolic derivatives, the fit coefficients are evaluated
based on the threshold value selected by the user. In this work, a threshold value of 0.95
is selected applying the curve fit equation for values of Π between 0.95 and 1.05.

c1 =

[
1

4 (Πth − 1)

][(
dΨ

dΠ

∣∣∣∣
Π=2−Πth

+
dΨ

dΠ

∣∣∣∣
Π=Πth

)
+ 3Ψ(Πth)− 3Ψ(2− Πth)

]
(4.5a)

c2 =

[
1

4 (Πth − 1)2

] [(
dΨ

dΠ

∣∣∣∣
Π=2−Πth

+
dΨ

dΠ

∣∣∣∣
Π=Πth

)
+ 4Ψ(Πth) + 4Ψ(2− Πth)

]
(4.5b)

c3 =

[
1

4 (Πth − 1)3

] [(
dΨ

dΠ

∣∣∣∣
Π=2−Πth

+
dΨ

dΠ

∣∣∣∣
Π=Πth

)
−Ψ(Πth) + Ψ(2− Πth)

]
(4.5c)

c4 =

[
1

4 (Πth − 1)4

] [(
dΨ

dΠ

∣∣∣∣
Π=2−Πth

+
dΨ

dΠ

∣∣∣∣
Π=Πth

)
− 2Ψ(Πth)− 2Ψ(2− Πth)

]
(4.5d)
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A comparison between the original equations and the system of modified equations is
presented in Figure 4.3 for pressure values close to 1 for a selected threshold pressure ratio
of Πth = 0.95. It is noted that the curve fit retains the continuity of the curve and modifies
the values and derivatives near the pressure ratio of Π = 1.
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Figure 4.3: Flow Function

It is worth to state that this model is an extension to the model stated by Guezzella
and Onder for the engine throttle [29].

4.1.2 Lumped Manifold Model

To complete an engine lumped block model, a lumped manifold model is introduced. In
a lumped manifold model, the whole manifold is considered to be a single control volume.
The flow is considered to be compressible and the mean pressure is lumped into a single
node. Equation (4.6) shows the relation between the manifold mean pressure and the mass
flow rates of the air mixture at the inlet and exit of the intake manifold [37].

dpim
dt

=
γRairT∞
Vim

(ṁair − ṁair,engine,in) (4.6)

ṁair,engine,in =
pimncylVsN

4πRTamb

ηvol (4.7)
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It is assumed that the temperature rise in the intake manifold is negligible, implying
that there is no heat transfer in the manifold.

A higher-fidelity control-oriented one-dimensional manifold model is presented in sec-
tion 5.1.

4.1.3 Engine Cylinder Mean Value Model

The main aim of the engine mean value model is to find a mapping between the engine
speed and brake torque at different engine throttles, air to fuel ratios, valve timings, and
spark advances. In this model, this mapping is done in an acausal setting.

The basic mechanical model equation is a torque balance that relates the engine crank-
shaft speed ω (rad/s) to the mean torque generated by engine combustion τind, the friction
torque τfric, and the brake torque τbrake. The brake torque τbrake is applied by the dy-
nanometer in a lab setting or by the car power-train in a real driving situation. The torque
balance is given in equation (4.8). Equation (4.8) is a relation between engine shaft speed
ω and the brake torque τbrake of the engine; in this acausal model implementation, either
measurement may be used as an input to obtain the complementary variable.

Jcrank ω̇ = τind − τfric − τbrake (4.8)

To determine the frictional torque τfric, the frictional mean effective pressure (Pfme)
needs to be identified for the engine. The relation between the engine Pfme and frictional
torque is given in equation (4.9). The considered engine has four cylinders (ncyl = 4), and
is a four stroke engine (nRPC = 2).

τfric =
ncylVs

2nRPCπ
Pfme (4.9)

Friction in engines is categorized into three major categories: rubbing friction, pumping
losses, and auxiliary losses. Rubbing friction occurs in crankshaft bearings and bearing oil
seals, reciprocating and valve train. Pumping losses are due to the difference between the
cylinder, manifold and atmospheric pressures. Auxiliary losses that are necessary for engine
operation are due to the oil pump, water pump, and alternator. Additional auxiliary losses
may be due to the air-conditioning compressor. Rubbing and auxiliary losses are lumped
into the frictional mean effective pressure (Pfme), and pumping losses (Ppme) impact the
indicated engine torque τind.
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The frictional mean effective pressure (Pfme) is decomposed into the four different
components as given in equation (4.10). The components are crankshaft friction Pcfme,
reciprocating friction Prfme, valve-train friction Pvfme, and auxiliary friction losses Pafme.
These components are detailed in equation (4.11). It is worth to mention that the relations
relate the frictional Mean Effective Pressure (MEP) components to the engine speed N
(rpm) defined in terms of angular speed ω (rad) as N = 30ω

π
[71].

Pfme = Pcfme + Prfme + Pvfme + Pafme (4.10)

Pcfme = c1 + c2

(
µ(T so )

µ0

)n
N + c3N

2 (4.11a)

Prfme = c4 +
c5

N
+ c6

(
µ(T bo )

µ0

)n
+ c7

(
µ(T bo )

µ0

)n
N + c8

(
Pim
P∞

)
+ c9

(
µ(T b0 )

µ0

)n(
Pim
P∞

)
(4.11b)

Pvfme = c10 +
c11

N
+ c12

(
µ(T ho )

µ0

)n
N + c13N + c14

(
µ(T ho )

µ0

)n√
N (4.11c)

Pafme =
(
a0 + a1N + a2N

2 + a3N
3
)(µ(T bo )

µ0

)
(4.11d)

Coefficients c1 to c14 are detailed in table 4.2. These coefficients are dependent on engine
dimension parameters. Namely, engine piston bore B, engine piston stroke S, piston skirt
length Ls, bearing diameter Db, bearing length Lb, valve diameter Dv, maximum valve lift
Lv, number of bearings nb, number of cylinders ncyl, number of valves nv.

As noticed in equation 4.11, the friction mean effective pressure is corrected by the oil
viscosity ratio. Oil viscosity temperatures are considered at the engine block, the oil sump,
and the engine head. This correction is applied due to variation of temperature between
the three aforementioned locations. Since oil is incompressible and considered to be in the
liquid phase, the dynamic oil viscosity may be found using the Vogel equation given in
equation 4.12. Values of T1, T2 and kµ are dependent on the engine oil grade. More details
about engine oil kinematic viscosity computations are presented by Severa et al. [74].

µ (T ) = kµ exp

(
T1

T2 + T

)
(4.12)
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Table 4.2: Friction Mean Effective Pressure Geometrical Coefficients

c1 0.122
(

Db
B2Sncyl

)
c2 0.303

(
D3
bLbnb

B2Sncyl

)
c3 1.35× 10−4

(
D2
bLbnb
ncyl

)
c4 4.06× 10−2

(
Ft
Fto

) (
Cr
B2

)
c5 20.3

(
Ft
Fto

) (
Cr
B2

)
c6 0.294

(
Sp
B

)
c7 0.303

(
D3
bLbnb

B2Sncyl

)
c8 1.254

(
Ft
Ft0

)
r1.33−0.056Sp
c

c9 6.063rc c10 Cff

(
nv

1000Sncyl

)
+ Com

(
Lvnv
Sncyl

)
c11 Cff

(
nv

2Sncyl

)
+ 500Com

(
Lvnv
Sncyl

)
c12 0.244× 10−6

(
nb

B2Sncyl

)
c13 Crf

(
nv

1000Sncyl

)
c14 0.03162Coh

(
L1.5
v nv

BSncyl

)
The power losses due to the frictional MEP components is defined by Sandoval and

Heywood [71] as given in equation (4.13). This equation is obtained considering that the
power is the multiplication of torque and angular speed. The “pumping torque” loss is
related to the pumping frictional mean effective pressure following equation 4.9.

Ẇpump =
ncylVs

2nRPCπ
Ppmeω (4.13)

Pumping losses are due to differences between the inlet manifold, engine exhaust, and
atmospheric pressures. As in frictional mean effective pressure, the pumping losses (Ppme)
may be sub-categorized into inlet (Ppme,i) and outlet (Ppme,e) pumping losses as shown
in equations (4.14) and (4.15) [71]. It is noticed that in equation (4.15b), the exhaust
pumping pressure is written in terms of the intake manifold pressure Pim, this is done
using dimensional analysis generating a curve-fit as illustrated by Patton et al. [56].

Ppme = Ppme,i + Ppme,e (4.14)

Ppme,i = (p∞ − pim) + 3× 10−3

(
pim
p∞

)2( S2
p

n2
vr

4
i

)
(4.15a)

Ppme,e = 0.178

(
pim
p∞

Sp

)2

+ 3× 10−3

(
pim
p∞

)2( S2
p

n2
vr

4
e

)
(4.15b)
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The indicated torque generated by the engine is the difference of the torque generated
from combustion and the friction torque due to pumping losses. The rotational mechanical
power generated from combustion in the engine is defined as the multiplication of the mass
flow rate of the fuel by the lower heating value of the fuel and the engine thermal efficiency
as shown in equation (4.16).

τind =
ηthṁfuelQLHV

ω
− ncylVs

2nRPCπ
Ppme (4.16)

The overall engine efficiency is defined as the multiplication of efficiencies due to engine
speed, intake manifold pressure, air to fuel ratio (λ), valve timing efficiency (VVT), spark
advance (SA), and engine exhaust gas recirculation (EGR). In this work, the engine is
set to run at 0% EGR removing the effect of EGR from the scope of this analysis. The
overall mathematical expression for the engine thermal efficiency is given in Equation
(4.17). Experimentally fitted maps of the stated engine efficiencies that are obtained for
the Toyota Prius 2015 Plug-in hybrid engine are stated in section 4.4.2.

ηth = ηspeed × ηp,im × ηλ × ηSA × ηV V T × ηEGR (4.17)

4.2 Thermal Engine Cylinder Model

The mass flow rate of air fuel mixture that enters into the engine cylinder is given in
equation (4.18). The total flow rate is a function of the engine crankshaft speed ω (rad/s),
number of cylinders ncyl, piston swept volume Vs, and manifold pressure and temperature.

ṁair,engine,in + ṁfuel,engine,in =
ηvolpimncylVsω

4πRairTim
(4.18)

For cold start applications at zero engine speeds, it is presumed that there is no combustion
inside the engine cylinders and thus, the combustion term is eliminated from the equation.

Thermal domain equations are used to calculate temperatures of the cylinder head Th,
liner Tl, piston Tp, engine block Tb, coolant in the head T hc , oil in the head T ho , coolant
in the engine block T bc , and oil in the engine block T bo . Thermal circuits representing an
engine thermal model are stated by Bohac et al. [7].

The model stated by Bohac et al. is extended to include the engine coolant inlet and
outlet ports. To analyze the extended system topology, linear graph theory is utilized
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Table 4.3: Linear Graph Nodes Description

Node Temperature Location Node Temperature Location

∞ Environment h Engine Head
b Engine Block l Liner
c,b Coolant in engine block o,b Oil in engine block
c,h Coolant in engine head o,h Oil in engine head
c,IN Coolant inlet to engine o,s Oil in engine sump
cyl Engine cylinder exhaust p Engine piston
g Linear Graph Ground

to standardize the derivation of system topology equations. The thermal model includes
convection heat transfer between engine head (h), liner (l), piston (b), block (b) and coolant
(c), oil (o), engine cylinder exhaust (cyl), ambient air (amb).

There are three types of convective heat transfer that are considered in the analysis, for a
generalized heat flow rate Qi,j. Convective heat transfer between a fluid – coolant c or oil o –
Newton’s law of cooling may be used as given in equation 4.19a; an alternative formulation
may be written by expressing the convection coefficient as a thermal conductance G as
shown in equation (4.19b). Fluid transport heat transfer is represented by considering
constant oil and coolant specific heats as shown in equation (4.19c).

Qi,j = hi,jAi,j (Ti − Tj) (4.19a)

Qi,j = Gi,j (Ti − Tj) (4.19b)

Qi,j = ṁi,jcp (Ti − Tj) (4.19c)

The nodes that used in the system topology linear graph are temperature values of
locations defined in table 4.3 and edge component equations are given in table 4.4. In the
component equations, the temperature difference of an edge i is represented by ϑi. Edge 20
represents the power-loss due to valve-train friction with a component equation q20 = Pvfme,
edge 21 represents the power-loss due to reciprocating friction with a component equation
q20 = Prfme, edge 22 represents the power-loss due to auxiliary friction with a component
equation q20 = Pafme, and edge 23 represents the power-loss due to crankshaft friction with
a component equation q20 = Pcfme. Crankshaft friction Pcfme, reciprocating friction Prfme,
valve-train friction Pvfme, and auxiliary friction losses Pafme are defined in equation (4.11).
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The expanded linear graph representing the thermals in the engine is provided in figure
4.4. The nodes coloured in gray represent nodes of elements containing thermal capaci-
tances, edges between these nodes and the common ground are not shown in figure 4.4 to
enhance the readability of the linear graph.

Table 4.4: Linear Graph Edge Equations

Edge Equation Edge Equation

1 q1 = hAportϑ1 11 q11 = Go,∞ϑ11

2 q2 = hAcylϑ2 12 q12 = hl,cbAl,cbϑ12

3 q3 = hcyl,pAcyl,pϑ3 13 q13 = hc,bAh,chϑ13

4 q4 = hcyl,1Acyl,1ϑ4 14 q14 = Gb,oϑ14

5 q5 = Gh,oϑ5 15 q15 = ṁocp,oϑ15

6 q6 = hh,chAh,chϑ6 16 q16 = Go,∞ϑ16

7 q7 = hh,bAh,bϑ7 17 q17 = Gh,bϑ17

8 q8 = Gh,∞ϑ8 18 q18 = ṁccp,cϑ18

9 q9 = Gp,lϑ9 19 q19 = ṁccp,cϑ19

10 q10 = Gp,oϑ10

The state space form of the thermal domain is given in equations 4.20 [7].

ChṪh = Q̇cyl,h + Q̇exh,h − Q̇h,c − Q̇h,o − Q̇h,amb (4.20a)

ClṪl = Q̇cyl,l +

(
NcylVs

2nRPCπ

)
Prfme ω + Q̇p,l − Q̇l,c (4.20b)

CpṪp = Q̇cyl,p + Q̇p,l + Q̇p,o (4.20c)

CbṪb = Q̇c,b + Q̇b,o + Q̇b,amb (4.20d)

Ch
c Ṫ

h
c = Q̇h,c + ṁh

c c
h
p,c

(
T sc − T hc

)
(4.20e)

Cb
c Ṫ

b
c = Q̇l,c − Q̇c,b + ṁb

cc
b
p,c

(
T hc − T bc

)
+

(
NcylVs

2nRPCπ

)
Pafme ω (4.20f)

Cb
oṪ

b
o = Q̇b,o + ṁb

oc
b
p,o

(
T ho − T bo

)
(4.20g)

Ch
o Ṫ

h
o = Q̇h,o +

(
NcylVs

2nRPCπ

)
Pvfme ω + ṁh

oc
h
p,o

(
T so − T ho

)
(4.20h)

(Co
s + Cs) Ṫ

s
o = Q̇p,o +

(
NcylVs

2nRPCπ

)
Pcfme ω + ṁs

oc
s
p,o

(
T bo − T so

)
− Q̇s,amb (4.20i)
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Figure 4.4: Linear Graph Model of Heat Transfer between Engine Components
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Thermal capacitances Ch, Cl, Cp, Cb, Cc, and Co are computed as the product of the
representative mass of the considered part and the specific heat of the material of that
part. Further details are found in Wagner et al [82]. In this work, it is considered that the
engine body is made from Aluminium.

It is noted that for each convective heat transfer term, there is a heat transfer coefficient
that is to be characterised hi,j. These heat transfer coefficients can be approximated by
the empirical relation given in equation 4.21 in the case of heat transfer between the
cylinder and surrounding air. For each convection heat transfer coefficient, dimensionless
parameters ae and be are to be estimated from experimental data. For the Prius 2015
engine, it is experimentally estimated that ae = 0.38 and be = 1.28.

hcyl = ae
kcyl
B

(
4ṁcyl

πBµcylncyl

)be
(4.21)

Applying the first law of thermodynamics on the in-cylinder control volume, the cylinder
temperature is found as given in equation 4.22 [29].

Tcyl =
(1− ηind) ṁfuelQLHV + hexh,hAportTh + hcyl (ApTp + AhTh + AlTl)

hcyl (Ap + Ah + Al) + hexh,hAport + cpṁcyl

(4.22)

4.3 Combustion Emissions Model

Combustion models are usually based on grey-box modelling in which concentrations of
species are determined empirically from experimental data at quasi-steady conditions.
There are seven species to consider in this engine model: Carbon Dioxide CO2, Carbon
Monoxide CO, water vapour H2O, unburned fuel HC, Hydrogen H2, Nitrogen Oxides NO,
and Oxygen O2.

The basic chemical reaction that models combustion is given in relation 4.23. This
relation includes the formation of Carbon Dioxide and water vapour, hydrogen, unburned
fuel (HC) and pollutants (NO). The water-gas shift reaction is given in relation 4.24.

nfuelHC + nair
(
rO2

O2 +
[
1− rO2

]
N2

)
nHCHC + nCOCO + nNONO + nCO2

CO2 + nO2
O2 + nN2

N2 + nH2
H2 + nH2OH2O

(4.23)

CO2 + H2 CO + H2O (4.24)
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For this section, concentrations of species by volume with respect to a kilogram of
fuel are denoted as e. The concentrations of unburned fuel, water vapour, Oxygen, and
Hydrogen are calculated from the concentrations of CO2, CO, and NO as given in equation
(4.25). This quasi-steady model includes the stoichiometric air to fuel ration AFRS, the
dimensionless air to fuel ratio λ, the water-gas shift reaction equilibrium constant kwg, the
molar mass of air Mair, the molar mass of fuel Mfuel, the molar fraction of oxygen in air
rO2

, and the fuel hydrogen to carbon ratio (H to C ratio) rHC. Emissions relations 4.25 are
written in terms of normalized concentrations in moles of species per kilogram of fuel.

eHC =
1

Mfuel

− eCO2
− eCO (4.25a)

eH2O =
1

2
rHC

1
Mfuel

− eHC

1 + eCO

kwgeCO2

(4.25b)

eO2
=

rO2

Mair

AFRSλ−
1

2
eCO −

1

2
eNO − eCO2

− 1

2
eH2O (4.25c)

eH2
=
eCOeH2O

kwgeCO2

(4.25d)

The concentrations with respect to fuel mass of Carbon Dioxide, Carbon Monoxide,
and Nitrogen Oxide are modelled empirically as “black box” models by curve fitting in the
form of equations shown in (4.26) with λ representing the dimensionless air to fuel ratio
and SA representing the Spark Advance (°).

eCO = f (λ) (4.26a)

eNO = f (λ, SA) (4.26b)

eHC = f (λ, SA) (4.26c)

Identification curves and surfaces representing equation (4.26) are presented in figure
4.5. This quasi-steady grey box model is used to approximate concentrations of species
in the exhaust of the engine in the high-fidelity control-oriented model described in this
chapter and in the control-oriented model in chapter 6.
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Figure 4.5: Combustion Model of CO, NO, and HC
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4.4 Engine Model Experimental Validation

4.4.1 Throttle and Manifold Analysis

The one-dimensional throttle model is simulated against the parameters identified from
the engine manifold experimental data. The parameters in equation 4.2 were identified to
include the area variation effect when identifying the respective discharge coefficient CD
and area constriction effects at the entry of the intake manifolds.

