
Capacitated Network Design on

Outerplanar Graphs

by

Ishan Bansal

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2020

c© Ishan Bansal 2020

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Network design problems model the efficient allocation of resources like routers, optical

fibres, roads, canals etc. to effectively construct and operate critical infrastructures. In

this thesis, we consider the capacitated network design problem (CapNDP), which finds

applications in supply-chain logistics problems and network security. Here, we are given

a network and for each edge in the network, several security reinforcement options. In

addition, for each pair of nodes in the network, there is a specified level of protection

demanded. The objective is to select a minimum-cost set of reinforcements for all the

edges so that an adversary with strength less than the protection level of a particular

pair of nodes cannot disconnect these nodes. Several special cases of CapNDP are by

themselves NP-hard and APX-hard to approximate. Hence, researchers have attempted to

find approximation algorithms for the problem by adding constraints on the structure of the

network. In this thesis, we investigate CapNDP when the network structure is constrained

to belong to a class of graphs called outerplanar graphs. This particular special case was

first considered by Carr, Fleischer, Leung and Philips; while they claimed to obtain an

FPTAS here, their algorithm has certain fatal flaws. We build upon some of the ideas

they use to approximate CapNDP on general networks to develop a new algorithm for

CapNDP on outerplanar graphs. Prior to our work, the best known approximation ratio

of an approximation algorithm here was O(n) where n is the number of nodes in the

outerplanar graph. Our main result provides an approximation ratio that is improved by a

doubly exponential factor giving an O((log log n)2)-approximation algorithm for CapNDP

on outerplanar graphs. We also notice that our methods can be applied to a more general

class of problems called column-restricted covering integers programs, and be adapted

to improve the approximation ratio on more instances of CapNDP if the structure of

the network is suitable. Furthermore, our techniques also yield interesting results for a

completely unrelated problem in the area of data structures.

iii

Acknowledgements

I am grateful to my parents, my brothers and my family for their unwavering love and

support

I am thankful to my supervisors Professor Chaitanya Swamy and Professor Jochen

Koenemann for their continuous and thorough guidance throughout my graduate studies.

They encouraged me to pursue my research topic and to develop my research and reading

skills. During our weekly meetings, they patiently listened to my ideas and prodded me

along the right direction whenever there came an obstacle. Their detailed feedback on

my thesis has also improved my mathematical writing skills. Leading by example, they

inspired me to pursue a doctorate degree and I will always be grateful.

I would like to thank Professor Joseph Cheriyan and Professor Ricardo Fukasawa for

reading my thesis and providing valuable feedback.

I am grateful to Sharat for constantly guiding and mentoring me like an elder brother.

Also to my friends from CLV for always providing such warm company and joyful times.

I would also like to thank uncle Anil and aunty Anju for providing the most homely

environment I could have asked for.

Thanks to Melissa to whom I could reach out unhesitatingly with any administrative

formalities. Also to the entire C&O staff and faculty for making my graduate experience

a memorable one.

Lastly, I would like to thank my spiritual guide, Mr. Kamlesh Patel for his constant

presence.

iv

Dedication

To the mind’s thirst for challenges

v

Table of Contents

List of Figures viii

List of Tables ix

List of Abbreviations x

List of Algorithms xi

1 Introduction 1

1.1 Related Work . 2

1.2 Our Contributions and Outline of Thesis 4

2 Preliminaries 7

2.1 Minimum Knapsack Problem and Knapsack Cover Inequalities 7

2.1.1 Bucketing Algorithm . 11

2.2 Capacitated Network Design Problem . 15

2.2.1 Approximation Algorithm for CapNDP on General Graphs 16

3 CapNDP on Outerplanar Graphs 21

3.1 Structure of Biconnected Outerplanar Graphs 22

vi

3.1.1 Bonds of Biconnected Outerplanar Graphs 24

3.2 Merging Algorithm . 26

3.3 2-approximation for Terminal Bonds of Non-crossing Interval Graphs . . . 29

3.4 Approximation Algorithm for Terminal Bonds of Outerplanar Graphs . . . 35

4 Exact Range Cover Problem 42

4.1 Problem Description . 42

4.2 Construction of Rooted Binary Trees . 43

4.2.1 Using Multiple Trees . 44

4.3 Application to Array Range Query Problem 52

5 Extensions 54

5.1 Including More Bonds . 54

5.2 Directed Graphs . 56

5.3 Column-Restricted Covering Integer Programs 58

6 Conclusions and Future Work 60

References 63

vii

List of Figures

3.1 Biconnected Outerplanar Graphs . 23

3.2 T(E) for the biconnected non-crossing interval graphs in Fig 3.1 25

3.3 Terminal bonds of biconnected outerplanar graphs 26

3.4 Non-crossing interval graph G and its corresponding T (E) 31

3.5 Tree used to merge the integer vectors obtained from chords in Example 3.4 36

4.1 Complete binary tree Tcomplete . 44

4.2 Construction of TLtoR . 45

4.3 Construction of TRtoL . 46

4.4 Exact cover for Iright . 48

4.5 Recursively constructing trees . 49

viii

List of Tables

4.1 Parameters of Tr . 51

4.2 Array Range Query using Tr . 53

ix

List of Abbreviations

CapNDP Capacitated Network Design Problem xi, , 1–5, 15–18, 20–22, 26, 27, 29, 30,

34, 39, 41–44, 48, 51, 54, 55, 60, 61

FPTAS Fully Polynomial Time Approximation Scheme , 3, 8, 21, 61

IP Integer Program

KC Knapsack Cover

LP Linear Program

SNDP Survivable Network Design Problem , 2

x

List of Algorithms

1 Bucketing Algorithm . 11

2 General Algorithm for CapNDP . 18

3 Merging Algorithm . 27

4 2-approximation for CapNDP on non-crossing interval graphs 30

5 Approximation algorithm for CapNDP on Outerplanar Graphs 39

xi

Chapter 1

Introduction

Governments today have identified several assets that are essential for the functioning of

a society and an economy. The disruption of these assets would lead to immediate and

catastrophic results and they have been termed as critical infrastructures. Many of these

infrastructures are physical networks like transportation, water, natural gas, telecommu-

nication, post etc. Network design problems model the efficient allocation of resources

like routers, optical fibres, roads, canals etc. to effectively construct and operate these

physical infrastructures. In this thesis, we consider the CapNDP, which finds applications

in supply-chain logistics problems and network security. Here, we are given a network or a

multigraph G = (V,E) along with capacities {u(e)}e∈E and costs {c(e)}e∈E for each edge

and non-negative demands Dij for every pair of nodes (i, j), we wish to find a minimum

cost subgraph H such that for each pair of nodes (i, j), H admits a flow of value Dij

between i and j.

As Carr et al. [6] observed, the capacitated network design problem arises as a network

reinforcement problem. Here we are given an existing network, and for each edge in the

network several security reinforcement options. In addition, for each pair of nodes in the

network there is a specified level of protection demanded. The objective is to select a

minimum-cost set of reinforcements for all the edges so that an adversary with strength

less than the protection level of a particular pair of nodes cannot disconnect these nodes.

We would like to point out that a different and somewhat related problem is also referred

1

to by the same name. In this version one wishes to design a network with enough capacity

to route all the demands between the nodes simultaneously. This is more closely related

to buy-at-bulk network design [11, 1, 25] and the fixed charge network flow [19] problems.

1.1 Related Work

The capacitated network design problem generalizes the classical SNDP where the capacity

of each edge is 1. SNDP already captures several connectivity problems in combinatorial

optimization like the min-cost Steiner tree and the min-cost λ-edge-connected subgraph

problems. CapNDP also captures source and facility location problems [9, 18]. Several of

these special cases are by themselves NP-hard and APX-hard to approximate. Jain [22]

obtained a 2-approximation algorithm for SNDP via the standard cut-based LP relaxation

using the iterated rounding technique. Chakrabarty et al. [7] considered the version of

capacitated network design where multiple copies of the same edge can be picked and

obtained an O(log p)-approximation algorithm where p is the number of pairs of nodes with

positive demand. They also showed that it is Ω(log log n)-hard to approximate CapNDP

when multiple copies of an edge can be picked where n is the number of nodes in the graph

G.

The version of CapNDP that we are interested in was introduced by Goemans et al. [16]

and they made several observations about the problem including: (i) CapNDP reduces to

SNDP if all the capacities are the same, (ii) There is an O(min(M,Dmax))-approximation

algorithm where M is the number of edges in the graph G and Dmax = maxi,j Dij is the

maximum demand between pairs of nodes. Carr et al. [6] introduced the Knapsack Cover

inequalities to strengthen the LP relaxation of CapNDP and used the Bucketing Algorithm

described in Chapter 2 to obtain a (β(G) + 1)-approximation algorithm for general graphs

where β(G) is the maximum size of a bond. A bond is a minimal set of edges that separates

a pair of nodes with positive demand in the underlying simple graph. For most graphs,

β(G) is in Θ(m) where m is the number of edges in the graph G and this is currently the

best algorithm to tackle the problem on general graphs.

We now move on to some hardness results for the problem. Even et al. [15] showed that

2

in directed graphs, the CapNDP cannot be approximated to a factor better than 2log1−δ n

for any δ < 1 unless NP ⊆ DTIME(npolylogn) and subsequently Chakrabarty et al. [9]

proved the same result for undirected graphs too. Both these results are via the label

cover problem and are true even when we restrict to instances of CapNDP with just one

demand pair.

Due to these hardness results, it makes sense to look at special instances of CapNDP.

Chakrabarty et al. [7] observed that one could use the KC inequalities, randomized round-

ing and Chernoff bounds in the case where we have uniform demands i.e. Dij = D for every

pair of nodes (i, j) to obtain an O(log n)-approximation algorithm for CapNDP. Krumke

et al. [23] considered the case where the underlying graph G is series-parallel and the pair of

terminals of the series-parallel graph is the only pair of nodes with positive demand. Here,

they described a pseudo-polynomial algorithm using dynamic programming that runs in

time O(m3C2) where m is the number of edges in G and C is the maximum cost of an

edge in G. Notice that the running time of the dynamic program depends only on the cost

of the edges and not on the demand between the terminal nodes. Hence, they were able

to scale down the cost of each edge by a suitable factor (and apply the ceiling function

to maintain integrality) so that the maximum cost of an edge after scaling is polynomial

in the size of the problem input. Doing so, allows one to obtain an optimal solution to

the cost-scaled problem in polynomial time and this solution is feasible for the original

problem as well since the demand between the terminal nodes and the capacities of the

edges was not changed. Depending on the scaling factor chosen, the cost of this solution

is close to the optimum cost of the original problem and Krumke et al. [23] were able to

obtain an FPTAS for CapNDP on series-parallel graphs when the terminals of the series-

parallel graph are the only pair of nodes with positive demand. Carr et al. [6] obtained

approximation factors of 2 and 3 for line graphs and circle graphs respectively. They also

described a pseudo-polynomial time algorithm via dynamic programming for instances of

CapNDP where the underlying graph G is outerplanar and only one pair of vertices has a

positive demand D between them. An outerplanar graph is a graph that admits a planar

embedding such that every node lies on the outer face. The running time of their dynamic

program is O(mD3) where m is the number of edges in G. Carr et al. [6] claim that this

DP can be utilized to obtain an FPTAS via scaling techniques used by Krumke et al. [23],

3

but this argument is erroneous and fatally flawed since the running time of this dynamic

program depends on the demand D. The issue is that one would have to scale down the

demand D and capacities of the edges (and apply the ceiling function to maintain integral-

ity) in order to obtain a solution to the scaled-down problem in polynomial time. However

since the demand D and the capacities of the edges were changed, this solution need not

be feasible for the original problem. Hence until the results of this thesis, the best ap-

proximation ratio of an approximation algorithm for CapNDP on outerplanar graphs was

O(β(G)). For outerplanar graphs, β(G) is in Θ(n) and so the best approximation ratio of

an approximation algorithm for CapNDP on outerplanar graphs was O(n) 1.

1.2 Our Contributions and Outline of Thesis

In this thesis, we design an approximation algorithm with a better approximation ratio

for CapNDP on outerplanar graphs. The (β(G) + 1)-approximation algorithm provided by

Carr et al. [6] begins with a crucial Bucketing Algorithm which generates for disjoint edge

sets of G, a collection of candidate subsets of these edge sets to include in a final solution.

These candidate subsets are then arbitrarily “merged” from the different disjoint edge sets

to obtain a final solution as seen in Algorithm 2. Our idea is that “merging” the candidate

subsets in a particular way depending on the structure of the bonds in the underlying graph

can lead to better results. We use this idea to provide a 2-approximation algorithm for

the single demand case in another class of graphs which we will call non-crossing interval

graphs. These graphs generalize line graphs and are building blocks in the structure of

outerplanar graphs. We then improve the approximation factor for instances of CapNDP

on outerplanar graphs by a doubly exponential factor. This is done by imposing certain

conditions on the demand pairs that are not too restrictive. These conditions capture the

single demand pair case and we obtain an O((log log n)2)−approximation algorithm. We

also show how our results can be extended to work even if the graph is directed.

Chapter 2 begins with a discussion on the KC inequalities as described by Carr et al.

1However, we observe that the randomized rounding algorithm of [12] yields an O(log n)-approximation

algorithm for CapNDP on outerplanar graphs (see Section 5.1)

4

[6]. We describe their bucketing algorithm and see how it was used by them to obtain a

(β(G) + 1)-approximation algorithm for CapNDP on general graphs. This will provide a

starting point for our work.

Chapter 3 begins with a discussion on the structure of outerplanar graphs. One of

the two main ingredients of our O((log log n)2)−approximation algorithm, the Merging

Algorithm is described next and we see how it can be used to obtain a 2-approximation

algorithm for non-crossing interval graphs.

Chapter 4 deals with the other main ingredient of our algorithm which is a combinatorial

problem we call the Exact Range Cover Problem. We also find that our results here have

applications in the well-studied Array Range Query Problem. In this problem, we are given

n entries a1, a2, . . . , an each coming from a semi-group. The user is allowed to update the

entries and also query the product of any range [i, j] which is just ai · ai+1 · . . . · aj. One

wishes to design a data structure that efficiently allows these two operations. A survey

of results for this problem of querying the product of a range can be found in [26]. We

describe a family of data structures for this problem and are able to obtain for any fixed

constant c, a data structure that has O(n log log n) space complexity, O(n1/c) update time

and O(log log n) query time.

Chapter 5 is devoted to extensions of our results. We first show how we can relax

certain conditions that we had imposed on the demand pairs by re-using our ideas. We

also show how our ideas can be used in the setting of directed outerplanar graphs. Finally

we consider general column-restricted covering integer programs (CCIP). These are integer

programs of the type min{cTx : Ax ≥ b, x ∈ {0, 1}} where each column of A is restricted by

the property that every non-zero entry of that column is the same. CCIPs generalize {0, 1}-
covering integer programs and hence capture a wide variety of hard problems. Chakrabarty,

Grant and Könemann [8] showed that if the underlying {0, 1}-CIP has an integrality

gap O(γ) and its priority version has an integrality gap O(ω), there exists an O(γ + ω)

approximation algorithm for the CCIP. Subsequently Chan, Grant, Könemann and Sharpe

[10] built on these results and discovered an O(1)-approximation algorithm in the case

where the constraint matrix A is a network matrix. This covers the case for example

when the support of each column of A is a consecutive set of rows. Carr et al. [6] used

their bucketing algorithm 1 to provide a p-approximation algorithm for general capacitated

5

covering integer programs where p is the maximum number of non-zero entries in a row of

the constraint matrix A. Using our techniques, we show that if the support of each row of

A is a set of at most k sets of consecutive columns, then we can obtain an O(k(log log n)2)-

approximation algorithm for the CCIP.