The discharge coefficient was identified experimentally at different engine throttle points,
and the overall identified curve is given in Figure 4.6b. The same fitted equation was used
in plotting the discharge coefficient multiplied by throttle area parameter Cth = CDAth. It
is noticed that – as expected – the coefficient Cth increases with an increase in the throttle
opening area ratio as shown in figure 4.6a. This does not apply to the discharge coefficient
as it is noted that the rate of increase in area ratio when the throttle valve is opened is of
a higher order than the increase noticed in the mass flow rate in the intake manifold.
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Figure 4.6: Discharge Coefficient Plots

4.4.2 Engine Analysis and Parameter Identification

In this study the engine of the Toyota Pruis car is considered, experiments were performed
to identify the different engine efficiencies, and engine power map. The setup is shown in
Figure 4.7. Some details of the engine are stated in Table 4.1.
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Figure 4.7: Engine Experiment Test Bench

The volumetric efficiency ηvol was identified as shown in Figure 4.8. To identify the vol-
umetric efficiency, various experiments were made over different engine speeds and throttle
values. Equation (4.18) was applied after measuring the intake air flow rate and approxi-
mating the fuel flow rate from the air to fuel ratio as shown in equation (4.27). For gasoline
engines, Ks = 14.6. It is noted that more measurements should be conducted at low intake
manifold pressures.

ṁfuel,engine,in =
ṁair,engine,in

Ksλ
(4.27)

The fMEP is identified as shown in the map shown in Figure 4.9. The parameter is
identified by measuring the mean effective pressure (MEP) at no fuel conditions since the
fMEP represents the increase of pressure due to the “pumping” power of the engine.

Parameter estimation is performed on the parameters given in the friction mean effective
pressure Pfme in equation 4.11 and shown in table 4.2; namely Cff , Coh, Com, Crf , a0, a1,
a2, a3. Parameters identified for the Prius 2015 engine are shown in table 4.5. Since
the number of parameters is relatively large, it is possible to get several sets of unphysical
parameters that result in satisfactory outputs that resemble real-life performance. Thus, an
initial guess is needed for parameter identification based on literature data. Initial guesses
of the parameters identified in table 4.5 were placed based on an engine of a similar size
[71].
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Figure 4.8: Volumetric Efficiency

Table 4.5: Friction Mean Effective Pressure Identified Coefficients

Parameter Initial Guess Identified Parameters

Cff 600 580.62
Coh 10000 9990
Com 1 0.96189
Crf 400 320.87
a0 1.28 1.2528
a1 0.0079 0.0077321
a2 1.2× 10−7 1.1745× 10−7

a3 0 4.0602× 10−7

The identified engine efficiencies are shown in Figure 4.10. They were determined
by independently varying the corresponding parameter, measuring the engine torque at
steady-state operation. Since the engine inertia is low, it considered that at steady-state
operation, the engine torque is neglected. The engine efficiency is thus computed as shown
in equation (4.28). The engine speed ω and torque τ are measured in the experiment, the
air to fuel ratio is measured to calculate the fuel flow rate as given in equation (4.27) and

49



50
6000

100

100

150

F
ric

tio
na

l M
E

P
 (

kP
a)

M
ea

n 
E

ff.
 P

r.

4000
80

200

Engine Speed (rpm) Manifold Pressure (kPa)

60

250

2000
40

0 20

Figure 4.9: Frictional Mean Effective Pressure

the frictional MEP is calculated as shown in equation (4.10) [40].

ηth =
ω (τ + τfric)

ṁfuel,engine,inQLHV

(4.28)

A simulation was performed to verify the engine identified parameters. A verification
experiment was performed with a set engine speed of 1500 rpm, spark advance of 22°, a
valve timing of 12 ATDC, and an air to fuel ratio of λs = 1. Measurements were reported
at steady state after the engine cold start period; the throttle and engine torque were
measured and validated against a simulation done on the identified model. A sample of
20 seconds is provided for throttle data in Figure 4.11a, speed in Figure 4.11b, torque in
Figure 4.11c, and error in torque in Figure 4.11d. The torque error in Figure 4.11d is
calculate as shown in equation 4.29.

τerror =
τexperimental − τcalculated

τexperimental
× 100% (4.29)

It is noted that for the considered validation experiment, the error in the torque mea-
surement is within 3% using the throttle and desired speeds as inputs to the developed
engine model. The corresponding root mean square error in the torque measurement is
13.48 N-m.
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Figure 4.10: Identified Efficiencies of the Prius 2015 Plug-in Hybrid Engine
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Figure 4.11: Experimental Validation of Engine Model
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The frictional mean effective pressure (fMEP) was computed utilizing the thermal model
(equations 4.20) and equations (4.10 and 4.11). This computation was compared to the
value obtained experimentally as given in figure 4.9. The comparative plot is illustrated
in figure 4.12a for a continuous engine operation experiment. It is noticed that at the
start of the engine operation, the error is around 3% dropping to around 0.1% as shown
in figure 4.12b. The variation is due to the simulation of the engine cold start since,
at the initial time of the model simulation, the temperature of the engine is set to be
at atmospheric temperature. On the other hand, the experimental fMEP is obtained at
steady-state conditions.
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Chapter 5

Engine Air Path Models

In this chapter, real-time one-dimensional models are derived for engine manifolds and cat-
alytic converters. The manifold model is essentially a quasi-one-dimensional compressible
channel flow model with restricted area boundary conditions. As for catalytic convert-
ers, the model is considered to be consisting of a one-dimensional channel with a square
cross-section with incompressible flow along which unwanted emission reduction reactions
occur.

5.1 Compressible Flow Manifold Model

5.1.1 System of Equations

The manifold is a path into and out of the engine cylinders for the gaseous constituents
in engines. The basic construction of an intake or exhaust manifold is a cluster of either
circular pipes or rectangular channels. The fluid that flows inside the manifold is a mixture
of air and exhaust compounds. In this model, the mixture is considered to be an ideal gas,
and thus the manifold can be modelled as a channel with compressible flow. A schematic
of the system is shown in figure 5.1.

The following assumptions are made in the air manifold model:

1. The fluid is a perfect fluid since it is assumed that compressibility effects are much
larger that frictional effects in the flow. Therefore, boundary layer effects are ne-
glected implying that the flow profile is uniform. This assumption is made to reduce
the order of PDEs to first order in a single spatial dimension with time.

54



dx
uin
pin

ρin
ain
Tin

uout
pout

ρout
aout
Tout

A(x)

Figure 5.1: One Dimensional Flow Schematic

2. Frictional effects are considered as body forces in the analysis. This force is calculated
by utilizing Darcy’s or Fanno’s friction factor.

3. The motion of the fluid is quasi-one dimensional meaning that the motion is consid-
ered to be one dimensional in a tube, duct or pipe with a varying area.

4. There are no sudden variations in the area, i.e. the area function is continuous and
always differentiable meaning that dA/dx is always defined and always exists. Sudden
variations in area are treated by dividing the manifold into different sub-manifolds
at the place of sudden area change.

5. The fluid is a gas with constant specific heats in the fluid motion. The specific heat
values and ratio may be calculated at the spatial mean temperature value.

6. Gravitational and potential energy effects on the fluid are neglected.

7. No chemical reactions occur between the different species in the manifold.

The system of equations is derived in Appendix A and summarized in system of equa-
tions (5.1). The unknowns in the system are The density ρ, the fluid velocity u, the pressure
P , the temperature T .
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a

kp

(
∂p

∂t
+ (u+ a)

∂p

∂x

)
+

(
∂u

∂t
+ (u+ a)

∂u

∂x

)
+ ∆1 + ∆2 + ∆3 = 0 (5.1a)

a

kp

(
∂p

∂t
+ (u− a)

∂p

∂x

)
+

(
∂u

∂t
+ (u− a)

∂u

∂x

)
+ ∆1 + ∆2 −∆3 = 0 (5.1b)

a

kp

(
∂p

∂t
+ u

∂p

∂x

)
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= 0 (5.1c)

The considered system of equations (5.1) is a system of hyperbolic equations. The most
common methodology to solve such systems is the Method of Characteristics (MOC) in
which one finds characteristic curves along which the system can be transformed from a
PDE system to an ODE system along the characteristic lines defined in equations (2.13).
Area change effects, lumped friction forces, and heat transfer effects are introduced to the
system of equations as source terms ∆1, ∆2, and ∆3. MOC is detailed in Appendix D.

The source terms ∆1, ∆2, and ∆3 are functions of velocity u, speed of sound a, Fanning
friction coefficient f , area A, and heat transfer q that is applied to the system as illustrated
in equations (5.2).

G =
2u |u| f
D

(5.2a)

∆1 = −(k − 1) (q + uG)

a
(5.2b)

∆2 = −au
A

dA

dx
(5.2c)

∆3 = G (5.2d)

To close the system of equations presented in (5.1); the relation between the speed of
sound a, density ρ, and pressure p is given in equation (5.3) for ideal gases.

ρ =
γp

a2
(5.3)

Since, a shown in equations (2.13), the characteristic curves are expressions of u and
a, an analytic solution of the system is not possible. The system is traditionally solved
using a finite-difference based numerical scheme. In the next section, a novel method is
presented to estimate the characteristic curves and ODEs over the whole domain.
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Due to the nature of the equations, and as shown by the method of characteristics in
Appendix D, it is not possible to solve the system of PDEs with all boundary conditions
on a single side of the channel. This is due to the fact that the characteristic curves of
the solution extend to both the left and right directions. It is advisable to define the
temperature and either flow or pressure at the inlet of the channel and flow or pressure on
the other side of the channel. It is possible to define the pressure at both boundaries in
compressible flow, but that is not advised since it is not guaranteed that a unique solution
would be obtained.

The advantage of using such a system of equations over using a lumped model is that
lumped model equations do not include all the spatial variation terms. Moreover, in the
lumped model formulation, the inertia terms are only evaluated at the inlet and outlet
boundaries.

5.1.2 Calculation of The Friction Factor

The friction factor is calculated using the relation shown in equation (5.4). Since equation
(5.4) requires a numerical iterative solver to compute f , an approximate equation is shown
in equation (5.5).

1√
f

= −2.0 log

[
2.51

ReD
√
f

+
ε/D

3.7

]
(5.4)

1√
f
≈ −1.8 log

[
6.9

ReD
+

(
ε/D

3.7

)1.11
]

(5.5)

For complex manifold geometries, the friction factors are traditionally found experi-
mentally [30]. Usually in models, a constant parametric value is considered in the analysis.

5.1.3 Solution Method

The basic idea behind the solution methodology is to rewrite the equations shown in
system of PDEs (5.1) into a system of Ordinary Differential Algebraic Equations (DAEs).
The method that is used to “discretize” the equations is Orthogonal Collocation. After
symbolically calculating the DAEs, a stiff numerical differential equation solver is used
(Rosenbrock preferably as a variable time step solver and Implicit Euler as a fixed-step
solver).
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The special characteristic of the considered method is that the solution is considered to
be a summation of continuous polynomials over the whole domain, resulting in finding the
solution using a small number of nodes. The “nodes” in this case are the points where the
solution approximated by the summation of polynomials is equated to the exact solution.
The constituting polynomials in the summation are usually considered to be orthogonal
polynomials due to the fact that a continuous function can be completely expressed in terms
of a set of orthogonal polynomials. In this work, the considered orthogonal polynomials are
Lagrange polynomials, and the considered nodes are the roots of the Legendre polynomial
spanning the domain. Refer to figure 5.2a.

To use orthogonal collocation effectively, the distance along the channel is normalized
to vary between 0 and 1 by applying ζ = x/L. The collocation points are the roots of the
corresponding Legendre polynomial of order N considering that N is the number of nodes.
The nodes selected at the roots of the associated Legendre polynomial for a four nodes
analysis are shown in figure 5.2b for a sample velocity (u) snapshot. It is noticed that the
nodes are closer to the spatial boundaries of the system.

(a) Lagrange Polynomials (b) Nodes Placement

Figure 5.2: Illustrations for Four Nodes
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In the considered method of orthogonal collocation, the space derivatives are found
by applying a Lagrange interpolating polynomial fit, and differentiating the polynomial
with respect to space at the different collocation points. Thus, an arbitrary variable Ψ is
expanded as shown in equation (5.6), the Lagrange interpolating polynomial is given in
equation (5.7), and the derivative is shown in equation (5.8) [25].

Ψ̂(t, ζ) =
N∑
i=1

Li(ζ) Ψ(t)|ζ=ζi (5.6)

Li(ζ) =
N∏
j=1
j 6=i

ζ − ζj
ζi − ζj

(5.7)

∂Ψ̂(t, ζ)

∂ζ
=

N∑
i=1

dLi(ζ)

dζ
Ψ(t)|ζ=ζi (5.8)

To illustrate the importance of node selection in this analysis, consider the case of a
shocking flow where there is an abrupt change in the velocity of the fluid inside a channel
at a certain location. This flow is emulated by a function that has a very steep profile that
is shown as the solid line in figure 5.3. The considered nodes in the analysis shown in figure
5.3 are located at the intersections between the fitted function (dotted and dashed lines)
and the assumed true solution (solid line). It is noticed for both the four nodes analysis
and the ten nodes analysis that, placing the nodes at the roots of the Legendre polynomial
reduces the oscillations of the fitted function at the places close to the boundaries; this is
named Gibbs Phenomenon in mathematical literature. This issue is detailed in the book
by Canuto, Hussaini and Quarteroni [12].

Moreover, it is noticed that increasing the number of nodes improves the fit of the
Lagrange Polynomials around the point of the abrupt change at the location ζ = 0.5. On
the other hand, increasing the number of nodes increases the effect of Gibbs Phenomenon
close to the boundaries. For this reason, it is not advisable to place more than 22 nodes
in this analysis with nodes placed on the roots of the corresponding Legendre polynomial.
To counter this effect, in Galerkin and Petrov–Galerkin methods, instead of fixing the
fit at particular points, the error is minimized at all locations between the fit and the
original function. The drawback of these methods is the increased calculation time needed
to calculate the solution; Galerkin methods require two or three times the amount of time
needed by Orthogonal Collocation while using a stiff variable step solver. For this reason,
it is advised – as a rule of thumb – to use Orthogonal Collocation with a number of nodes

59



between 3 and 18; if greater accuracy is required, it is advisable to divide the component
into subcomponents and these subcomponents in a series configuration as shown in section
5.1.5. To generate the topology equations, it is recommended to utilize linear graph theory
as mentioned in Chapter 3. This approach is used in Finite Volume Methods (FVMs) [21].

(a) Four Nodes Analysis (b) Ten Nodes Analysis

Figure 5.3: Illustrations for Lagrange Polynomial Fits

It is noted from equations (5.1) that the characteristic curves are (u+ a), (u− a), and
(u) [75]. For the current formulation in the one dimensional PDEs, u, a, p, and ρ are
functions of time t and space x. Lagrange interpolation polynomials Li(x) are utilized
to estimate the functions of u(t, x), p(t, x), and a(t, x) over the whole domain as given in
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equations (5.9).

û(t, x) =
N∑
i=0

αi(t)Li(ζ) (5.9a)

p̂(t, x) =
N∑
i=0

βi(t)Li(ζ) (5.9b)

â(t, x) =
N∑
i=0

γi(t)Li(ζ) (5.9c)

The space derivatives in the PDE system (5.1) are evaluated symbolically using Maple�
or the custom component generation utility in MapleSim�. The system of three PDEs is
transformed to a system of 3N ODEs (given that N is the number of nodes) that can be
solved using any ODE solver that includes a backwards time step, such as variable time
stiff solvers and the fixed time implicit Euler solver.

Utilizing Orthogonal Collocation, it is assumed that the approximation functions û are
equal to the unknown functions u to be found at nodes that are evaluated at the roots of
the corresponding shifted Legendre polynomial. This facilitates the definition of the states
over the spatial dimension and the calculation of the spatial partial derivatives.

To calculate the total derivative, the characteristic curve is evaluated utilizing equations
(5.9), from which a derivative along a characteristic curve is evaluated (for either velocity
or pressure) as given in equation (5.10).

dû

dt

∣∣∣∣
u+a,x=xj

=
∂
∑N

i=0 αi(t)Li(x)

∂t
+ (αj + γj)

N∑
i=0

αi(t)
dLi(x)

dx
(5.10a)

dû

dt

∣∣∣∣
u−a,x=xj

=
∂
∑N

i=0 αi(t)Li(x)

∂t
+ (αj − γj)

N∑
i=0

αi(t)
dLi(x)

dx
(5.10b)

dû

dt

∣∣∣∣
u,x=xj

=
∂
∑N

i=0 αi(t)Li(x)

∂t
+ αj

N∑
i=0

αi(t)
dLi(x)

dx
(5.10c)

Since the polynomials Li(x) are known, at an arbitrary nodal point xj, the derivative
along the characteristic may be readily evaluated as shown in equation (5.11). Note that
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the form is simplified due to the choice of interpolation polynomial (Lagrange) and the
nodal points (roots of the Legendre polynomial).

dû

dt

∣∣∣∣
u+a,xi

=
dαi(t)

dt
+ (αi(t) + γi(t))H1(t) (5.11a)

dû

dt

∣∣∣∣
u−a,xi

=
dαi(t)

dt
+ (αi(t)− γi(t))H1(t) (5.11b)

dâ

dt

∣∣∣∣
u

=
dγi(t)

dt
+ γi(t)H3(t) (5.11c)

The function H(t) in equation (5.11) lumps the added terms due to the evaluation over
a characteristic: this function depends on the characteristics and spatial derivatives of the
Lagrange interpolation polynomials as shown in equation (5.12).

H1(t) =
N∑
i=0

αi(t)
dLi(x)

dx
(5.12a)

H2(t) =
N∑
i=0

βi(t)
dLi(x)

dx
(5.12b)

H3(t) =
N∑
i=0

γi(t)
dLi(x)

dx
(5.12c)

Since it is shown in equations (5.11) and (5.12) that the derivatives along a characteristic
can be expressed as functions of time only, a system of ODEs can now be written as shown
in equations (5.13). It is noted that these equations are applied on internal nodes at which
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the boundary conditions are not defined.

â

kp̂

(
dp̂

dt

∣∣∣∣
u+a,xi

)
+

(
dû

dt

∣∣∣∣
u+a,xi

)
+ ∆1,xi + ∆2,xi + ∆3,xi = 0 (5.13a)

â

kp̂

(
dp̂

dt

∣∣∣∣
u−a,xi

)
−

(
dû

dt

∣∣∣∣
u−a,xi

)
+ ∆1,xi + ∆2,xi −∆3,xi = 0 (5.13b)

â

kp̂

(
dp̂

dt

∣∣∣∣
u,xi

)
− â2

(
dρ̂

dt

∣∣∣∣
u,xi

)
+ ∆1,xi = 0 (5.13c)

Note that equation (5.13c) contains a derivative of density ρ over the characteristic
(u). Since air density is related to the speed of sound, pressure and specific heat ratio
as illustrated in equation (5.3), we define an approximation function ρ = γp

a2
and then

calculate the required derivative by expanding the total derivative of the density as shown
in equation (5.14). The total derivative of density along the corresponding characteristic
is obtained by substituting equations (5.11) in (5.14).

dρ̂

dt
=

γ

â3

(
â
dp̂

dt
− 2p̂

dâ

dt

)
(5.14)

Looking at the structure of the system in equations (5.13) and considering the deriva-
tive expansion in equation (5.11), it is noted that the system of equations may be easily
converted into a system of the form of Ẋ = f(t,X) whose stencil is stated in equation
(5.15) for which standard numerical solvers can be utilized to solve the system. It is rec-
ommended to perform the algebraic manipulations symbolically to obtain an optimized
function from Maple� that can be exported for a numerical ODE solution.