6

Chapter 2

Preliminaries

In this chapter, we give a brief introduction to the Capacitated Network Design Problem

and lay the groundwork for further discussions. We describe in detail the Bucketing Algo-

rithm of Carr et al. [6] as the algorithm will be used as a building block for our results. We

begin by describing the minimum knapsack problem and the knapsack cover inequalities.

2.1 Minimum Knapsack Problem and Knapsack Cover

Inequalities

The minimum knapsack problem is the minimization version of the well-known NP-complete

knapsack problem. The problem statement is quite simple to describe,

Problem 1 (Minimum Knapsack Problem). Given a set of items E along with non-

negative integral capacities {u(e)}e∈E and costs {c(e)}e∈E for each item and a demand

D. We wish to find a minimum cost subset of the items whose total capacity is at least the

demand D.

It is not difficult to see that the NP-complete knapsack problem is poly-time reducible

to the minimum knapsack problem and so the decision version of the minimum knapsack

7

problem is also NP-complete. Also, the FPTAS for the knapsack problem [21] can be easily

modified to provide an FPTAS for the minimum knapsack problem. We are, however, more

interested in approximation algorithms for the minimum knapsack problem via its integer

programming formulation as those methods easily generalize to the capacitated network

design problem. The rest of this chapter is based on work by Carr, Fleischer, Leung, and

Phillips [6]. We shall first formulate the minimum knapsack problem as an integer program,

min
∑
e∈E

c(e)z(e) (MinKP-IP)

s.t.
∑
e∈E

u(e)z(e) ≥ D (covering constraints)

z(e) ∈ {0, 1} ∀ e ∈ E

Here z(e) is 1 or 0 according to whether the item e is part of our solution or not. We can

now construct linear relaxations of MinKP-IP and round an optimal fractional solution

to obtain a “good” integral solution. Thus consider the following simple LP relaxation of

MinKP-IP,

min
∑
e∈E

c(e)x(e) (MinKP-LP)

s.t.
∑
e∈E

u(e)x(e) ≥ D

x(e) ∈ [0, 1] ∀ e ∈ E

A very useful parameter that helps decide the strength of a particular LP relaxation when

trying to design approximation algorithms is the integrality gap which we now define,

Definition 2.1.1 (Integrality Gap). Given an integer program IP and a linear relaxation

of the integer program LP , the integrality gap of LP is defined as the maximum over all

instances of the ratio OptIP/OptLP where OptIP and OptLP are the optimal values of IP

and LP on a particular instance respectively.

8

Remark 1. It should be clear that no algorithm that compares the cost of its solution to

the optimum value of LP can achieve an approximation factor better than the integrality

gap of LP .

The integrality gap of MinKP-LP is large as can be seen from the following instance of

the minimum knapsack problem.

Example. Consider a set with two items E = {e1, e2}. Let u(e1) = D − 1, c(e1) = 0,

u(e2) = D and c(e2) = 1 and let the demand be D. Any feasible integer solution must

include the item e2 and hence OptMinKP−IP is 1. However the optimal solution for MinKP-

LP is x(e1) = 1 and x(e2) = 1/D and so OptMinKP−LP is 1/D giving an integrality gap of

at least D.

In situations like this when a particular linear relaxation turns out to be unfruitful, it

is natural to consider tightening the linear program by adding more constraints that are

valid for the integer program. To this end, consider any subset of the items A ⊆ E and

define the capacity of A as u(A) :=
∑

e∈A u(e). Suppose we select every item of A, then

the remaining items must meet a residual demand given by D(A) := max{D − u(A), 0}.
Additionally, since we are interested in integer solutions, we can assume that the capacity

of each remaining item is at most this residual demand. Thus define for all e 6∈ A, the

reduced capacity uA(e) = min{u(e), D(A)} and we get the following constraints that are

valid for MinKP-IP known as the knapsack cover (KC) inequalities,∑
e 6∈A

uA(e)x(e) ≥ D(A) ∀ A ⊆ E (KC inequalities)

This capacitated version of the knapsack cover inequalities was introduced by Carr et

al. [6] to strengthen the linear programming relaxations of the minimum knapsack problem,

the capacitated network design problem, the generalized vertex cover problem and the

capacitated covering problem. Prior to this, researchers [2, 27] considered an uncapacitated

form of the KC inequalities showing that they are facet defining under certain conditions.

This idea of picking a partial solution and reducing the values of the remaining variables

accordingly has now been used in a variety of complicated problems. For example, Carnes

and Shmoys [5] used them in the single-demand facility location problem and also used them

9

to obtain a primal-dual 2-approximation algorithm for the minimum knapsack problem [5].

Chakrabarty, Grant and Könemann [8] used them to obtain approximation algorithms for

column-restricted covering integer programs. Bansal, Gupta and Krishnaswamy [3] used

them in the generalized min-sum set cover problem and Cheung, Mestre, Shmoys and

Verschae [13] used them in the generalized min-sum scheduling problem. Other instances

of the knapsack cover inequalities can be found in [14, 4, 24, 17].

We now add the KC inequalities to MinKP-LP to obtain the following tighter linear

programming relaxation of MinKP-IP,

min
∑
e∈E

c(e)x(e) (MinKP-KCLP)

s.t.
∑
e 6∈A

uA(e)x(e) ≥ D(A) ∀ A ⊆ E (KC inequalities)

x(e) ≥ 0 ∀ e ∈ E

Note that we have dropped the constraints x(e) ≤ 1, because it turns out that they

are redundant in the following sense: For any item e′, if x is feasible to MinKP-KCLP,

then so is the vector x′ defined as x′(e′) = min{1, x(e′)} and x′(e) = x(e) for every other

item. This is because if e′ ∈ A, then x′ clearly satisfies the KC inequality for A. Else

e′ 6∈ A and let A′ = A ∪ {e′}. Then
∑

e6∈A uA(e)x′(e) = uA(e′) +
∑

e6∈A′ uA(e)x(e) ≥
uA(e′) +

∑
e6∈A′ uA′(e)x(e) ≥ uA(e′) + D(A′) ≥ D(A). The last inequality follows since

uA(e′) is either u(e) or D(A). Hence setting x(e′) = min{1, x(e′)} will still be feasible and

the cost of the vector after this change cannot increase.

Let us look at the structural strength of these inequalities by considering the example

2.1 above. The rational point that was optimal for MinKP-LP is now cut-off.

Example. Consider a set with two items E = {e1, e2}. Let u(e1) = D − 1, c(e1) = 0,

u(e2) = D and c(e2) = 1 and let the demand be D. Any feasible integer solution must

include the item e2 and hence OptMinKP−IP is 1. Now, set A = {e1}. Then D(A) = 1 and

so uA(e2) = 1. The KC inequalities now force x(e2) = 1 so that OptMinKP−KCLP is also 1.

10

Carr et al. [6] provided an algorithm that rounds a feasible fractional solution of MinKP-

KCLP to a feasible integer solution of MinKP-IP while at most doubling the cost of the

solution. We shall now describe the general framework of this algorithm as it will be

required while designing our algorithm for the capacitated network design problem.

2.1.1 Bucketing Algorithm

The algorithm takes as input a fractional (rational) vector x ∈ [0, 1]E and an integral

parameter α > 1. Note that an integer vector z ∈ {0, 1}E can be viewed as a subset of E

and vice versa and we shall use these notions interchangeably. Carr et al. [6] referred to

these subsets as buckets and it may be helpful to think of these subsets that way. Let r

be the least common multiple of the denominators of x. The algorithm returns r integer

vectors z1, z2, . . . , zr , each in {0, 1}E as follows.

Algorithm 1: Bucketing Algorithm

Input: An instance E, {u(e)}e∈E, {c(e)}e∈E, D of minimum knapsack, a rational

vector x ∈ [0, 1]E and an integral parameter α > 1. The demand D and {c(e)}e∈E
may be omitted in the input.

Setup: Let r be the least common multiple of the denominators of x and let

Ax,α = A := {e ∈ E : x(e) ≥ 1/α}. Let e1, e2, . . . , ek be an enumeration of the

items in E\A in order of non-increasing u(e) values.

Step 1: For each item e ∈ A, set zi(e) = 1 for all i.

Step 2: Take rαx(e1) copies of the item e1 and put them into the first rαx(e1)

subsets of E(vectors z1, z2, . . . , zrαx(e1)). Then take rαx(e2) copies of the item e2

and put them into the next rαx(e2) subsets of E cyclically i.e. after placing in

the last subset of E(vector zr, continue from the first subset(vector z1). Do this

till the last item ek of E\A.

Remark 2. The least common multiple r is not necessarily polynomial in the size of the

input. However, the number of distinct subsets created by Algorithm 1 above is at most

|E|+ 1 and so, the algorithm can be implemented in polynomial time as follows: for each

item e, let zse (zte) be the first (last) subset of E where item e is placed. These can be

calculated using the recursion tei = sei + rαx(ei)− 1 (mod r), sei+1
= tei + 1 (mod r) and

11

se1 = 1. Here, 0 (mod r) is identified with r (mod r) so that each se (te) is an integer

between 1 and r. Let t1, t2, . . . , tk be an enumeration of the t′es in non-decreasing order

and let t0 = 0, tk+1 = r. Then for every i = 1, . . . , k+ 1, vectors zti−1+1 to zti are the same

and contain items e such that either (i) se ≤ ti−1 + 1 and (te ≥ ti or te ≤ se) or (ii) se ≥ ti

and (te ≤ se and te ≥ ti). Thus there are at most |E|+ 1 distinct subsets created and they

can be described in polynomial time. Also note that any multiple of r will also work, all

we want is for rαx(e) to be integral. We can find at least one such number in polynomial

time namely the product of all the denominators of x. All of our algorithms in this thesis

will follow a similar description of creating r vectors with the understanding that as in this

case, these algorithms can be implemented in polynomial time.

Example (Bucketing Algorithm). Let us consider a simple example with six elements and

α = 2. Thus E = {e1, e2, e3, e4, e5, e6}. Let vector x = (1/7, 2/7, 3/7, 4/7, 5/7, 6/7) and let

the capacities be u = (3, 5, 2, 4, 6, 8). Then, r = 7 and we will create seven integer vectors

z1, z2, z3, z4, z5, z6, z7. The set Ax,α = {e4, e5, e6} and so zi(ej) = 1 for all i = 1, . . . , 7 and

j = 4, 5, 6. The remaining items of E namely e1, e2, e3 are sorted in order of non-increasing

u(e) values giving the order e2, e1, e3. Step 2 of the bucketing algorithm starts by taking

rαx(e) = 7 ∗ 2 ∗ 2/7 = 4 copies of item e2 and creating the following vectors.

z1 z2 z3 z4 z5 z6 z7

e2 1 1 1 1 0 0 0

We then take rαx(e) = 7 ∗ 2 ∗ 1/7 = 2 copies of item e1 and create the following vectors.

z1 z2 z3 z4 z5 z6 z7

e2 1 1 1 1 0 0 0

e1 0 0 0 0 1 1 0

Finally, we take rαx(e) = 7∗ 2∗ 3/7 = 6 copies of item e3 and create the following vectors.

z1 z2 z3 z4 z5 z6 z7

e2 1 1 1 1 0 0 0

e1 0 0 0 0 1 1 0

e3 1 1 1 1 1 0 1

These are the vectors that are outputted by the bucketing algorithm

12

Let us now analyze some properties of the integer vectors z1, z2, . . . , zr that we obtain

using this algorithm.

Firstly note that since x(e) is less than 1/α for each item e 6∈ A, rαx(e) < r for each

item e 6∈ A. Thus, at most one copy of each item is added to a subset and the integer

vectors z1, z2, . . . , zr are in fact all in {0, 1}E. Secondly,

• zi(e) = 1 for all i and every e ∈ A.

This follows straight from Step 1 of Algorithm 1.

For any vector x and subset S ⊆ E, we shall denote the cost of x on S using the shorthand

notation c(x(S)) which means
∑

e∈S c(e)x(e) and similarly uA(x(S)) =
∑

e∈S uA(e)x(e).

We shall also omit the parameter S if dealing with the entire set E i.e. c(x) = c(x(E)).

•
∑r

i=1 c(z
i) ≤ rαc(x)

This is because
∑r

i=1 c(z
i) =

∑r
i=1{c(zi(A)) + c(zi(E\A))}. Since αx(e) ≥ 1 for all

e ∈ A, we have
∑r

i=1 c(z
i(A)) = r

∑
e∈A c(e) ≤ r

∑
e∈A c(e)αx(e) = rαc(x(A)). Also, due

to the number of copies of each item in E\A created by Algorithm 1,
∑r

i=1 c(z
i(E\A)) =

rαc(x(E\A)). Combining these, we get our inequality. This tells us that the integer vector

with the smallest cost among the ones obtained through Algorithm 1, z1, z2, . . . , zr has

cost at most αc(x).

• |uA(zi(E\A))− uA(zj(E\A))| ≤ D(A) for every pair i, j

This is proven as follows. Observe that e1, e2, . . . , ek is also an enumeration of the

items in E\A in order of non-increasing uA(e) values. Now due to the way Algorithm 1

assigns these items, it is clear that z1 has the largest uA-value and zr the smallest. Let us

pair the jth item added to zr with the j + 1th item added to z1. Again, due to the way

Algorithm 1 assigns these items, it is clear that in each pair, the item from zr has a greater

uA-value than the item from z1. The only items from z1 and zr that may not be paired

are the first item added to z1 and the last item added to zr but the difference between the

13

uA-values of these two items is at most D(A) since uA(e) ≤ D(A) for any item e. Thus

uA(z1(E\A)) − uA(zr(E\A)) ≤ D(A) and since we considered the largest and smallest

integer vectors, we have proven the result for any pair of vectors. Lastly,

•
∑r

i=1 uA(zi(E\A)) = rαuA(x(E\A))

This follows simply because we have taken rαx(e) copies of each item in E\A.

The last two properties immediately tell us that the the integer vector with the smallest

uA-value (i.e. zr) satisfies uA(zr(E\A)) ≥ αuA(x(E\A))−D(A) and so every integer vector

satisfies this inequality. In particular the least cost integer vector, say z∗, satisfies this

inequality and we have shown that c(z∗) ≤ αc(x). Now if x satisfies the KC inequalities

for the set Ax,α i.e. if uA(x(E\A)) ≥ D(A) and we set α = 2, then c(z∗) ≤ 2c(x) and

uA(z∗(E\A)) ≥ D(A) which implies u(z∗(E\A)) ≥ D(A). Additionally since z∗(e) = 1 for

every e ∈ A, u(z∗(A)) ≥ D −D(A) so that u(z∗) ≥ D. Thus z∗ is feasible to the original

problem and even though we do not know how to separate over the KC inequalities we

can work in conjunction with the ellipsoid method to obtain an approximation algorithm

for the Minimum Knapsack Problem with approximation factor 2. A sketch of how this

works is as follows: fix a cost K and add the inequality c(x) ≤ K to the MinKP −KCLP
polytope. At a given point x, one can run the above algorithm to obtain an integer point z

with cost at most 2c(x). Either z is feasible to the original problem or uA(x(E\A)) < D(A)

and we can add this separating hyperplane. Thus, using the ellipsoid method, we either

obtain a feasible integer point with cost at most 2K or we obtain that there is no feasible

point x to MinKP −KCLP such that c(x) ≤ K. We can then run a binary search on K

to find the smallest cost K such that we obtain a feasible integer vector z. This also shows

that the integrality gap of MinKP −KCLP is at most 2 and there are tight examples [6]

showing that the integrality gap is in fact equal to 2. We shall now describe the capacitated

network design problem and leverage the Bucketing Algorithm to obtain an approximation

algorithm for the problem [6].

14

2.2 Capacitated Network Design Problem

Network design problems model the efficient allocation of resources like routers, optical

fibres, roads, canals etc. to effectively construct and operate physical infrastructures.

Here, we consider the CapNDP arising in network security. We define the problem below.

Problem 2 (Capacitated Network Design Problem). Given a network or a multigraph

G = (V,E) along with capacities {u(e)}e∈E and costs {c(e)}e∈E for each edge and non-

negative demands Dij for every pair of nodes (i, j), we wish to find a minimum cost subgraph

H such that for each pair of nodes (i, j), H admits a flow of value Dij between i and j.

Note that we allow the network to be a multigraph and so we could have multiple edges

between the same pair of nodes. The max-flow min-cut theorem allows one to equivalently

view and define the problem as follows,

Problem. Given a network or a multigraph G = (V,E) along with non-negative integral

capacities {u(e)}e∈E and costs {c(e)}e∈E for each edge and non-negative demands Dij for

every pair of nodes (i, j), we wish to find a minimum cost subgraph H such that for each

pair of nodes (i, j), the capacity of the minimum-cut between nodes i and j in H is at least

Dij.

As Carr et al. [6] observed, the capacitated network design problem arises as a network

reinforcement problem. Here we are given an existing network, and for each edge in the

network several security reinforcement options. In addition for each pair of nodes in the

network, there is a specified level of protection demanded. The objective is to select a

minimum-cost set of reinforcements for all the edges so that an adversary with strength

less than the protection level of a particular pair of nodes cannot disconnect these nodes.

We will now describe the (β(G) + 1)-approximation algorithm for CapNDP on general

graphs [6] as it will be useful in our discussion on outerplanar graphs. Here β(G) is the

maximum size of a bond of G and a bond is a minimal set of edges that separates a pair

of nodes with positive demand in the underlying simple graph.

15

2.2.1 Approximation Algorithm for CapNDP on General Graphs

The idea of the algorithm is that the integer programming formulation of the Capacitated

Network Design Problem is very much like that of the Minimum Knapsack Problem with

just a collection of covering constraints and so we can add the KC inequalities for each of the

covering constraints separately. Then, given a fractional vector x ∈ [0, 1]E, we can consider

each edge e ∈ E separately and run the bucketing algorithm with input e, u(e), c(e), x(e)

to obtain a set of integer vectors for each edge e separately. We can then “merge” these

sets of integer vectors to obtain a complete solution for CapNDP. We formalize these ideas

by first defining some new notation related to multigraphs so as to avoid confusion. Let

G = (V,E) be a multigraph,

− The underlying simple graph will be denoted by Gspl.

− The number of nodes in G or Gspl will be denoted by n. The number of edges in Gspl

will be denoted by m and the number of edges in G by M .

− The complete set of edges that connects two particular nodes of G will be called a

multiedge and denoted by ē. The term edge will always mean a single edge of the

graph G and will be denoted by e.

We wish to formulate CapNDP as an integer program and to do so we will need the

following definition of a bond of a graph. This definition is motivated by observing that

we can restrict our attention to satisfying the demands across inclusion-wise minimal cuts

of the graph as then we would have satisfied all the cuts of the graph.

Definition 2.2.1 (Bond of a Graph). Given a connected multigraph G, an inclusion-wise

minimal set of edges whose removal disconnects the graph is called a bond of the graph.

Note that due to the property of a bond being inclusion-wise minimal, the removal of a

bond creates exactly two connected components. Hence every bond is a cut of the graph.

We will also need more notation which we will use consistently throughout this thesis. Let

G = (V,E), {u(e)}e∈E, {c(e)}e∈E, Dij be an instance of CapNDP,

16

− The set of bonds in the graph G that disconnect a pair of nodes with positive demand

will be denoted by C(G) or simply C.

− Bonds in the graph G will be denoted by C and the corresponding bond in Gspl will

be denoted by Cspl

− Given a bond C of G, D(C) will denote the maximum demand between nodes dis-

connected by the removal of C i.e. D(C) = max{Dij : C is an ij-cut}.

− The maximum size of a bond in the underlying simple graph that disconnects a pair of

nodes with positive demand is denoted β(G). Thus β(G) = max{|C| : C ∈ C(Gspl)}

We can now formulate CapNDP as an integer program,

min
∑
e∈E

c(e)z(e) (CapNDP-IP)

s.t.
∑
e∈C

u(e)z(e) ≥ D(C) ∀ C ∈ C

z(e) ∈ {0, 1} ∀ e ∈ E

We notice that each of the constraints here is a simple covering constraint and so we

can add the KC inequalities described earlier to each constraint separately. This introduces

some more notation. Let C be a bond in C(G), A and S be subsets of the edge set E and

x a vector in [0, 1]E,

− The capacity of a subset A on a bond C is defined as u(A ∩ C) :=
∑

e∈A∩C u(e)

− The residual demand of A on C is then D(A,C) := max{D(C)− u(A ∩ C), 0}

− The reduced capacity for every edge e ∈ C\A is uA,C(e) = min{u(e), D(A,C)}

− We will use the shorthand c(x(S)) to mean
∑

e∈S c(e)x(e)

− We will use the shorthand uA,C(x(S)) to mean
∑

e∈S uA,C(e)x(e)

17

− We will omit S if dealing with the entire set E i.e. c(x) = c(x(E))

With this notation in place, we can introduce the KC inequalities to CapNDP-IP and

obtain the following linear programming relaxation of CapNDP,

min
∑
e∈E

c(e)x(e) (CapNDP-KCLP)

s.t.
∑
e∈C\A

uA,C(e)x(e) ≥ D(A,C) ∀ C ∈ C, A ⊆ E

x(e) ≥ 0 ∀ e ∈ E

Observe that for any bond C and any multiedge ē, the entire multiedge either lies

inside the bond or outside the bond. Thus we can use the Bucketing Algorithm on each

multiedge separately and in so doing we will lose a capacity of at most D(A,C) from each

multiedge. We can then merge the integer vectors that we obtain through the bucketing

on each multiedge to obtain a complete integer solution to CapNDP. We formalize this

idea through the description and analysis of the algorithm below,

Algorithm 2: General Algorithm for CapNDP

Input: An instance G = (V,E), {u(e)}e∈E, {c(e)}e∈E, Dij of capacitated network

design, a fractional vector x ∈ [0, 1]E and an integral parameter α > 1.

Setup: Let r be the least common multiple of the denominators of x and let

A := {e ∈ E : x(e) ≥ 1/α}.
Step 1: Perform the Bucketing Algorithm 1 for each multiedge separately. That

is, for each multiedge ē, use ē, {u(e)}e∈ē, {c(e)}e∈ē, x|ē, α as the input in

Algorithm 1 to obtain a set of r integer vectors z1
ē , z

2
ē , . . . , z

r
ē with coordinates for

each edge e ∈ ē.
Step 2: Merge these sets of integer vectors for every multiedge in any arbitrary

order to obtain and output r integer vectors z1
E, z

2
E, . . . , z

r
E with coordinates for

each edge e ∈ E. For example, if E = ē ∪ f̄ and step 1 returned z1
ē , z

2
ē , . . . , z

r
ē and

z1
f̄
, z2
f̄
, . . . , zr

f̄
, then pick any random permutations of 1, 2, . . . , r, say τ and σ and

set ziE to be z
τ(i)
ē appended with z

σ(i)

f̄
.

18

Remark 3. Due to Remark 2, one can implement Algorithm 2 in polynomial time.

Let us analyze the properties of the integer vectors that we obtain using this algorithm.

Firstly,

• ziē(e) = 1 for all i, ē and every e ∈ A ∩ ē. This implies, ziE(e) = 1 for all i and every

e ∈ A.

This is because we used the bucketing algorithm 1 in Step 1 for each multiedge sepa-

rately and then just merged these sets of integer vectors together in Step 2. Secondly,

•
∑r

i=1 c(z
i
ē(ē)) ≤ rαc(x(ē)) for all multiegdes ē. This implies,

∑r
i=1 c(z

i
E) ≤ rαc(x).

Again, this follows because of the bucketing algorithm 1 in Step 1 and the implication

is due to the merging in Step 2. We can thus infer that the integer vector with the smallest

cost among the ones obtained through Algorithm 2, z1
E, z

2
E, . . . , z

r
E has cost at most αc(x).

Thirdly,

• |uA,C(ziē(ē\A))−uA,C(zjē(ē\A))| ≤ D(A,C) for every pair i, j and every bond C such

that ē ⊆ C. This implies that |uA,C(ziE(C\A)) − uA,C(zjE(C\A))| ≤ |Cspl| ·D(A,C)

for every pair i, j and every bond C.

This follows because of the bucketing algorithm 1 used for every multiedge in Step 1.

The implication follows due to the merging in Step 2 and the observation that for any bond

C and any multiedge ē, either ē ⊆ C or ē ∩ C = ∅. Finally,

•
∑r

i=1 uA,C(ziē(ē\A)) = rαuA,C(x(ē\A)) for all bonds C such that ē ⊆ C. This implies

that
∑r

i=1 uA,C(ziE(C\A)) = rαuA,C(x(C\A)).

Again, this follows straight from the bucketing algorithm 1 used for every multiedge in

Step 1. The implication follows due to the merging in Step 2 and the observation that for

any bond C and any multiedge ē, either ē ⊆ C or ē ∩ C = ∅.

19

The last two properties immediately tell us that for every bond C, the integer vector

with the smallest uA,C-value among z1
E, z

2
E, . . . , z

r
E (say zrE) satisfies uA,C(zrE(C\A)) ≥

αuA,C(x(C\A)) − |Cspl| · D(A,C) and so every integer vector satisfies this inequality.

In particular the least cost integer vector, say z∗, satisfies this inequality and we have

shown that c(z∗) ≤ αc(x). Now if x satisfies the KC inequalities for the set Ax,α i.e.

if uA,C(x(C\A)) ≥ D(A,C) for every bond C and we set α = β(G) + 1, then c(z∗) ≤
(β(G) + 1)c(x) and uA,C(z∗(C\A)) ≥ D(A,C) which implies u(z∗(C\A)) ≥ D(A,C). Ad-

ditionally since z∗(e) = 1 for every e ∈ C ∩ A, u(z∗(C ∩ A)) ≥ D(C) − D(A,C) so that

u(z∗(C)) ≥ D(C) for every bond C. Thus z∗ is feasible to the original problem and even

though we do not know how to separate over the KC inequalities we can work in conjunc-

tion with the ellipsoid method to obtain an approximation algorithm for the Capacitated

Network Design Problem with approximation factor β(G) + 1. Additionally it is NP-hard

to compute β(G), but this too can be overcome since β(G) ≤ m where m is the number

of edges in the underlying simple graph. A sketch of how this works is as follows: for

each guess of β(G) = 1, . . . ,m, fix a cost K and add the inequality c(x) ≤ K to the

CapNDP −KCLP polytope. At a given point x, one can run the above algorithm to ob-

tain an integer point z with cost at most (β(G) + 1)c(x) for our guess of β(G). Either z is

feasible to the original problem or we can locate a bond C such that u(z(C)) < D(C). But

then uA,C(x(C\A)) < D(A,C) and we can add this separating hyperplane. Thus, using the

ellipsoid method, we either obtain a feasible integer point with cost at most (β(G) + 1) ·K
for our guess of β(G) or we obtain that there is no feasible point x to CapNDP −KCLP
with our guess of β(G) such that c(x) ≤ K. We can then, for each guess of β(G) run

a binary search on K to find the smallest cost K such that we obtain a feasible integer

vector z. Thus we can find the smallest value of (β(G) + 1)K such that z is feasible to

the original problem. This also shows that the integrality gap of CapNDP −KCLP is at

most (β(G) + 1). In the next chapter we shall modify Algorithm 2 using a new merging

technique that will allow us to obtain a better approximation algorithm for CapNDP on

outerplanar graphs.

20

Chapter 3

CapNDP on Outerplanar Graphs

In their very influential paper, Carr et al. [6] had provided a dynamic programming solution

to the Capacitated Network Design Problem on outerplanar graphs for instances with

exactly one pair of nodes with positive demand. The running time of their dynamic

program is O(mD3) where m is the number of edges in G and D is the demand between

the only pair of nodes with positive demand. The running time of this dynamic program

depends on D and so common scaling arguments cannot be used to obtain an FPTAS

in this case as is claimed by the authors of that paper. The issue is that one would

have to scale down the demand D and capacities of the edges (and apply the ceiling

function to maintain integrality) in order to obtain a solution to the scaled-down problem

in polynomial time. However since the demand D and the capacities of the edges were

changed, this solution need not be feasible for the original problem. Thus the best known

approximation algorithm for CapNDP on outerplanar graphs prior to our work was the

O(β(G))-approximation algorithm by Carr et al. [6] which we have described in chapter 2.

In this thesis, we improve the approximation factor for instances of CapNDP on outerplanar

graphs by a doubly exponential factor by imposing certain conditions on the demand pairs.

These conditions capture the single demand pair case and we obtain an O((log log n)2)-

approximation algorithm here. The conditions on the demand pairs are technical and

depend on the structure of the outerplanar graph. We will also exploit the structure of

bonds of outerplanar graphs to obtain our approximation algorithm and so let us begin by

21

describing what outerplanar graphs look like.

Definition 3.0.1 (Outerplanar Graphs). A graph that has a planar embedding in which

every node appears on the outer face is called an outerplanar graph

Before describing the structure of outerplanar graphs, we note a useful observation

about the CapNDP problem. A biconnected component of a graph G is a maximal 2 node-

connected subgraph of G. Given a graph G, we can compute the biconnected components

of G using the algorithm by Hopcroft and Tarjan [20]. Since bonds of G lie completely

within a biconnected component of G or are bridges of G, we can solve the CapNDP on each

biconnected component separately and then piece things together to obtain a solution to the

problem on the original graph. Hence we shall now focus only on biconnected outerplanar

graphs and they have a very nice structure.