α̇i(t) = −H1(t)αi(t)−∆3,xi −
γi(t)

2H2(t)

kβi(t)
(5.15a)

β̇i(t) = −kH1(t)βi(t)−
k∆1,xiβi(t) + k∆2,xiβi(t)

γ(t)
− αi(t)H2(t) (5.15b)

γ̇i(t) = −−kH1(t)γi(t)

2
− k (∆1,xi + ∆2,xi)

2
−H3(t)αi(t)+

−H1(t)γi(t)αi(t) + ∆1,xiγi(t)−∆1,xiαi(t)−∆2,xiαi(t)

2kβi(t)

(5.15c)
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Utilizing Lagrange polynomials at various Legendre nodes ensures that the unknown
functions found in the system of equations in (5.15) represent states of velocity, pressure, or
speed of sound at the various nodes. If another set of polynomials is used at an arbitrary set
of nodes, the unknown states in equation (5.15) represent the coefficients of the polynomial
expansion shown in equations (5.9).

Lastly, the state-space equations are exported as a MATLAB function that can either
be called by a MATLAB� solver (ode45, ode23s, etc. . . ), or be placed in Simulink�. An
alternative approach is to export the final system to Modelica� to solve the integrated
system.

Utilizing this procedure, generic solvers in various simulation packages may be utilized
to get a reasonably accurate real-time solution for a one-dimensional low order system
model as illustrated in the case studies in section 5.1.5.

5.1.4 Boundary Conditions

There are two types of boundary conditions that are to be considered in this analysis: total
and static. For the static boundary condition, the values of velocities and/or pressures are
substituted in the final ODE system (5.15) calculating any signal derivatives symbolically
and introducing these terms as time-varying sources.

As for the total homentropic boundary conditions, the equations are derived from the
total energy ellipse formulation shown in equation (5.16).(

a

as

)2

+
k − 1

2

(
u

as

)2

= 1 (5.16)

For an intake manifold, the boundary conditions are defined as homentropic flow at
the inlet as shown in equation (5.17) [90]. In the equation, the stagnation pressure ps and
temperature Ts are considered to be the atmospheric pressure and temperature, respec-
tively. The dependence of the intake manifold temperature on the stagnation temperature
is given in equation (5.18). These relations involves the Mach number of the flow M and
the valve opening ratio ψ.

u2
im,ex =

2γRTsψ
2

γ − 1

[
1−

(
pim,ex
ps

) γ−1
2γ

]
(5.17)

Ts
T

= 1 +
γ − 1

2
M2 (5.18)
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For an exit to atmospheric, a homentropic boundary condition is usually considered.
Equation (5.16) is manipulated to derive the relation between the velocity and pressure
as shown in equation (5.19). This boundary condition may be used for exhaust manifolds
given that they exhaust into the atmosphere via a valve of opening ratio φ. The condition
is illustrated in the flow between reservoirs case study in section 5.1.5.3 of this thesis.

u2
im,ex =

2γRTd
γ − 1


(
pex
pd

) γ−1
γ − 1(

1
φ

)2 (
pex
pd

) 2
γ − 1

 (5.19)

Further details for boundary condition formulation are presented in Appendix C.

5.1.5 Model Evaluation for Basic Geometries

5.1.5.1 Nozzles and Diffusers ANSYS CFX� Comparison

A case study was applied to study compressible air flows in a nozzle and a diffuser. The
nozzle is circular and has an inlet diameter of 2 cm, an outlet diameter of 1 cm and is of
a length of 10 m, as shown in figure 5.4a. The diffuser is of a reversed geometry as shown
in figure 5.4b.

The inlet velocity is set for the nozzle to be 0.5
(
1− exp

(
− t

10

))
m/s, and for the diffuser

as 2
(
1− exp

(
− t

10

))
m/s. The outlet pressure is set to be at atmospheric pressure and the

inlet temperature is 500 K and there is a uniform heat removal rate equal to 5 W applied
at 5 seconds in a step function manner. The nozzle and diffuser are simulated for 120
seconds. The overall friction factor f is considered to be a constant and equal to 0.12.

To validate the model and the solution methodology, a Finite Volume ANSYS� simu-
lation was performed using the CFX� solver. In these simulations, the original set of flow
equations (continuity, Navier-Stokes, and Energy) are solved taking fluid viscosity into
consideration for a Newtonian Fluid as modelled by CFX for compressible flows. The sim-
ulation included 58,000 elements with ideal gas relations for fluid properties, with an ideal
gas constant of air. The target Root Mean Square (RMS) of the residual of the simulation
is 10−4, the run time is approximately one hour on a four-core 3.6 GHz core i7� processor
that has an overall computational power estimated to be 115 GFLOPS.

For the nozzle case, different snapshots at 5, 10, and 20 seconds are shown in figure 5.5
for velocity and absolute pressure profiles, and figure 5.7a for temperature profiles. On the
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Figure 5.4: First Case Geometries

other hand, for the diffuser case, different snapshots at 5, 10, and 20 seconds are shown
in figure 5.6 for velocity and absolute pressure profiles, and figure 5.7b for temperature
profiles.

From figures 5.5 and 5.6, it can be inferred that – as expected – the velocity increases
inside a nozzle and decreases inside a diffuser. There is a pressure decrease in both the
nozzle and diffuser due to viscosity and frictional losses. The change of temperature in
figures 5.7a and 5.7b is due to the 5W heat removal at 5 seconds, and pressure and density
changes.

It is noticed that the discrepancies between the state model and ANSYS CFX� simula-
tion increases further from the boundary condition point, and that this difference is largest
at a time stamp of 10 seconds. Moreover, it is noticed that the largest difference is for the
pressure calculation; this is due to using the friction factor as an approximation to viscous
effects. Thus, it can be concluded that, in general, there is a good agreement between
three-dimensional finite volume ANSYS CFX� simulations and the approach devised in
this chapter.

It is noticed from figures 5.5 and 5.7a that for velocity and pressure values, the dif-
ference between 10 and 16 nodes is not great. On the other hand, in figure 5.7, there
is a temperature difference of around 1K between 10 and 16 nodes in the analysis. This
suggests that beyond 10 nodes, differences in analysis are small. As for the simulation
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Figure 5.5: First Case Nozzle Velocity and Pressure Plots
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Figure 5.6: First Case Diffuser Velocity and Pressure Plots

time, a 16 nodes, 120 seconds simulation can be performed within 650 ms, 200 times faster
than real time.

Errors between the 10 nodes MOC-OC and the CFX finite volume model as the refer-
ence model are presented in figure 5.8. It can be deduced that velocity errors are within
15% for both nozzles and diffusers. Pressure errors are within 0.01%, and temperature
errors are within 1.5%. Note that the velocity error is largest at the downstream of the
flow; in contrast, pressure and temperature errors peak at different locations inside nozzles
and diffusers. The maximum values of the computed errors occur at the 10 seconds mark.
It is worth to note that in gaseous flows, as a rule of thumb, small deviations in pressures
lead to much larger deviation in velocities, as is observed in the computed errors in figure
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Figure 5.7: First Case Temperature Plots

Table 5.1: RMSE values of diffuser case

Time 5 s 10 s 20 s
Velocity 1.53× 10−2 m/s 3.16× 10−2 m/s 0.78× 10−2 m/s
Pressure 2.544 Pa 3.599 Pa 0.839 Pa
Temperature 0.129 K 2.936 K 3.386 K

5.8.

A numerical measure of responses along the normalized location is a root mean square
error, defined in equation (5.20) with index i representing the index of collocation points.
The root mean square error between 10 nodes model and ANSYS simulations for the
diffuser case are presented in table 5.1. In conjunction with the computed error, the root
mean square error of velocity and absolute pressure peak at the 10 seconds mark with values
of 3.16× 10−2 m/s and 3.6 Pa respectively with mean values approximated at 0.6 m/s and
101330 Pa. Root mean square error of temperature peaks at 3.39 K with a temperature
mean value equal to 475 K. These values indicate a good agreement between the MOC-OC
method and detailed 3-D finite volume CFD modelling in axial spatial coordinates.

RMSnorm =

√∑N
i=1 (uMOC-OC,i − ucontrol,i)

2

N
(5.20)
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Figure 5.8: MOC-OC Computation Errors with respect to ANSYS CFX Simulations
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Figure 5.9: Nozzle Example for Method of Characteristics Comparison

5.1.5.2 Method of Characteristics Comparison

A nozzle case study is considered to demonstrate the effects of area change, frictional
effects and heat transfer. The diameter of the nozzle changes linearly with respect to

nozzle length. At the inlet, velocity is defined as uin = 0.5
(

1− e− t
10

)
and temperature is

set at 500 K. At the outlet, static standard atmospheric pressure is prescribed. Dimensions
are shown in Figure 5.9. This case is simulated for 120 seconds of which the discussion is
focused on the interval between 5 and 50 seconds.

Simulations are compared with the method of characteristics (MOC). Details of the
MOC are presented in Benson [5] and Cavina, et al. [14]. To avoid numerical oscilla-
tions, the Courant Number of the solution was limited to 0.8. It is worth noting that the
Courant Number does not apply to the method discussed in the proposed work since the
approximation function is considered to be continuous over the whole domain. Plots of the
midpoint and exit velocity versus time are shown in figure 5.10a.

Plots of velocity versus location at snapshots of 5 and 10 seconds are shown in figure
5.10b. It is noticed that similar solutions are obtained with 150 nodes in a traditional linear
discrete finite difference solution of the equations given by the Method of Characteristics,
and 3 nodes in the proposed MOC-Orthogonal Collocation (MOC-OC) method.

It is noticed from figure 5.10a that the MOC-OC method described in this work closely
resembles the velocities at the midpoint and exit of considered nozzle. In figure 5.10b it is
shown that the profile of the approximation function û has the same values as the MOC
profile at the inlet, outlet and at a point close to the midpoint. These locations represents
the Legendre nodes for this case study.

To showcase various inlet velocity values, the computational time is presented at various
inlet velocities ranging between 0.1 m/s and 120 m/s and is presented in figure 5.11. It is
noticed that the computational time of the method increases as the inlet velocity increases
until it saturates at around 1s of computational time for 120 seconds of simulation time.
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Figure 5.10: Nozzle Velocity Simulations

This result implies that the MOC-OC method can simulate the case much faster than real
time.

5.1.5.3 Flow Between Reservoirs

For this case study, a uniform pipe between 2 reservoirs is considered. A sketch of the
system is shown in Figure 5.12. The pressure at the reservoir at the exit is set at stan-
dard atmospheric pressure, and the pressure at the inlet is set to be Pup = 101325 +
40
(
1− exp

(
− t

0.1

))
Pa. The friction factor in this analysis is 0.03.

Velocity profiles versus time are presented in Figure 5.13a and versus space in Figure
5.13b. The total pressure (kPa) is presented in Figure 5.14a. As for pressure values, it
is noticed that the difference between the approximation functions and the MOC solution
is within 5 Pa and that both models have the same steady-state solution. However, it is
noticed that the dynamics of the velocity profiles are different. Looking at Figures 5.13a
and 5.13b, it is noticed that the largest variations are at the boundaries. This is due
to differences in the treatment of the non-linear boundaries: in the MOC solution; the
pressures at the boundaries were computed using Newton’s method at each time step.
On the other hand, when utilizing Orthogonal Collocation, the velocity is solved using
equations (5.17) and (5.19). This approach was followed since a closed form symbolic
solution of relation (5.19) cannot be obtained for pressure as an unknown.

To illustrate the computational speed for different pressure values, the inlet static pres-
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Figure 5.12: Reservior Case Schematic

sure is varied between 1 and 2.5 bars for the pipe illustrated in Figure 5.12. It is noticed
that for this range of pressures the computational time increases linearly versus pressure
as shown in Figure 5.14b. It is noted that all computations are done much faster than
real-time.

5.1.5.4 Sudden Expansion Analysis

To study the effects of potential shock waves on the model, sudden fluid expansion is
simulated in this case and the results are compared to an analytic solution. The tube has
a sudden inlet pressure increase from 1 atm to 2.5 atm and an exit point pressure of 1 atm
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(a) Plot versus Time (b) Plot versus Axial Distance

Figure 5.13: Flow between Reservoirs Velocity Simulations

(a) Pressure Simulation (b) Pressure Simulation

Figure 5.14: Flow between Reservoirs Simulations

with a length of 1 m. Results are presented in figure 5.15 at time t = 3 ms.

It is evident that the model does not capture the shock in the engine. This is due to
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Figure 5.15: Shock Tube Simulations

the fact that the numerical simulation uses only three continuous polynomial expansions
over three nodes as in the rest of the case studies. Nevertheless, velocity and pressure com-
putations at the inlet, outlet, and the considered midpoint node are close to the analytical
values as shown in figure 5.15. The rest of the curve is computed by fitting the Lagrange
interpolation polynomials along with the nodes, which results in a continuous solution not
capturing any discontinuity or shock. To solve this issue, it is suggested to increase the
order of the method by increasing the number of nodes.

Case studies were compared with the traditional Method of Characteristics for a set of
three polynomials and a corresponding set of three nodes. It was noticed that comparing
MOC-OC with three nodes and MOC with 150 nodes results in a velocity error less than
10% and a pressure variation within 5 Pa while simultaneously reducing the number of
equations.

MOC-OC is not capable of capturing discontinuities in states. However, as presented
in the shock tube case study, it is able to predict satisfactory results at the selected compu-
tational nodes. Similar to MOC, MOC-OC is presumed to be a non-conservative method.
Thus, mass and energy conservativity shall be assessed in future work.

The MOC-OC method has a computational improvement being able to perform a one-
dimensional simulation with a relatively low number of equations, as showcased by per-
forming different simulations at various boundary velocity and pressure values. Such a
method does not require book-keeping due to the low number of unknown states making
it suitable for embedded systems. Moreover, it is speculated that the devised method is
numerically stable when using a low number of approximating polynomials as illustrated
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Figure 5.16: Intake Manifold Experimental Comparison

in the case studies.

5.1.5.5 1D Manifold Model Experimental Validation

A validation of the one-dimensional model was done experimentally on a Prius engine
whose parameters are given in table 4.1. The intake manifold pressure is provided in
Figure 5.16 for the simulated engine model integrated with the lumped manifold model
and for a one-dimensional model simulation. It is noted that the one-dimensional model is
closer to the experimental mean and has a better representation for the manifold pressure
data.

To assess the accuracy of the model, a one-dimensional manifold model was included
in the engine air path in series with the throttle model and the mean value engine cylinder
model. The discharge coefficient was computed as shown in equation (5.21), a variation of
equation (4.1). The one-dimensional model was simulated using a partially open boundary
condition as stated in equation (5.17). The mass flow rate ṁ in equation (5.21) is an
output of the one-dimensional model. It is noted that the developed one-dimensional model
provides a fairly acceptable approximation of the discharge coefficient that is measured
experimentally, with a RMS error of 0.0622, as shown in figure 5.17. This simulation was
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performed over six considered nodes (N = 6) neglecting all heat transfer effects by setting
q̇ = 0, and including friction in the analysis.

CD =

√
RairTA

ṁAthpAΨ
(5.21)
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Figure 5.17: Discharge Coefficient Experimental Comparison

To illustrate the computational burden that is introduced by adding the one dimensional
manifold model, an engine case study of a simulation time of 273 seconds is considered.
MapleSim� was used to solve the respective Modelica equations with enabled equation
code C generation and compilation. The implicit (or backward) Euler solver was used for
the simulations with a fixed time step of 1 ms. The simulation times for four different
simulation cases are reported in Table 5.2. The simulation cases included a mean value
model of the considered Toyota Prius engine with a lumped manifold, a mean value model
of the engine with a one-dimensional model, and simulating the one dimensional manifold
model in a standalone simulation with boundary conditions similar to those of the Prius
engine. It is noted that the one-dimensional model needs around 3.5 seconds to complete
a 273-second simulation which is more than 70 times faster than real-time for a fixed-step
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Table 5.2: CPU time required for different simulations

Lumped Manifold 1D Manifold
Without Engine 0.15 s 3.5 s
With Engine 3.2 s 6.3 s

solver, which is impressive considering that the equations of compressible flow include area
variation and friction effects. Adding the 1D manifold model to the mean value model
of the engine makes the overall simulation around 40 times faster than real-time, which
is still within a safe margin for on-line embedded real-time simulations. This illustrates
the ability to utilize such a high fidelity model for control design purposes of designing
appropriate engine controllers.

The integration of Orthogonal Collocation with the equations obtained from the Method
of Characteristics results in a system of ODEs for the states over the whole domain. Ap-
proximation functions are used for velocity, pressure, and speed of sound to evaluate the
characteristic curves. Derivatives are computed for velocity, pressure, and density at the
roots of the Legendre polynomials using the defined approximation functions. The result-
ing time-based ODEs are solved using a standard solver to obtain solutions faster than
real-time.

5.2 Catalytic Converter

5.2.1 Model Equations

A catalytic converter is a device that is used to reduce the pollutants that are leaving
an engine. These pollutants include carbon monoxide (CO), unburned fuel (HC) and,
in the case of three-way catalytic converters as considered here, nitrogen oxides (NOx).
To make this pollutant reduction possible, rare metals are utilized in chemical reactions.
Rare metals used in the catalytic converter are usually a combination of Platinum and
Rubindium. Ceria is used in the catalytic converter for oxygen storage to enhance the
oxidation and NO reduction reactions.

In this model, eight species are considered. These species are CO, C3H6, C3H8, O2, NO,
CO2, H2O, and H2. Hydrogen and water vapour can be computed directly using equation
(5.22) from the concentrations of Carbon Monoxide, Carbon Dioxide, equilibrium constants
for water-gas shift reactions Kw and n. Values of equilibrium constants can be considered

77



to be constant values when computing the concentrations of Hydrogen and water vapour
[66]. Typical values for Kw and n are 0.285 and 1.85 respectively.

[H2] =
n

2

[CO] ([CO] + [CO2])

[CO] + [CO2]
Kw

[H2O] =
n

2

[CO] ([CO] + [CO2])

Kw[CO] + [CO2]

(5.23)

The model stated by Andrianov et al. [3] shall be used in this analysis; this model
includes the transient effects that are present in the catalytic converter. The catalytic
converter is modelled as a set of channels that include a substrate (with a subscript ‘s’
in the equations 5.24) and a gaseous part (with a subscript ‘g’ in the equations 5.24). A
schematic of a simplified catalytic converter is presented in figure 5.18.