3.1 Structure of Biconnected Outerplanar Graphs

Any biconnected graph must contain a simple cycle. Additionally since we are interested

in outerplanar graphs, there can be no other nodes in the graph and in any outerplanar

embedding of the graph, every edge must be drawn within this cycle. We can fix two nodes

in this cycle and label them s and t respectively. One of the paths on the cycle joining s

and t will be called the Upper Path and the other the Lower Path. Edges that connect a

node on the upper path to a node on the lower path will be called Chords. Nodes s, t and

nodes that are incident to a chord will be called Chordal Nodes. The sub-path between

any two chordal nodes could have additional edges that don’t intersect (see Figure 3.1),

we call such a graph a Non-crossing Interval Graph as defined below,

Definition 3.1.1 (Non-crossing Interval Graph). A non-crossing interval graph with n

nodes say 1, 2, . . . , n has an edge between each pair of consecutive nodes i.e 1—2—3—

. . .—(n − 1)—n along with potentially other edges. Each additional edge i—j can be

represented by the open interval (i, j). These open intervals are required to form a laminar

family i.e the intersection of any two intervals I1 and I2 is either I1 or I2 or empty.

22

Figure 3.1: Biconnected Outerplanar Graphs

We shall call nodes 1 and n of a non-crossing interval graph as its terminals. We

would like to note here that a non-crossing interval graph is biconnected if and only if its

terminals are connected and biconnected outerplanar graphs are the same as biconnected

non-crossing interval graphs. This can be seen by identifying any two consecutive nodes on

the outer cycle of the biconnected outerplanar graph with the terminals of a biconnected

non-crossing interval graph. Coming back to the structure of outerplanar graphs, we notice

that the path between two consecutive chordal nodes must be a set of biconnected non-

crossing interval graphs connected in series. We shall call nodes of the outerplanar graphs

that occur as terminals of these biconnected non-crossing interval graphs as Terminal Nodes

(see Figure 3.1).

Remark 4. Every chordal node is a terminal node. Also the definition of chords, chordal

23

nodes and terminal nodes depend on the choice of s and t.

3.1.1 Bonds of Biconnected Outerplanar Graphs

We shall now explore the structure of bonds in biconnected outerplanar graphs. Firstly

recall that a bond C of a graph G = (V,E) is an inclusion-wise minimal set of edges that

disconnects the graph. Thus G\C must have exactly two connected components. Thus a

bond can also be described using the node sets of these two connected components.

Lemma 3.1.2. The node set of each of the two connected components separated by a bond

in a biconnected outerplanar graph must be a set of consecutive nodes on the cycle.

Proof. We prove this by contradiction. Suppose that the lemma is not true and consider

any particular outerplanar embedding of the graph. Then there exists a bond C and

nodes a1, a2, a3, a4 in order around the cycle such that a1 and a3 belong to one of the

connected components of G\C and a2 and a4 belong to the other. Since all edges must

be drawn within the cycle in the outerplanar embedding, it is impossible to connect a1, a3

and a2, a4 with non-intersecting paths without contradicting the hypothesis that the graph

is outerplanar.

This very crucial lemma allows us to understand the structure of edges in bonds of an

outerplanar graph. We shall restrict ourselves to describing bonds that disconnect a pair

of terminal nodes of the outerplanar graph called Terminal Bonds. First let us understand

such bonds in biconnected non-crossing interval graphs.

Terminal Bonds of Biconnected Non-crossing Interval Graphs Recall that the

intervals representing the edges of a biconnected non-crossing interval graph G = (V,E)

form a laminar family and so can be represented by a tree T (E) rooted at the interval

(1, n) as follows: we have a vertex in T (E) for each interval and an edge in T (E) between

intervals I1 and I2 if I2 is the smallest interval in E containing I1. The leaves of this tree

T (E) will have to correspond to the edges of G that connect consecutive nodes of G. Since

a non-crossing interval graph is also outerplanar, Lemma 3.1.2 applies here and the node

24

sets of the connected components separated by a terminal bond have to be 1, 2, . . . , i and

(i+ 1), . . . , n for some i = 1, 2, . . . , (n− 1). Let the leaf in T (E) corresponding to the edge

(i, i+ 1) of G be v. In such a case, the edges of G that form the terminal bond are simply

the edges of G corresponding to nodes on the path from leaf v to root in T (E)(see figure

3.2).

(1, 2) (2, 3) (3, 4) (4, 5) (5, 6) (6, 7)

(1, 7)

(2, 7)

(3, 6)

(3, 5)

(7, 8) (8, 9) (9, 10)

(7, 9)

(7, 10)

Figure 3.2: T(E) for the biconnected non-crossing interval graphs in Fig 3.1

Terminal Bonds of Biconnected Outerplanar Graphs Firstly the chords of a bi-

connected outerplanar graph can be ordered from s to t. Due to Lemma 3.1.2, we are

interested in the bond generated by a set of consecutive nodes on the cycle that contains

a terminal node. This bond contains a terminal bond from each of the biconnected non-

crossing interval graphs that the end points of this consecutive set belong to and also

contains the set of consecutive chords that lie between these end points. Thus, referring to

figure 3.3, we have a possibly empty set of consecutive chords (blue) along with a terminal

bond from one of the biconnected non-crossing interval graphs connected in series to the

immediate left of the leftmost chord (i.e from the non-crossing interval graphs that occur

on either the upper or lower path to the left of the leftmost chord till the next chordal nodes

on the left, shown in green) and a terminal bond from one of the biconnected non-crossing

interval graphs connected in series to the immediate right of the rightmost chord (shown

in red).

25

Figure 3.3: Terminal bonds of biconnected outerplanar graphs

With these descriptions of terminal bonds, we can begin to describe our new algorithm

for CapNDP on outerplanar graphs.

3.2 Merging Algorithm

The main idea is that since the terminal bonds of biconnected outerplanar graphs have a

very nice structure, it seems wasteful to arbitrarily merge the integer vectors as done in

Step 2 of Algorithm 2. During this merging step, we are given two sets of integer vectors

z1
E1
, z2
E1
, . . . , zrE1

and z1
E2
, z2
E2
, . . . , zrE2

defined on disjoint edge sets E1 and E2 such that for

any bond C, the difference between the uA,C-values of any two vectors from the same set

E1 or E2 is at most D(A,C). After merging them arbitrarily, the uA,C-values of the new

integer vectors z1
E1∪E2

, z2
E1∪E2

, . . . , zrE1∪E2
defined on E1∪E2 differ by at most 2D(A,C). If

instead we were to initially sort the two sets of vectors according to non-increasing uA,C-

values and merge them in opposite orders, then the uA,C-values of the new integer vectors

defined on E1 ∪ E2 would differ by at most D(A,C). The issue here however is that the

uA,C-orderings of the integer vectors could change when considering different bonds. We

26

overcome this by sorting the vectors using their u-values and observing that if this ordering

does not match with a uA,C-ordering, then the capacity of some edge must be capped by

D(A,C) and so the bond C is trivially satisfied. We formalize and explain this idea in the

algorithm below.

Algorithm 3: Merging Algorithm

Input: Two disjoint edge sets E1 and E2 along with capacities on edges

{u(e)}e∈E1∪E2 ; two sets of integer vectors z1
E1
, z2
E1
, . . . , zrE1

and z1
E2
, z2
E2
, . . . , zrE2

defined on the disjoint edge sets E1 and E2; two subsets of edges F1 ⊆ E1 and

F2 ⊆ E2. The sets F1 and F2 can be thought of as the intersection of a bond C

with E1 and E2 respectively.

Step 1: Sort the first set of integer vectors according to non-increasing

u(ziE1
(F1))-values and sort the second set of integer vectors according to

non-increasing u(ziE2
(F2))-values. WLOG, let these sorted ordered be

z1
E1
, z2
E1
, . . . , zrE1

and z1
E2
, z2
E2
, . . . , zrE2

Step 2: Merge these two sorted sets in opposite orders to obtain and output a set

of integer vectors z1
E1∪E2

, z2
E1∪E2

, . . . , zrE1∪E2
defined on E1 ∪ E2 i.e. ziE1∪E2

is

simply ziE1
appended with zr−i+1

E2
.

Let us analyze how the merging algorithm performs in the setting of the Capacitated

Network Design Problem. So let G = (V,E), {u(e)}e∈E, {c(e)}e∈E, Dij be an instance

of CapNDP. Let x be a vector in [0, 1]E and α and integral parameter greater than 1.

Let r be the least common multiple of the denominators of x and let A := {e ∈ E :

x(e) ≥ 1/α}. Let C be a bond in the graph such that C ∩ E1 = F1 and C ∩ E2 =

F2. Additionally let z1
E1
, z2
E1
, . . . , zrE1

and z1
E2
, z2
E2
, . . . , zrE2

be integer vectors defined on

disjoint subsets of E namely E1 and E2 sorted in non-increasing u(ziE1
(F1))-values and

non-increasing u(ziE2
(F2))-values respectively. Let z1

E1∪E2
, z2
E1∪E2

, . . . , zrE1∪E2
be the output

of the merging algorithm 3 using input E1, E2, u(e), F1 ⊆ E1, F2 ⊆ E2 (i.e ziE1∪E2
is just

ziE1
appended with zr−i+1

E2
). Then we have the following theorem.

Theorem 3.2.1. Suppose the original sets of integer vectors satisfy the following properties

for k = 1, 2 and any fixed index i∗ = 1, 2, . . . , r:

(a) ziEk(e) = 1 for all e ∈ A ∩ Ek and for all i.

27

(b)
∑r

i=1 c(z
i
Ek

(Ek)) ≤ rαc(x(Ek)).

(c) |uA,C(zi
∗
Ek

(Fk\A))− uA,C(ziEk(Fk\A))| ≤ D(A,C) for all i.

(d)
∑r

i=1 uA,C(ziEk(Fk\A)) = rαuA,C(x(Fk\A)).

Then the set of merged integer vectors satisfy:

1. ziE1∪E2
(e) = 1 for all e ∈ A ∩ (E1 ∪ E2) and for all i.

2.
∑r

i=1 c(z
i
E1∪E2

(E1 ∪ E2)) ≤ rαc(x(E1 ∪ E2)).

3. Either |uA,C(zi
∗
E1∪E2

(F1 ∪ F2\A)) − uA,C(ziE1∪E2
(F1 ∪ F2\A))| ≤ D(A,C) for all i

or uA,C(zi
∗
E1∪E2

(F1 ∪ F2\A)) ≥ D(A,C).

4.
∑r

i=1 uA,C(ziE1∪E2
(F1 ∪ F2\A)) = rαuA,C(x(F1 ∪ F2\A)).

Proof. Properties 1,2 and 4 will trivially hold for any arbitrary merging as seen earlier in

the analysis of Algorithm 2. We need to prove that property 3 holds after merging and we

do so by considering the following exhaustive list of cases.

Case 1: For all i and every k = 1, 2, uA,C(zi
∗
Ek

(Fk\A)) ≥ uA,C(ziEk(Fk\A)) if and only if

u(zi
∗
Ek

(Fk\A)) ≥ u((ziEk(Fk\A))

Then the u(ziEk(Fk))-ordering used in the merging algorithm matches with the uA,C(ziEk(Fk))-

ordering with respect to the index i∗. Since we are then merging in oppositely sorted orders

and the difference in the uA,C(ziEk(Fk))-values of zi
∗

and any zi is at most D(A,C) to begin

with, the difference between uA,C(ziE1∪E2
(F1 ∪ F2\A))-values of zi

∗
and any zi is also at

most D(A,C).

Case 2: For some i and some k = 1, 2, uA,C(zi
∗
Ek

(Fk\A)) ≥ uA,C(ziEk(Fk\A)) but

u(zi
∗
Ek

(Fk\A)) < u((ziEk(Fk\A))

Then we claim that there must be an edge e in Fk\A such that ziEk(e) = 1 and u(e) ≥
D(A,C). If this is not the case, then

uA,C(ziEk(Fk\A)) = u((ziEk(Fk\A)) since no edge capacity is capped

> u(zi
∗

Ek
(Fk\A)) due to the hypothesis of Case 2

≥ uA,C(zi
∗

Ek
(Fk\A)) since u(e) ≥ uA,C(e)

28

But this contradicts the hypothesis of Case 2. Thus we can conclude that uA,C(zi
∗
Ek

(Fk\A)) ≥
uA,C(ziEk(Fk\A)) ≥ D(A,C) and so uA,C(zi

∗
E1∪E2

(F1 ∪ F2\A)) ≥ D(A,C).

Case 3: For some i and some k = 1, 2, uA,C(zi
∗
Ek

(Fk\A)) ≤ uA,C(ziEk(Fk\A)) but

u(zi
∗
Ek

(Fk\A)) > u((ziEk(Fk\A))

This is very similar to Case 2 and we will obtain that uA,C(zi
∗
Ek

(Fk\A)) ≥ D(A,C) and so

uA,C(zi
∗
E1∪E2

(F1 ∪ F2\A)) ≥ D(A,C).

The merging algorithm can thus be used to improve step 2 of algorithm 2. If the bonds

in the underlying graph have a nice structure, the merging algorithm may be implemented

in a suitable way to improve the approximation ratio of CapNDP. We exhibit this first in

the case of terminal bonds of non-crossing interval graphs where we are able to prove the

following result.

Theorem 3.2.2. There exists a 2-approximation algorithm for CapNDP on non-crossing

interval graphs when demands occur only between terminal nodes

3.3 2-approximation for Terminal Bonds of Non-crossing

Interval Graphs

We wish to exploit the structure of terminal bonds in non-crossing interval graphs using the

merging algorithm to obtain a better approximation algorithm for such instances. Terminal

bonds of non-crossing interval graphs have the very nice structure described earlier in that

they are paths from leaves to roots in T (E) (see 3.1.1). The nodes of T (E) correspond

to edges of G and can be divided into levels as with any rooted tree (level 0 comprises of

the root and level i+ 1 comprises of the immediate children of nodes from level i). Given

any edge ei from level i, we know exactly which edges from lower levels are used in bonds

containing ei, they will be the edges on the unique path in T (E) from ei to the root. We

29

can exploit this observation using the following algorithm.

Algorithm 4: 2-approximation for CapNDP on non-crossing interval graphs

Input: An instance G = (V,E), {u(e)}e∈E, {c(e)}e∈E, Dij of CapNDP where G is

a non-crossing interval graph and the only pair of nodes with positive demand is

the pair of terminals, a vector x ∈ [0, 1]E and an integral parameter α > 1.

Setup: Let r be the least common multiple of denominators of x and let

A := {e ∈ E : x(e) ≥ 1/α}
Step 1: Perform the Bucketing Algorithm 1 for each multiedge separately. That

is, for each multiedge ē, use ē, {u(e)}e∈ē, {c(e)}e∈ē, x|ē, α as the input in

Algorithm 1 to obtain a set of r integer vectors z1
ē , z

2
ē , . . . , z

r
ē with coordinates for

each edge e ∈ ē.
Step 2: Instead of arbitrarily merging these sets of integer vectors, merge them

level by level as follows: When merging a multiedge ēi+1 from level i+ 1 of T (E),

we would have already merged all multiedges from levels 0, 1, . . . , i and so we

already have a set of integer vectors z1
E1
, z2
E1
, . . . , zrE1

for a subset E1 ⊆ E that

contains all multiedges from levels 0, 1, . . . , i. Let ēi+1,ēi, . . . , ē0 be the unique

path in T (E) from ēi+1 to the root and let F1 = {ēi, . . . , ē0}. We then merge

z1
E1
, z2
E1
, . . . , zrE1

with z1
ēi+1

, z2
ēi+1

, . . . , zrēi+1
using our merging algorithm 3 with

E1, ēi+1, u(e), F1 ⊆ E1, ēi+1 ⊆ ēi+1 as input. We output z1
E, z

2
E, . . . , z

r
E after

merging every multiedge (See Example 3.3 for an illustration of this step).