Figure 5.18: A schematic for the channels in a catalytic converter

It is assumed that the flow inside the catalytic converter is incompressible, and the fluid
is a reacting ideal gas. Fifteen chemical reactions are considered to represent oxidation
reactions, NO reduction reactions, water gas and steam forming reactions, and oxygen
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storage reactions. The fuel combustion is assumed to have two distinct reaction rates, a
fast one represented by Propene (C3H6) and a slow one represented by Propane (C3H8).
Reaction rates are considered to be first-order reaction rates whose parameters are derived
experimentally.

Equations (5.24) are given by Andrianov et al. [3] to analyse the catalytic converter.
For the parameters in the equations, ε is the reactor void fraction, Ac is the cross sectional
area of the substrate, S is the geometric surface area per unit control volume, α is the
catalytic surface area per unit reactor volume, E is the activation energy, ∆H is the
enthalpy of formation, lw is the washcoat thickness, and rr is the reaction rate. As for the
variables, C represents concentration, and T is the temperature. An attempt was made
by Pontikakis et al. [60] to solve these equations by neglecting the dynamic effects with
respect to time. Andrianov et al. [3] included the dynamic effects but solved the system
of equations by finite differences including the adjacent nodes in the spatial discretisation
to obtain a state-space model; the method of lines was applied to treat time-dependent
terms. In the current work, Orthogonal Collocation shall be applied to equations (5.24) to
reduce the number of required nodes as was done in the manifold model in section 5.1.

ε
p∞cp
RairTg

∂Tg
∂t

= −ṁcylcp
Ac

∂Tg
∂x

+ Shgs (Ts − Tg) (5.24a)

ρscs (1− ε) ∂Ts
∂t

= Shgs (Tg − Ts)− λs
∂2Ts
∂x2

− lwα
nrxn∑
i=1

Ri∆Hr,i (5.24b)

εp∞
RairTg

∂Cg,i
∂t

= −ṁcylcp
Ac

∂Cg,i
∂x

+ S

(
p∞

RairTg

)
km,i (Cs,i − Cg,i) (5.24c)

lw
∂Cs,i
∂t

= km,i (Cg,i − Cs,i)−
lwα

S

RairTg
p∞

nrxn∑
i=1

si,jRj (5.24d)

The index i in equations (5.24c) and (5.24d) represent the different species that are
to be calculated in this analysis namely: CO, C3H6, C3H8, O2, CO2, NO. The states Cg,i
represents the species concentration in exhaust gases, and the states Cs,i or [·] represent
the species concentration in the substrate.

Since the variation of the temperature of the substrate is substantial, the variation of
the specific heat of the substrate with temperature is to be considered in this formulation.
A curve fit representing the variation is given in equation (5.25). In equation (5.25), the
specific heat cs is in J/(kg-K) and the temperature Ts is in K.

cs = 1071 + 0.156Ts −
3.435× 107

Ts
2 (5.25)

79



The enthalpy of formation ∆Hr,i is tabulated for different materials. As for the convec-
tion coefficients, the heat (hg,s) and mass (hm,gs) transfer coefficients are defined as shown
in equations (5.26).

hgs =
λg
Dc

NuDc (5.26a)

km,i =
Di,N2

Dc

ShDc,i (5.26b)

The Nussult (Nu) and Sherwood (Sh) numbers may be found using the correlations
proposed by Hawthorn (1974) in terms of the heat Peclet Number PeH = µDh

α
and the

mass Peclet number PeM = µDh
Di as shown in equations (5.27) [33]. These correlations are

defined based on laminar flows in channels. The Pectlet numbers are defined in terms of
the heat diffusivity α and the molecular diffusion coefficient D. Nevertheless, it was found
in this analysis that using a constant value of 3 for both dimensionless numbers does not
have a major effect on the computed values of considered states.

Sh = 3.66

[
1 + 0.095

Dh

L
PeM

]0.45

(5.27a)

Nu = 3.66

[
1 + 0.095

Dh

L
PeH

]0.45

(5.27b)

The exhaust gases thermal conductivity λg (W/(m-K)) variation with absolute tem-
perature is considered as given in equation (5.28).

λg = 2.66× 10−4Tg (5.28)

The mass diffusivity Di is dependent on the exhaust gas temperature Tg, molar masses
M , and diffusion volume of species Σ [59]. The relation is given in equation (5.29).

Di =
3.85× 10−5 T 0.75

g

√
1
Mi

+ 1
MN2(

3
√

Σi + 3
√

ΣN2

)2 (5.29)

The reaction rates Ri are modelled by empirical equations based on Arrhenius equa-
tion, with indices corresponding to chemical reaction equations given in table 5.3. The
reaction rates are a function of the universal gas constant Rg, surface temperature at the
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reaction location Ts, pre-exponential factors ki, activation energies Ei, and the respective
concentrations as given in table 5.3. The pre-exponential factors ki and activation energy
Ei are obtained from experimental data on engines. A genetic algorithm was used to fit
the factors and activation energy to experimental data of a sample engine by Pontikakis
et al. [60].

The reaction free energy of the Water-Gas shift reaction is computed using equation
(5.30) [86]. The equilibrium constant is given in equation (5.31). The values of reaction
rates R10 to R15 are stated in table 5.3.

∆GWGS = −41034 + 44.19Ts − 5.553× 10−3Ts
2 (5.30)

KWGS = exp

(
−∆GWGS

RgTs

)
(5.31)

The extent of oxygen stored θ is defined as the instantaneous proportion of CeO2 in the
total volume. It is defined as shown in equation (5.32) and is calculated from the ordinary
differential equation (5.33). The initial condition for oxygen storage is considered to be
equal to 1 [66].

θ =
nCeO2

nCeO2 + 2nCe2O3

(5.32)

dθ

dt
= (4R10 + 2R11)− (2R12 + 12R13 + 14R14 + 2R15) (5.33)

The inhibition factor G is given in equation (5.34) with K1, K2, K3, K4 given in
equation (5.35). Parameters are given in table 5.4 [66].

G = T (1 +K1[CO] +K2[C3H6])
2 (1 +K3[CO]2[C3H6]

2
) (

1 +K4[NO]0.7
)

(5.34)

Ki = ki,G exp

(
−Ei,G

Ts

)
i = 1, · · · , 4 (5.35)

The outputs of the catalyst model are the molar flow rates of carbon monoxide (CO) and
nitric oxide (NO) as shown in equations (5.36), and the molar flow rate of the unburned
fuel in equation (5.37). To get the mass flow rate, multiply the molar flow rate by the
respective molar mass.

ṅCO,out =
ṁcyl

Mg

Cg,CO (5.36a)

ṅNO,out =
ṁcyl

Mg

Cg,NO (5.36b)
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Table 5.3: Catalytic Converter Reactions, Reaction Rates, and Heat of Formation

No. Reaction Rate Heat of Formation

Oxidation Reactions

01 CO + 0.5 O2 CO2 R1 =
k1[CO][O2] exp

(
− E1
RgTs

)
G

−2.83× 105

02 C3H6 + 4.5 O2 3 CO2 + 3 H2O R2 =
k2[C3H6][O2] exp

(
− E2
RgTs

)
G

−1.93× 106

03 C3H8 + 5 O2 3 CO2 + 4 H2O R3 =
k3[C3H8][O2] exp

(
− E3
RgTs

)
G

−2.04× 106

04 H2 + 0.5 O2 H2O R4 =
k4[H2][O2] exp

(
− E4
RgTs

)
G

−2.42× 105

NO Reduction Reactions

05 CO + NO CO2 + 0.5 N2 R5 =
k5[CO][NO] exp

(
− E5
RgTs

)
G

−3.73× 105

06 C3H6 + 9 NO 3 CO2 + 3 H2O + 4.5 N2 R6 =
k6[C3H6][NO] exp

(
− E6
RgTs

)
G

−2.74× 106

07 H2 + NO H2O + 0.5 N2 R7 =
k7[H2][NO] exp

(
− E7
RgTs

)
G

−3.32× 105

Water Gas and Steam Forming Reactions

08 CO + H2O CO2 + H2 R8 = k8
G

exp
(
− E8
RgTs

)(
[CO][H2O]− [H2][CO2]

KWGS

)
−4.12× 104

09 C3H6 + 3 H2O 3 CO + 6 H2 R9 = k9
G

exp
(

E9
RgTs

)
([C3H6][H2O]) +3.74× 105

Ceria Reactions (Oxygen Storage)

10 2 Ce2O3 + O2 4 CeO2 R10 = k10 exp
(
− E10
RgTs

)
[O2] (1− θ) −2.00× 105

11 Ce2O3 + NO 2 CeO2 + 0.5 N2 R11 = k11 exp
(
− E11
RgTs

)
[NO] (1− θ) −1.90× 105

12 CO + 2 Ce2O2 Ce2O3 + CO2 R12 = k12 exp
(
− E12
RgTs

)
[CO] (θ) −1.83× 105

13 C3H6 + 12 CeO2 6 Ce2O3 + 3 CO + 3 H2O R13 = k13 exp
(
− E13
RgTs

)
[C3H6] (θ) −4.77× 105

14 C3H8 + 14 CeO2 7 Ce2O3 + 3 CO + 4 H2O R14 = k14 exp
(
− E14
RgTs

)
[C3H8] (θ) −4.95× 105

15 H2 + 2 CeO2 Ce2O3 + H2O R15 = k15 exp
(
− E15
RgTs

)
[H2] (θ) −1.42× 105

Table 5.4: Inhibition Factor Terms

i 1 2 3 4
ki,G 7.33× 100 2.57× 102 1.8× 10−4 3.14× 106

Ei,G −485 166 −10163 3685
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ṅHC,out =
ṁcyl

Mg

(
Cg,C3H6

+ Cg,C3H8

)
(5.37)

5.2.2 Boundary Conditions

It is noticed from the system of PDEs (5.24) that for the system to be solved, a single
boundary equation is needed for each of exhaust gas temperature and concentrations. Two
boundary conditions are needed for the substrate temperature and no boundary conditions
are needed for the substrate concentrations. The boundary conditions of the exhaust gas
are Dirichlet type boundary conditions as stated in equation (5.38); on the other hand, the
boundary condition of the substrate temperature is of a von-Neumann type as stated in
equation (5.39).

Tg|x=0 = Tg,in(t) (5.38a)

Cg,i|x=0 = Cg,in(t) (5.38b)

∂Ts
∂x

∣∣∣∣
x=0

= 0 (5.39a)

∂Ts
∂x

∣∣∣∣
x=L

= 0 (5.39b)

5.2.3 Comparison Metrics

5.2.3.1 Conversion Efficiency

The conversion efficiency is a measure of the performance of a catalytic converter. This
measure is based on the cumulative mass production of unwanted species, namely CO, NO,
and unburned fuel that is given in equation (5.40). The conversion efficiency of species j
is equal to 100% when the catalytic converter completely removes the unwanted species j.

ηj = 1−

∫ t
0
Cg,jṁj dt

∣∣∣
out∫ t

0
Cg,jṁj dt

∣∣∣
in

(5.40)
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5.2.3.2 Overall Species Mass

The overall species mass is defined as the summation of the mass concentration multiplied
by the mass flow rate over the whole time span. For a continuum, this summation can be
written as an integration as shown in equation (5.41).

mj(t) =

∫ t

0

xg,j(τ)ṁj(τ) dτ (5.41)

5.2.3.3 Parameter Identification Objective Function

In this model, there are 32 parameters to be identified; namely, k1 to k15, E1 to E15, lw
and α. There is a well defined literature for the base values of k1 to k15 and E1 to E15

[66]. A sum squared error function is constructed as an objective function to minimize for
parameter identification. The Trust Region Reflective algorithm is used to minimize the
function using non-linear least squares to obtain the required parameters.

It is found that parameters lw and α are most sensitive to the catalyst activity that
decreases with usage. Thus, it is recommended to identify these parameters on-line. A
similar approach is recommended using gradient descent as the optimization method.

5.2.4 Catalytic Converter Model Validation

A catalytic converter with a length of L = 10 cm, cross-sectional area of Ac = 0.006 m2,
and a hydraulic diameter of Dh = 1.2124 mm is considered in this thesis. The density of
the substrate is considered to be ρs = 2500 kg/m3.

Experimental results for carbon monoxide conversion efficiency and cumulative concen-
trations of carbon monoxide and unburned fuel are obtained from the paper of Ramanathan
et al. [66]. It is noted that, in figure 5.19, the conversion efficiency of Carbon Monoxide
CO is negative in the first 38 seconds for both the developed model and the experimental
data. This occurs since CO is a product in some reactions involved in water gas and steam
forming and oxygen storage; namely, reactions 9, 13 and 14 given in table 5.3.

The commulative concentrations of CO and unburned fuel (HC) are compared with
experimental data [66] as shown in figure 5.20. The RMSE of the commulative concen-
trations of CO and HC are 9.3967 × 10−5 kg and 1.5896 × 10−5 kg respectively. Thus, it
may be concluded that the developed model is in good agreement with the experimental
data showing similar dynamics and acceptable steady state errors for the commulative
concentrations of CO and HC valued at 4.17% and 9.66% respectively.
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Figure 5.19: CO Conversion Efficiency Experimental Comparison
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Figure 5.20: Mass comparison of Catalytic Converter Performance
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Chapter 6

Engine Controls

Vehicle speed controls are a desired feature in modern cars with applications in reducing
car accidents and in adaptive cruise controllers. An integral part of vehicle speed controls
is developing a low-level engine shaft speed controller. The engine shaft speed is controlled
to a given setpoint while minimizing fuel consumption varying the engine throttle, air to
fuel ratio, and, ideally, engine EGR, spark advance, and valve timing.

In this chapter of the thesis, the interest is in developing engine controllers in which
the plant models described in chapters 4 and 5 are utilized. A generalized block diagram
showing the primary signals and features in engine speed control is shown in figure 6.1.
A baseline PID engine speed controller is developed along with enhanced low-level MPC
controllers to optimize the usage of fuel and minimize unwanted engine emissions. Finally,
a drive cycle based on US06 is used to showcase controller and high fidelity plant models,
and the designed and tuned controllers.

Controller Plant

Disturbances

u

Measurement Signals

ωset eω y

−
ωm

Figure 6.1: Basic Speed Control Diagram
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6.1 Engine PID Speed Control

In this section, a Proportional Integral Derivative (PID) controller is devised to provide a
baseline comparison for the model-based controller that is to be designed in this chapter.
The aim of the controller is to achieve a set target ωset for the engine shaft speed with
the engine brake torque τbrake considered to be a disturbance, as shown in figure 6.2. The
engine model was detailed in chapter 4. The input of the plant (engine) model is the engine
throttle θ∗, and the output of the plant model is the engine shaft speed ω.

PID Engine

τbrake

θ∗ωset eω ω
−

ω

Figure 6.2: A PID Control System

The basic idea behind the PID controller is that the error signal, eω = ωset − ω in
figure 6.2, is multiplied by a constant representing the proportional term, the integral of
the error is multiplied by a constant representing the integral term and the derivative of
eω is multiplied by a constant representing the derivative term as shown in equation (6.1).

θ∗ = kpew +KI

∫
ew dt+KDėw (6.1)

As a rule of thumb, increasing the proportional gain increases the response speed of
the closed loop controlled system until instability is reached. Increasing the integral gain
reduces or eliminates the steady state error and increases the overshoot of the system, and
increasing the derivative gain decreases the rise time and overshoot. A major issue with
the derivative portion of the controller is that derivatives of error signals are computed
numerically, increasing the noise in the output of the PID block. A workaround for this
issue is to include a filter coefficient NPID in the PID equation in the s-domain as shown
in equation (6.2).

PID = kp +
kI
s

+ kD

(
NPID

1 + NPID
s

)
(6.2)
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PID

FF

τbrake

Engine

τbrake

ω

ωset eω
−
ω

Figure 6.3: A PID Control System with a Feed-forward Function Block

To design a PID controller that takes into consideration brake torque disturbances, a
feed-forward block is added to the control diagram as illustrated in figure 6.3.

The feed forward block (FF) in the control diagram in figure 6.3 is considered to be
an engine throttle map that provides engine throttles from the engine shaft speed and the
brake torque. Since in the model developed in this thesis, the engine throttle was considered
to be a signal input to the model, the throttle of the model had to be calculated for each
set of input shaft speed and brake torque. This was done by utilizing the secant method in
solving the algebraic equation (6.3) stating that the difference between the speed calculated
by the model and the set input speed is zero.

ωmodel(θ
∗, τbrake)− ωset = 0 (6.3)

In the throttle map, the dimensionless throttle ratio θ∗ was capped at a value of 1 and
the minimum throttle was set at 0.05. These values are chosen since the normalized air to
fuel ratio is set to 1, the spark advance is set to 35° and the CAM angle is fixed at 20°.
The resulting feed forward throttle map is shown in figure 6.4. The feedforward function
block is added to include the brake torque disturbance because, in this section, the only
considered input to the plant is the throttle to achieve a Single Input Single Output system
(SISO). A major drawback in this analysis is that the engine operation region is not fully
covered in this controller design since only stochiometric air to fuel ratios are considered
and the spark advance and CAM angles are fixed.

The major critera to consider when tuning the PID gains are the rise time defined
as the time required for the system to move between 10% and 90% of the steady state
value; the settling time, defined as the the amount ot time needed to be within 2% of the
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Figure 6.4: Feed-forward Engine Throttle Map

asymptotic steady state value of the system; the steady state error, defined as the error
between the final steady state value of the response of the system and the setpoint; and
the overshoot, defined as the percentage of the difference between the maximum and the
final value of the system response with respect to the final value of the system response.

When tuning the PID controller for kp, kI , kD, and NPID, the rise time was set to be
less than 3s, and the steady state error was set to be within 2%. To validate the tuning
values of the PID controller, the steady state error, rise time and settling time are plotted
for different engine shaft speed set-point inputs (ωset in figure 6.2) and different engine
brake torque disturbances. The plots are illustrated in figure 6.5. These characteristics
are computed on the closed loop with the tuned PID controller and the non-linear engine
mean value model described in chapter 4. It is noted that the tuned PID values satisfy the
controller design requirements for all stated inputs and disturbance brake torques. The
response of the closed loop system with a mean value model at a speed setpoint of 1000
rpm and an engine brake torque of 100 N-m is shown in figure 6.5a.

To showcase PID controller stability, the Bode plot of the open-loop system, including
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Figure 6.5: PID Controller Sample Run and Characteristics
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the designed controller and the non-linear mean value engine plant model, is given in
figure 6.6. This was done by simulating the open-loop system with sinusoidal inputs at
frequencies given in the x-axis. The magnitude plot represents the ratio of magnitudes in
decibels of the open-loop output to the open-loop input, and the phase plot represents the
phase shift of output to input. As shown in the Bode plot the gain margin is 106 dB, and,
at the indicated points in the phase plot, phase margins are 118° and 126°. These values
indicate controller stability at the considered frequencies.

Figure 6.6: Open Loop Bode Plot

6.2 Model Predictive Controller

In this section, a Model Predictive Controller (MPC) is developed. In addition to satisfying
the engine shaft speed requirement, the purpose of this controller is to minimize fuel
consumption and reduce engine emissions.

In a MPC, a control oriented model predicts the response to inputs, known as the
manipulated variables u which are then optimized based on a pre-defined objective or cost
function, measured output ymeas, and unmeasured output yunmeas. Measured disturbances v
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are inputs to the plant function that are not manipulated by the controller, these inputs are
supplied or estimated from sensor data. A generalized block diagram for MPC controllers
is shown in figure 6.7.