Remark 5. Due to Remark 2, one can implement Algorithm 4 in polynomial time.

Example (Step 2 of Algorithm 4). Let us consider the simple non-crossing interval graph

shown in figure 3.4. Here, the graph G along with its corresponding T (E) is shown. Let

us assume that each multiedge ēi comprises of two edges ei0 and ei1. Furthermore, let us

30

assume that the bucketing algorithm in Step 1 of Algorithm 4 outputs the following vectors.

u(e) z1
ē0

z2
ē0

z3
ē0

z4
ē0

z5
ē0

e00 5 1 1 1 1 0

e01 4 1 0 0 0 1

u(e) z1
ē1

z2
ē1

z3
ē1

z4
ē1

z5
ē1

e10 7 1 1 1 0 0

e11 2 1 1 0 1 1

u(e) z1
ē2

z2
ē2

z3
ē2

z4
ē2

z5
ē2

e20 5 1 0 0 0 0

e21 3 0 1 1 1 0

u(e) z1
ē3

z2
ē3

z3
ē3

z4
ē3

z5
ē3

e30 2 1 1 1 0 0

e31 1 1 0 0 1 1

u(e) z1
ē4

z2
ē4

z3
ē4

z4
ē4

z5
ē4

e40 4 1 1 1 1 0

e41 1 1 0 0 0 1

Figure 3.4: Non-crossing interval graph G and its corresponding T (E)

Step 2 begins from level 0 of T (E). Here there is only one node ē0 and so no merging is

required. We currently have merged all nodes of level 0 and obtained z1
ē0
, . . . , z5

ē0
. We move

on to level 1 of T (E) and consider the node ē1. The unique path from this node to the root in

T (E) is ē1, ē0. Thus E1 which is the set of multiedges already merged is the singleton {ē0}
and F1 is also {ē0}. We then apply the merging algorithm by sorting z1

ē0
, . . . , z5

ē0
accord-

ing to non-increasing u(ziē0(F1))-values to obtain the order z1
ē0
, z2
ē0
, z3
ē0
, z4
ē0
, z5
ē0

and we sort

z1
ē1
, . . . , z5

ē1
according to non-increasing u(ziē1(ē1))-values to obtain the order z1

ē1
, z2
ē1
, z3
ē1
, z4
ē1
, z5
ē1

.

We then merge these vectors in opposite orders to obtain the following vectors (here the

31

set Ē1 is {ē0, ē1}).

u(e) z1
Ē1

z2
Ē1

z3
Ē1

z4
Ē1

z5
Ē1

e00 5 1 1 1 1 0

e01 4 1 0 0 0 1

e10 7 0 0 1 1 1

e11 2 1 1 0 1 1

We currently have merged all nodes of level 0 and 1 and obtained z1
Ē1
, . . . , z5

Ē1
. We move on

to level 2 of T (E) and consider the node ē2. The unique path from this node to the root in

T (E) is ē2, ē1, ē0. Thus E1 which is the set of multiedges already merged is the set {ē0, ē1}
and F1 is also {ē0, ē1}. We then apply the merging algorithm by sorting z1

Ē1
, . . . , z5

Ē1
accord-

ing to non-increasing u(zi
Ē1

(F1))-values to obtain the order z4
Ē1
, z5
Ē1
, z3
Ē1
, z1
Ē1
, z2
Ē1

and we sort

z1
ē2
, . . . , z5

ē2
according to non-increasing u(ziē2(ē2))-values to obtain the order z1

ē2
, z2
ē2
, z3
ē2
, z4
ē2
, z5
ē2

.

We then merge these vectors in opposite orders to obtain the following vectors (here the

set Ē2 is {ē0, ē1, ē2}).

u(e) z1
Ē2

z2
Ē2

z3
Ē2

z4
Ē2

z5
Ē2

e00 5 1 0 1 1 1

e01 4 0 1 0 1 0

e10 7 1 1 1 0 0

e11 2 1 1 0 1 1

e20 5 0 0 0 0 1

e21 3 0 1 1 1 0

We currently have merged all nodes of level 0 and 1 and node ē2 to obtain z1
Ē2
, . . . , z5

Ē2
.

We move on to node ē3. The unique path from this node to the root in T (E) is ē3, ē1, ē0.

Thus E1 which is the set of multiedges already merged is the set {ē0, ē1, ē2} and F1 is

the set {ē0, ē1}. We then apply the merging algorithm by sorting z1
Ē2
, . . . , z5

Ē2
according

to non-increasing u(zi
Ē2

(F1))-values to obtain the order z1
Ē2
, z2
Ē2
, z3
Ē2
, z4
Ē2
, z5
Ē2

and we sort

z1
ē3
, . . . , z5

ē3
according to non-increasing u(ziē3(ē3))-values to obtain the order z1

ē3
, z2
ē3
, z3
ē3
, z4
ē3
, z5
ē3

.

We then merge these vectors in opposite orders to obtain the following vectors (here the

32

set Ē3 is {ē0, ē1, ē2, ē3}).

u(e) z1
Ē3

z2
Ē3

z3
Ē3

z4
Ē3

z5
Ē3

e00 5 1 0 1 1 1

e01 4 0 1 0 1 0

e10 7 1 1 1 0 0

e11 2 1 1 0 1 1

e20 5 0 0 0 0 1

e21 3 0 1 1 1 0

e30 2 0 0 1 1 1

e31 1 1 1 0 0 1

We currently have merged all nodes of level 0 and 1 and nodes ē2, ē3 to obtain z1
Ē3
, . . . , z5

Ē3
.

We move on to node ē4. The unique path from this node to the root in T (E) is ē4, ē0.

Thus E1 which is the set of multiedges already merged is the set {ē0, ē1, ē2, ē3} and F1 is

the singleton {ē0}. We then apply the merging algorithm by sorting z1
Ē3
, . . . , z5

Ē3
according

to non-increasing u(zi
Ē3

(F1))-values to obtain the order z4
Ē3
, z1
Ē3
, z3
Ē3
, z5
Ē3
, z2
Ē3

and we sort

z1
ē4
, . . . , z5

4̄3
according to non-increasing u(ziē4(ē4))-values to obtain the order z1

ē4
, z2
ē4
, z3
ē4
, z4
ē4
, z5
ē4

.

We then merge these vectors in opposite orders to obtain the following vectors (here the

set Ē4 is {ē0, ē1, ē2, ē3, ē4} = E).

u(e) z1
Ē4

z2
Ē4

z3
Ē4

z4
Ē4

z5
Ē4

e00 5 1 1 1 1 0

e01 4 1 0 0 0 1

e10 7 0 1 1 0 1

e11 2 1 1 0 1 1

e20 5 0 0 0 1 0

e21 3 1 0 1 0 1

e30 2 1 0 1 1 0

e31 1 0 1 0 1 1

e40 4 0 1 1 1 1

e41 1 1 0 0 0 1

We have now merged every multiedge and we output z1
Ē4
, . . . , z5

Ē4

33

Let us analyze the properties of the integer vectors that we obtain using this algorithm.

Firstly, since we are essentially changing Step 2 of algorithm 2, all properties that hold

after arbitrarily merging the sets of integer vectors obtained after Step 1 will still hold here

as in Algorithm 2. Thus,

• ziE(e) = 1 for all i and every e ∈ A.

•
∑r

i=1 c(z
i
E) ≤ rαc(x).

•
∑r

i=1 uA,C(ziE(C\A)) = rαuA,C(x(C\A)) for any bond C ∈ C.

Let zi
∗
E be the integer vector with least cost among the ones obtained through algorithm

4. We know from the second property above that c(zi
∗
E) ≤ αc(x). We also claim that due

to Step 2 of the algorithm, we have the following property,

• For any bond C ∈ C, either |uA,C(zi
∗
E (C\A))− uA,C(ziE(C\A))| ≤ D(A,C) for all i

or uA,C(zi
∗
E (C\A)) ≥ D(A,C).

This easily follows due to Property 3 of the merging algorithm 3 and the fact that

terminal bonds of non-crossing interval graphs are the paths from a leaf to the root in

T (E). Essentially we are merging every multiedge using the unique path to the root of

T (E) in step 2 of algorithm 4 and so if we follow the components of zi
∗
E , we will obtain the

desired result for any terminal bond.

The last two properties immediately tell us that for every bond C, uA,C(zi
∗
E (C\A)) ≥

D(A,C) or uA,C(zi
∗
E (C\A)) ≥ αuA,C(x(C\A))−D(A,C). Now if x satisfies the KC inequal-

ities for the set Ax,α i.e. if uA,C(x(C\A)) ≥ D(A,C) for every bond C and we set α = 2,

then c(zi
∗
E) ≤ 2c(x) and uA,C(zi

∗
E (C\A)) ≥ D(A,C) which implies u(zi

∗
E (C\A)) ≥ D(A,C).

Additionally since z∗E(e) = 1 for every e ∈ C ∩ A, u(z∗E(C ∩ A)) ≥ D(C) − D(A,C) so

that u(z∗E(C)) ≥ D(C) for every bond C. Thus, z∗E is feasible to the original problem. We

can run the ellipsoid method to obtain a 2-approximation algorithm for the CapNDP on

non-crossing interval graphs having terminal demands proving theorem 3.2.2.

34

3.4 Approximation Algorithm for Terminal Bonds of

Outerplanar Graphs

We wish to exploit the structure of terminal bonds in outerplanar graphs using the merging

algorithm to obtain a better approximation algorithm for such instances. Terminal bonds

of outerplanar graphs have the very nice structure described earlier in that they are a

possibly empty set of consecutive chords along with a terminal bond from one of the

biconnected non-crossing interval graphs connected in series to the immediate left of the

leftmost chord (i.e from the non-crossing interval graphs that occur on either the upper

or lower path to the left of the leftmost chord till the next chordal nodes on the left) and

a terminal bond from one of the biconnected non-crossing interval graphs connected in

series to the immediate right of the rightmost chord (see 3.1.1). As before, we shall first

use the bucketing algorithm 1 on each multiedge separately. What we mean by this is,

given a fractional vector x ∈ [0, 1]E, we consider each multiedge ē ⊆ E separately and run

the bucketing algorithm with input ē, {u(e)e∈ē}, {c(e)e∈ē}, x(e)|ē to obtain a set of integer

vectors for each multiedge ē separately. We already know how to merge the sets of integer

vectors obtained from the multiedges on the non-crossing interval graphs from the previous

section. Thus, we only have to worry about merging the sets of integer vectors obtained

from the multichords. Let the multichords in order from s to t be ē1, ē2, . . . , ēk. We merge

the sets of integer vectors obtained from these multiedges as follows:

Merging along a Tree: First, construct a rooted binary tree T whose set of leaves

are labelled ē1, ē2, . . . , ēk. Second, label every other node in T using the set of its leaf-

descendants (so for example the root will be labelled {ē1, ē2, . . . , ēk}). Third, merge the

integer sets upwards from the leaves of T using the merging algorithm. Essentially, we take

two nodes that share a parent, say they correspond to sets E1 and E2, and merge the sets

of integer vectors that are already obtained while merging upwards, z1
E1
, z2
E1
, . . . , zrE1

and

z1
E2
, z2
E2
, . . . , zrE2

using the merging algorithm 3 with input E1, E2, u(e), E1 ⊆ E1, E2 ⊆ E2

(See Example 3.4 for an illustration).

Example (Merging along a tree). Let us consider a simple example with five multichords

and the tree shown in figure 3.5. In the figure, Ē2 = {ē1, ē2}; Ē3 = {ē1, ē2, ē3}; Ē4 =

35

{ē4, ē5} and E = {ē1, ē2, ē3, ē4, ē5}. Let us assume that each multiedge ēi comprises of two

edges ei0 and ei1. Furthermore, let us assume that after applying the bucketing algorithm

on each multiedge separately we obtain the following vectors.

u(e) z1
ē1

z2
ē1

z3
ē1

z4
ē1

z5
ē1

e00 5 1 1 1 1 0

e01 4 1 0 0 0 1

u(e) z1
ē2

z2
ē2

z3
ē2

z4
ē2

z5
ē2

e10 7 1 1 1 0 0

e11 2 1 1 0 1 1

u(e) z1
ē3

z2
ē3

z3
ē3

z4
ē3

z5
ē3

e20 5 1 0 0 0 0

e21 3 0 1 1 1 0

u(e) z1
ē4

z2
ē4

z3
ē4

z4
ē4

z5
ē4

e30 2 1 1 1 0 0

e31 1 1 0 0 1 1

u(e) z1
ē5

z2
ē5

z3
ē5

z4
ē5

z5
ē5

e40 4 1 1 1 1 0

e41 1 1 0 0 0 1

Figure 3.5: Tree used to merge the integer vectors obtained from chords in Example 3.4

The merging along a tree method considers two nodes for which we already have integer

vectors such that they share a common parent. Let us start with nodes ē1 and ē2. We apply

the merging algorithm by sorting z1
ē1
, . . . , z5

ē1
according to non-increasing u(ziē1(ē1))-values

to obtain the order z1
ē1
, z2
ē1
, z3
ē1
, z4
ē1
, z5
ē1

and we sort z1
ē2
, . . . , z5

ē2
according to non-increasing

u(ziē2(ē2))-values to obtain the order z1
ē2
, z2
ē2
, z3
ē2
, z4
ē2
, z5
ē2

. We then merge these vectors in

36

opposite orders to obtain the following vectors.

u(e) z1
Ē2

z2
Ē2

z3
Ē2

z4
Ē2

z5
Ē2

e10 5 1 1 1 1 0

e11 4 1 0 0 0 1

e20 7 0 0 1 1 1

e21 2 1 1 0 1 1

We can now consider the two nodes Ē2 and ē3. We apply the merging algorithm by sorting

z1
Ē2
, . . . , z5

Ē2
according to non-increasing u(zi

Ē2
(Ē2))-values to obtain the order z4

Ē2
, z5
Ē2
, z3
Ē2
, z1
Ē2
, z2
Ē2

and we sort z1
ē3
, . . . , z5

ē3
according to non-increasing u(ziē3(ē3))-values to obtain the order

z1
ē3
, z2
ē3
, z3
ē3
, z4
ē3
, z5
ē3

. We then merge these vectors in opposite orders to obtain the following

vectors.
u(e) z1

Ē3
z2
Ē3

z3
Ē3

z4
Ē3

z5
Ē3

e10 5 1 0 1 1 1

e11 4 0 1 0 1 0

e20 7 1 1 1 0 0

e21 2 1 1 0 1 1

e30 5 0 0 0 0 1

e31 3 0 1 1 1 0

We can now consider the two nodes ē4 and ē5. We apply the merging algorithm by sorting

z1
ē4
, . . . , z5

ē4
according to non-increasing u(ziē4(ē4))-values to obtain the order z1

ē4
, z2
ē4
, z3
ē4
, z4
ē4
, z5
ē4

and we sort z1
ē5
, . . . , z5

ē5
according to non-increasing u(ziē5(ē5))-values to obtain the order

z1
ē5
, z2
ē5
, z3
ē5
, z4
ē5
, z5
ē5

. We then merge these vectors in opposite orders to obtain the following

vectors.
u(e) z1

Ē4
z2
Ē4

z3
Ē4

z4
Ē4

z5
Ē4

e40 2 1 1 1 0 0

e41 1 1 0 0 1 1

e50 4 0 1 1 1 1

e51 1 1 0 0 0 1

We can now consider the two nodes Ē3 and Ē4. We apply the merging algorithm by sorting

z1
Ē3
, . . . , z5

Ē3
according to non-increasing u(zi

Ē3
(Ē3))-values to obtain the order z2

Ē3
, z3
Ē3
, z1
Ē3
, z4
Ē3
, z5
Ē3

37

and we sort z1
Ē4
, . . . , z5

Ē4
according to non-increasing u(zi

Ē4
(Ē4))-values to obtain the or-

der z2
Ē4
, z3
Ē4
, z5
Ē4
, z4
Ē4
, z1
Ē4

. We then merge these vectors in opposite orders to obtain the

following vectors.

u(e) z1
Ē

z2
Ē

z3
Ē

z4
Ē

z5
Ē

e10 5 0 1 1 1 1

e11 4 1 0 0 1 0

e20 7 1 1 1 0 0

e21 2 1 0 1 1 1

e30 5 0 0 0 0 1

e31 3 1 1 0 1 0

e40 2 1 0 0 1 1

e41 1 1 1 1 0 0

e50 4 0 1 1 1 1

e51 1 1 0 1 0 0

Having merged all the multiedges, we output z1
Ē
, . . . , z5

Ē
.