MPC Plant

Parameter
Estimation

reference

u

yunmeas

ymeas

v

Figure 6.7: A MPC System

The main idea behind MPC control is that the manipulated variables are varied to
satisfy the control requirements with specified constraints and bounds. This translates
into an optimization problem where the manipulated variables are found by minimizing a
cost function bounded by a set of constraints. For this application the generalized quadratic
cost function Jcost is written as shown in equation (6.4). In equation (6.4), φ may represent
the desired plant outputs, states or inputs and φset represents the respective setpoints of φ.
The considered cost function is the sum of a tracking term and and an input rate penalty
term. Since this is a multi-objective problem for a multiple output multiple input (MIMO)
control problem, importance weights are introduced; these weights are designated by w in
equation (6.4). Scaling factors S are introduced to the cost function to match numerical
orders of different terms in the MPC cost function.

Jcost =

Np∑
i=1

wiSi (φi − φset,i)
2

︸ ︷︷ ︸
Tracking

+

Np∑
j=1

wjSj (uj,k+1 − uj,k)2

︸ ︷︷ ︸
Input Rate Penalty

(6.4)

The constraints are usually stated according to bounds on the manipulated variables
and that the states shall satisfy the state space model. Generalized inequality constraint
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equations are shown in equation (6.5).

umin ≤ u ≤ umax (6.5a)

ymin ≤ y ≤ ymax (6.5b)

u̇min ≤ u̇ ≤ u̇max (6.5c)

The computation of the desired manipulated variables is done by minimizing the cost
function that is evaluated from states and outputs. Thus, future values of states and out-
puts shall be predicted within the controller. This prediction is made over the prediction
horizon utilizing a control-oriented model with a predefined sampling time Ts. In this for-
mulation, the prediction time is defined as a multiple Np of the sample time. To reduce the
compuational cost of the MPC, it is a requirement that the controller model be compu-
ationally efficient in an optimization problem. In general, for MPC, the controller model
is written is discrete form as given in equation (6.6b). In this work, the discrete model
is obtained from the continuous model utilizing Euler discritization as shown in equation
(6.6b). The reduced order model is detailed in section 6.2.1. It is worth mentioning that
equation (6.6b) is the equality constraint of the optimization problem minimizing the cost
function presented in equation (6.4).

Xk+1 = f(Xk, U) (6.6a)

Xk+1 = Xk +
∂f(X,U)

∂t
Ts (6.6b)

To reduce the computational cost, the manipulated variables are optimized over the
control horizon which is smaller than the prediction horizon. The control horizon is also
considered to be a multiple Nc of the sampling time Ts. This reduces the number of
variables in the optimzation problem by setting the maniplated variables to have constant
values at prediction time steps greater than the control horizon equal to the values at
the control horizon. The prediciton horizon, control horizon, manipulated variables, and
prediction and measured outputs are illustrated in figure 6.8.

6.2.1 Controller Model

To optimize the manipulated variables in real time, a reduced control oriented model is to
be devised for the engine block. This reduced order model is written in a generalized state-
space formulation Ẋ = f(X,U) and Y = f(X,U) whereX is a vector representing the state
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Figure 6.8: MPC Controller Theory Schematic

variables, Y is a vector representing the outputs of the model, and U is a vector representing
the inputs which include the manipulated variables and measured disturbances. For a
general MPC formulation, the control oriented model is a discrete model; however, for
this work continuous state-space model equations are given where the Euler’s method is
utilized to convert from continuous to discrete formulation as given in equation 6.6b.

For this formulation, the state vector may be defined as X =
[
ω pim Tcyl Teng

]T
, the

input vector may be defined as U =
[
θ∗ λ EGR CAM SA τbrake

]T
and the output

vector is defined as Y =
[
ω ṁfuel

]
. In this formulation, it is considered that the brake

torque τbrake is a measured disturbance.

The ODE for the engine shaft speed ω is obtained by combining equations (4.9), (4.16),
and (4.18) in equation (4.8) resulting in equation (6.7). In equation (6.7), the pumping
and friction mean effective pressures (Ppme and Pfme respectively, defined in Chapter 4)
are obtained experimentally and represented as surface fit functions of the engine shaft
speed ω and intake manifold pressure pim. The summation of the pumping and friction
mean effective pressures is given in figure 4.9 for the Toyota Prius engine.

dω

dt
=

1

Jcranc

[
ηthηvolncylVsQLHV

4πRTamb (1 +Ksλ)
pim −

ncylVs
2nRPCπ

(Ppme + Pfme)− τbrake
]

(6.7)
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The ODE of the intake manifold pressure pim is obtained by combining equations (4.1)
and (4.7) in (4.6). The resultant equation is given as equation (6.8) noting that the flow
function Ψ is computed by utilizing the smoothed extended piecewise function given in
equation (4.4). This is done to avoid saturation or non-physical values that result from the
manifold pressure being greater than the throttle inlet pressure. In the case of the Toyota
Pruis engine, the throttle inlet pressure is equal to the atmospheric pressure p∞ since the
engine is not turbo or super-charged.

dpim
dt

=
γ

Vim

(
CDAthp∞Ψ

√
RairTamb −

15ηvolncylVs
2π2

ωpim

)
(6.8)

As for the engine thermals, the first law of thermodynamics is applied on the whole
engine block to obtain two equations with the engine exhaust temperature Teng and the
engine cylinder temperature Tcyl as state variables. Many of the details of this derivation
are presented in Guezella et al. [29]. However, in the mentioned references, the engine
cylinder termperature was computed from an algebraic equation as given in equation (4.22).

In the current control-oriented formulation, the derivative term mcylcv,cyl
dTcyl
dt

is added to
the equation to remove an algebraic loop that is caused by equation (4.22) in the reduced
system model. This provides the option of implementing the reduced model in MapleSim�
or Modelica� in an acausal environment without the need to resort to a memory block
or solver time shifts. The extra term represents an energy storage term inside the engine
cylinder during an engine cycle with a parameter identified thermal mass mcylcv,cyl for a
specific engine setup.

It was found from experimental data that an extra dimensionless correction factor Ceff
needs to be inserted in equation (6.9a) for the engine of Toyota Prius with the Atkinson
cycle. At an input throttle range between 0.15 and 1.0 and a set engine shaft speed ranging
between 1000 and 2000 rpm, this factor is identified to be equal to 0.77. The reduced system
of equations is given in (6.9). Heat transfer coefficients are defined in section 4.2.

mcylcv,cyl
dTcyl
dt

= ṁfuelQLHV (1− Ceffηind) + Acylhcyl (Teng − Tcyl)

− ṁcyl (cp,cylTcyl − cp,ambTamb)
(6.9a)

dTeng

dt
=

1

mengceng
[Acylhcyl(Tcyl − Teng) + ωτfric] (6.9b)
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The engine fuel mass flow rate output equation is obtained by combining equations
(4.18) and (4.27) to obtain equation (6.10). Note that this equation is a non-linear equation
including the states ω and pim, the normalized air to fuel ratio λ, and the volumetric
efficiency ηvol which is a non-linear map denpendent on the engine shaft angular speed ω
and the intake manifold pressure pim as shown in figure 4.8.

ṁfuel,engine,in =
ηvolpimncylVsω

2nRPCπRairTim (1 +Ksλ)
(6.10)

Equations (6.7–6.9) represent the reduced order controller model that is used to calcu-
late the engine speed, intake manifold pressure, engine exhaust temperature, and engine
block temperature. The system of equations (6.7–6.9) is compared against the model pre-
sented in Chapter 4. To compare the reduced order controller model to the original plant
model, the steady states and dynamics of the models shall be compared at different engine
throttle and brake torque step inputs. For steady state comparison, the steady state error
is calculated. For the dynamics, the RMS value and errors in rise time, and settling time
are calculated. All errors are calculated considering the plant model as the gold standard
as shown in equation (6.11) with φ as a generalized variable. Comparison plots of the
steady state errors between the controller and plant models are given in figure 6.9 for the
engine shaft speed, manifold pressure and fuel consumption. Differences in rise time of
the engine shaft speed are shown in figure 6.9b. The Normalized RMS error of the engine
manifold pressure and fuel consumption are given in figure 6.10 as defined by equation
(6.12) for data points of index k for a generalized variable φ.

e =
φplant − φcontrol

φplant

× 100% (6.11)

RMSnorm =

(
1

φplant,ss

)√∑Npts

k=1 (φplant,k − φcontrol,k)
2

Npts

(6.12)

The errors of the steady-state values between the controller and high-fidelity plant
models for engine shaft speed and intake manifold pressure are within 2%, as indicated
in figures 6.9a and 6.9c. For both states, the error increases as brake torque and throttle
decrease. In contrast, the error magnitude of the cumulative fuel consumption increases as
the brake torque and throttle increase. The maximum steady-state error for the cumulative
fuel consumption is within 3%, occurring at a brake torque of 100N-m and a normalized
throttle of 0.9, as indicated in figure 6.9d.
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For the dynamic response, the error in the rise time between the high-fidelity plant
model and the non-linear controller model is within 25%, as shown in figure 6.9b. As a
rule of thumb, the rise time error increases with an increasing brake torque. The relatively
high error value in the rise time is due to the absence of detailed modelling of engine
thermal components at cold starts, which is due to the model reduction technique that
employs a quasi-steady formulation for the pumping and friction mean effective pressures
relying on steady-state experimental values.
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Figure 6.9: Comparison Between Controller and Plant Models

The RMS error of the engine shaft speed is within 60 rpm for steady-state values of
around 1000 rpm between plant and controller models. Such an RMS value indicates an
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excellent agreement in the overall engine shaft speed output signals between the high-
fidelity and reduced models, given that the rise time error is around 20%.

The normalized RMS error is within 6× 10−4 for the intake manifold pressure, and 2%
for the cumulative fuel consumption, which indicates an excellent agreement in computed
intake manifold pressure and fuel consumption values.

Exhaust temperature error is within 4% of the steady-state value. Note that the exhaust
temperature RMS is considered to be on the low side for a model that does not consider
cold starts and dynamic thermal effects. It is presumed that the low RMS error value is
due to the introduction of Ceff in equation 6.9a.

6.2.2 MPC Controller Setup

For this study, the dynamic responses and fuel consumption are compared using PID,
Linear MPC and Adaptive MPC as engine speed controllers. In the PID controller, the
objective is to achieve the desired engine shaft reference speed within the dynamic response
characteristics defined in section 6.1. For the MPC controllers, the controller is a multi-
objective controller whose aim is to reduce fuel consumption while maintaing the desired
response.

In equation (6.7), it is noted that the air to fuel ratio input lies in the denominator of the
first expression. Also, equation (6.8) is expressed in terms of the throttle area opening Ath
that is related to the throttle ratio θ by a non-linear equation given in equation (4.2). To
simplify the linearization of the controller model in the linear and adaptive MPC controller
and reduce the terms in the symbolic jacobian compuatation in the non-linear controller, a
variable substitution for the input variables is suggested. The non-dimensionalized throttle
ratio θ∗ is replaced with the throttle area Ath as the controller function input. The throttle
ratio is then solved for utlizing equation (4.2) using Newton’s method. Also, in equation
(6.7), the normalized air to fuel ratio is found in the denominator of the input expression;
thus, this input is replaced by β as defined in equation (6.13).

β =
1

1 +Ksλ
(6.13)

A cost function that represents such an objective is given in equation (6.14). The terms
w1, and w2 are weights repesenting the speed tracking and fuel consumption, respectivley.
The rate weights w3, and w4 are placed to minimize the rate of change in the engine throttle
and air to fuel ratio. S1, S2, S3, and S4, are numerical scaling factors with values of S1 = 1

98



0.4 0.5 0.6 0.7 0.8 0.9 1

Engine Dimensionless Throttle

0

10

20

30

40

50

60

R
M

S
 S

pe
ed

 E
rr

or
 (

rp
m

)

Brake Torque = 60 N-m
Brake Torque = 80 N-m
Brake Torque = 100 N-m

(a) Engine Shaft Speed

0.4 0.5 0.6 0.7 0.8 0.9 1

Engine Dimensionless Throttle

1

2

3

4

5

6

N
or

m
al

iz
ed

 R
M

S
 P

re
ss

ur
e 

E
rr

or

10-4

Brake Torque = 60 N-m
Brake Torque = 80 N-m
Brake Torque = 100 N-m

(b) Intake Manifold Pressure

0.4 0.6 0.8 1

Engine Dimensionless Throttle

0

0.01

0.02

0.03

0.04

N
or

m
al

iz
ed

 R
M

S
 E

xh
au

st
 T

em
p

Brake Torque = 60 N-m
Brake Torque = 80 N-m
Brake Torque = 100 N-m

(c) Engine Exhaust Temperature

0.4 0.6 0.8 1

Engine Dimensionless Throttle

0

0.005

0.01

0.015

0.02
N

om
al

iz
ed

 R
M

S
 F

ue
l E

rr
or Brake Torque = 60 N-m

Brake Torque = 80 N-m
Brake Torque = 100 N-m

(d) Fuel Consumption

Figure 6.10: Normalized RMS Comparison Error Between Controller and Plant Models

s2/rad2, S2 = 1× 104 s2/kg2, S3 = 1× 104, S4 = 1× 106. Scaling factors are placed so that
all terms in the cost function summation are normalized to the same numerical magnitude.

Jcost = w1S1 (ω − ωset)2 + w2S2 (ṁfuel)
2 + w3S3

(
θ∗k+1 − θ∗k

)2
+ w4S4 (βk+1 − βk)2 (6.14)

Hard constraints on the manipulated variables and outputs are placed in the MPC
formulations stated in this section as stated in equation (6.15). Also, soft constraints are
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placed on the rates of change between succesive iterations in the manipulated variables
as stated in equation (6.16). To implement the soft constraints in the MPC solver, the
bounds in equation (6.16) are interchanged with bounds on Ath and β.

0.01 ≤ θ∗ < 1 (6.15a)

0.8 ≤ λ ≤ 1.2 (6.15b)

ω ≥ 0 (6.15c)

ṁfuel ≥ 0 (6.15d)

θ∗k+1 − θ∗k < 10Ts (6.16a)

βk+1 − βk < 0.1Ts (6.16b)

Since minimizing the amount of fuel consumed is one of the objectives of the intended
controller, the fuel mass flow rate needs to be computed as given in equation (6.10). The
fuel mass flow rate is a function of the intake manifold pressure pim (a state), the engine
shaft speed ω (a state), and β (an input). The depedence of the fuel mass fuel rate on an
input hinders the possibility of linearizing the non-linear controller function described in
equations (6.9) and (6.10) into standard from where the outputs Y are not dependent on
inputs u. A workaround this issue is to introduce a new state representing the comulative
mass of fuel mfuel consumed by the engine during the drive cycle. Applying this change
transforms equation (6.10) into (6.17). The finalized non-linear model representing the
torque balance in the engine is represented by equations (6.9) and (6.17) resulting in a

system of three equations with three state variables X =
[
ω pim mfuel

]T
.

dmfuel

dt
=

ηvolpimncylVsω

2nRPCπRairTim (1 +Ksλ)
(6.17)

The cost function is expressed as shown in equation (6.18) by changing the fuel re-
quirement to minimize the rate of change in the mass of fuel consumed. The constraint in
equation (6.15d) is modified in a similar manner. The scaling factors are not changed in
the modified cost function.

Jcost = w1S1 (ω − ωset)2 + w2S2 (mfuel,k+1 −mfuel,k)
2

+ w3S3

(
θ∗k+1 − θ∗k

)2
+ w4S4 (βk+1 − βk)2

(6.18)

For all defined MPC controllers in this work, the sampling time Ts is set at 10 ms with
the prediction horizon set at Np = 10 steps and a control horizon of Nc = 2 steps. The
weights are set at w1 = 1, w2 = 1, w3 = 1, and w4 = 0.5.
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6.2.3 Linear MPC

In linear MPC, the controller function is written using standard state-space formulation as
shown in equation (6.19) with a vector of state variables X, a vector of manipulated input
variables u, a vector of measured disturbances v and a vector of ouputs Y .

Ẋ = AX + Bu+ Bvv (6.19a)

Y = CX (6.19b)

To simplify the linearization process, equation (6.7) is modified as shown in equation

(6.20) by introducing the term ¯̄P =
Ppme+Pfme

pim
. This is possible since the surface fit of the

fMEP of an engine is in the form Ppme + Pfme = pim
¯̄P where ¯̄P is a function of the intake

manifold pressure and engine shaft speed.

dω

dt
=

1

J

{[
ηthηvolncylVsQLHV

4πRTamb (1 +Ksλ)
− ncylVs

2nRPCπ

(
¯̄P
)]

pim − τbrake
}

(6.20)

Looking at equations (6.7) and (6.8), it is noted that various non-linear terms are
included. Since the reduced model includes nonlinearities in the form of products between
states, these non-linearities are treated by introducing a weighted sum as shown in equation
(6.21) for the product ωpim with a weight v21. After splitting the product into the weighted
sum, the resultant is linearized at the engine shaft speed ω∗∗ and its corresponding intake
manifold pressure p∗∗im that is defined at a throttle ratio of θ∗∗.

ωpim ≈ v21ωp
∗∗
im + (1− v21)ω∗∗pim (6.21)

Applying the weighted sum method described in equation (6.21), adding a new state
representing the mass of fuel consumed by the engine, and perfroming the input substi-
tutions, the matricies A, B, Bv and C may be defined as shown in equation (6.22) for

a state vector X =
[
ω pim mfuel

]T
, an input vector u =

[
Ath β

]T
, a measured distur-

bance v = τbrake and an output vector Y =
[
ω mfuel

]T
. The rationale behind placing the

engine brake torque as a measured disturbance is that the brake torque is a load force on
the engine resulting from the operating conditions, including road texture, vehicle weight,
road inclination, implying that the brake torque is not an input that can be manipulated
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by the controller.

A =

 0
ncylVs

2JcrancnRPCπ

(
v12

ηthηvolQLHVβ
∗∗

RTamb
− ¯̄P

)
0

−v21
15ηvolncylVsγ

2Vimπ2 p∗∗im − (1− v21)
15ηvolncylVsγ

4Vimπ2 ω∗∗ 0

v31
ηvolp

∗∗
imncylVsβ

∗∗

2nRPCπRairTim
v31

ηvolncylVsω
∗∗β∗∗

2nRPCπRairTim
0

 (6.22a)

B =

 0 (1− v12)
(

nCylV s

2JnRPCπ

)(
ηthηvolQLHVp

∗∗
im

RTamb

)
γ
Vim

C∗∗D p∞Ψ
√
RTim 0

0 (1− 2v31)
ηvolp

∗∗
imncylVsω

∗∗

2nRPCπRairTim

 (6.22b)

Bv =

− 1
J

0
0

 (6.22c)

C =

[
1 0 0
0 0 1

]
(6.22d)

Writing the system in standard form results in a singular matrix A as indicated by
equation 6.22a. The singular matrix resulted from placing the consumed fuel mfuel as a
state given that the state rates are not dependent on mfuel. Note that having a singular
matrix A does not affect explicit numerical solvers in the controller block.