The description of the merging along a tree method above provides a concrete way

to merge the sets of integer vectors obtained from multichords using any rooted binary

tree with k leaves. We would then want to consider the least cost integer vector obtained

after merging every set of integer vectors. We could also consider constructing multiple

rooted binary trees and taking the union (integer vectors can also be viewed as sets) of

the least cost integer vectors obtained from each of these trees. We formalize this idea in

the algorithm below and further analyze the properties of this union of least cost integer

38

vectors.

Algorithm 5: Approximation algorithm for CapNDP on Outerplanar Graphs

Input: An instance G = (V,E), {u(e)}e∈E, {c(e)}e∈E, Dij of CapNDP where G is

an outerplanar graph and nodes with positive demand occur as terminal nodes; a

fractional vector x ∈ [0, 1]E and an integral parameter α > 1. Let the set of

multichords of G be F̄ = {ē1, ē2, . . . , ēk} and F be the set of chords. We also

need a set (say T1, T2, . . . , Tt) of rooted binary trees whose set of leaves are

labelled ē1, ē2, . . . , ēk

Setup: Let r be the least common multiple of denominators of x and let

A := {e ∈ E : x(e) ≥ 1/α}
Step 1: Perform the Bucketing Algorithm 1 for each multiedge separately. That

is, for each multiedge ē, use ē, {u(e)}e∈ē, {c(e)}e∈ē, x|ē, α as the input in

Algorithm 1 to obtain a set of r integer vectors z1
ē , z

2
ē , . . . , z

r
ē with coordinates for

each edge e ∈ ē.
Step 2: Merge the sets of integer vectors obtained from multiedges on each

biconnected non-crossing interval graph G′ = (V ′, E ′) on the cycle of G using

Step 2 of Algorithm 4 separately and choose the least cost integer vector z∗E′ out

of the ones obtained for each non-crossing interval graph separately.

Step 3: For each rooted binary tree, use the merging along a tree method above

to merge the sets of integer vectors obtained from the multichords. Let zi
∗
F be the

least cost integer vector obtained using the ith tree. Let z∗F be the union of these

least cost integer vectors (i.e z∗F (e) = 1 iff zi
∗
F = 1 for some i = 1, 2, . . . , t).

Step 4: Append z∗F with all the least cost integer vectors z∗E′ obtained for each

biconnected non-crossing interval graph G′ from step 2 to obtain and output an

integer vector z∗E defined on the entire edge set E.

Remark 6. Due to Remark 2, one can implement Algorithm 4 in polynomial time.

Let us analyze the properties of the integer vector that we obtain using this algorithm.

Firstly, the properties that hold for arbitrary merging still continue to hold. Thus,

• z∗E(e) = 1 for all i and every e ∈ A.

39

• c(z∗E′(E ′)) ≤ αc(x(E ′)) for every biconnected non-crossing interval graphG′. c(zi
∗
F (F) ≤

αc(x(F)) for every i = 1, 2, . . . , t so that c(z∗F (F)) ≤ t · αc(x(F)). Combining these

we get, c(z∗E) ≤ t · αc(x).

Now consider any terminal bond C ∈ C. We know from 3.1.1 that C consists of a

terminal bond each (say C1 and C2) from two biconnected non-crossing intervals graphs

on the cycle of G (say G1 = (V1, E1) and G2 = (V2, E2)) as well as a consecutive set of

multichords (say C̄3). Then we have the following,

• For j = 1, 2, either uA,C(z∗Ej(Cj\A)) ≥ D(A,C) or uA,C(z∗Ej(Cj\A)) ≥ αuA,C(x(Cj\A))−
D(A,C). This implies that either uA,C(z∗E(C1 ∪ C2\A)) ≥ D(A,C) or uA,C(z∗E(C1 ∪
C2\A)) ≥ αuA,C(x(C1 ∪ C2\A))− 2D(A,C)

This follows immediately from the properties that we derived for biconnected non-

crossing interval graphs using Algorithm 4. The implication follows because C1 and C2 are

disjoint. We also have the following property for the multichords,

• For any node from a rooted binary tree Ti with label say F̄ ′ (i.e the set of leaf-

descendants of the node is F̄ ′) such that F̄ ′ ⊆ C̄3, either uA,C(zi
∗
F (F̄ ′\A)) ≥ D(A,C)

or uA,C(zi
∗
F (F̄ ′\A)) ≥ αuA,C(x(F̄ ′\A)) − D(A,C). This implies that for any ar-

bitrary q nodes from the set of rooted binary trees T1, T2, . . . , Tt with labels say

F̄ ′1, F̄ ′2, . . . , F̄ ′q such that F̄ ′j ⊆ C̄3 for all j and F̄ ′j are pairwise disjoint, either

uA,C(z∗E(∪qj=1F̄
′
j\A)) ≥ D(A,C) or uA,C(z∗E(∪qj=1F̄

′
j\A)) ≥ αuA,C(x(∪qj=1F̄

′
j\A))−

qD(A,C)

This also follows immediately from the merging algorithm 3. The implication follows

because we assumed that the labels of the nodes, F̄ ′j, are pairwise disjoint.

These properties along with the fact that terminal bonds in outerplanar graphs contain

a consecutive set of multichords allow us to conclude the following: Let us say we can

construct t rooted binary trees T1, T2, . . . , Tt whose set of leaves are labelled ē1, ē2, . . . , ēk

and whose other nodes are labelled using the set of their leaf-descendants such that, for

40

any set of consecutive multichords F̄ j
i = {ēi, ēi+1, . . . , ēj}, we can find a total of at most q

nodes from the trees with labels (say F̄ ′1, F̄ ′2, . . . , F̄ ′q) such that ∪ql=1F̄
′
l = F̄ j

i and F̄ ′l are

pairwise disjoint. Then the output z∗E obtained from algorithm 5 using trees T1, T2, . . . , Tt

satisfies: c(z∗E) ≤ t·αc(x) and for any terminal bond C, either uA,C(z∗E(C\A)) ≥ D(A,C) or

uA,C(z∗E(C\A)) ≥ αuA,C(x(C\A))− (q+ 2)D(A,C). Now if x satisfies the KC inequalities

for the set Ax,α i.e. if uA,C(x(C\A)) ≥ D(A,C) for every bond C and we set α = q+3, then

c(z∗E) ≤ t(q+3)c(x) and uA,C(z∗E(C\A)) ≥ D(A,C) which implies u(z∗E(C\A)) ≥ D(A,C).

Additionally since z∗E(e) = 1 for every e ∈ C ∩ A, u(z∗E(C ∩ A)) ≥ D(C) − D(A,C) so

that u(z∗E(C)) ≥ D(C) for every bond C. Thus, z∗E is feasible to the original problem. We

can run the ellipsoid method to obtain an O(tq)-approximation algorithm for CapNDP on

outerplanar graphs with demands occurring only on terminal nodes. The objective now

should be to minimize the product t · q and we tackle this design problem in the next

chapter.

41

Chapter 4

Exact Range Cover Problem

4.1 Problem Description

Let us start by formally defining the design problem introduced towards the end of Chapter

3 with regards to optimizing the approximation factor for CapNDP on outerplanar graphs.

We call this problem the Exact Range Cover Problem. Here we are given an ordered set

of n leaves say L = {1, 2, . . . , n} and are interested in constructing rooted binary trees on

this same leaf set. Given a set of rooted binary trees on L, T = {T1, T2, . . . , Tt} and a node

v from some tree Ti, define its leaf-subset as the set of leaves in the binary sub-tree of Ti

rooted at v and denote it using LT (v). Now given any subset of the leaf set L′ ⊆ L, we say

that a set of nodes V = {v1, v2, . . . , vq} chosen from the binary trees in T exactly covers

L′ if (i) ∪qi=1LT (vi) = L′ and (ii) LT (vi) are pairwise disjoint. As seen in chapter 3, we

are interested in exactly covering subsets that are a consecutive set of leaves for example

{i, i+ 1, . . . , j}. We shall call such subsets of L as ranges denoted I.

Now, given any set of rooted binary trees T = {T1, T2, . . . , Tt} on the leaf set L, define

the following terms,

• The size of T denoted t(T) is the number of trees in T

42

• The query time of T denoted q(T) is defined as

max{I⊆L:I is a range}min{|V | : V is a set of nodes from T that exactly covers I}.
Thus q(T) is the maximum number of nodes needed to exactly cover any range.

• The height of T denoted h(T) is defined as
∑

T∈T h(T) where h(T) is the height of

tree T or the largest size of a leaf to root path in T .

Different choices of T result in various trade-offs between these three factors. For the

purposes of CapNDP on outerplanar graphs as exhibited in chapter 3, we are interested in

finding T that minimizes the product t(T) · q(T). We will now describe the construction

of T that gives an O((log log n)2) bound for this product.

4.2 Construction of Rooted Binary Trees

Consider first, the case when T contains just one tree Tcomplete, which is the complete

binary tree (see Figure 4.1). We define the levels of Tcomplete recursively. Level 0 consists

of the leaves of the tree and level i consists of those nodes whose children are from level

i− 1. It is clear that t(T) = 1 and h(T) = log n. We prove below that q(T) ≤ 2 log n

Lemma 4.2.1. If T = {Tcomplete}, then q(T) ≤ 2 log n

Proof. Let I ⊆ L be an arbitrary range. Color a node v of Tcomplete green if LT (v) ⊆ I. Let

VI be a least-size set of nodes of Tcomplete that exactly covers I. Clearly every node v ∈ VI
is colored green. We claim that if v ∈ VI , then the immediate parent of v in Tcomplete is

not colored green. This claim can be proven by contradiction: let w be the parent of v

with children v and u. Suppose w is coloured green, then to exactly cover I, VI contains

v along with certain nodes from the subtree rooted at u. However all these nodes could

have been replaced by just choosing w itself thus giving a smaller cover. We now show that

VI contains at most two nodes from each level of Tcomplete. For the sake of contradiction,

suppose VI contained at least three nodes from a certain level say i. Let three of those

nodes in order from left to right be u, v, w. Since I is a set of consecutive leaves, the node

to the immediate left of v from level i is also coloured green and similarly the node to

43

Figure 4.1: Complete binary tree Tcomplete

its immediate right. But then consider the immediate parent of v. Both its children are

coloured green and so it too is coloured green. This contradicts our earlier claim. Hence

VI contains at most two nodes from each level and |VI | ≤ 2 log n. Since I was arbitrary,

the proof is complete.

Thus by setting T = {Tcomplete}, we obtain t(T) · q(T) ≤ 2 log n and so we obtain an

O(log n)-approximation algorithm for CapNDP on outerplanar graphs. This by itself is

an improvement over O(β(G)) and we can do even better by constructing multiple binary

trees.

4.2.1 Using Multiple Trees

Consider first, the following two trees called the Left-to-Right Tree (TLtoR) and the Right-

to-Left Tree (TRtoL). In the descriptions below, γ is a user-defined integer parameter and

44

the factors t(T), q(T), h(T), all depend on γ 1.

Construction of TLtoR: The tree is constructed using “Layers”. Layer 0 consists of all

the leaves in order from left to right. We construct Layer i+ 1 from Layer i by taking the

first two nodes and connecting them to a common parent. Then, we connect the third node

of Layer i and this new parent to a second parent. Then, we connect the fourth node of

Layer i and the second parent to a third parent and so on until the γth node is connected.

The parent of the γth node corresponds to the first node of Layer i + 1. We then repeat

this process for the next γ nodes in Layer i and continue this way to obtain Layer i + 1

(see Figure 4.2).

γ nodes γ nodes

γ nodes

Layer 0

Layer 1

Layer 2

Layer H

Layer H-1

Figure 4.2: Construction of TLtoR

1To avoid cumbersome notation, at various places, we set some integer quantity to an expression that

need not be an integer without worrying about placing the floor or ceiling functions. This does not cause

any issues, and all the calculations and analysis go through once we place the floors and ceilings as needed.

45

Construction of TRtoL: The construction of TRtoL is very similar. Again, we construct

the tree using Layers. The only difference is that instead of connecting each set of γ nodes

of layer i from left to right to obtain a node of layer i + 1, we connect them from right

to left. That is, we take the γth and the (γ − 1)th nodes of layer i and connect them to

a parent, then we connect the (γ − 2)th node of layer i and this new parent to a second

parent and so on. The parent of the first node corresponds to the first node of layer i+ 1

and then we repeat this process for the next γ nodes of Layer i and so on. Figure 4.3 below

shows how each node of Layer i+ 1 is built using the nodes of Layer i.

Layer i+1

Layer i

Figure 4.3: Construction of TRtoL

Both trees are the same when viewed in layers: Consider the graph T ′LtoR obtained

from TLtoR as follows: The nodes of T ′LtoR are exactly the nodes that are on the Layers of

TLtoR and there is an edge between a node of Layer i + 1 (say u) and Layer i (say v) if v

is a descendant of u in TLtoR. T ′RtoL is constructed similarly. We then have the following

lemma,

Lemma 4.2.2. The canonical identity map between T ′LtoR and T ′RtoL which maps the cor-

responding jth nodes from Layer i to the other is a graph isomorphism

Proof. It should be clear from the constructions of TLtoR and TRtoL that this is the case.

Essentially we are taking the same γ nodes from Layer i − 1 and just joining them in a

different way to obtain the jth node of Layer i in both the trees.

Exactly covering any range Pick an arbitrary range I ⊆ L. Let T = {TLtoR, TRtoL}
and color the nodes of these trees as follows:

46

A node v is colored green if LT (v) ⊆ I. A node v is colored blue if LT (v) intersects I as

well as L\I. Leave every other node uncoloured. An exact cover for I can only contain

nodes that are colored green. Due to Lemma 4.2.2 above, the colours of nodes that lie on

any layer are the same in both the trees, TLtoR and TRtoL.