The weights v12, v21, and v31 are found using an unconstrained global optimization
method, a genetic algorithm. The objective function that is used to set the weights is
defined as the summation of the root mean square error between the high fidelity plant
model and the controller model previously defined in equation (6.12). The summation
structure is shown in equation (6.23) with dimensionless throttle θ∗ values varied between
0.4 and 1.0 with an increment of 0.05 and brake torques varied between 40 and 120 N-m
with an increment of 10 N-m. The rationale behind choosing the summation of the root
mean square error as the objective function is to minimize the deviations in the dynamic
response observed in the engine shaft speed and intake manifold pressure. Optimal weights
were found to have values of v12 = 0.8765, v21 = 0.7936, and v31 = 0.0832.

Jobj =
∑
τbrake

∑
θ∗

RMSnorm (6.23)
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A simulation of the linearized function mentioned in equations (6.22) with optimal
weights is compared to a system that is linearized around the point defined at ω∗∗ and
p∗∗im. The non-linear model is simulated as a reference for both linearized models. The
comparison is made at a dimensionless throttle equal to 0.8 and a brake torque equal to
70 N-m that results in a steady-state engine shaft speed around 2100 rpm. Simulation
results are presented in figure 6.11. Steady-state errors are computed with respect to the
steady-state value of the non-linear model.

The engine shaft speed response of the model linearized around a point does not conform
with the non-linear model. Linearization around a point results in unphysical negative
engine shaft speed outputs, as indicated in figure 6.11a.

For the intake manifold pressure, the approach suggested in equation (6.21) has a
steady-state error of 0.25%; in contrast, linearizing around a point results in a steady-state
error of 37.34%.

Moreover, the trend of a response of a system linearized around a point is entirely
different than the response of the non-linear system for both engine shaft speed and intake
manifold pressure outputs, as illustrated in figure 6.11.
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Figure 6.11: Comparison of Linearization Techniques

An attempt to improve the response of the engine shaft speed is done by fixing the zero
values of A, B, and Bv matrices. The rationale in the modified approach is to retain state-
inputs dependencies without introducing new functional relations in the linearized system.
Also, the matrix Bv is only dependent on the engine shaft inertia, an identified parameter;
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thus, the matrix Bv is held constant in the linearized system. The comparison of responses
of the modified linearization around a point and the suggested linearization technique is
illustrated in figure 6.12. Both linearization techniques provide an excellent agreement for
engine shaft speeds with steady-state errors of 0.14% for the method presented in equation
(6.21) and 2.42× 10−4% for the modified linearization around a point, as shown in figure
6.12a.

However, comparing the rise-times of engine shaft speed response shows an advantage
in using the method presented in this section. The rise time of the linearized system
presented in equations (6.22) is 0.39 s, the rise time of a system linearized around a point
is 2.76 s compared to a rise time of 0.49 s of the non-linear system.

The problem with modifying matrix coefficients of models linearized around a point is
that the response of the intake manifold pressure converges to zero, resulting in a steady-
state error of 100% as illustrated in figure 6.12b. Thus, modifying the linearization around
a point technique does not improve the output responses.
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Figure 6.12: Comparison of Linearization Techniques

It is concluded that the suggested linearization technique has an improvement in simu-
lating the engine shaft speed and intake manifold pressure. Output responses of the model
linearized by the proposed method have the best agreement with the non-linear controller
model compared to linearization-around-a-point techniques. Improvements in signal prop-
erties are indicated by reduced steady-state and rise time errors in engine shaft speed and
intake manifold pressure responses.
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6.2.4 Adaptive MPC

Adaptive MPC is used to apply linear MPC methods to non-linear systems. This is
achieved by updating the parameter matrices A, B, Bv and C around various opera-
tional points. Since the parameter matricies were stated explicitly in section 6.2.3, these
matricies can be updated at every prediction time step. For this particular problem, the
matricies Bv and C are held constant during the simulation. The volumetric efficiency
ηvol, the thermal efficiency ηth, and the frictional parameter ¯̄P are computed from engine
maps that were derived experimentally as stated in Chapter 4, and used to update A and
B.

The initial MPC setup and the linearization parameters v12, v21 and v31 are used as
defined in section 6.2.3. This methodology enables the inclusion of parameter changes at
every prediction horizon.

An advantage to the linearization approach mentioned in section 6.2.3 is that non-linear
and piecewise functions can be computed outside the MPC controller block from values
measured or identified from previous prediction steps increasing the computational speed
of the optimizer. A piecewise function that is found in the current analysis is the flow
function Ψ as defined in equation (4.4). The flow function has a piecewise expression that
is a function of the intake manifold pressure, a state. Moreover, the regions in the piecewise
expression are based on the intake manifold pressure. Such a piecewise formulation makes
linearizing around a point by computating the required derivatives around the considered
operational point to be a cumbersome task. Also, if non-linear MPC is considered, an
adaptive approach shall lead to simplified symbolic jacobian and hessian computations
reducing the turn over time of the contoller and reducing memory utilization.

6.3 Controller Comparison

To be able to compare the PID, Linear and Adaptive MPC controllers in an operational
region of the Prius 2015 engine, a dynamic engine speed target profile is constructed to
mimic the US06 vehicle drive cycle. A simulation of the different controllers at a constant
brake torque of 120 N-m is shown in figures 6.13 and 6.14. The plots show the engine
shaft speed, a measured output, in figure 6.13a; the air to fuel ratio, a manipulated input
for MPC controllers, in figure 6.14a; the engine throttle, computed from the throttle area
that is a manipulated variable, in figure 6.13b; and the fuel consumption, an unmeasured
output, in figure 6.14b.
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For this simulation, Linear and Adaptive MPC have the same controller setup as defined
in section 6.2.2 with the same cost function and weights. It may be concluded that using
linear MPC does not satisfy the requirements of engine speed controls since the shaft
speed deviation from the target is the largest as shown in figures 6.13a. Thus, it may
be deduced that linear MPC is not suitable to be used for engine speed controls in this
context. Furthermore, linear MPC uses the most fuel, as shown in figure 6.14b.

To compare the Adaptive MPC with a traditional PID controller, the US06 drive cycle
based dynamic engine profile is simulated at different brake torques ranging from 60 N-m
to 120 N-m. Criteria of assessing the controllers include the deviation of the engine shaft
speed output from the desired shaft speed profile, the rate of change in the engine throttle
and fuel mass consumption. The computational time needed perform the simulations are
also considered. The speed target achievement is assessed by computing the root mean
square error (RMSE) between the engine shaft speed output and the target engine shaft
speed. To assess the rate of change in engine throttle, the variance of the rate of change
in the engine throttle is computed for both adaptive MPC and PID controllers as defined
in equation 6.24. In equation 6.24, tk+1 − tk represents the sampling interval. For these
three criteria, a lower magnitude implies a better performance in the considered criterion.

S =

∑Npts−1
k=1

(
θ∗k+1−θ

∗
k

tk+1−tk

)2

Npts − 1
(6.24)

The root mean square error of the engine shaft speed with respect to the target speed,
computational time required for a cycle of 600 s of simulation time, the total mass of fuel
consumed, and throttle differential variance are shown in figure 6.15.

For the engine shaft speed response, both PID and Adaptive MPC controllers are
relatively close to their target values for brake torques between 80 N-m and 120 N-m, con-
sidering that the mean target engine shaft speed during the drive cycle is around 925 rpm.
For brake torques above 80 N-m, the PID controller’s performance is slightly better than
that of Adaptive MPC since the Adaptive MPC controller formulation has fuel economy
taken into consideration. For brake torques below 80 N-m, the PID controller does not
achieve the desired engine shaft speed with an RMSE slightly above 400 – around 45% of
the mean target shaft speed.

In general, adaptive MPC enables a slightly lower fuel consumption during the given
drive cycle, with the overall fuel consumption given in figure 6.15c. It is noticed that for
brake torques between 60 and 70 N-m, the PID controller has a lower fuel consumption
than the adaptive MPC controller; however, the PID controller does not achieve the desired
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Figure 6.13: US06 Drive Cycle Sample Simulation
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Figure 6.14: US06 Drive Cycle Sample Simulation

engine shaft speed. Taking all brake torques into consideration, the cumulative amount of
fuel saved by utilizing adaptive MPC over the whole region of brake torques is around 26
g. The considered region includes brake torques between 60 and 70 N-m.

Considering the engine throttle variation, the variance, defined in equation (6.24) is
given in figure 6.15d for both PID and Adaptive MPC controllers. The order of magnitude
is in a different category between the two controllers with a ratio of PID controller throttle
variance to Adaptive MPC throttle variance of around 1022. Using Adaptive MPC, the
engine throttle runs in much smoother operation, drastically reducing variations in the
engine throttle valve. A similar conclusion may be drawn from observing the simulation
performed at an engine brake torque of 120 N-m, as illustrated in figure 6.13b. The
reduction in engine throttle variation is achieved by placing the soft constraint on the
engine throttle rate.

The computational time of Adaptive MPC controllers is around 50 s for 596 s of drive
cycle simulation time for all considered brake torques. On the other hand, the PID con-
troller computational time varies between 150 s and 20 s for the same drive cycle as shown
in figure 6.15b. Both simulations were done on the same machine featuring a dual-core
1.7 GHz core i5� processor with 8 GB RAM using a variable step solver. It can be con-
cluded that, as expected, turn over time of PID controllers is lower than Adaptive MPC
controllers. The reduced computational times in PID controllers are attributed to PID con-
troller methodology, not including a controller model in the PID, and an MPC optimizer
that tries to optimize two manipulated variables to minimize a cost function at every pre-
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Figure 6.15: US06 Drive Cycle Simulations at Various Brake Torques

diction period. The slow PID computations at low brake torques can be associated with
the bottleneck resulting from the high-fidelity plant model simulation at PID controller
outputs.

From the simulations of the drive cycle at different brake torques, it is noted that,
for Adaptive MPC, the engine shaft speed RMSE and computational time do not vary
significantly with different engine loads. Overall, the simulated engine with the tuned
Adaptive MPC has a lower fuel consumption. Moreover, manipulated input variations in
consecutive time steps are much smaller when using Adaptive MPC as a controller. These
observations imply that Adaptive MPC satisfies controller requirements of minimizing fuel
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consumption and plant input jerk while achieving the desired engine shaft speed target.
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Figure 6.16: Filtered PID Drivecycle Comparison

A 100 Hz ideal low-pass filter is placed after a tuned PID controller as an attempt to
reduce the throttle variance shown in figure 6.15d. The engine shaft speed response of the
filtered PID and adaptive MPC controllers is shown in figure 6.16. At a brake torque of
120 N-m, filtered PID and adaptive MPC have similar responses, as noted in figure 6.16a.
However, the filtered PID response does not achieve the engine shaft speed target at a brake
torque of 60 N-m, as illustrated in figure 6.16b. Moreover, filtered PID has computational
times of around 900 s for a brake torque of 120 N-m and 800 s for a brake torque of 60
N-m. Adaptive PID has a computational time of around 50 s for both brake torques for the
drive cycle simulation time of 600 s, as illustrated in figure 6.15b. It is concluded that the
filtered PID controller does not achieve the real-time simulation requirement and does not
achieve the target engine shaft speed at a brake torque of 60 N-m. In contrast, simulations
with adaptive MPC controllers are done in real-time, and adaptive MPC controllers can
reach the target engine shaft speed at all brake torques.

All considered metrics indicate that Adaptive MPC has consistent performance over a
wide range of brake torques. A similar performance may be achieved using different PID
gains at different brake torques, known as gain scheduling. However, such a procedure
complicates the tuning procedure where four different gains kp, kI , kD, and NPID are to be
tuned in each considered region. On the other hand, a crude weight selection performed
for weights w1, w2, w3, and w4 results in a controller that achieves all the required targets
and constraints. Moreover, due to the presence of scaling factors in the formulation, it is
required to tune only three weights, namely w2, w3, and w4 by setting w1 = 1.
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Chapter 7

Conclusion

7.1 Contributions

In this thesis, models for the engine block, engine manifold, and catalytic converters were
developed for control-oriented applications utilizing Modelica� and MapleSim�. These
models were used as high-fidelity plant models for linear and non-linear, SISO and MIMO
engine controller design.

A generalized framework based on linear graph theory was defined for thermo-fluid
compressible systems. In this framework, an oscillatory flow was simulated on a simple
configuration of parallel and series pipes with thermal reservoirs. Linear graph theory is
extended to include convective temperature elements by adding an extra node to represent
the in-element temperature. An acausal, physics-based methodology is provided for system
topology models that can be generalized to include lumped thermal-fluids system models.

A real-time, acausal, mean-value engine model that includes engine thermals was devel-
oped utilizing Modelica� and MapleSim� and in Simulink� and Simscape� as detailed in
Chapter 4. This model was also used in deriving an MPC engine controller model that was
devised in Chapter 6. Parameter identification was made based on experimental data on
the Toyota Prius 2015 Plug-in hybrid engine. Linear graph theory was utilized to compute
engine thermal effects calculating oil and cooling water temperatures at several locations
in the engine.

One-dimensional models were developed for the engine manifold and catalytic converter
in Chapter 5. These models are based on one-dimensional partial differential equations that
include the most significant physical phenomena in the system. Symbolic computing was

111



used to manipulate the partial differential equations into ordinary differential equations.
Such techniques enable the solution of partial differential equations using standard numer-
ical ordinary differential solvers.

A novel method was devised to solve Euler’s equations for engine manifolds. The
method is a cross-over between the Method of Characteristics and Orthogonal Collocation
(MOC-OC), which simulates a quasi-one-dimensional compressible flow faster than real-
time. MOC-OC applied to the quasi-one-dimensional Euler equations was compared with
3-dimensional finite volume simulations resulting in differences within 20% for velocity,
0.01% for pressure, and 1.5% for temperature. A second comparison was made between
MOC-OC and MOC, where both are applied on a similar set of one-dimensional physics-
based PDEs, Euler equations. Acceptable state values were obtained using a much smaller
number of nodes; velocity errors are within 10% along the flow direction and 1.5% at col-
location points. MOC-OC was validated experimentally by comparing the estimated and
measured throttle discharge coefficients. In such a comparison, the RMSE was 0.0622, in-
dicating an acceptable model approximation. A shortcoming of MOC-OC is that it cannot
capture shockwaves in manifolds; the Method of Characteristics has a similar limitation.

The catalytic converter model includes the time dynamics of the exhaust and substrate,
and reaction rates of fifteen reactions covering eight different species. The resultant model
equations are obtained utilizing orthogonal collocation on a set of one-dimensional partial
differential equations. These computations were executed in real-time and validated with
published experimental data, and errors were within 10% for species concentrations at the
catalytic converter exit.

Orthogonal collocation is a viable technique to apply to one-dimensional PDEs, con-
verting them into a larger set of ODEs representing state-space models. The method
results in a much higher order discretization scheme compared to finite difference or fi-
nite element methods. Such an approach is suitable for high-fidelity plant models. A
drawback of orthogonal collocation is that, in most cases, the generated model equations
contain higher-order terms in comparison with state-space systems created from first-order
discretization techniques.

In Chapter 6, linear and adaptive MPC controllers were compared with a PID controller
for engine speed. The models developed in Chapters 4 and 5 were utilized in performing
a full engine airpath simulation for a pre-specified drive cycle. It is concluded that Linear
MPC controllers are not adequate for engine speed controls using the developed plant
and controller models of Toyota Prius 2015 Plug-in hybrid. The reason is that the engine
parameters, efficiencies, and discharge coefficients are not updated in the controller model
during simulation in linear MPC.
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The engine shaft closed-loop system dynamic response has similar characteristics in
tuned PID and Adaptive MPC controllers for medium to high brake torques. Adaptive
MPC has an advantage over PID as engine systems with PID controllers do not follow the
desired engine speed profile at low brake torques. Adaptive MPC has a better fuel economy
compared to PID when desired speed targets are satisfied. The most significant benefit of
using Adaptive MPC is the large reduction of engine throttle rate variation compared to
PID-based controllers.

Computer simulation computational times are consistent for closed-loop models using
adaptive MPC controllers. On the other hand, simulations of systems with PID controllers
exhibit an increase in computational time at low brake torques. Systems with adaptive
MPC compute ten times faster than real-time on a dual-core 1.7 GHz core i5� processor
with 8 GB RAM; thus, it is presumed that this controller configuration is suitable for HIL
simulations and embedded controller deployment.

Disadvantages of the PID controller occur at brake torques lower than 70 N-m. Such
a phenomenon may be circumvented by using gain scheduling where different PID gains
are used with different brake torques. However, this increases the complexity of controller
tuning and usually leads to un-predictable performance at breakpoints. As a baseline, in
the current “one controller fits all” formulation, there are four values to tune in the PID
controller: proportional gain, integral gain, derivative gain, and derivative filter. Similarly,
there are only four weights to tune in the adaptive MPC controller: w1, w2, w3, and w4.

7.2 Future Work

For future work, extended experimental engine maps for the frictional MEP and volumetric
efficiency should be identified for engine shaft speeds above 2000 rpm. These experiments
should be conducted at several engine EGR and ambient air temperatures. Also, the
discharge coefficient of the EGR flow valve needs to be identified. The current model
neglects the EGR discharge coefficient and assumes that the EGR valve is ideal.

Detailed models of coolant and oil hydraulic circuits are to be included in the thermal
model framework to complete the high fidelity model. The current formulation uses a
polynomial fit to represent the hydraulic circuits obtained from experimental temperature,
pressure, and flow rate data.

Parameter identification and validation experiments should be performed on the cat-
alytic converter of the Toyota Prius Plug-in hybrid so that a complete engine air path
simulation can be achieved for the Toyota Prius 2015 plug-in hybrid.
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The MPC controller illustrated in this work neglects the inclusion of EGR as a ma-
nipulated variable; this limits the range of operation of the engine and emission reduction
capability. To include EGR as a manipulated variable, the engine thermal efficiency and
frictional MEP should be measured at different EGR ratios.

At different ambient temperatures, obtaining engine maps enables the extension of the
designed adaptive engine MPC controller for engine operation at low temperatures. These
maps complement the high-fidelity plant model and extend the range of operation of the
controller model since both models are formulated to predict engine thermals.
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Appendix A

Manifold Equations Derivation

A.1 Remarks

In this appendix, the material derivative operator is used. The operator is defined as shown
in equation (A.1) [83]. Thus, in quasi-one dimensional flow, the total derivative is defined
as shown in equation (A.2).

DΨ

Dt
=
∂Ψ

∂t
+ (V · ∇)Ψ (A.1)

DΨ

Dt
=
∂Ψ

∂t
+ u

∂Ψ

∂x
(A.2)

Since it is assumed that the manifold is rigid, the Area (A) is a function of the position
(x) only and, apparently, not a function of time (t). The derivative of the area with respect
to position shall be written as

(
dA
dx

)
.

A.2 Ideal Gas Relations

The generalized equation of state that is assumed in this analysis is the ideal gas law with
the compressibility factor Z and is written as shown in equation (A.3).

P = ZρRT (A.3)
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Taking the natural logarithm of the state equation and computing its derivative, it can
be concluded that time and space derivatives relating density (ρ), absolute pressure (P ),
temperature (T ) and compressibility Z are:

1

ρ

∂ρ

∂t
=

1

P

∂P

∂t
− 1

Z

∂Z

∂t
− 1

T

∂T

∂t
(A.4)

1

ρ

∂ρ

∂x
=

1

P

∂P

∂x
− 1

Z

∂Z

∂x
− 1

T

∂T

∂x
(A.5)

For an ideal gas, the compressibility factor Z is a constant equal to 1, and the state
equation becomes as shown in equation (A.6); moreover, relationships between specific
heats are shown in equations (A.7 – A.8).