Now since Layer 0 has |I| colored nodes, all colored green, and the highest Layer consists

of only one node which is in fact the root of each tree, we know that there exists a largest

layer l which contains at least two colored nodes (blue or green). This implies that Layer

l+ 1 has exactly one colored node and that every colored node in each tree is a descendant

of this node. Let the colored nodes of Layer l in order from left to right be v1, v2, . . . , vp

(We can conveniently use the same name for the nodes of both the trees due to Lemma

4.2.2 above). Since I is a set of consecutive leaves, we have that v1, v2, . . . , vp are also

consecutive nodes from Layer l. Additionally, the nodes v2, . . . , vp−1 have to be colored

green and the nodes v1 and vp are either colored green or blue. Since v1, v2, . . . , vp are

descendants of the same node from Layer l + 1, we know that p ≤ γ. We are allowed to

select the green nodes v2, . . . , vp−1 to exactly cover a part of I and the only leaves in I left

now will be Ileft := LT (v1) ∩ I and Iright := LT (vp) ∩ I. To exactly cover Iright we do the

following:

Since I is a range, the descendants of vp from Layer l− 1 are colored in the following way:

we have a set (possibly empty) of consecutive green nodes starting from the left most node

followed by possibly one blue node and the rest after that are uncolored. However, the way

we have constructed TLtoR allows us to select just one node to exactly cover the consecutive

green nodes of Layer l − 1 and we are now left with at most one blue node of Layer l − 1

which is dealt with in exactly the same manner (see Figure 4.4: the ticked nodes are what

we would select in our cover).

Since we select at most one node from each layer, Iright can be covered by at most H

nodes where H is the number of layers in TLtoR. A simple calculation gives H = log n/ log γ.

Ileft is exactly covered using the very same argument just using TRtoL instead. Thus we

need at most 2H nodes to exactly cover Ileft∪Iright and the rest of I called Icenter is covered

using at most p ≤ γ nodes.

Before going further, let us pause and take stock of what we obtain using T =

{TLtoR, TRtoL}. Clearly t(T) = 2 and the height of each tree is equal to the product

47

Layer 0

Layer 1

Layer l − 1

Layer l − 2

Layer l
unun−1un−2un−3

I

Figure 4.4: Exact cover for Iright

of the parameter γ with the number of layers H so that h(T) = 2γ · log n/ log γ. Fur-

thermore, the discussion above shows that q(T) ≤ γ + 2H = γ + 2 log n/ log γ. If

we set γ = log n/ log log n, then t(T) · q(T) = O(log n/ log log n) and we obtain an

O(log n/ log log n)-approximation algorithm for CapNDP on outerplanar graphs. This is

an improvement from the previous case where T = {Tcomplete} and we can do even better

by exactly covering Icenter recursively.

Exactly covering Icenter recursively Earlier, we exactly covered Icenter using at most

γ nodes by observing that v2, . . . , vp−1 are all descendants of the same node from Layer

48

l + 1 and are all colored green. Thus to exactly cover Icenter, we need to exactly cover

a consecutive set of at most γ nodes that are all descendants of the same node. We can

use the previous idea recursively here by constructing another pair of trees which splits up

each layer into sub-layers as follows: while building a node from a particular Layer i using

γ nodes from Layer i+ 1, we can instead of connecting them using the left to right or right

to left design, further divide them into sets of γ′ nodes and then use the left to right or

right to left design here. It is essentially the same as TLtoR or TRtoL just using γ′ as the

parameter while building the same nodes on the Layers as before (See figure 4.5).

γ nodes γ nodes

γ nodes

Layer 0

Layer 1

Layer 2

Layer H

Layer H-1

γ′ nodes γ′ nodes

γ′ nodes

Layer i

Layer i+1

γ nodes

Figure 4.5: Recursively constructing trees

In so doing, we can now exactly cover Icenter using at most 2H ′ + γ′ nodes where H ′ is

49

the number of sub-layers created between each pair of consecutive layers. The reason for

this is exactly the argument provided earlier for Ileft and Iright. A simple calculation gives

H ′ = log γ/ log γ′. We can further do this recursively by constructing another pair of trees

to take care of the (at most) γ′ green nodes that are consecutive descendants of the same

node from a sub-layer. Thus we can consider a sequence n = γ0 ≥ γ1 ≥ γ2 ≥ γ3 . . . ≥ γt/2

and construct rooted binary trees using these parameters as described above. Suppose T is

the collection of all these rooted binary trees, then t(T) = t and as we have shown earlier,

q(T) is at most 2(
log n

log γ1

+
log γ1

log γ2

+ · · ·+
log γt/2−1

log γt/2
) + γt/2.

Let us now concretely put some values to these γ′is and see how we perform. For any

parameter r ≤ log n, choose γ′is such that γri+1 = γi or log γi/ log γi+1 = r and stop at

γt/2 = 2. Let the collection of the rooted binary trees we obtain this way be Tr. Then we

have 2r
t/2

= n so that t(Tr) = 2 log log n/ log r and q(Tr) = 2(t/2 ·r+1) = 2(
r log log n

log r
+1).

The height h1, of the first pair of trees created (using parameter γ1) is equal to γ1 times the

number of layers created and is thus equal to γ1 · log n/ log γ1 = n1/rr. We can calculate

the height h2, of the next pair of trees created (using parameter γ2) by observing that the

difference in the two trees (with parameters γ1 and γ2) is that instead of connecting the

γ1 nodes from left to right to or right to left directly, we are further dividing it into γ2

batches. Thus h2 = h1/γ1 · γ2 log γ1/ log γ2 = n1/r2r2. Continuing this way, the height hi,

of the ith pair of trees created (using parameter γi is n1/riri. Since n = 2r
t/2

, hi = 2r
t/2−i

ri

and so h(Tr) = 2
∑t/2

i=1 2r
t/2−i

ri. Let us try to analyze the order of h(Tr) using the lemma

below.

Lemma 4.2.3. Let n be a large enough integer and r ≤ log n. Let t/2 be such that

n = 2r
t/2

. Then, 2r
t/2−i

ri ≤ 2r
t/2−1−(i−1)r for any i = 1, 2, . . . , t/2.

Proof. We start with the inequality log
log n

2r
+

log log n

log r
≤ log n

r + 2
which is true for large

enough n since the terms on the left hand side of the inequality have an additional loga-

rithmic factor. We get the following set of implications then.

50

log
log n

2r
+

log log n

log r
≤ log n

r + 2

=⇒ log
log n

2r
+ t/2 ≤ log n

r + 2
(t/2 =

log log n

log r
)

=⇒ (r + 2) log
2t/2 · rt/2

2r
≤ log n (rt/2 = log n)

=⇒ ((2r)(t/2−1))(r+2) ≤ n

=⇒ ((2r)(i−1))(r+2) ≤ n (i ≤ t/2)

=⇒ ((2r)(i−1))(ri/(ri−1−1)) ≤ n (ri/(ri−1 − 1) ≤ r + 2)

=⇒ ((2r)(i−1))r
i ≤ (2r

t/2

)r
i−1−1 (2r

t/2
= n)

=⇒ (2r)(i−1) ≤ 2r
t/2−i(ri−1−1) = 2r

t/2−1

/2r
t/2−i

=⇒ 2r
t/2−i

ri ≤ 2r
t/2−1−(i−1)r

Now due to Lemma 4.2.3, we obtain that h(Tr) = 2
∑t/2

i=1 2r
t/2−i

ri ≤ 2
∑t/2

i=1 2r
t/2−1−(i−1)r

and this is a geometric sum. Hence O(h(Tr)) = O(2r
t/2−1 ·r) = O(n1/r ·r). Table 4.1 below,

summarizes these results.

t q h

2 log log n/ log r (rt+ 2) 2
∑t/2

i=1 2r
t/2−i

ri = O(n1/r · r)

Table 4.1: Parameters of Tr

Approximation factor for CapNDP We wish to minimize the product t(T) · q(T)

and this is obtained when r = 4. Hence, we obtain the following result.

Theorem 4.2.4. There exists an O((log log k)2)-approximation algorithm for CapNDP on

outerplanar graphs with demands occurring only on terminal nodes where k is the number

of multichords in the underlying outerplanar graph.

51

4.3 Application to Array Range Query Problem

We will now explore an application of the Exact Range Cover Problem. Here we are given

an array with n entries a1, a2, . . . , an, each coming from a semi-group. A semi-group is

a set G along with an associative binary product (·) : G × G → G. The user is allowed

to update the entries of the array and also query the product of any range [i, j] which is

just ai · ai+1 · . . . · aj. We wish to design a data structure that efficiently allows these two

operations. This problem has been studied with various modifications and is called the

array range query problem or the range-sum query problem. A survey of related results can

be found in [26].

We can use the exact range cover problem and the results we developed therein to

provide reasonable data structures for the array range query problem. Essentially the leaves

of each rooted binary tree that we construct stores the values from the array and every

other node stores the value obtained by taking the product of its children. Lets say we fix a

particular r to use and have constructed Tr. Each tree in Tr has exactly 2n−1 nodes since

they are rooted binary trees with n leaves. Hence the space required by this data structure

is O(nt(Tr)) = O(n log log n/ log r). The time required to implement an update using this

data structure is exactly equal to the height of Tr, h(Tr) = 2
∑t/2

i=1 2r
t/2−i

ri = O(n1/r · r).
Now suppose we are given a query in the form of a range [i, j]. We have already seen that

we need at most q(Tr) nodes from Tr to exactly cover this range. Furthermore, we can

find these nodes in O(q(Tr)) time as follows: As shown in Figure 4.4, we need to pick at

most log γi/ log γi+1 = r nodes from each tree and these nodes can be found in O(r) by

referring to Figure 4.4. We start with the rightmost green node from Layer 0, say u and go

up the tree layer by layer coloring the nodes that are ancestors of u. This takes time O(r)

as there are r layers. Next, we traverse back down the tree layer by layer and while doing

so, if we encounter a blue colored node v from Layer i, we will have to select the parent of

the node to the immediate left of v in Layer i. On the other hand, if we encounter a green

colored node, we select it immediately and it will be the last node we select from that

particular tree. This also takes time O(r) as there are r layers. Hence any range query can

be answered in time O(rt(Tr)) = O(q(Tr)). Thus we get an entire family of data structures

with various trade-offs between the update time and the query time using different values

52

of r. For example, if r = log n, then we obtain O(n) space complexity, O(log n) update

time and O(log n) query time. On the other hand if r = c for some constant c, then we

obtain O(n log log n) space complexity, O(n1/c) update time and O(log log n) query time.

Table 4.2 below summarizes these results and here t = 2 log log n/ log r

Space Query Time Update Time

O(n log log n/ log r) O(r log log n/ log r) O(n1/r · r)

Table 4.2: Array Range Query using Tr

53

Chapter 5

Extensions

In this chapter, we will see algorithms that extend our previous results to more general

cases. First, we shall allow for a wider range of demand pairs and not just terminal

demands. Secondly, we shall see an extension to CapNDP on directed outerplanar graphs

and show that all our results still hold there. Finally, we consider a generalization of

CapNDP called column-restricted covering integer programs

5.1 Including More Bonds

We have already seen how to deal with all the terminal bonds and have provided an

O((log log k)2)-approximation algorithm for such bonds where k is the number of multi-

chords in the underlying outerplanar graph. Referring back to Lemma 3.1.2, we notice

that the only bonds left out then are bonds such that the nodes of either of the connected

components separated by it is a set of consecutive nodes that lie entirely within one of

the biconnected non-crossing interval graphs that forms the outer cycle of the biconnected

outerplanar graph. We have already noted earlier that biconnected non-crossing interval

graphs are also biconnected outerplanar graphs. Hence, we can run the entire algorithm 5

separately on each of these biconnected non-crossing interval graphs to include more bonds

and hence allow for more nodes to have demands between them. Suppose z∗E is the integer

54

vector that we obtain by running algorithm 5 on the entire outerplanar graph and z′E is

the integer vector that we obtain by running algorithm 5 on each biconnected non-crossing

interval graph separately and appending all of these together (along with 0’s for all chords

to obtain a vector defined on the entire edge set E). Further let zE be the integer vector

obtained by taking the union of z∗E and z′E. Then we know that c(z∗E) ≤ O((log log k)2)c(x)

and c(z′E) ≤ O((log log k′)2)c(x). Here, as before, x is the fractional vector used as an

input into algorithm 5, k is the number of multichords in the underlying outerplanar graph

and k′ is now the maximum number of multichords in any of the biconnected non-crossing

interval graphs that form the outer cycle. Furthermore zE now satisfies all terminal bonds

of the outerplanar graph as well as all outerplanar terminal bonds of the biconnected

non-crossing interval graphs that form the outer cycle. The only bonds left now will be

bonds such that the nodes of either of the connected components separated by it is a set

of consecutive nodes that lie entirely within one of the biconnected non-crossing interval

graphs that forms the outer cycle of one of the biconnected non-crossing interval graphs of

the underlying outerplanar graph. We can thus further use algorithm 5 and include more

bonds if we desire. Suppose we perform this iteration d times, then the approximation ratio

we obtain is at most O(d(log log n)2) where n is the number of nodes in the underlying

outerplanar graph since the number of multichords k is of order O(n) at any step.

We would also like to point out that one can include all bonds and thus have arbitrary

node demands by utilizing the randomized algorithm provided by Chekuri and Quanrud

[12]. There they provide a (log ∆0 + log log ∆0 + O(1))-approximation ratio for arbitrary

integer covering problems where ∆0 is the maximum number of non-zero entries in any

column of the constraint matrix. Due to Lemma 3.1.2, we know that there are at most

O(n2) bonds in biconnected outerplanar graphs so that ∆0 = O(n2). Also, due to the

description of terminal bonds of outerplanar graphs (see 3.1.1), we know that ∆0 = Ω(n2)

as a particular edge can be part of Ω(n2) bonds. Hence the randomized algorithm provided

in [12] gives an O(log(n))-approximation algorithm for CapNDP on outerplanar graphs

with arbitrary demand pairs.

55

5.2 Directed Graphs

We shall now explore how our results perform in the setting of Capacitated Network Design

Problem on directed graphs. The problem statement is still exactly the same as Problem

2. The definition of bonds will change slightly as follows,

Definition 5.2.1 (Bond of a Directed Graph). Given a directed multigraph G, for every

ordered pair of nodes (u, v) a minimal set of edges whose removal disconnects v from u is

called a bond of the graph.

With this definition of bonds of a graph, the IP formulation, CapNDP-IP and the

corresponding KC-LP relaxation, CapNDP-KCLP still remain the same. Let us now see

Lemma 3.1.2 in the context of directed graphs.

Lemma 5.2.2. Bonds of a directed biconnected outerplanar graph G = (V,E) can be

written as δout(S) where S is a set of consecutive nodes on the outer cycle of the outerplanar

graph and δout(S) is the set of edges directed from S to V \S

Proof. Since a bond C that disconnected two nodes, say v from u is also a cut, we can

express C as δout(S) for some set S ⊆ V . Since all nodes of a biconnected outerplanar

graph occur on the outer cycle, we can express S as the disjoint union of maximal sets

of consecutive nodes around the outer cycle. Thus S = S1 ∪ S2 ∪ . . . ∪ Sr where each

Si is a set of consecutive nodes around the outer cycle and there is a non-empty set of

consecutive nodes Ti between Si and Si+1 (Tr is between Sr and S1). Now choose an S

such that C = δout(S) with minimum r. Suppose r = 1, then there is nothing to prove. If

not, WLOG let u ∈ S1. Also, either v 6∈ T1 or v 6∈ Tr. WLOG let v 6∈ Tr. Now consider

the following list of exhaustive cases.