P = ρRT (A.6)

cp − cv = R (A.7)

γ =
cp
cv

(A.8)

It can be concluded that that ratio of the gas constant to the constant volume specific
heat is related to the specific heat ratio as shown in equation (A.9).

R

cv
= γ − 1 (A.9)

A.3 The Continuity Equation or Mass Balance

To satisfy the continuity equation, a mass balance shall be performed on a control volume
with a variable area inlet and outlet as shown in figure A.1.

The basic mass balance equation for a control volume with a single one dimensional
inlet and outlet is shown in equation (A.10) [83]:

∂m

∂t
= ṁin − ṁout (A.10)

124



qin

A

u

ρ

ρAu ρAu+ ∂ρAu
∂x

ρ+ ∂ρ
∂x

u+ ∂u
∂x
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Figure A.1: Quasi One Dimensional Flow Illustration for an Element of Length dx

Noting the basic density relation m = ρV given that the volume V does not vary with
time, the left hand side (LHS) of equation (A.10) may be written as:

∂m

∂t
= V

∂ρ

∂t
= A

∂ρ

∂t
dx (A.11)

Applying Taylor series expansion considering only first order terms, the right hand side
(RHS) of equation (A.10) may be written as:

ṁin − ṁout = Aρu−
(
Aρu+

∂Aρu

∂x
dx

)
= −∂Aρu

∂x
dx (A.12)

Equating equation (A.11) to equation (A.12) and taking all terms to the LHS, the
following mass balance equation would be obtained:

A
∂ρ

∂t
dx+

∂Aρu

∂x
dx = 0 (A.13)

Removing the common term (dx) from equation (A.39), and expanding the derivative
∂Aρu
∂x

, the obtained equation is:

A
∂ρ

∂t
+ ρu

dA

dx
+ Au

∂ρ

∂x
+ Aρ

∂u

∂x
= 0 (A.14)
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Divide equation (A.14) by the area to obtain the finalized continuity relation repre-
sented in either equation (A.15) or equation (A.16).

∂ρ

∂t
+
ρu

A

dA

dx
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 (A.15)

∂ρ

∂t
+
ρu

A

dA

dx
+
∂ρu

∂x
= 0 (A.16)

It is worth comparing the developed continuity equation (A.15) with the generalized
continuity equation (A.17).

Dρ

Dt
+ ρ∇ ·V = 0 (A.17)

After expanding equation (A.17) to get equation (A.18):

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ∇ ·V = 0 (A.18)

Equating equations (A.18) and (A.15), an expression for the divergence of the velocity
may be obtained as:

ρ∇ ·V =
ρu

A

dA

dx
+ ρ

∂u

∂x
(A.19)

In a more concise form, the density may cancel as:

∇ ·V =
u

A

dA

dx
+
∂u

∂x
(A.20)

The conclusion that can be made from equation (A.20) is that for quasi dimensional
flows, the area variation affects the fluid velocity divergence by adding a term to the
divergence equation. This term has a dependence on the area gradient and flow. If the
area is uniform throughout, then the area variation will be equal to zero and this induced
term disappears.

A.4 The Momentum Equation

Since the momentum equation is not directly dependent on area variation, the equation
for an ideal non-viscous fluid is shown in equation (A.21).

DV

Dt
+

1

ρ
∇P +

F′′′

ρ
= 0 (A.21)
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In compressible flows, the relationship between flow friction and strain rate is not
linear and more complex than that of in-compressible flows. Thus frictional effects shall be
lumped as body forces instead of relating them to strain rate in the differential momentum
equation. This approach provides the following benefits [55, 75]:

� Well established formulations to calculate the friction factor may be used and applied.
� The no-slip boundary condition is disregarded maintaining one dimensional fluid flow

with a dimensional variation along the line of flow.

For quasi-one dimensional flow, the momentum equation may be written as:

Du

Dt
+

1

ρ

∂P

∂x
+
F ′′′f
ρ

= 0 (A.22)

The friction factor is simply the friction per unit volume. Since the volume of the differ-
ential element is the area at the current position (A) multiplied by the position differential
(dx), the frictional forces per unit volume for a differential element can be evaluated as
shown in equation (A.23).

F ′′′f =
1

A

dFf
dx

(A.23)

The frictional forces are evaluated by multiplying the shear stress (τ) with the surface
area of the control volume. For a differential element, the surface area may simply be
defined as the perimeter (C) multiplied by the position differential (dx). Therefore, the
frictional forces are evaluated in equation (A.24).

dFf = Cτ̄dx (A.24)

The shear stress rate is related to the Darcy friction factor (f) by the relation found in
equation (A.25) [83].

τ̄ =
ρu2f

8
(A.25)

Thus the frictional forces per unit volume may be evaluated by substituting equations
(A.24) and (A.25) in equation (A.23) to obtain equation (A.26). The factor |u|

u
is introduced
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in equation (A.26) since the frictional forces are always opposing the motion of the fluid
[75].

F ′′′f =
C

A

ρu2f

8

|u|
u

=
C

A

ρu |u| f
8

(A.26)

Defining the hydraulic diameter as Dh =
4A

C
, equation (A.26) can be written as shown

in equation (A.27).

F ′′′f =
ρu |u| f

2Dh

(A.27)

Substituting equation (A.26) in equation (A.22) and after expanding the material dif-
ferential operator, the equation becomes:

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
+
C

A

u |u| f
8

= 0 (A.28)

An alternative formulation to equation (A.28) is stated using the hydraulic diameter
notation as shown in equation (A.29).

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
+
u |u| f
2Dh

= 0 (A.29)

Further discussion about the friction factor is stated in section 5.1.2.

A.5 The Energy Equation

To derive the energy equation, a control volume similar to that shown in figure A.1 on
page 125 is used. The energy balance for this control volume is shown in equation (A.30).

q|x − q|x+dx + ṁ

(
ē+

P

ρ

)∣∣∣∣
x

− ṁ

(
ē+

P

ρ

)∣∣∣∣
x+dx

+ q′ dx− Ẇdiss =
∂Est

∂t
(A.30)

The right hand term of equation A.30 may be computed as shown in equation A.31.

∂E

∂t
=
∂ρAdxe

∂t
= Adx

∂ρe

∂t
=

(
Ae

∂ρ

∂t
+ Aρ

∂e

∂t

)
dx (A.31)
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Utilizing Taylor series expansion and neglecting higher order terms (HOTs), equations
A.32 and A.33 may be obtained.

q|x+dx = q|x +
∂ q|x
∂x

dx (A.32)

ṁ

(
ē+

P

ρ

)∣∣∣∣
x+dx

= ṁ

(
ē+

P

ρ

)∣∣∣∣
x

+
∂ ṁ

(
ē+ P

ρ

)∣∣∣
x

∂x
dx (A.33)

Applying Fourier’s heat conduction law q = −kA∂T
∂x

and substituting in equation (A.32)
to obtain equation (A.34)

q|x − q|x+dx = −∂ q|x
∂x

dx =
∂

∂x

(
kA

∂T

∂x

)
dx (A.34)

The advection term may be simplified as shown in equation A.35.

∂ ṁ
(
ē+ P

ρ

)∣∣∣
x

∂x
=
∂ρAu

(
ē+ P

ρ

)
∂x

=
∂ρAuē

∂x
+
∂PAu

∂x

= ρAu
∂ē

∂x
+ ē

∂ρAu

∂x
+ P

∂Au

∂x
+ Au

∂P

∂x

(A.35)

Therefore, it can be inferred that:

ṁ

(
ē+

P

ρ

)∣∣∣∣
x

−ṁ
(
ē+

P

ρ

)∣∣∣∣
x+dx

= −
(
ρAu

∂ē

∂x
+ ē

∂ρAu

∂x
+ P

∂Au

∂x
+ Au

∂P

∂x

)
dx (A.36)

The dissipated power due to friction is found in equation (A.37).

Ẇdiss = udF = Cτudx =
ρCu3f

8
dx (A.37)

Substituting equations A.37, A.36 and A.34 into equation A.30 and dividing the whole
equation by dx to get equation A.38

∂

∂x

(
kA

∂T

∂x

)
−ρAu∂ē

∂x
− ē∂ρAu

∂x
−P ∂Au

∂x
−Au∂P

∂x
+q′− ρCu

3f

8
= Aē

∂ρ

∂t
+Aρ

∂ē

∂t
(A.38)
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From equation (A.39), it can be inferred that:

Aē
∂ρ

∂t
= −ē∂ρAu

∂x
(A.39)

Thus the energy equation becomes:

∂

∂x

(
kA

∂T

∂x

)
− ρAu∂e

∂x
− P ∂Au

∂x
− Au∂P

∂x
+ q′ − ρCu3f

8
= Aρ

∂ē

∂t
(A.40)

The energy equation (equation A.40) introduces two extra unknowns to the system,
the internal energy e and the temperature T . These two unknowns are related by utilizing
specific heat definitions; so assuming constant specific heats, it can be obtained that the
total energy in the system (internal + kinetic) is:

ē = cvT +
1

2
u2 (A.41)

Calculating the differentials, it can be obtained that:

∂ē

∂t
= cv

∂T

∂t
+ u

∂u

∂t
(A.42)

∂ē

∂x
= cv

∂T

∂x
+ u

∂u

∂x
(A.43)

Substituting equations A.42 and A.43 in the energy equation, and assuming that the
thermal conductivity does not vary with space dimensions, it can be obtained that:

kA
∂2T

∂x2
− ρAucv

∂T

∂x
− P ∂Au

∂x
+ q′ = ρAcv

∂T

∂t
+ ρAu

∂u

∂t
+ ρAu2∂u

∂x
+ Au

∂P

∂x
+
ρCu3f

8
(A.44)

Multiplying the momentum equation by the term ρAu, it can be obtained that:

ρAu
∂u

∂t
+ ρAu2∂u

∂x
+ Au

∂P

∂x
+
ρCu3f

8

u

|u|
= 0 (A.45)

Thus the energy equation becomes:

kA
∂2T

∂x2
− ρAucv

∂T

∂x
− P ∂Au

∂x
+ q′ = ρAcv

∂T

∂t
(A.46)
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After expanding the term P ∂Au
∂x

and dividing equation A.46 by the area A, the energy
equation is finally derived as shown in equation A.48.

k
∂2T

∂x2
− ρucv

∂T

∂x
− Pu

A

dA

dx
− P ∂u

∂x
+
q′
A

= ρcv
∂T

∂t
(A.47)

Neglecting conduction effects and dividing equation A.48 by the term ρcv to obtain:

∂T

∂t
= −u∂T

∂x
− Pu

Aρcv

dA

dx
− P

ρcv

∂u

∂x
+

q′
Aρcv

+
fu3

2Dhcv
(A.48)
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Appendix B

Channel Lumped Model

B.1 Geometry Approximations

In lumping the channel, the whole channel is considered to have a uniform diameter. In
case a channel has a non-uniform diameter, the average diameter is calculated as shown in
equation B.1, or equation B.2 for the specific case of a linearly changing channel or pipe
diameter.

Dav =
V L∫ L

0
Adx

(B.1)

Dav =

√
D2
in +DinDout +D2

out

3
(B.2)

B.2 Mass Balance

Consider a lumped system as shown in figure B.1. For the lumped system the mass
balance may be written as shown in equation B.4, the right hand side is expanded to
remove derivatives of density terms and equation B.3 is written as shown in equation B.4.

ṁin + ṁout = V
∂ρ

∂t
(B.3)

ṁA + ṁB = V ρ

(
1

p

∂p

∂t
+

1

T

∂T

∂t

)
(B.4)
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ṁA ṁB

Port A Port Bp, ρ, T

Figure B.1: A lumped system

ṁA ṁB

pA, fA, ρA p pB, fB, ρB

Part A Part B

Figure B.2: A lumped system with parameters for momentum balance

B.3 Momentum Balance

In applying the momentum balance, the channel is divided into two as shown in figure B.2,
the momentum equation for part A may be written as shown in equation B.5a and for part
B is written as shown in equation B.5b.

A (pA − p)− fA
(
L

2

)
ṁA|ṁA|
2ρADA

=
L

2
m̈A (B.5a)

A (p− pB)− fB
(
L

2

)
ṁB|ṁB|
2ρBDA

=
L

2
m̈B (B.5b)

ṁA ṁB

TA T TB

T∞

qH = qout + hA (T − T∞)

Figure B.3: A lumped system with parameters for energy balance
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B.4 Energy Balance

The fluid in the considered channel (channel is shown in figure B.3) exchanges energy with
the entering and leaving fluid streams, also the fluid inside the channel exchanges heat with
the surroundings. The energy balance for a channel is shown in equation B.6 neglecting
kinetic and potential energies in the system. After making the ideal gas and constant
specific heat assumptions, and noting that according to Fourier’s law, conduction heat
transfer is expressed as qcond = kA∂T

∂x
, the energy balance is written as shown in equation

B.7.

V
dρe

dt
= ṁAhA + ṁBhB + qcond,in + qcond,out − qH (B.6)

V cv
dρT

dt
= cpṁATA + cpṁBTB − kA

∂T

∂x

∣∣∣∣
in

− kA ∂T

∂x

∣∣∣∣
out

− qH (B.7)

To simplify equation B.7, it is considered that the temperature variation within the
channel varies linearly in space, thus equation B.8 may be obtained. This assumption is
true for the case of a uniform heat flux over the channel surface and is an approximation for
all other cases; but since for fluid flows, convection is the dominant factor, this assumption
is presumed to not affect the result much. For cases of zero fluid flow (where the convection
heat transfer term becomes zero), both the uniform wall temperature and uniform heat
flux will converge to the same result for this case since the conduction direction is in the
pipe direction.

V cv
dρT

dt
= cpṁATA + cpṁBTB +

(
kA

L

)
(TA − TB)− qH (B.8)

The heat transfer with the surroundings is assumed to occur by assuming either that
the walls of the channel have a uniform temperature or the heat transfer rate is constant
through the channel. Both cases are superposed in equation B.9.

qH = qout + hA (T − T∞) (B.9)

It is worth to node that the temperature of the lumped fluid T considered in equations
B.7, B.8, and B.9 is the value of the upstream temperature as shown in the piecewise
function defined in equation .

T =

{
TA if ṁA > 0
TB if ṁA < 0

(B.10)
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Appendix C

Compressible Flow Boundary
Conditions

C.1 Homentropic Flow through a Fully Open Duct

In compressible flows from or to reservoirs, a pressure drop occurs between the reservoir
defined pressure (stagnation pressure) and the inlet of the pipe/channel. It is assumed
that the flow is homentropic inside the reservoir and that steady state conditions apply.
For these assumptions, the equation of the ellipse of energy (equation C.1) is derived [75].
Equation is non-Dimensionalized by aref . Values evaluated at stagnation have a subscript
‘s’. (

as
aref

)2

=

(
a

aref

)2

+
γ − 1

2

(
u

aref

)2

(C.1)

Setting aref = as for the flow in the reservoir, and noting that a2 = γRT and that a
as

=(
p
ps

) γ−1
2γ

, an expression defining the relationship between pressure, velocity and stagnation

pressure can be derived as shown in equation C.2.

u2 =
2γRTs
γ − 1

[
1−

(
p

ps

) γ−1
2γ

]
(C.2)
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C.2 Partially Open Boundary

Cases of partially open boundaries occur due to the reduction of areas due to the presence
of valves. This reduction of area induces a zone of recirculating flow that needs a special
treatment for boundary conditions. The case of partially open boundaries occur at the
entry and exit locations of the engine cylinders due to the action of the intake and exhaust
valves. Two cases are identified for this study, a partially open boundary at the inlet and
a partially open boundary at the exit. For a greater detail, these relations are given by
Benson [5].

C.2.1 Partially Open Boundary at Inlet

When the flow enters through a region, it is assumed that the flow through the pipe
is steady, and that the density of the flow is constant as shown in equation C.3. The
subscript “throat” indicates the location at the entry of the throat at the beginning of the
recirculation zone, and the flow where the re-circulation zone ends has no subscript. The
area ratio at the inlet is defined as ψ.

uthroat ρthroatAthroat = uρA (C.3a)

u = uthroat
Athroat

A
= uthroatψ (C.3b)

Utilizing equation C.3b and recognizing that equation C.2 applies at the end of the re-
circulation zone, the equation at a partially open boundary is derived as shown in equation
C.4.

u2 =
2γRTsψ

2

γ − 1

[
1−

(
p

ps

) γ−1
2γ

]
(C.4)

Thus, it is deduced that the velocity is proportional to the area ratio for a partially
open inlet.

C.2.2 Partially Open Boundary at Outlet

For a homentropic flow at a partially open boundary at an outlet to a reservoir or the
atmosphere, the derivation starts with the ellipse of energy equation shown in equation
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C.5. The equation is applied at the boundary just inside the throat (with no subscript)
and the outlet of the throat (with the subscript ‘d’).(

as
aref

)2

=

(
a

aref

)2

+
γ − 1

2

(
u

aref

)2

=

(
ad
aref

)2

+
γ − 1

2

(
ud
aref

)2

(C.5)

Utilizing the relation ρ
ρref

=
(

a
aref

) 2
γ−1

for isentropic flow, the continuity equation

ρuA = ρdudAd is written as shown in equation C.6 for an area ratio of φ = Ad
A

.(
u

aref

)(
a

aref

) 2
γ−1

= φ

(
as
aref

) 2
γ−1
(
us
uref

)
(C.6)

Combining equations C.5 and C.6, equation C.7 may be obtained.

(
u

aref

)2

=
2

γ − 1

(
a

aref

)2

−
(

ad
aref

)2

1
φ2

(
a
ad

) 4
γ−1 − 1

(C.7)

Utilizing the relation p
pd

=
(
a
ad

) 2γ
γ−1

for homentropic flows, equation C.7 may be written

as shown in equation C.8.

(
u

aref

)2

=
2

γ − 1

(
a

aref

)2

−
(

ad
aref

)2

1
φ2

(
p
pd

) 2
γ − 1

(C.8)

For the subsonic case it may be considered that aref = ad, thus the boundary equation
for a subsonic flow with a partially open boundary at the outlet is given in equation C.9.

u2 =
2γRTd
γ − 1

(
p
pd

) γ−1
γ − 1

1
φ2

(
p
pd

) 2
γ − 1

(C.9)

For the sonic case, ud = ad, the critical pressure is ps = pd

(
a
ad

) 2γ
γ−1

. The flow is chocked

if the pressure in the pipe p > ps and the flow in the channel shall be equal to the local
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speed of sound. The continuity equation can be written as shown in equation C.10.(
u

aref

)(
a

ad

) 2γ
γ−1

= φ

(
ud
aref

)
= φ

(
ad
aref

)
(C.10)

Equation C.10 can be manipulated to C.11.

u

ad
= φ

(ad
a

) 2γ
γ−1

cr
(C.11a)

u

a
= φ

(ad
a

) γ+1
γ−1

cr
(C.11b)

The energy equation is written as shown in equation C.12. For chocking flow, the ratio
a
ad

is replaced by
(
a
ad

)
cr

.

2

γ − 1

(
a

ad

)2

+

(
u

ad

)2

=
γ + 1

γ − 1
(C.12)

Manipulating equations C.11 and C.12 for chocking flows, a relation between the area
ratio and speed of sound ratio as shown in equation C.13.

φ2 =

(
γ + 1

γ − 1
− 2

γ − 1

(
a

ad

)2

cr

)(
a

ad

) 4
γ−1

cr

(C.13)

C.3 Non-Homentropic Flow for Partial Inlet

In engine manifolds: at the inflow, the number of vortices may increase such that the bound-
ary conditions may not be considered homentropic. For this case, the non-homentropic flow
boundary is stated here as given by Benson [5]. In this analysis, the flow is assumed to
change from the stagnation pressure ps isentropically to the pressure in the throat pt, and
then adiabatically to the pressure in the pipe p. For subsonic flows, the equation of the
speed of sound a2 = γp

ρ
is utilized with in conjunction with the continuity equation and

energy equation. Assuming that the pressure in the throat pt is equal to the pressure in
the pipe p. Thus the continuity equation for the flow between the throat and the pipe is
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ut = 1
ψ
ρ
ρt

. Utilizing the equation of the speed of sound, the continuity equation may be
written as shown in equation C.14.

ρ

ρt
=

p

pt

(at
a

)2

=
(at
a

)2

(C.14)

The continuity equation becomes as shown in equation C.15.

ut =
1

ψ

at
a

(C.15)

The ellipse of energy equation is used as shown in equation C.16. Replacing ut in
equation C.16 utilizing the continuity equation (equation C.15), equation C.17 is obtained.

a2
t = a2

s −
γ − 1

2
u2
t (C.16)

ψ
as
at

[
2

γ − 1

((
as
at

)2

− 1

)] 1
2

=

(
u
as

)
(
a
as

)2 (C.17)

The energy equation in the form of
(
a
as

)2

= 1 − γ−1
2

(
u
as

)2

is combined with the

pressure speed of sound relation for ideal gases as
at

=
(
ps
pt

) γ−1
2γ

=
(
p
pt

) γ−1
2γ

, manipulating

these relations with equation C.17, the boundary equation can be derived as shown in
equation C.19.

ψ

(
ps
p

) γ−1
2γ

[
2

γ − 1

((
ps
p

) γ−1
γ

− 1

)] 1
2

=

(
u
as

)
1− γ−1

2

(
u
as

)2 (C.18)

Equation C.19 can be defined for the pressure as shown in equation C.19.

p = pu

(√
g(u)2 + 4g(u)− g(u)

2

) γ
γ−1

(C.19a)

g(u) =
2ψ2

γ − 1

(
a2
s

u2
− γ + 1 +

(
γ − 1

2

)2
u2

a2
s

)2

(C.19b)
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At a sonic boundary, the assumption that pt = p no longer holds and ut = at and
p = pt. The energy equation is then defined as shown in equation

a2
s = a2

t +
γ − 1

2
a2
t =

γ + 1

2
a2
t (C.20)

Knowing that as
at

=
(
ps
p

) γ−1
2γ

, the critical pressure may be defined as pcric = p
(
γ+1

2

) γ
γ−1 .

When the flow is sonic, knowing that ut = at, the continuity equation C.21 can be written

as shown in equation utilizing that ρ
ρt

= p
pt

(
at
a

)2
.

u = ψ

(
a

at

)2(
pt
p

)
at (C.21a)

u

as
= ψ

(
a

at

)2(
as
at

)(
pt
ps

)(
ps
p

)
(C.21b)

The energy equation equivalent to pt
ps

=
(

2
γ+1

) γ
γ−1

. Substituting this expression into

the continuity equation the boundary equation for chocked flow in the throat is derived as
shown in equation C.22.

p = puψ

(
2

γ + 1

) γ
2(γ−1)

1− γ−1
2

(
u
as

)2

u
as

 (C.22)
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Appendix D

Method of Characteristics Overview

D.1 Governing Equations and Method Outline

The Governing Equations for a quasi-one-dimensional compressible fluid flow system with
friction, area variation and heat transfer is stated as shown in system D.1.

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+
ρu

A

dA

dx
= 0 (D.1a)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
= G (D.1b)

∂P

∂t
+ u

∂P

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
− (γ − 1) ρ (%− uG) = 0 (D.1c)

The friction force G and heat transfer per unit mass % are given in equations D.2 and
D.3 respectively.

G = −1

2
u |u| f

D
(D.2)

% =
q

ρAL
(D.3)

To get equations that are suitable to be used for analysis using the method of char-
acteristics the equations are manipulated as shown in system of equations D.4. In these
equations, C = γP

a
, ∆1 = − (γ−1)(%−uG)

a
, ∆2 = ua

A
dA
dx

, and ∆3 = −G. It is worth to note
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that for frictionless flows with no heat transfer, the entropy of the flow is conserved and
∆1 = ∆2 = ∆3 = 0. This type of flow is named homentropic flow.

1

C

[
∂P

∂t
+ (u+ a)
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Having a look at equation D.4a, and considering the curve defined by equation D.5.
Applying the chain rule as shown in equations D.6a and D.6b, equation D.4a can be written
in terms of total derivatives as shown in equation D.7.

dx

dt
= u+ a (D.5)
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dP
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+
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+ ∆1 + ∆2 + ∆3 = 0 (D.7)

For equations D.4b and D.4c, the chosen directions are dx
dt

= u − a and dx
dt

= u. The
resulting equations of total derivatives are derived as shown in equations D.8 and D.9.

1

C

dP

dt
− du

dt
+ ∆1 + ∆2 −∆3 = 0 (D.8)

1

C

(
dP

dt
− a2dρ

dt

)
+ ∆1 = 0 (D.9)

Characteristics originating from a sample point are sketched in figure D.1 on the fol-
lowing page for subsonic flows. It is deduced by from the directions of the different char-
acteristics dx

dt
= u+ a, dx

dt
= u− a, and dx

dt
= u that, for subsonic flows, two characteristics

move in opposite directions as shown in figure D.1. This indicates that, for a solution of
the system of PDEs to exist, boundary conditions should be provided on both sides of the
one-dimensional geometry.
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Figure D.1: Characteristic Curves Originating From a Sample Point for Subsonic Flow

D.2 The Quasi-Propagatory Method

D.2.1 Homentropic Flow

In homentropic flow, it is assumed that the body forces due to friction and heat transfer
are negligible (f = 0 and % = 0). Thus, referring to equations D.4, D.7, D.8, and D.9, it
is noticed that ∆1 = ∆2 = ∆3 = 0. Moreover, the energy equation is stated in equation
D.10, and the characteristic equations are stated in equation D.11.

a2 =
dp

dρ
(D.10)

dx

dt
= u± a (D.11a)

dp

du
= ∓C = ∓γp

a
(D.11b)

For homentropic flows, as stated in Appendix C, the relation between the velocity,
pressure and stagnation pressure is elliptic in nature as illustrated in figure D.2. The lower
curve, shown as a solid line in figure D.2a on which the points 0, 2, and 4 lie, represents the
ellipse of energy at the downstream location; on the other hand, the upper solid line curve
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on which points 1 and 3 lie, represents the ellipse of energy at the upstream location. In
this figure, the steady state velocity and pressure are located at the intersection between
the ellipse of energy of the downstream boundary and the ellipse of energy of the upstream
boundary. This point has a velocity u∞ and a pressure p∞ shown in figure D.2.

A simplification for the Method of Characteristics is applied by linearising the boundary
conditions as shown in figure D.2b. Preforming the linearisation, the boundary conditions
is stated as shown in equation D.12. In the equations, A and B are the linearised slopes
for the upstream and downstream boundary conditions respectively.

p = pu −
pu − p∞
u∞

u = pu − Au (D.12a)

p = pd +
p∞ − pd
u∞

u = pu +Bu (D.12b)
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Figure D.2: Boundary Curves for Homentropic (constant entropy) Flows

Referring to the equations of the method of characteristics (equation D.11a), it is no-
ticed that the slope of characteristics are ±C = ±γp

a
. It can be deduced that the different

states can be calculated as given in equation D.13. In equation D.13, λ = (C−B)(C−A)
(C+B)(C+A)

, and

ξ = (C−B)
(C+A)

.

u2j+2 = (1− λ)u∞ + λu2j (D.13a)

u2j+1 = (1− ξ)u∞ + ξu2j (D.13b)
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Figure D.3: The State Diagram of an Homentropic Flow

As shown in the state diagram in figure D.3, the slope of the different characteristics
in the position diagram, dx

dt
, is found to be u ± a as stated in equation D.11b. The time

points at which the middle point achieves the states are indicated by the horizontal dotted
lines in figure D.3. In this analysis, it is assumed that the states are lumped in the control
volume, thus pressures are uniform and the pressure in the middle and end of the pipe are
equal. This assumption implies that a pressure wave that are created at a boundary reaches
the middle point of the control volume and at the other boundary at the same instant.
The same applies for the velocity profile. Initially, the system has an initial pressure of
p = pd and a velocity of u = 0, noting that pressure is defined downstream and velocity is
defined upstream as per the analysis in Chapter 5. Assuming that the sign in the slope of
characteristics c = u± a depends on the direction of the wave, and the time points t1, t2,
etc... can be generalised as tj = j L

c
given that L is the length of the channel or pipe.

It can be shown that for λ > 0, the even velocity states can be calculated as given
in equation D.14 and the odd velocity states can be calculated as given in equation with
τ = − 2L

c lnλ
.

u2j+2 =
(

1− e−
t
τ

)
u∞ (D.14a)

u2j+1 =

(
1− ξ√

λ
e−

t
τ

)
u∞ (D.14b)
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Equations D.14 correspond to the model given in equation D.15.

du

dt
=
u∞ − u

τ
(D.15)

It can be shown that for λ < 0, the even velocity states can be calculated as given
in equation D.16 and the odd velocity states can be calculated as given in equation with
τ = − 2L

c ln|λ| and ω = πc
2L

.
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(

1− e−
t
τ cos (ωt)

)
u∞ (D.16a)

u2j+1 =

(
1− ξ√

λ
e−

t
τ sin (ωt)

)
u∞ (D.16b)

Equations D.16 correspond to the model given in equation D.17.

d2u

dt2
= −2

τ

du

dt
+

(
1

τ 2
+ ω2

)
(u∞ − u) (D.17)

D.2.2 Non-Homentropic Flow

For non-homentropic flow that includes fluid friction and heat transfer, the method in the
foregoing section is modified to include friction and heat transfer effects [20]. The boundary
conditions are still used, but are linearised around the velocities at the middle point u∗.
These boundary conditions are stated as shown in equation D.18.

pu,j = pu0 − Auu,j (D.18a)

pd,j = pd0 +Bk0ud,j (D.18b)

In equation D.18b, k0 is the ratio between the steady entropy levels upstream and
downstream of the pipe. It is equal to one if the flow is homentropic. Nevertheless, it can
be considered to be equal to one if the entropy change is taken into consideration in the
boundary condition as in Appendix C.

Combining equation D.18 with D.8 and integrate over the time between two wave
reflections, the relations for the upstream and downstream velocities can be obtained as
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shown in equation D.19. In the equation, α1 and α2 are defined as α1 = ∆1+∆2+∆3

a+u
CL and

α2 = −∆1−∆2+∆3

a−u CL.
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C +B

C − A
C + A
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2

C +B

C

C + A
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− 1

C + A

(
α1
C −B
C +B

− α2

) (D.19a)

ud,i+1 =
C −B
C +B

C − A
C + A

ud,i +
2

C +B

C

C + A
(pu0 − pd0)

− 1

C + A

(
α1 − α2

C − A
C + A

) (D.19b)

The steady state value of the velocity for homentropic flow is now computed as given
in equation D.20. For non-homentropic flows, the steady state values can be computed as
shown in equation D.21. It is noticed that the non-homentropic steady state velocity is
lower than the corresponding steady state counterpart due to frictional and heat transfer
effects that appear in α1 and α2.

uint =
pu0 − pd0

A+B
(D.20)

uu,∞ = uint −
C +B

A+B

1

2C

(
α1
C −B
C +B

− α2

)
(D.21a)

ud,∞ = uint −
C +B

A+B

1

2C

(
α1 − α2

C − A
C + A

)
(D.21b)

To perform an analysis similar to the analysis presented in the homentropic section,
consider the term λ as defined in equation D.22. Utilizing λ, the upstream and downstream
velocities can be written as shown in equation D.23.

λ =
C −B
C +B

C − A
C + A

(D.22)

uu,j+1 = λuu,j + (1− λ)uu,∞ (D.23a)

ud,j+1 = λud,j + (1− λ)ud,∞ (D.23b)
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It is noticed that the same equation applies for the upstream and downstream velocities
(the homentropic effects are included in the steady state velocity values uu,∞ and ud,∞). It
can be assumed that the middle point velocity follows the same model as given in equation
D.24 where the velocity steady state value is defined as u∞ =

uu,∞+ud,∞
2

.

uj+1 = λuj + (1− λ)u∞ (D.24)

Thus, the dynamical models can now be defined in a way that is similar to the case of
homentropic flow as in equations D.15 and D.17.
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Appendix E

Linear Graph Cut-set and Circuit
Equations

E.1 Linear Graph Building Blocks

To construct a linear graph that represents the model, a set of building blocks is utilized
to construct the model. For the purposes of this study, the considered components are
pipes with compressible and incompressible flow. The components and the corresponding
graph-theoretic representations and terminal equations are presented in table E.1 for the
hydraulic components and table E.2 on page 151 for the thermal components. To model
compressible flow and storage components, as mentioned in chapter 3, virtual nodes are
added to represent the average spatial nodal variable of each component. Edges are also
added from the inlet, outlet and virtual node to a reference ground node represented by g
to represent mass and thermal storage. This node is set at the initial value of the virtual
node and is held constant with respect to time through the simulation. For the thermal
exchange, a node denoted by∞ is placed to represent the environment temperature values;
also edges are connected from the environment to the virtual nodes and the ends of the
components.

E.2 Compressible Pipe

As an illustration to the proposed system, consider the example of a pipe between 2 reser-
voirs numbered 1 and 2 with temperatures and pressures TI , TL, PI , and PL respectively as
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Table E.1: Hydraulic Graph Building Blocks for Compressible Flow

Component Hydraulic Graph Across Variable
Terminal Equations (Lumped
Model)

Incompressible Pipe

I L
1

p1 = PI − PL L
dṁ1

dt
= Ap1 −

fL

2ρAD
ṁ1 |ṁ1|

Compressible Pipe

I A L

g

1

3

2
p1 = PI − PA

p2 = PA − PL
p3 = PA − Pg

ṁ3 = ALρA

(
1

PA

∂PA
∂t

+
1

TA

∂TA
∂t

)
L

2

dṁ1

dt
= Ap1 − fA

(
L

2

)
ṁ1|ṁ1|
2ρIDA

L

2

dṁ2

dt
= Ap2 − fB

(
L

2

)
ṁ2|ṁ2|
2ρLDA

Reservior

I A

g

1

2

p1 = PI − Pg

p2 = PI − PA

p1 = 0

p2 = P

shown in figure E.1. For this system, the considered across variables are stated in equations
(E.1). For a pipe between two reservoirs, the hydraulic and thermal graphs are shown with
the selected trees in figure E.2.

There are fourteen through and across variables for the hydraulic parts of this system,
namely ṁ1, ṁ2, ṁ3, ṁ4, ṁ5, ṁ6, ṁ7, p1, p2, p3, p4, p5, p6, p7. Five cutset equations can be
deduced along with two circuit equations, also since the Nodal pressures are known, across
drivers p1 and p7 are defined and there are five terminal equations. These results in a
system of fourteen equations with fourteen unknowns. Terminal equations of the hydraulic
circiut are found in table E.1.

For the temperature graph, there are fourteen through and across variables for the
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Table E.2: Thermal Graph Building Blocks for Compressible Flow

Component Hydraulic Graph Across Variable
Terminal Equations (Lumped
Model)

Incompressible Pipe

I A L

∞

1

3

2

ϑ1 = T1 − TA

ϑ2 = TA − T2

ϑ3 = TA − T∞

q1 = cp (max (ṁ1, 0)ϑ4 + max (−ṁ1, 0)ϑ3)

+
2kA

L
ϑ1

q2 = cp (max (ṁ2, 0)ϑ3 + max (−ṁ2, 0)ϑ5)

+
2kA

L
ϑ2

q3 = qout + hAϑ3

Compressible Pipe

I A L

∞

1

3

2

ϑ1 = T1 − TA

ϑ2 = TA − T2

ϑ3 = TA − T∞

q1 = cp (max (ṁ1, 0)ϑ4 + max (−ṁ1, 0)ϑ3)

+
2kA

L
ϑ1

q2 = cp (max (ṁ2, 0)ϑ3 + max (−ṁ2, 0)ϑ5)

+
2kA

L
ϑ2

q3 = qout + hAϑ3 + cvAL
dρϑ3

dt

Reservior

I A

g

1

2

ϑ1 = TI − T∞

ϑ2 = TI − TA

q1 = max (−ṁ1, 0)ϑ1

ϑ2 = T

hydraulic parts of this system, namely q1, q2, q3, q4, q5, q6, q7, ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6, ,
ϑ7. Four cutset equations can be deduced along with two circuit equations, also since the
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Figure E.2: Linear Graph for a Flow Between Two Reservoirs

Nodal temperatures are known, the across drivers ϑ1 and ϑ7 are defined and there are four
terminal equations. Terminal equations of the hydraulic circiut are found in table E.2.
The resultant is a system of fourteen equations with fourteen unknowns. The convected
temperature is treated in an upwind fashion in the terminal equations, thus the derived
circuit and cutset equations do not need to be modified in contrast with bond graph
methods. Moreover, as anticipated, this formulation does not have a numerical singularity
at zero flow.

p1 = PI − Pg (E.1a)

p2 = PI − PA (E.1b)

p3 = PA − PB (E.1c)

p4 = PB − Pg (E.1d)

p5 = PB − PC (E.1e)

p6 = PC − PL (E.1f)

p7 = PL − Pg (E.1g)

ϑ1 = TI − Tg (E.2a)

ϑ2 = TI − TA (E.2b)

ϑ3 = TA − TB (E.2c)

ϑ4 = TB − Tg (E.2d)

ϑ5 = TB − TC (E.2e)

ϑ6 = TC − TL (E.2f)

ϑ7 = TL − Tg (E.2g)

Consider the hydraulic graph and constructing a cutset around nodes I, A, C and L,
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and through edges 2, 4 and 6, cutset equations E.3 are obtained. Corresponding circuit
equations are shown in equation E.4. A similar set of cutset and circiut equations can be
dervied for the thermal component with Temperature difference ϑ as the across variable
and heat flow q as the through variable.

ṁ1 + ṁ2 = 0 (E.3a)

−ṁ2 + ṁ3 = 0 (E.3b)

−ṁ5 + ṁ6 = 0 (E.3c)

−ṁ6 + ṁ7 = 0 (E.3d)

−ṁ2 + ṁ4 + ṁ6 = 0 (E.3e)

p2 + p3 + p4 − p1 = 0 (E.4a)

p6 + p7 − p4 + p5 = 0 (E.4b)
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