Case 1: There exists an undirected path from S1 to Sr. Then since the graph is outer-

planar, there cannot exist an edge between Tr and any other Ti. Consider then S ′ = S∪Tr.
Then δout(S ′) is still a u− v cut and further δout(S ′) ⊆ δout(S) since there is no edge from

Tr to any other Ti. Since δout(S) = C is a bond (a minimal set of edges), we must have

that δout(S ′) = δout(S) = C. But then S ′ has a smaller r than S and this is a contradiction.

56

Case 2: There is no undirected path from S1 to Sr. Let S ′ = ∪{Si : Si is reachable

from S1 in the underlying undirected outerplanar graph}. Then clearly Sr is disjoint from

S ′ and δout(S ′) is a u− v cut. Furthermore, δout(S ′) ⊆ δout(S) since there is no edge from

any of the S ′is included in S ′ to any of the S ′js not included in S ′. Since δout(S) = C is a

bond (a minimal set of edges), we must have that δout(S ′) = δout(S). But then S ′ has a

smaller r than S and this is a contradiction.

Now that we have Lemma 5.2.2, everything that we have proven earlier will still go

through with a few changes that we present here. First let’s re-describe the terminal

bonds of outerplanar graphs.

Terminal Bonds of Directed Biconnected Non-crossing Interval Graphs Given

a directed non-crossing interval graph G = (V,E) with n nodes say 1, 2, . . . , n, let E1n be

the set of edges directed from node 1 to n and let En1 be the set of edges directed from

node n to 1. Let G1n = (V,E1n) and Gn1 = (V,En1) where both are undirected graphs.

Then a bond separating n from 1 is just a bond in the undirected graph G1n and a bond

separating 1 from n is just a bond in the undirected graph Gn1. This follows immediately

from Lemma 5.2.2.

The above description allows us to still achieve the 2-approximation for terminal bonds

of directed non-crossing interval graphs by running algorithm 4 separately on G1n and Gn1.

Terminal Bonds of Directed Biconnected Outerplanar Graphs Firstly the chords

of a biconnected outerplanar graph can be ordered from s to t. Call the chords directed

from the upper path to the lower path, downward chords and similarly call the chords

directed from the lower path to the upper path, upward chords. Due to Lemma 5.2.2,

we are interested in the bond generated by a set of consecutive nodes on the cycle that

contains a terminal node. The edges in this bond contains a terminal bond from each of the

biconnected non-crossing interval graphs that the end points of this consecutive set belong

to and also contains either the set of consecutive upward chords or the set of consecutive

downward chords that lie between these end points. Thus, we have a possibly empty set

of consecutive upward or downward chords along with a terminal bond from one of the

57

biconnected non-crossing interval graphs connected in series to the immediate left of the

leftmost chord (i.e from the non-crossing interval graphs that occur on either the upper or

lower path to the left of the leftmost chord till the next chordal nodes on the left) and a

terminal bond from one of the biconnected non-crossing interval graphs connected in series

to the immediate right of the rightmost chord.

The above description allows us to still achieve the O((log log k)2)-approximation for

terminal bonds of directed outerplanar graphs (where k is the number of multichords) by

running algorithm 5 on the downward chords and the upward chords separately and also

running the part of algorithm 4 used in algorithm 5 separately on G1n and Gn1 for each

biconnected non-crossing interval graph.

Furthermore, the remarks with regards to including more bonds in Section 5.1 still hold

since we have proven Lemma 5.2.2.

5.3 Column-Restricted Covering Integer Programs

Column-Restricted Covering Integer Programs (CCIPs) generalize 0, 1- covering integer

programs (0,1-CIPs). In a 0,1-CIP, the goal is to solve an integer program of the form

min{cTx : Ax ≥ b, x ∈ {0, 1}}

Here A ∈ {0, 1}m×n is the constraint matrix. b ∈ Zm+ is the demand vector and c ∈ Zn+
is the cost vector. {0, 1}-CIPs are essentially equivalent to set-cover problems where sets

correspond to columns and elements correspond to rows. It is known that {0, 1}-CIPs

cannot be approximated to a factor better than O(log n) unless P = NP . CCIPs are

a capacitated version of {0, 1}-CIPs in the sense that the constraint matrix A is now in

Zm×n+ with the restriction that for each column, every non-zero entry is the same. The

Capacitated Network Design Problem is an example of a CCIP. Given the hardness result

for {0, 1}-CIPs, it is reasonable to look for better approximation algorithms in cases where

the constraint matrix A is structured. Chakrabarty, Grant and Könemann [8] initiated

a systematic study of CCIPs by considering the underlying {0, 1}-CIP and its priority

version. If the underlying {0, 1}-CIP has an integrality gap O(γ) and its priority version

58

has an integrality gap O(ω), then [8] show an O(γ + ω) approximation algorithm for the

CCIP. Subsequently Chan, Grant, Könemann and Sharpe [10] built on these results and

discovered a O(1)-approximation algorithm in the case where the constraint matrix A is a

network matrix. This covers the case for example when the support of each column of A

is a consecutive set of rows. Carr et al. [6] used their bucketing algorithm 1 to provide

a p-approximation algorithm for general capacitated covering integer programs where p

is the maximum number of non-zero entries in a row of the constraint matrix A. The

bucketing algorithm 1 along with the merging algorithm 3 that we developed can also be

used in situations where the constraint matrix A is structured. For example if the rows

of A are given by paths from leaves to the root of a particular rooted tree where each

node of this tree corresponds to a column of A (similar to terminal bonds of non-crossing

interval graphs in 3.1.1), then we can provide a 2-approximation algorithm for the CCIP

using algorithm 4. Similarly, if the supports of each row of A are a set of at most k sets of

consecutive columns, then we can use the results developed for the chords of outerplanar

graphs (algorithm 5) to obtain a O(k(log log n)2)-approximation algorithm for the CCIP.

We thus have the following theorem.

Theorem 5.3.1. Let min{cTx : Ax ≥ b, x ∈ {0, 1}} be a column-restricted covering

integer program where A ∈ Zm×n+ . Suppose the support of each row of the constraint matrix

A is a set of at most k sets of consecutive columns, then there exists a O(k(log log n)2)-

approximation algorithm for the CCIP.

We can also consider a combination of the two structures above as seen in the case of

outerplanar graphs. Thus the methods developed in this thesis can be used for CCIPs

where the constraint matrix A is structured.

59

Chapter 6

Conclusions and Future Work

In this thesis, we considered the Capacitated Network Design Problem arising in network

security and presented an approximation algorithm for CapNDP on outerplanar graphs.

Prior to our work, the best known approximation ratio of an approximation algorithm for

this problem was O(n) where n is the number of nodes in the outerplanar graph. We

were able to improve this ratio by a doubly exponential factor by restricting the set of

nodes that can hold positive demands, while capturing the single demand pair case. Here,

we were able to achieve an approximation ratio of O((log log n)2). We designed a new

algorithm called the merging algorithm which builds on the bucketing algorithm by Carr

et al. [6] to achieve this. We showed that the merging algorithm is a versatile tool and

used it to also achieve a 2-approximation algorithm for CapNDP on another class of graphs

called non-crossing interval graphs generalizing line graphs. We were also able to generalize

our results to CapNDP on directed graphs. Furthermore, we observed that our merging

algorithm can be used in a much larger class of problems called column-restricted covering

integer programs to achieve better approximation ratios there if the constraint matrix is

suitably structured. Along the way, we encountered a combinatorial design problem which

finds applications in the array range query problem and provided interesting results there.

Our work and ideas lead to various other interesting questions and we mention some of

them below.

60

FPTAS for CapNDP on outerplanar graphs with a single demand pair Carr

et al. [6] had provided a pseudo-polynomial time algorithm via dynamic programming for

CapNDP on outerplanar graphs with a single demand pair. However, we observed that

their dynamic program cannot be used to design an FPTAS for the problem. Attempts

were made during our work to find a dynamic program that can be used to design an

FPTAS for the problem but no results were obtained. It will be interesting to see such a

result or a result which proves that there is no FPTAS for this problem unless P = NP .

Including more demand pairs As we observed in section 5.1, our approximation al-

gorithm takes care of most demand pairs from the outerplanar graph. The only pairs of

nodes left out correspond to bonds of non-crossing interval graphs that are not terminal

bonds. Due to the nice structure of non-crossing interval graphs, it is possible that the

merging algorithm (or a different idea) can be adapted to work for all bonds of non-crossing

interval graphs. If such is the case, one would be able to remove the restriction on the

demand pairs from Theorem 4.2.4.

Improving the approximation ratio In Chapter 4, we describe the exact range cover

problem and provide a solution to the problem. We have however not proven that the

solution we provide is the optimal solution. It is possible that there are better solutions to

this combinatorial design problem. If such is the case, one would be able to improve the

approximation factor in Theorem 4.2.4. One would also improve our results on the array

range query problem and on the column-restricted covering integer programs.

Applications of Exact Range Cover Problem In Chapter 4, we show how our so-

lution to the exact range cover problem finds applications in the well-studied array range

query problem. It is possible that there are other applications of our combinatorial de-

sign and it would be interesting to see such results. For example, our results should be

extendable to the multi-dimensional array range query problem arising in image processing.

Applications of Merging Algorithm We have shown the versatility of our merging

algorithm by applying it in the problem of CapNDP on outerplanar graphs, CapNDP on

61

non-crossing interval graphs and column-restricted covering integer programs. The merging

algorithm exploits the structure of the underlying graph or constraint matrix in these cases.

It is possible that the merging algorithm can be adapted to work for other classes of graphs

or constraint matrices and it would be interesting to see such results.

62

References

[1] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In Proceedings 38th

Annual Symposium on Foundations of Computer Science, pages 542–547, 1997.

[2] Egon Balas. Facets of the knapsack polytope. Mathematical Programming, 8(1):146–

164, 1975.

[3] Nikhil Bansal, Anupam Gupta, and Ravishankar Krishnaswamy. A constant fac-

tor approximation algorithm for generalized min-sum set cover. In Proceedings of

the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10,

page 1539–1545, 2010.

[4] Suman K. Bera, Shalmoli Gupta, Amit Kumar, and Sambuddha Roy. Approximation

algorithms for the partition vertex cover problem. Theoretical Computer Science, 555:2

– 8, 2014.

[5] Tim Carnes and David Shmoys. Primal-dual schema for capacitated covering prob-

lems. In Integer Programming and Combinatorial Optimization, pages 288–302, 2008.

[6] Robert D. Carr, Lisa K. Fleischer, Vitus J. Leung, and Cynthia A. Phillips. Strength-

ening integrality gaps for capacitated network design and covering problems. In

Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’00, page 106–115, 2000.

[7] Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Ap-

proximability of capacitated network design. In Integer Programming and Combina-

toral Optimization, pages 78–91, 2011.

63

[8] Deeparnab Chakrabarty, Elyot Grant, and Jochen Könemann. On column-restricted

and priority covering integer programs. In Integer Programming and Combinatorial

Optimization, pages 355–368, 2010.

[9] Deeparnab Chakrabarty, Ravishankar Krishnaswamy, Shi Li, and Srivatsan

Narayanan. Capacitated network design on undirected graphs. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages

71–80, 2013.

[10] Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted

capacitated, priority, and geometric set cover via improved quasi-uniform sampling.

In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Al-

gorithms, SODA ’12, page 1576–1585, 2012.

[11] Chandra Chekuri, Mohammad Taghi Hajiaghayi, Guy Kortsarz, and Mohammad R

Salavatipour. Approximation algorithms for nonuniform buy-at-bulk network design.

SIAM Journal on Computing, 39(5):1772–1798, 2010.

[12] Chandra Chekuri and Kent Quanrud. On approximating (sparse) covering integer

programs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 1596–1615. SIAM, 2019.

[13] Maurice Cheung, Julián Mestre, David B. Shmoys, and José Verschae. A primal-dual

approximation algorithm for min-sum single-machine scheduling problems. SIAM

Journal on Discrete Mathematics, 31(2):825–838, 2017.

[14] Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: Better and simpler.

In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles

of Distributed Computing, PODC ’11, page 169–178, 2011.

[15] Gu Even, Guy Kortsarz, and Wolfgang Slany. On network design problems: Fixed

cost flows and the covering steiner problem. In Algorithm Theory — SWAT 2002,

pages 318–327, 2002.

64

[16] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, É. Tardos, and D. P.

Williamson. Improved approximation algorithms for network design problems. In Pro-

ceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

’94, page 223–232, 1994.

[17] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Danny Segev.

Scheduling with outliers. In Approximation, Randomization, and Combinatorial Op-

timization. Algorithms and Techniques, pages 149–162, 2009.

[18] MohammadTaghi Hajiaghayi, Rohit Khandekar, Guy Kortsarz, and Zeev Nutov.

Combinatorial algorithms for capacitated network design, 2011.

[19] Mike Hewitt, George L Nemhauser, and Martin WP Savelsbergh. Combining ex-

act and heuristic approaches for the capacitated fixed-charge network flow problem.

INFORMS Journal on Computing, 22(2):314–325, 2010.

[20] John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph

manipulation. Commun. ACM, 16(6):372–378, 1973.

[21] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack

and sum of subset problems. J. ACM, 22(4):463–468, 1975.

[22] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network

problem. Combinatorica, 21(1):39–60, 2001.

[23] Sven O Krumke, Hartmut Noltemeier, S Schwarz, H-C Wirth, and R Ravi. Flow

improvement and network flows with fixed costs. In Operations Research Proceedings

1998, pages 158–167, 1999.

[24] Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli. A lasserre lower bound

for the min-sum single machine scheduling problem. In Algorithms - ESA 2015, pages

853–864, 2015.

[25] F Sibel Salman, Joseph Cheriyan, Ramamoorthi Ravi, and Sairam Subramanian.

Approximating the single-sink link-installation problem in network design. SIAM

Journal on Optimization, 11(3):595–610, 2001.

65

[26] Matthew Skala. Array Range Queries. Springer, 2013.

[27] Laurence A. Wolsey. Faces for a linear inequality in 0–1 variables. Mathematical

Programming, 8(1):165–178, 1975.

66

	List of Figures
	List of Tables
	List of Abbreviations
	List of Algorithms
	Introduction
	Related Work
	Our Contributions and Outline of Thesis

	Preliminaries
	Minimum Knapsack Problem and Knapsack Cover Inequalities
	Bucketing Algorithm

	Capacitated Network Design Problem
	Approximation Algorithm for CapNDP on General Graphs

	CapNDP on Outerplanar Graphs
	Structure of Biconnected Outerplanar Graphs
	Bonds of Biconnected Outerplanar Graphs

	Merging Algorithm
	2-approximation for Terminal Bonds of Non-crossing Interval Graphs
	Approximation Algorithm for Terminal Bonds of Outerplanar Graphs

	Exact Range Cover Problem
	Problem Description
	Construction of Rooted Binary Trees
	Using Multiple Trees

	Application to Array Range Query Problem

	Extensions
	Including More Bonds
	Directed Graphs
	Column-Restricted Covering Integer Programs

	Conclusions and Future Work
	References

